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Motive and Methods

Leibniz:
If we had it [a characteristica universalis], we should be
able to reason in metaphysics and morals in much the same
way as in geometry and analysis.

If controversies were to arise, there would be no more need
of disputation between two philosophers than between two
accountants. For it would suffice to take their pencils in
their hands, to sit down to their slates, and to say to each
other . . . : Let us calculate.

Quo facto, quando orientur controversiae, non magis
disputatione opus erit inter duos philosophos, quam inter
duos Computistas. Sufficiet enim calamos in manus sumere
sedereque ad abacos, et sibi mutuo . . . dicere: calculemus.
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The Value of Computational Metaphysics

Discover countermodels to hypotheses and detect errors in
reasoning.
Discover facts about the strength of axioms and premises needed
to derive metaphysical conclusions
Confirm premise consistency and find smallest models of
metaphysical claims.
Derive interesting theorems and confirm valid reasoning.
Clarify epistemological issues in light of the metaphysical and
logical results.
Methodology:

Download/install automated reasoning engine, e.g., Prover9:
http://www.cs.unm.edu/˜mccune/mace4/

Test it/develop an understanding of how it works
Represent logical and non-logical premises.
Find/investigate proofs, premise sets, and models/countermodels
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Logic→ Prover9 Syntax→ Clausal Normal Form

∀x(Px→ Qx) (Logic)
all x (Px -> Qx). (Prover9 syntax)
-P(x) | Q(x). (Clausal Normal Form)

∃x(Px & Qx)
exists x (Px & Qx).
P(c1).
Q(c1).

∀x∃y(Rxy ∨ x , y)
all x exists y (Rxy | -(x=y)).
R(x,f(x)) | -(x = f(x)).

∀x∀y∃z(Rxyz & Rzyx)
all x all y exists z (Rxyz & Rzyx)
R(x,y,f(x,y)).
R(f(x,y),x,y).
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prover9

prover9 establishes the validity of first-order arguments via
reductio ad absurdum. Its main loop:

1 Let the premises of the argument constitute the usable list.
2 Add the negation of the conclusion to the set of support list.
3 While the sos list is not empty:

1 Select a given clause from sos and move it to the usable list;
2 Infer new clauses using the inference rules in effect; each new

clause must have the given clause as one of its parents and
members of the usable list as its other parents;

3 process each new clause;
4 append new clauses that pass the retention tests to the sos list.

4 End of while loop.
5 Cycle until you reach a contradiction.

See http://www.cs.unm.edu/˜mccune/prover9/manual/2008-11A/
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Example
Argument:

∀x(Greek(x)→ Person(x))
∀x(Person(x)→ Mortal(x))
Greek(s)
Mortal(s)

Input file:
all x (Greek(x) -> Person(x)).
all x (Person(x) -> Mortal(x)).
Greek(s).
Mortal(s).

prover9 proof:
1 [ ] -Greek(x) | Person(x)
2 [ ] -Person(x) | Mortal(x)
3 [ ] Greek(s)
4 [ ] -Mortal(s)
5 [hyper,3,1] Person(s)
6 [hyper,5,2] Mortal(s)
7 [hyper,6,4] F
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Leibniz’s Calculus of Primitive Concepts

Leibniz 1690: axioms for x ⊕ y and x � y.
Proposition 12: ∀x, y, z(y � z→ x ⊕ y � x ⊕ z)
all x all y all z (IsIn(y,z) -> IsIn(Sum(x,y),Sum(x,z))).

Premises:
all x all y all z (Sum(Sum(x,y),z) = Sum(x,Sum(y,z))).

Associativity
all x all y (IsIn(x,y) <-> (exists z (Sum(x,z) = y))).

Definition
Demo in prover9.

Note premise 1 is clausified in line 4 and premise 2 is clausified
in lines 5 and 6.
Note the Skolem function in clause for premise 2.
Note all the premises are used in the proof.

