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The modal object calculus is the system of logic which houses the

(proper) axiomatic theory of abstract objects.1 This calculus has some

rather interesting features in and of itself, independent of the proper the-

ory. The most sophisticated, type-theoretic incarnation of the calculus

can be used to analyze the intensional contexts of natural language and

so constitutes an intensional logic. However, the simpler second-order

version of the calculus couches a theory of fine-grained properties, rela-

tions and propositions and serves as a framework for defining situations,

possible worlds, stories, and fictional characters, among other things. In

the present paper, we focus on the second-order calculus.

The second-order modal object calculus is so-called to distinguish it

from the second-order modal predicate calculus. Though the differences

are slight, the extra expressive power of the object calculus significantly

enhances its ability to resolve logical and philosophical concepts and prob-

lems. Our primary goal in this paper is to describe a new interpretation of

the modal object calculus. As a secondary and preliminary goal, we shall

∗Published in Advances in Intensional Logic, M. de Rijke (ed.), Dordrecht: Kluwer,

1996, pp. 245-276.
†I am indebted to the Center for the Study of Language and Information for pro-

viding me with office space for the 1993-94 academic year. I would also like to thank

Chris Menzel, Bernard Linsky, and Kees van Deemter for examining some of the logical

details described herein.
1The proper theory of abstract objects is developed in Zalta [1983] and [1988] and

extended in [1987] and [1993a]. This system was developed within the tradition of

‘object theory’, which has recently been revived by Parsons [1980], Routley [1979],

Castañeda [1974], and Rapaport [1978], and which originated in the naive theories of

Meinong [1904] and Mally [1912].
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recast its intended interpretation in a new and interesting way, based on a

reconception of logic and model theory that we take to be philosophically

more perspicuous than the standard conception. But in order to accom-

plish these goals, we shall first need to motivate and define the calculus

and then sketch some of its applications. Then we will be in a position

to redescribe its intended interpretation and develop the new interpreta-

tion. In §1, then, we explain the ideas underlying the basic definitions

that construct the calculus. In §2, we examine some of the applications of

the calculus which do not require the proper theory of abstract objects.

In §3, we describe the intended interpretation of the calculus in terms of

the reconception of logic and model theory. In §4, we construct the new

interpretation of the calculus by developing, in a modal setting, a sugges-

tion due to Peter Aczel. Finally, §5 contains some observations about the

ideas that have been presented and offers a brief outline of how to extend

those ideas to produce a model of the theory of abstract objects. Readers

who are familiar with the definition and applications of the object calcu-

lus may wish to skip ahead to §3, where the intended interpretation of

the calculus is recast in a new theoretical setting.

§1: The Second Order Modal Object Calculus

The (modal) object calculus is the logical system for asserting and prov-

ing facts about abstract objects. Abstract objects are to be distinguished

from ordinary spatiotemporal objects such as you, me, this computer,

electrons, planets, etc., and from ordinary objects that are spatiotem-

porally located at other possible worlds. The predicate calculus is the

background logic in which we assert facts and draw inferences about or-

dinary objects because such objects exemplify the properties we discover

them to have. Exemplification is the mode of predication upon which

the predicate calculus is based, for the philosophical claim that objects

x1, . . . , xn exemplify relation Fn is represented by ordinary atomic formu-

las of the form Fnx1 . . . xn. But abstract objects are completely different

in kind from ordinary objects. They are not the kind of thing that could

have a location in spacetime; they are not contingent and they are not

sparsely distributed in their domain. They are not discovered by sensory

perception or postulated in scientific theories. Rather, abstract objects

are constituted by the properties that we use to conceptualize, define, and

individuate them. We conceptualize and define the number 2, for exam-
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ple, in terms of its number-theoretic properties; we identify the null set

in terms of its set-theoretic properties; we individuate the actual world in

terms of its propositional properties; we conceptualize Sherlock Holmes

in terms of the properties attributed to him in the Conan Doyle novels.

The groups of properties just mentioned are even more important to the

identity of their respective objects than some of the properties these ob-

jects necessarily exemplify. For example, all of these objects necessarily

fail to be buildings, necessarily fail to be spoons, etc., and from this it

follows that they necessarily exemplify the negations of these properties.

But these necessarily exemplified negations are not properties by which

we conceive the objects in question.

Every abstract object is characterized by some group of constitutive

properties. We need a way of predicating properties of abstract objects

that is even stronger than necessary exemplification; i.e., we need to be

able to predicate the property F that is constitutive of the abstract object

x in a way that is stronger than the assertion that 2Fx. To do this, we

have introduced a second mode of predication and incorporated it into

our logic. If property F is constitutive of, or intrinsic to, abstract object

x, we say that x encodes F . We shall say that the number two encodes

rather than exemplifies the property of being the successor of 1, for this

is one of its constitutive number-theoretic properties. Similarly, since the

property of being such that Clinton is married is one of the properties

we use to differentiate our world from other possible worlds, this property

will be one that is encoded by the actual world. And we shall suppose that

Sherlock Holmes encodes rather than exemplifies the property of being a

detective, for this is one of the properties attributed to him in the novels.

Notice that our distinction allows us to explain the following asymmetry

between Socrates and the unit set of Socrates: the property of having

Socrates as an element is constitutive of the unit set of Socrates, but it

is not constitutive of Socrates that he is an element of that unit set. To

explain this fact, we say that the unit set of Socrates encodes the property

of having Socrates as an element, but that Socrates is an ordinary object

and so does not encode properties—he is not therefore ‘constituted’ by

the property of being an element of his unit set.

We incorporate the notion of encoding into our logic by introducing an

atomic formula ‘xF ’ to express: x encodes F . We shall assume that F is a

1-place relation term and that encoding is a monadic form of predication.

The second-order modal object calculus can now be described simply as
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a second-order modal predicate calculus that is based on both atomic

exemplification and atomic encoding formulas. In what follows, we shall

include complex n-place relation terms in our presentation of the calculus.

With the aid of metavariables o (ranging over all object terms), ν (ranging

over object variables), ρ (ranging over relation terms), α (ranging over all

variables), τ (ranging over all terms), and ϕ,ψ (ranging over all formulas),

the calculus is defined as follows:

(a) Two kinds of primitive terms: (1) object terms (constants a1, a2, . . . ,

and variables x1, x2, . . .), and (2) n-place relation terms (predicates

Pn1 , P
n
2 , . . . , and variables Fn1 , F

n
2 , . . .), for n ≥ 0.

(b) Two kinds of atomic formulas: (1) exemplification formulas of the

form ρno1 . . . on (n ≥ 0), and (2) encoding formulas of the form

oρ1. An exemplification formula such as Fnx1 . . . xn should be read:

objects x1, . . . , xn exemplify relation Fn. An encoding formula such

as xF 1 should be read: object x encodes property F 1.

(c) Molecular, quantified, and modal formulas of the form ¬ϕ (‘it is

not the case that ϕ’), ϕ→ ψ (‘if ϕ then ψ’), ∀αϕ (‘every α is such

that ϕ’), and 2ϕ (‘necessarily ϕ’), where α is any object or relation

variable.

(d) Complex n-place relation terms (n ≥ 0) of the form: [λν1 . . . νn ϕ],

where ϕ has neither encoding subformulas nor quantifiers binding

relation variables, and none of the object variables ν1, . . . , νn in

[λν1 . . . νn ϕ] appear free in any other λ-expression occurring in ϕ.

A λ-predicate such as [λy1 . . . yn ϕ] should be read: being objects

y1, . . . , yn such that ϕ.

Intuitively, the object constants denote, and object variables range over,

elements of a primitive domain of objects; similarly, the predicates denote,

and the predicate variables range over, elements of a primitive domain of

relations. In addition to calling the 1-place relations properties, we call

the 0-place relations propositions. The n-place λ-expressions (n ≥ 1)

allow us to name complex relations, and 0-place λ-expressions of the form

[λ ϕ] allow us to name complex propositions. Of the three restrictions on

the formation of λ-expressions, only the first is really necessary—encoding

formulas are banished from λ-expressions in order to avoid paradox when

the comprehension schema for abstract objects is added to the system.2

2See Zalta [1983], pp. 158–60.
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The other two restrictions are for convenience—λ-expressions may not

have relation quantifiers (such as [λx ∃FFx]) or free variables in nested

λ-expressions (such as [λx [λy Ryx]a]). This allows us to simplify the

presentation of the interpretations of the calculus.3 The restrictions on

the formation of λ-expressions simply guarantee that only the familiar

first-order definable relations and propositions will be found in the system.

The main difference, then, between the languages of the object calculus

and predicate calculus is the presence of a second kind of atomic formula

in the former. In what follows, we employ the usual conventions for

introducing formulas containing & (and), ∨ (or), ≡ (iff), ∃ (some), and

3 (possibly).

