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It is now well accepted that logicism is false. The primitive notions

and proper axioms of mathematical theories are not reducible to primi-

tive logical notions and logical axioms. Even the idea underlying logicism

appears to be somewhat problematic, for if the existence claims of math-

ematics are to be reducible to logical truths, then it would seem that the

logicist has to assert the existence of objects of some kind. Though a

case can, and has, been made for thinking that logic can contain or imply

existence claims, the matter is at least controversial and so there is at

least a question as to whether a reduction of mathematics to a logic with

existence claims would constitute a reduction of mathematics to logic.

In this paper, however, we defend a philosophical thesis which may

preserve some of the spirit of logicism. Our thesis is that mathemati-

cal objects just are (reducible to) the abstract objects systematized by a

∗This paper was published in Erkenntnis, 53/1-2 (2000): 219–265.
†I am indebted to the Center for the Study of Language and Information and

its Director, John Perry, for supporting my research. I would like to thank Mark

Colyvan, Bernard Linsky, Chris Menzel, Karl-Georg Niebergall, and an anonymous

referee, all of whom carefully read the penultimate draft and offered many suggestions

for improvement. Thanks also goes to Sol Feferman, Allen Hazen, Thomas Hofweber,

and Brent Mundy for valuable discussions about the ideas contained herein. Finally,

I would like to thank Godehard Link for inviting me to the workshop Concepts of

Reduction in Logic and Philosophy (in September 1997), where this material was first

presented.

Edward N. Zalta 2

certain axiomatic, mathematics-free metaphysical theory. This thesis ap-

pears to be a version of mathematical platonism, for if correct, it would

make a certain simple and intuitive philosophical position about mathe-

matics much more rigorous, namely, that mathematics describes a realm

of abstract objects. Nevertheless, there are two ways in which the present

view might constitute a kind of neo-logicism. The first is that the compre-

hension principle for abstract objects that forms part of the metaphysical

theory can be reformulated as a principle that ‘looks and sounds’ like an

analytic, if not logical, truth. Although we shall not argue here that the

reformulated principle is analytic, other philosophers have argued that

principles analogous to it are. The second is that the abstract objects

systematized by the metaphysical theory are, in some sense, logical ob-

jects. By offering a reduction of mathematical objects to logical objects,

the present view may thereby present us with a new kind of logicism.

To establish our thesis, we need two elements, the first of which is

already in place. The first element is the axiomatic, metaphysical theory

of abstract objects. We shall employ the background ontology described

by the axiomatic theory of abstract objects developed in Zalta [1983]

and [1988].1 The axioms of this theory can be stated without appealing

to mathematical primitives or notions of any kind; one of these axioms

is a comprehension principle for abstract objects the instances of which

explicitly assert the existence of such objects.

The second element required for our thesis is this: we must show that

for an arbitrary mathematical theory T , there is a precise interpretation

of the terms and predicates of T which (a) analyzes these expressions

as denoting abstract objects in the background ontology, and (b) de-

fines a sense in which the theorems of T are true. This second element

has only been sketched in previous work. In Zalta [1983] and Linsky &

Zalta [1995], a basic analysis of the language of mathematics was devel-

oped. The present paper advances the previous work by offering a much

more detailed account of reference and truth with respect to mathemati-

cal language. In connection with reference, we explicitly identify the steps

required to interpret the well-defined terms and relation symbols of an ar-

bitrary mathematical theory so that those expressions denote unique ab-

stract individuals and abstract relations, respectively, in our background

ontology. This task is accomplished in Section 4. In connection with

1See also Zalta [1993] or [1999] for briefer sketches of the theory and specific appli-

cations.
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truth, we use the theory of abstract objects to state the conditions un-

der which the theorems of mathematical theories are true. This task is

accomplished in Section 6. In the final section of the paper (Section 7),

we make several observations about our work and we briefly consider the

extent to which the present view constitutes a kind of neo-logicism.

Our background axiomatic theory of abstract objects, henceforth ‘O’,

has been developed in both a modal and a type-theoretic setting and

these two manifestations of the theory have been applied in numerous

ways. The modal version of O axiomatizes abstract individuals, and in the

applications of this theory, the laws governing possible worlds, Platonic

forms, Leibnizian concepts, and natural numbers (among other things)

have been derived and the language of fiction and belief has been given

a precise interpretation. The typed version of O axiomatizes the abstract

objects of every simple logical type. This version asserts that for each

logical type of object (e.g., individual, property of individuals, relation

among individuals, property of properties of individuals, relation among

properties of individuals, etc.), there are abstract objects of that type (in

addition to ordinary objects of that type). In the various applications

of this type theory, such things as the Fregean senses of predicates, the

fictional properties and relations of rejected scientific theories, mathemat-

ical properties (e.g., being prime), and mathematical relations (e.g., set

membership) have all been identified as particular abstract properties and

abstract relations.2

Now it might be thought that all of these applications of O involve a

single kind of ontological reduction. But, in fact, this is not the case. It is

very important to recognize that there are two distinct kinds of ontological

reduction that can be constructed within O. We shall call these classical

and metaphysical reductions, respectively. This distinction is critical to

what follows—we estalish the main thesis of this paper by developing

a metaphysical reduction of the objects of mathematical theories to the

objects of our metaphysics.

In order to distinguish classical and metaphysical reductions in the

context of O, it is important to mention first that in classical reductions,

the reduction is between theories—the axioms of some theory T are de-

rived as theorems of O. In the case of metaphysical reductions, however,

it is more perspicuous to say that the objects of a theory T are reduced

to the objects of O. (We shall precisely define ‘object of theory T ’ in

2See the final chapters of Zalta [1983] and [1988].
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Section 3.)

Now various philosophers have described the basic idea of a classical

reduction as follows: a theory S is reducible to a theory T just in case

all of the non-logical notions of S can be explicitly defined in T in such

a way that the translations of the theorems of S (via the definitions) are

theorems of T .3 We can recast this definition in language more familiar

to logicians by saying that S is reducible to T just in case the theorems

of S constitute a subtheory of a definitional extension of T . This defi-

nition gives us the basic sense of reduction that the logicist might have

used to claim that the proper axioms of mathematics are reducible to the

theorems of logic. The logicist idea was that a logic L is defined by a set

of analytically true logical axioms and rules of inference. Then, a math-

ematical theory T is reducible to L just in case the primitive terms and

predicates of T are definable in the language of L and the proper theorems

of T (when translated into the language of L) become logical theorems

of L. Of course, as mentioned earlier, probably no one now believes that

the primitive notions or proper axioms and theorems of mathematical

theories are reducible in this way to the primitive notions and axioms of

logic.

It is important to digress briefly to mention the fact that modern lo-

gicians have introduced a variety of much more explicit and fine-grained

notions of reduction between theories T and S. They have defined such

notions as relative interpretability, proof-theoretic reduction, model-the-

oretic reduction, and even axiomatized notions of reduction.4 However,

these more fine-grained notions of reducibility will not play a role in what

follows. Although the classical reductions available in O are all instances

of relative interpretations, it should become apparent that the above defi-

nition of a classical reduction should suffice for the purposes of this paper.

In Section 1, we shall rehearse some classical reductions that are avail-

able in O. We’ll see that the primitive notions of situation theory, possible

world theory, and Dedekind/Peano number theory can be defined in the

language of O and that the proper axioms governing these notions can be

(couched in terms of these explicit definitions and) derived as theorems

3See Carnap [1967] (p. 6), Quine [1976] (p. 218), and Jubien [1969] (p. 534).
4For relative interpretability, see Tarski et al. [1953], Feferman [1960], and Visser

[1998]. See Feferman [1988] (or [1998a]) for the definition and discussion of ‘proof-

theoretic reduction’. Finally, see Niebergall [2000], in which the notions of model-

theoretic reduction are critically discussed and axioms for the reducibility relation are

proposed.
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of O. However, as we mentioned earlier, we shall not be appealing to

classical reductions of any kind to establish the main thesis of this paper.

Instead, we shall defend our thesis by developing a new kind of on-

tological reduction which we call metaphysical reduction. The additional

ontological resources provided by O make it possible to develop this dis-

tinctive and essentially different kind of reduction. We’ll spend the pre-

ponderance of the paper preparing the ground for, and developing ex-

amples of, metaphysical reductions. The examples will show that, for an

arbitrary mathematical theory T , a metaphysical reduction identifies both

the reference of the well-defined terms and predicates of T and preserves

a sense in which the theorems of T are true. More specifically, O will

provide us with a mathematics-free theoretical framework in which we

can precisely specify abstract individuals and abstract relations. Certain

specifications of abstracta simply objectify the roles that mathematical

individuals and relations play in a mathematical theory T . So once we

extend O by adding the terms and predicates of T and by adding the

analytic mathematical truths which articulate the role that the mathe-

matical objects of T are alleged to play in T , we’ll be able to theoretically

identify those objects with their objectified roles. The theorems of an ar-

bitrary mathematical theory T will then have compositionally specifiable

readings in O on which they (the theorems) turn out to be true. More-

over, the abstract individuals and relations of O figure into these readings.

Our metaphysical reductions will therefore show that each mathematical

theory is about distinctive abstract individuals and abstract relations.

So the reason neither classical reductions nor the other more fine-

grained notions of reduction will play a significant role in what follows is

that if the view developed here is correct, metaphysical reductions will

show that every mathematical theory is about its own distinctive kinds

of abstract individuals and/or abstract relations. From the point of view

of ontology and the philosophy of language, then, there may be no meta-

physical reason to investigate these other kinds of reduction of one math-

ematical theory to another mathematical theory. Of course, there are

still mathematical reasons to investigate classical and more fine-grained

notions of reduction as they apply to mathematical theories, for example,

to assess the mathematical power of certain theories in various ways and

to understand the various ways in which one mathematical theory might

be distinguished as a foundation for the rest of mathematics. But even

if one mathematical theory emerges as the foundational theory from (in)
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which all other mathematical theories can be derived (interpreted), or as

that in which all other mathematical theories can be modeled, it doesn’t

follow that those other mathematical theories are just theories of or about

the objects described by the foundational theory, at least not if we can

show that each mathematical theory is about its own distinctive kind of

mathematical individuals and relations. Moreover, O would offer a meta-

physical account of truth and reference for the language and theorems of

any mathematical theory that emerges as a foundation for mathematics.

Although we shall return to these issues in the last section of the pa-

per, it is important to mention one issue to which we shall not return,

namely, our assumption that both classical and metaphysical reductions

constitute genuine ontological reductions. Although this may be a con-

troversial matter, we shall not spend time in this paper on the matter;

instead, we shall assume that the work carried out here offers some rea-

son to think that the ontological categories mathematical individual and

mathematical relation are not sui generis but rather subcategories of the

more fundamental ontological categories abstract individual and abstract

relation, respectively.

We turn, then, to a brief description of some classical reductions in O,

so that we will be better prepared to appreciate what is distinctive about

the metaphysical reductions that establish the main thesis of this paper.

Readers familiar with these applications of object theory may skip ahead

to Section 2.

§1: Classical Reductions in O
In order to discuss the classical reductions that have been effected in O, it

will be important for the reader to know the language and axioms of the

theory. In what follows, we shall presuppose that the reader is familiar

with one of the canonical presentations of O in other publications. In

this section, we shall discuss the version of the theory that has been

expressed in a syntactically second-order modal (S5 with Barcan formulas)

predicate calculus (without identity) which has been modified so as to

include a second kind of atomic formula, namely, formulas of the form

‘xF 1’ (individual x encodes property F 1). A single theoretical primitive

property ‘E!’ (‘being concrete’) is used to define the property of being

abstract (A!x =df ¬3E!x) and the comprehension principle for abstract

individuals asserts that for any condition ϕ (without free xs), there is

an abstract individual that encodes just the properties satisfying ϕ (i.e.,
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∃x(A!x & ∀F (xF ≡ ϕ))).5 Abstract individuals are said to be identical

whenever they necessarily encode the same properties, but to show that

x and y are the same abstract individual, it suffices to show that x and

y encode the same properties, since the logic of encoding is rigid (i.e.,

3xF → 2xF ).

