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1. Introduction

In the course of research on modal logic over the past 60 years, it has be-

come traditional to define an essential property in modal terms as follows:

(E) F is essential to x =df 2(E!x→ Fx),

where ‘E!x’ asserts existence and abbreviates ‘∃y(y = x)’. Kit Fine has

developed an intriguing counterexample to (E). He offers the following in-

tuition, concerning Socrates and the singleton set containing just Socrates,

to set up the counterexample (Fine, 1994a, 5):

. . . it lies in the nature of the [set-theoretic] singleton [of Socrates]

to have Socrates as a member even though it does not lie in

the nature of Socrates to belong to the singleton.

Fine notes that if we take on board the usual, uncontroversial principles

of modal set theory, then the asymmetry in natures is not preserved,

for it can be shown that if singleton Socrates has Socrates as a member
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essentially, then Socrates has the property of being a member of single-

ton Socrates essentially. That is, using (E) and modal set theory, one

can prove that the property of being an element of singleton Socrates

(‘[λy y∈{s}]’) is essential to Socrates (‘s’) from the assumption that hav-

ing Socrates as an element (‘[λy s∈y]’) is essential to singleton Socrates

(‘{s}’):

Proof : Suppose [λy s ∈ y] is essential to {s}. Then, by (E)

above, 2(E!{s} → [λy s ∈ y]{s}), and by λ-conversion, it

follows that 2(E!{s} → s ∈ {s}). But, it is a principle of

modal set theory that necessarily, singleton Socrates exists iff

Socrates exists, i.e., 2(E!{s} ≡ E!s). So, 2(E!s → s∈{s}).1
And by λ-conversion, 2(E!s → [λy y ∈ {s}]s). Thus, by (E)

again, [λy y∈{s}] is essential to Socrates.

Thus, (E) and modal set theory lead to a result contrary to the stated

intuition. One cannot accept (E), modal set theory, and that singleton

Socrates essentially has Socrates as an element without also accepting

that Socrates is essentially an element of singleton Socrates.

Although one might conclude that the problem here is with modal set

theory, Fine suggests that the problem goes deeper, and has more to do

with (E) than with modal set theory. He develops a second counterexam-

ple to (E) (1994a, 5):

Consider two objects whose natures are unconnected, say Socrates

and the Eiffel Tower. Then it is necessary that Socrates and

the Tower be distinct. But it is not essential to Socrates that

he be distinct from the Tower; for there is nothing in his nature

which connects him in any special way to it.

To be more explicit about what the problem is, start with the intuition

that there is nothing in the nature of Socrates (‘s’) which connects him

in any way with the Eiffel Tower (‘t’). Fine assumes that if Socrates were

to have the property of being distinct from the Eiffel Tower (‘[λy y 6= t]’)

essentially, then his nature would be connected in some special way with

1This is a consequence of the following inference rule of S5 modal logic: from

2(φ → ψ) and 2(φ ≡ χ), we may infer 2(χ → ψ). Clearly this is valid, for suppose

ψ is true at every world φ is true and that φ and χ are true at exactly the same

worlds. Then pick an arbitrary world w and assume χ is true there. Then, clearly, φ

is true there, and so ψ is true there. Since w was arbitrary, we have established that

2(χ→ ψ) from our two premises.
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the Eiffel Tower. He then concludes that the property of being distinct

from the Eiffel Tower is not essential to Socrates. But one can show, using

(E) and the necessity of identity, that being distinct from the Eiffel Tower

is a property that is essential to Socrates, contrary to intuition:

Let t = Eiffel Tower and s = Socrates. Let H = [λy y 6= t]. Now

in S5, from the theorem that x= y → 2x= y, one can derive that

x 6= y → 2x 6= y.2 So, given s 6= t, it follows that 2(s 6= t). By

λ-conversion, it follows that: 2Hs. A fortiori , 2(E!s→ Hs). And

so by (E), H is essential to Socrates.

Thus we can use (E) to prove something counterintuitive.

In response to these puzzles, Fine (1995, 2000) develops an interesting

language, logic, and semantics of essence. The language involves special

1-place rigid predicates, a 2-place dependence predicate, an essentialist

operator symbol, and new formulas to express the idea that a formula

φ is true in virtue of the nature of objects which F . The logic is an

extension of first-order logic with new axioms and rules to govern the

new predicates and formulas. Just how much of this apparatus is needed

to address the two specific puzzles discussed above, as opposed to other

intuitions concerning the logic of essence which Fine brings to bear in

those papers, is unclear.

In any case, these counterexamples reveal an important disconnect

between the notions of essence and modality, as woven together by defi-

nition (E). I think Fine is quite justified in developing a response to the

puzzles which redefines the relationship between these fundamental no-

tions. In the present paper, however, I diagnose the puzzles surrounding

(E) differently, and propose an alternative set of distinctions that avoid

the unintuitive consequences.3 The system I use for the analysis was not

developed specifically for these puzzles, but was developed independently,

as a general metaphysical framework.

2Assume it is a theorem that x=y → 2x=y. So by the Rule of Necessitation, it is

a theorem that: 2[x=y → 2x=y]. Now by the modal theorem, 2[φ → ψ] → (3φ →
3ψ), it follows that (A) 3x=y → 32x=y. Now we want to show: x 6= y → 2x 6= y,

i.e., by contraposition and modal negation, 3x=y → x=y. So assume the antecedent

3x= y (to show x= y). Then by (A), it follows that 32x= y. But, in S5, 32x= y

implies 2x=y, and this in turn implies x=y, which is what we had to show.
3I do not, however, try to account for the other intuitions Fine brings to bear in

the later papers (Fine 1995, 2000), when he develops the full, new apparatus in the

logic of essence.
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Moreover, the present analysis rejects one of the principles which Fine

accepts. Recall that Fine proposes counterexamples only to the right-to-

left direction of the biconditional resulting from (E). That is, he rejects

the idea that 2(E!x → Fx) implies that F is essential to x, but accepts

the idea that if F is essential to x then 2(E!x → Fx). He says (1994a,

4):

I accept that if an object essentially has a certain property,

then it is necessary that it has the property (or has the prop-

erty if it exists). . .

But the present framework offers distinctions which suggest this claim

should be qualified. That is, the distinctions drawn in what follows sug-

gest that it is a mistake to suppose that x has F essentially always implies

x has F necessarily . We will discover notions of essence and modality on

which they completely come apart.

In what follows, we shall cast our modal definitions of ‘essential prop-

erty’ within an axiomatic metaphysics, namely, the theory of abstract

objects developed and applied in Zalta 1983, 1988a, 1993, and elsewhere.

This theory, hereafter labeled O, will provide us with a conception of ab-

stract objects, and will be instrumental in the discussion of Fine’s first

counterexample. However, we shall see that Fine’s second counterexam-

ple can be addressed solely within the quantified modal logic in which

O has been couched. The central elements of that logic have been ex-

plicitly defended by Linsky & Zalta (1994, 1996), and more recently by

Williamson (1998, 1999).

2. Metaphysical Foundations4

So as to make the present paper self-contained, we review here the most

important elements of the theory of abstract objects O. In this section,

we present and discuss the language, logic, proper axioms/theorems, and

applications of O. In terms of an overview, it should be said that O quan-

tifies over two domains: a domain of objects consisting of abstract and

ordinary objects, and a domain of n-place relations. The most important

principles of O assert existence (comprehension) and identity conditions

4This section has been greatly expanded at the request of the editors of this journal.

Readers already familiar with the theory may wish to skip to the next section. However,

many of the technical terms used in subsequent sections will be introduced and defined

here.
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for abstract objects, existence and identity conditions for n-place rela-

tions, and identity conditions for ordinary objects.

2.1 The Language and Logic of O

The theory of abstract objects O is couched in a second-order modal lan-

guage in which there are variables and constants for individuals as well

as variables and constants for n-place relations (n ≥ 0). To state O, we

need to modify the language of the standard second-order modal predicate

calculus only by including a second kind of atomic formula. In addition

to the usual atomic formulas of the form ‘Fnx1 . . . xn’ (with the 1-place

case being formulas of the form F 1x), we require formulas of the form

‘xF 1’. (We henceforth suppress the superscript on relation terms when

the arity is clear.) These latter express the idea that an (abstract) object

x encodes property F . The notion of encoding derives from the notion

of ‘determination’ used in Mally 1912, where it is suggested that abstract

objects have their properties in one of two ways: an abstract object x may

have a property F either by exemplifying F or by being determined by

F . Mally’s idea is that every group of properties determines an abstract

object, but that such an abstract object need not exemplify the properties

which determine it. For example, the properties goldenness and moun-

tainhood determine an abstract object which exemplifies neither of these

two properties. The intuition here is that the properties determining an

abstract object are part of its nature and govern the conception of that

object. Indeed, for Mally, there is nothing more to the nature of an ab-

stract object than the properties by which it is to be conceived. In what

follows, we shall say that an abstract object encodes property F instead

of saying that F determines x.