If we add to this language the primitive predicate ‘E!’ to denote the

property of being spatiotemporally located, we can formally define the

notions of ordinary and abstract object and assert things about them:

x is an ordinary object (‘O!x’) =df [λy 3E!y]x

x is an abstract object (‘A!x’) =df [λy ¬3E!y]x

Intuitively, these definitions tell us that ordinary objects have a location

in spacetime in some possible world, whereas abstract objects are not

the kind of thing that could have a location in spacetime. The usual

conception of ordinary objects is captured by the following two principles:

(A) ordinary objects x and y are identical iff they necessarily exemplify

the same properties, and (B) ordinary objects are not the kind of thing

that could encode properties:

(A) O!x&O!y → (x=y ≡ 2∀F (Fx ≡ Fy))

(B) O!x→ 2¬∃FxF

By contrast, the two basic principles governing abstract objects are:

(C) ∃x(A!x& ∀F (xF ≡ ϕ)), where x is not free in ϕ

(D) A!x&A!y → (x=y ≡ 2∀F (xF ≡ yF ))

3One can develop interpretations in which these restrictions are removed. To re-

move the ‘no relations quantifiers’ restriction, one would have to extend the algebraic

semantics developed in §3 to higher order operations such as those developed in Došen

[1988] or those utilized in the type-theoretic version of the calculus. To remove the ‘no

free nested λ-variables’ restriction, one would have to incorporate into the algebraic

semantics a relativized predication operation of the kind used in Bealer [1982] and

Menzel [1986].
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Principle C is a comprehension principle for abstract objects; it guarantees

that for every condition ϕ on properties F , there is an abstract individual

that encodes exactly the properties satisfying the condition. If we think

model-theoretically for the moment, and allow ourselves talk about sets,

then this principle correlates an abstract object with every (expressible)

set of properties. Principle D is the identity principle for abstract objects;

it says that abstract objects x and y are identical iff they necessarily

encode the same properties. It is a simple consequence of Principles C

and D that for every condition on properties ϕ, there is a unique abstract

object that encodes just the properties satisfying the condition; there

couldn’t be two distinct abstract objects encoding exactly the properties

satisfying a given condition if distinct abstract objects have to differ by

at least one encoded property.

Principle C asserts the existence of a wide variety of abstract objects,

some of which are complete with respect to the properties they encode,

while others are incomplete in this respect. For example, one instance

of Principle C asserts there exists an abstract object that encodes just

the properties Gorbachev exemplifies. This object is complete because

Gorbachev either exemplifies F or exemplifies the negation of F , for every

property F . Another instance of comprehension asserts that there is an

abstract object that encodes just the three properties: being golden, being

a mountain, and having a spatiotemporal location (E!). This object is

incomplete because for every other property F , it encodes neither F nor

the negation of F .4 But though abstract objects may be partial with

respect to their encoded properties, they are all complete with respect to

the properties they exemplify . In other words, the following principle of

classical logic is preserved: for every object x and property F , either x

exemplifies F or x exemplifies the negation of F . We can express this

formally if we use our λ-notation to define the negation of F (‘F̄ ’) as:

[λy ¬Fy]. So we preserve the following formal principle of classical logic:

Fx ∨ F̄ x.5

Since xF does not entail Fx, abstract objects may encode incom-

patible properties without contradiction, for incompatible properties are

defined as properties that couldn’t be exemplified by the same objects.

4Notice that this object is consistent with the contingent fact that nothing exem-

plifies all three properties.
5Note that encoding satisfies classical bivalence: ∀F∀x(xF ∨ ¬xF ). But the in-

completeness of abstract objects is captured by the fact that the following is not in

general true: xF ∨ xF̄ .
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The following, for example, are jointly consistent: x encodes roundness

(xR), x encodes squareness (xS), and necessarily everything that exempli-

fies being round fails to exemplify being square (2∀y(Ry → ¬Sy)). Thus,

the notorious ‘round square’ may simply be the abstract object that en-

codes just being round and being square. Since there are no restrictions

on the comprehension principle, it guarantees that no matter what prop-

erties one brings to mind to conceive of a thing, there is something that

encodes just the properties involved in that conception.

Given that they they necessarily fail to have a location in spacetime,

abstract objects necessarily fail to exemplify the properties of ordinary

objects that entail spatiotemporality. For example, they necessarily fail

to have a shape, they necessarily fail to be subject to the laws of gen-

eration and decay, they necessarily fail to be buildings, people, planets,

etc. Consequently, by the classical laws of complex properties, abstract

objects necessarily exemplify the negations of these properties. But no-

tice that the properties abstract objects encode are more important than

the properties they necessarily exemplify, since the former are the ones

by which we individuate them.6 And it is important to mention that

abstract objects may contingently exemplify certain relations to ordinary

objects, such as being sought by y, being worshipped by z, inspiring u to

action, etc.

Principles A – D are part of the proper theory of (abstract) objects.

In this paper, however, we shall be more concerned with the underlying

modal object calculus. In addition to being a vehicle for expressing the

basic principles about ordinary and abstract objects, the calculus offers

a framework for asserting the basic existence and identity principles gov-

erning n-place relations (n ≥ 0). We shall treat these basic existence and

identity principles of relations as a part of the calculus, for we conceive of

these entities as logical objects. So the calculus consists of the language

described above together with the principles of classical quantified modal

logic, the logic of encoding, and the logic of relations. In the next section,

we shall sketch some of the applications of this logical framework, for even

without a commitment to Principle C, the system can be used to define

a wide range of important philosophical notions and prove basic logical

6In the logic that we shall describe shortly, it will be a logical axiom that 3xF →
2xF . So properties that are encoded by an abstract object at some world are encoded

by that object at every world. This also helps to capture the idea that encoded

properties are intrinsic to abstract objects.
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facts concerning them. We conclude this section, however, with a more

precise specification of the logical portion of the calculus.

The logic consists of: (a) the axioms and rules of classical propositional

logic, (b) the axioms and rules for classical quantification theory, (c) the

axioms and rules for the classical modal logic S5, (d) an axiom for the

logic of encoding, and (e) axioms and definitions for the logic of relations.

This logical basis can be explicitly identified as follows:

(a) Classical Propositional Logic:

Axioms: Tautologies of Propositional Logic

Rule of Modus Ponens (MP): if `ϕ and `ϕ→ ψ, then `ψ

(b) Classical Quantification Theory:7

Axioms: ∀αϕ→ ϕτα, provided τ substitutable for α

Axioms: ∀α(ϕ→ ψ)→ (ϕ→ ∀αψ), provided α not free in ϕ

Rule of Generalization (Gen): if `ϕ, then `∀αϕ

(c) Classical Modal Logic S5:

Axioms: 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

Axioms: 2ϕ→ ϕ

Axioms: 3ϕ→ 23ϕ

Rule of Necessitation (RN): if `ϕ, then `2ϕ

(d) Logic of Encoding: 3xF → 2xF

(e) Logic of Relations:8

λ-Conversion: [λy1 . . . yn ϕ]x1 . . . xn ≡ ϕx1,...,xn
y1,...,yn ,

where xi is substitutable for yi in ϕ (1 ≤ i ≤ n).

Property Identity: F 1 =G1 =df 2∀x(xF ≡ xG)

7In these axioms, τ may be any object term or relation term, and α any object

variable or relation variable, with the proviso that for τ to be substitutable for α, they

must both be object terms or both relation terms.
8To make the notation easier to read, we state the axioms and definitions using

x, x1, . . . and y, y1, . . . as typical variables in place of the metavariables ν1, ν2, . . . . The

notation ϕx1,...,xn
y1,...,yn stands for the result of replacing, respectively, xi for yi in ϕ, and the

requirement that xi be substitutable for yi guarantees that xi will not be ‘captured’

by a quantifier when the substitution is carried out.
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Relation Identity: Fn=Gn =df (for n > 1) (∀x1) . . . (∀xn−1) :

[λy Fnyx1 . . . xn−1]=[λy Gnyx1 . . . xn−1] &

[λy Fnx1yx2 . . . xn−1]=[λy Gnx1yx2 . . . xn−1] & . . .&

[λy Fnx1 . . . xn−1y]=[λy Gnx1 . . . xn−1y]

Proposition Identity: F 0 =G0 =df [λy F 0] = [λy G0]

λ-Identity1: [λy1 . . . yn F
ny1 . . . yn] = Fn

λ-Identity2: [λy1 . . . ynϕ] = [λy′1 . . . y
′
nϕ
′] (alphabetic variants)

This completes the definition of the calculus. With the exception of the

logic of encoding and the logic of relations, the deductive apparatus should

be familiar. These additional groups of axioms will be discussed in the

next section.

§2: Applications of the Calculus

In previous work, we have not distinguished the results that require an

appeal to Principle C from those that are derivable solely as logical the-

orems of the modal object calculus. In this section, we distinguish the

latter for those who may be hesitant about committing themselves to a

proper metaphysical theory. We discuss the following topics: relations,

situations and possible worlds, modality and the Barcan formula, and the

distinction between fact and fiction.

Relations

From the logic of relations we may derive a precise theory of relations.

The cornerstone of the theory is the comprehension principle for relations

that follows from the λ-Conversion principle by applications of (Univer-

sal) Generalization, the Rule of Necessitation, and the derived rule of

Existential Generalization:

∃Fn2∀x1 . . . ∀xn(Fnx1 . . . xn ≡ ϕ), provided ϕ has no free Fns, no

encoding formulas, no relation quantifiers, and no free occurrences

of the xi within λ-expressions in ϕ.

