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The theory of abstract objects, hereafter ‘object theory’, is a system that
axiomatizes both ordinary and abstract individuals, on the one hand, and prop-
erties, relations, and propositions, on the other. It has been applied in a variety
of ways, for example:

e in the analysis of mathematical objects and mathematical relations,’

¢ in the analysis of (a) the failures of substitution in intensional contexts,
and (b) the denotations of names of fictions,? and

¢ in the analysis of possible worlds and situations, Plato’s Forms, Leibnizian
concepts, Frege numbers, truth-values and the logical conception of sets,
and impossible worlds.

Many of the above applications can be framed within second-order, quantified
modal object theory. However, others require typed object theory, in which ob-
ject theory is formulated within a background of relational type theory. Typed
object theory has been developed in a number of previous works and I henceforth
assume some basic familiarity with it.* Its most important features are: (1) there

*This paper appeared in the volume Abstract Objects: For and Against (Synthese Library: Vol-
ume 422), José L. Falguera and Concha Martinez-Vidal (eds.), Cham: Springer, 2020, pp. 59-88.
This preprint includes a few minor corrections, which have been indicated in red. Id like to thank
Paul Oppenheimer for carefully reading a draft of this paper and for his valuable suggestions for
improvement.

ISee Zalta 1983 (VI), 2000a, 2006a; Linsky & Zalta 1995, and Nodelman & Zalta 2014.

2See Zalta 1983 (VI), 1988a (9-12), and 2000b.

3See Zalta 1993, 1997, 1999, 2000c; Pelletier & Zalta 2000; and Anderson & Zalta 2004.

4See Zalta 1982, 1983 (V, VI), 1988a (9-12, Appendix), 2000a (§3); Linsky & Zalta 1995; and
Nodelman & Zalta 2014 (47-49).
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are two atomic forms of predication that may be asserted of relations and ob-
jects with the correct types, exemplification formulas of the form F"x; ... x, and
encoding formulas of the form xF!, (2) the domains of higher-order types are
populated with primitive relations, which are axiomatized by comprehension
and identity principles, (3) every type is partitioned into ordinary and abstract
objects of that type, and (4) the abstract objects of each type are axiomatized by
a comprehension principle which asserts, for any condition ¢ on properties of
objects of a given type, that there is an abstract object of that type which encodes
all and only the properties that satisfy .5 1 shall further sketch and document
these and other features of typed object theory as the occasion arises below.

In this paper, typed object theory will be examined within the context of the
history of relational type theory, including such works as Russell 1908, Car-
nap 1929, Orey 1959, Schiitte 1960, Church 1974, and Gallin 1975. Along the
way, we shall have cause to briefly compare relational type theory with func-
tional type theory (Church 1940, Montague 1973, and others). As part of the
discussion, I examine some recent work in light of typed object theory. In par-
ticular, I examine Muskens 2007, Liefke 2014 and Lieftke & Werning 2018, and
Williamson 2013. In each case, I try to show that conclusions drawn in those
works are not inevitable if one considers how the target data may be analyzed in
typed object theory. I hope to show how typed object theory provides a (possi-
bly more) natural understanding of the phenomena that these other type theories
were designed to explain, and I attempt to undermine conclusions that might call
into question the way typed object theory is formulated and applied.

1 Relational vs. Functional Type Theory

I begin with a question raised by Partee (2009 [2007], 37):

5The key idea underlying object theory is that abstract objects encode rather than exemplify the
properties by which we conceive of them and that such objects may encode only those properties and
no others. As such abstract objects may be incomplete with respect to the properties they encode:
there are properties F and abstract objects x such that neither xF nor xF (where F is the negation
of F)). But abstract objects are complete with respect to the properties they exemplify: for every
property F, every abstract object x (and indeed every object whatsoever) is such either Fx or Fx.
The notion of encoding didn’t appear in object theory ex nihilo. Pelletier & Zalta 2000 show
how Meinwald 1992 traces a similar idea in Plato’s distinction between two kinds of predication;
Anderson & Zalta 2004 show show how Boolos 1987 (3) finds the idea in Frege’s ‘two instantiation
relations’; and Zalta 2006 shows how Kripke discusses ‘a confusing double usage of predication’
in his 1973 [2013] lectures. The idea also appears in other works, as documented in some of the
publications on object theory cited thus far.
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If I am asked why we take e and t as the two basic semantic types, I am
ready to acknowledge that it is in part because of tradition, and in part
because doing so has worked well. ... In a certain sense Montague had a
third basic type, the type of possible worlds; in Gallin’s Ty2 (Gallin 1975)
this is explicit. But that is not essential, since on some alternatives the basic

type t is taken to be the type of propositions, inherently intensional.

I’d like to put forward another answer to Partee’s opening question. It starts by
pointing out that e and ¢ are the two basic semantic types only if we start with
a functional type theory (FTT) of the kind developed by Church and Montague.
By contrast, relational type theory (RTT) uses a single semantic type. RTT
starts with a single type i, and then where o, ..., 0, are any types, {01, ...,0)
(n > 0) is the derived type for relations among objects having types o, ..., 0.
When n = 0, the type () is the type for propositions. So, Partee’s question is
posed within a background of FTT instead of RTT.

Even starting with FTT instead of RTT, I think Partee’s question has an al-
ternative answer, namely, that it starts with the two types e and ¢ because FTT
requires entities (individuals) and truth values for the analysis of predication in
terms of function application. This requirement traces back, I think, to the fact
that Frege assumed two primitive (mutually exclusive) domains (functions and
objects) and basic formulas of the form f(x) = y, which combine the primi-
tive notions of function application and identity. Frege’s two primitive domains
classified entities into two types and in order to analyze predication, which he
understood as object x falls under concept F, Frege had to introduce two distin-
guished objects, the truth values T and F. Thus, a concept F could be analyzed
as a function whose values are always one of the two truth values and so x falls
under F (i.e., predication), in effect, becomes analyzed as: F(x) =T.

Church (1940) generalized Frege’s logic to allow for functions of higher
type, thereby developing the first FTT. Church used a, B, and y as variables
ranging over types, and in 1940 (56), we find:

e ¢ and o are type symbols.
e if @ and B are type symbols, then (¢f3) is a type symbol.

Here ¢ is the type for individuals, o is the type of propositions, and (f) is the
type of functions with arguments of type 8 and values of type a. So, for example,
a property becomes a function with type (ot), i.e., a function from individuals to
truth values, and a 2-place relation between individuals has type ((ou)), i.e., a
function from individuals to properties. Note that Church couldn’t have rested
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with just a single primitive type ¢ for individuals and the single derived type
(aB). That would only yield higher-order mappings and not anything that would
permit him to adopt Frege’s analysis of predication in terms of functional appli-
cation. So he added the primitive type o as the type for a truth bearer (e.g., truth
values or propositions). Thus, for Church, simple predications and more com-
plex assertions are expressions of type o, i.e., terms that denote truth values. To
assert that individual x exemplifies the property F in Church’s system, F' must
be a variable of type (ot) and x a variable of type ¢, and the expression (Fx),
which represents predication, is an expression of type o (1940, 57).

Montague (1973) extended Church’s typing scheme to include what appears
to be a third primitive type, namely s, for possible worlds. In 1973 (256), we
find Montague defining the set of fypes as the smallest set Y such that:

e ¢, teY
e whenevera,beY,(a,b)eY
e whenevera €Y, (s,a) €Y.

So, for Montague, (e, #) is the type for functions from individuals to truth values,
i.e., the characteristic function for a set of individuals; (e, (e, ?)) is the type for
extensional relations between individuals, i.e., the characeristic function for a
set of ordered pairs; (s, (e, (e, 1))) is the type of functions from possible world to
extensional relations between individuals, i.e., intensional relations; and propo-
sitions have type (s, f), i.e., functions from possible worlds to truth values. Gallin
1975, Cresswell 1975, 1985, Thomason 1980, Fox & Lappin 2001, and Pollard
2005, 2008 all employ variations of this scheme.®

%In Gallin (1975, 58), sytem Ty, (Two-Sorted Type Theory), we find:

e, t,se€Th

. €Ty imply (. 8) € Ta.
Cf. Cresswell 1975, where there is a categorial language and semantics based on functions. In
Thomason 1980 (48-9), we find:

Basic types: e, t, and p, where p is for propositions
If o and 7 are any types, then (o, 7) is a type.

