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Lewis’s Conception of Worlds

Worlds are mereological sums of spatiotemporal objects.

Worlds are maximal in the following sense: if x is a world, then
any object that bears any (positive) spatiotemporal relation to x is
part of x.

The actual world is the world of which we are a part.

There are worlds other than the actual world.

Recombining duplicates of parts of different worlds yields
another possible world, size and shape permitting.

Aliens (i.e., an individual no part of which is a duplicate of any
part of this world) exist.

The principle of recombination applies to aliens: we can
recombine parts of aliens to yield a possible world.
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The Abstract (Wittgensteinian) Conception of Worlds

A world is in some sense all that is the case

Propositions are true at worlds (where this can be defined).

Worlds are abstract objects of some sort, since their essential
components are propositions and not concrete parts.

Worlds are maximal in the following (or some similar) sense: if
w is a world, then for every proposition p, either p is true at w or
the negation of p is true at w.

Worlds are possible; for any world w, all of the propositions true
at w could have been jointly true.

There is a unique actual world.

There are worlds other than the actual world.
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Fundamental Existence Principle

The Lewis Principle: Every way that a world could possibly be is
a way that some world is. (Lewis 1986, pp. 2, 71, 86)
This can be expressed in a way that even those holding a more
abstract view of worlds can accept.
We’ll see that this principle need not be taken as axiomatic, but
can be derived from more general principles.
We use automatic reasoning tools to confirm the derivation and
to look for the smallest models
We then build a model of the more general principles and show
that the principles are true in very small models.
We draw some epistemological conclusions (about justifying
belief in possible worlds) with regard to this metaphysical
foundation for modality.
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Representing the Lewis Principle Formally

The Lewis Principle: ^p→ ∃w(w |= p)
The Lewis Principle is derivable from the Leibniz/Kripke
principle that necessary truth is truth in all possible worlds
(given maximality):

1 �p ≡ ∀w(w |= p) Assumption
2 �¬q0 ≡ ∀w(w |= ¬q0) from 1, by UE
3 ¬�¬q0 ≡ ¬∀w(w |= ¬q0) from 2, by contraposition
4 ^q0 ≡ ∃w¬(w |= ¬q0) from 3, by definition
5 ^q0 ≡ ∃w(w |= q0) from 4, by maximality
6 ^p ≡ ∃w(w |= p) from 5, by UI

A fortiori, ^p→ ∃w(w |= p).
Plantinga, Chisholm, Adams, Pollock, Zalta, etc., (sometimes
only implicitly) endorse this.
So are we done?
No. We haven’t derived it from more general principles and the
definition of a world.
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Principles Needed to Prove the Lewis Principle

Start with a ‘2nd-order’ modal predicate calculus with encoding
formulas and (relational) λ-expressions (no encoding formulas),
interpreted in fixed domains with 1st-order 2nd-order BFs:

(S5) The modal propositional logic S5, including the Rule of
Necessitation (RN).

(L2) Monadic second-order quantification theory (i.e., with both 0-
and 1-place predicate variables),

(Id1) F = G =df �∀x(xF ≡ xG)
(Id0) p = q =df [λy p] = [λy q]
(OC) ∃x(A!x & ∀F(xF ≡ ϕ)), x not free in ϕ (Object Comprehension)
(RE) ^xF → �xF (Rigidity of Encoding)
(Sit) Situation(x) =df ∀F(xF → ∃p(F = [λz p]))
(Tr) p is true in x (‘x |= p’) =df x[λz p]

(PW) PossibleWorld(x) =df Situation(x) & ^∀p(x |=p ≡ p)
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Proof Strategy for the Lewis Principle

Show: ^p→ ∃w(w |= p).
First: Show ^p→ ^∃w(w |= p)
Second: Show ^∃w(w |= p)→ ∃w(w |= p)

First: Assume ^p (to show: ^∃w(w |= p))
Assume p and show ∃w(w |= p)) [on subsequent slides]
By CP and RN, �(p→ ∃w(w |= p))
We have ^p (our global assumption)
Apply: �(ϕ→ ψ)→ (^ϕ→ ^ψ)
Conclude: ^∃w(w |= p)

Second: Assume ^∃w(w |= p) (to show: ∃w(w |= p))
^∃w(w |= p) implies ∃w^(w |= p), by BF. Pick an arbitrary such
world w1, so that we know ^w1 |= p. By df, ^w1[λy p]. By RE,
�w1[λy p]. By T schema, w1[λy p], i.e., w1 |= p. So ∃w(w |= p).
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Show p→ ∃w(w |= p): Begin

Assume p.