When n = 1 and n = 0, this becomes a comprehension principle for

properties and propositions, respectively. Using variables p, q, . . . to go

proxy for F 0, G0, . . . , we may formulate the comprehension schema for

propositions as follows:
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∃p2(p ≡ ϕ), provided ϕ has no free ps, no encoding formulas, and

no relation quantifiers.

These comprehension principles yield a wide range of complex properties,

relations, and propositions, and we presume familiarity with the typical

examples of such.

The definitions that stipulate when relations F and G are identical

complete the theory. These definitions were stated as part of the logic of

relations, and there are three cases to consider: when n= 1, n > 1, and

n=0. Look again at the definition of property identity (n=1): properties

F and G are identical iff necessarily, they are encoded by the same objects.

It is useful to know at this point that in the semantics for our language,

every property receives two extensions—an exemplification extension and

an encoding extension. Thus, properties can be logically equivalent in

one of two ways: by having the same exemplification extension at every

possible world or by having the same encoding extension at every pos-

sible world. We can express this in our language as two ways in which

properties F and G can be necessarily equivalent: 2∀x(Fx ≡ Gx) and

2∀x(xF ≡ xG). Property identity is equated with the latter. So proper-

ties F and G can be ‘distinct’ even though they are necessarily equivalent

in the traditional sense. By stipulating that properties having the same

encoding extension throughout a fixed domain of worlds are ‘identical’,

we offer an extensional theory of intensional entities. In the next section,

it becomes clear that whereas the exemplification extension of a property

may vary from world to world, its encoding extension does not. The fact

that the encoding extension of a property is fixed across possible worlds

explains the Axiom of Encoding—if an object is in the encoding extension

of a property at some world, it is in the encoding extension of that prop-

erty at every world. Thus, if F and G have the same encoding extension

at one world, they have the same encoding extension at all worlds, and

so to prove F =G, it suffices to prove ∀x(xF ≡ xG).9

9We employ the modality in the definition of F =G because, from a philosophical

point of view, identity is a modal notion. If we think model-theoretically in terms of a

primitive notion of identity on properties and assume Principles C and D, then we can

see why properties encoded by the same objects would be the same. For suppose not,

i.e., suppose F and G are properties that are encoded by the same objects, but that

F and G are distinct. If F and G are distinct, there are sets of properties containing

F and not G (and vice versa). But Principles C and D ensure that there is a distinct

abstract object for each set of properties. So there will be lots of distinct abstract

objects encoding F and not G (and vice versa), contradicting the assumption that F
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The definition of property identity holds the key to the definition

of relation and proposition identity. Relations Fn and Gn, for n > 1,

are defined to be identical just in case, intuitively, no matter how you

plug n − 1 objects into Fn and Gn (provided you plug them up in the

same order), the resulting properties are always identical. Again, this

definition of relation identity allows us to assert that Fn 6= Gn even

though 2∀x1 . . . ∀xn(Fnx1 . . . xn ≡ Gnx1 . . . xn). Necessarily equivalent

relations, therefore, may be distinct.

If we continue to use the variables p and q as substitutes for F 0 and

G0, then the definition of proposition identity tells us that propositions p

and q are identical iff the properties [λy p] and [λy q] are identical. This

reduces the identity of propositions to the identity of the ‘propositional

properties’ one can construct in terms of them. And this, in turn, is a

matter of encoding. Since there is no logical connection between encoding

and exemplifying a property, one can assert p 6= q even though 2(p ≡ q).
So necessarily equivalent propositions may be distinct.

Situations and Worlds

This analysis of relations provides the foundation for the theories of sit-

uations and worlds. To define the basic notions of situation theory, we

first define truth for propositions by elimination: a proposition p is true

iff p. We say that a propositional property is any property F such that

for some proposition p, F is the property of being such that p; i.e.,

Propositional(F ) =df ∃p(F = [λy p])

Then, we say that a situation is any (abstract) object x that encodes only

propositional properties; i.e., x is a situation iff x is abstract and for every

F , if xF , then F is propositional. So each situation encodes a group of

propositional properties. The propositions p encoded in a situation via

[λy p] are the ones true in that situation. More specifically, where s is

a variable ranging over situations, we can define the idea that p is true

in s as: s encodes [λy p] (i.e., s[λy p]). In what follows, we represent the

notion that p is true in s more picturesquely as: s |= p. We also say that

a situation s is part-of situation s′ iff every proposition true in s is true

in s′. An actual situation s is one such that every proposition true in s

is true (simpliciter), and a situation is possible iff it is possible that it is

and G are encoded by the same objects.
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actual. A situation s is consistent iff there are no propositions p and q

such that (a) the conjunction of p and q is impossible, and (b) p and q

are both true in s.

In Zalta [1993a], we have shown that from these definitions, one can

derive a rather large group of basic theorems in situation theory. Though

some of these theorems appeal to Principle C, most are simply logical

theorems of the modal object calculus. Among the theorems that are

simple consequences of the above definitions we find: that situations s

and s′ are identical iff the same propositions are true in both; that every

part of a situation is a situation; that a situation s is a part of situation

s′ iff every proposition true in s is true in s′; that situations s and s′

are identical iff each is part of the the other; that part-of is reflexive,

antisymmetric, and transitive on the situations (should there be any);

that no proposition and its negation are both true in any actual situation;

that some propositions are not true in any actual situation; that if p is

true in actual situation s, then s exemplifies [λy p], and that all possible

situations are consistent.

The basic notions of world theory can also be defined. A world is a

situation s such that it is possible that all and only true propositions p

are true in s; i.e.,

World(s) =df 3∀p(s |= p ≡ p)

Truth at a world (w |= p) may therefore be defined as the same notion as

truth in a situation. It is provable that worlds w are maximal in the sense

that for every proposition p, either w |= p or w |= ¬p. It also follows

that all worlds are possible and consistent, and that all the necessary

consequences of propositions true at a world are also true at that world.

By combining the definitions of ‘world’ and ‘actual’, we obtain a notion of

an actual world, and though Principle C is needed to prove the existence

of such an object, it is not needed to to prove that if there is one, there is a

unique one. Under the assumption that there is an actual world, say wα,

it also follows that wα is nonwellfounded in the following sense: all the

facts about wα are true in wα; i.e., Fwα iff wα |= Fwα, for any property

F . So, in particular, if wα exists, it exemplifies exactly the propositional

properties that it encodes.
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Modality and the Barcan Formula

Notice that the modal object calculus employs the simplest quantified

modal logic. This is the modal logic that results from combining classical

quantification theory with the axioms and rules of S5. The Barcan formula

and the converse Barcan formula are both derivable in such a logic:10

(BF) ∀x2ϕ→ 2∀xϕ

(CBF) 2∀xϕ→ ∀x2ϕ

We know from the study of modal logic that in such a simple system, the

quantifier ∀x ranges over a single, fixed domain of objects. The reader

will be able to verify this in the next section. But for now, it is useful

to point out that by having a single fixed domain instead of the variable

domains used in Kripke [1963], we don’t have to address the question of

whether an object in one domain is the same as an object in another

domain. That is, the problem of trans-world identification does not arise.

We conclude this subsection with a brief account of the nature of

possible objects. Recall the equivalent formulation of the Barcan formula:

(BF) 3∃xFx→ ∃x3Fx

To take a simple example, consider the claim that person x (who doesn’t

have a brother) might have had a brother. We might represent this claim

as: 3∃yByx. From the Barcan formula it then follows that ∃y3Byx.

So our logic, in conjunction with possibility claims, entails that there is

something which possibly is x’s brother. Any such object will be treated

as an ordinary object which isn’t spatiotemporally located but which

might have been. That is because the relation of brotherhood is such

that necessarily, any two things exemplifying this relation both exemplify

E!. That is, our logic is consistent with the following non-logical principle:

2∀x∀y(Bxy → E!x& E!y)

Since any object that possibly is x’s brother will exemplify E! in any world

where it is x’s brother, we know that it possibly exemplifies E!, and so

by definition, it is an ordinary object. It is important to stress that such

an object is not x’s brother (recall that x doesn’t have a brother). We

may consistently suppose that any ordinary object that might have been

10The second order Barcan Formulas are also derivable, but we shall not discuss

these formulas in what follows.
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x’s brother exemplifies many of the same properties that abstract objects

exemplify, namely, the negations of such properties as being spatiotem-

porally located, having a shape, having a texture, being a building, being

a person, etc. However, such ordinary objects exemplify certain modal

properties that bona fide abstract objects lack (should there be any). An

abstract object, by definition, couldn’t possibly exemplify E! and so given

the non-logical principle displayed above, couldn’t possibly be someone’s

brother. These consequences indicate the range of judgements we can

consistently add to our calculus in connection with common sense claims

such as ‘x might have had a brother’.

Fact and Fiction

Finally, the distinction between fact and fiction can be analyzed in the

calculus. Using a primitive 2-place relation of authorship, we may say that

a story is any situation s authored by some ordinary object. Since stories

are identified as situations, one can define ‘According to the story s, p’

as s |= p. Intuitively, the true English sentences of the form ‘According

to s, p’ constitute the data of fiction. We presuppose that for each story

s, there is a group of propositions that satisfy the sentence ‘According

to s, p’. Just as one cannot drop the story operator ‘According to s’

and preserve truth, one cannot validly move from s |= p to p. Notice

that stories, unlike worlds, need not be maximal nor even consistent.