Thomasons says we may “think of (o, 7) as the type of functions from the domain of type o to
that of type 77 (49). Cresswell (1985, 69) explicitly uses D(z/q....o,) “to indicate a class of n-place
functions whose domains are taken from D, ..., Dy, , respectively, and whose range is in D;”. Fox
& Lappin 2001 (176-7) use:

Basic Types: e for individuals and /7 for propositions
Exponential Types: If A, B are types, then A® is a type.
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Semanticists like Montague naturally started with the best mathematical
framework they could find, and this turned out to be a version of Church’s FTT.
Two basic types are needed in FTT to preserve Frege’s analysis of predication in
terms of function application. Without the type for truth values or propositions,
one can’t represent the bearers of truth.

1.1 Why Relations in RTT Were Interpreted as Functions

By contrast, the bearers of truth come for free as 0-place relations when you
formulate relational type theory (RTT). This lends it a natural elegance. RTT
follows Russell’s somewhat different understanding of logic, in which relations
are more basic than functions. Functions become defined for Russell as 2-place
relations R such that YxVyVz(Rxy &Rxz — y=z). RTT doesn’t need a separate
primitive type for truth values since propositions can be analyzed as 0-place re-
lations. The reason semanticists haven’t used RTT no doubt stems from Quine’s
concern about the identity of intensional entities like properties and relations.
The theory of relations hasn’t seemed as mathematically precise as the theory
of functions, since the identity conditions for relations (conceived intensionally)
aren’t as clearcut as those of sets or the functions definable in terms of sets. But,
as we’ll see, this worry doesn’t apply to the version of RTT defended in this
paper.

As we’ve noted, RTT begins with a single primitive type for individuals.
This goes back to Russell 1908 (237), who took individuals, relations, and pred-
ication as basic. Though Russell didn’t introduce explicit notation for types, he
clearly thought of individuals as forming the lowest type.” Carnap (1929) was
the first to introduce notation for types, but his notation isn’t one we currently
use.® Rather, it seems that Orey (1959) developed the now standard definition of
relational types, though he didn’t regard the entities in the domains of relational
types as primitive relations. He defined (1959, 73) a set of type symbols to be
the smallest set T such that:

e 1T, and

Here, the type A® is a functional type. Finally, in Pollard (2008, 273) hyperintensional type theory,
there are 3 basic types (Ent, Ind, Prop) and then a variety of functional and other complex types.

71 shall not be discussing ramified type theory in what follows. Our attention shall be restricted
entirely to the simple theory of (relational) types. See Anderson 1989 for a discussion of a ramified
type theory and intensional logic.

8Carnap (1929, 30-32) used type t0 for individuals, t1 for classes of individuals, t2 for classes
of classes of individuals, and so on. He used type t(00) for relations among individuals, etc. There
was no empty type for propositions, however type t1 could be rewritten as t(0).
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o ifr,...,7, €T, then(r;...7,) €T n>1)

Note here that Orey starts with a single primitive type ¢ for individuals, and
has a single derived type (7 ...T,), which is is the type for relations that relate
arguments of type 71, ..., T,, respectively.

However, Orey interprets expressions of type (7 . .. T,) as denoting sets of n-
tuples. He uses G(7) to denote the domain of type 7, takes G(¢) to be a nonempty
set, and then takes G(7; ...7,) to be some “nonvoid subset of the set of all sub-
sets of the cartesian product of G(11) X...XG(1,)” (1959, 73). So, semantically,
relations are interpreted as sets of n-tuples.’

Church contributed to RTT as well as originating FTT. He extended Orey’s
notation for relational types by allowing (1974, 25) the empty relational type
(). He starts with a single primitive type i for individuals and says that where
B1,52,...,Bn are any types, then (81,5, ...08x,) is a type. He allows for m = 0,
and so () is the type for propositions. Church agrees that one should, in some
sense, take relations seriously. He says (1974, 22):

Russell’s logic must be understood intensionally if some of its significant
features are to be preserved. This means in the first place that the values
of the propositional-functional (for short “functional”) variables are under-
stood to be properties, in the case of singulary functional variables, or bi-
nary relations in intension in the case of binary functional variables, ... To
go with this the values of Russell’s propositional variables must also be
taken as intensional,l] that is, as propositions in the abstract sense rather

than either sentences on the one hand or truth-values on the other.

Nevertheless, Church interprets RTT in terms of functions. Church (1974, 26)
starts with two primitive domains of propositions, namely T (the domain of true
propositions) and & (the domain of false propositions), and analyzes relations as
m-ary functions that take values in T U §. He interprets the domain for expres-
sions of type (81,32, - - . Bn) as consisting of m-ary functions whose m arguments
have type 81,82, . ..,Bn and whose values are (in the domain of) propositions.
So, semantically, relations are understood as functions.

9Schiitte (1960, 306) uses types O (for individuals) and 1 (for truth values) and then introduces re-
lational types. But he analyzes predication syntactically as set membership. He sets up the language
(1960, 307) so that in item (1.3.3) we find:

If ey,...,e, are expressions of types 71,...,7, and e is an expression of type (71,...,Tn),
then (eq, ..., en € e) is an expression of type 1

So it is clear why Schiitte interprets relational terms (predicates) and A-expressions as denoting sets
of n-tuples.
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Gallin (1975) preserves this understanding of relations, but extends it to a
language with a modal operator. Gallin first defines a set of fypes as follows
(1975, 68):

Let e be any symbol which is not a finite sequence. The set P of predicate types is
the smallest set such that:

(i) eeP,and
(i) o9,01,...,0,-1 € Pimply (0¢,07,...,0,-1) €P.
... Objects of type e will be individuals, and objects of type (o, 01, . . ., 0—1) Will

be relations of n arguments, of which the first is an object of type o, the second
an object of type o, etc.
He then defines a modal language MLp and reinterprets the objects of type (o7,
O1,...,0n-1). He says (1975, 71):

In MLp, objects of type (0,07, ...,0,-1) Will be predicates (relations-in-
intension) of n arguments, of which the first is an object of type o7, the
second an object of type o7, etc.

Gallin then defines the semantic interpretation of a predicate of type (0,071, . .,
0,-1) as a function from an index (i.e., a possible world) to a set of n-tuples
drawn from the appropriate types (1975, 72-3). Gallin also allowed for Henkin-
style general models of MLp, and in those models, the domain of each type is
some subset of the domain used for standard models. In other words, in a gen-
eral model, the domain of type (0,071, ...,0,-1) is some subset of the set of all
those n-tuples {ay, . . . , a,—1) such that ay is an entity of type 07, a; is an entity of
type o1, ..., and a,_; is an entity of type 0,;. So no matter whether you con-
sider Gallin’s standard models or general models, relational predicates are still
interpreted as entities that obey the principle of extensionality: they are identi-
cal when they map the same arguments (indices) to the same values (sets of n-
tuples). Thus, relations are again understood semantically in terms of functions.

It is worth mentioning, at this point in the exposition, that the intensions dis-
cussed by Carnap, Montague, and Gallin constitute a theoretical model of the
relations-in-intensions discussed by Russell, Church, and others. Russell and
Church do not have a theory of relations-in-intensions on which they become
identical when necessarily equivalent. But the intensions of Carnap, Montague,
and Gallin exhibit this feature. Montague and Gallin explicitly represent in-
tensions as functions from possible worlds to extensional entities such as truth-
values, sets of individuals, or sets of n-tuples. But the primitive relations that
populate the domains of relational type theory, as developed in typed object the-
ory, are more fine-grained than intensions as conceived by Carnap, Montague,
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and Gallin. Such relations may be distinct even if necessarily equivalent and
they may offer a better understanding of the notion of relation-in-intension as
understood by Russell and Church.

