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In this paper, I derive a theory of numbers from a more general theory

of abstract objects. The distinguishing feature of this derivation is that it

involves no appeal to mathematical primitives or mathematical theories.

In particular, no notions or axioms of set theory are required, nor is

the notion ‘the number of F s’ taken as a primitive. Instead, entities

that we may justifiably call ‘natural cardinals’ and ‘natural numbers’ are

explicitly defined as species of the abstract objects axiomatized in Zalta

[1983], [1988a], and [1993a]. This foundational metaphysical theory is
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supplemented with some plausible assumptions and the resulting system

yields the Dedekind/Peano axioms for number theory. The derivations of

the Dedekind/Peano axioms should be of interest to those familiar with

Frege’s work for they invoke patterns of reasoning that he developed in

[1884] and [1893]. However, the derivation of the claim that every number

has a successor does not follow Frege’s plan, but rather exploits the logic

of modality that is embedded in the system.

In Section 1, there is a review of the basic theory of abstract objects

for those readers not familiar with it. Readers familiar with the theory

should note that the simplest logic of actuality (governing the actuality

operator Aϕ) is now part of the theory. In Section 2, some important

consequences of the theory which affect the development of number the-

ory are described and the standard models of the theory are sketched. In

Section 3, the main theorems governing natural cardinals are derived. In

Section 4, the definitions and lemmas which underlie the Dedekind/Peano

axioms are outlined, and in particular, the definition of ‘predecessor’ and

‘natural number’. In Section 5, the Dedekind/Peano axioms are derived.

The final section consists of observations about the work in Sections 2 – 5.

Although there are a myriad of philosophical issues that arise in con-

nection with these results, space limitations constrain me to postpone the

full discussion of these issues for another occasion. The issues include:

how the present theory relates to the work of philosophers attempting

to reconstruct Frege’s conception of numbers and logical objects;1 how

the theory supplies an answer to Frege’s question ‘How do we apprehend

numbers given that we have no intuitions of them?’; how the theory avoids

‘the Julius Caesar problem’; and how the theory fits into the philosophy

of mathematics defended in Linsky and Zalta [1995]. A full discussion

of these issues would help to justify the approach taken here when com-

pared to other approaches. However, such a discussion cannot take place

without a detailed development of the technical results and it will be

sufficient that the present paper is devoted almost exclusively to this de-

velopment. In the final section, then, there is only a limited discussion of

the aforementioned philosophical issues. It includes a brief comparison of

the present approach with that in Boolos [1987].

Before we begin, I should emphasize that the word ‘natural’ in the

1See Parsons [1965], Wright [1983], Burgess [1984], Hazen [1985], Boolos [1986],

[1987], Parsons [1987], Heck [1993], Hale [1987], Fine [1994], and Rosen [1995], and

Burgess [1998].
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expressions ‘natural cardinal’, ‘natural number’ and ‘natural arithmetic’

needs to be taken seriously. This is a theory about numbers which are

abstracted from the facts about concrete objects in this and other possible

worlds.2 As such, the numbers that we define will not count other abstract

objects; for example, we cannot use them to count the natural numbers

less than or equal to 2 (though we can, of course, define numerical quanti-

fiers in the usual way and use them to assert that there are three natural

numbers less than or equal to 2). This consequence will be discussed and

justified in the final section. Though some reductions and systematiza-

tions of the natural numbers do identify the numbers as objects which

can count the elements falling under number-theoretic properties, those

reductions typically appeal to mathematical primitives and mathemati-

cal axioms. It should therefore be of interest to see a development of

number theory which makes no appeal to mathematical primitives. From

the present point of view, one consequence of eliminating mathematical

primitives is that the resulting numbers are even more closely tied to their

application in counting the objects of the natural world than Frege an-

ticipated. This, however, would be a welcome result in those naturalist

circles in which abstract objects are thought to exist immanently in the

natural world, in some sense dependent on the actual pattern in which

ordinary objects exemplify properties.3

§1: The Theory of Abstract Objects

The Language: The theory of abstract objects is formulated in a syntac-

tically second-order S5 modal predicate calculus without identity, modi-

fied only so as to include xF 1 (‘x encodes F 1’) as an atomic formula along

with Fnx1 . . . xn. The notion of encoding derives from Mally [1912] and

an informal version appears in Rapaport [1978]. Interested readers may

find a full discussion of and motivation for this new form of predication

in Zalta [1983] (Introduction), [1988a] (Introduction), and [1993a]. It is

2It should be emphasized that the following work does not constitute an attempt

develop an overarching foundations for mathematics. Once the mathematicians decide

which, if any, mathematical theory ought to be the foundation for mathematics, I would

identify the mathematical objects and relations described by such a theory using the

ideas developed in Linsky and Zalta [1995] and in Zalta [2000].
3Though, strictly speaking, on the conception developed here, reality includes