Since encoding is a way of having a property, it constitutes a kind of

predication. That is why we introduce ‘xF ’ as an atomic mode of pred-

ication, to express the fact that x encodes F . We rigorously distinguish

this from the traditional form of predication, namely, that x exemplifies

F (‘Fx’). (More generally, we read ‘Fnx1 . . . xn’ as x1, . . . , xn exemplify

or stand in the relation Fn.) For example, on this view, Sherlock Holmes

encodes the properties of being a detective, living in London, etc. These

are the properties by which we conceive of him, and thus are part of his

nature, but on the present view, he doesn’t exemplify these properties. He

exemplifies, by contrast, properties like being fictional, being admired by
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modern criminologists, etc., as well as a variety of properties that things

have in virtue of being abstract (more on this below). In general, fictional

objects will be said to encode the properties attributed to them in their

respective stories. To take another class of examples, mathematical ob-

jects will encode the mathematical properties attributed to them in their

respective theories. By contrast, they exemplify properties like being ab-

stract, not having mass, not having a texture, being conceived by Euler,

etc. Note that by thinking of encoding as a second mode of predication,

predication in ordinary language becomes ambiguous relative to a logic

that distinguishes xF and Fx.

The principal axiom for abstract objects, described in more detail

below, is a comprehension principle that asserts the conditions under

which abstract objects exist and encode properties: for any expressible

condition φ that is satisfiable (in Tarski’s sense) by properties F , there

exists an abstract object that encodes exactly the properties F satisfying

φ.

Consider, then, the second-order, modal language that can be formed

with Fnx1 . . . xn and xF 1 as a basis, and where the other logical notions

are ¬ (not), → (if-then), ∀ (every), and 2 (necessarily). Identity is not

primitive in this language, but will instead be defined below for both

objects and relations. The language is further enhanced with rigid definite

descriptions (complex object terms) and λ-expressions (complex relation

terms). The latter are formulated in the usual way, but with the proviso

that encoding subformulas may not appear in any formula appearing in

these λ-expressions. The reason for this will be discussed more fully,

but for now, it should suffice to note that λ-expressions with encoding

subformulas, such as [λx ∃F (xF &¬Fx)], lead to paradox in the presence

of the strong existence axiom for abstract objects. The loss of encoding

formulas from λ-expressions is not a serious one; we may formulate all the

first-order and second-order definable λ-expressions that are available in

classical second-order logic.

Using this background language, a distinguished 1-place relation E!x

(‘x is concrete’) is used to define the properties of being ordinary (‘O!’)

and being abstract (‘A!’):

O! =df [λx3E!x]

A! =df [λx ¬3E!x]

In other words, ordinary objects are possibly concrete, while abstract



7 Essence and Modality

objects are not the kind of thing that could be concrete. Clearly, this pair

of properties partitions the domain of objects into two mutually exclusive,

and jointly exhaustive, subdomains.

We define identity separately for these two subdomains. Identity for

ordinary objects (‘=E ’) may be defined as follows:

x=E y =df O!x&O!y & 2∀F (Fx ≡ Fy)

In other words, objects x and y are identicalE whenever both x and y are

ordinary objects that necessarily exemplify the same properties. Identity

for abstract objects, and a more general notion of identity (‘x= y’), can

be defined disjunctively:

x=y =df x=E y ∨ A!x&A!y&2∀F (xF ≡ yF )

Given our definition of =E , this implies that abstract objects are identical

whenever they necessarily encode the same properties.

Identity for n-place relations is also definable. Consider the following

definition of property identity (i.e., identity for n-place relations where

n = 1):

F =G =df 2∀x(xF ≡ xG)

Identity conditions for n-place relations (n ≥ 2) and for propositions

(n = 0) can both be defined in terms of this definition, but since they play

no role in what follows, they will not be repeated here. It should suffice

to say that all our definitions for n-place relation identity (n ≥ 0) are

consistent with the idea that necessarily equivalent relations (properties,

propositions) may be distinct.

Our system is governed by classical S5 quantified modal logic, includ-

ing the first- and second-order Barcan formulas. This logic is modified

only so as to admit the two kinds of complex terms we’ve added to the

language: it includes the classical logical axiom governing rigid definite

descriptions and the logical axioms governing λ-expressions. The logical

axiom for definite descriptions is just the standard analysis from Russell

1905 configured for the formal descriptions appearing in the system as

complex individual terms:5

5This axiom, which asserts the usual truth conditions for an atomic formula ψ con-

taining a definite description of the form ıxφ, should be regarded as a non-modal axiom

and therefore not subject to the Rule of Necessitation, given that the descriptions are

to be interpreted rigidly. It is an example of a logical truth which is not necessary. See

Zalta 1988b.
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Where ψ is any atomic formula or identity formula containing one

free occurrence of the variable y, φ is any formula in which x may

or may not be free, and χτν is the result of replacing the variable ν

by the term τ everywhere in χ, the following is an axiom:

ψıxφy ≡ ∃x(φ& ∀z(φzx → z=x) & ψxy ),

To see some simple examples, let ψ be either Rby or b=y and φ be Gx.

Then the following are instances of the logical axiom for descriptions:

RbıxGx ≡ ∃x(Gx& ∀z(Gz → z=x) &Rbx)

b= ıxGx ≡ ∃x(Gx& ∀z(Gz → z=x) & b=x)

The logic for λ-expressions is also classical, and the principal axiom gov-

erning these expressions is:6

[λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,ynx1,...,xn
(φ free of descriptions)

This principle, also known as λ-conversion, was used in the reasoning

that was invoked in developing Fine’s counterexamples to the definition

of essence in terms of modality. Note that the usual second-order com-

prehension schema for relations is easily derivable from λ-conversion, by

n applications of the Rule of Universal Generalization, an application of

the Rule of Necessitation, and Existential Generalization:

∃Fn2∀y1 . . . ∀yn(Fny1 . . . yn ≡ φ), where φ has no free Fns and no

encoding subformulas.

This axiom ensures that there is a rich algebra of properties for abstract

objects to encode, once one’s favorite primitive properties and relations

are added to the system.

One interesting group of properties will play an important role in what

follows, namely, those governed by the following instance of λ-conversion,

where p is a variable ranging over 0-place relations:

[λy p]x ≡ p
6There are two other logical axioms for λ-expressions. They are:

[λx1 . . . xn Fnx1 . . . xn] = Fn (for ‘atomic’ λ-expressions)

[λx1 . . . xn φ] = [λx′1 . . . x
′
n φ
′] (φ, φ′ alphabetic variants in x, x′)
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This asserts that for any proposition p and object x, x exemplifies the

propositional property being such that p ([λy p]) if and only if p.

Our logic is completed by two axioms. One is a new logical axiom

included to handle the modal logic of encoding: 3xF → 2xF . This

captures the idea that the properties an abstract object encodes are rigidly

encoded. Since the properties an abstract object encodes make up the

nature of that object, this axiom ensures that each abstract object has

a nature which doesn’t vary from world to world. The second and final

axiom of the logic is substitution of identicals. Though α=α is derivable

as a theorem (where α is any object variable x or relation variable F ),

unrestricted substitution of identicals must be asserted as an axiom. This

axiom, and the definition of ‘=’ for individual terms and predicates, form

the theory of identity that is available as part of O.7

2.2 Features of the Logic

It would serve well to mention a few facts about the above logic that

will play a role in what follows. The modal logic is the simplest possible

formulation of S5, with a fixed domain of objects and no accessibility re-

lation needed in the semantics. Thus, it is a theorem of this logic that

7The semantics for the language and logic just described is pretty much what one

would expect for an S5 modal system having both first- and second-order Barcan for-

mulas and in which all the terms are rigid. There is a fixed domain of objects and a

fixed domain of n-place relations (for each n). An ‘exemplification extension’ function

maps each n-place relation, at each world, to the set of n-tuples of objects exemplify-

ing that relation at that world. An ‘encoding extension’ function maps each 1-place

relation to the set of objects which encode that relation. (Encoding is independent

of the worlds.) If we ignore the rigidly denoting constants and complex terms, then

truth (i.e., satisfaction relative to an assignment to the variables) can be defined in

a very simple way, without an accessibility relation. Given some assignment f to the

variables:

1. f satisfies Fnx1 . . . xn at world w iff the n-tuple of objects f assigns to

x1, . . . , xn is in the exemplification extension, at w, of the relation f assigns

to Fn.

2. f satisfies xF at w iff the object f assigns to x is in the encoding extension of

the property f assigns to F .

3. etc. (for ¬φ, φ→ ψ, and ∀αφ)

4. f satisfies 2φ at w iff for every world w′, f satisfies φ at w′.