In the remainder of this paper, we shall follow Gallin in using o, 07,... as
variables ranging over types. The foregoing brief history shows that the main
works on RTT took relations seriously only in the syntax; semantically, they
either preserved Frege’s method of reducing relations to functions or took rela-
tions to be sets of n-tuples.'® The RTT developed in Zalta 1982, 1983, 1988a,
and 1988b stands in contrast: in these works, the members of the domain for
each derived type are primitive relations. Though the notation for types used in
1982, 1983, and 1988b was not as elegant as the notation used in 1988a, never-
theless, in all four works, no attempt was made to reduce relations to functions
or sets in the semantics.!! Using the more elegant formulation of Zalta 1988a
(231), a type was defined as follows:

e ‘I"isatype
e Whenever oy,...,0, are any types, "(o1,...,0,) isatype (n>0)

In the usual way, i is the type for individuals and (o, ...,0,) is the type for
n-place relations, the arguments of which have types o7y, ..., o,, respectively.
When n = 0, () is the type for propositions. Thus, if we use the expression F as

10yan Benthem & Doets 1983, and Muskens 1989, followed Orey in this regard. Van Benthem &
Doets define (1983, 269):

Dr,....00)(A) = P(Dr; (A) X - - - X D, (A))
i.e., they define the domain of relations among entities with types 7y, ..., 7, to be the set contain-
ing all the sets of n-tuples with elements drawn, respectively, from the domains of type 7y,...T,.

Muskens also interprets relational expressions as sets of n-tuples rather than as functions. See his
definition of Orey frames (Muskens 1989, 2). But later in this paper, in his system TT"2, we discover
that he doesn’t take predications as basic formulas of the language. Instead, function application is
basic (1989, 12, Definition 10, ii), as it is in Muskens 1995 (p. 15, Definition 9, iv).

1n 1982 (298), and 1983 (109), the relational types were defined basically as follows:

e jisatype
e pisatype
e Whenever o, ...,0, are any types, "(o1,...,0,)/p isatype (n > 1)
So in these early works, (o1, ...,0,)/p is the derived type for relations. Since the primitive type

p in these works corresponds to the new derived type ( ) in 1988a, the structure of the types is the
same. But whereas Zalta 1988a clearly uses a single primitive type, Zalta 1982, 1983, and 1988b
suggest that there are two primitive types (see, e.g., 1988b, 69). In these latter works, I was still
under the influence of the Montague Grammar I had learned as a graduate student, and hadn’t yet
recognized that one could eliminate p as a second primitive type by defining type p as the empty
derived type ().
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a typical term of type (o, ..., 0,) and use the expressions x, ..., x, as typical
terms with types o7,..., 0, respectively, the language of typed object theory
includes (atomic) exemplification formulas of the form Fx;...x,. And where
where F has type (o) and x has type o, the language includes (atomic) encoding
formulas of the form xF.

In all the works on typed object theory, however, the semantics included, for
each type o, a non-empty domain 9, consisting of primitive entities, as well as
a separate non-empty domain ‘W of possible worlds. Relations in the domains
of type Dy, ...,y were then clearly distinguished from set-theoretic representa-
tions thereof by introducing a world-relative exemplification extension function
that essentially maps each relation to a Montagovian intension. Specifically,
this function mapped each pair consisting of an n-place primitive relation = in
,,,,, oy and a possible world w in ‘W to a set of n-tuples drawn from the power
set of Dy X ... x D,.'? So the exemplification extension function helps one give
a semantic representation of the world-relative truth conditions of atomic exem-

plification formulas: where F has type (o1,...,0,) and xi,..., x, have types
oy,...,0,, respectively, the formula ‘Fx; ... x," is true at a world w just in case
the n-tuple of objects denoted by xi, ..., x, is an element of the exemplification

extension at w of the relation denoted by F.

Thus, the relational predicates of typed object theory do not denote Mon-
tagovian intensions; the semantics allows for distinct relations that have the
same exemplification extension at every possible world. The semantics of typed
object theory also includes an encoding extension function that maps each prop-
erty in each domain D to a set of objects drawn from the domain D,.. The
encoding extension function is used to give the truth conditions for atomic en-
coding formulas: where x has type o and F has type (o), then the encoding
formula ‘xF” is true at a world w just in case the object in D, denoted by x
is an element of the encoding extension of the property in D, denoted by F.
Since the truth conditions of ‘xF’ are independent of the possible worlds, the
formula xF — OxF will be valid.

The reason typed object theory doesn’t follow the tradition of interpreting
the relations in D¢, ) as functions or sets is that it comes with a precise the-
ory of relations. With a precise theory of relations in hand, one can argue that
no mathematical model of relations in set theory is needed to represent them in
the semantics. Indeed, one shouldn’t use a mathematical model that collapses
necessarily equivalent relations, given that object theory doesn’t require the col-

12See Zalta 1982 (299); 1983 (114); and 1988a (236). The exemplification function also maps
each proposition 7 in D¢y and a possible world w in ‘W to a truth value.
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lapse. This stands in contrast to the versions of RTT in Orey, Church, and Gallin.
Each of these yields artifactually valid statements, i.e., statements whose valid-
ity is required by the semantic representation but not required given the nature
of the objects being represented. For example, either Vx(Fx = Gx) - F=G
or OVx(Fx = Gx) — F =G is artifactually valid in other versions of RTT. But
object theory isn’t committed to either claim.

Before we discuss how typed object theory approaches identity for relations,
we first review how identity for relations is defined in second-order, modal ob-
ject theory. In second-order object theory, one can state a precise comprehen-
sion (i.e., existence) schema as well as identity conditions for relations. The
latter offer extensional conditions for the identity of relations, notwithstanding
our conception of them as intensional entities. Readers familiar with the second-
order version of object theory will recall that the language includes two modes
of predication, exemplification formulas of the form Ilk; ...k, (where IT is any
n-place relation term and ki, . .., k, are any individual terms), and encoding for-
mulas of the form «IT (where « is any individual term and IT any 1-place relation
term, i.e., any property term). In the second-order version of object theory, prop-
erties F and G are semantically assigned not only an exemplification extension
that can vary from world to world, but also an encoding extension. Thus, the
language of second-order object theory distinguishes the following conditions
on properties F and G:

(A) OVx(Fx = Gx)
(B) OVx(xF = xG)

We may then reject the idea that (A) provides identity conditions for F and G.
But we accept (B) as providing correct identity conditions for properties even
when we conceive of properties as intensional entities. That is, we define:

F=G =4 OVx(xF = xG)

Moreover, given the logical principle that xF — OxF, we may infer OVx(xF =
xG) whenever Yx(xF = xG). Hence, to prove that properties are identical in
object theory, one need only prove Yx(xF = xG). Thus, the foregoing definition
and the logic of encoding gives us extensional identity conditions for intensional
entities, since they intuitively imply that properties are identical when their en-
coding extensions are identical.

Moreover, in second-order object theory, identity conditions for propositions
and for n-place relations (n > 2) can be defined in terms of the definition of
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property identity. Consider propositions first. Let x be a variable ranging over
individuals, and let p and g be variables ranging over propositions. Thus, in
second-order object theory, expressions such as [Ax p] (‘being such that p’) ,
[Ax q] (‘being such that q’), etc., denote properties of individuals; the properties
denoted depend on the value assigned to p, g, etc. So we may say:

Propositions p and ¢ are identical if and only if the properties being such
that p and being such that g are identical, i.e.,

p=q =4 [Axp]=[1xq]

Here, proposition identity has been reduced to property identity. Now, for n-
place relations where n > 2, second-order object theory allows us to define
identity as follows. Let F and G both be n-place relation variables, for some
n > 2. Then, we may say:

F and G are identical just in case every way of ‘plugging’ n—1 individuals
into F and G (plugging them in the same order into F' and G) results in
identical properties.

We can make this precise by using the following formal definition, which is
well-formed in second-order object theory, where the arity of both F' and G is
some n such that n > 2:

F=G =4 VYx1.. Vx_1([Ay Fyx; ... x5, 1]=[Ay Gyx; ... x,.1] &
[Ay Fxiyxo ... X1 ]=[Ay Gx1yxp ... X1 ] & ... &
[y Fxi...x1y]=[Ay Gxy ... xp-1y])

These definitions make it clear that second-order object theory doesn’t automat-
ically collapse properties, relations, and propositions that are necessarily equiv-
alent in the classical sense.

In particular, second-order object theory doesn’t collapse properties that are
necessarily equivalent in the sense of (A). There are lots of examples of proper-
ties F and G that are distinct despite being necessarily exemplified by the same
objects. For example, the property being a barber who shaves all and only those
who don’t shave themselves, i.e.,

[Ax Bx & Yy(Sxy = =Syy)]
is clearly distinct from the property being a dog that is both white and not white:

[Ax Dx & Wx &-Wx]
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While these properties clearly satisfy (A), we may consistently assert that they
are distinct properties. As we shall see below, this will imply that there are ab-
stract objects that encode one without encoding the other. Second-order object
theory, however, stipulates that properties that satisfy (B) are identical. Exam-
ples of properties that are identical include: being a brother and being a male
sibling, being a circle and being a closed plane figure every point of which lies
equidistant from some given point, etc.