The canonical formulation of the theory of abstract individuals also

includes two kinds of complex term. There is a complex way of denoting

individuals, namely, rigid definite descriptions of the form ıxϕ (for any

formula ϕ). These definite descriptions are axiomatized in the usual way,

namely, by a principle which asserts that Russell’s analysis of descriptions

applies to any atomic formula that contains a description.6 There is also

a complex way of denoting relations, namely, λ-expressions of the form

[λy1 . . . yn ϕ] (where ϕ has no free F s, no encoding subformulas and no

descriptions). These λ-expressions are axiomatized by the usual principle

λ-Conversion (i.e., λ-abstraction), and by a principle which ensures that

exchange of bound variables makes no difference to the relation denoted

by the λ-expression.7 λ-Conversion immediately yields a comprehension

principle for relations.8 The theory of relations is completed by a defini-

5We call individuals x that might have been concrete ‘ordinary objects’. In formal

terms: O!x =df 3E!x. It is axiomatic that ordinary individuals necessarily fail to

encode properties.
6More specifically, the following is an axiom:

ψıxϕ
y ≡ ∃x(ϕ& ∀z(ϕz

x → z=x) & ψx
y ), for any atomic or identity formula ψ(y)

in which y is free.

To accomodate descriptions, the classical quantification theory is modified only so as

to be ‘free’ with respect to formulas containing descriptions. Moreover, the above

axiom governing descriptions is a logical truth that is not a necessary truth (for the

descriptions denote rigidly what they denote at the actual world). So the classical S5

modal logic is modified only to admit the presence of contingent logical truths (the

Rule of Necessitation may not be applied to any line that depends on the above axiom

governing descriptions).
7More specifically, the following are axioms:

[λy1 . . . yn ϕ]x1 . . . xn ≡ ϕx1,...,xn
y1,...,yn

[λy1 . . . yn ϕ] = [λy′1 . . . y
′
n ϕ
′],

where the two λ-expressions are alphabetic variants.

It is also an axiom that:

[λy1 . . . yn Fny1 . . . yn] = Fn

Thus, an ‘elementary’ λ-expression is intersubstitutable for the relation symbol that

appears in that expression.
8More specifically, the following is a theorem:
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tion of when relations are said to be identical.9 Substitution of identicals

(whether identical abstract individuals or identical relations) is stipulated

to work in all contexts.

Now, in terms of this language and theory, several classical reductions

have been effected. These reductions are achieved in precisely the way

one would expect, with the exception that it is often the case that the

target theory has not been given a canonical presentation. So, for exam-

ple, although situation theory does not have a canonical axiomatization,

we defined (in Zalta [1993]) the following basic notions of situation theory

in the language of O: x is a situation, situation s makes state of affairs p

true, and situation s is a part of situation t. From these definitions, the

usual axioms of situation theory are derivable as theorems of O. Simi-

larly, although the theory of possible worlds does not have a canonical

axiomatization, we defined (in Zalta [1983] and [1993]) the following no-

tions of world theory: object x encodes proposition p, x is a possible

world, proposition p is true at world w, w is maximal, w is consistent, w

is modally closed, and w is actual.10 Then we derived the usual principles

of world theory: (a) every world is maximal, (b) every world is consis-

tent, (c) every world is modally closed, (d) there is a unique actual world,

(e) a proposition is necessarily true iff it is true in all possible worlds,

∃Fn2∀x1 . . . ∀xn(Fnx1 . . . xn ≡ ϕ),

where ϕ has no free Fns, no encoding subformulas, and no descriptions.

Of course, a relation can be specified in terms of a formula ϕ containing a definite

description ıxϕ if it is first proved that ∃y(y= ıxϕ).
9More specifically, the definition of identity proceeds by first defining identity for

properties F 1 and G1:

F 1 =G1 =df 2∀x(xF 1 ≡ xG1)

In terms of this definition, we employ λ-expressions with vacuously bound variables to

define identity for propositions. Using ‘p’ and ‘q’ instead of ‘F 0’ and ‘G0’, we define:

p=q =df [λy p]=[λy q]

Finally, a definition of relation identity for n-place relations (n ≥ 2) is constructible in

terms of identity for properties. Interested readers may consult one of the presentations

of O cited in the text.
10We provide the formal definitions here for those readers unfamiliar with this work.

In these definitions, we give the symbols Σ and |= the narrowest possible scope. (For

example, ‘Σxp ≡ p’ is to be read as ‘(Σxp) ≡ p’ and ‘w |= p → p’ is to be read

as ‘(w |= p) → p’.) We define: (1) x encodes p (‘Σxp’) ≡ x[λy p]; (2) World(x) ≡
3∀p(Σxp ≡ p); (3) p is true at w (‘w |= p’) ≡ Σwp; (4) Maximal(w) ≡ ∀p(w |=p

∨ w |= ¬p); (5) Consistent(w) ≡ ¬∃p(w |= p & w |= ¬p); (6) Modally-closed(w) ≡
[w |=p & 2(p → q)] → w |= q; and (7) Actual(w) ≡ ∀p(w |=p → p). See Zalta [1993]

for further discussion.
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(f) a proposition is possibly true iff it is true in some possible world, (g)

whenever worlds have the same propositions true at them, those worlds

are identical.11 Although world theory has not had a canonical axioma-

tization, it seems clear that any attempt to axiomatize this theory would

employ some subset of these principles as axioms. If this is right, then we

have a classical ontological reduction of world theory to O.

O has also been applied so as to reduce Leibniz’s theory of (complete

individual) concepts and Plato’s theory of forms.12 But as an example

where the theory being reduced does have a canonical axiomatization,

we note the following. When O is extended with the logic of actuality

and two a priori and plausible axioms, Frege’s definitions of predecessor

and 0 can be constructed and the Dedekind/Peano axioms for number

theory become theorems (in addition to many Fregean principles about

natural numbers). In Zalta [1999], we defined the following notions in the

language of O: x is a predecessor of y, x is the number of Gs, x is a natural

number, and zero. We then added the formal versions of the following

axioms to O: (a) predecessor and its weak ancestral are relations, and (b)

if there is a natural number n which numbers the property G, then there

might have been a concrete individual distinct from all of the concrete

individuals that actually exemplify G.13 As a result, the Dedekind/Peano

axioms for the theory of natural numbers become provable in O.

From a logical point of view, there is nothing unusual or distinctive

about these classical ontological reductions available in O. They may,

however, hold philosophical interest for the metaphysician or logician in-

terested in minimizing the number of ontological categories or concerned

11Using the formal definitions supplied in the previous footnote, principles (a)

– (g) in the text become following the theorems of O: (a) ∀wMaximal(w); (b)

∀wConsistent(w); (c) ∀wModally-closed(w); (d) ∃!wActual(w); (e) 2p ≡ ∀w(w |= p);

(f) 3p ≡ ∃w(w |=p); and (g) ∀p(w |=p ≡ w′ |=p) → w=w′. See Zalta [1993] for the

proofs.
12See Zalta [1983] for the initial sketches. However, Zalta [2000] has a comprehensive

treatment of Leibniz, and Pelletier & Zalta [2000] has a comprehensive treatment of

Plato.
13We rendered these axioms formally by first defining the technical notions

Precedes(x, y), (its weak ancestral) Precedes+(x, y), #F (‘the number of F s’), and

NaturalNumber(x) in the language of O. Then the following are axioms:

• ∃F∀x∀y(Fxy ≡ Precedes(x, y))

∃F∀x∀y(Fxy ≡ Precedes+(x, y))

• ∃x(NaturalNumber(x) & x=#G)→ 3∃y(E!y & ∀u(AGu→ u 6=E y))

The variable ‘u’ here ranges over possibly concrete objects. See Zalta [1999], Section 5.
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to find a system in which there are proofs of metaphysical claims that

philosophers typically have to stipulate.14

§2: Metaphysical Reductions

The classical reductions just discussed are now to be contrasted with the

new and distinctive metaphysical reductions that are available in O. The

point of these metaphysical reductions is not to define the primitive non-

logical notions of mathematics in the language ofO or to derive the axioms

of mathematical theories as theorems of O, but rather to: (1) interpret

(i.e., formulate denotational truth conditions for) the language and axioms

of mathematical theories so as to reveal both that the individual terms of

those theories denote abstract individuals and that the relation symbols of

those theories denote abstract relations, and (2) develop readings in O of

the theorems of mathematical theories on which those theorems turn out

true. Our metaphysical reductions will also show that the mathematical

theories themselves can be identified as abstract individuals. In order to

make these ideas perfectly clear and precise, we shall need to introduce

some technical machinery. This technical machinery will be developed in

Section 3. Then, in Section 4, we construct the theoretical descriptions

that reduce mathematical objects to abstract objects. In the meantime,

however, it is important to prepare the reader for the material in the

following sections by briefly outlining the philosophy of mathematics on

which this material is based.15

Our philosophy of mathematics assumes that the primary data that

requires a philosophical analysis are the true ordinary mathematical sen-

tences of the form ‘In mathematical theory T , p (is true)’. So, for exam-

ple, we shall try to systematically interpret such statements as ‘In real

number theory, π is greater than 3’ and ‘In Zermelo-Fraenkel set theory,

no set is a member of the empty set’. Note that these statements, when

stripped of the prefix ‘In mathematical theory T ’, are frequently expressed

in the formal languages of mathematics. We shall want to show that both

14The reductions may also hold some interest for the epistemologist concerned to

justify the foundational axioms of metaphysics, especially if they assert the existence

of abstract individuals. Linsky and Zalta [1995] has something to offer this project,

however.
15This philosophy of mathematics was first sketched in a kind of ‘fictionalist’ form

in Zalta [1983] (Chapter VI) and then articulated in some detail in its ‘platonist’ guise

in Linsky and Zalta [1995]. More will be said about the fictionalist and platonist

interpretations of the theory in Section. 7.
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the mathematical expressions of English and the formal expressions of

mathematics denote distinctive abstract objects. (Both the English and

the formal symbols require a philosophical interpretation and analysis.)

So, on some occasions in what follows, we will refer to both the unpre-

fixed English sentences (e.g., ‘No set is a member of the empty set’) and

their standard formal renditions (e.g., ‘¬∃x(Set(x) & x ∈ ∅)’) as ordinary

statements of mathematical language. We shall call the ordinary lan-

guage prefix ‘In mathematical theory T , . . . ’ the ‘theory operator’ and,

in what follows, we will define a formal notion of O which will be used to

precisely translate this theory operator. The translation thereby yields

well-defined, compositional truth conditions for the prefixed statements

of mathematics. By contrast, the unprefixed statements become subject

to an ambiguity that will be resolved in the framework.

The idea underlying this ambiguity is that predication in ordinary lan-

guage (including that of mathematics) is subject to a structural ambiguity

that is disambiguated by our two modes of predication ‘Fx’ and ‘xF ’. The

unprefixed statements of mathematics (e.g., ‘π is irrational’ and ‘No set

is a member of the empty set’) are subject to this ambiguity. They have a

reading on which they turn out true and a reading on which they turn out

false. The true readings of the unprefixed sentences will be analyzed as

encoding predications. For example, on one reading, the statement ‘π is

irrational’ (made in connection with real number theory <) is true if and

only if a certain abstract individual, namely π< (which can be precisely

identified), encodes a certain abstract property, namely, being irrational<
(which can also be precisely identified). But on the second reading, ‘π

is irrational’ is true iff π< exemplifies being irrational<. We take these

second ‘exemplification’ readings of ordinary mathematical statements to

be false. π< does exemplify properties such as being abstract, being non-

round, being non-red, being thought about by the reader at this moment,

etc. But the present view is that the mathematical properties of π< are

properties that it encodes, not exemplifies.16 Although the standard ex-

emplification readings of unprefixed mathematical sentences are false, the

encoding readings recover the mathematical and philosophical intuition

that there is a sense in which these unprefixed sentences are true.17

16π< encodes only its mathematical properties and will therefore be ‘incomplete’ in

the sense that there are properties F such that π< neither encodes F nor the negation

of F . However, π<, like all other objects, is complete in the sense that for any property

F , either π< exemplifies F or π< exemplifies the negation of F .
17Note the similarities and differences with Field [1980] and [1989]. We agree with
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We shall postponse further discussion and defense of the myriad of

interesting issues that arise in connection with this philosophy of mathe-

matics until Sections 6 and 7. But the reader should now be in a position

to appreciate the preliminary series of definitions, rules and theorems

which follow.

