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Though the philosophy of mathematics encompasses many kinds of

questions, my response to the five questions primarily focuses on the

prospects of developing a unified approach to the metaphysical and epis-

temological issues concerning mathematics. My answers will be framed

from within a single conceptual framework. By ‘conceptual framework’,

I mean an explicit and formal listing of primitive notions and first prin-

ciples, set within a well-understood background logic. In what follows, I

shall assume the primitive notions and first principles of the (formalized

and) axiomatized theory of abstract objects, which I shall sometimes refer

to as ‘object theory’.1 These notions and principles are mathematics-free,

consisting only of metaphysical and logical primitives. The first principles

assert the existence, and comprehend a domain, of abstract objects, and

in this domain we can identify (either by definition or by other means)

logical objects, natural mathematical objects, and theoretical mathemat-

ical objects. These formal principles and identifications will help us to

articulate answers not only to the five questions explicitly before us, but

also to some of the other fundamental questions in the philosophy of

mathematics raised below.

1. Why were you initially drawn to the foundations of mathe-

matics and/or the philosophy of mathematics?

As a metaphysician, I’ve always been interested in data that consists of

(apparently) true sentences and valid inferences that appear to be about

∗This article was published in V.F. Hendricks and H. Leitgeb (eds.), Philosophy of

Mathematics: 5 Questions, New York, London: Automatic Press/VIP, 2007, pp. 313-

328.
1This theory was outlined in detail in Zalta 1983 and 1988, and has been applied

to issues in the philosophy of mathematics in the works referenced below.
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objects and relations other than those studied by the natural sciences.

These sentences and inferences often form part of a correct description

of the world, and the challenge for the metaphysician is to explain this

data, by developing a systematic theory of the truth conditions for the

sentences in question that reveal why those sentences have the apparent

truth value, and consequences, that they do have. The sentences and

inferences deployed in the practice of mathematics are interesting exam-

ples of this kind of data, since they appear to reference, or quantify over,

special objects and relations that are not studied per se by the natural

sciences. The data are made even more interesting by the fact that serious

scientific investigation employs the language of some segment of mathe-

matics. Thus, as a metaphysician, it is important to develop an overall

ontological theory that allows us to assign a significance, or denotation,

to the terms and predicates of mathematical sentences in such a way that

accounts for the truth of those sentences and for the valid inferences that

we may make in terms of them. This is what drew me to the philosophy

of mathematics.

As to the foundations of mathematics, I shall adhere to the distinc-

tions, drawn explicitly in Shapiro 2004, between the metaphysical, episte-

mological, and mathematical foundations for mathematics. Metaphysical

foundations for mathematics address the issues outlined in the previous

paragraph. Epistemological foundations for mathematics center around

the questions: (1) what kind of knowledge is knowledge of mathematics?,

and (2) how (by what cognitive mechanisms) do we acquire such knowl-

edge? Mathematical foundations for mathematics address the questions:

(1) Is there a mathematical theory distinguished by the fact that all other

mathematical theories can be reduced to, or translated into, it? (2) What

notions of reducibility and translatability are appropriate for comparing

the strength of mathematical theories?

Now given these distinctions, I shall focus primarily in what follows

on metaphysical and epistemological foundations for mathematics. As to

mathematical foundations for mathematics, I shall assume that although

philosophers may have something to say about the nature of the reducibil-

ity or translatability relation in play when determining the strength of

mathematical theories, it is primarily a mathematical, and not a philo-

sophical, question as to whether there is a foundational mathematical

theory. Therefore I shall suppose that the metaphysical and epistemo-

logical foundations of mathematics developed by philosophers should not
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imply whether there is or is not a single foundational mathematical theory.

The metaphysics and epistemology of mathematics should be consistent

with whatever conclusion mathematicians (including set theorists, cate-

gory theorists, etc.) draw with respect to the existence of such a theory.

Some philosophers might wonder how this is possible, but the theory de-

scribed below shows that it is. Finally, I should mention that there are

many other non-foundational issues in the philosophy of mathematics,

but I shall little to say about them here.