These features of second-order, modal object theory are, in part, a conse-
quence of the comprehension principle for abstract individuals asserted as part
of that theory. This principle is formulated as follows, where A! denotes the
property of being abstract:

Ax(Alx & VYF(xF = ¢)), provided x doesn’t occur free in ¢

In other words, for any condition ¢ on properties F, there is an abstract object
that encodes exactly those properties F' such that ¢. Thus, once we add the
assertion that, for some given property pair P and Q that P # Q, it follows that
there is an abstract object that encodes the one without encoding the other.'?
Moreover, if F and G are identical, there couldn’t be an abstract object that
encodes one without encoding the other.

1.2 Identity in Typed Object Theory

Typed object theory, in contrast to second-order, modal object theory, gives
us more flexibility in defining identity. In the discussions of typed-object the-
ory in Zalta 1983 and 1988, the definitions for relation identity essentially fol-
lowed the foregoing discussion. As a result, the definitions in those works were
more ‘type-specific’ in that they defined identity for type i one way and defined
identity for all relational types using principles analogous to those used in the
second-order case.'* However, in what follows, we adopt the definitions in Zalta

3By comprehension, we have, using the defined notion of identity:
Ax(Alx & VF(xF = F=P))
Clearly, this object encodes P without encoding Q, given P# Q.
141n Zalta 1983 (121, 124) and 1988 (241-2), we first defined identity for individuals as follows,
where x and y are variables of type i, F is a variable of type (i), and O! and A! are the predicates of
being ordinary and being abstract, respectively, both of type (i):
x=y =¢ (Ox&Oly& OVF(Fx = Fy)) vV (Alx & Aly & OVF(xF = yF))
Then, for any type o, let x be a variable of type o, and let F and G be variables of type (o). Then

we defined:

F=G =4 OYx(xF = xG)
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1982 (301-2) and 2000a (228), where we find identity defined for all types us-
ing a single formula scheme. First, recall that the domain of every type o is
partitioned into ordinary and abstract objects of that type. We use the typically
ambiguous predicates 0! and A!‘”, for every type o, to denote the proper-
ties of being ordinary and being abstract, respectively.'> Consequently, there
are both ordinary and abstract properties of individuals, ordinary and abstract
relations among individuals, etc.'®

It is axiomatic that ordinary objects of type o only exemplify properties,
whereas abstract objects of type o both exemplify and encode properties. More-
over, the abstract objects of each type o are governed by a typed version of the
comprehension principle discussed earlier. The typed version of this principle
can be stated generally as follows. Let x be a variable of of any type o, F be a
variable of type (o), and A! be a predicate (mentioned earlier) of type (o). Then
we take the instances of the following to be axioms, for any type o

JAx(Alx & YF(xF = ¢)), provided x doesn’t occur free in ¢

In other words, for any condition ¢ that places a condition on properties of type-
o objects, there exists an abstract object x of type o that encodes all and only
the properties F such that ¢.

Now since the domain of each type is partitioned into ordinary and abstract
objects of that type, we can state identity conditions for objects of any type o
as follows. Let x and y be variables of any type o; let F' be a variable of type
(o); and let O! and A! be the predicates of being ordinary and being abstract,
respectively, each having type (o). Then we define:

(C) x=y =4 (0'x& Oy & OVF(Fx = Fy))V (Alx & Aly & OVF(xF = yF))

Finally, identity for propositions and n-place relational types were defined along the lines used for
second-order object theory. See the references cited at the beginning of this note for further details.

15 Actually, being ordinary and being abstract are defined technical terms in typed object theory;
we used a typically-ambiguous primitive predicate, E”? (for every o), where this predicate intu-
itively picks out the concrete objects of type o~. Now let x be a variable of type o, O! be the predicate
for being ordinary, with type (o), and A! be the predicate for being abstract, also with type (o).
Then we may say x exemplifies being ordinary, written Olx, just in case CE!x, and x exemplifies
being abstract, written Alx, just in case =<CE!x. This holds for every type o. Thus, the domain of
every type is partitioned into the ordinary and abstract objects of that type.

16The standard primary and secondary qualities count as good examples of ordinary properties
of individuals, and we may include empty properties, such as being a giraffe in the Arctic Circle,
being round and square, as ordinary properties of individuals. But fictional properties (e.g., being
a hobbit, being composed of phlogiston, etc.) and mathematical properties (e.g., being a Peano
number, being a ZF set, etc.) have been analyzed as abstract properties. These latter encode just the
properties of properties attributed to them in their respective story or theory. Absolute simultaneity,
the membership relation of ZF, etc., are examples of abstract relations.
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In other words, ordinary objects of any type o are identical whenever they nec-
essarily exemplify the same type-(o) properties, and abstract objects of type o
are identical whenever they necessarily encode the same type-(o) properties.
Clearly, given the theorem O!x V Alx, we can derive x = x from (C).!” So, by
taking the substitution of identicals as an axiom, typed object theory has a theory
of identity in which substitution of identicals holds in any context.

To see an example of (C) in action, fix o and let F and G be variables of type
(o); let O! and A! be the predicates being ordinary and being abstract with type
{{o)); and let 7 be a variable of type ((o)). Then the following is an instance
of (C) (where we’ve reduced the font size of ‘F’ and ‘G’ for readability):

(D) F=G =4 (O'F&O!G&OVF (FF = FG))V(AIF&AIG& OVF (FF = GF))

This definition governs any properties F' and G with type (o), for any o. And,
clearly, it yields the theorem F=F.

Note that (D) still allows necessarily equivalent properties to be distinct even
when necessarily equivalent, i.e., (C) doesn’t imply the typed version of (A).
Moreover, the definition of property identity used in second-order object theory
now becomes a theorem. That is, where x is a variable of type o, and F and G
have the types assigned in the previous paragraph, we may prove:

F=G = OYx(xF = xG)

We leave the proof to a footnote.'® Interestingly, the status, in typed object the-
ory, of the second-order definitions of proposition identity and n-place relation

7 This follows by disjunction syllogism from the theorem O!x v Alx. Suppose O!x. Then since it
is a modal theorem that OYF(Fx = Fx), we have O!x & O!x & OVF(Fx = Fx). By VI, this gives us
that right-side of (C). So x = x. On the other hand, suppose O!x. Then since it is a modal theorem
that OVF(xF = xF), we have Alx & Alx & OVF(xF = xF). By VI, this gives us that right-side of
(C). So x=x.

18(5) This direction is trivial, by the substitution of identicals and the modal theorem OVx(xF =
xF). («). Assume OVx(xF = xG). Then by the T schema, Vx(xF = xG). Now where A! is the
predicate being abstract of type (o) and H is a variable of the same type, then using the defined
notion of identity in (D), we have the following instance for comprehension for abstract individuals:

Ax(Alx & YVH(xH = H=F))
Call such an individual a, so that we know both Ala and VH(aH = H =F). Instantiating the latter to
F and G, respectively, we have both:
() aF =F=F
&) aG=G=F
Since F =F, it follows from (:}) that aF'. But, it follows from a previously established fact, namely

Vx(xF = xG), that aF = aG. Hence aG. Now, for reductio, assume F # G, i.e., by symmetry of
identity, G # F. Then by (¢), —aG. Contradiction. >«
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identity (n > 2) are a subject of ongoing investigation. But even though their
status isn’t settled, we still have a fully general theory of identity that applies to
every type o, namely (C).

With a precise theory of relations (i.e., existence and identity conditions) in
hand, we have a foundational framework that allows one to represent classical
predication in relational terms. We can regard ‘x loves y’, ‘x worships y’, ‘x € y’,
‘x < y’, etc., as exemplification predications of the form Rxy, where x and y are
individuals and R is a relation of type (i,i). From the point of view of typed
object theory, there is nothing more fundamental than individuals and relations.
We have no need of (a) the Fregean tradition of interpreting relations as functions
and interpreting predication as functional application, or (b) the set-theoretic
tradition of interpreting relations as sets of n-tuples and interpreting predication
as set membership.!® Such traditions fail to capture the essential fact about
predication, namely, that in a true exemplification predication of the form Fx,
the property F characterizes x; it doesn’t merely classify x or correlate (i.e.,
map) x to a truth-value.