§3: Preliminary Theoretical Principles

We now focus solely on the language and axioms ofO, leaving the question

of how to represent the data from ordinary mathematics to Sections 4

and 6. Now recall that two paragraphs back, we described a reading

for ‘π is irrational’ (a theorem of <) in terms of the abstract property

being irrational<. Just as abstract individuals encode properties, abstract

properties encode properties of properties and abstract relations encode

properties of relations, etc. To represent such claims precisely, we employ

the type-theoretic version of O. This theory is stated in a typed language

governed by the following definition of ‘logical type’:

• i is a logical type.

• Where t1, . . . , tn are any types, 〈t1, . . . , tn〉 is a logical type.

Our language includes (constants and) variables xt, yt, . . . for each type.

Intuitively, i is the type for individuals and so xi will be a variable rang-

ing over individuals. 〈t1, . . . , tn〉 is the type for relations that hold among

objects having types t1, . . . , tn, respectively. Instead of x〈t1,...,tn〉, we fre-

quently use the variable F 〈t1,...,tn〉 to range over relations of this type, so

as to make it clearer that the object in question is a relation. For each

type t, there is a distinguished predicate ‘E!〈t〉’ (‘concretet’) that applies

to things of type t. In terms of this predicate, we define a predicate that

characterizes the ordinary objects (‘O!’) and abstract objects (‘A!’) of

type t as follows:

O!〈t〉xt =df 3E!〈t〉xt

A!〈t〉xt =df ¬3E!〈t〉xt (1)

Field that the standard (exemplification) readings of unprefixed mathematical sen-

tences are false. However, unlike Field, we shall offer a reading on which these un-

prefixed mathematical sentences are true! We also agree with Field that the theory-

prefixed statements are true (he accepts that ‘In number theory, 2+2=4’ is true), but

unlike Field, we shall offer compositional truth conditions for these claims in which

the denotations of the constants and predicates play a role!
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Finally, since n may be 0 in 〈t1, . . . , tn〉, we shall use ‘p’ as a variable

ranging over objects of the empty type 〈 〉. Intuitively, this is the type for

propositions.

With this typing scheme, we may assume that the formulas and com-

plex terms of the language of our type theory can be specified in the usual

way. Note that we still have two kinds of atomic formula:

F 〈t1,...,tn〉xt1 . . . xtn

xtF 〈t〉

Since it is straightforward to specify the well-formed formulas and complex

terms, we will omit the definition here. The definition can be inferred by

examining some of the main principles of O, which now operate at each

type (we suppress types on the reoccurrences of a term whose type has

already been specified in the formula):

O!〈t〉xt → 2¬∃F 〈t〉xF (2)

∃xt(A!〈t〉x& ∀F 〈t〉(xF ≡ ϕ)), where ϕ has no free xts (3)

xt=yt =df

O!〈t〉xt &O!yt & 2∀F 〈t〉(Fx ≡ Fy) ∨
A!〈t〉xt &A!yt & 2∀F 〈t〉(xF ≡ yF ) (4)

[λyt1 . . . ytn ϕ]xt1 . . . xtn ≡ ϕx
t1 ,...,xtn

yt1 ,...,ytn , where ϕ has no

encoding subformulas and no definite descriptions (5)

3xtF 〈t〉 → 2xF (6)

(2) asserts that ordinary objects, of whatever type, do not encode prop-

erties. (3) is the comprehension principle for abstract objects and asserts

that when ϕ is a condition on properties F 〈t〉 (i.e., the F s characterize

objects of type t), there is an abstract object of type t that encodes all and

only the F s satisfying ϕ. (4) defines identity conditions for all objects:

objects xt and yt are identical whenever either they are both ordinary

objects of type t and necessarily exemplify the same properties or they

are both abstract objects of type t and necessarily encode the same prop-

erties. (Substitution of identicals governs this defined notion.) (5) is the

λ-Conversion principle that governs λ-expressions. It asserts that objects

xt1 , . . . , xtn exemplify the complex relation being a yt1 , . . . , ytn such that

Edward N. Zalta 14

ϕ if and only if xt1 , . . . , xtn satisfy ϕ.18 (6) is a logical axiom which asserts

that encoding is not relative to any circumstance—encoded properties are

rigidly encoded.

Notice that (3) and (4) jointly guarantee that for any formula ϕ (with

no free xts), there is a unique abstract object of type t that encodes all and

only the properties satisfying ϕ. (There couldn’t be two distinct abstract

objects that encode exactly the properties satisfying ϕ if distinct abstract

objects have to differ with respect to at least one encoded property.) So

that means the following canonical description of an abstract object is

always well-defined:

ıxt(A!〈t〉x& ∀F 〈t〉(xF ≡ ϕ))

Moreover, such canonical descriptions are governed by a straightforward

consequence of the logic of descriptions, namely, the abstract object xt

that encodes exactly the properties satisfying ϕ encodes a property G〈t〉

iff G〈t〉 satisfies ϕ:

ıxt(A!〈t〉x& ∀F 〈t〉(xF ≡ ϕ))G〈t〉 ≡ ϕG〈t〉

F 〈t〉 (7)

We shall appeal to this theorem on occasion in what follows.

In Section 1 of this paper, we discussed only abstract individuals.

However, we can now assert the existence of abstract properties of indi-

viduals and abstract relations that individuals may exemplify:

∃x〈i〉(A!〈〈i〉〉x& ∀F 〈〈i〉〉(xF ≡ ϕ)), where ϕ has no free x〈i〉s

∃x〈i,i〉(A!〈〈i,i〉〉x& ∀F 〈〈i,i〉〉(xF ≡ ϕ)), where ϕ has no free x〈i,i〉s

We plan to show that mathematical properties (relations) can be found

among the abstract properties which are asserted to exist by the first

(second) of the above principles.

Now it will be useful, in what follows, to have a formula of O that ex-

plicitly asserts that something is a mathematical theory. It would suffice

for our purposes to just add ‘MathTheory ’ as a primitive relation symbol

of O. Such a predicate would allow us to introduce axioms and specify

identity conditions for mathematical theories. However, instead of this ex-

pedient of adding a single new primitive notion, it is philosophically more

perspicuous to define the notion of ‘mathematical theory’ in terms of two

18It is important to remember that λ-Conversion does not guarantee the existence

of complex relations and propositions definable in terms of encoding subformulas.
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other primitive, but reasonably well-understood, notions. Before we say

what these are, it is important to point out that we shall ultimately rely on

our pretheoretic ability to recognize mathematical theories when we come

across them. We do not intend to use the definition of ‘MathTheory(x)’

to prove that anything is a mathematical theory. Instead, the purpose of

the definition is to tell us, in theoretical terms, what it is that we know

when we pretheoretically identify something as a mathematical theory

and then assert this in O.

So to define the notion of a ‘mathematical theory’ in O, we need the

following two primitive notions. First, we need the notion of a ‘purely

mathematical proposition’ (‘Math(p)’). Fortunately, we have a pretty

good pretheoretic grasp on what this notion amounts to. It is reason-

ably clear which primitive constants and predicates are mathematical.

Mathematicians and logicians certainly have no trouble identifying which

constants and predicates have to be added to a predicate calculus in order

to state the proper axioms of some mathematical theory. Though some

philosophers have supposed that (primitive) sets are logical objects19 or

that set membership is a logical rather than a mathematical relation,20

pretty much everyone now agrees that when taken as a primitive notion,

‘membership’ is a non-logical, theoretical (i.e., mathematical) notion and

that the axioms of set theory are non-logical axioms. So, I’ll assume that

we can judge pretheoretically which predicates and constants are math-

ematical, and that this ability justifies taking Math(p) as a primitive

notion.21 The other notion we’ll need to define a mathematical theory is

the notion of ‘authorship’. Authorship is a relation that holds between

two individuals xi and yi and we use ‘A〈i,i〉xiyi’ to assert that xi authors

yi. We’ll explain why this notion is important in just a moment.

Now in terms of our two primitive notions, we may define a mathe-

matical theory to be any abstract individual (i.e., object of type i) which

19See, for example, Frege [1893/1903].
20See, for example, Hempel [1945].
21This pretheoretic ability to judge which predicates and constants are mathematical

suggests that we might define ‘purely mathematical proposition’ as any proposition

denoted by a sentence whose non-logical vocabulary consists only of mathematical

predicates and, possibly, mathematical constants. But such a definition obviously

involves both (a) devices for mentioning pieces of language and (b) semantic notions.

We won’t officially introduce these devices and notions into O, for then we would

have to worry about semantic paradoxes. Moreover, it may be that the notion of a

purely mathematical proposition can be defined without introducing these devices and

notions into O. But I will not pursue the question here.

Edward N. Zalta 16

(i) encodes only propositional properties constructed out of mathematical

propositions, and (ii) is authored by some concrete individual:

MathTheory(xi) =df ∀F 〈i〉(xF → ∃p(Math(p) & F =[λyi p])) &

∃yi(E!〈i〉y &A〈i,i〉yx) (8)

The authorship relation is used so that we can talk primarily about the

mathematical theories that have actually been constructed. Of course,

we shall want our analysis to apply to any possible mathematical theory,

and this is easily done—we simply add the modal operator ‘possibly’ in

front of the second conjunct of (8) (i.e., so that it reads: it might be the

case that xi is authored by some concrete individual). However, in what

follows, we need not concern ourselves with this subtlety. Henceforth, we

use the variables T and S to range over actual theories.

We next say that a proposition p is true in theory T (‘T |= p’) if and

only if T encodes the property [λy p]:

T |= p =df T [λy p] (9)

In the next section, we will use this defined notion to translate the or-

dinary language theory-prefix ‘In mathematical theory T , . . . ’. But for

now, let us note that given this definition, we may extend our central

notion, xt encodes F 〈t〉, so that we may say that certain individuals (in

particular, theories) encode propositions. We will say that a theory T en-

codes proposition p just in case p is true in T , i.e., just in case T encodes

[λy p].

It is important next to stipulate that mathematical theories are closed

under proof-theoretic consequence. If we utilize the notion ϕ1, . . . , ϕn ` ψ,

which is defined proof-theoretically in O in the usual way (and which has

been so defined in previous work), then we may stipulate that whenever

proposition q is a proof-theoretic consequence of propositions p1, . . . , pn
and the pi are all true in mathematical theory T , then q is true in T :

Rule of Closure for Mathematical Theories T :

If p1, . . . , pn ` q and T |=p1 and . . . and T |=pn, then T |=q. (10)

In what follows, therefore, we assume that mathematical theories are

closed according to this rule. In addition, we shall often refer to the proof-

theoretic consequences of a proposition as its ‘logical’ consequences. So

the reader is hereby cautioned to remember both (a) that ‘T |=p’ does not

assert that p is a logical consequence of T but rather is defined as in (9),
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and (b) that ‘p`q’ asserts that q is a logical (proof-theoretic) consequence

of p.

Now we are in a position to appreciate the significance of two simple

theorems, the first of which gives us a theoretical description of the ab-

stract individual with which a mathematical theory T is to be identified.

It is a simple consequence of our definition of ‘mathematical theory’ that

if T is a mathematical theory, then T is identical with the abstract indi-

vidual that encodes all and only (the properties constructed out of) the

propositions that are true in T . In formal terms:22

MathTheory(T )→
T = ıxi(A!x& ∀F (xF ≡ ∃p(T |=p & F =[λy p]))) (11)

There are two important observations to make about (11). The first is

that the definite description that appears in (11), namely:

ıxi(A!x& ∀F (xF ≡ ∃p(T |=p & F =[λy p]))),

22The proof depends on theorem (7) governing canonical descriptions of abstract

objects: Suppose MathTheory(T ). Then, by the definition of identity for abstract

objects (4) and the logical axiom (6) that encoded properties are rigidly encoded, we

simply have to show that T encodes exactly the properties encoded by:

ıxi(A!x& ∀F (xF ≡ ∃p(T |=p & F =[λy p]))).

(→) So assume that T encodes P (to show that the individual just described encodes

P ). It then follows from the definition of a mathematical theory (8) that ∃q(P =[λyq]).

So suppose P = [λy q1]. Then T encodes [λy q1]. So, by the definition of truth in a

theory (9), we therefore know:

T |= q1 & P =[λy q1]

From which it follows that

∃p(T |=p & P =[λy p])

So by the theorem governing canonical descriptions of abstracta (7), it follows that:

ıxi(A!x& ∀F (xF ≡ ∃p(T |=p & F =[λy p]))) encodes P ,

which is what we had to show.