Of course, the notion of denotation must be simultaneously defined with that of sat-

isfaction, so as to handle formulas with constants, primitive predicates, descriptions,

and λ-expressions, but we omit these definitions here for the sake of simplicity.
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everything necessarily exists, i.e., ∀x2∃y(y= x). Ordinary and abstract

objects exist at all worlds, given the one fixed domain of objects; ob-

jects (both ordinary and abstract) therefore exemplify properties at every

world. However, as shown in Linsky & Zalta 1994, this is consistent with

the idea of there being contingent ordinary objects. Instead of defining

the contingency of ordinary objects in terms of their existing at some

worlds but not at others, the contingency of ordinary objects is defined in

terms of their being concrete at some worlds and not at others. Thus, the

present system is to be contrasted with those systems in which objects

disappear from the range of the quantifiers whenever they disappear from

physical space. In the present system, nothing of the sort happens. The

quantifiers range over everything whatsoever.

To make this even more vivid, consider what happens when, for some

property F , both ¬∃xFx and 3∃xFx are true. For example, suppose

there are no aliens but there might have been. Then, the Barcan for-

mula guarantees that something is possibly an alien (∃x3Fx). Consider

an arbitrary such object. Note that it is not required that this object

be an alien, but only that it have the modal property of possibly being

an alien. One may consistently assert that this object is not in fact an

alien, that it is non-concrete, but that in worlds where it is an alien, it is

concrete. Thus, although it is an (existing, actual) ordinary object, it is

a contingently non-concrete one. So, whereas Lewis (1986) might argue

that there exist concrete but non-actual (possible) aliens, in the present

system, such ‘mere possibilia’ are treated as existing, actual objects which

are not concrete but which might have been concrete. Note that ordinary

concrete objects, such as the rocks and tables of this world, are concrete

here but nonconcrete at other worlds. Our system therefore offers an

actualist interpretation of the simplest quantified modal logic. As previ-

ously mentioned, this view was defended by Linsky & Zalta (1994, 1996)

and more recently, by Williamson (1998, 1999).

There is one other important feature of the logic to note. Since our

logic is classical, abstract and ordinary objects both must exemplify a

complete complement of properties at every world. In other words, given

any property F and its negation F̄ (= [λx ¬Fx]), and any object x,

the laws of classical logic and λ-conversion ensure 2(Fx ∨ F̄ x). By

contrast, an abstract object x may be incomplete with respect to its

encoded properties: there may be properties F for which neither xF

nor xF̄ . For example, suppose there is an abstract object that encodes
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exactly the properties F such that according to the Conan Doyle novels,

Sherlock Holmes is F . Such an object will encode the properties of being

a detective, living at 221B Baker Street, being brilliant, etc. But it won’t

encode either the property of having a mole on one’s left foot or the

negation of this property. Despite its incompleteness with respect to

encoded properties, this abstract object is complete with respect to its

exemplified properties.

2.3 The Proper Axioms of O

O has two proper axioms:

O!x→ 2¬∃F xF

∃x(A!x& ∀F (xF ≡ φ)), where φ has no free xs

The first tells us that ordinary objects necessarily fail to encode properties.

The second is a comprehension schema for abstract objects which asserts

the existence of an abstract object corresponding to any condition on

properties expressible in the language.

To get some sense of the variety of abstract objects which exist given

the comprehension schema, consider the following instances, in which ‘a’,

‘R’, ‘S’, and ‘h’ denote respectively, say, Aristotle, being round, being

square, and Holmes:

∃x(A!x& ∀F (xF ≡ Fa))

∃x(A!x& ∀F (xF ≡ F =R ∨ F =S))

∃x(A!x& ∀F (xF ≡ According to the Conan Doyle stories, Fh))

The first asserts the existence of an abstract object which encodes exactly

the properties Aristotle exemplifies. The second asserts an object that

encodes exactly two properties: being round and being square. The third

asserts an object that encodes all the properties F which satisfy the open

sentence ‘According to the Conan Doyle stories, Holmes exemplifies F ’.

(Assume for now that ‘According to the Conan Doyle stories, p’ can be

given an analysis in O.)

Note that for each instance of comprehension, we may formulate a

proper description of the form:

ıx(A!x& ∀F (xF ≡ φ))
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Such descriptions are ‘proper’ in the sense that no matter what φ (with

no free xs) is chosen, O guarantees that the resulting description has a

denotation. For (a) the comprehension schema guarantees there is an ab-

stract object encoding exactly the properties satisfying φ, and (b) there

there couldn’t be two distinct such objects, for the identity condition on

abstract objects requires that distinct abstract objects differ with respect

to at least one encoded property. So each of the above instances of com-

prehension convert into the following proper descriptions:

ıx(A!x& ∀F (xF ≡ Fa))

ıx(A!x& ∀F (xF ≡ F =R ∨ F =S))

ıx(A!x& ∀F (xF ≡ According to the Conan Doyle stories, Fh))

It should also be easy to see that the object denoted by a description

of the form ıx(A!x & ∀F (xF ≡ φ)) encodes a property G if and only G

satisfies φ. This in fact is a proper theorem schema of O.

Though we’ve now seen how O asserts existence and identity con-

ditions for abstract objects, as well as conditions under which abstract

objects encode properties, little has been said thus far as to what proper-

ties abstract objects exemplify, other than the property of being abstract

([λx¬3E!x]). Let us therefore digress momentarily to describe the kinds

of properties that abstract objects exemplify. First, abstract objects ex-

emplify the (modal) negations of properties that they (necessarily) fail to

exemplify. It seems reasonable to suppose that abstract objects necessar-

ily fail to exemplify the properties of having a shape, being colored, having

a texture, having mass, having a length, being a planet, being a table,

etc. The idea here is clear enough: these are all concreteness-entailing

(‘CE ’) properties.

CE (F ) =df 2∀x(Fx→ E!x)

Given this definition, we may prove as a theorem that abstract objects

necessarily fail to exemplify concreteness-entailing properties:8

`O ∀F∀x[(CE (F ) &A!x)→ 2¬Fx]

8For the proof of the theorem, suppose P is concreteness-entailing and that a is

abstract. Suppose, for reductio, that in some world, say w1, a exemplifies P . So, by

the definition of concreteness-entailing, a exemplifies being concrete at w1. But, by

definition of abstractness, a necessarily fails to exemplify being concrete, so a fails to

exemplify being concrete in w1. Contradiction.



13 Essence and Modality

It therefore follows that abstract objects all necessarily exemplify the

negations of these concreteness-entailing properties, and exemplify their

modal negations as well. In formal terms:

`O ∀F∀x((CE (F ) &A!x)→ 2[λz ¬Fz]x)

`O ∀F∀x((CE (F ) &A!x)→ [λz 2¬Fz]x)

Thus, if being John’s sister, being a talking donkey, being a million carat

diamond, etc. are concreteness-entailing, then we know that abstract ob-

jects fail to exemplify such properties as possibly being John’s sister,

possibly being a talking donkey, etc., and so exemplify such properties

as not possibly being John’s sister, not possibly being a talking donkey,

etc. Of course, we cannot offer a complete list of concreteness-entailing

properties, but in what follows, we shall often assert what we take to be

reasonable claims to the effect that certain properties are concreteness-

entailing, and that consequently, abstract objects exemplify the modal

negations of these properties.

In addition to these facts, there is another important group of proper-

ties that abstract objects exemplify. As noted above, abstract objects con-

tingently exemplify various intentional properties, such as being thought

about by person y, being admired by person z, being worshipped by so-

ciety z, etc. Such claims may be consistently added to our metaphysics.

We conclude this subsection by discussing some logical subtleties of O
which arise in the context of our two strong existence principles: the com-

prehension principle for abstract objects and the comprehension principle

for relations. The consistency of O has been established by two different

kinds of models, Scott-models (Zalta 1983, Appendix) and Aczel-models

(Zalta 1999). Consistency is secured by the one restriction on the for-

mation of λ-expressions noted earlier, namely, that encoding subformulas

may not appear in the matrix of such expressions. To see why, suppose

the predicate [λx ∃F (xF & ¬Fx)] were formulable in the system and de-

noted a property. For simplicity, call this property K. Then consider the

instance of comprehension for abstract objects that asserts the existence

of an object that encodes just K and no other properties. Call such an

object a. Now ask the question, does a exemplify K? If we suppose it

does, then (by λ-conversion) there is a property it encodes which it fails to

exemplify. Since it encodes only K, it must therefore fail to exemplify K,

contrary to hypothesis. If we suppose it doesn’t, then there is a property

it encodes, namely, K, which it fails to exemplify. So (by λ-conversion),
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it does exemplify K, again contrary to assumption. This contradiction,

and others like it, are avoided by banishing encoding subformulas from

λ-expressions.9

Note that as a result of this constraint on λ-expressions, the general

notion of identity (x= y), may not appear in λ-expressions. When the

defined notion of identity is expanded into primitive notation, it contains

encoding subformulas.10 This turns out to be a fortunate result, since

we cannot suppose that there is a distinct property [λx x = b] for each

distinct abstract object b. The reason why can be sketched informally.

Intuitively, the comprehension axiom for abstract objects ensures that

there is an abstract object in the domain for each (expressible) set of

properties. In standard models of O, this principle can be made true by

requiring that the domain of abstract objects be equivalent in size to the

power set of the set of properties. But by an argument similar to that used

in Cantor’s theorem, there cannot be a distinct property, [λx x= b], for

each distinct abstract object b in the domain, for otherwise there would

be a one-to-one mapping from the power set of the set of properties into

a subset of the set of properties. So though we may assert that various

abstract objects satisfy the condition x=y, the system does not guarantee

that they stand in a relation thereby.