Note that the proof fails without Associativity. Demo
countermodel using mace4: it postulates 3 entities (c1, c2, and
c3), for the negation of the conclusion.
Mistake: Leibniz omitted Associativity from his list of axioms.
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Countermodel to ‘Theorem’ About Plato’s Forms

In Pelletier and Zalta 2000:
The Form of F (‘ΦF’) =df ıx(A!x & ∀G(xG ≡ F ⇒ G))
ParticipatesPTA(x, y) =df ∃F(y=ΦF & Fx)
ParticipatesPH(x, y) =df ∃F(y=ΦF & xF)

We alleged the following was a theorem:
xF ≡ ParticipatesPH(x,ΦF)

Mace found an countermodel to the right-to-left direction.
Choose P = being-Q-and-not-Q (for any Q)
Choose T = being-round-and-square.
In object theory, one can consistently assert P , T .
Even when P , T , it is provable in object theory that ΦP = ΦT

Let b be the abstract object that encodes exactly one property,
namely, T .

It follows that:
ParticipatesPH(b,ΦP) since ParticipatesPH(b,ΦT ) and ΦP = ΦT .
¬bP.
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Ontological Argument Premise Set

in Oppenheimer and Zalta 1991

One Logical Axiom:
Russell (1905) Axiom
ψ
ıxϕ
z ≡ ∃y(ϕy

x & ∀u(ϕu
x → u=y) & ψ

y
z)

Three Non-Logical Axioms:
Connectedness: ∀x, y(Gxy ∨ Gyx ∨ x=y)
Premise 1: ∃x(Cx & ¬∃y(Gyx & Cy)) (= ∃xϕ1)
Premise 2: ¬E!ıxϕ1 → ∃y(Gyıxϕ1 & Cy)

Definition:
God (‘g’) =df ıxϕ1
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Logical Theorems: Consequences of the Logical Axiom

Description Theorem 1: ∃!xϕ→ ∃y(y= ıxϕ)

Lemma 1: τ= ıxϕ→ ϕτx, for any term τ

Description Theorem 2: ∃y(y= ıxϕ)→ ϕ
ıxϕ
x

Lemma 2: ∃xϕ1 → ∃!xϕ1
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Proof of Lemma 2

1 ∃x(Cx & ¬∃y(Gyx & Cy)) Assume antecedent.
2 Ca & ¬∃y(Gya & Cy) ‘a’ arbitrary
3 ∃z(z,a & Cz & ¬∃y(Gyz & Cy)) Assume for reductio.
4 b,a & Cb & ¬∃y(Gyb & Cy) ‘b’ arbitrary
5 Gab ∨ Gba ∨ a=b by Meaning Postulate
6 Gab ∨ Gba from 5, and 4 (a , b)
7 Gab Assumption
8 Gab & Ca given Ca in 2
9 ∃y(Gyb & Cy) Contradicts 4

10 Gba Assumption
11 Gba & Cb given Cb in 4
12 ∃y(Gya & Cy) Contradicts 2
13 ¬∃z(z,a & Cz & ¬∃y(Gyz & Cy)) By reductio
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The Ontological Argument (1991)

1 ∃xϕ1 Premise 1
2 ∃!xϕ1 from (1), by Lemma 2:

∃xϕ1 → ∃!xϕ1

3 ∃y(y= ıxϕ1) from (2), by Description Thm 1:
∃!xϕ→ ∃y(y= ıxϕ)

4 Cıxϕ1 & ¬∃y(Gyıxϕ1 & Cy) from (3), by Description Thm 2:
∃y(y= ıxϕ)→ ϕ

ıxϕ
x

5 ¬E!ıxϕ1 Assumption, for reductio
6 ∃y(Gyıxϕ1 & Cy) from (5), by Premise 2:

¬E!ıxϕ1 → ∃y(Gyıxϕ1 & Cy)
7 ¬∃y(Gyıxϕ1 & Cy) from line (4), by &E
8 E!ıxϕ1 from lines (5)–(7), by reductio
9 E!g from line (8), by df of g
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Implementation in prover9