For the remainder of this paper, we therefore assume it is a mistake to re-
gard relations as functions or sets; such an interpretation collapses necessarily
equivalent relations and validates principles to which typed object theory is not
committed. Instead, general Henkin models in which the domain of each type
consists of primitive entities of that type gives a more accurate picture of the
ontology that underlies RTT in general and typed object theory in particular.?
Moreover, as we shall see, typed object theory has some theoretical virtues when
compared to other recent intensional interpretations of RTT.

2 Intensional Type Theory: I

It may be of interest to see what typed object theory accomplishes when com-
pared to the framework developed in Muskens 2007. Muskens states clearly that
he is not so much interested in the question of what the intensional entities that
populate the domains of RTT are, but rather interested in the general features

19See Bueno, Menzel, & Zalta 2014 for a discussion of how the theory of propositions and possi-
ble worlds is completely ‘set free’ in object theory.

20From the present standpoint, the semantics of the language of typed object object doesn’t pro-
vide any further theoretical understanding of the primitive relations that populate the domains D,
for o # i. Indeed, metaphysically, the language of set theory used in a typical model-theoretic se-
mantics can be analyzed within typed object theory. But, of course, if we allow ourselves some set
theory and urelements, we can develop a model-theoretic semantics for the language of typed object
theory. See Zalta 1983 and 1988a.
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of any RTT in which the relational types denote infensions that can be distin-
guished from extensional entities such as sets of n-tuples. He traces a two-stage
pattern of semantically distinguishing intensions and extensions back to Frege’s
distinction between sense and reference. He writes (2007, 101):

Thus, while opinions about the nature of intensions radically diverge, all
proposals follow a simple two-stage pattern. The aim of this paper is not
to add one more theory of intension to the proposals that have already been
made, but is an investigation of their common underlying logic. The idea
will be that the two-stage set-up is essentially all that is needed to obtain
intensionality. For the purposes of logic it suffices to consider intensions
as abstract objects; the question what intensions are, while philosophically
important, can be abstracted from.

His general system for studying RTT under intensional interpretations, which he
calls ITL (‘Intensional Type Logic’), has some very interesting properties.

One basic difference between ITL and typed object theory concerns the lan-
guage. ITL doesn’t have a primitive form of predication, whereas typed object
theory has two. Instead, ITL has primitive function application of the form (AB);
where A is a relational term of type (o1, ..., 0,) and Bis a term of type o1, (AB)
is a term of type (0>, ...,0,). So, in effect, ITL doesn’t treat statements of the
form x loves y, x € y, x <y, etc., as instances of the primitive form of predi-
cation Rxy. Instead, the semantics shows that relations are treated functionally.
Muskens explains the semantic clause that assigns a value to terms of the form
(AB) as follows:?!

To better understand the motivation behind the second and third clauses of
this definition, it may help to consider that any n + 1 place relation R can
be thought of as a unary function F such that F(d) = { (J y|<d, d Y € R}.

So it seems clear that Muskens, like Orey, Church, and Gallin, is not taking
relations in RTT as primitive entities.

Putting this aside, the general logical framework Muskens develops for RTT
has a number of virtues. As he explains, the framework allows us to distin-
guish formulas that are ‘co-entailing’ (2007, 113), allows us to represent the

2I'The semantic clause in question is (2007, 104):
V(a,AB) = {(d)|{1(a, B),d) € V(a,A)}
Since V(a, X) is generally defined to be the extension of the intension of X, I would gloss the above
as follows: the extension of the intension of (AB) is the set of n — 1 tuples obtained by removing

the first member of each n-tuple in the extension of the intension of A whose first member is the
intension of B.
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sense/reference distinction (2007, 114), and allows for a construction of possi-
ble worlds (2007, 115).

However, I think that typed object theory offers somewhat more general
analyses of the same phenomena precisely because it provides a theory of the
intensions that populate the domains of relational types. First, as noted earlier,
typed object theory distinguishes properties and relations from their Montago-
vian intensions. Let us return to the examples of the two properties that are
distinct but necessarily equivalent: [Ax Bx & Yy(Sxy = —Syy)] (‘being a barber
who shaves all and only those who don’t shave themselves’) is a property of
type (i), as is [Ax Dx & Wx &—-Wx] (‘being a dog that is white and non-white”’).
In these expressions, ‘B’, ‘D’, and ‘W’ are of type (i), and °S” is of type (i, i).
Now let:

e s (‘Sally’) denote an individual of type i,
e j(‘John’) denote an individual of type i,
e Bel(, ) (‘believes’) denote a relation of type (i, { )),

o [ ¢] (‘that ¢’) denote a proposition of type ( ), provided ¢ has no enco-
ding subformulas

Then, in typed object theory, the claim:

Sally believes that John is a barber who shaves all and only those who
don’t shave themselves, i.e.,
Bel (s, [A [Ax Bx & Vy(Sxy = =Syy)]j])

doesn’t imply:

Sally believes that John is a dog that is both white and not white, i.e.,
Bel (s,[A [Ax Dx & Wx &-Wx]j])

Typed object theory has had this feature from its inception, but with principles
that articulate existence and identity conditions for the intensions that play a role
in the above representations, namely, relations Bel and S, properties B, D, and
W, and propositions [A[AxBx&Vy(Sxy = =Syy)]jl and [A[AxDx& Wx&—-Wx]j].

Moreover, to avoid the problems of hyperintensionality, which requires us
to explain why the fact that John believes that Cicero is a Roman doesn’t im-
ply that John believes that Tully is a Roman, Muskens has to interpret proper
names as (higher-order) properties of properties, and justify this by appeal to
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a principle of the ‘primacy of properties’ (2007, 114). By contrast, typed ob-
ject theory treats ‘Cicero’ and ‘Tully’ as names that denote individuals. It then
uses a completely general analysis of Fregean senses to explain the problems of
hyperintensionality. We sketch this analysis briefly.

In typed object theory, the sense of a natural language expression with type
o isn’t an entity of higher type. Rather the sense is of the very same type. The
sense of an expression of type o is an abstract object of type o, i.e., one that
encodes properties with type (o). By encoding properties of o-type objects,
the sense can represent an object that exemplifies the properties in question,
though object theory doesn’t require that sense determines reference! Indeed,
object theory allows the sense of an expression to vary from person to person
and that for many expressions, the sense of that expression for a person can
encode properties that the object denoted by the expression fails to exemplify.
But, in what follows, we suppress this feature of the theory.

Consider type i expressions ‘Samuel Clemens’ (‘c’) and ‘Mark Twain’ (‘¢’),
which are learned in different contexts. The denotation (extension) and the
senses (intensions) of ‘c’ and ‘t’ are of type i:

e ‘¢’ and ‘t’ denote the same ordinary individual
e The sense of ‘c’ and the sense of ‘¢’ are distinct abstract individuals.

In typed object theory, we may represent the sense of ‘c’ and ‘¢’ as ‘c’ and ‘¢,
respectively.”> We then have a way to model Frege’s solution to the problem
of cognitive significance of identity statements for proper names. ‘Cicero is
Cicero’ (c=c) is knowable a priori, whereas ‘Cicero is Tully’ (‘c=¢") is true but
not knowable a priori: ‘Cicero’ and ‘Tully’ are expressions that have the same
denotation (namely, Cicero) and different senses (namely c and ¢).

Moreover, this analysis generalizes to all higher types. The sense of an ex-
pression of type (o, ...,0,) is an abstract object of that very type. There is no
type-raising. Consider, for example, the type (i) expressions ‘woodchuck’ (‘W’)
and ‘groundhog’ (‘G’), which are learned in different contexts. The denotation
(extension) and the senses (intensions) of ‘W’ and ‘G’ are of type (i):

e ‘W’ and ‘G’ denote the same property of individuals

22These can be indexed to persons and times or contexts, but as noted previously, we’ll omit this
relativization. The important point is that, as abstract objects, ¢ and ¢ can encode properties that
Cicero exemplifies. (Or not, if one really wants to have a better understanding of how language
works, as opposed to simply following Frege in discussing an ideal language.)
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e The sense of ‘W’ and the sense of ‘G’ are distinct abstract properties —
they encode different properties of properties.