By (OC),
∃x(A!x & ∀F(xF ≡ ∃q(q & F = [λy q])))

Let x0 be such an object:
A!x0 & ∀F(x0F ≡ ∃q(q & F = [λy q])) (ϑ)

To show ∃w(w |= p), we have to show:
1 Situation(x0)
2 ^∀q(x0 |=q ≡ q)
3 x0 |= p

1. A fortiori, from the right conjunct of ϑ:
∀F(x0F → ∃q(F = [λy q])).

So, Situation(x0).
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Show p→ ∃w(w |= p): End

2. To establish ^∀q(x0 |=q ≡ q), we establish ∀q(x0 |=q ≡ q) and
apply the dual of the T schema (ϕ→ ^ϕ).
To establish ∀q(x0 |=q ≡ q), pick r and show x0 |=r ≡ r.
(→) Assume x0 |= r, i.e., x0[λy r].

Then by df (x0), ∃q(q & [λy r]= [λy q]). (‘s’).
So s and [λy r]= [λy s].
So by (Id0), r = s.
But since s is true, so is r

(←) Assume r (show: x0 |= r, i.e., x0[λy r]).
By =I, r & [λy r]= [λy r].
So ∃q(q & [λy r]= [λy q]).
By df (x0), x0[λy r].

3. x0 |= p follows from our global assumption p and ∀q(x0 |= q ≡ q)
(which we proved as part of (2)). Thus, since (1) and (2) yield
PossibleWorld(x0), we have thus established: ∃w(w |= p).
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Implementation in Prover9: I

(Fitelson and Zalta 2007)

One must translate modal claims into statements quantifying
over ‘propositions’ and ‘points’. This allows ‘worlds’ to be
defined. �p becomes:
all d (Point(d) -> True(p,d)).

all p all d (True(p,d) -> (Proposition(p) & Point(d))).

Predication requires sorts and is relativized to points:
all F all x all d (Ex1At(F,x,d) ->

Property(F) & Object(x) & Point(d)).

Rigidity of encoding:
all x all F ((Object(x) & Property(F)) ->
( (exists d (Point(d) & EncAt(x,F,d))) ->
(all d (Point(d) -> EncAt(x,F,d))) )).
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Implementation in Prover9: II

Prover9 then clausifies the premises and conclusions.
Example: The definition of a world:

PossibleWorld(x) =df Situation(x) & ^∀p(x |=p ≡ p)

This gets input into Prover9 as:
all x all d (Object(x) & Point(d) -> (WorldAt(x,d) <->
SituationAt(x,d) & (exists d2 (Point(d2) &
(all p (Proposition(p) -> (TrueInAt(p,x,d2) <-> True(p,d2))))))))

Prover9 clausifies this: open clauses-df-world.html
Example: The Lewis Principle:

^p→ ∃w(w |= p)

This gets input into Prover9 as:
Point(W).
all p (PossiblyTrue(p) <-> (exists d (Point(d) & True(p,d)))).
all x (World(x) <-> WorldAt(x,W)).
all x all p (TrueIn(p,x) <-> TrueInAt(p,x,W)).
all p (Proposition(p) -> (PossiblyTrue(p) ->
(exists x (World(x) & TrueIn(p,x))))).
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Proof of Lewis Principle

Input file: theorem25a.in. What it used:

all x all d (WorldAt(x,d) -> (Object(x) & Point(d))).

WorldAt(x,d) is rigid
TrueInAt(p,x,d) is rigid
WorldAt(x,d) & ActualAt(x,d) ->
all p (TrueInAt(p,x,d) iff True(p,d)).

all d (Point(d) ->
(exists x (WorldAt(x,d) & ActualAt(x,d)))).

Point(W).
all p (PossiblyTrue(p) <-> exists d (Point(d) & True(p,d))).

all x (World(x) <-> WorldAt(x,W)).

all p all x (TrueIn(p,x) <-> TrueInAt(p,x,W)).
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Smallest Computational Models of the Lewis Principle

Input file without the conclusion and use Mace
(demo theorem25a.in without goal in mace4)
Analyze the model: two elements in the domain: element 0 is an
object, a point, and a world, element 1 is arbitrary (mace4
assumes smallest models have 2 elements); no propositions.
(Prover9 is a modal realist and a nominalist.)
Of course, this is not the smallest non-trivial model. Let’s
examine model with additional assumptions: add additional.in to
demo)
Analysis: 4 elements in the domain: 0 and 2 are propositions, 1
and 3 are both distinct objects, distinct worlds, and distinct
points.
This give us hints about how to find smallest models of object
theory.
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Object Theory with Property/Proposition Comprehension