The ontological argument relies on instances of logical axiom
schemata (e.g., for descriptions). But prover9 is a first-order
automated reasoning system that can’t process schemata.
Strategy: Treat schemata as second-order statements and then
translate the relevant ones into two-sorted first-order logic.
Example: 2nd-order statement→ 2-sorted 1st-order logic.
∀F∀x∀y(Fx ≡ Fy) translates to
all F all x all y ((Property(F) & Object(x) & Object(y)) ->

(Ex1(F,x) <-> Ex1(F,y)))

Use sorting on one-place and two-place predications Fx and Rxy:
all F all x (Ex1(F,x) -> Property(F) & Object(x)).

all F all x (Ex2(R,x,y) -> Relation(R) & Object(x) & Object(y)).

We thus quantify over a single domain, and introduce prover9
predicates to sort the domain into properties, objects, etc.
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A Problem With Descriptions

A subtlety: It would seem natural to represent formulas with
definite descriptions such as GıxFx as:
x=The(F) & Gx

But we have represented them as:
Is_The(x,F) & Gx

The reason we don’t use the former is that an inconsistency
would otherwise arise between the following two principles for
sorting on Object, Property, and The(F):
all x (Object(x) -> -Property(x))
all x all F (x=The(F) -> (Object(x) &
Property(F)))
For when Object(b), the first implies -Property(b), and the
second implies: all x -(x=The(b)). But instantiating to
The(b) yields a contradiction with the law of identity
-(The(b)=The(b)).
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Premise 1

Definition of None_greater:
all x (Object(x) -> (Ex1(none_greater,x) <->
(Ex1(conceivable,x) & -(exists y (Object(y) &
Ex2(greater_than,y,x) & Ex1(conceivable,y)))))).

This clausifies to:
-Object(x) | -Ex1(none_greater,x) | Ex1(conceivable,x).
-Object(x) | -Ex1(none_greater,x) | -Object(y) | -Ex2(greater_than,y,x) | -Ex1(conceivable,y).
-Object(x) | Ex1(none_greater,x) | -Ex1(conceivable,x) | Object(f3(x)).
-Object(x) | Ex1(none_greater,x) | -Ex1(conceivable,x) | Ex2(greater_than,f3(x),x).
-Object(x) | Ex1(none_greater,x) | -Ex1(conceivable,x) | Ex1(conceivable,f3(x)).

Premise 1: ∃x(Cx & ¬∃y(Gyx & Cy)) becomes
exists x (Object(x) & Ex1(none_greater,x)).

See chapters 1, 10 of Kalman, and McCune’s Prover9 user
manual for details on Prover9’s clause notation and syntax.
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Ontological Argument Input File for Prover9

• The ontological argument input file:
http://mally.stanford.edu/cm/ontological-argument/ontological.in
• Save the file and run it:

Graphically: cut and paste.
Command line: prover9 < ontological.in

• Command line run shows the clauses!
http://mally.stanford.edu/cm/ontological-argument/ontological-clauses.txt

• Find out which clauses are used in the proof and identify the source
premise.

Edward N. Zalta Towards Leibniz’s Goal of a Computational Metaphysics zalta@stanford.edu
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Prover9’s Ontological Argument

•What did it use?
Description Theorem 1: No!
Description Theorem 2: It used the one clause.
Sorting on Is_the: It used one of two clauses.
Definition none_greater: It used one of five clauses.
Premise 1: No!
Lemma 2: No!
Premise 2: It used all three clauses.
Definition of God: It used the one clause.

• It has found a simpler proof!

• Task: reverse engineer the proof into something a human would find
readable.

Edward N. Zalta Towards Leibniz’s Goal of a Computational Metaphysics zalta@stanford.edu



Motives–Methods Countermodels–Errors Strength of Premise Sets Consistency–Models Theorems Epistemology Bibliography

Ontological Argument Reduced Premise Set

(Reverse Engineered from Prover9)

The Russell (Logical) Axiom for Descriptions, which yields:

Description Theorem 2: ∃y(y= ıxϕ)→ ϕ
ıxϕ
x

Description Theorem 3: ψıxϕx → ∃y(y = ıxϕ),
where ψ is any atomic formula with x free.