Of course, two people may disagree about which propositions p are true

in a given story, but that doesn’t matter because both persons could

nevertheless accept the identification of the story s with the abstract

object that encodes all the properties of the form [λy p] such that p is

a proposition true according to the story. That is, despite disagreement

about exactly which propositions are true in a story, our analysis of stories

is a precise philosophical characterization of what stories are in principle.

Finally, a character x of story s can be analyzed as any object x such that

for some F , s |= Fx. Not all characters of a story are fictional. We allow

that real objects such as London, the Prince of Wales, the planet Jupiter,

etc., can appear as characters in a story. But the fictional characters are

the ones that ‘originate’ in the story. If the logic of fiction can be simplified

by identifying such ‘native characters’ as abstract objects, then we have

a reason for accepting Principle C. But without this principle, a definite

description like ‘the abstract object that encodes just the properties F
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that, according to story s, x exemplifies F ’ (‘ıx(A!x&∀F (xF ≡ s |= Fx))’)

is not well-defined.

This brief review of the applications of the modal object calculus

should have drawn attention to one point, namely, that even if one has

metaphysical scruples about accepting Principle C, the modal object cal-

culus can still serve as a vehicle for defining interesting philosophical no-

tions and proving basic facts about them. Though the calculus has other

applications, we shall not describe these in any detail here.

§3: The Intended Interpretation of the Calculus

Before we describe the new interpretation of the calculus (in §4), we must

first review the intended interpretation. However, in the years since the

intended interpretation of the calculus was first developed, Etchemendy

[1990] has developed a more critical view of Tarski’s formal definition of

truth and logical consequence. To address some of Etchemendy’s con-

cerns, we shall recast our original semantic definitions to make it clear

that the various models of our language do not constitute different in-

terpretations of the constants and predicates. This results in a more

perspicuous definition of truth and logical truth. To this end, we take

the domains required for the interpretation of the terms, quantifiers, and

modal operators out of the models! The domain of objects, the domain

of relations, and the domain of possible worlds shall be grouped together

and specified antecedently as part of an interpretation of the language.

So an interpretation of the language will be distinguished from the models

that can be defined for that interpretation. This way, the domains of the

interpretation will not vary from model to model. The models for an in-

terpretation I simply represent the various ways that the objects of I can

be assigned to the extensions of the relations of I (at the various possible

worlds of I). On this picture, the only thing that varies from model to

model is: (a) the function that indicates which objects exemplify which

relations at each world, and (b) the function that indicates which objects

encode which properties.

On this picture of modal language, the notion of ‘truth at a world in

a model’ is defined for an an interpreted sentence. We do not evaluate a

purely formal sentence at world w in model M by considering the exten-

sion of the terms and predicates at world w in M. Instead, we consider

an interpretation I of the sentence and find out what objects and rela-
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tions the terms and predicates of the sentence denote with respect to I.

Then once we have these, we may ask, with respect to a world w in the

interpretation I, whether model M structures the relations and objects

in the appropriate way at w. In other words, we interpret formulas first

and then discover whether they are true. Thus, truth (and logical truth)

will be defined relative to a fixed interpretation of the formulas.11

Consider, as an example, the formula ‘Pa’. Before we can decide

whether it is true, we have to know what it means. So let us fix an in-

terpretation I by supposing that ‘a’ denotes Socrates (a member of the

domain of objects in I), that ‘P ’ denotes the property of being snub-nosed

(a member of the domain of properties in I), and that the domain of possi-

ble worlds in I contains three possible worlds w1, w2, and a distinguished

actual world wα. Now a given model M for this interpretation will tell us

at which worlds Socrates is an element of the exemplification extension

of the property of being snub-nosed, for M will be defined, in part, by

a function that assigns ordered sets of I-objects as the exemplification

extensions of the I-relations at each I-world. The formula ‘Pa’ under in-

terpretation I will be true at world w in model M iff M assigns Socrates to

the exemplification extension of the property of being snub-nosed at world

w. The formula ‘Pa’ under interpretation I will be true (simpliciter) in

a model M iff M assigns Socrates to the exemplification extension of the

property of being snub-nosed at the distinguished world wα.

Now consider the modal formula ‘2Pa’ under interpretation I. This

interpreted formula will be true at world w in model M iff M assigns

Socrates to the exemplification extension of the property of being snub-

nosed at all the worlds accessible from w (suppose that I also specifies the

accessibility relation on worlds) . It will be true (simpliciter) in model

M iff M assigns Socrates to the exemplification extension of the property

of being snub-nosed at all the worlds accessible from the actual world

wα. Since we have adopted an S5 modal logic, all worlds are accessible

to each other and so we shall simplify our semantics by eliminating the

accessibility relation altogether.

Since extensions are not directly assigned to the predicates of the lan-

guage, our semantical treatment differs from Tarski [1936] and [1944],

though we shall still employ his notion of satisfaction (see below). Nor

do we assign extensions to predicates relative to worlds, and so our treat-

11For an extended discussion motivating this conception of modal logic, see Zalta

[1993b].
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ment also differs from that of Kripke [1959], [1963] and Hintikka [1961].

In general, we do not use the method of intension and extension devel-

oped by Carnap [1947] and extended by Montague [1974]. That is, we do

not recover an ‘intension’ function from the assignment of extensions to

constants, predicates, and sentences at each possible world. Instead, we

take relations as primitive, fine-grained entities and in the course of defin-

ing models, something analogous to a Montagovian ‘intension’ function is

used to indicate what extensions these primitive relations have at various

worlds. This semantic method, therefore, takes up Frege’s [1892] idea that

a predicate denotes a ‘concept’ and that an ‘extension’ is something asso-

ciated, in the first instance, with a concept rather than with a predicate.

These explanatory remarks should help motivate the following formal

definitions of an interpretation, intended interpretation, model, assign-

ments and denotation, satisfaction, truth, and logical truth.

Interpretations

An interpretation of the modal object calculus is a quadruple I = 〈W,D,

R,F〉, the members of which are as follows:

1. W is the nonempty set of possible worlds with a distinguished actual

world wα (the S5 modal operators will be construed as quantifiers

over W in the simplest possible way, namely, without an accessibil-

ity relation).

2. D is the nonempty domain of objects (which includes both abstract

and ordinary objects).

3. R is the domain of primitive relations (defined as the union of a

sequence of nonempty, pairwise disjoint sets R0,R1, . . .) which is

closed under the following algebraic logical operations (discussed be-

low): PLUGi (plug-into-the-ith-place), NEG (negate), NEC (ne-

cessitate), COND (conditionalize), UNIVi (universalize-on-the-

ith-place), REFLi,j (reflect-the-ith-and-jth-places), CONVi,j (con-

vert-the-ith-and-jth-places), and VACi (vacuously-expand-the-ith-

place).

4. F is an interpretation function that maps each object constant of

the language to an element of D, and maps each n-place relation
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constant of the language to an element of Rn.12

To complete this definition, we must define the algebraic operations in

clause 3.

Intuitively, the algebraic operations harness relations into complex,

structured relations that serve as the denotations of the λ-expressions.

These operations are analogues of Quine’s predicate functors in [1960], but

whereas Quine’s functors operate on predicates to eliminate variables, our

operations are defined on the relations denoted by the predicates. Here

are some examples:

1. The operation PLUG1 takes the 3-place relation r (in R3) and an

object o (in D) and plugs o into the first place of r to produce

the complex relation 2-place PLUG1(r,o) (in R2).13 If r is the

denotation of the 3-place predicate R, and o is the denotation of

the constant a, then PLUG1(r,o) serves as the denotation of the

2-place λ-expression [λxy Raxy]. PLUG3(r,o), on the other hand,

serves as the denotation of [λxy Rxya]. PLUG3 is not defined for

relations having fewer than three places, whereas PLUG1 is defined

for all except the 0-place relations.

2. The operation NEG produces an n-place relation that is the nega-

tion of a given an n-place relation. So, building on a previous ex-

ample, the 2-place relation NEG(PLUG1(r,o)) serves as the de-

notation of the predicate [λxy ¬Raxy].

3. The operation UNIV2 maps the 3-place relation r to the 2-place

relation UNIV2(r), which serves as the denotation of the 2-place

expression [λxy ∀zRxzy].

These examples should give the reader some indication of how the oper-

ations work.

We shall not reproduce the definitions of the algebraic operations here,

for they have been characterized precisely in such places as Zalta [1983]

and [1988], Bealer [1982], and Menzel [1986]. But it should be mentioned

12This function is not yet a full-blooded denotation function because it is not defined

on the complex λ-expressions. In what follows, a denotation function, relative to I and

a variable assignment f, will extend FI to all terms by assigning a denotation to the

variables and to the complex terms.
13Quine has no need for the PLUG operation in his [1960] because he eliminates

constants in favor of predicates.
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that various constraints must be placed on the (exemplification) extension

functions and denotation functions for the algebraic operations to work

propertly. To see why, recall that each model will assign exemplification

extensions to the relations (at possible worlds) in different ways. How-

ever, in each model, the extensions of the complex relations produced by

the algebraic operations must mesh properly with the extensions of the

relations they may have as parts, no matter how the latter extensions

are assigned. For example (from the previous paragraph), these con-

straints ensure that the exemplification extension of the complex relation

PLUG1(r,o) at world w consists of all those pairs 〈o1,o2〉 such that the

triple 〈o,o1,o2〉 is in the exemplication extension of the relation r at w.