However, [λxy x=E y] is a well-formed expression and denotes a rela-

tion.11 It is worth remembering that identityE is a classical, Leibnizian

notion of identity, as it applies to ordinary objects. This relation will play

a role in what follows, in the discussion of Fine’s second counterexample.

9See Zalta 1983, and 1999, for a fuller discussion. A paradox of this kind was first

noted in Clark 1978, and was discussed in Rapaport 1978.
10This lends some validity to Kant’s claim that existence is not a property or predi-

cate, assuming existence is given its usual definition in terms of the formula ∃y(y=x).

The λ-expression [λx∃y(y=x)] is not well-formed—the identity sign is defined in terms

of encoding subformulas. Of course, there is a restricted notion of existence that is a

property, namely, [λx ∃y(y=E x)]. But this is not a general notion of existence, since

it doesn’t apply to abstract objects. The fact is that the general notion of existence

can’t be turned into a predicate.
11This is not to imply that all well-formed λ-expressions denote relations. The

only exceptions are those containing improper, non-denoting definite descriptions. For

example, if ıxGx is a description that doesn’t denote, then the expression [λyRyıxGx]

will not have a denotation either.
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2.4 Applications of O

O has been applied in a variety of contexts of philosophical analysis. Be-

fore turning to the application most relevant to the present paper, namely,

the analysis of mathematical language, we mention five applications that

may be of interest to readers encountering this material for the first time;

three of these play a brief role later in this section.

(1) The most important principles of the theory of possible worlds may

be derived in O from the following two definitions, where the variable ‘w’

used in the second definition ranges over the objects defined by the first

(Zalta 1993):

PossibleWorld(x) =df 3∀p(x |=p ≡ p)

p is true at w (‘w |= p’) =df w[λy p]

(2) The Fregean notion ‘the number of (ordinary) Gs’ (#G) may be ana-

lyzed in terms of the following definition, where F ≈E G is the equivalence

condition asserting that there is a one-to-one correspondence between the

ordinary objects exemplifying F and G:

#G =df ıx(A!x& ∀F (xF ≡ F ≈E G))

This definition plays a role in reconstructing Frege’s definition of prede-

cessor within O. Such reconstructions of Fregean definitions lead to the

recovery of a consistent fragment of Frege 1893/1903, which includes the

Peano-Dedekind axioms for number theory as theorems (Zalta 1999). (3)

Where G ⇒ F indicates that G necessarily implies F (i.e., 2∀x(Gx →
Fx)), the Platonic Form of G (ΦG) may be identified as:

ΦG =df ıx(A!x& ∀F (xF ≡ G⇒ F ))

From this definition, the main principles of Plato’s theory of Forms be-

come derivable in O (Pelletier & Zalta 2000). (4) The Leibnizian indi-

vidual concept ca of a given ordinary object a (e.g., Aristotle), may be

identified as:

ca =df ıx(A!x& ∀F (xF ≡ Fa))

This is one of the definitions by which Leibniz’s modal metaphysics can

be assimilated to his nonmodal calculus of concepts (Zalta 2000b). (5)

Finally, a consistent analysis of the Fregean notion ‘the extension of the

concept G’ (εG) may be given in terms of the following definitions (An-

derson & Zalta 2004):
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εG =df ıx(A!x& ∀F (xF ≡ ∀y(Fy ≡ Gy)))

y ∈ x =df ∃F (x=εF & Fy)

From these definitions, a consistent version of Frege’s Basic Law V be-

comes derivable in O.

Since a proper treatment of Fine’s first counterexample, concerning

Socrates and singleton Socrates, requires a philosophical understanding

of mathematical objects, it is important to turn now to a discussion of

how mathematical theories and mathematical objects have been analyzed

in O. On the approach taken here, the data to be represented consists of

the ordinary (though often formal) mathematical claims made by either

mathematicians or nonmathematicians. From the present perspective, or-

dinary mathematical claims occur either (a) explicitly or implicitly in the

context of some mathematical theory t, or (b) in the context of ‘natu-

ral, naive mathematics’, such as the ordinary naive geometrical claims,

ordinary number statements appealing to the ‘natural’ numbers, and or-

dinary naive statements about sets or classes (i.e., extensions of ordinary

properties). Thus, whenever we attempt to analyze some ordinary math-

ematical claim, we must decide whether we have a case of (a) or (b). We

shall assume that (a) and (b) are exclusive possibilities, and that any

ambiguity must be resolved in one way or the other.

In O, we represent mathematical claims of type (b) by way of the

applications (2), (3), and (5) mentioned above. For example, The Triangle

of natural, naive geometry would be represented by the Platonic Form of

triangularity ΦT (which encodes all and only the properties necessarily

implied by the property of being a triangle). The number of planets would

be represented as the Fregean number #P (which encodes all and only the

properties in one-to-one correspondence on the ordinary objects with the

property of being a planet). And the class of humans, if discussed naively

(and not in the context of some modern set theory), would be represented

as εH, i.e., as the abstract object which encodes all and only the properties

which are materially equivalent to the property of being human (‘H’).

Thus, singleton Socrates, if discussed naively in this same way, would be

represented as ε[λx x=E s], i.e., as the abstract object which encodes all

and only the properties which are materially equivalent to the property

being identicalE to Socrates. Although it is nearly certain that Fine wasn’t

talking about this object when discussing his counterexample to (E), we

will nevertheless briefly mention it at the end of the paper, insofar as it
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constitutes one possible reconstruction of Fine’s counterexample.

However, O offers a general method for representing mathematical

claims of type (a). In what follows, we shall concern ourselves only with

(the representation of) the well-defined individual terms appearing in

mathematical theories, i.e., names and proper definite descriptions (or

function terms) which appear in contexts presupposing some theoreti-

cal mathematics and which uniquely denote mathematical individuals.12

Now when we encounter mathematical terms such as ‘2’, ‘23’, ‘2+3’, ‘3/4’,

‘π’, ‘∅’, ℵ0, etc., within ordinary mathematical contexts, we have to iden-

tify the mathematical theory that is assumed in that context, whether it

is Peano Number Theory (N), Rational Number Theory (Q), Real Num-

ber Theory (<), Zermelo-Fraenkel set theory (ZF), Zermelo-Fraenkel set

theory with the Axiom of Choice (ZFC), NBG, etc. Thus, ordinary, theo-

retical mathematical terms such as ‘2’, ‘ω’, ‘3/4’, ‘{∅}’ etc., are assumed

to be ambiguous until the relevant mathematical theory is identified (or,

at the very least, until the principles which govern the terms are identi-

fied). These ordinary terms are to be represented within O by importing

them into the language of O and indexing them to their respective math-

ematical theories. O, therefore, will include such expressions as 2N, 2<,

∅ZF, ∅ZFC, {∅ZF}, etc. Strictly speaking, functional notation and opera-

tors, such as ( ) + ( ), ( )( ), {. . .}, etc., should be indexed as well, but we

sometimes omit this for purposes of readability when the context is clear.

Thus, ‘singleton Socrates’ (‘{s}’), if used within the context that assumes

a modern set theory including urelements, would be represented in O by

indexing it to the relevant set theory.

Now these representations of ordinary mathematical expressions in O
are governed by a very general principle. This principle was put forward as

part of the analysis of mathematical theories developed in Linsky & Zalta

1995, Zalta 2000a, and Linsky & Zalta 2006. In those works, mathemati-

cal theories are analyzed not syntactically but rather as abstract entities

encoding propositional content. In particular, a mathematical theory T

is identified as an abstract object that encodes propositional properties

of the form being such that p (‘[λy p]’). (Propositional properties were

discussed briefly in Section 2.1.) We therefore say that a proposition p is

12O has also been applied to the analysis of mathematical relations, such as the

predecessor relation of Peano Number Theory, the membership relation of ZF, the

membership relation of ZFC, etc. See Zalta 2000a. But this further application of O
will play no role in what follows.
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true according to mathematical theory T (‘T |= p’) just in case T encodes

[λy p]:

T |= p =df T[λy p]

In what follows, we assume that mathematical theories are to be formu-

lated in a classical second-order (modal) predicate calculus with descrip-

tions and λ-expressions, i.e., in a language just like the one developed

here but without encoding formulas. Therefore, all the λ-expressions for-

mulable in the language of T are consistent with O’s requirement that

λ-expressions have no encoding subformulas. Moreover, sentences of T

become sentences of O simply by indexing the terms of T as outlined

above. We indicate below how these sentences of T become assertible in

O when so indexed.

We turn next to the principle which guarantees that every well-defined

term of a mathematical theory is represented in O as denoting a unique

abstract object. Where T is any mathematical theory, κ is any name

or proper description (or function term) appearing in T, and κT is the

representation of κ in O, the following theoretical identification principle

is asserted to hold in O:

Theoretical Identification Principle:

κT = ıx(A!x& ∀F (xF ≡ T |=FκT))

This asserts that the object κ of theory T is the abstract object which

encodes just the properties F exemplified by κT according to theory T.