(Nonlogical) Premise 2: ¬E!ıxϕ1 → ∃y(Gyıxϕ1 & Cy)

Definition: g =df ıxϕ1
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Deus Ex Machina

1. ¬E!ıxϕ1 Assumption for reductio
2. ∃y(Gyıxϕ1 & Cy) from (1), by MP and Premise 2:

¬E!ıxϕ1 → ∃y(Gyıxϕ1 & Cy)
3. Gbıxϕ1 & Cb from (2), by EE, ‘b’ arbitrary
4. Gbıxϕ1 from (3), by &E
5. ∃y(y= ıxϕ1) from (4), by Description Theorem 3:

ψ
ıxϕ
x → ∃y(y = ıxϕ)

6. Cıxϕ1 & ¬∃y(Gyıxϕ1 & Cy) from (5), by Description Theorem 2:
∃y(y= ıxϕ)→ ϕ

ıxϕ
x

7. ¬∃y(Gyıxϕ1 & Cy) from (6), by &E
8. Contradiction from (2), (7) by &I
9. E!ıxϕ1 from (1)–(8), by reductio
10. ∃y(y= ıxϕ1) from (9), by Description Theorem 3:

ψ
ıxϕ
x → ∃y(y = ıxϕ)

11. E!g from (9), (10), by definition ‘g’, UE
and =E, in free logic.

The argument rests solely on Premise 2: ¬E!ıxϕ1 → ∃y(Gyıxϕ1 & Cy)
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Check For Models of the Premises

• Input file:
http://mally.stanford.edu/cm/ontological-argument/ontological-model.in
• Run it graphically or via command line:

Graphically: cut out conclusion, run Mace, show Cooked view.
Command line: mace -c -N 8 -p 1 < ontological-model.in

• Simplest model equates the existence predicate ‘e’ with a model
element 0, and equates ‘g’ (God) with that same element. Prover9
doesn’t know objects aren’t relations, that e is a Relation1, or that if
x exemplifies y, then x is an Object and y is a Relation1.

all x (Object(x) -> -Relation1(x)).
Relation1(e).
all x all F (Ex1(F,x) -> (Relation1(F) & Object(x))).

• Check the model. Continue the process to get an intended model!

Edward N. Zalta Towards Leibniz’s Goal of a Computational Metaphysics zalta@stanford.edu
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Mace4 Doesn’t Find Intended Model: Use Paradox

Demo in Prover9

Use ontological-intended-model.p. Call with paradoxm.
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Object Theory in Prover9: I

We translate modal claims into quantifications over
‘propositions’ and ‘points’. �p becomes:
all d (Point(d) -> True(p,d)).

all p all d (True(p,d) -> (Proposition(p) & Point(d))).

Predication requires sorts and is relativized to points:
all F all x all d (Ex1At(F,x,d) -> Property(F) & Object(x) & Point(d)).

all F all x all d (EncAt(x,F,d) -> Property(F) & Object(x) & Point(d)).

Rigidity of encoding:
all x all F ((Object(x) & Property(F)) ->
( (exists d (Point(d) & EncAt(x,F,d))) ->
(all d (Point(d) -> EncAt(x,F,d))) )).

λ-expressions→ functors: being such that p becomes VAC:
all p (Proposition(p) <-> Property(VAC(p))).
all x p w ((Object(x) & Proposition(p) & Point(d)) ->
(Ex1At(VAC(p),x,d) <-> True(p,d))).
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Object Theory in Prover9: II

Sorting on EncpAt and TrueInAt.
all x all p all d (Object(x) & Proposition(p) & Point(d) ->
(EncpAt(x,p,d) <->
(exists F (Property(F) & F=VAC(p) & EncAt(x,F,d))))).

all p all x all d (Object(x) & Proposition(p) & Point(d) ->
(TrueInAt(p,x,d) <-> EncpAt(x,p,d))).