We may represent the sense of ‘W’ and ‘G’ in typed object theory as ‘W’ and
‘G’, respectively, again suppressing possible indices to persons, times or con-
texts. This provides a Fregean solution to the problem of the cognitive signifi-
cance of identities: whereas ‘being a woodchuck is identical to being a wood-
chuck’ (‘W=W?’) is knowable a priori, ‘being a woodchuck is identical to being
a groundhog’ (‘W =G") is not; the expressions ‘being a woodchuck’ and ‘being
a groundhog’ have the same denotation but different senses.

Thus, we may explain hyperintensionality both at the level of individuals
and at every higher type. At the level of individuals, we represent belief reports
in terms of an ambiguity: the expressions ‘Cicero’ and ‘Tully’ contribute their
denotations on the de re readings, but contribute their senses on the de dicto
readings:

e John believes that Cicero is a Roman.
(1) B(j,[ARc]) (de re)
(2) B(j, [1Rc]) (de dicto)

e John doesn’t believe that Tully is a Roman.
(3) =B(j, [ Rt]) (de re)
(4) =B(j, [AR1]) (de dicto)

e Cicero is Tully.
S)c=t

We explain the hyperintensionality by the fact that the de dicto readings (2) and
(4) are consistent, even given (5).

The very same explanation can be given for hyperintensionality of the wood-
chuck/groundhog case. The expressions ‘woodchuck’ and ‘groundhog’ con-
tribute their denotations on the de re readings, but contribute their senses on the
de dicto readings:

e John believes that Woody is a woodchuck.
(6) B(j, [A Ww) (de re)
(1) B(j, [A Ww]) (de dicto)

e John doesn’t believe that Woody is a groundhog.
(8) =B(j, [A Gw]) (de re)
9) =B(j, [A Gw]) (de dicto)

Epwarp N. ZArLTA 20

¢ Being a woodchuck just is being a groundhog.
(10O W=G

Again, the de dicto readings (7) and (9) are consistent, even given (10). Note
also that object theory even offers the reading B(j,[4 W w]), in which both the
sense of the individual term and the sense of the predicate are combined in the
proposition that is the object of belief. The consequences of these readings were
developed in other works on object theory; see Zalta 1988a (166—172); and 2001
(337-341).

One final point of comparison with Muskens 2007 is in order. Muskens
suggests that possible worlds can be constructed in ITL as properties of propo-
23 Using the ITL variables w of type ({ )) (i.e., the type for properties
of propositions) to range over possible worlds, he extends the system to include
(2007, 115):

sitions.

e anew primitive predicate Q (‘is a world’) with type ({{ ))),

e axioms that assert (1) if w is a world, then the false proposition (L) is not
true at w, and (2) if w is a world, then if a conditional A — B is true at
w, then for any objects, if it is true at w that A characterizes those objects,
then it is true at w that B does too,

e anew primitive constant wy to designate the actual world, and

e axioms that govern wy, which stipulate that wy is a possible world and that
all and only true propositions are true at wy

These basic features come with the nice feature that the notion, proposition p is
true at world w, is just defined as wp (i.e., the result of applying w to p).

By constrast, object theory doesn’t need a new primitive predicate for possi-
ble worlds. Possible worlds are defined as situations, which are in turn defined
as abstract individuals that encode propositions by encoding only propositional
properties (Zalta 1983 (IV); Zalta 1993; and Menzel & Zalta 2014). A possible
world is defined as any abstract individual that might be such that it encodes all

23Some of the following observations, suitably adjusted, apply to the reconstruction of possible
worlds in the FTTs articulated in Fox & Lappin 2001 (184-7), and Pollard 2005 (41-3), 2008
(276-7). These authors assume a domain of primitive propositions structured as a pre-Boolean
algebra or prelattice and then define possible worlds as ultrafilters (maximal prime filters) on this
domain. This is clearly a model of possible worlds and truth at a world, not a theory of these notions.
The propositions in a set do not characterize the set in any way. By contrast, possible worlds that
encode propositional properties are characterized by these properties, since encoding is a mode of
predication.
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and only true propositions. Moreover, truth at a world is defined in terms of
encoding: p is true at w (written w = p) if and only if w encodes being such that
p, i.e., if and only if w[Ady p]. An actual world is then defined to be a possible
world w such that Vp((w | p) = p). I won’t rehearse these definitions in detail
here, but merely assert that the axioms Muskens asserts to construct possible
worlds are theorems of object theory. It is provable in object theory that: (1)
no contradiction is true at any world, (2) thatif w | (p — ¢) and w | p, then
w [ ¢, (3) every world is maximal (i.e., for any w and any proposition p, either
(w E p) vV (w E —p), and (4) there is a unique actual world (see, e.g., Zalta
1993).

Moreover, object theory is developed in a modal setting. So, its theory of
worlds also yields the following claims as theorems:

Yp(@p = VYw(w [ p))
Yp(Op = dw(w E p))

Thus, the object-theoretic analysis of worlds implies the fundamental facts about
possible worlds as theorems: a proposition is necessarily true if and only if it is
true in all possible worlds, and proposition is possibly true if and only if it is
true in some possible world. These principles draw a deep connection between
our pre-theoretical understanding of necessity and possibility and our theoretical
understanding of possible worlds. With such principles as theorems, all we have
to do to prove the existence of non-actual possible worlds is to assert, for some
proposition p, that —-p & <p, for it then follows that there exists a possible
world distinct from the actual world where p is true. It is not clear whether
this connection between our pre-theoretic understanding of modality and our
theoretical understanding of possible worlds is preserved by the analysis of the
modal operators we find in Muskens 2007 (1 16).2

I conclude this section with two further observations. The first is that object
theory doesn’t need any special new axioms to develop the theory of impossible

241 say this because Muskens has to stipulate the axioms he labels W3 and W4, which assert that
when fruth at a world and being a world hold of the appropriate objects, they hold by necessity.
By constrast, object theory yields these claims as theorems: one can prove in object theory that
(w E p) — O(w E p) and that PossibleWorld(w) — OPossibleWorld(w). These facts hold because
both the notions of truth at a world and possible world are defined in terms of encoding formulas,
which are governed by the axiom xF — OxF. Also, it looks like the analysis Muskens ofters (2007,
116) has to build the fundamental principles connecting modality and truth at a world into the R
(accessibility) relation, so that principles like the ones being discussed in the text end up just being
defined into the modal operators, thereby making the principles definitional truths. In object theory,
the principles in question aren’t simply true by definition.
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worlds: an impossible world i is a situation that is maximal and such that it is
not possible that every proposition true in i is true, i.e., ~OVp((i E p) — p). So,
in the special cases of hyperintensionality where impossible worlds are needed
(e.g., for counterfactuals with impossible antecedents), the theory provides the
background theoretical entities needed for the analysis to proceed.

Second, there may be an issue with Muskens’ reconstruction of possible
worlds. If worlds are, as he says, properties of propositions, and properties
are intensional entities, then he may have too many possible worlds. This is
clearest in the case of the actual world wy. If wy is a property of propositions,
then consider any property of propositions that is distinct from wy but necessar-
ily equivalent to it. Then we would have two distinct actual worlds. In other
words, his definitions and axioms don’t guarantee that there exists a unique ac-
tual world. By contrast, in object theory, it is provable that there is a unique
actual world (i.e., there is a unique abstract object that is a possible world and
is actual, namely, the abstract object that encodes all and only the properties of
the form [y p], where p is a true proposition. The problem of foo many worlds
affects other well-known attempts to define possible worlds as fine-grained in-
tensional entities such as states of affairs (see Zalta 1988a, 72-74, for further
discussion).

3 Nominalized Propositions

Recently, some linguists have focused on the fact that, in natural language, ex-
pressions that denote propositions can occur in sentence positions where expres-
sions that appear to denote individuals can occur. The expressions in question
are referred to as complement phrases (CP) and determiner phrases (DP), re-
spectively, and the sentences that have positions where both CPs and DPs can
occur may be called CP/DP-neutral constructions. Liefke (2014) and Liefke &
Werning (2018) compile a wide variety of these and other similar constructions.
Here are just a few examples:

1. DP/CP neutrality:
a. Mary noticed [pp Bill].
b. Mary noticed [cp that Bill was waiting for Pat].

2. DP/CP coordinability:
a. Mary remembered [pp Bill] and [cp that Bill was waiting for Pat].

3. CP nominalization:
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a. [pp Mary] bothered Bill.
b. [cp That Pat was so evasive] bothered Bill.