To take an example instance of this principle, the empty set of ZF is

identified as the abstract object that encodes just the properties F that

the empty set of ZF exemplifies according to ZF:

∅ZF = ıx(A!x& ∀F (xF ≡ ZF |=F∅ZF))

A few words of explanation are in order.

Clearly, the Theoretical Identification Principle is not a definition of

κT, since that term appears on both sides of the identity sign. Rather,

the idea is that it gives us a principled way to identify a mathematical

object x relative to a fixed group of sentences of the form T |= Fx. These

latter sentences become assertible in O in the presence of the following

importation principle:

Metatheoretic Importation Principle:

Where φ∗ is the result of replacing κ by κT everywhere in φ, then:
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If `T φ, then `O T |= φ∗

In other words, T |= φ∗ becomes an assertible sentence of O when φ is a

theorem of T.13 Note that T |= φ∗ may be reasonably seen as an analytic

truth of O, when φ is a theorem of T.

To take some simple examples. Consider the following theorems of ZF

and <:

`ZF ∅ ∈ {∅}

`< 2 ≤ π

So by the Metatheoretic Importation Principle, the following are theorems

of O:

ZF |= ∅ZF ∈ {∅ZF}

< |= 2< ≤ π<

From the point of view of O, the claims of mathematics which are not

prefixed by the theory operator are not true. That is, the following two

claims, and the others like them, are neither assertible nor assumed true

in O:

∅ZF ∈ {∅ZF}

2< ≤ π<

Indeed, we regard these representations as false, for the present view is

that mathematical objects encode rather than exemplify their mathemat-

ical properties. It should be noted, however, that O does offers true

13Strictly speaking, this imports T |= φ∗ as an axiom of O (though see the next

remark in the text concerning its analyticity). In previous work (Linsky & Zalta 1995,

Zalta 2000a), we imported only the axioms of T instead of all the theorems of T. We

used a special principle to derive claims of the form T |= φ∗ for those φ which were

derived theorems of T. That is, instead of the Metatheoretic Importation Principle,

we employed a Rule of Closure, which allowed us to infer (in O) that T |= q whenever

T |= p1, . . . , T |= pn and {p1, . . . , pn} `O q. However, the present importation pro-

cedure is simpler and has an added virtue: it guarantees that mathematical objects

will encode only properties expressible in their governing theory, for only claims ex-

pressible in T get imported. Given our current procedure, it is clear that the following

claim doesn’t become assertible in O: according to T, κT exemplifies the property of

being such that either John is happy or John is not happy. Though κT is conceived

through all the properties attributed to it in T (including purely logical ones), it is not

conceived by way of properties which can’t be expressed in T.
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readings of ordinary theoretical mathematical claims such as the claim

of ZF that “∅ is an element of {∅}” and the claim of < that “2 is less

than or equal to π.” Given a background logic with two modes of predi-

cation, these ordinary theoretical claims of mathematics become ambigu-

ous. Though we shall not go into the matter in here, there is a procedure

for formulating the encoding readings on which these ordinary claims are

true (Zalta 2000a). Some of these true readings will mentioned below.

But now we must focus on an important group of claims which are

derivable from the above theorems of ZF and < and whose transformations

can be asserted O. Note that the following are also theorems of those

theories, respectively:

`ZF [λx x ∈ {∅}]∅

`< [λx x ≤ π]2

It therefore follows, by the Metatheoretic Importation Principle, that the

following two claims are theorems of O:

ZF |= [λx x ∈ {∅ZF}]∅ZF (η)

< |= [λx x ≤ π<]2< (θ)

The first sentence asserts that according to ZF, the ZF-empty set ex-

emplifies the property of being an element of the (ZF-)singleton of the

ZF-empty set. The second asserts that according to real number theory,

the real number 2 exemplifies the property of being less than or equal to

the real number π.

Finally, we may infer from these results some facts about the prop-

erties that ∅ZF and 2< encode. Note that the following is an immediate

consequence of the Theoretical Identification Principle:

Equivalence Theorem:

κTF ≡ T |=FκT

In other words, mathematical objects encode all and only the properties

they exemplify according to their governing mathematical theory. Here

are two instances of this theorem:

∅ZFF ≡ ZF |=F∅ZF

2<F ≡ < |= F2<
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From these two instances, and from (η) and (θ), we may conclude:

∅ZF[λx x ∈ {∅ZF}]

2<[λx x ≤ π<]

The first asserts that the ZF-empty set encodes the property of being an

element of the (ZF-)singleton of the ZF-empty set. The second asserts

that the real number 2 encodes the property of being less than or equal to

the real number π. The Equivalence Theorem therefore guarantees that

mathematical objects encode all and only the mathematical properties

attributed to them in their governing theories.

Reasoning analogous to the above will play a role in what follows.

We shall analyze ‘singleton Socrates’ as a theoretical term of Modal Set

Theory with Urelements (= M), but where ‘Socrates’ is a nonmathemat-

ical term not subject to indexing or the above Theoretical Principle of

Identification when represented in O. We shall then be able to deduce

that the M-singleton of Socrates encodes the property of having Socrates

as an element. But Socrates provably neither (a) encodes any properties,

nor (b) exemplifies any properties in virtue of the properties encoded by

the M-singleton of Socrates, nor (c) exemplifies any properties abstracted

from the properties attributed to the M-singleton of Socrates in M. This

will be discussed in more detail in Section 5.

3. Essence, Modality, and Ordinary Objects

It is clear from the foregoing that in our metaphysical foundations, there

are two fundamentally different kinds of objects, abstract objects and

ordinary objects, constituting mutually exclusive domains. Whereas or-

dinary objects exemplify their properties in the classical way, abstract

objects are the kind of object which can both encode and exemplify prop-

erties. Such a basic distinction in kinds of objects merits a distinction in

the notion of ‘essential property’ that applies to each kind. It is therefore

natural to suppose that the notion of ‘essential property’ that is definable

for abstract objects differs from the notion definable for ordinary objects.

Accordingly, we shall divide our discussion of essential properties into

two parts. In this section, we investigate the notions of essential prop-

erty which are appropriate for ordinary objects, and in the subsequent

sections, the notion apppropriate for abstract objects. Consequently, we

address Fine’s second counterexample first, since it concerns the identity
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and essential properties of ordinary objects. The analysis of this example

requires only an appeal to the logic underlying O. When we move on

to discuss Fine’s first counterexample, however, we shall need to appeal

to the entire theory O to ground a definition of essential property that

applies to abstract objects.

Let us introduce the special variables u and v to range only over or-

dinary objects (we continue to use the variables x, y, z as unrestricted).

Let us also adopt the following convention: even though the two modes of

predication in our formal framework suggest an ambiguity in predication

in natural language, the fact that ordinary objects only exemplify (and

don’t encode) properties suggests that when we use the ordinary pred-

icative copula ‘is’ or ‘has’ to informally read or assert claims about the

properties of ordinary objects, it should be clear that this is intended to

be analyzed in terms of our formal notion of exemplification.

What, then, are essential properties of ordinary objects? From the

discussion in Section 2.3 (and the extended discussion in Linsky & Zalta

1994, 447), it should be clear that since ordinary objects exist in every

world, their ‘essential’ properties are not the ones they have in every world

in which they exist, but rather ones they have in every world in which

they are concrete objects. If the intuition we wish to capture is that

Socrates is essentially human, the representation of this intuition in the

present system is to assert that being human is a property that Socrates

exemplifies in every world in which he is concrete. In those worlds where

Socrates is not concrete, he will not exemplify being human or any of the

properties that humans typically exemplify (though he will exemplify the

negations of those properties).

Given this basic understanding of the notion of essential property as it

relates to ordinary objects, several further distinctions can be drawn. The

notion of ‘essential property’, in the present framework, can be analyzed

into the following three distinct notions:

Necessary(F ,u) =df 2Fu

WeaklyEssential(F ,u) =df 2(E!u→ Fu)

StronglyEssential(F ,u) =df

WeaklyEssential(F, u) & ¬Necessary(F, u)

Note that the form of the definition of WeaklyEssential is only super-

ficially identical to that of (E). In our system, ‘E!x’ is not defined as
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∃y(y=x) and so the antecedent of the modal conditional in the definiens

is not an existence claim. We read this definition as: F is weakly essential

to u iff necessarily, u exemplifies F whenever u exemplifies being concrete.

Moreover, it will soon become apparent why the third definition defines

an interesting notion of essential property. Let’s see how these definitions

work.