The constraints also ensure that the exemplification extension of the com-

plex relation NEG(PLUG1(r,o)) at world w consists of all those pairs

〈o1,o2〉 that fail to be in the exemplification extension of the relation

PLUG1(r,o) at w. An appropriate constraint is therefore defined for

each algebraic function, and as a group, the constraints guarantee that

the interpreted instances of the logical axiom λ-Conversion are true in

every model, since the exemplification extension functions of every model

will be constrained in these ways.

There is one other subtlety to the logic of the algebraic operations.

This concerns the fact that they ‘overgenerate’ denotations. For example,

if we let the constant ‘b’ denote object o′, then both PLUG2(PLUG3(r,

o),o′) and PLUG2(PLUG2(r,o′),o) could equally well serve as the de-

notation of [λx Rxba]. So we need some means of ensuring that the

predicate [λxRxba] receives a unique denotation, i.e., that the denotation

function is well-defined on the λ-expressions. In our previous work, we

have partitioned the λ-expressions into syntactic categories that corre-

spond with the algebraic logical operations. Then the denotation func-

tion, which maps each term of the language to an entity in the relevant

domain, is defined so that it maps each λ-expression to an appropriately

structured relation based on the expression’s syntactic category. This

yields a mechanical procedure that selects a unique denotation for the

λ-expression. We’ll say more about this when we turn to the precise

definition of denotation in what follows.
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The Intended Interpretation

The intended interpretation of our calculus will simply be that interpre-

tation such that: (a) the domains W, D, and R contain, respectively, all

the possible worlds there in fact are, all the relations that there are, and

all the objects that there are, and (b) whenever any constant (predicate)

is treated as an abbreviation of an English name (predicate), the function

F assigns the object (relation) denoted by the English name (predicate)

as the denotation of the constant (predicate). In the remainder of this

section, we suppose that the intended interpretation is fixed and we shall

simply call it ‘I’. The interpretation function F of the intended interpre-

tation will be referred to as FI.

Models

Before we actually state the definition of a model, let us informally an-

ticipate the definition with some examples, to see how the definitions of

truth and logical truth for our interpreted language will eventually work.

A model M for the intended interpretation I will be defined so that: (a)

all of the relations in R receive exemplification extensions at each possible

world, and (b) all of the properties in R1 receive, in addition, an encoding

extension. The definition of truth will then tell us that the formula ‘Pa’

under the interpretation I is true at world w relative to M iff FI(a) is an

element of the M-exemplification extension at w of the property FI(P ).

And the formula ‘aP ’ under I is true at w relative to M iff FI(a) is a

member of the M-encoding extension of FI(P ). Of course, the definition

of truth won’t be stated in terms of FI, since that function only inter-

prets the primitive constants and predicates. We shall need to define a

full-blooded denotation function that extends FI and assigns a denotation

to every term in the language, including the variables and the complex

expressions.

The definition of logical truth will be cast in terms of the definition

of truth: a formula ϕ under the interpretation I is logically true iff ϕ is

true at the actual world in every model for I. For example, ‘Pa ∨ ¬Pa’

(under I) will be a logical truth, not because it turns out true under

every interpretation of ‘a’ and ‘P ’, but rather because it is true (at wα)

no matter how models for I assign (exemplification) extensions to FI(P ).

To make this more vivid, suppose the object constant ‘a’ abbreviates the

proper name ‘Bill Clinton’ and that FI(a) is the man Bill Clinton (who
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is an element of D). And assume that the primitive relation constant ‘P ’

abbreviates the property-name ‘being a U. S. president’ and that FI(P ) is

the property of being a U. S. president (this is an element of R1). Then the

sentence ‘Pa’ under the interpretation I asserts that Clinton exemplifies

being a U. S. president, and the reason ‘Pa ∨ ¬Pa’ (under I) is a logical

truth is that it remains true at wα no matter how models for I assign

an exemplification extension to the property of being a U. S. president.

As we mentioned earlier, this formulation of the definition of truth and

logical truth has been influenced by the ideas in Etchemendy [1990], from

which one might conclude that a philosophically proper model-theoretic

definition of logical truth should not depend on alternative interpretations

of the constants ‘a’ and ‘P ’.14

To make these ideas precise and more general, we have to define models

and extend the definition of truth and logical truth to all the formulas of

the language, including those involving variables and/or complex terms.

Thus, given our intended interpretation I, we can define a model M for I

as consisting of two functions:

(a) ext, for n ≥ 1, is binary function that maps each pair 〈rn,w〉
consisting of an n-place relation rn (∈ Rn) and world w (∈W) to

a set of n-tuples of objects drawn from D, and, for n=0, maps each

pair 〈r0,w〉 consisting of a 0-place relation r0 and world w to an

element of {T,F}. We hereafter index ext to its second argument.

The function extw must satisfy a separate constraint for each of the

algebraic operations mentioned above (see below).

(b) extA is a function that maps each property in R1 to a subset of D.

We call extw(rn) the exemplification extension of rn at w. The con-

straints that extw must satisfy ensure that the complex relations gen-

erated by the algebraic operations have exemplification extensions at a

world w which are defined in terms of the exemplification extensions at

w of the simpler relations the complex relations may have as parts. For

example, here are three constraints on extw, governing the operations

PLUGi, NEG, and NEC, respecitvely, for any relation r ∈ Rn and

objects o,o1, . . . ,on ∈ D:

1. n > 1: extw(PLUGi(r
n,o)) = {〈o1, . . . ,oi−1,oi+1, . . . ,on〉 |

14I have also been influenced by a different attempt to accomodate Etchemendy’s

ideas, in Menzel [1990].
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〈o1, . . . ,oi−1,o,oi+1, . . . ,on〉 ∈ extw(rn)}

n = 1: extw(PLUG1(r1,o)) = T iff o ∈ extw(r1)

2. n ≥ 1: extw(NEG(rn)) = {〈o1, . . . ,on〉 | 〈o1, . . . ,on〉 6∈ extw(rn)}

n = 0: extw(NEG(r0)) = T iff extw(r0) = F

3. n ≥ 1: extw(NEC(rn)) =

{〈o1, . . . ,on〉 | ∀w′(〈o1, . . . ,on〉 ∈ extw′(rn))}

n = 0: extw(NEC(r0)) = T iff ∀w′(extw′(r0) = T)

The constraints on the other logical functions were developed in Zalta

[1983] (pp. 62-63) and won’t be repeated here. But we can now redescribe

two of the examples discussed above in more formal terms. In these

examples, r is a 3-place relation and o is some object in D. The constraint

on PLUG ensures that extw(PLUG1(r,o)) consists of all those pairs

〈o1,o2〉 such that the triple 〈o,o1,o2〉 is an element of extw(r). The

constraint on NEG ensures that extw(NEG(PLUG1(r,o))) consists of

all those pairs 〈o1,o2〉 that fail to elements of extw(PLUG1(r,o)).

We call extA(r) the encoding extension of r. Note that extA is not

defined relative to a world, and so, in a given model, stays fixed from

world to world. If one were to abandon the Axiom of Encoding, one

could allow this function to vary with worlds. Notice also that we have

not explicitly asserted, as a logical axiom, that ordinary objects can’t

encode properties, and so we need not, at this time, constrain extA(r)

to contain only abstract objects. It is an axiom of the proper theory of

abstract objects that ordinary objects can’t encode properties, and so this

constraint will be satisfied by any model of the proper theory.15

15We should note that not only will ordinary objects fail to encode properties in

models of the proper theory, but extA will stay fixed among such models. The reason

is that the comprehension principle for abstract objects guarantees there is an abstract

object corresponding to each (expressible) set of properties. In the intended interpre-

tation, R1 is fixed and contains all the properties there are, and so the subdomain of

abstract objects and the encoding extension of properties will not vary across models

in which the comprehension principle is true. This gives us a two senses in which the

properties an abstract object encodes are ‘essential’ to it. Not only are predications

‘xF ’ necessary if possibly true, but the proper (non-logical) facts of encoding do not

vary across different models of the possibluum (i.e., across different ways of assigning

exemplification extensions to relations at worlds).
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Though models M (= 〈extw, extA〉) are defined relative to (the in-

tended) interpretation I, we hereafter omit the index on M. The main

thing to remember is that models can vary depending on how they assign

extensions to the relations (at worlds).

Assignments and Denotation

Now relative to our fixed interpretation I, we define an assignment func-

tion f to the variables of the language as any function mapping object

variables to elements of D and mapping n-place relation variables to el-

ements of Rn. Then we may define, for each term τ of the language, a

denotation function δI,f(τ) relative to interpretation I and assignment f.