2. What examples from your work (or the work of others) illus-

trate the use of mathematics for philosophy?

To answer this question, let me distinguish philosophical questions

about the foundations of mathematics (i.e., the metaphysical and epis-

temological foundations discussed above) from other philosophical ques-

tions. In my view, philosophical theories about the foundations of mathe-

matics should employ mathematical methods (e.g., the axiomatic method)

but not assume any mathematically primitive expressions other than nu-

merical indices to indicate the arity of relations.2 I see metaphysics as

an a priori science that is prior to mathematics: whereas mathematical

theories are about particular abstract objects (e.g., the natural numbers,

the ZF sets, etc.) and particular relations and operations (e.g., successor,

membership, group addition, etc.), metaphysics is about abstract objects

in general and relations in general. So metaphysics should be free of math-

ematical primitives, though primitive mathematical terms and predicates

might be imported into metaphysics when those primitives are accompa-

nied by principles that identify the denotations of the terms and predicates

as entities already found in the background metaphysics. Another reason

not to have mathematical primitives in our metaphysical foundations is

to avoid ontological danglers. That is why set theory or model theory

cannot serve as a metaphysical foundations; the metaphysical and episte-

mological problems about mathematics cannot be solved by an appeal to

set theory or model theory, for that is just more mathematics and there-

2This appeal to numerals to indicate the arity of relations doesn’t entail, as Frege

realized, that we quantify over numbers. One might eliminate the numerals by using

tics, i.e., indicating the arity of relation F as F ′, F ′′, F ′′′, . . . . But if it could be shown

that there is a ineliminable appeal to the natural numbers in using numerals in this

way, then it may be that the best we can do is use this numeralized logic of relations

to reconstruct the concept of number and the Dedekind-Peano postulates from our

metaphysical first principles, as in Zalta 1999.
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fore part of the data to be explained. Such problems must be solved by

an appeal to a more general theory of abstract objects and relations.

Thus, while I endorse and use the axiomatic method to organize a

metaphysical foundations for mathematics, that framework (the ‘second-

order’ modal theory of abstract objects),3 employs only the following

metaphysical and logical primitives: individual (x, y, z . . .), n-place rela-

tion (Fn, Gn, Hn, . . .), exemplification (Fnx1 . . . xn), encoding (xF 1),4 it

is not the case that (¬φ), if-then (φ→ ψ), every (∀αφ),5 and it is neces-

sarily the case that (2φ).6 In the higher-order formulations of the theory

of abstract objects, we sometimes also employ the notion of type, defined

recursively in the usual way. As we utilize this framework for the philos-

ophy of mathematics, the fact that it is mathematics-free should be kept

in mind.

So mathematical methods, such as the axiomatic method, may be

used in responding to philosophical questions about the foundations of

mathematics. But, of course, there are many other philosophical questions

that have nothing to do with the foundations of mathematics. Here, the

philosopher is free to employ whatever mathematics suits the task at

hand. Some early examples are very well known. Leibniz (1690) used

an algebraic operation (⊕, for concept addition) and axioms for semi-

lattices (governing the relation � of concept inclusion) to formulate his

‘calculus of concepts’. Frege (1891) employed functions and functional

application (conceived mathematically) to analyze predication in natural

language. The 20th century saw an explosion of such applications of

mathematics in philosophy. A noteworthy recent example is Leitgeb’s use

of the (graph-theoretic) mathematics of similarity relations to understand

Carnap’s notion of quasianalysis (Leitgeb 2007).