(←) Assume that:

ıxi(A!x& ∀F (xF ≡ ∃p(T |=p & F =[λy p]))) encodes P .

(to show that T encodes P ). Then, by the theorem about canonical descriptions (7),

it follows that:

∃p(T |=p & P =[λy p])

Let q2 be an arbitrary such proposition. So we know:

T |=q2 & P =[λy q2]

But, by (9), the first conjunct just means that T encodes [λy q2]. So, it follows that T

encodes P , which is what we had to show.
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is well-defined. We established earlier that any such canonical description

of an abstractum is well-defined, as a consequence of our comprehension

principle (3) and identity principle (4) for abstracta.

The second thing to note about (11) is that its consequent does not

offer a definition of mathematical theory T , but rather a theoretical de-

scription of T . Once we extend the language of O (in the next section)

by introducing names of actual mathematical theories, the above the-

orem can be instantiated to those names, resulting in specific identity

claims which identify the named theories as well-defined abstract individ-

uals. But it is important to remember that we haven’t yet introduced any

names of actual mathematical theories into our language and so we can’t

yet instantiate the variable T in (11) in any interesting way. Nor do we

have available specific true sentences of the form ‘τ |=ϕ’. Such sentences

will become available in the next section, where we show how to translate

the data into our formal system. At this point, we have simply defined

some technical notions of O and have produced a simple theorem that is

statable in terms of these notions.

The second simple theorem we are in a position to appreciate tells us

identity conditions for mathematical theories. It is a consequence of our

identity conditions for abstracta (4) and the definition of mathematical

theories (8) that theories T and S are identical if and only if all and only

the propositions true in T are true in S:

T =S ≡ ∀p(T |=p ≡ S |=p)

This, presumably, is exactly what one would expect as identity conditions

for theories.

We can complete the specification of the machinery needed for meta-

physical reductions with the following series of definitions. First we say

that an object xt (of type t) is an object of theory S iff there is a property

F 〈t〉 such that it is true in S that xt exemplifies F :

ObjectOf (xt, S) =df ∃F 〈t〉(S |=Fxt) (12)

In what follows, when t = i we say that xt is a mathematical individual

of S; when t = 〈i〉 we say that xt is a mathematical property of S; and

when t = 〈i, i〉 we say that xt is a mathematical relation of S.

We can now formulate a quite general axiom for identifying the objects

of theory S as abstract objects. This statement of the axiom is simplified
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by the fact that we are considering only pure mathematical theories.23

We assert the following as axiomatic:

Reduction Axiom:

ObjectOf (xt, S)→ x= ıyt(A!〈t〉y & ∀F 〈t〉(yF ≡ S |=Fx)) (13)

In other words, if xt is a type-t object of theory S, then x is the abstract

object that encodes exactly the properties true of x in S.

By our theorem (7) governing canonical descriptions, it is an immedi-

ate Corollary of the Reduction Axiom that if xt is an object of S, then x

encodes a property F 〈t〉 iff it is true in S that x exemplifies F :

ObjectOf (xt, S)→ (xF 〈t〉 ≡ S |=Fx) (14)

We shall see some specific instances of our Reduction Axiom and Corollary

in the next section. In the meantime, we note that the principles allow

us to identify the objects of a mathematical theory no matter what the

logical type of the object. It is to be stressed here that from the point

of view of a foundational metaphysics, there is no distinguished ‘model-

theoretic’ perspective to tell us what the ‘objects of’ a theory T are. From

a metaphysical point of view, the objects of a theory are the ones described

by its de re claims, for these attribute properties to objects. Note that

the statement ‘∃xiP 〈i〉x’ counts as a de re claim about the property P ,

but that it doesn’t count as a de re claim about mathematical individuals.

From T |=∃xiP 〈i〉x, we can validly infer ∃F 〈i〉(T |=∃xiFx), but we can’t

validly infer ∃xi(T |= Px). This tells us that from a logical standpoint,

we cannot validly export the quantifiers inside the scope of the theory

operator.24 The implications of this fact will become clearer in Section 6.

§4: The Reduction of Mathematics to Metaphysics

In this section we’ll reduce the objects of an arbitrary mathematical the-

ory to the objects of our formal metaphysics. We’ll begin by introducing

23If we were to consider applied mathematical theories, we would have to distin-

guish between the abstract, mathematical objects of a theory and the ordinary, non-

mathematical objects, since ordinary individuals and ordinary properties may be ob-

jects of the applied theory, in our defined sense. When dealing with applied mathemat-

ical theories, we would apply the following axiom only to identify the abstract objects

of the theory. Fortunately, we need not worry about this subtlety here.
24Of course, if it is true in theory T that there exists a unique object of a certain sort,

the theory can be extended to include a well-defined term which denotes the object

in question. Such a term would be subject to existential generalization by a quantifer

outside the scope of the theory operator.
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the expressions of ordinary mathematical language into the language of

our formal system. Though it should be clear what the resulting relation-

ship is between the statements of ordinary mathematical language and

those of our system, we will leave the explicit discussion of the interesting

features of this relationship until the next section.

Now to actually carry out our analysis and reduction, let τ range

over names of mathematical theories and suppose that we pretheoreti-

cally judge that a group of sentences constitute the proper axioms of a

mathematical theory named τ . Let us simply refer to these sentences

as ‘the axioms of τ ’. We shall assume that the axioms of τ have been.

or can be, formalized in a first- or second-order predicate calculus (with

identity). So whenever sentence s is an axiom of τ , we will also say that

its formal rendition ϕ is an axiom of τ .

So as to reduce the amount of work we shall have to do in what follows,

we make the following three simplifying metatheoretical assumptions: (I)

the axioms of τ that are instances of a first-order axiom schema can all be

replaced by a single second-order axiom which employs quantifiers over re-

lations, (II) whenever the axioms of τ involve a primitive n-place function

symbol, they can be replaced by axioms involving an n + 1-place predi-

cate symbol, and (III) whenever the axioms of τ involve ‘=’ as a logical

primitive, they can be replaced by axioms involving ‘=’ as a distinguished

non-logical relation symbol (so that the standard two logical axioms for

identity become proper axioms). We’ll discuss simplification (III) in the

next section. For the meantime, it should help if we remind the reader

that when a sentence of τ asserts an identity, the individuals asserted to be

identical exemplify the same properties (or conditions) expressible in the

language of τ . (For each mathematical theory τ , we shall employ a relation

symbol ‘=τ ’ by which one can assert that τ -identical individuals exemplify

the same τ -expressible properties.) Moreover, in Section 5, we’ll demon-

strate that nothing important is lost by appealing to assumption (III).

§4.1 Extending O

In this subsection, we extend O by adding new expressions to the language

and by adding certain analytic truths and certain obvious facts as new ax-

ioms. Now, whenever we pretheoretically judge that a group of sentences

constitute the axioms for a mathematical theory named τ , we extend the

language of O as follows: (a) we add the name τ as a new constant of type
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i to our language, (b) for each primitive constant κ (if there are any) that

appears in an axiom of τ , we add κτ as a new constant of type i to our

language, and (c) for each n-place primitive relation symbol Π appearing

in an axiom of τ , we add Πτ as a new relation symbol of type 〈i, . . . , i〉
(with n occurrences of ‘i’) to our language. Note that clause (c) and sim-

plifying assumption (III) together ensure that if an axiom of τ involves

‘=’, we shall be adding ‘=τ ’ as a new 2-place relation symbol of O.

Next, for each proper axiom ϕ of theory τ , let ϕ∗ designate the formula

of O that results when each primitive constant κ in ϕ is replaced by κτ
and each primitive predicate Π in ϕ is replaced by Πτ . Then, for each

proper axiom ϕ of τ , we take the following as a new axiom of O:

τ |=ϕ∗ (whenever ϕ is an axiom of τ) (15)

In the remainder of this essay, we adopt the following convention. In any

displayed line of the form τ |= ψ, the scope of ‘|=’ will extend over ψ,

no matter how complex ψ may be. So this is a special case where the

convention (described in footnote 10) of giving ‘|=’ the narrowest possible

scope within a formula is to be overridden.

Notice that these new axioms of O are, in a real sense, analytic truths.

They explicitly represent the ordinary language claims of the form ‘In

mathematical theory τ , . . . ’ in terms of our formal machinery. Note also

that if the axioms of τ involve ‘=’, then given simplifying assumption

(III), (15) requires us to add the following as new axioms of O (in which

x, y are variables of type i and F is a variable of type 〈i〉):

τ |=x=τ x (16)

τ |=x=τ y → ∀F (Fx ≡ Fy) (17)

Notice that the quantifier ‘∀F ’ in (17) lies within the scope of the theory

operator ‘τ |= . . .’. So the indiscernibility of x and y (with respect to

exemplification) is conditioned on the τ -identity of x and y only relative

to τ itself. From the (17) and the fact that τ |=x=τ y, our Rule of Closure

lets us conclude only that τ |=∀F (Fx ≡ Fy) and so we have to show that

τ |=Px if we want to conclude that τ |=Py. The quantifier ‘∀F ’ therefore

governs the τ -relative properties of x and y.

Finally, for each (pretheoretically determined) mathematical theory τ ,

we also add the following obvious fact as a new assumption of O:

MathTheory(τ) (18)
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Notice that given (15) and (18), we know metatheoretically that our Rule

of Closure ensures that the translation ϕ∗ of every ordinary theorem ϕ of

τ becomes derivable in O as an explicit τ -relative truth:

τ |=ϕ∗ (whenever `τ ϕ) (19)

Reasoning behind the theory operator, therefore, is classical whenever the

theory in question employs classical logic.25

§4.2 Reducing the Objects of Set Theories

We now examine how the foregoing facilitates a metaphysical reduction

of any set described by any set theory. As a particular example, we shall

consider the sets of a simple ‘adjunctive’ set theory. This simple theory

is representative and it should be clear how the techniques used can be

applied to reduce the objects of Zermelo-Fraenkel set theory and other

set theories. Let us designate the following as the axioms of the theory

named ‘ST’:

• Sets which have the same members are identical. (ST1)

• The empty set is a set. (ST2)

• No set is a member of the empty set.26 (ST3)

• For any two sets, there is a set having the first set and the members

of the second set as members. (ST4)

• For any property F and set x, there is a set which has as members

all and only those members of x which exemplify F . (ST5)

These are familiar axioms—(ST1) is the Axiom of Extensionality, (ST2)

and (ST3) describe the empty set, (ST4) is the Axiom of Adjunction, and

(ST5) is the Axiom of Separation. It is straightforward to formalize these

axioms in classical exemplification logic by assuming that the primitive,

25For mathematical theories involving non-classical logic, we have to adjust our Rule

of Closure, so that we add to O only those claims derivable using the non-classical logic

in question.
26Of course, if we were to allow urelements in the formulation of ST, we would revise

this axiom so that it asserts that nothing whatsoever is an element of the empty set.

But though this would simplify the statement of (ST3), we would no longer have a

reasonably simple truth that involves all of the primitive non-logical notions of ST.

Having such a sentence proves to be useful in what follows.
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non-logical expressions are the singular term ‘the empty set’ (‘∅’) and the

non-logical predicates ‘is a set’ (‘S’), ‘is a member of’ (‘∈’) and ‘is the

same as’ (‘=’). The formalization would go as follows:

∀x∀y[Sx& Sy → [∀z(z∈x ≡ z∈y)→ x=y]]

S∅ (ST2′)

¬∃x(Sx& x∈∅) (ST3′)

∀x∀y[Sx& Sy → ∃z∀w(w∈z ≡ w=x ∨ w∈y)]

∀F∀x[Sx→ ∃y(Sy & ∀z(z∈y ≡ z∈x& Fz))] (ST5′)

Note that we have invoked simplifying assumption (I) so as to formulate

the Separation axiom (ST5′) in its second-order guise. Since we have such

quantifiers in the language of O, we need not bother with the instances

of the first-order Separation Schema.

We now translate these axioms into analytic truths of O as follows.