Prover9 then clausifies everything, e.g., the definition of a world:
PossibleWorld(x) =df Situation(x) & ^∀p(s |=p ≡ p)

This gets input into prover9 as:
all x all d (Object(x) & Point(d) -> (WorldAt(x,d) <->
SituationAt(x,d) & (exists d2 (Point(d2) &
(all p (Proposition(p) -> (TrueInAt(p,x,d) <-> True(p,d2))))))))

Prover9 clausifies this to:
-Object(x) | -Point(y) | -WorldAt(x,y) | SituationAt(x,y).
-Object(x) | -Point(y) | -WorldAt(x,y) | Point(f1(x,y)).
-Object(x) | -Point(y) | -WorldAt(x,y) | -Proposition(z) | -TrueInAt(z,x,y) | True(z,f1(x,y)).
-Object(x) | -Point(y) | -WorldAt(x,y) | -Proposition(z) | TrueInAt(z,x,y) | -True(z,f1(x,y)).
-Object(x) | -Point(y) | WorldAt(x,y) | -SituationAt(x,y) | -Point(z) | Proposition(f2(x,y,z)).
-Object(x) | -Point(y) | WorldAt(x,y) | -SituationAt(x,y) | -Point(z) | TrueInAt(f2(x,y,z),x,y) | True(f2(x,y,z),z).
-Object(x) | -Point(y) | WorldAt(x,y) | -SituationAt(x,y) | -Point(z) | -TrueInAt(f2(x,y,z),x,y) | -True(f2(x,y,z),z).
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A prover9 Proof That Every World Is Maximal

Definition of Maximal:

Maximal(x) =df ∀p(x |= p ∨ x |= ¬p)
all x (Object(x) -> (Maximal(x) <->
Situation(x) & (all p (Proposition(p) ->
TrueIn(p,x) | TrueIn(NEG(p),x))))).
Clausifies to:
-Object(x) | -Maximal(x) | Situation(x).
-Object(x) | -Maximal(x) | -Proposition(y) | TrueIn(y,x) | TrueIn(NEG(y),x).
-Object(x) | Maximal(x) | -Situation(x) | Proposition(f1(x)).
-Object(x) | Maximal(x) | -Situation(x) | -TrueIn(f1(x),x).
-Object(x) | Maximal(x) | -Situation(x) | -TrueIn(NEG(f1(x)),x).

The claim to be proved is:
∀x(World(x)→ Maximal(x))
all x (World(x) -> Maximal(x)).
-World(x) | Maximal(x).
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An prover9 Proof That Every World Is Maximal