As long as the mathematics employed in these applications is used

to model the entities, or the structure of the entities, or the reasoning

we engage in, etc., I have no qualms. But we should not confuse the

mathematical entities in a model with the entities being modeled. To give

3I put ‘second-order’ in quotes because while the language of the theory is second-

order, the theory doesn’t require full second order logic.
4See Linsky & Zalta 2006 (80) for a discussion as to why the new form of predication,

x encodes F (xF ) is not to be conceived as a mathematical primitive.
5Here α may be any individual variable or relation variable.
6The theory also employs a distinguished predicate ‘E!’. Formulas of the form

‘E!x’ and ‘xE!’ are to be read as ‘x exemplifies being concrete’ and ‘x encodes being

concrete’, respectively.
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just a simple example: though set-theoretic models of propositions (i.e.,

ones that treat them as functions from worlds to truth-values or as sets of

truth-values) have some interest in so far as they can represent the truth-

conditions of, and inferential relations among, the sentences expressing

those propositions, we shouldn’t identify the propositions expressed with

sets or functions. Instead we should try to develop theories of propositions

that have these set-theoretic structures as models.

3. What is the proper role of the philosophy of mathematics

in relation to logic, foundations of mathematics, the traditional

core areas of mathematics, and science?

This question raises a host of further questions, such as: How do we

demarcate logic and mathematics and what is the relationship between

them? Are there logical objects and how do they differ from mathemat-

ical objects? To what extent do logical and mathematical foundations

overlap? To begin to answer these questions, let us focus on the questions

of how the metaphysical and epistemological foundations of mathematics

relate to those of logic and science.

It is important begin by noting that true, ordinary mathematical

claims typically occur either (a) in the context of ‘natural’ or naive mathe-

matics, such as ordinary, naive geometrical claims, ordinary number state-

ments appealing to the natural numbers, and ordinary, naive statements

about sets or classes (i.e., extensions of ordinary properties), or (b) ex-

plicitly or implicitly in the context of some mathematical theory T. Thus,

whenever we attempt to analyze some true mathematical claim, or con-

sider its relationship to logic and science, we must decide whether we

have a case of (a) or (b). We shall assume that (a) and (b) are exclusive

possibilities, and that any ambiguity must be resolved in one way or the

other.7

In the theory of abstract objects, we represent true mathematical

claims of type (a) as claims about natural mathematical objects definable

from the metaphysical and logical primitives of our background theory.

In particular:

1. True ordinary and naive geometrical claims are analyzed claims

about Platonic Forms, as these are described in Pelletier and Zalta

2000. For example, ordinary claims about the triangle (not made

7The ideas in this paragraph and the next were first sketched in Zalta 2006.
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in a context that assumes Euclid’s axioms) are analyzed as claims

about the Platonic Form of Triangularity (ΦT ), which in object the-

ory is the abstract object that encodes all and only the properties

necessarily implied by the property of being a triangle.

2. True ordinary and naive claims about the (natural) numbers are

analyzed as claims about the (Fregean) natural numbers developed

in Zalta 1999. In that theory, the natural cardinal, the number of

F s (#F ), is explicitly defined in terms of metaphysical and log-

ical primitives of object theory. (#F is the abstract object that

encodes all and only the properties G which are in 1–1 correspon-

dence with F on the ordinary objects.) Moreover, this notion can

be used to define zero and the predecessor relation, and the axioms

of Dedekind-Peano number theory can be derived.8

3. True ordinary and naive statements about sets, such as ordinary

statements about the class of humans not made in the context of

set theory, can be analyzed as statements about abstract objects

that are extensions, as defined in Anderson and Zalta 2004. The

extension of F (εF ) is the abstract object that encodes all and only

the properties materially equivalent to F .

By contrast, true mathematical claims of type (b) are represented in ob-

ject theory in the manner set out in Zalta 2000a. The theorems of each

mathematical theory T are imported into the theory of abstract objects

by (i) prefacing the theory operator “In theory T” to each theorem and

(ii) indexing the individual terms and predicates used in T to T . The or-

dinary claim ‘In theory T , . . . ’ is analyzed in object theory as: T [λy φ∗].