Some properties F are provably such that Necessary(F, u). Consider,

for example, the property of being self-identical (= [λz z=E z]). One can

prove in O both that necessarily every ordinary object is self-identicalE
and that every ordinary object is necessarily self-identicalE .14 From these

facts, one can establish that the following are theorems of O, given the

above definitions:15

`O Necessary([λz z =E z], u)

`O WeaklyEssential([λz z =E z], u)

`O ¬StronglyEssential([λz z =E z], u)

Notice here that being self-identicalE is ‘essential’ to ordinary objects in

14To see this, first consider the proof of: 2∀x(O!x → x=E x). Suppose O!a, where

a is arbitrary. Note that by logic alone, one can establish 2∀F (Fa ≡ Fa). So, we

have established: O!a & O!a & 2∀F (Fa ≡ Fa), which by definition, is a =E a. So,

O!a → a=E a, by conditional proof. And by generalization, we have ∀x(O!x → x=E

x). Finally, by necessitation, we have 2∀x(O!x→ x=E x).

Now consider the proof of: x =E x → 2x =E x. Let a be arbitrary and suppose

a=E a (to show 2a=E a). Then, by definition,

O!a&O!a& 2∀F (Fa ≡ Fa),

i.e.,

3E!a& 3E!a& 2∀F (Fa ≡ Fa)

Since each conjunct is a modal claim, in S5, each is necessary:

23E!a& 23E!a& 22∀F (Fa ≡ Fa)

Now a conjunction of necessary truths is a necessary conjunction of truths:

2[3E!a& 3E!a& 2∀F (Fa ≡ Fa)]

And, given the definition of ordinary object, we have:

2[O!a&O!a& 2∀F (Fa ≡ Fa)],

i.e., 2a=E a. Since a was arbitrary, we’ve established x=E x→ 2x=E x.

Clearly, given the proofs of these two theorems, we can immediately infer that every

ordinary object is necessarily self-identicalE , i.e., ∀x(O!x→ 2x=E x).
15Given the proof of ∀x(O!x→ 2x=E x) in the previous footnote, it follows imme-

diately that ∀x(O!x→ 2[λz z=E z]x), i.e., Necessary([λz z=E z], u). The second and

third theorems follow straightforwardly from this.
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one sense but not in another. Since ordinary objects are self-identicalE in

every world whatsoever, they are self-identicalE in every world in which

they are concrete. We have defined a notion of essential property which

focuses on those properties of ordinary objects that are exemplified in

every world in which they are concrete and that are not properties that

they exemplify in every world.

As another example, consider the property of not being a stone, or not

being a sea urchin (= [λz ¬Sz]). Many philosophers have the intuition

that Socrates couldn’t have been a stone or a sea urchin. Although this

could be taken to mean that Socrates is a stone/sea urchin in no possible

world, let us for now represent this intuition in the present system by the

claim that Socrates is such that in every world in which he is concrete,

he fails to be stone/sea urchin. However, note that in every world in

which Socrates is not concrete, he also fails to be a stone/sea urchin.

This latter claim follows from the reasonable assumption that being a

stone/sea urchin is a concreteness-entailing property.

Since Socrates fails to be a stone/sea urchin in every world in which

he is concrete and in every world in which he is non-concrete, we’ve estab-

lished that necessarily, Socrates exemplifies [λz ¬Sz]. We therefore have

another case of a property F which Socrates exemplifies necessarily, but

for which there is a sense in which F is, and a sense in which F isn’t,

‘essential’ to Socrates:

Necessary([λz ¬Sz], s)
WeaklyEssential([λz ¬Sz], s)
¬StronglyEssential([λz ¬Sz], s)

Though these claims are not theorems of O, we can extend the theory to

accomodate these essentialist claims.

We turn next to those properties with which we began our discussion

of ‘essential property’. These will be essential to Socrates in both senses

of ‘essential’. Consider the property of being human. Many philosophers

have the intuition that Socrates is essentially human. Of course, one

might just represent this intuition in the present framework by saying that

necessarily, Socrates exemplifies being human whenever he is concrete.

But, as yet, that doesn’t distinguish this property from those properties

which Socrates has in every world, since those, too, are properties F such

that necessarily Socrates has F whenever he is concrete. But we can

establish something further, if given the following auxiliary hypotheses:
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(a) Socrates is contingent, i.e., 3E!s& 3¬E!s

(b) Being human is concreteness-entailing, i.e., 2∀x(Hx→ E!x)

From these claims, one can prove that it is not necessary that Socrates

is human. For by (a), there is a world, say w1, where Socrates fails to

exemplify being concrete, and so by (b), he fails to exemplify being human

at w1.

Summarizing, then, we have the following claims, where being human

= H, and Socrates = s:

¬Necessary(H, s)

WeaklyEssential(H, s)

StronglyEssential(H, s)

Again, these are essentialist claims which can be added to our theory,

though the first and third can be proved from the second, with the help

of the auxiliary hypotheses (a) and (b).

Our auxiliary hypotheses (a) and (b) are relatively straightforward

and uncontroversial. They preserve familiar intuitions in terms of the

language of the present theory. Socrates’ contingency, given that he is

an ordinary object, lies in the fact that he is not concrete in every world

rather than in the fact that he exists in some worlds and not in others.

Moreover, what philosophers have elsewhere called ‘existence-entailing’

properties are in the present theory conceived as ‘concreteness-entailing’

properties, as defined in Section 2.3. It is uncontroversial to claim that

being human is concreteness-entailing.

Of course, the usual claims concerning properties that are not essen-

tial to Socrates can be represented and reanalyzed along the above lines.

Being snub-nosed (= S) is neither exemplified necessarily nor ‘essential’

to Socrates in either sense:

¬Necessary(S, s)

¬WeaklyEssential(S, s)

¬StronglyEssential(S, s)

The first claim would follow from the facts that Socrates is contingent

and that necessarily, anything snub-nosed is concrete, by now familiar

reasoning.

We are now in a position to give a straightforward analysis of the

second counterexample which Fine develops for (E). Recall that he says:
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Consider two objects whose natures are unconnected, say Socra-

tes and the Eiffel Tower. Then it is necessary that Socrates

and the Tower be distinct. But [intuitively] it is not essential

to Socrates that he be distinct from the Eiffel Tower, for there

is nothing in his nature which connects him in any special way

to it. (Fine 1994a, 5)

But given the above definitions and the assumption that Socrates (‘s’) is

not identicalE to the Eiffel Tower (‘t’), we have:

Necessary([λz z 6=E t], s)

WeaklyEssential([λz z 6=E t], s)

¬StronglyEssential([λz z 6=E t], s)

Thus we have a natural and well-defined sense in which it is not essential

to Socrates that he be distinct from the Eiffel Tower.

Indeed, given that Socrates and the Eiffel Tower are ordinary objects,

the above claims are provable in object theory from the following theo-

rems, where u, v are variables ranging over ordinary objects:16

`O u 6=E v → Necessary([λz z 6=E v], u)

`O u 6=E v →WeaklyEssential([λz z 6=E v], u)

`O u 6=E v → ¬StronglyEssential([λz z 6=E v], u)

These results preserve Fine’s suggestion that this counterexample shows

that (E) is too simplistic. However, (a) we do not abandon the idea that

essence and modality are connected in an intimate way, since the super-

ficial form of (E) is preserved as a conjunct of StronglyEssential ; (b) we

16For the proofs of the theorems which follow in the text, note first that the following

are theorems:

u=E v → 2u=E v (=E1)

3u=E v → u=E v (=E2)

u 6=E v → 2u 6=E v (=E3)

3u 6=E v → u 6=E v (=E4)

(=E1) is the basic one; it was proved in footnote 14. (=E2) and (=E3) then become

derivable by a proof similar to that in footnote 2. (=E4) is a consequence of (=E1)

by modal negation.

From these theorems, the claims in the text are straightforwardly derivable. The

first follows by (=E3), λ-conversion, and the definition of Necessary(F ,u). The second

by (=E3), λ-conversion, the S5 theorem that 2φ → 2(ψ → φ), and the definition of

WeaklyEssential(F ,u). The third by the first theorem and the definition of Strong-

lyEssential(F ,u).
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do not require a special logic of essence to understand what has gone

wrong but rather the simplest quantified modal logic; and (c) it becomes

an interesting (and surprising) fact that not every notion of ‘F is essential

to x’ has ‘x exemplifies F necessarily’ as a necessary condition. Neither

WeaklyEssential nor StronglyEssential has ‘x exemplifies F necessarily’

as a necessary condition, and StronglyEssential explicitly rejects it as a

necessary condition. All of this suggests reasons for qualifying the clas-

sic view, which Fine accepts, that if an object essentially has a certain

property, then it is necessary that it has the property.

Before we turn to the notion of ‘essential property’ that is appropriate

for abstract, as opposed to ordinary, objects, let us consider a poten-

tial counterexample. Fine might object as follows: consider the conjunc-

tive property of being human and not identicalE to the Eiffel Tower , i.e.,

[λz Hz & z 6=E t]. Fine might note that given the above definitions, this

property is strongly essential to Socrates, since he has it in every world in

which he is concrete but doesn’t have it necessarily. Yet this consequence

runs counter to his intuition that “nothing in [Socrates’] nature connects

him in any special way to it [the Eiffel Tower]”.