1 (all p (Proposition(p) -> Proposition(NEG(p)))) [assumption].
2 (all d all p (Point(d) & Proposition(p) -> (True(NEG(p),d) <-> -True(p,d)))) [assumption].
3 (all x (Object(x) -> (Maximal(x) <-> Situation(x) & (all p (Proposition(p) -> TrueIn(p,x) | TrueIn(NEG(p),x)))))) [assumption].
4 (all x (Object(x) -> (World(x) <-> Situation(x) & (exists y (Point(y) & (all p (Proposition(p) -> (TrueIn(p,x) <-> True(p,y))))))))) [assumption].
5 (all x (World(x) -> Object(x))) [assumption].
6 (all x (World(x) -> Maximal(x))) [goal].
7 -Object(x) | -World(x) | Point(f2(x)). [clausify(4)].
9 -Point(x) | -Proposition(y) | True(NEG(y),x) | True(y,x). [clausify(2)].
13 -Object(x) | Maximal(x) | -Situation(x) | Proposition(f1(x)). [clausify(3)].
16 -Object(x) | Maximal(x) | -Situation(x) | -TrueIn(f1(x),x). [clausify(3)].
17 -Object(x) | Maximal(x) | -Situation(x) | -TrueIn(NEG(f1(x)),x). [clausify(3)].
18 -Maximal(c1). [deny(6)].
20 -Object(x) | -World(x) | Situation(x). [clausify(4)].
26 -Object(c1) | -Situation(c1) | Proposition(f1(c1)). [resolve(18,a,13,b)].
27 -Object(c1) | -Situation(c1) | -TrueIn(f1(c1),c1). [resolve(18,a,16,b)].
28 -Object(c1) | -Situation(c1) | -TrueIn(NEG(f1(c1)),c1). [resolve(18,a,17,b)].
29 World(c1). [deny(6)].
31 -Object(x) | -World(x) | -Proposition(y) | TrueIn(y,x) | -True(y,f2(x)). [clausify(4)].
32 -World(x) | Object(x). [clausify(5)].
34 -Object(x) | -World(x) | -Proposition(y) | True(NEG(y),f2(x)) | True(y,f2(x)). [resolve(7,c,9,a)].
38 -Object(c1) | Proposition(f1(c1)) | -Object(c1) | -World(c1). [resolve(26,b,20,c)].
39 -Object(c1) | -TrueIn(f1(c1),c1) | -Object(c1) | -World(c1). [resolve(27,b,20,c)].
40 -Object(c1) | -TrueIn(NEG(f1(c1)),c1) | -Object(c1) | -World(c1). [resolve(28,b,20,c)].
41 -Proposition(x) | Proposition(NEG(x)). [clausify(1)].
43 -Object(c1) | -Proposition(x) | TrueIn(x,c1) | -True(x,f2(c1)). [resolve(29,a,31,b)].
44 Object(c1). [resolve(29,a,32,a)].
47 -Object(c1) | -Proposition(x) | True(NEG(x),f2(c1)) | True(x,f2(c1)). [resolve(34,b,29,a)].
48 -Proposition(x) | True(NEG(x),f2(c1)) | True(x,f2(c1)). [copy(47),unit_del(a,44)].
55 -Object(c1) | Proposition(f1(c1)) | -Object(c1). [resolve(38,d,29,a)].
56 Proposition(f1(c1)). [copy(55),merge(c),unit_del(a,44)].
57 -Object(c1) | -TrueIn(f1(c1),c1) | -Object(c1). [resolve(39,d,29,a)].
58 -TrueIn(f1(c1),c1). [copy(57),merge(c),unit_del(a,44)].
59 -Object(c1) | -TrueIn(NEG(f1(c1)),c1) | -Object(c1). [resolve(40,d,29,a)].
60 -TrueIn(NEG(f1(c1)),c1). [copy(59),merge(c),unit_del(a,44)].
61 -Proposition(x) | TrueIn(x,c1) | -True(x,f2(c1)). [back_unit_del(43),unit_del(a,44)].
63 True(NEG(f1(c1)),f2(c1)) | True(f1(c1),f2(c1)). [resolve(56,a,48,a)].
64 Proposition(NEG(f1(c1))). [resolve(56,a,41,a)].
65 -True(f1(c1),f2(c1)). [ur(61,a,56,a,b,58,a)].
66 True(NEG(f1(c1)),f2(c1)). [back_unit_del(63),unit_del(b,65)].
68 F. [ur(61,a,64,a,b,60,a),unit_del(a,66)].
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The Lewis Principle

^p→ ∃w(w |= p)

This gets input into Prover9 as:
Point(W).
all p (PossiblyTrue(p) <-> (exists d (Point(d) & True(p,d)))).
all x (World(x) <-> WorldAt(x,W)).
all x all p (TrueIn(p,x) <-> TrueInAt(p,x,W)).
all p (Proposition(p) -> (PossiblyTrue(p) ->
(exists x (World(x) & TrueIn(p,x))))).
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A Prover9 Proof of the Lewis Principle

Prove some preliminary lemmas:
http://mally.stanford.edu/cm/worlds/new/

WorldAt(x,d) is rigid.
TrueInAt(p,x,d) is rigid.
If WorldAt(x,d) & ActualAt(x,d), then for any p,
TrueInAt(p,x,d) <-> True(p,d)

Input file Theorem25a (→): theorem25a.in

Clausification of the Argument: clauses25a.txt

(Demo) What did it use?
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Analysis of the Prover9 Proof of the Lewis Principle

Logical Axioms [Assumption, clauses from 1]
W is a (distinguished) Point
(1) Sorting on WorldAt(x,d)

Logical Theorems [clauses from 2, 3, 4]:
(2) WorldAt(x,d) is rigid.
(3) TrueInAt(p,x,d) is rigid.
(4) If WorldAt(x,d) and ActualAt(x,d), then
TrueInAt(p,x,d) <-> True(p,d).