This latter is an encoding claim for which φ is the usual translation of

‘. . .’ into the encoding-free formulas of classical logic and φ∗ is just φ but

with all the terms and predicates of T indexed to T . Thus, mathematical

theories are identified as abstract objects that encode propositions by en-

coding propositional properties of the form [λy φ∗]. Now for any primitive

or defined individual term κ used in theory T , the object κT can identified

as the abstract object that encodes all and only the properties F satisfy-

ing the open formula ‘In theory T , FκT ’. Similarly, in the context of the

8For the full details, see Zalta 1999. The derivation requires the assumption that

Predecessor is a relation, and a modal assumption that guarantees, when n numbers

the Gs, that there might have been an concrete object distinct from all the Gs.
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third-order theory of abstract objects, for any predicate Π appearing in

theory T , the relation ΠT can be identified as the abstract relation that

encodes all and only the second-order properties F that satisfy the open

formula ‘In theory T , FΠT ’.

To make the analysis of the preceding paragraph maximally explicit,

here is an example of a natural mathematical object, a theoretical mathe-

matical object, and a theoretical mathematical relation, where the T |= ψ

abbreviates T [λy ψ] in the second and third identities:

ΦT =df ıx(A!x& ∀F (xF ≡ 2∀y(Ty → Fy))) (θ)

∅ZF = ıx(A!x& ∀F (xF ≡ ZF |= F∅ZF)) (ζ)

∈ZF = ıx(A!x & ∀F (xF ≡ ZF |= F∈ZF)) (η)

(θ) is the explicit definition of the Form of the Triangle (ΦT ) described

above. (ζ) is not a definition but a derivable principle that is a conse-

quence of the Reduction Axiom (Zalta 2000a, Section 3).9 (η) is analogous

to (ζ); it is a higher-order object-theoretic principle governing the iden-

tity of the membership relation of ZF. (In (η), the variable ‘x’ ranges

over relations among individuals, and ‘F ’ ranges over properties of such

relations.)

This formal analysis, based on the distinction between (a) natural

mathematical objects and (b) theoretical mathematical objects and re-

lations, reveals that logic is more closely related to natural mathematics

than it is to theoretical mathematics. The objects of natural mathe-

matics described above look very much like logical objects, for when we

compare the definitions of ΦF , #F , and εF (introduced in the enumerated

paragraphs (1), (2), and (3) above) with the object-theoretic definitions

of truth-values, directions, shapes, concepts, possible worlds, impossible

worlds, etc., we find that the definitions can all be constructed using log-

ical and metaphysical notions alone.10 Thus, our metaphysical theory of

objects and relations yields both logical objects and natural mathemat-

ical objects from its own first principles. By contrast, the analysis of

theoretical mathematical objects and relations requires that we import

9In a separate work, Zalta 2006, (ζ) is described as an instance of a Theoretical

Identification Principle (Section 2.4).
10See Anderson and Zalta 2004 for the theory of truth-values, directions, and shapes,

Zalta 2000b for the theory of concepts, Zalta 1993 for the theory of possible worlds,

and Zalta 1997 for the theory of impossible worlds.
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the primitive notions and axioms of (explicit or implicit) mathematical

theories into object theory. The synthetic axioms and theorms φ of a

mathematical theory T are represented in object theory as analytic claims

of the form ‘In theory T , φ∗’ (with indexed terms as described above).

Each primitive mathematical individual and relation gets associated with

a principle that identifies it in terms of an abstract individual or relation

that is guaranteed to exist by the principles of the theory of abstract

objects. So though the primitive expressions of mathematical theories

become imported into object theory, each is accompanied by a principle

that offers an analysis of the object or relation it signifies.

This is how I see the philosophical foundations of mathematics as

relating to those of logic and the traditional core areas of mathematics.

The relationship of the philosophy of mathematics to science is discussed

in the answer to the next question.

4. What do you consider the most neglected topics and/or con-

tributions in late 20th century philosophy of mathematics?

I focus here on two of the most neglected topics from my point of

view. The first is the applicability of mathematics to the natural world.