There are several natural things to say in response, however. The

issue turns on how to construe Fine’s intuition that Socrates’ nature is

not connected in any special way to the Eiffel Tower, and why one might

think that the fact that being human and not identicalE to the Eiffel Tower

is strongly essential to Socrates connects him in a special way to the Eiffel

Tower. It is important to remember that in the present framework, it easy

to prove connections between anything whatsoever and the Eiffel Tower.

For recall that it is a theorem of O that necessarily the Eiffel Tower exists

(this is not to say that the Eiffel Tower is necessarily concrete). That is,

`O 2∃y(y= t), and so every proposition whatsoever, about anything we

choose, will imply the existence of the Eiffel Tower.

Given our modal logic, the important worry is not that something

in Socrates’ nature might imply that the Eiffel Tower exists but rather

that something might imply that the Eiffel Tower is concrete. However,

the fact that [λz Hz & z 6=E t] is strongly essential to Socrates does not

imply that the Eiffel Tower is concrete. The theory O as formulated

is consistent with the assumption that the Eiffel Tower is not concrete,

though of course, we wouldn’t want to add such an assumption. So, if

something like this is Fine’s worry, there is no special problem concerning

this conjunctive property.

Edward N. Zalta 28

Of course, Fine might reiterate his worry by saying that the fact that

being human and not identicalE to the Eiffel Tower is strongly essential

to Socrates in and of itself is an unintuitive connection between Socrates’

nature and the Eiffel Tower. But should we accept this? On the one hand,

the nature of Socrates has not been defined rigorously. One could place

a constraint on the principles governing that notion so as to exclude any

property which necessarily implies a property that Socrates has in every

possible world. So even though the being human and not identicalE to

the Eiffel Tower is strongly essential to Socrates, it would not form part

of Socrates’ nature, since it necessarily implies the property of being not

identicalE to the Eiffel Tower (which Socrates has in every world). On

the other hand, if we are assuming that it is in Socrates’s nature to be

human (in the sense that this is one of his strongly essential properties),

then one might suggest that it is similarly in his nature to be human and

distinctE from every other thing. If so, it may be in his nature to be

human and distinctE from every other particular thing, such as the Eiffel

Tower.

It is not clear which of the responses just outlined is the best way

to proceed. A resolution depends on a more explicit expression of Fine’s

intuition that nothing in Socrates’ nature connects him in any special way

to it the Eiffel Tower. However that is spelled out, it would serve well

to remember that even Fine’s logic of essence has to take extra steps to

avoid similar consequences. He says,

. . . the propositions true in virtue of the nature of given ob-

jects are taken to be closed under logical implication. . . . How-

ever, this closure condition is subject to a certain constraint.

For we do not allow the logical consequences in question to in-

volve objects which do not pertain to the nature of the given

objects. (1995, 242)

Although it is not the point of the present paper to try to build a logic

of essence that can do all the work that Fine’s logic can do, it should be

noted both that (a) the present theory does not require that G is strongly

essential to u whenever both F is strongly essential to u and F necessarily

implies G (as demonstrated by the case where F = being human and

not identicalE to the Eiffel Tower and G = being not identicalE to the

Eiffel Tower), and (b) many of stipulations in Fine’s framework which

implement the constraint described above could be specifiable within the
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present framework and adopted as axioms.

However, given that the present theory reconceives the nature of ex-

istence and essence, the case of [λz Hz & z 6=E t] may be one where we

should let the theory itself help us to refine some of our intuitions about

what properties are strongly essential to ordinary objects.17 For our work

so far has an unheralded virtue, namely, it plays a role in understanding

Fine’s other counterexample, concerning Socrates and singleton Socrates,

as we shall see in the next two sections.

4. Essence, Modality, and Abstract Objects

When asking the question, “What properties do abstract objects have

essentially?,” the overriding consideration in the present framework is the

fact that abstract objects both encode and exemplify properties. Both

ways of having properties might provide a source of essential properties.

It should be clear from the motivations described in Section 2 that

the essential properties of abstract objects are their encoded properties.

Let’s first look at some intuitive examples. What is essential to Sherlock

Holmes are the properties by which he is conceived: being a detective,

being brilliant, having Dr. Watson as a friend, having Moriarty as his

arch-enemy, etc. Thus, Holmes’ encoded properties are even more cru-

cial to his identity than properties that he necessarily exemplifies. For

example, Holmes necessarily exemplifies abstractness given that he exem-

plifies abstractness (this follows from the modal theorem 2φ→ 22φ and

the fact that by definition, abstractness is equivalent to necessary non-

concreteness). But abstractness is not part of the conception of Holmes;

rather concreteness is part of its conception, for it is relevantly implied

in the story that Holmes is a concrete object. Concreteness is therefore

one of Holmes’ encoded and essential properties. To continue discussion

of this first example further, note also that Holmes necessarily exempli-

fies the property of not being a detective, since being a detective is a

concreteness-entailing property. Clearly we don’t want to identify not

17Our theory allows us to formulate other distinctions and principles. Consider, for

example, a variation on our previous suggestion: define a property H as vacuously

strongly essential to x whenever H is identical to a conjunctive property of the form

[λx Fx & Gx] such that StronglyEssential(F, x) and Necessary(G, x). Then we could

require that the nature of Socrates be defined only in terms of the strongly essential

properties which aren’t vacuously strongly essential to x. But I think there is no need

to do this without a more explicit expression of what Fine’s intuition amounts to.
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being a detective as one of Holmes’ essential properties, and this shows

that encoded properties are more closely connected with the identity of

Holmes than are the properties he exemplifies necessarily.18

To take another intuitive example, consider the golden mountain,

which we identified earlier as the object that encodes just the two proper-

ties of being golden and being a mountain. These are the two properties

essential to this object, and no others. Of course, if you think that being

concrete is essential to this object, then maybe you are representing the

English description ‘the golden mountain’ as the (rather different) ob-

ject that encodes all the properties implied by being golden and being a

mountain. In either case, being abstract, being non-golden, not being a

mountain, etc., are all properties that these objects necessarily exemplify

but which should not be labeled as ‘essential’ to them.

Finally, consider any of the abstract objects we technically defined

or identified: the number of ordinary Gs (#G), the Form of G (ΦG), the

concept of Alexander (ca), the extension of the concept G (εG), the empty

set of Zermelo-Fraenkel set theory (∅ZF), etc. In each of these cases,

the present analysis suggests that the properties essential to the abstract

object in question are the ones it encodes. For example, ∅ZF encodes all

and only the mathematical properties that it exemplifies according to the

ZF. By claiming that ∅ZF’s encoded properties are its essential properties,

we are claiming that its mathematical properties are the only ones that

are constitutive of its nature as an object. Indeed, one way to interpret

the comprehension principle for abstract objects is: it requires that every

possible conception of an object define an abstract object with a distinct

nature. Thus the properties involved in a given possible conception are the

essential properties of the object that might be so conceived. Thus, there

are no properties common to the essences of all abstract objects, since

there are no properties common to all the various possible conceptions of

objects.

Accordingly, we define, where x ranges over abstract objects:

18One might object that if being a detective is essential to Holmes, then we can’t

say, as we must surely be able to say, that Holmes might have been a mathematician

instead of a detective. Indeed, there is a way to attribute the property of possibly

being a mathematician to Holmes. For we may reasonably suppose that the story

implies that Holmes might have embarked on various careers as a lad, and that he

might have been a mathematician. If so, then possibly being a mathmatician will be

one of Holmes’ encoded properties! And in English, where predication is ambiguous,

we would read this encoding claim as “Holmes might have been a mathematician”.
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Essential(F, x) =df xF

Although this notion of essential property for abstract objects is not a

modal notion, one can derive a modal claim from it, given the logic of

encoding (3xF → 2xF ). Thus, if x is abstract and F is essential to x,

then necessarily F is essential to x.

Our definition of ‘F is essential to x’ has two consequences for abstract

objects x, given the ambiguity in predication resolved by the distinction

between Fx and xF . On the one hand, it gives us a sense in which essence

implies necessity, since an abstract object x will encode F necessarily

whenever F is essential to x. On the other hand, it gives us a sense in

which essence doesn’t imply necessity, for an an abstract object x need

not, and typically does not, exemplify or necessarily exemplify F when

F is essential to x. The properties of being a detective, being brilliant,

living on 221B Baker Street, etc., are all essential to Sherlock Holmes,

but this object does not exemplify these properties, and a fortiori , does

not necessarily exemplify them.