According to the procedure outlined above, we first extend the language

of O with the new non-logical constants ‘ST’ and ‘∅ST’ and with the new

non-logical relation symbols ‘SST’, ‘∈ST’, and ‘=ST’. (It should be clear

that ‘ST’ and ‘∅ST’ are expressions of type i, that ‘SST’ is an expression

of type 〈i〉, and that ‘∈ST’ and ‘=ST’ are expressions of type 〈i, i〉.) Then,

using x, y, z, w as variables of type i and F as a variable of type 〈i〉, we

add the following analytic truths as new axioms of O (in addition to the

new axioms for identity discussed above):

ST |=∀x∀y[SSTx& SSTy → [∀z(z∈STx ≡ z∈STy)→ x=ST y]] (20)

ST |=SST∅ST (21)

ST |=¬∃x(SSTx& x∈ST∅ST) (22)

ST |=∀x∀y[SSTx& SSTy →
∃z∀w(w∈ST z ≡ w=STx ∨ w∈ST y)] (23)

ST |=∀F∀x[SSTx→ ∃y(SSTy & ∀z(z∈STy ≡ z∈STx& Fz))]

Finally, we also add the assumption

MathTheory(ST) (24)
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Now given this last fact, we know from (19) that the translation ϕ∗ of

every ordinary theorem ϕ of ST becomes derivable in O as an explicit

ST-relative truth:

ST |=ϕ∗ (whenever `ST ϕ)

With this group of theorems in O, we are now ready to metaphysically

reduce the sets described by ST. However, it is to be emphasized that

there is nothing implied by the order of presentation in what follows. We

are not constructing the objects ‘in stages’. We are simply showing which

sequences of formulas in O constitute proofs.

First we identify the theory ST as a particular abstract individual. To

do this, we instantiate (11) to ST and then derive the consequent of the

result from our assumption (24) that MathTheory(ST). The result is:

ST = ıxi(A!x& ∀F (xF ≡ ∃p(ST |=p & F =[λy p]))) (25)

It is essential to recognize that this is not a definition of ‘ST’, but rather

an exact theoretical description of a particular abstract individual. Given

that sentences of the form ‘ST |=p’ are well-defined and that the ordinary

theorems of ST appear in this form as theorems of O, we know in principle

which abstract individual ST is.

Second, we identify ∅ST. To do this, recall that (21) is a new axiom of

O:

(21) ST |=SST∅ST

It therefore follows that

∃F 〈i〉(ST |= F∅ST) (26)

So, by (12), it follows that ∅ST is an object of ST:

ObjectOf (∅ST,ST) (27)

We may therefore instantiate our Reduction Axiom (13) and detach the

consequent to yield the following theorem of O:

∅ST = ıxi(A!x& ∀F (xF ≡ ST |=F∅ST)) (28)

We have therefore identified ∅ST as an abstract individual. Notice that by

the Corollary (14) to the Reduction Axiom, it also follows from the fact

that ∅ST is an object of ST that ∅ST encodes a property F if and only if

it is a truth of ST that ∅ST exemplifies F :
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∅STF ≡ ST |= F∅ST (29)

This fact will prove instrumental in Section 6, when we look at the rela-

tionship between our formal theorems and their counterparts in ordinary

mathematical language.

To complete our metaphysical reduction, we identify the mathematical

relations of ST. We need to identify SST,∈ ST, and =ST. It will suffice to

show how to identify the first two (since the reduction of =τ is carried

out exactly like that for ∈ST). Now recall that (22) is a new axiom of O:

(22) ST |=¬∃x(SSTx& x∈ST∅ST)

From this, our Rule of Closure, and λ-Conversion, we can ‘abstract out’

a property of properties that (the property) being a setST exemplifies (in

ST) and a property of relations that the membershipST relation exemplifies

(in ST):

ST |= [λF 〈i〉 ¬∃x(Fx& x∈ST ∅ST)]SST (30)

ST |= [λF 〈i,i〉 ¬∃x(SSTx& Fx∅ST)]∈ST (31)

We can now generalize on each of the above λ-expressions, remembering

that expressions of the form [λF 〈i〉 ψ] are expressions of type 〈〈i〉〉 and

that expressions of the form [λF 〈i,i〉 ψ] are expressions of type 〈〈i, i〉〉:

∃F 〈〈i〉〉(ST |=FSST) (32)

∃F 〈〈i,i〉〉(ST |=F ∈ST) (33)

So, by the definition of ObjectOf , we may derive the following two facts:

ObjectOf (SST,ST) (34)

ObjectOf (∈ST,ST) (35)

We may therefore instantiate our Reduction Axiom (13) and detach the

consequent to yield the following theorems of O:

SST = ıx〈i〉(A!〈〈i〉〉x& ∀F 〈〈i〉〉(xF ≡ ST |=FSST)) (36)

∈ST= ıx〈i,i〉(A!〈〈i,i〉〉x& ∀F 〈〈i,i〉〉(xF ≡ ST |=F ∈ST)) (37)

Theorems (36) and (37) identify SST and ∈ST as an abstract property and

abstract relation, respectively. (Note that if we had begun with axiom (20)

or (23) instead of (22), we could have reconstructed the above deduction
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to prove that =ST is an abstract relation.) Moreover, by our Corollary

(14) to the Reduction Axiom, the following are also consequences of the

fact that SST and ∈ST are objects of ST:

SSTF
〈〈i〉〉 ≡ ST |= FSST (38)

∈STF
〈〈i,i〉〉 ≡ ST |= F ∈ST

In other words, SST and ∈ST encode precisely the properties they exemplify

in ST. These facts will prove instrumental in Section 6, when we look at

the relationship between ordinary mathematical language and the formal

theorems of O.

By analogy, given the foregoing derivations, as soon as we analyze the

mathematical theories Zermelo-Fraenkel set theory (ZF) or ZF + Axiom

of Choice (ZFC) and supplement O with new terms and analytic truths

in the manner prescribed above, the following become theorems which

identify the primitive individuals and relations of these two theories:

∅ZF = ıxi(A!x& ∀F (xF ≡ ZF |=F∅ZF))

∅ZFC = ıxi(A!x& ∀F (xF ≡ ZFC |=F∅ZFC))

∈ZF = ıx〈i,i〉(A!x& ∀F 〈〈i,i〉〉(xF ≡ ZF |=F∈ZF))

∈ZFC = ıx〈i,i〉(A!x& ∀F 〈〈i,i〉〉(xF ≡ ZFC |=F∈ZFC))

On this analysis, the empty sets and membership relations of ZF and

ZFC are analyzed as distinct abstract individuals and distinct abstract

relations, respectively, which are defined by their theoretical roles, i.e.,

they are defined by the truths of ZF and ZFC.27

§4.3 Reducing the Objects of Number Theories

(In this subsection, we describe how the above procedure would be applied

to the primitive objects of the Dedekind/Peano axioms for number theory.

Since the procedure is almost exactly analogous to the one described in

the previous subsection, some readers might wish to skip this subsection.

However, such readers should note that the final two paragraphs discuss

27When Field and Balaguer use such expressions as ‘setsℵ1 ’, ‘setsℵ817 ’, ‘∈ ℵ1 ’, and

‘∈ ℵ817 ’, the above theorems can tell us exactly which objects in the plenitude of

abstracta that these expressions refer to. See Field [1994] (pp. 420-422), Field [1998a]

(p. 293), Balaguer [1995] (pp. 316-317), and Balaguer [1998] (p. 59).
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why it is important to distinguish between the metaphysical reduction

of the primitive objects of Dedekind/Peano number theory as outlined

in this subsection and the classical reduction of the natural numbers we

described in Section 1.)

We now metaphysically reduce the numbers described by various num-

ber theories. As a representative example, we’ll focus on a classic number

theory. Let us designate the following as the axioms of ‘Number Theory’

(‘NT’):

• Zero is a number.

• Zero doesn’t succeed any number.

• No two numbers have the same successor.

• Every number has a successor.

• If (a) 0 exemplifies the property F and (b) every two successive

numbers x and y are such that if x exemplifes F then y exemplifies

F , then every number exemplifies F .

Now suppose these axioms have been formalized in terms of the non-

logical expressions Zero (‘0’), ‘is a number’ (‘N ’), ‘succeeds’ (‘S’), and ‘is

the same as’ (‘=’). Then we extend the language ofO with the expressions

‘NT’, ‘0NT’, ‘NNT’, ‘SNT’, and ‘=NT’. (It should be clear that ‘NT’ and

‘0NT’ are expressions of type i, that ‘NNT’ is an expression of type 〈i〉,
and that ‘SNT’ and ‘=NT’ are expressions of type 〈i, i〉.) We now add

the following analytic truths as new axioms of O (in addition to the new

axioms for identity discussed above):

NT |=NNT0NT (39)

NT |=¬∃x(NNTx& SNT0NTx) (40)

NT |=∀x∀y[NNTx&NNTy & x 6=NT y →
¬∃z(NNTz & SNTzx& SNTzy)]

NT |=∀x(NNTx→ ∃y(NNTy & SNTyx))

NT |=∀F [F0NT & ∀x∀y(NNTx&NNTy & SNTyx& Fx→ Fy)→
∀x(NNTx→ Fx)] (41)
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Note that we have invoked simplifying assumption (I) so as to formulate

the Induction Axiom (41) in its second-order guise.

Finally, we also add the assumption:

MathTheory(NT) (42)

Now given this last fact, we know from (19) that the translation ϕ∗ of

every ordinary theorem ϕ of NT becomes derivable in O as an explicit

NT-relative truth:

NT |=ϕ∗ (whenever `NT ϕ)

With this group of theorems in O, we begin our reduction by identify-

ing the theory NT as a particular abstract individual. To do this, we

instantiate (11) to NT and appeal to (42) to conclude:

NT = ıxi(A!x& ∀F (xF ≡ ∃p(NT |=p & F =[λy p]))) (43)

Secondly, we identify 0NT. Beginning with (39), we follow the same steps

that we followed in moving from (21) through (26) and (27) to reach

(28). That is, beginning with (39), we abstract out a property that 0NT

exemplifies according to NT, generalize on that property, conclude that

0NT is an object of NT, and then instantiate our Reduction Axiom to

conclude:

0NT = ıxi(A!x& ∀F (xF ≡ NT |=F0NT)) (44)

We have therefore identified 0NT as an abstract individual.

To complete our metaphysical reduction, we identify the mathematical

relations of NT. We need to identify NNT, SNT, and =NT. Again, it will

suffice to show how to identify the first two. Beginning with (40), we just

follow the same steps that we followed in moving from (22) via (30) – (35)

to reach both (36) and (37). That is, beginning with (40), we abstract

out various properties, generalize, apply the definition of ObjectOf and

instantiate the Reduction Axiom. We thereby prove the following two

theorems of O:

NNT = ıx〈i〉(A!〈〈i〉〉x& ∀F 〈〈i〉〉(xF ≡ NT |=FNNT)) (45)

SNT = ıx〈i,i〉(A!〈〈i,i〉〉x& ∀F 〈〈i,i〉〉(xF ≡ NT |=FSNT)) (46)

We have therefore identified the mathematical relations NNT and SNT as

abstract relations.
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Before we turn our attention to the objects of arbitrary mathematical

theories in the next subsection, an important observation is in order. It is

important to recognize that the objects identified by the above metaphys-

ical reduction of NT are completely different from the objects identified in

the classical reduction of the natural numbers in O described in Section 1.

In Section 1, we described how O has the resources to define the natural

cardinal 0 and to define the concepts of ‘natural number’ and ‘predeces-

sor’. This classical reduction was the subject of Zalta [1999], and in that

paper the natural cardinals were defined so as to encode ordinary non-

mathematical properties. For example, the natural cardinal 0 encodes all

and only those properties which are exemplified by no ordinary objects

(e.g., 0 encodes the property of being a giraffe in the Arctic Circle), and

the natural cardinal 9 encodes just those properties that are exemplified

by nine ordinary objects (e.g., 9 encodes the property of being a planet

in our solar system). Moreover, the predecessor relation and its weak

ancestral are asserted to be ordinary relations (since they aren’t abstract

relations, they don’t encode any properties). They were defined in terms

of encoding, using a definition similar to Frege’s.28 And the concept of

‘natural number’ was then defined to be any abstract object to which the

natural cardinal 0 bears the weak ancestral of the predecessor relation.

Given such definitions, the unprefixed Dedekind/Peano axioms become

unprefixed theorems of O. So O rules that the basic laws of number

theory are true simpliciter .

Consequently, it is important to distinguish these natural numbers,

which are defined in terms of the application of counting the ordinary ob-

jects of the natural world, from the theoretical numbers of NT (and from

the theoretical numbers of every other mathematical theory of numbers).