Suppressing the indices ‘I’ and ‘f’ for the moment, we can explain how δ

works. The denotation of a constant (predicate) is what the interpreta-

tion function FI assigns to that constant (predicate). The denotation of

a variable is what the assignment function f assigns to that variable. And

the denotation of a λ-expression is defined recursively, depending on the

structure of the expression. As we mentioned earlier, the λ-expressions

may be partitioned into one of ten mutually exclusive classes (for the

complete definition, see Zalta [1983], pp. 64–65). Eight of these classes

contain expressions having a syntactic structure that corresponds to an

algebraic logical operation; the ninth class is the repository of the elemen-

tary λ-expressions of the form [λy1 . . . yn F
y
1 . . . yn]; the tenth class is the

repository of the 0-place λ-expressions of the form [λ ϕ]. The denotation

function δ works as follows:

1. To each λ-expression in the first eight classes, δ assigns a struc-

tured relation involving the algebraic operation that corresponds to

the syntactic category of the λ-expression. For example, if δ(R)

and δ(a) are the denotations of the terms R and a, respectively,

then δ([λx Rxa]) is the property PLUG2(δ(R), δ(a)), because the

λ-expression has been syntactically defined to be the ‘2nd-plugging’

of the elementary expression [λxy Rxy] by the term a. Similarly, if

δ(P ) is the denotation of the expression P , then δ([λx2Px]) is the

property NEC(δ(P )), because the λ-expression has been syntacti-

cally defined to be the ‘necessitation’ of the elementary expression

[λx Px].

2. To each elementary λ-expression of the form [λy1 . . . yn F
ny1 . . . yn],

δ assigns FI(F
n) as its denotation.
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3. To each 0-place λ-expression [λ ϕ], δ recursively assigns a proposi-

tion in R0—the structure of the proposition it assigns corresponds

to the complexity of ϕ. For example, if δ(P ) and δ(a) are the deno-

tations of the terms P and a respectively, δ([λPa]) is the proposition

PLUG1(δ(P ), δ(a)). Similarly, δ([λ2Pa]) is NEC(PLUG1(δ(P ),

δ(a))).

The full definition of the denotation function won’t be repeated here (see

Zalta [1983], pp. 65–67), but the foregoing discussion should give the

reader a good idea of how that definition works. Now that we can specify

the denotation of all the terms of the language under I and f, we can

define satisfaction.

Satisfaction

Satisfaction is defined for interpred formulas and we shall use the notation

[ϕ]I to indicate the formula ϕ under the interpretation I. If given a model

M and an assignment f, we define f satisfiesM [ϕ]I with respect to world

w as follows:16

1. If ϕ is an atomic exemplification formula of the form ρno1 . . . on,

f satisfiesM [ρno1 . . . on]I with respect to w iff

〈δI,f(o1), . . . , δI,f(on)〉 ∈M-extw(δI,f(ρ
n))

2. If ϕ is a atomic exemplification formula of the form ρ0,

f satisfiesM [ρ0]I with respect to w iff

M-extw(δI,f(ρ
0)) = T

3. If ϕ is an atomic encoding formula of the form oρ1,

f satisfiesM [oρ1]I with respect to w iff

δI,f(o) ∈M-extA(δI,f(ρ
1))

4. Satisfaction for molecular and quantified ϕ is classical

16Readers familiar with Zalta [1983] and [1988] should realize that we do not include

definite description in the present system, and thus we need not account for terms

that may fail to denote. So we can formulate the definition of satisfaction in the

usual, simple way. Had there been terms that might fail to denote, we would have to

use the more general formulation in the earlier works, in which satisfaction conditions

explicitly ensure that each term of the formula has a denotation.
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5. If ϕ is a modal formula of the form 2ψ,

f satisfiesM [2ψ]I with respect to w iff

for all w′ ∈W, f satisfiesM [ψ]I with respect to w′

Note that because (a) our algebraic operations assign exemplification ex-

tensions to propositions in the correct way, and (b) atomic exemplification

formulas ϕ can be turned into terms [λ ϕ] that denote propositions, we

could have collapsed clauses (1) and (2) as follows:

If ϕ is any atomic exemplification formula,

f satisfiesM [ϕ]I with respect to w iff

M-extw(δ([λ ϕ])) = T

In languages where every formula ϕ can be turned into a 0-place term

[λ ϕ], this clause would be the only clause necessary for the definition of

satisfaction. But the language of the modal object calculus is not such a

language.

Truth and Logical Truth

Finally we turn to truth at a world, truth, and logical truth. We define

[ϕ]I is true at world w in model M (in symbols: M,w |= [ϕ]I) as follows:

M,w |= [ϕ]I =df Every f satisfiesM [ϕ]I with respect to w

We define [ϕ]I is true in model M (in symbols: M |= [ϕ]I) as follows:

M |= [ϕ]I =df M,wα |= [ϕ]I

And we define [ϕ]I is logically true (in symbols: |= [ϕ]I) as follows:

|= [ϕ]I =df For every model M, M |= [ϕ]I

Thus, we have defined truth and logical truth for the language of the

modal object calculus. As we have set things up, these notions apply to

interpreted formulas. Logical truth is not defined by considering varia-

tions in the interpretations of the terms, but rather by considering various

ways extensions can be assigned (at possible worlds) to the relations de-

noted by the predicates. The domains of objects, relations, and worlds

do not vary from model to model. Rather, given a fixed interpretation of

the language in the domain of objects and relations, and given a fixed set
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of possible worlds over which the modal operators quantify, the models

are distinguished as total ways in which extensions to the relations are

distributed at all possible worlds. Moreover, the denotation function is

not relativized to a world. This means that the truth of a modal sentence

such as ‘2Pa’ is not evaluated by examining the denotation of the terms

‘a’ and ‘P ’ at other possible worlds! Rather, it is evaluated by examining

whether the object ‘a’ in fact denotes and the extension of the relation

‘P ’ in fact denotes are structured in the right way at all possible worlds.

§4: A New Interpretation of the Calculus

Since the modal object calculus has been designed to serve as the back-

ground logic for the proper theory of abstract objects, the intended inter-

pretation yields truth conditions for the non-logical axioms of the theory.

When the calculus and proper axioms together are used to analyze philo-

sophically puzzling data, explanatory success often depends on the fact

that some abstract objects encode the very same properties that they

exemplify.17 Given our semantics, this means that in the models of the

proper theory, there are properties r such that extwα(r) and extA(r)

contain the same abstract objects. But recall that while abstract objects

are not sets of properties (not, at least, in the intended interpretation),

intuitively, they are correlated with sets of properties, and for the purpose

of building a set-theoretic interpretation and set-theoretic model in which

the proper axioms are true, it is natural to think of them as such. The

problem is, however, in what model-theoretic sense can a (well-founded)

set of properties exemplify the very properties it has as members?18 The

intended interpretation gives us no further model-theoretic understanding

of the very important primitive fact that an abstract object can exemplify

the very same properties that it encodes. The principal logical question

concerning the set-theoretic representation of the calculus, therefore, is

how to explain this primitive fact.

17For example, all abstract objects exemplify the property of nonsquareness, so

consider the abstract objects that encode this property. As another example, note

that Principle C, for which much of the explanatory success of the overall system

depends, asserts that there are objects that encode just the property Ē! (i.e., the

negation of the property E!), and so by the definition of ‘abstract’ and λ-Conversion,

it follows that any such object exemplifies this property as well.
18If you try to represent xF as F ∈ x and represent Fx as x ∈ F , then the presence

of objects such that xF & Fx violates the Foundation Axiom of Zermelo-Fraenkel set

theory.
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Peter Aczel has offered the following suggestion for modeling the cal-

culus and proper theory in standard Zermelo-Fraenkel set theory:

. . . start with a somewhat larger domain of concrete individu-

als, some of them ordinary and the others special , and assume

suitable domains of ordinary n-place relations (n ≥ 0) over the

concrete individuals. So an ordinary proposition Ra1 . . . an
can be formed by an exemplification whenever R is an or-

dinary n-place relation and a1, . . . , an are concrete, possibly

special, individuals. Now form the abstract objects (i.e., sets

of ordinary properties) . . . . To get over the problem of ordi-

nary exemplification of abstract objects we take the following

steps. Choose, in whatever way you wish, an assignment of

a concrete individual |a| to each abstract individual a. (It

might be best that |a| should always be special, but this does

not seem necessary.) On the grounds of cardinality, many ab-

stract objects will be assigned the same concrete object. . . .

Extend the assignment to all objects by putting |a| = a if a is

already concrete. We can now take ordinary exemplification

Ra1 . . . an to stand for the ordinary proposition R|a1| . . . |an|,
even when some of the a1, ..., an are abstract.19

In the remainder of this section, we follow up on Aczel’s suggestion and

recast it in our modal setting.