There are lots of interesting issues that fall within this topic, such as

those that trace back to Wigner’s (1960) question about the ‘unreason-

able effectiveness’ of mathematics in science (see Steiner 1998, Colyvan

2001). The basic question I am concerned about is the proper analysis

of the language of science. By the ‘language of science’, I refer not only

to the language used in scientific theories (which is often simply mathe-

matical in nature), but also to the language used by scientists themselves

as they consider and formulate hypothesis, design experiments, etc. The

language of science contains both (1) expressions that refer to concrete,

spatiotemporal objects and to the relations among them, as well as (2)

expressions for mathematical objects and relations. The philosophers of

science who think that science is primarily about building models and

representations of objects and processes in the natural world won’t face

much of a problem when analyzing the language of science, since models

for them are essentially set-theoretic structures and they accept set the-

ory (and model theory) as part of the philosophical foundations of science.

But I don’t accept set theory or model theory as part of the philosophical

foundations of science, unless these theories are analyzed in the manner

described in the previous sections. The language of science should not
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be interpreted in terms of (pure or impure) set-theoretic models unless it

is explicitly intended to be language about models of the natural world

instead of directly about the world itelf. With these distinctions, I can

say that my interest lies in the question of how to analyze the mathemat-

ical expressions in language about the natural world used by scientists in

their theories and in their everyday work.

The problem here is this: it may be that a proper understanding of ab-

stract objects and relations (of which mathematical objects and relations

form a subdomain) entails that they are entirely defined by our theories

of them. We should not conceive of them as non-natural entities made

of some Platonic substance, accessible by some special faculty of intu-

ition. We should not use the model of physical objects to understand the

mind-independence and objectivity of abstract objects (or mathematical

objects), as Linsky and I have argued (1995). But if mathematical objects

are defined by our theories of them, what is the relationship between the

objects defined by pure mathematical theories and the objects defined by

applied versions of those theories (assuming that the applied theories are

non-conservative extensions of the pure ones)? To take a simple example,

pure ZF is a different theory from ZF + Urelements (say, for example,

ZF + {Socrates} or ZF + {Concrete Objects}). So, does the expression

‘{∅}’ as it appears in pure ZF denote the same object as the expression

‘{∅}’ in ZF + {Socrates}? If you think that {∅} is an object independent

of our theories of sets and accessible to some special faculty of intuition,

then you will answer this last question with a ‘Yes’. But I don’t think

that a principled metaphysics and systematic epistemology for this con-

ception of abstract and mathematical objects can be sustained. So I see

the general question, of how the objects of our pure mathematical theo-

ries relate to the objects of those same theories when applied, as defining

an issue that needs to be explored. Clearly, it has direct bearing on how

we are to understand the applied mathematics appearing in the language

of science. And the issue, as we’ve described it, just touches the tip of

the iceberg, since the problems become even harder when we consider the

fact that relations sometimes used in (the axioms of) scientific theories

are essentially just mathematical relations.

A second neglected topic concerns one of the deepest insights that

Frege had concerning the way we apprehend mathematical objects, namely,

that we apprehend a mathematical object x when we can extract an iden-

tity claim about x from general truths about x. Few philosophers have
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developed an epistemological mechanism for moving from general mathe-

matical truths to identity claims about mathematical objects. But Frege

wrote:

If there are logical objects at all—and the objects of arith-

metic are such objects—then there must also be a means of

apprehending, or recognizing them. This . . . is performed . . .

by the fundamental law of logic that permits the transforma-

tion of an equality holding generally into an equation. (1903,

§147)

The fundamental law Frege was referring to here is Basic Law V, and he

assumed that it legitimately turned equalities holding generally (of the

form ∀x[f(x) = g(x)] into an equation of the form εf = εg. (Here I am

taking liberties with Frege’s notation by assuming that ‘ε’ is an operator

on functions f so that εf is the course-of-values of the function f .)