(S5) S5 modal logic, including RN
(L2) Monadic second-order quantification theory
(Id1) F = G =df �∀x(xF ≡ xG)
(Id0) p = q =df [λy p] = [λy q]
(OC) ∃x(A!x & ∀F(xF ≡ ϕ)), x not free in ϕ (Object Comprehension)
(RE) ^xF → �xF (Rigidity of Encoding)
(Sit) Situation(x) =df ∀F(xF → ∃p(F = [λz p]))
(Tr) p is true in x (‘x |= p’) =df x[λz p]

(PW) PossibleWorld(x) =df Situation(x) & ^∀p(x |=p ≡ p)
(Λ1) [λν ϕ]τ ≡ ϕντ, where τ is free for ν in ϕ
(Λ0) [λ ϕ] ≡ ϕ
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Interpretations

An intensional interpretation I is an 8-tuple:
〈W,w∗,P,D,Op, ex, en,V〉

W, D, and P are nonempty sets;
w∗ is a distinguished element of W;
P is the union of two mutually disjoint, nonempty sets P0 and P1;
D is the union of two mutually disjoint sets A and O such that A
is nonempty;
Op is a set of logical operations neg, cond,univ,nec, vac,plug
described more fully below;
ex is a total function on W × P that maps W × P0 into {0, 1} and
W × P1 into ℘(D);
en maps P1 into ℘(A) in such a way that, for distinct a1, a2 ∈ A,
there is a p1 ∈ P1 such that {a1, a2} * en(p1);
V maps each term of our language to a member of D, each
0-place predicate to a member of P0, and each 1-place predicate
to a member of P1.
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Constraints on Exemplification Extensions

Where ri, si ∈ Pi, for 0 ≤ i ≤ 1:

ex(w,plug(r1, a)) = 1 iff a ∈ ex(w, r1)

ex(w,neg(r0)) = 1 − ex(w, r0)
ex(w,neg(r1)) = D \ ex(w, r1)

ex(w, cond(r0, s0)) = max{1 − ex(w, r0), ex(w, s0)}
ex(w, cond(r1, s1)) = (D \ ex(w, r1)) ∪ ex(w, s1)

ex(w,univ(r1)) = 1 iff ex(w, r1) = D
ex(w,nec(r0)) = min{ex(w′, r0) | w′ ∈W}
ex(w,nec(r1)) =

⋂
{ex(w′, r1) | w′ ∈W}

ex(w, vac(r0)) =

{
D if ex(w, r0) = 1
∅ otherwise

Edward N. Zalta and Christopher Menzel zalta@stanford.edu and cmenzel@tamu.edu



Context Object Theory Computational Models Full Models Smallest Model Observations Bibliography

Denotations of λ-expressions

Given an interpretation I and variable assignment f , we define dI,f
as usual, with the following special conditions for λ-expressions:

dI,f ([λ ρ]) = dI,f (ρ), for 0-place predicates ρ
dI,f ([λν πν]) = dI,f (π), for 1-place predicates π
dI,f ([λ πτ]) = plug(dI,f (π),dI,f (τ))
dI,f ([λ ¬ϕ]) = neg(dI,f ([λ ϕ]))
dI,f ([λν ¬ϕ]) = neg(dI,f ([λν ϕ])), if ν occurs free in ϕ
dI,f ([λ ϕ→ ψ]) = cond(dI,f ([λ ϕ]),dI,f ([λ ψ]))
dI,f ([λν ϕ→ ψ]) = cond(dI,f ([λν ϕ]),dI,f ([λν ψ])),

if ν is free in ϕ→ ψ

dI,f ([λ ∀νϕ]) = univ(dI,f ([λν ϕ]))
dI,f ([λ �ϕ]) = nec(dI,f ([λ ϕ]))
dI,f ([λν �ϕ]) = nec(dI,f ([λν ϕ])), if ν is free in ϕ
dI,f ([λν ϕ]) = vac(dI,f ([λ ϕ])), if ν is not free in ϕ.
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Truth in an Interpretation

An assignment f satisfies a formula ϕ w.r.t. world w under an
interpretation I, written |=I,w,f ϕ, is defined:

|=I,w,f ρ iff ex(w,dI,f (ρ)) = 1
|=I,w,f πτ iff dI,f (τ) ∈ ex(w,dI,f (π)).
|=I,w,f τπ iff dI,f (τ) ∈ en(dI,f (π)).
. . . (and so on, in the usual way)

A formula ϕ is true w.r.t w under I, written |=I,w ϕ, iff every
assignment f is such that |=I,w,f ϕ.