Although the ‘Aczel-interpretations’ are rich enough to demonstrate

the consistency of the proper theory of abstract objects as well as of

the modal object calculus, such interpretations will help us to visualize

the idea that abstract objects, though correlated with sets of properties,

can exemplify the very same properties that they encode. The reader is

cautioned, however, not to think that the intended interpretation of the

modal object calculus is an Aczel-interpretation. In Aczel-interpretations,

abstract objects are identified as sets of properties. But in the intended

interpretation, abstract objects are not sets of properties. In fact, sets

are not included as elements of any domain, except when the theory is

applied to the analysis of mathematical objects as abstract objects of

a certain sort.20 To think that abstract objects are sets is to mistake

19Personal communication; letter of January 10, 1991.
20And even then, ‘the Zermelo-Fraenkel sets’ are objects that encode rather than

exemplify the property of being a set, since that is a property attributed to them in

the theory we use to conceptualize them.
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a metaphysical entity for a mathematical one. The properties that an

abstract object encodes, in an important new sense, characterize that

object; they are predicable of that object. But the properties that are

members of a set of properties do not characterize that set in any way.

Encoding predication is introduced to describe a phenomena that sets do

not exhibit. In the technical study of the formal properties of the object

calculus, sets prove useful as ‘models’ of abstract objects, but it doesn’t

follow from this that abstract objects just are sets.

Aczel-interpretations

An Aczel-interpretation I is formalizable as a 9-tuple 〈W,O∗,P([O∗]n),

R,A, ‖a‖,D, |o|,F〉 the elements of which satisfy the following conditions:

1. W is a nonempty set of possible worlds, and contains the distin-

guished element wα.

2. O∗ is a nonempty primitive domain of ordinary∗ objects consisting

of two nonempty, disjoint subsets, a set O of ordinary objects and

a set S of special objects.21

3. P([O∗]n) is the power set of the nth Cartesian product of O∗, for

each n ≥ 1. That is, for n ≥ 1,

P([O∗]n) = P(O∗ × . . .×O∗︸ ︷︷ ︸
n times

)

In the definition of a model, we will take the exemplification exten-

sion of an n-place relation rn (n ≥ 1) at world w to be a member

of this set.

4. R is a nonempty, primitive domain of relations satisfying the fol-

lowing two conditions:

21In the above quotation, Aczel called the members of O∗ the ‘concrete’ objects.

However, we are calling them ordinary∗ objects. The ordinary objects (i.e., the mem-

bers of O) constitute a subset of the ordinary∗ objects, and intuitively, the ‘concrete’

objects constitute a subset of the ordinary objects, namely, the ones that exemplify

spatiotemporal location at the actual world. So the ordinary objects divide up into the

concrete objects and the objects that have spatiotemporal locations at other possible

worlds. We should also mention that, intuitively, S should outstrip O in size by a

couple of orders of magnitude, but for the present purposes, we need not make this

explicit.
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(a) R is the union of a sequence of nonempty, pairwise disjoint

sets, R0,R1, . . . (i.e., R =
⋃
n≥0 Rn) such that each member

Rn (the set of n-place relations), for n ≥ 1, is greater in size

than the set of all functions from W into P([O∗]n).

(b) R is closed under the operations PLUGi, NEG, COND,

UNIVi, REFLi,j , CONVi,j , NEC, and VACi.

Condition (a) will guarantee that there are more relations than there

are Montagovian intensions (Montague [1974]). This will ensure

that some distinct relations have the same Montagovian intension.

5. A = P(R1); i.e., the set A of abstract objects is simply the power

set of the set of properties.

6. ‖a‖ is a mapping which is defined for a ∈ A and which takes values

in S. Recall that S is the set of special objects and is a subset of

O∗. The special object ‖a‖ will serve as a proxy for a

7. D = A∪O∗; i.e., the domain D of all objects is the union of A and

O∗.

8. |o| is a mapping which is defined for o ∈ D and which takes values

in O∗. It must satisfy the following conditions:

if o = a, for some a ∈ A, |o| = ‖a‖
if o = o∗, for some o∗ ∈ O∗, |o| = o∗

This extends the function ‖a‖ to a function |o| defined on all the

members of D. |o| agrees with ‖a‖ on the abstract objects and maps

each ordinary∗ object to itself.

9. F is an interpretation function that maps the object constants of

the language to an element of D and the n-place relation constants

to an element of Rn.

Models for Aczel-interpretations

A model M for an Aczel-interpretation I consists of two functions:

1. ext is a function that meets the following conditions:

(a) for n ≥ 1, ext: Rn ×W→ P([O∗]n).
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(b) for n = 0, ext: R0 ×W→ {T,F}.
(c) ext satisfies the constraints on the operations PLUGi, NEG,

NEC, COND, UNIVi, REFLi,j , CONVi,j , and VACi.

We henceforth index ext to its second argument, and so extw maps

each rn ∈ Rn to its exemplification extension at world w.

2. extA is a function defined on the elements of R1 as follows:

extA(r1) = {o ∈ D |o ∈ A and r1 ∈ o}.

Two observations are in order here. The first is that the function extw is

essentially the same function as its counterpart in the models for the in-

tended interpretation, with the exception that it takes values in P([O∗]n)

rather than P([D]n). Since the abstract objects (i.e., sets of properties)

in A are not elements of O∗, they are not officially in the exemplification

extension of any relation. But we will exploit the fact that their proxies

are in the exemplification extensions of relations: the definition of sat-

isfaction will allow an abstract object a to ‘exemplify’ a relation if its

proxy ‖a‖ is an element of the exemplification extension of that relation.

The second observation is that the function extA is more specific than

its counterpart in the models for the intended interpretation. It requires

that the encoding extension of a property contain as elements all those

abstract objects of which it is a member. Notice that the encoding ex-

tension of a property neither varies from world to world nor varies from

model to model.22 The different models for a given Aczel-interpretations

can therefore only vary in the way they assign exemplification extensions

to relations at the various possible worlds.

The Denotation Function

If given an Aczel-interpretation I, we next fix an assignment f to the vari-

ables of the object language, as before. Then we may define a denotation

function δI,f(τ), relative to interpretation I and function f, for all the

terms τ of the language, as follows (suppressing the subscripts on δ):

22The reason is that in Aczel-interpretations, the domain of abstract objects A is

fixed as the power set of the set properties. Since the set of properties R1 is an element

of the Aczel-interpretation, its power set is independent of models M. So whether an

object o ∈ D encodes a property r is simply a matter of whether o is an element

of the subdomain A and r ∈ o. So the extA function is fixed in all models for

Aczel-interpretations.
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(a) where o is an object constant, δ(o) = FI(o)

(b) where o is an object variable, δ(o) = f(o)

(c) where ρn is an n-place predicate, δ(ρn) = FI(ρ
n)

(d) where ρn is an n-place predicate variable, δ(ρn) = f(ρn)

(e) where µ is a λ-expression [λν1 . . . νnϕ], δ(µ) is defined as on pp. 65–

66 of Zalta [1983], with the following substitution:

where µ is the ith-plugging of λ-expression ξ by term o,

δ(µ) = PLUGi(δ(ξ), |δ(o)|)

(f) where [λ ϕ] is a 0-place λ-expression, δ([λ ϕ]) is defined as on p. 67

of Zalta [1983], with the following substitution:23

if ϕ = ρno1 . . . on, δ([λ ϕ]) =

PLUG1(. . . (PLUGn(δ(ρn), |δ(on)|), . . .), |δ(o1)|)

The denotation function, therefore, works in the same manner as its coun-

terpart in the previous section, except for the changes described in clauses

(e) and (f). If we let δ(o) be the object o, then these clauses tell us that the

complex relational properties and propositions denoted by λ-expressions

containing the object term o have the object |o| as a constituent instead

of the object o. This makes a difference only for the complex relations

and propositions denoted by λ-expressions containing terms that denote

an abstract object. In such cases, the relations and propositions in ques-

tion have the proxies rather than the abstract objects themselves as con-

stituents.

Satisfaction for Interpreted Formulas

If given an arbitrary formula ϕ, we may now define, assignment f satis-

fiesM [ϕ]I with respect to world w, as follows:

1. If ϕ is an atomic exemplification formula of the form ρno1 . . . on,

f satisfiesM [ρno1 . . . on]I with respect to w iff

23In Zalta [1983], we let ϕ itself go proxy for the 0-place relation term [λ ϕ]. But it

now seems more perspicuous to avoid such an abbreviation.
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〈|δI,f(o1)|, . . . , |δI,f(on)|〉 ∈M-extw(δI,f(ρ
n))

2. If ϕ is a atomic exemplification formula of the form ρ0,

f satisfiesM [ρ0]I with respect to w iff

M-extw(δI,f(ρ
0)) = T

3. If ϕ is an atomic encoding formula of the form oρ1,

f satisfiesM [oρ1]I with respect to w iff

δI,f(o) ∈M-extA(δI,f(ρ
1))

4. Satisfaction for molecular and quantified ϕ is classical

5. If ϕ is a modal formula of the form 2ψ,

f satisfiesM [2ψ]I with respect to w iff

for all w′ ∈W, f satisfiesM [ψ]I with respect to w′

The only real difference between the definition of satisfaction for Aczel-

interpretations and its counterpart for intended interpretations concerns

clause 1. It defines the sense in which an abstract object can exemplify

a relation, namely, by proxy. Consider the formula ‘Pa’ under I, and

suppose that FI(a) = o and FI(P ) = r. Then f satisfiesM ‘Pa’ at w iff

either (1) o is ordinary∗ and an element of M-extw(r) (since |o| is just o

itself when o is ordinary∗), or (2) o is some abstract object a and ‖a‖ is

an element of M-extw(r) (since |o| is ‖o‖ when o is an abstract object).