These number systems are different because the individual numbers play

different roles in their respective theories. The theoretical numbers of

NT encode only the properties assigned to them by their theoretical role

in NT. As such, they do not encode ordinary properties such as being

a giraffe in the Arctic Circle or being a planet. Similarly, the relations

predecessorNT and numberNT are both primitive (not defined) in NT. They

can be identified as abstract relations that encode only the properties of

relations that NT assigns to them. The standard laws of number theory,

28Since these relations were defined in terms of encoding subformulas, we had to

explicitly assert that they are (ordinary) relations, and prove that when those assertions

are added to O, it remains consistent. See Zalta [1999].

Edward N. Zalta 30

as formulated in exemplification logic in terms of the primitive notions of

zeroNT, numberNT, and predecessorNT, remain true, when translated into

O, only when prefixed by the appropriate theory operator. So although

O has enough mathematical power (via a definition of ‘natural number’)

to imply the basic laws of number theory as unprefixed (i.e., objective)

truths, we rely on its philosophical power rather than its mathematical

power to give a metaphysical reduction of the objects of arbitrary math-

ematical theories, as we shall now see.

§4.4 Reducing the Objects of Arbitrary Mathematical Theories

To reduce the objects of an arbitrary mathematical theory, we first iden-

tify the theories themselves by proving a theorem similar to (25) and

(43). Suppose that we pretheoretically judge that a group of sentences

constitute the axioms of a mathematical theory named τ . Suppose further

that the axioms of τ have been given some standard first- or second-order

formalization in accordance with our simplifying assumptions (I) – (III).

Now suppose we have extended O in the way described above. We can

then theoretically identify the mathematical theory τ as follows:

τ = ıxi(A!x& ∀F (xF ≡ ∃p(τ |=p & F =[λy p])))

Recall that this is provable from (11) and (18).

We now simply have to identify the objects of τ . Consider any primi-

tive non-logical expression κt that appears in (a sentence pretheoretically

judged to be) an axiom of τ . Then, given our simplifying assumptions, κt

is either an individual constant of type i or an n-place relation symbol of

type 〈i, . . . , i〉 (with n occurrences of i). We therefore add κtτ to the lan-

guage of O. Now suppose ϕ is (a sentence pretheoretically judged to be)

an axiom of τ and that ϕ contains κt. Then where ϕ∗ is the translation

of ϕ into the language of O, we know that the following is a new axiom

of O:

τ |=ϕ∗

From this, we can ‘abstract out’ a property that κt exemplifies in theory

τ . Let ϕ− be the result of substituting the new variable yt for κtτ in ϕ∗.

Then we may use λ-Conversion and our Rule of Closure (10) to prove

that:

τ |=[λyt ϕ−]κτ ,
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And by generalizing on the λ-expression, it follows that:

∃F 〈t〉(τ |=Fκtτ )

So, by (12), κtτ is a type-t object of τ :

ObjectOf (κtτ , τ)

Then, by our Reduction Axiom (13), we can provably identify κtτ in O as

follows:

κtτ = ıxt(A!x& ∀F (xF ≡ τ |=Fκtτ )) (47)

The significance of this theorem cannot be overemphasized. It offers a

general ontological reduction of mathematical objects (individuals and

relations) to the abstract objects of our background ontology. Given (14),

it is an immediate consequence of (47) that:

κtτF
〈t〉 ≡ τ |= Fκτ (48)

In other words, a mathematical object κtτ encodes exactly the properties

it exemplifies in theory τ .

§5: Some Consequences of the Reduction

There are some issues that arise in connection with the foregoing that

deserve commentary. In this section, we shall discuss our treatment of

identity (§5.1) and describe some interesting consequences of the theorems

just proved (§5.2). The consequences discussed in Section 5.2 play an

important role in Section 6, where we analyze (ordinary) mathematical

language in a way that reveals a correlation between the theorems of

arbitrary mathematical theories and theorems of (extended) O.

§5.1 When Identity is Primitive in τ

Recall that simplifying assumption (III) was that whenever a mathemat-

ical theory τ is formulated in a language with identity, τ can be reformu-

lated in a language without identity in which (a) the symbol ‘=’ becomes a

distinguished binary relation symbol that is a non-logical primitive of the

theory, and (b) the standard (two) logical axioms for identity become (re-

formulated as) proper axioms which govern the primitive binary relation

symbol ‘=’. Now one might argue, from considerations of model theory,

that theories reformulated in this way would not have the same expressive
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capacity as the original. The argument would be that the proper axioms

governing ‘=’ in the reformulated theory would only guarantee that ‘=’

denotes an equivalence relation and not identity .

The response to this argument is straightforward, however. If the

italicized use of the word ‘identity’ at the end of the previous paragraph

is supposed to denote some relation that is primitive in model theory,

then we simply point out that from the point of view of the present

metaphysics, there is no such primitive relation. O uses both a defined

notion of identity and a proper theory of identity.29 To defend O, we get

to assume that it is true and that, consequently, the facts about identity

are as the theory says. So, unless that theory is shown to be defective

in some way, its theory of identity trumps the primitive model-theoretic

notion. The argument from model-theory simply becomes unpersuasive

to the object theorist.

However, if the italicized use of the word ‘identity’ is supposed to de-

note the notion of identity defined as ‘exemplifying the same properties’,

then the question becomes whether that definition is correct (i.e., consis-

tent with the unrestricted substitution of identicals). From the point of

view of O, this standard definition of identity is not correct; the identity

of indiscernibles correctly applies only to non-abstract (i.e., ordinary) ob-

jects. It is a theorem of O that there are abstract objects x and y that

are distinct (in the sense that they encode different properties) but which

exemplify the same properties!30 There are so many abstract objects

that the traditional mode of predication, namely exemplification, cannot

always discern abstract objects that encode different properties.

We may also put the model-theoretic concern to rest by showing how

our notion of identity for abstract objects, defined in (4) as ‘encoding the

same properties’, does precisely the work it should do. We show that, us-

ing simplification (III), whenever x and y are objects of τ and τ |=x=τ y,

then our metaphysics guarantees that x and y are identical in the sense

defined by (4).

To see this, recall that when we have a theory τ expressed in the

language of identity that has been reformulated according to simplifying

assumption (III), the proper axioms of τ that govern the new relation

29It is derivable that xt = xt, from the definition in (4) of ‘=’. Substitution of

identicals is asserted as a proper axiom.
30This theorem is proved and explained in Zalta [1999] (Section 2), but we will not

take the time to repeat the proof and explanation here.
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symbol =τ become added to O as the axioms (16) and (17):

(16) τ |=x=τ x

(17) τ |=x=τ y → ∀F (Fx ≡ Fy)

Note that (17) tells us that it is a truth in τ that, if x and y are τ -

identical, then x and y exemplify the same properties. (Note also that

the quantification over properties might be sufficient to put the model-

theoretic concern to rest.)

Now we want to show that if x and y are objects of τ and τ |=x=τ y,

then x=y. So assume the claims required by the antecedent:

ObjectOf (x, τ)

ObjectOf (y, τ)

τ |=x=τ y

Then by (17) and our Rule of Closure, it follows that:

τ |=∀F (Fx ≡ Fy) (ϑ)

Now to show x = y, we have to show that x and y encode the same

properties. Without loss of generality, we simply prove that if x encodes

P , then y encodes P , since the converse uses the same reasoning. So

suppose that x encodes P . Since x is an object of τ , we may appeal to

the Corollary (14) of our Reduction Axiom to conclude:

xF ≡ τ |=Fx

So since x encodes P , it follows that τ |=Px. We can now appeal to (ϑ)

and our Rule of Closure to infer that τ |=Py. But y is also an object of

τ , and so the Corollary to the Reduction Axiom implies:

yF ≡ τ |=Fy

So y encodes P , which is what we had to show.

So, from the point of view of O, whenever x and y are τ -objects that

are τ -identifical, our metaphysics concludes that x and y are the same

abstract object. Thus, anything true of the one is true of the other.
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§5.2 Some Further Theorems

In this subsection, we describe some interesting consequences of the the-

orems proved in the last section. Consider the ordinary axiom of ST

that ∅ is a set. This simple claim was introduced into O as the analytic,

theory-prefixed axiom (21):

(21) ST |= SST∅ST

The Rule of Closure and λ-Conversion immediately yield that in ST, SST

exemplifies the property of being a property that ∅NT exemplifies:

ST |=[λG〈i〉 G∅ST]SST (49)

We now proceed to show that from (21) and (49), we can derive two

further facts, namely that ∅ST encodes SST, and that SST encodes the

higher-order property [λGG∅ST]. In formal terms, we prove the following:

∅STSST (50)

SST[λG〈i〉 G∅ST] (51)

Now to derive (50), recall that we proved (29) in the previous section:

(29) ∅STF ≡ ST |= F∅ST

In light of this, (50) is an immediate consequence of (21). Recall also that

we proved (38) in the previous section:

(38) SSTF
〈〈i〉〉 ≡ ST |= FSST

Now in virtue of this, (51) is an immediate consequence of (49).

We might reflect for a moment on the fact that if there is an atomic

relational axiom of theory τ of the form Πκ1κ2, not only would it be

represented as the following axiom of O:

τ |=Πτκ1τκ2τ ,

but it would also have the following as consequences:

κ1τ [λxΠτxκ2τ ]

κ2τ [λxΠτκ1τx]

Πτ [λF Fκ1τκ2τ ]
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All three encoding claims would therefore be theorems of O.

Finally, we contemplate the consequences of those theorems of a math-

ematical theory which are expressed by molecular and quantified formulas.

For example, consider the axiom of ST which asserts that no set is a mem-

ber of ∅. As we noted above, this becomes the following axiom (22) of

O:

(22) ST |=¬∃x(SSTx& x∈ST ∅ST)

By now familiar reasoning, this axiom of O implies the following:

∅ST[λyi ¬∃x(SSTx& x∈ST y)] (52)

SST[λF 〈i〉 ¬∃x(Fx& x∈ST 0ST)] (53)

∈ST [λG〈i,i〉 ¬∃x(SSTx&Gx0ST)] (54)

With these consequences in mind, we now reconsider the relationship

between the language and theorems of ordinary mathematics and the

theorems of our extended O.

§6: Analysis of (Ordinary) Mathematical Language

Recall that in Section 2, we divided the true statements of ordinary mathe-

matical language into the basic ones, which begin with the theory operator

and the non-basic ones, which don’t. Examples of the basic statements

are:

(A) In ST, the empty set is a set.

(B) In ST, no set is a member of the empty set.

Clearly, the analyses (i.e., philosophically correct truth conditions) of

these claims are given by their direct translations into our formal sys-

tem as (21) and (22), respectively:

(21) ST |= SST∅ST

(22) ST |=¬∃x(SSTx& x∈ST∅ST)
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These analyses reveal that the truth conditions for these statements are

compositionally determined.31 Note that our truth conditions are accom-

panied by a philosophical account of the abstract individuals and abstract

relations that serve as the denotations of the expressions ‘ST’, ‘set’, ‘is a

member of’, and ‘empty set’ as they occur in (A) and (B).

However, when we consider these same statements without the theory

operator, we have several interpretative options. Consider first:

(ST2) The empty set is a set.

as asserted in the context of ST. This simple predication becomes am-

biguous in the present theory. On the one hand, the following atomic

exemplification reading of this claim is false:

(ST2∗) SST∅ST

Though O doesn’t assert that this formula is false, we may consistently

add the assumption that it is false. Recall that this assumption is groun-

ded in our philosophy of mathematics, on which it is asserted that (i) ∅ST
encodes rather than exemplifies its mathematical properties, (ii) ∅ST exem-

plifies such properties as being non-red, being non-round, being thought

about by the reader now, etc., and (iii) ∅ST is complete with respect to the

exemplification of properties but not with respect to the encoding of prop-

erties. Given these philosophical ideas, the truth conditions of (ST2∗),

which it wears on its sleeve, do not obtain. So when read as (ST2∗), both

(ST2) and its traditional formal rendition as (ST2′) turn out to be false.