A formula ϕ is true under I, written |=I ϕ, iff |=I,w∗ ϕ

Edward N. Zalta and Christopher Menzel zalta@stanford.edu and cmenzel@tamu.edu
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The Simplest Non-Trivial Model: Two Worlds

W = {w0,w1}

w∗ = w0

P = P0 ∪ P1, where P0 = {p0,p0,q0,q0} and
P1 = {p1,p1,q1,q1}; and

D = A ∪O, where O = ∅ and A = ℘(P1)

Op is as specified below

ex(w,p0) = 1 and ex(w,p0) = 0, for w ∈W
ex(w0,q0) = ex(w1,q0) = 1; ex(w1,q0) = ex(w0,q0) = 0
ex(w,p1) = D and ex(w,p1) = ∅, for w ∈W
ex(w0,q1) = ex(w1,q1) = D; ex(w1,q1) = ex(w0,q1) = ∅

en(r) = {a ∈ A | r ∈ a}
V(A!) = p1
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Collapsing Properties and Propositions

Key: At each w, all abstract objects exemplify the same properties

plug(r1, a) = r0, for all a ∈ D
neg(ri) = ri, for ri ∈ {pi,qi}

neg(ri) = ri, for ri ∈ {pi,qi}

cond(pi, ri) = ri, for ri ∈ Pi

cond(pi, ri) = pi, for ri ∈ Pi

cond(qi,pi) = cond(qi,qi) = pi

cond(qi,pi) = cond(qi,qi) = qi

cond(qi,pi) = cond(qi,qi) = pi

cond(qi,pi) = cond(qi,qi) = qi

univ(r1) = r0, for r ∈ P
nec(pi) = pi

nec(qi) = nec(qi) = nec(pi) = pi

vac(r0) = r1
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Summary

The smallest non-trivial model of the object-theoretic principles
used in (and needed for the terms used in) the proof of the Lewis
Principle:

2 possible worlds
4 properties
4 propositions
16 abstract objects

But if our metaphysics is correct, the two worlds can be
identified as two of the abstract objects, namely, the ones
corresponding to the smallest model elements:

{vac(p0), vac(q0)} = {p1,q1}

{vac(p0), vac(q0)} = {p1,q1}
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General Epistemological Consequences

One can endorse (the principles needed to prove) the Lewis
Principle without being committed to a large ontology.

Object theory with propositions adds 16 abstract objects to the
smallest non-trivial models of second-order quantified modal
logic with propositions, but eliminates the two worlds.

We obtain a large ontology only when we add the data.

So to justify the existence of a large number of possible worlds,
we don’t have to justify them individually.

Instead, we justify the principles needed to prove the Lewis
Principle, and then add our modal beliefs, since the latter, plus
^p & ¬p, guarantees the existence of a distinct non-actual
possible world for each such distinct p.
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Specific Justification of Principles

Note 1: Since logics are easier to justify epistemologically,
consider whether the small models suggest our system looks
more like a logic than a metaphysics.
Progression: non-empty (trivial) or 2-element (non-trivial)
domain of worlds→ 2 (4) properties and 2 (4) propositions (or
→ a small domain of abstract objects.
The existence principle for the latter, OC, can be reformulated as
an abstraction principle:

(Ab) ιx(A!x & ∀F(xF ≡ ϕ))G ≡ ϕG
F , x not free in ϕ

The Lewis Principle is derivable from the system with Ab
replacing OC. (See the paper.)
Ab has some claim to being logical, if it is analogous to
λ-conversion (one level up) and λ-conversion is logical.
We suggest: treat our system as the minimum commitments of a
logic required to systematize both our modal beliefs and the
meaning of those beliefs (as quantifications over worlds).
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Final Observations

We’ve systematized our modal inferential practices and our
philosophical understanding of those practices.
We’ve grounded the meaningfulness of unanalyzed modal beliefs
and possible world talk in the inferential roles this kind of talk
plays in our discourse: the meaning of ‘world’ is a (objectified)
pattern within that discourse.
This treats meanings (i.e., the abstracta) as the patterns arising
from systematic use of language.
So the Lewis Principle is justified by principles we can accept on
the grounds that they systematize our practices. No special
faculty to access them is needed other than the faculty to
understand language and inferences.
Lewis Principle becomes a logical theorem in a logic of worlds,
and as a theorem, implies only a small ontology.
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