We should also remark that it would have been somewhat more direct to

define clause 3 in the definition of satisfaction as:

f satisfiesM [oρ1]I with respect to w iff

δI,f(o) ∈ A and δI,f(ρ
1) ∈ δI,f(o)

As it stands, however, clause 3 demonstrates that the satisfaction of

atomic encoding formulas appeals to an extension of the property de-

noted.
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Truth and Logical Truth

With satisfaction defined, we may define [ϕ]I is true at world w in model

M in the usual way:

M,w |= [ϕ]I =df Every f satisfiesM [ϕ]I with respect to w

And, finally, we define [ϕ]I is true in model M and define [ϕ]I is logically

true, as follows:

M |= [ϕ]I =df M,wα |= [ϕ]I

|= [ϕ]I =df For every model M, M |= [ϕ]I

§5: Conclusion

Aczel-interpretations demonstrate the consistency of the modal object

calculus as well as the consistency of the proper theory of abstract objects.

Though we shall not develop the proofs in detail here, it is relatively

straightforward to show that, under Aczel-interpretations, the five groups

of logical axioms for the calculus described in §1 are logically true and

the three rules of inference preserve logical truth. In particular, the proof

that the axioms of propositional logic, quantificational logic, and S5 modal

logic are logically true are essentially classical, as are the proofs that the

rules MP, Gen, and RN preserve logical truth. To see that the axiom of

encoding (i.e., 3xF → 2xF ) is logically true, pick an arbitrary model M

and reason from the point of view of the actual world: if at some possible

world δ(x) ∈ extA(δ(F )), then since the encoding extension of a property

does not vary from world to world, δ(x) ∈ extA(δ(F )) at all worlds.

To see that the axioms for the logic of relations are logically true, con-

sider first the λ-Conversion principle with respect to an arbitrarily chosen

model M. Given the facts that the denotation function assigns each λ-

expression an appropriately structured relation and that extw is appropri-

ately constrained for each logical function, it is relatively straightforward

to show, by induction on the complexity of ϕ, that for every world w, ev-

ery assignment function f satisfies the formula [λy1 . . . yn ϕ]x1 . . . xn iff f

satisfies ϕx1,...,xn
y1,...yn with respect to w. For no matter what n-tuple of objects

〈o1, . . . ,on〉 that f assigns to the variables x1, . . . , xn, that n-tuple is an

element of extw(δ([λy1 . . . ynϕ])) iff f satisfies (at w) the formula that re-

sults by replacing the yi in ϕ with the xi, that is, iff the objects o1, . . . ,on
are in the exemplification extensions of relations at w in just the way
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ϕx1,...,xn
y1,...,yn says.24 The λ-Identity1 principle ([λy1 . . . yn F

ny1 . . . yn] = Fn)

is logically true, notwithstanding the special definition of relation iden-

tity (in which Fn and Gn are said to be ‘identical’ iff no matter how you

‘plug’ them up with n−1 objects the two resulting properties are encoded

by the same objects). This principle holds because the denotation func-

tion guarantees that the denotation of [λy1 . . . yn F
ny1 . . . yn] is the same

relation as the denotation of Fn. Thus, in an arbitrary model, the de-

fined conditions for relation identity between [λy1 . . . yn F
ny1 . . . yn] and

Fn will be trivially true at the actual world, given that these expressions

denote the same relation in the semantics. Finally, the λ-Identity2 princi-

ple ([λy1 . . . yn ϕ] = [λy′1 . . . y
′
n ϕ
′]) is logically true, since mere alphabetic

changes don’t affect the denotation of the λ-expression. Again, the spe-

cial definition of relation identity is trivially true at the actual world (in

any arbitrarily chosen model) if [λy1 . . . yn ϕ] and [λy′1 . . . y
′
n ϕ
′] denote

the same relation.

Finally, readers familiar with the proper theory of abstract objects

may also wish to consider the constraints that must be placed on the

models for Aczel-interpretations if the proper axioms of the theory of

abstract objects are to turn out true. We simply require that models

assign an extension to the property denoted by the distinguished 1-place

relation constant E! (having a spatiotemporal location) in the right way.

Consider those models M for an Aczel-interpretation I that satisfy the

following two conditions:

1. M-extw(FI(E!)) ⊆ O, for each w

2. O =
⋃

w∈WM-extw(FI(E!))

24As we remarked earlier, a given λ-expression is syntactically categorized either

as the plugging of another λ-expression in the ith place by a certain term, or as the

conditionalization of two λ-expressions, or as the negation of another λ-expression, or

as the conversion of another expression about the ith and jth places, etc. Each syn-

tactic category corresponds to an algebraic logical operation. Complex λ-expressions

can therefore be thought of as structural transformations of simpler ones, and the de-

notation of the whole expression will be built up from the denotations of the simpler

expressions in a way that mirrors the transformation process. The constraint on extw
of the complex relation denoted at the final stage of transformation can then be de-

composed into a variety of constraints on the simpler relations denoted by the simpler

expressions involved in the transformation process. So the semantic reason why objects

exemplify the complex relation at a world iff they stand in the simpler relations at that

world is that the constraints on the exemplification extension of the complex relation

decompose into the right constraints on the exemplification extensions of the simpler

relations it may have as parts. That is why the λ-conversion principle is logically true.
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In such models, the property denoted by E! (having spatiotemporal lo-

cation) has only ordinary objects in its exemplification extension at each

world (recall that O is the set of ordinary objects and constitutes a subset

of the ordinary∗ objects in O∗). Note that these conditions allow the same

ordinary object to appear in the exemplification extension of FI(E!) at

more than one world. Therefore, the property denoted by the defined 1-

place relation constant O! (i.e., [λx3E!x]), which identifies the ‘ordinary’

objects, will have an exemplification extension at each world w that con-

sists of all the objects that exemplify existence at some world or other.25

So at each w (including wα), extw(δI,f(O!)) = O, no matter what the

assignment f. Moreover, the property denoted by the defined 1-place rela-

tion constant A! (i.e., [λx¬3E!x]), which identifies the ‘abstract’ objects,

will have an exemplification extension at each world that consists of all

the special objects in S. Consequently, each set a in the power set of

the set of properties (i.e., each a ∈ P(R1) ) will be in the exemplification

extension of the property denoted by A! in each world, since |a| is an el-

ement of S.26 These facts guarantee that Principle B turns out true: the

assertion that ordinary objects necessarily fail to encode properties (i.e.,

O!x→ 2¬∃F xF ) is true in models satisfying the above constraints, since

no ordinary objects encode properties at any world. If δ(x) ∈ O, then

δ(x) 6∈ A, and so (at every world w) no property r is such that r ∈ δ(x).

In any model M for an Aczel-interpretation satisfying the above con-

straints, the comprehension principle for abstract objects is true. Recall

Principle C:

25To see why, suppose for simplicity that 3 is a primitive modal operator and that

there is a primitive algebraic logical operation POS which is the dual of NEC. Then

the denotation of [λx3E!x] would be defined as: POS(FI(E!)). Constraints on extw
would guarantee that:

extw(POS(FI(E!))) = {o | ∃w′(o ∈ extw′ (FI(E!)))}

So at the actual world, the exemplification extension of the property denoted by O!

consists of all those objects that exemplify existence at some world or other.
26For those readers intimately familiar with the theory, we also need to give an ex-

tension to the primitive relation of identity for the ordinary objects. In more precise

formulations of the proper theory, we employ the distinguished 2-place relation con-

stant =E to denote this relation and Principle A (described in §1) is cast as an axiom

that gives necessary and sufficient conditions for x =E y, namely, that x and y are

both ordinary objects which necessarily exemplify the same properties. To validate

this axiom, we must constrain models M as follows:

M-extw(FI(=E)) = {〈o, o〉 | o ∈ O}, for each w

This validates the axiom of identity for ordinary objects.
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∃x(A!x& ∀F (xF ≡ ϕ)), where ϕ has no free xs.

The reason this axiom is true in a model M satisfying the above con-

straints is that, for any given ϕ, there is an abstract object (i.e., a set of

properties) a in A such that:

(a) |a| ∈ S, and

(b) δI,f(F ) ∈ a iff f satisfiesM ϕ w.r.t. wα (for any assignment f).

Since we have the power set of the set of properties to choose from, we

know that there is a set of properties having as members precisely those

properties that ‘satisfy’ the formula ϕ. Notice that the definition for the

identity of abstract objects (Principle D) is also justified. The definition

says that abstract objects are ‘identical’ iff necessarily, they encode the

same properties. But clearly, in Aczel-interpretations, abstract objects a

and b are sets of properties, and so they are identical iff they have the

same properties as elements. And if a and b have the same properties

as elements, this fact is true at every possible world. So, the semantic

fact that a = b iff ∀w∀r(r ∈ a iff r ∈ b) justifies the object-language

definition that two abstract objects x and y are ‘identical’ iff necessarily,

they encode the same properties.
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