Definitions [clauses from 6, 7, 8]:
(6) PossiblyTrue(p) = True(p,d) for some d
(7) World(x) = WorldAt(x,W)
(8) TrueIn(p,x) = TrueInAt(p,x,W)

‘Proper’ Theorem [clauses from 5]
(5) At every point d, there is an actual world at d.
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Theorems in Situation and World Theory

Computational Metaphysics page on worlds:
http://mally.stanford.edu/cm/worlds/new/

See Fitelson and Zalta 2007.
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Small Models Clarifies Epistemological Questions

The Lewis Principle (“For every way a world might be there is a
world which is that way.”) can be proved from object-theoretic
premises that are true in a domain of size 2.

The ontology grows only when you add ordinary modal beliefs:
if those are given, the existence of the possible worlds depends
only on the axioms and definitions used in the proof.

To the extent that the Lewis Principle is the core of Lewis’
theory, one can argue that his theoretical views imply only a
small ontology.
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Analysis of Deus Ex Machina

Computational techniques show Anselm needed only one
non-logical premise.

The premise’s antecedent doesn’t assume the description
denotes.

The simpler argument justifies the use of the description
indirectly.

The simpler argument is clearly a diagonal argument.

The simpler argument yields an insight about how little content
the greater_ than relation must have for the argument.

The model-building program mace4 proved useful; it showed our
premise set was consistent.
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Soundness: I

The soundness of ontological argument turns on the truth of a
single premise:

Premise 2: ¬E!ıxϕ1 → ∃y(Gyıxϕ1 & Cy)
It appears to be plausible prima facie, and work by Parsons
(1980) and others shows one may consistently and coherently
take existence to be a predicate, with an extension that is a subset
of the domain.
To show Premise 2 is false, one must argue that the antecedent,
¬E!ıxϕ1, is true and that the consequent, ∃y(Gyıxϕ1 & Cy), is
false.
There are two different ways for the antecedent of Premise 2 to
be true: on the one hand, the description ıxϕ1 could fail to
denote, in which case, the atomic formula E!ıxϕ1 is false and its
negation (the antecedent) true; on the other, the description does
denote, and the object it denotes fails to have the property of
existence.
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Soundness II

1 Suppose ıxϕ1 fails to denote and the antecedent of Premise 2 is
therefore true. If so, then the consequent is false, on the grounds
that if the description fails to denote, then a claim of the form
Gyıxϕ1 is false for every y (since it is an atomic formula with a
non-denoting term). If Gyıxϕ1 is false for every y, then
Gyıxϕ1 & Cy is false for every y. Therefore, the consequent of
Premise 2 is false.

2 Suppose ıxϕ1 denotes and the antecedent of Premise 2 is true
because the object denoted lacks existence. If the description
denotes, then there is a unique thing such that nothing greater
can be conceived. So the consequent of Premise 2, which says
there is something greater than it, is false.
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Soundness III

Final case: the description ıxϕ1 denotes and the object it denotes
exists. Then, the antecedent of Premise 2 is false, making
Premise 2 true. But the defender of the ontological argument can
take no comfort from such an observation, since it defends
Premise 2 by using the conclusion of the ontological argument.

There is still room for the work in Oppenheimer and Zalta 1991,
since the earlier paper offers an independent argument (based on
Premise 1) that the description denotes, and preserves the
ontological argument based on a revised Premise 2:
¬E!x→ ∃y(Gyx & Cy).
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