Frege was putting his finger on something important here. The ques-

tion is: how do we transform fundamental logical and mathematical truths

into metaphysical (or not purely mathematical) identities in which the

expressions denoting mathematical objects and relations constitute one

of the terms flanking the identity sign? Such identities are required no

matter what our background philosophy of mathematics is, for every phi-

losophy of mathematics needs to precisely state the semantic significance

of mathematical terms and predicates. We are obliged to say what the

significance is of terms like ‘the triangle’, ‘the number of planets’, ‘the

class of humans’, ‘3’, ‘π’, ‘∅’, ‘ω’, ‘ℵ0’, etc., and predicates and operations

such as <, ≤, ∈, ⊕, etc. And one must give some account of how the sig-

nificance of these expressions is related to the significance of the sentences

in which they appear, no matter whether one is a platonist, structuralist,

inferentialist, etc. It is even encumbent on nominalists and fictionalists

to give an account of the semantic significance of these expressions in so

far as they contribute to the meanings of (false) mathematical sentences.

In the theory of abstract objects, the identities in question result ei-

ther by explicit definitions or by way of reduction principles, depending

on whether the entity in question is a natural mathematical object or a

theoretical mathematical object or relation, respectively. Consider our

examples (θ), (ζ), and (η) above. These instances of definitions and prin-

ciples show how general claims and theorems can be transformed into

identities of the objects in question. (θ) asserts the identity of the Form
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of the Triangle, which is defined in terms of the properties F necessarily

implied by being a triangle (T ). This latter generality (2∀y(Ty → Fy))

is incorporated into the description of the abstract object on the right

side of the identity claim. By contrast, (ζ) asserts the identity of the

empty set of ZF, which is specified in terms of the properties attributed

to the empty set in the theorems of ZF (the theorems of ZF become im-

ported into object theory prefaced by the operator ‘In ZF’). Thus, all and

only the properties satisfying the formula ‘ZF |= F∅ZF’ are encoded in

the emptyset of ZF. And similarly for (η), which asserts the identity of

the membership relation of ZF: all and only the second-order properties

F satisfying the formula ‘ZF |= F ∈ZF’ are encoded in the membership

relation of ZF.

So this is the means by which the identities of particular mathematical

objects and relations can be extracted from the general mathematical

claims that govern them. The epistemological significance of this cannot

be overstated, for now we simply need the faculties of the understanding

and reasoning to become acquainted with mathematical objects. When

coupled with the version of neologicism defended in Linsky and Zalta

2006 (on which mathematics becomes reducible to weak third-order logic

and analytic truths),11 it becomes clear that no special faculty (such as

intuition) is needed to apprehend mathematical objects and relations or

to recognize the truth of mathematical claims. Our work suggests that

theoretical mathematical truths are reducible to (1) the analytic principles

of weak third-order logic, (2) an analytic abstraction principle for abstract

objects, and (3) analytic truths of the form ‘In theory T , φ’. As such,

only our faculties for understanding language and drawing inferences are

required for having knowledge of mathematics. This result, I suggest,

forms part of the epistemological foundations of mathematics.

5. What are the most important open problems in the philoso-

phy of mathematics and what are the prospects for progress?

In the answer to this final question, I describe one important open

problem and propose its solution. The open question is: how can we

unify the apparently divergent views in the philosophy of mathematics

11By ‘weak’ third-order logic, we mean a logic that is no more powerful than first-

order logic with separate domains for first-order relations and for second-order rela-

tions, and which assumes nothing more than weak comprehension principles for those

domains, the smallest models of which require that there are only two first-order rela-

tions and four second-order relations.
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such as platonism, nominalism, fictionalism, structuralism, and inferen-

tialism? The point behind this question is to suggest that the philosophy

of mathematics would do well to have a theory that unifies these posi-

tions to whatever extent possible. Such a unification should explain why

there is disagreement about the data, for example, over the truth val-

ues of mathematical sentences. Some philosophers say that the sentences

of mathematics are true, while others say they are false, while still oth-

ers say they are not truth-apt and so not candidates for truth or falsity,

etc. So is it possible to unify the different traditions in the philosophy of

mathematics and explain (away) these differences?