However, O offers a reading for (ST2) on which it turns out true. (50)

is an atomic encoding claim which is not only true but a theorem of O,

as we saw in the previous subsection:

(50) ∅STSST

Given the ambiguity in language described in Section 2, (50) becomes

a legitimate reading for (ST2). So we have recovered a sense in which

(ST2) is true. (This preserves the intuition of mathematicians that they

31As soon as a philosopher of mathematics takes claims such as (A) and (B) to be

fundamental, it then becomes important to specify (compositional) truth conditions

for these statements. We can therefore provide the truth conditions needed to complete

the position described in Field [1989] (p. 3). Without such truth conditions, Field’s

position has an important explanatory gap. Moreover, we shall offer, in just a moment,

a reading on which the unprefixed version of (A) and (B) turn out true.
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are saying something true.32) In this sense, our analysis says that (ST2)

is about the set ∅ST.

Note that our analysis suggests that we might equally well have re-

garded (ST2) as a statement about the abstract property of being an

ST-set. Our work in the previous subsection suggests that theorem (51)

also offers a true reading of the ordinary statement (ST2):

(51) SST[λG G∅ST]

This asserts that the property of being an ST-set encodes the property of

being a property that ∅ST exemplifies. On this reading, our analysis says

that (ST2) is about the abstract property of being an ST-set.

We’ll discuss the fact that (ST2) has alternative true readings in just

a moment. But first, consider (ST3):

(ST3) No set is a member of the empty set.

We assert that (ST3) is false when represented as the formal claim:

(ST3∗) ¬∃x(SSTx& x∈ST ∅ST)

However, any of the formal representations (52), (53), or (54), which

turned up as theorems in the previous subsection, provide us with a true

reading of (ST3):

(52) ∅ST[λyi ¬∃x(SSTx& x∈ST y)]

(53) SST[λF 〈i〉 ¬∃x(Fx& x∈ST ∅ST)]

(54) ∈ST [λG〈i,i〉 ¬∃x(SSTx&Gx∅ST)]

(ST3) is not only about ∅ST but also about the property of being a setST

and about the relation of membershipST. In some sense, it doesn’t matter

which of theorems (52) – (54) we assign to (ST3) as the disambiguated

condition under which it is true. From any one of these statements, we

can recover the other two, by appealing to the Corollary to the Reduction

Axiom and λ-Conversion.

However, we can take our analysis of (ST3) one step further. Let us

define an extended sense of ‘encodes’ in terms of which we can say that the

abstract objects ∅ST, SST, and ∈ST encode the following complex relation,

32Here again, this fills another important gap in Field’s theory, for the latter doesn’t

offer any reading on which unprefixed theorems of mathematics are true. Without such

a reading, the beliefs of mathematicians become something of a mystery.
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namely, being an individual yi, property F 〈i〉, and relation G〈i,i〉 such that

¬∃x(Fx&Gxy). The intuitive idea here is to define ‘x, y, and z encode R’

(‘xyzR’) as the conjunction of x[λu Ruyz], y[λu Rxuz], and z[λu Rxyu].

To employ this idea in the case at hand, we can let the following notation

be defined as the conjunction of (52), (53), and (54):

∅STSST∈ST [λyiF 〈i〉G〈i,i〉 ¬∃x(Fx&Gxy)] (55)

(In the above notation, the λ-expression is a relational expression of the

form [λyFG ψ], in which y, F and G are all bound by the λ.) We can

use this newly defined statement of O, and the truth conditions it encap-

sulates, as the reading of (ST3) on which it is true. Similarly, whereas

we take the straightforward translation (ST3∗) of (ST3′) to be false, (55)

offers a way to understand (ST3′) as representing a truth.

Of course, this leads to a very general technique for constructing an

encoding condition that expresses the reading under which a complex or-

dinary sentence S of a mathematical theory τ is true. Suppose that τ

has been formulated in classical exemplification logic and that ϕ is the

traditional formal exemplification statement which precisely renders S.

(As an example, let S be (ST3) and let ϕ be (ST3′).) Let the primi-

tive non-logical constants and predicates of ϕ be listed as κt1 , . . . , κtn .

Then where κt1τ , . . . , κ
tn
τ are the new corresponding symbols of O, let ϕ∗

be the sentence of O which results when we substitute κtiτ for κti in ϕ

(1 ≤ i ≤ n). (Continuing with our example, when ϕ is (ST3′), ϕ∗ is

(ST3∗).) Then, as we’ve seen, whether or not ϕ and S are theorems of

τ , ϕ∗ is to be regarded as false (though if ϕ is a theorem of τ , we know

that τ |=ϕ∗ is true). However, there is a statement of O which expresses

a metaphysical truth if and only if ϕ and S are theorems of τ . To specify

this statement in complete generality, let ϕ− be the result of substituting

new variables yt1 , . . . , ytn for all the occurrences of the non-logical ex-

pressions κt1τ , . . . , κ
tn
τ , respectively, in ϕ∗, and let ψ(αti/κti) be the result

of substituting the variable αti for all the occurrences of the (constant

or predicate) symbol κti in ψ. We may then use the definiendum in the

following definition as the reading which captures the mathematical truth

underlying ϕ:

κt1τ . . . κ
tn
τ [λyt1 . . . ytn ϕ−] =df

κt1τ [λyt1 ϕ∗(yt1/κt1τ )] & . . . & κtnτ [λytn ϕ∗(ytn/κtnτ )] (56)

It should be clear that when (55) is taken as an example of the definiendum

in (56), the conjunction of (52), (53), and (54) is an example of the
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definiens. (56) allows us to represent the truth conditions for ordinary

mathematical statements (e.g., (ST3) or (ST3′)) of arbitrary complexity

in terms of a single defined formula of O. It should also be clear that the

definiens of (56) is derivable as a theorem of O whenever ϕ is a theorem of

τ . This sets up a correlation—each theorem of an arbitrary mathematical

theory can be correlated with a theorem of O that is unprefixed by the

theory operator! At this point, it may be that enough has been said to

give the reader a sense of how the (ordinary) language of mathematics is

to be analyzed.

Before we turn to the final section, it is important to address one objec-

tion that might be raised against our reduction of mathematics to meta-

physics. The objection criticizes the reduction from a model-theoretic

perspective. It might go as follows:33

In various mathematical theories, many of the objects are not

uniquely identifiable by descriptions expressible in the language of

the theory. An example might be real number theory, where only

countably many reals are nameable in a standard language. In-

deed, in some mathematical theories, none of the objects are iden-

tifiable, for reasons of symmetry. Examples are classical geometries

and Cantor’s theory of dense linear orderings without endpoints. In

models of these homogeneous theories, every element of the domain

possesses exactly the same properties meaningful for the theory T.

So you can’t reduce all the distinct objects of these theories to

distinct abstract objects.

There are actually two separate questions raised here, namely, what to do

about theories which assert the existence of objects that are not uniquely

identifiable by descriptions expressible in the theory, and what to do about

theories which assert the existence of distinct symmetrical objects. The

two questions are related, however. They both arise because the model-

theoretic conception of the ‘objects of’ a theory is rather different from

the metaphysical conception, which we defined above as (12). On the

model-theoretic conception, an ‘object of’ a theory is any element of any

domain of quantification that is part of the intended model of the theory.

33I am quoting and paraphrasing here from an unpublished paper by Brent Mundy.

I think he states the objection nicely. Allen Hazen raised a similar concern in oral

presentations at the Australian National University and the University of Alberta.

And Thomas Hofweber raised a variant of the objection in a recent conversation about

the present paper.
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The model-theoretician uses this definition to claim that there can be

objects of a mathematical theory that are inexpressible, since the theory

has no well-defined terms to denote them. What analysis does O offer

when this is the case?

I think there are two parts to an effective response to this objection.

The first part of the response is to point out that the model-theoretic ob-

jection, in some deep sense, begs the question as an argument against our

foundational metaphysics. The objection assumes the model-theoretic

definition of ‘object of’ and so uses mathematical language (e.g., the set

theoretic notions of domain, model, satisfaction, etc.), thereby presup-

posing that the semantics of that language is clear. But the semantics

of mathematical language is precisely what is in question. Our ontolog-

ical project is to give an account of mathematical reference and truth

in terms of a more basic, mathematics-free language and theory. So ob-

jections which presuppose an account of reference and truth in terms of

mathematical language (the semantics of which, after all, is in question)

lose their force. Model theory just becomes another mathematical theory

that is subject to a metaphysical reduction. Our metaphysics tells us what

the terms of model theory refer to and tells us the sense in which its claims

are true.

The second part of an effective response is to reiterate the metaphilo-

sophical claim that the two principal tasks of a philosophy of mathematics

are to account for reference and truth. A philosophy of mathematics must

not only identify the referents of the well-defined terms and predicates of

mathematical theories but also precisely describe the conditions under

which the theorems of mathematics turn out to be true. We now have

accomplished both tasks—the analysis of mathematical reference is given

by (47) and the analysis of mathematical truth is given by (56). The

model-theoretic objection can be put to rest by the facts that we have

stated truth conditions in O for every sentence of an arbitrary mathe-

matical theory and that we can correlate every theorem of an arbitrary

mathematical theory with a theorem of (extended) O that is unprefixed

by the theory operator. It therefore becomes a mistake to suppose that

in order to answer the ontological question about what the objects of a

mathematical theory are, a foundational metaphysics has to be able to

give a classical reduction, relative interpretation, or model of that the-

ory.34

34In the case of the theory of dense linear orderings without endpoints (DLO), the
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§7: Philosophical Observations

By showing that the individuals and relations of arbitrary mathematical

theories are just abstract individuals and abstract relations found in the

ontology of typed O, we’ve produced a prima facie case for the main

thesis of this paper. Of course, O has to be extended with new primitive

symbols, with analytic truths of the form τ |=ϕ∗, and with the analyses of

statements which everyone assumes to be true, namely, MathTheory(τ),

for recognizable mathematical theories τ . But the resulting system allows

us to prove what many other philosophers stipulate, namely, that math-

ematical objects are abstract objects. Since O includes only primitive

notions of logic and metaphysics,35 we can conclude that mathematical

objects fall into a more fundamental ontological category. This is an

ontological reduction of one kind of entity to another.

Of course, there are numerous philosophical issues that arise in con-

nection with our metaphysical reduction. Many of those issues were ad-

dressed in Linsky and Zalta [1995] and we shall not rehearse them in any

detail here. We shall, however, consider the question of mathematical

objectivity, but before we do so, it is important to consider the extent to

which the present theory constitutes a kind of neo-logicism. Throughout

this essay, we have presented O as a proper metaphysical theory. The

comprehension principle for abstract objects appears, by most reasonable

lights, to be a synthetic a priori truth and not an analytic truth of logic.

However, there is a way to restate the comprehension principle so that it

looks much more like a truth of logic, or at least more like an analytic

truth. I shall not claim that this reformulated version of comprehension is

present theory analyzes the ordering relation <DLO by abstracting out the properties

of relations that <DLO must encode in order to behave according the axioms of DLO.

And the present theory tells us the sense in which the sentences of DLO are true.

But then there are simply no further ontological questions to answer; in particular,

there are no specifiable (type i) individuals which constitute objects of DLO that need

to be identified. Sentences like “there are infinitely many points which are such and

such” can be true in a mathematical theory even though there are no names for the

points and no witnesses to the claim. Thus, everything that can actually be said in a

mathematical theory gets an account.
35The implementation of O deployed in this paper has the following primitives:

individual (type), relation (type), exemplification and encoding (i.e., modes of pred-

ication), the usual logical and modal primitives (¬, →, ∀, 2, λ, ı), the non-logical

primitive E!, and the non-logical notions of ‘Math(p)’ and ‘Authorship’. None of these

are mathematical notions—there are no mathematical constants like 0, ∅, etc., and no

mathematical predicates such as membership, functions, maps, successor, etc., among

our primitives.
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a truth of logic, or analytic, but it will be recognized that some philoso-

phers would conclude that it is. Our theory of abstract objects could

have been presented by replacing the comprehension principle (3) by the

theorem governing canonical descriptions (7):

(7) ıxt(A!〈t〉x& ∀F 〈t〉(xF ≡ ϕ))G〈t〉 ≡ ϕG〈t〉

F 〈t〉

By elevating this theorem to the status of an axiom, with the understand-

ing (stipulation) that all canonical descriptions of abstract objects denote,

we have an equivalent formulation of O. Moreover, if one considers what

(7) asserts, then it clearly has ‘the ring’ of an analytic truth: the abstract

object that encodes just the properties such that ϕ encodes property G

iff G is such that ϕ. So is (7) an analytic truth? If so, does O, when re-

formulated in this way, become a part of logic?36 If the answers to these

two questions are ‘Yes’, then our ontological reduction of mathematical

objects might constitute a kind of neo-logicism.