5. Socrates and Singleton Socrates

On the present theory, the ordinary mathematical expression ‘singleton

Socrates’ or ‘the set consisting solely of Socrates’ remains ambiguous until

we supply a context. There is no singleton Socrates without some con-

ception of sets and the membership relation, and various conceptions can

be distinguished. So, to interpret ‘singleton Socrates’, we need to identify

the conception of set in play (if only some minimal principles of modal

set theory) or else suppose that some naive, pretheoretical, notion of ex-

tension is being used. Now, when Fine developed the counterexample to

(E) concerning Socrates and singleton Socrates, he assumed a context of

‘modal set theory’ plus ordinary Urelemente (1994a, 4). But, of course,

there are numerous ways of developing modal set theory. Some include

all the principles of ZF, others don’t; some include the Axiom of Choice,

some don’t. For each conception of set and the set membership relation,

there will be a different singleton Socrates. Since Fine didn’t specify the

particular modal set theory in play, we shall treat his use of ‘singleton

Socrates’ as a term of minimal modal set theory, i.e., the minimal set of

principles required for Fine’s counterexample. As we shall see, our anal-

ysis is going to require an appeal to the full theory of abstract objects,

and not just to its underlying logic.
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In what follows, then, we shall assume that some minimal modal the-

ory of sets and urelements has been identified and we therefore refer to

this theory as M (Modal Set Theory + Urelements). In M, ‘Socrates’ (‘s’)

names one of the urelements, and ‘singleton Socrates’ (‘{s}’) abbreviates

the proper description ‘the unit set of Socrates’. Now, as we learned in

Section 2.4, we import into O each theorem φ of M by (a) prefacing φ with

the operator ‘According to M’ and (b) indexing the well-defined terms in

φ to M. So if φ is a theorem of M, then the following becomes a theorem

of O:

M |= φ∗,

where φ∗ is the result of indexing the terms of φ to M. Since many of the

theorems of M involve the term ‘{s}’, there will be corresponding sentences

assertible in O involving the term ‘{s}M’. (The term ‘s’ denoting Socrates

is itself exempt from this indexing, since it denotes one of the urelements.

We are not here trying to identify Socrates, but rather singleton Socrates.

Whereas Socrates is an ordinary object which is given independently of

any mathematical theory, singleton Socrates is not.)19 Thus, there will

be theorems of O which take the following form:

M |= F{s}M

This distinguishes a group of properties F which are exemplified by the

M-singleton of Socrates according to M. Now sentences of this form play

a role in the following instance of the Theoretical Identification Principle:

{s}M = ıx(A!x& ∀F (xF ≡ M |= F{s}M))

This asserts (henceforth suppressing the index to M) that the singleton

of Socrates is (identical to) the abstract object which encodes exactly the

properties F that the singleton of Socrates exemplifies according to M.

Given this identification, the Equivalence Theorem (Section 2.4) and the

definition of essential properties for abstract objects (Section 4), it follows

that the properties essential to singleton Socrates are the properties it

exemplifies according to M, since these are its encoded properties.

19Of course, the resource of O give us the means to talk about the mathematical

object we might call ‘the Socrates of M’. That mathematical object would be theoret-

ically identified in the same way that we are identifying other mathematical objects.

It will encode only the properties attributed to Socrates in M. But since that is not

the object which plays are role in Fine’s counterexample, we do not consider it here.



33 Essence and Modality

Now given the theorems of M that (i) Socrates is an element of sin-

gleton Socrates, (ii) singleton Socrates exemplifies the property of having

Socrates as an element, and (iii) Socrates exemplifies the property of be-

ing an element of singleton Socrates, the following claims are theorems

in O:

M |= s∈{s}M (ξ1)

M |= [λz s∈z]{s}M (ξ2)

M |= [λz z∈{s}M]s (ξ3)

(ξ1) asserts that according to M, Socrates is an element of singleton

Socrates; (ξ2) that according to M, singleton Socrates exemplifies the

property of having Socrates as an element; and (ξ3) that according to

M, Socrates exemplifies the property of being an element of singleton

Socrates.

Notice that it follows from (ξ2), given the Equivalence Theorem, that

singleton Socrates encodes the property of having Socrates as an element:

{s}M[λz s∈z] (ρ)

And, finally, it follows from (ρ), by the definition of essential properties

for abstract objects, that the property of having Socrates as a member

([λz s∈z]) is essential to singleton Socrates.

It is worth remarking on the fact that we have now proved something

which Fine takes as a premise in his counterexample to (E), namely, that

the property of having Socrates as an element is essential to singleton

Socrates. This premise falls out as a consequence of our theory of abstract

objects and analysis of mathematical objects in terms of that theory. And

given our discussion about the properties that abstract objects exemplify

(Section 2), it should be clear that the mathematical properties singleton

Socrates encodes are even more central to its identity than the properties

it necessarily exemplifies. Though singleton Socrates necessarily exem-

plifies the modal negations of concreteness-entailing properties, these are

not part of its nature.

By contrast, given that Socrates is an ordinary object, Socrates him-

self is governed by the axiom that ordinary objects (necessarily) do not

encode properties: O!x→ 2¬∃F (xF ). So it is provable that Socrates en-

codes no properties, and a fortiori , does not encode the property of being

an element of singleton Socrates, i.e., ¬s[λz z ∈ {s}M]. Nothing about
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Socrates follows from either the Theoretical Identification Principle or

the Equivalence Theorem given (ξ3), since those principles don’t apply

to Socrates. Moreover, we can’t abstract out any properties of Socrates

in virtue of the properties exemplified by singleton Socrates according to

M, or in virtue of the properties Socrates himself exemplifies according

to M, or in virtue of properties encoded by the singleton of Socrates. In

particular, since none of the following expressions are well-formed, none

follow from (ξ1), (ξ2), (ξ3) and (ρ), respectively, by λ-conversion:

[λy M |= y∈{s}M]s

[λy M |= [λz y∈z]{s}M]s

[λy M |= [λz z∈{s}M]y]s

[λy {s}M[λz y∈z]]s

In each case, the λ-expressions fail the restrictions banishing encoding

subformulas. Socrates has no new properties in virtue of our analysis of

singleton Socrates.

And, finally, we may consistently assert that the property of being a

member of singleton Socrates is not essential to Socrates in any of the

senses defined in Section 3:

¬Necessary([λz z ∈ {s}M], s)

¬WeaklyEssential([λz z ∈ {s}M], s)

¬StronglyEssential([λz z ∈ {s}M], s)

Consider the reasons for asserting the first, which amounts to the claim:

¬2[λz z ∈ {s}M]s. Recall that in Section 2.4 we briefly touched upon the

fact (in connection with ∅ZF) that an unadorned claim such as s ∈ {s}M
is neither true nor assertible in O; indeed we asserted the negations of

such claims. (Although there is an encoding reading of the ordinary M-

claim “Socrates is an element of singleton Socrates” which preserves its

truth and necessary truth, the exemplification reading, unprefixed by the

theory operator, we claim to be false.) Consequently, if we assert in our

theory that:

¬ s∈{s}M,

then it follows that
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¬2 s∈{s}M

from which in turn it follows, by λ-conversion, that

¬2[λz z ∈ {s}M]s

So it is not the case that Socrates necessarily exemplifies the property of

being an element of singleton Socrates. Indeed, it is consistent with our

theory to claim not only that s ∈ {s}M is false but that it is necessarily

false. (The necessary truths of mathematics are the encoding readings of

ordinary mathematical claims, as outlined in some detail in Zalta 2000a.)

Thus, it is necessary that Socrates fails to exemplify the property of being

an element of singleton Socrates. And so we may, conclude a fortiori that

the property of being an element of singleton Socrates is neither weakly

nor strongly essential to Socrates. These are the second and third formal

claims displayed at the beginning of this paragraph.

Clearly, the above facts establish an asymmetry between Socrates and

singleton Socrates: we can prove that it is essential to singleton Socrates

that it has Socrates as an element (in the sense of ‘essential’ appropriate

to abstract objects), and consistently maintain that it is not essential

to Socrates (in any of the senses of ‘essential’ appropriate to ordinary

objects) that he is an element of singleton Socrates. So we may say, with

Fine:

. . . it lies in the nature of the singleton [of Socrates] to have

Socrates as a member even though it does not lie in the nature

of Socrates to belong to the singleton (1994a, 5)

But we account for the asymmetry on theoretical grounds which con-

ceptualize (the natures of) abstract objects and ordinary objects in fun-

damentally different ways. Though a discussion of the issue will not be

undertaken here, this fundamental asymmetry applies (though in a rather

different guise) even if we analyze Fine’s counterexample concerning ‘sin-

gleton Socrates’ not in the context of a modal set theory, but rather in

terms of the extension of the concept being identicalE to Socrates.20

20The extensions of concepts were defined in Section 2.4. In particular, ε[λx x=E s]

is an abstract object that encodes all and only the properties materially equivalent

to [λx x =E s]. Recall also that y ∈ x is defined for extensions, in Section 2.4, as:

∃F (x= εF & Fy). As such, when the defined identity sign in the definiens is replaced

in terms of primitive notation, we see that no property of the form [λy y ∈ εF ] is

formulable in O. So when we analyze ‘singleton Socrates’ as ε[λx x=E s], the present
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It is in the nature of abstract objects both to encode and exemplify

properties, while it is in the nature of ordinary objects only to exemplify

their properties. The asymmetry in natures explains in part why the tra-

ditional definition (E) is too simplistic. Though Fine developed insightful

counterexamples to (E), there is an equally coherent alternative to his

diagnosis which invokes the simplest quantified modal logic and a theory

of abstract objects grounded in a distinction concerning the way in which

abstract and ordinary objects ‘have’ their properties.
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