I believe it is. If we bring together the results of several pieces of prior

research, then platonism, nominalism, fictionalism, and structuralism can

be unified. Basically the idea is to interpret the formalism for the theory

of abstract objects in different ways. One interpretation yields a form

of platonism, another a form of nominalism, yet another a form of fic-

tionalism, and yet another a form of structuralism. The interpretation of

the theory of abstract objects as a version of platonism is to be found in

Linsky & Zalta 1995 (536–541); as a version of nominalism in Bueno &

Zalta 2005 (299–305); as a version of fictionalism in Zalta 1983 (Chapter

VI), Colyvan & Zalta 1999 (346–348), and Zalta 2000a (255–256); and as

as a version of structuralism in Linsky & Zalta 1995 (545–546). To com-

plete this picture, we sketch how to interpret the formalism as a version

of inferentialism.

To see how our analysis of mathematical objects and relations becomes

a form of inferentialism, it is important to mention first that inferentialism

is the view that the meaning of a mathematical term is to be identified

with its inferential role in mathematical discourse. Now reconsider the

formal claims (described above) that identify of theoretical mathematical

objects in object theory. For example, the empty set of ZF is identified

above on line (ζ) as:

ıx(A!x& ∀F (xF ≡ ZF |= F∅ZF))

In other words, the empty set of ZF encodes all and only the properties

F that satisfy the condition ZF |= F∅ZF. As we saw earlier, conditions of

this form arise when we import all the theorems of ZF into object theory

under the theory operator ‘In ZF’ and index the terms and predicates to

ZF. The particular properties of ∅ satisfying these conditions are therefore

keyed to the theorems of ZF involving the term ‘∅’, i.e., for any formula
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φ(∅) such that `ZF φ(∅), one can use λ-abstraction to produce a formula

of the form `ZF [λz φ(z)]∅. This latter then picks out a property that

satisfies the condition on properties used in the identification of ∅ZF. But

the ZF-formulas of the form φ(∅) such that `ZF φ(∅) jointly constitute

the inferential role of the term ‘∅’ in ZF. Thus, our analysis uses a double

abstraction process to abstract out the inferential role of ‘∅’ in ZF and

objectify it: λ-abstraction on the theorems of ZF involving ‘∅’ yield theo-

rems identifying the derivable properties of ∅ according to the theory, and

object abstraction reifies those properties as an object. On this concep-

tion, (ζ) identifies the significance of ‘∅’ in the theory ZF as its inferential

role in that theory.

If we generally apply this conception to all the other theoretical identi-

fications of the objects and relations of mathematical theories, we have an

inferentialist interpretation of mathematics. For each term or predicate

of mathematical theory T becomes identified with nothing other than the

inferential role of that expression in T , something that can be precisely

described in the theory of abstract objects. This, then, completes our an-

swer to the open question about the unification of the divergent views in

the philosophy of mathematics. The different philosophies of mathemat-

ics can now all be seen as different interpretations of the same underlying

formalism! Moreover, the disagreement about the data is explained by the

fact that ordinary theoretical claims in mathematics become ambiguous.

Unadorned claims of mathematics such as ‘2 is prime’, ‘∅ is an element

of {∅}’, etc., have exemplification readings (which are false, but which

become true when prefaced by the theory operator) as well as encoding

readings (which are true).12 The platonists focus on the true readings

to the exclusion of the false, while the nominalists and fictionalists focus

on the false readings to the exclusion of the true. The structuralists and

inferentialists, meanwhile, focus on the ‘incompleteness’ of the structures

and inferential roles. Heretofore, it was widely thought that no form of

classical logic could treat such incomplete objects as the indeterminate

elements of mathematical structures (objects defined only by their math-

ematical properties) and the inferential roles of the terms and predicates

of mathematical theories (defined only by the theorems in which they play

a part). But it would be an invalid inference to draw such a conclusion

12See Zalta 2000a (Section 6) for a thorough description of how to formulate the

exemplification and encoding readings of ordinary mathematical claims. For a more

accessible account, see Zalta 2006, 674–678, and 688-691.
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in the context of the logic of encoding and the theory of objects.
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