4. DP/CP equatability:
a. [pp The problem] was [pp Pat’s dislike of Bill].
b. [pp The problem] was [cp that Pat did not like Bill.]

5. Proposition-type anaphora:
a. Mary told John [cp that it was raining]. John did not believe [pgro it].

Whereas Partee (2009) uses such constructions to question the distinction be-
tween the primitive types e and ¢ in FTT, Liefke 2014 and Liefke & Werning
(2018) conclude that such constructions (and others) provide evidence for de-
veloping a semantics for natural language based on a single primitive type o,
which is nevertheless to be interpreted as a higher Montagovian type (s, (s, 1)).
In Liefke 2014 (18, 86, 97, 163), this higher type is understood to be that of
propositional concepts, i.e., functions from possible worlds to Montagovian
propositions. By contrast, Liefke & Werning (2018, Section 4) interpret the
type (s, (s, 1)) as the type for functions from contextually specified situations to
sets of situations.”> They then interpret both CPs and DPs in the higher type
(s, (s,1)). But to give this analysis, they must introduce the notions of situation,
contextual specification of a situation, and situative proposition, and invoke a
rich ontology that includes worlds, times, locations, situations, inhabitants of
situations, situative propositions, etc. For the most part, they stipulate the struc-
ture that is needed, e.g., a partial ordering C (‘inclusion’) on a set of situations,
with top and bottom elements, etc.

In typed object theory, one can offer an alternative analysis of the linguistic
data, namely, that the constructions involve nominalized propositions, i.e., ab-
stract individuals that are defined by, and so correspond to, propositions. Typed
object theory has a natural way to do this: for each proposition p, there is an
abstract individual of type i that is the nominalization of p. Let p be any propo-
sition, i.e., entity of type (), x be a variable ranging over individuals, A! (being
abstract) be a property of individuals and F a variable ranging over properties
of individuals. Then object theory guarantees that the following definition picks
out a canonical individual,”p, which we may call the nominalization of p:

“p =g 1X(Alx & VF(xF = F=[1y pl))

251 shall continue to use parenthesis to denote derived, functional types in FTT, and use angled

brackets to denote derived, relational types in RTT. But the reader should note that Liefke & Werning
use angled brackets for Montagovian functional types.
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This identifies the nominalization of p as the abstract individual that encodes just
the property being such that p (i.e., encodes just [dy p]). Given such a definition,
we may interpret sentences like the ones above as giving rise to contexts in
which the DPs and CPs both denote individuals. For example, notice can be a
verb of type (i, ), so that (1.a) and (1.b) above can be analyzed, respectively, as
follows, where W is the relation waiting for:

N(m, b)
N(m,”[A Whp])

In the second case, notice relates Mary to the nominalization of the proposition
that Bill was waiting for Pat. Thus, instead of type-raising, object theory lowers
the relational type for propositions ( ) to the type for individuals!

This kind of solution then generalizes to the other cases, though one may
have to apply certain operations on individuals, for example, to analyze the com-
pound individuals such as the conjunction of the individual Bill and the nomi-
nalization of the proposition that Bill was waiting for Pat (to handle examples
like 2.a).26

This ability to nominalize propositions in typed object theory is similar to
its ability to nominalize properties. Suppose G is a property of individuals, i.e.,
of type (i). Then we may define the nominalization of G, written"G, as follows:

G =wx(Alx & VF(xF = F=G))

In other words, the nominalization of G is the abstract object that encodes just G
and no other properties. This allows the semanticist to give a uniform analysis
of the sentences:

John is fun.
Fj

Running is fun.
F'R

26Typed object theory provides such compound individuals. Where y denotes any individual and

“p denotes the individual which is the nominalization of the proposition p, object theory asserts that
there is an intersect object, y A “p, that encodes exactly the properties that y and “p exemplify in
common:

YATp =g x(Alx &VF(xF = Fy & F'p))
as well as a union object, y V “p, that encodes all and only the properties exemplified by either y or
vp:

yYVp =g x(Alx &VF(xF = FyV F'p))
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In these representations, both ‘John’ and ‘Running’ denote individuals, though
the latter is an abstract individual. Similarly, if G is a 3-place relation among
individuals, e.g., x gives y to z, then we can identify its nominalization (giving)
as the nominalization of the property that results by existentially projecting G to
[Ax FyTAzGxyz], i.e., as“[Ax JydzGxyz]. So if being rewarding (R) is a property
of individuals, we have the following analysis:

Giving is rewarding.
R [Ax AyAzGxyz]

Note that in this analysis, no type-raising is involved.

Thus, where FTT systems often use type-raising (type-lifting) techniques to
unify the analysis of natural language, typed object theory can analyze many
constructions without such techniques. We’ve already seen some examples.
Type-raising isn’t needed for the analysis of the intensions of natural language
expressions, nor for the nominalizations of propositions and properties. Con-
sider also the classic FTT analysis of using generalized quantifiers to unify the
noun phrases ‘John’ and ‘every person’ by type-raising. Both expressions are
often analyzed extensionally in FTT systems as denoting a set of properties of
individuals, i.e., as {F'| Fj} and {F | Vx(Px — Fx)}, respectively. But in object
theory, type-raising isn’t needed: both expressions have type i. ‘John’ denotes
an individual and ‘every person’ can denote the following individual:

1x(Alx & VF(xF = Vy(Py — FY)))

So ‘every person’ would denote the abstract object that encodes all the properties
exemplified by every person.

Nor does type-raising help with fictions. In FTT systems, it is suggested that
‘Sherlock Holmes’ (‘h’) denotes {F | Fh}, i.e., a set of properties. But if that set
is to be something other than the empty set, ‘4’ must have a denotation. Object
theory provides such a denotation:

h=1x(A'x & YF(xF = CD E Fh))

This identifies Holmes as the abstract object that encodes exactly the properties
F such that, in the Conan Doyle novels, Holmes exemplifies ' .27 Thus, Holmes
is identified on the basis of the body of story-truths of the form: in the Conan

2TNote here that ‘In the Conan Doyle novels, p’ has been represented as a claim of the form
‘s |E p’ (‘pistruein s’), where s is a situation and p is a proposition. So truth in a situation is given
the same analysis as truth at a world, namely, as s[Ay p], i.e., s encodes the propositional property
being such that p.
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Doyle novels, Holmes is F. By being abstract, Holmes is not a possibly con-
crete object. As Kripke noted, there are too many complete, possible objects
consistent with the novels (supposing the novels are consistent). Holmes is an
individual that is incomplete with respect to his encoded properties, but com-
plete with respect to his exemplified properties. Given that the English copula is
ambiguous between encoding and exemplification predication, we may say that
Holmes ‘is’ a detective in the sense of encodes, but fails to exemplify detective-
hood.

This analysis extends to fictional properties of individuals, such as being a
hobbit (H). We don’t need type-raising to interpret the predicate ‘hobbit’, for its
analysis is similar to the analysis of names of fictional individuals: H denotes
an abstract property of individuals, i.e., an abstract property with type (i). An
abstract property of individuals encodes properties of properties of individuals.
So where H is of type (i), x is a variable of type (i), and A! is a constant and F
a variable of type ((i)), we may identify being a hobbit as follows:

H=1x(Alx & VF(xF = LordOfTheRings = FH))

That is, being a hobbit is the abstract property of individuals that encodes exactly
the properties of properties of individuals that being a hobbit exemplifies in The
Lord of the Rings.?®

In summary, then, typed object theory avoids type-lifting by taking advan-
tage of the abstract objects that exist at each type. It is based on RTT with
a single primitive type and offers a natural way to define situations, possible
worlds, fictional entities, etc. These entities have precise definitions and the
main principles governing them can be derived. Propositions and properties
both, no matter whether simple or complex, have nominalizations, and we need
not interpret sentence positions that are neutral with respect to CPs and DPs as
positions requiring a higher type.

4 Intensional Type Theory: 11
We now turn to a discussion that compares typed object theory to the intensional

framework developed in Williamson 2013. We begin by showing that an argu-
ment Williamson raises against general (Henkin) models can be undermined.