As mentioned earlier, I do not claim that (7) is an analytic or a logical

truth. At best, it is analogous to the following ‘abstraction’ principle

(governing ‘set abstracts’) that might be employed as a substitute for

(ST5):

z ∈ {y | y∈x& Fy} ≡ z∈x& Fz

Although this also has the ring of an analytic truth when introduced

as a contextual definition, I doubt that it is analytic when introduced

as a basic axiom that governs the primitive notation ‘{y | y ∈ x & Fy}’.
However, some philosophers have argued that axioms analogous to (7)

and the above abstraction principle are analytic. Using Frege’s [1884]

Context Principle as a guide, Wright [1983] argues that Hume’s Principle

(#F = #G ≡ F ≈ G) is an analytic truth.37 If Wright considers the

36This question assumes that we can also justify the claim that the two other proper

axioms of O can be understood as logical truths. These are (2) (abstract objects don’t

encode properties), and the axiom for the substitution of identicals. Since identity is

defined in O, and the definition involves our non-logical notion ‘E!t’, the principle for

the substitution of identicals is correctly asserted as a proper axiom. Even though

one could constrain interpretations of the theory so that these axioms turn out to be

true in every interpretation, an appeal to such interpretations does not automatically

constitute an argument for thinking that the principles in question are logical truths.
37For the uninitiated, Hume’s Principle asserts that the number of F s is identical to

the number of Gs iff F and G are equinumerous (where ‘equinumerous’ has its usual

definition in second-order logic). See the discussion of ‘number-theoretic logicism’ in

Wright [1983], pp. 153-154.
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result of adding Hume’s Principle to second-order logic to be a logical

system (‘number-theoretic logicism’), then it would seem that he would

have to regard the result of adding (7) to the logic of encoding as a logical

system. Of course, there are, in the literature, trenchant criticisms of

Wright’s position concerning the analytic character of Hume’s Principle.38

Since I hope to discuss these issues at length on another occasion, I shall

simply observe that the relationship between (7) and (3) is analogous to

the relationship between Hume’s Principle and the existence claim that

Boolos calls ‘Numbers’ in his [1987].39 The conclusion I wish to draw at

this point is simply that the above treatment of mathematics constitutes

a kind of neo-logicism if Wright’s claim about the analyticity of Hume’s

Principle can be sustained.40

Consider, next, the question of mathematical objectivity. No doubt,

it will be argued that if every mathematical theory is about a distinctive

group of abstract objects, then there is no way to account for mathe-

matical objectivity.41 But, modulo our classical reduction of the natural

numbers, if mathematical objectivity is correctly described in Linsky and

Zalta [1995] and Field [1998b] as being limited to the objectivity of logical

consequence, then there is no special problem of mathematical objectivity

for the above theory.42 These works deny that there is a single, objec-

38See, in particular, Field [1984] and Boolos [1997].
39Boolos formulates ‘Frege Arithmetic’ in terms of the axiom:

Numbers: ∀F∃!x∀G(Gηx ≡ G ≈ F )

See [1987], p. 5 (or the reprint [1998], p. 186). Boolos discusses how Hume’s Principle

is grounded in Numbers. At some point, I hope to discuss the similarities between

Boolos’ η relation and the notion of encoding. To anticipate, compare the paradoxes

of encoding described in Zalta [1983], Appendix A (pp. 158-159) with the paradoxes

of η described in Boolos [1987], p. 17 (Boolos [1998], p. 198).
40See Rosen [1993] for an interesting discussion of this question.
41I think one way to defend the theory here would be to suggest that it simply offers

a more well-developed account of Carnap’s [1950] view that each ‘linguistic framework’

(substitute ‘mathematical theory’ for ‘linguistic framework’), in some sense, presup-

poses its own group of objects. Carnap failed to explain how the language (predicates

and constants) of each framework come to denote the right relations and objects, and

our theory at least gives an account of this in the case of mathematical frameworks.
42It is important to remember the following. (1) In the present framework, logi-

cal consequence is a primitive notion that is axiomatized in the very specification of

O. (2) The intended understanding of the second order variables of O is that they

range over properties and relations, where these are not construed as set-theoretic

entities. The difference between sets and properties is vast—sets merely classify ob-

jects, whereas properties characterize objects. (3) Therefore, we are not presupposing

a definition, based on standard models of second-order language, of the second-order
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tively true set theory, that there is an objective fact of the matter as

to whether the axiom of foundation is true (for there are perfectly good

non-well-founded set theories), and that there is a fact of the matter as

to the size of the continuum (there are perfectly good set theories which

differ in their answer to the size to the continuum). Each set theory is

simply about a different membership relation.

Though Field [1998b] concludes (p. 401) that an account of mathemat-

ical objectivity is more important than an account of mathematical ob-

jects, it may be more perspicuous to say that philosophers need a correct

account of both if they are to have a comprehensive philosophy of math-

ematics: objects are to objectivity what reference is to truth. In addition

to the ways mentioned in footnotes 17, 27, 31, and 32, the present analysis

supplements Field’s work as follows: (a) it gives a correct account of math-

ematical objects that is consistent with the view of mathematical objectiv-

ity he develops,43 (b) it explains the indeterminacy in our mathematical

concepts, discussed in Field [1994], without abandoning the idea that our

mathematical predicates denote particular mathematical relations, and

(c) it offers an account of the meaningfulness of the language of inconsis-

tent mathematical theories.44 This last fact deserves a brief discussion.

The analysis of mathematical language described above extends even

to inconsistent mathematical theories. To take a classic example, consider

Frege’s Grundgesetze der Arithmetik . Recently, there has been a renais-

sance of interest in this work and it has become the subject of many philo-

sophical and logical investigations. In the Grundgesetze, there are many

hundreds of pages of formulas in Frege’s special script, and despite the in-

logical consequence relation.
43As mentioned above, Field defends the view that logical objectivity (suitably qual-

ified) is all the objectivity that there is in mathematics. He clearly rejects the idea

that there is one true set theory or one correct answer to such questions as the Contin-

uum Hypothesis. Similar claims were defended in Linsky and Zalta [1995]. Moreover,

the specific kind of mathematical objectivity inherent in number theory that he would

accept is validated in O by the fact that the theory of natural numbers can be given a

classical reduction, as described in Zalta [1999] and earlier in this paper! Here is where

our work substantiates, to some extent, Kronecker’s view that the natural numbers

are made by God but that all the other numbers are man-made.
44It is interesting that in [1998b], Field (p. 398) seems to identify something like the

present account with the structuralism of Resnik [1981] and Shapiro [1989]. (These

works have been superceded by Resnik [1997] and Shapiro [1997], respectively.) I

believe that the present account offers a more fine-grained account of the structuralist

philosophy of mathematics than that found in these works, but I shall not argue for

that here.
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consistency of the system, these formulas are meaningful! How are we to

describe the semantics of this language? The answer given by the present

theory is that the terms and predicates of Frege’s language denote abstract

objects that encode properties that are inconsistent with one another.45

Of course, the objects of an inconsistent theory τ will be uninteresting,

for they will encode all properties (formulable in τ).46 That explains why

mathematicians try to avoid postulating inconsistent theories. But note

that we now have a unified semantics of mathematical language.47

It is important to reflect next on the features of metaphysical reduc-

tions that contrast with other forms of reduction. Clearly, our metaphys-

ical reductions are not classical reductions, for the theorems of arbitrary

mathematical theories T do not constitute a subtheory of a definitional

extension of O. Moreover, our metaphysical reductions of the objects

of arbitrary mathematical theories do not show that those mathematical

theories are relatively interpretable in O. Nor are we using O to build

models for arbitrary mathematical theories. We are not claiming that

mathematical notions can be defined in terms of the notions of pure logic

and metaphysics. Nor are we suggesting that we can get along without

the proper axioms of mathematics by being creative with the logical ax-

ioms, non-logical axioms, and definitions of O. Instead, we’ve developed

a new kind of reduction, which yields a precise philosophical account of

mathematical objects. In a sense, our metaphysical reductions constitute

a distinctive new kind of relative interpretation, for every theorem ϕ of

an arbitrary mathematical theory τ can be correlated with a (specially

45Whereas it is a theorem of O that ¬(xF & ¬xF ), O asserts the existence of all

kinds of objects that encode inconsistent properties. There are abstract objects that

encode a property P as well as its negation P̄ (where P̄ =df [λy ¬Py]).
46Suppose that theory τ yields a contradiction and that κt is an object of τ . Then,

for some ϕ, both τ |=ϕ and τ |=¬ϕ will be true in O. Not only does our Rule of Closure

now allow us to infer τ |=ψ (for any ψ), but where ψ′ is the result of substituting the

new variable yt for κt in ψ, we may infer τ |=[λyt ψ′]κt. So, by (48), we know that κt

encodes every τ -formulable property [λyt ψ′].
47At this point, our semantics accounts for the denotation of mathematical terms

and predicates. But the expressions of mathematical language also have a ‘sense’.

This Fregean sense can also be modeled in O. See Zalta [1983], Chapter VI, and

Zalta [1988], Chapters 9 – 12. Note that whereas the assignment of denotations of

mathematical expressions, on the above analysis, is independent of the mental states

of mathematicians, we might suppose that the sense of a mathematical expression

for person x encodes the properties involved in x’s conception of the object denoted

by that expression. This is how we account for error and ignorance in mathematical

beliefs.
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identified) theorem of extended O, namely, the definiens of (56). I think

one conclusion we should draw from all of this is that no matter how

mathematicians carry on with their work and no matter how the math-

ematics they produce might turn out, philosophers will have something

metaphysically precise and circumspect to say about the subject matter

of the resulting mathematics and about the proper semantic analysis of

the language used to express it.48

There is one final observation to make before we conclude, namely,

that it is fascinating (and possibly insightful) to consider that many of the

ideas about the metaphysical reduction of mathematical objects expressed

thus far presuppose a certain ‘platonist’ interpretation of the formalism of

O. In the present paper, we have employed the ‘Quinean’ understanding

of the quantifiers of O, in which the quantifier ‘∃’ is read ‘there exists’

and the predicate ‘E!t’ is read ‘is concretet’. On this understanding, O
asserts that there exist objects (individuals and relations) that couldn’t

possibly be concrete. This is just a consequence of the comprehension

principle (3) and the definition (1) of ‘abstract’. However, one can give the

formalism of O a ‘fictionalist’ reading, by using the ‘Meinongian’ reading

of the quantifier ‘∃’ as ‘there is’ (with no implication of existence) and by

reading the predicate ‘E!’ as ‘exists’. On this reading, O asserts that there

are objects that don’t (and couldn’t possibly) exist. On such a fictionalist

reading of O, one can say that abstract objects are fictions, since they

don’t exist. So mathematical objects become metaphysically reduced to

the more general category of fiction.49 The fact that O has these two

fundamental readings is, in our opinion, what grounds the ‘equivalence’

of the platonist and fictionalist philosophies of mathematics described in

Balaguer [1998].50 The reader might find it worthwhile to consider just

48Our work may therefore also supplement the conclusion of Maddy [1997] with a

precise philosophical account of the language of any theory that the mathematicians

decide is the best way to extend ZF.
49Such a view seems to be consistent with the ontological views of Wagner [1982].

However, it does have the consequence that abstract objects couldn’t possibly exist

(since ‘abstract’ is defined as ‘not the kind of thing that could exist’ on this interpreta-

tion). So although this interpretation does preserve a large part of Field’s fictionalism,

it is inconsistent with his view that numbers are fictions that contingently fail to exist.

See Field [1993].
50Balaguer reaches this interesting ‘equivalence’ thesis by sketching what he takes

to be the best version of platonism and fictionalism. Though his versions of platonism

and fictionalism are not axiomatized, his version of platonism is, like ours, based on

a plenitude principle. However, the plenitude principle of his ‘full-blooded platonism’
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how many of the remarks made in this last section apply, with minor

readjustment, to the fictions described by this alternative reading of the

formalism of O.
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Man’, Noûs, 34/2 (June 2000): 165–202.

Resnik, M., 1997, Mathematics as a Science of Patterns, Oxford: Claren-

don

Resnik, M., 1981, ‘Mathematics as a Science of Patterns: Ontology and

Reference’, Noûs, 15: 529-550
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