28Strictly speaking, in this analysis of ‘hobbit’ and in the analysis of the name ‘Holmes’, we need
to index the term being analyzed to the story in question. So we should use Hy o7g and hcp on
both sides of the identity symbol in the respective principles.
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4.1 Response to an Argument Against Henkin Models

In 2013 (226-230), Williamson develops an extended argument that is designed
to show the superiority of standard models of higher-order logic to general
(Henkin) models. In this argument he distinguishes the standard notions of logi-
cal consequence and validity from the analogous notions, g-logical consequence
and g-validity, that apply to general models. Williamson begins by asserting
(2013, 226):

Despite the formal tractability of g-logical consequence, general models
are more complex and less natural than standard models. Why have arbi-
trary restrictions on the permissible intensions of the appropriate type for a
predicate?

Though Williamson goes on to give an example, the second sentence in this
opening statement betrays a presupposition that is rejected by typed object the-
ory, namely, that the permissible intensions are those that are given by possible
world semantics, in which relations are identified as set-theoretically defined
functions from worlds to sets of n-tuples. This presupposes that set theory and
set membership offer a more fundamental account of relations than a direct, ax-
iomatic theory of relations and predication. But object theory has no such pre-
supposition. From the point of view of typed object theory, we should reverse
the order: the permissible intensions are those that are given by a mathematically
precise theory of relations, such as the one offered by (typed) object theory. If
there is nothing more fundamental than individuals, relations, and predication,
why suppose that set theory with possible worlds as urelements gives us a greater
insight as to what relations or intensions exist?

Once we recognize this presupposition in Williamson’s argument, it be-
comes easy to undermine the other reasons Williamson gives for preferring stan-
dard models to general models. He notes, for example, that the Comprehension
Principle is standardly valid, but not g-valid (2013, 228):

By contrast, in some general models, dom({t,, . .., ,)) omits the intensions
of Avy...v,(A) needed as a value of V to verify an instance of Comp, so

Comp is not g-valid.

But this offers no reason why standard models should be preferred. Why let
the semantics drive a precise theory of relations? Instead, the comprehension
principle for relations, which is derivable in object theory (suitably restricted
to exclude encoding subformulas from allowable matrices), should drive the se-
mantics. This comprehension principle tells us the conditions under which re-
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lations exist. I suspect that the reason Williamson doesn’t consider it definitive
is the same one we encountered before in trying to understand why FTT rather
than RTT became standard in linguistics: without encoding formulas to give
precise identity conditions for relations, Williamson has no theory of relation
identity to fall back on, other than the set-theoretic reconstruction of relations as
Montagovian intensions. But, from the point of view of typed object theory, a
general model is sufficient if it makes the comprehension principle for relations
valid. Such general models would then include everything needed to show that
the theory of relations is consistent.
Williamson discusses this option (2013, 229):

We could add Comp as an extra principle to Gallin’s axiomatic system pre-
sented earlier, and restrict the general models to those in which it is valid.
Of course, the resulting logic would still have a recursively axiomatizable
set of theorems, and so be weaker than the standard logic. Even a general
model that validates Comp may have highly restricted intensions for most
types because many intensions correspond to no formula of the language,

relative to any values of its parameters.

But again, Williamson assumes that general models would have ‘highly re-
stricted intensions’, because he supposes that the intensions are given by set-
theoretic functions from possible worlds to sets of n-tuples. We should not,
however, accept such a prior characterization of intensions. That is to give the
conception of intensions derived from set-theory preference over the conception
of intensions derived from metaphysical considerations. Object theory starts
with a primitive, fine-grained notion of relations; these are more fine-grained
than set-theoretic functions from worlds to sets of n-tuples: we saw in Sections
1.1 and 1.2 that while Montagovian intensions collapse necessarily equivalent
relations, the identity conditions for relations in typed object theory do not.

Williamson next charges that the structure of standard models, but not g-
models, is what our metaphysics should characterize (2013, 229-230):

Thus non-standard models also differ from standard ones in respects rele-
vant to the evaluation of claims about purely logical structure, in the sense
of claims expressed by formulas without non-logical constants. But logical
structure is what the logical core of our metaphysics is supposed to char-
acterize. ...Hence a g-logic is less informative than standard logic about
purely logical structure. A metaphysical theory based on g-logic rather
than standard logic is neutral on many of the very questions it is supposed

to answer.
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But I would reply that it is exactly the neutrality of g-models that prevents it from

falling into the obvious error of standard models, namely, the error of collapsing

relations, properties, and propositions that are necessarily equivalent. A g-logic

should remain neutral on many questions that should be decided on the basis of

theory, not on the basis of the set-theoretic artifacts of a standard model.
Finally, Williamson claims (2013, 230):

Moreover, to the extent to which we take models for MLp seriously, the
standard ones are more faithful than the non-standard ones to our intended

interpretation.

This strikes me as rather controversial. Given the precise theory of relations
offered in (typed) object theory, how could standard models based on Montago-
vian intensions, which collapse relations that can be kept apart in g-models of
object theory, be more faithful?

4.2 Comparison of the Ontologies

If we put his argument against g-models aside, though, there are some inter-
esting points of comparison between the typed object theory and Williamson’s
intensional logic. One is that typed object theory uses one set of types for both
its syntax and semantics. Williamson, by contrast, uses one set of types for the
syntax of his language and a different set of types for its semantics. For the
syntax, he uses the standard RTT types, though using e as the primitive type for
individuals. For the semantics, he adds w as a second base type, and then defines
a new type 7o from each o in the syntactic hierarchy, as follows (2013, 236-7):

Each type ¢ of ML, corresponds to a type 7¢ of the metalanguage by the rule
te and 7(t{,...,t,) is {(tt;,...,Tt,,w). But we add a cumulative infinite
limit type A to the metalanguage: the expressions of type A are exactly
those of any finite type. Thus expressions of type A belong to some more

specific type, but expressions of type (1) do not.

If I’'m understanding this correctly, then this typing scheme, unlike that of typed
object theory, essentially takes the entities denoted by n-place relational pred-
icates to be n + 1-place relations and requires the metaphysician to regard re-
lations essentially as world-indexed entities. This fundamentally changes the
way in which relations are to be conceived and such a change is not required by
typed object theory. Williamson would no doubt justify the proposal by citing
the advantages of the semantics he goes on to give (237-8) (i.e., a kind of ho-
mophonic semantics in which quantification can be conceived without domains
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and as unrestricted). But that semantics, as Williamson admits, requires a plural
conception of higher-order quantifiers, something that doesn’t easily generalize
to relations, given that there seems to be no natural way to render quantification
over relations in the plural idiom.

Moreover, Williamson’s world-indexed relations leave open a variety of ques-
tions. If F and G are variables for properties with type (o) and x a variable for
an object of type o, do the world-indexed relations obey the law: VxVw(Fxw =
Gxw) — F = G? What is the denotation of complex A-expressions in the se-
mantics that Williamson develops? His semantics (2013, 238) doesn’t say.

By contrast, typed object theory simply rests with its axiomatic foundations;
there are axioms for quantification, axioms for relations, and definitions and
theorems governing possible worlds. No set-theoretic model of such a system
gives any deeper insight into the nature of the entities being described. One
should not mistake the entities in such models or the artifactual set-theoretic
domains of the models for the entities and notions being described.

5 Conclusion

It might be thought that RTT, despite its elegance in having a single primitive
type, can be reduced to FTT. But Oppenheimer & Zalta (2011) show that FTT
has no straightforward way of representing the logic of typed object theory as the
latter is formulated in RTT. This suggests that RTT is the more general frame-
work. Basically, we noted that in FTT, every formula can be converted into a
term. The semantics of the quantified formula Yx”¢ is handled by converting
¢ to [Ax7¢], which is a function that maps objects of type o to a truth value.
Then V is interpreted as a particular function that maps the expression [1x7 ¢] to
a truth value. In particular, ¥ maps [1x” ¢] to The True, i.e., Yx7¢ is true, just
in case the function [1x” ¢] maps every object to The True.

But in typed object theory, formulas with encoding subformulas can’t be
converted to terms, on pain of paradox. The formula xF' & —Fx can’t be con-
verted to [Ax xF & —Fx] since the latter is not even well-formed in object theory.
Oppenheimer & Zalta (2011) point out that FTT can’t therefore interpret the ex-
pression VF(xF & —F x) by applying the higher order function V to the predicate
[Ax (xF & —Fx)], since the latter isn’t in the language.

These considerations, as well as the ones presented earlier in the body of this
paper, may prove helpful when comparing the relative merits of FTT and RTT
systems for the analysis of natural language, and when comparing foundations
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that take relations and predication as basic, instead of functions and function
application or sets and set membership.
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