modal reality, and so the identity of the abstract objects that satisfy the definition

of ‘natural number’ may depend on the patterns in which possibly concrete objects

exemplify properties.
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not too hard to show that encoding formulas of the form ‘xF ’ embody

the same idea as Boolos’ η relation, which he uses in formulas of the form

‘Fηx’ in his papers [1986] and [1987].4 The complex formulas and terms

are defined simultaneously. The complex formulas include: ¬ϕ, ϕ → ψ,

∀αϕ (where α is an object variable or relation variable), 2ϕ, and Aϕ
(‘it is actually the case that ϕ’). There are two kinds of complex terms,

one for objects and one for n-place relations. The complex object terms

are rigid definite descriptions and they have the form ıxϕ, for any for-

mula ϕ. The complex relation terms are λ-predicates and they have the

form [λx1 . . . xn ϕ], where ϕ has no encoding subformulas.5 In previous

work, I have included a second restriction on λ-predicates, namely, that

ϕ not contain quantifiers binding relation variables. This restriction was

included to simplify the ‘algebraic’ semantics. But since the semantics

of the system will not play a role in what follows, we shall allow im-

predicative formulas inside λ-predicates. Models demonstrate that the

theory remains consistent even in the presence of the new instances of

comprehension which assert the existence of relations defined in terms of

impredicative formulas.

Definitions and Proper Axioms: The distinguished 1-place relation

of being concrete (‘E!’) is used to partition the objects into two cells: the

ordinary objects (‘O!x’) are possibly concrete, whereas abstract objects

(‘A!x’) couldn’t be concrete:

O!x =df 3E!x

A!x =df ¬3E!x

Thus, O!x ∨ A!x and ¬∃x(O!x & A!x) are both theorems. Though the

theory asserts (see below) that ordinary objects do not encode properties,

abstract objects both encode and exemplify properties (indeed, some ab-

stract objects exemplify the very properties that they encode). Next we

define a well-behaved, distinguished identity symbol =E that applies to

ordinary objects as follows:

x=E y =df O!x&O!y & 2∀F (Fx ≡ Fy)

4A full discussion of this would take us too far afield. I hope to discuss the connec-

tion at length in another, more appropriate context. However, I’ll say a more about

this connection in the final section of the paper.
5A subformula is defined as follows: every formula is a subformula of itself. If χ is

¬ϕ, ϕ→ ψ, ∀αϕ, or 2ϕ, then ϕ (and ψ) is a subformula of χ. If ϕ is a subformula of

ψ, and ψ is a subformula of χ, then ϕ is a subformula of χ.
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Given this definition, the λ-expression [λxy x=E y] is well-formed. So =E

denotes a relation.

The five other (proper) axioms and definitions of the theory are:

1. O!x→ 2¬∃FxF

2. ∃x(A!x& ∀F (xF ≡ ϕ)), where ϕ has no free xs

3. x=y =df x=E y ∨ (A!x&A!y & 2∀F (xF ≡ yF ))

4. F =G =df 2∀x(xF ≡ xG)

5. α = β → [ϕ(α, α) ≡ ϕ(α, β)], where α, β are either both object

variables or both relation variables and ϕ(α, β) is the result of re-

placing one or more occurrences of α by β in ϕ(α, α), provided β is

substitutable for α in the occurrences of α that it replaces

The first principle is an axiom that asserts that ordinary objects neces-

sarily fail to encode properties. The second principle is a proper axiom

schema, namely, the comprehension principle for abstract objects. This

asserts the existence of an abstract object that encodes just the properties

F satisfying formula ϕ, whenever ϕ is any formula with no free variables x.

The third principle is a definition of a general notion of identity. Objects x

and y are said to be ‘identical’ just in case they are both ordinary objects

and necessarily exemplify the same properties or they are both abstract

objects and necessarily encode the same properties. The fourth principle,

the definition for property identity, asserts that properties are identical

whenever they are necessarily encoded by the same objects.6 Since both

the identity of objects (‘x=y’) and the identity of properties (‘F =G’) are

defined notions, the fifth principle tells us that expressions for identical

objects or identical relations can be substituted for one another in any

context.

The Logic: The logic that underlies this proper theory is essentially

classical. The logical axioms of this system are the modal closures of

the instances of axiom schemata of classical propositional logic, classical

6This definition can be generalized easily to yield a definition of identity for n-place

relations (n ≥ 2) and propositions (n = 0). The more general formulation may be

found in Zalta [1983], p. 69; Zalta [1988a], p. 52; and Zalta [1993a], footnote 21. These

definitions of relation identity have been motivated and explained in the cited works.

The definition allows one to consistently assert that there are distinct relations that

are (necessarily) equivalent.
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quantification theory (modified only to admit empty descriptions), and

second-order S5 modal logic with Barcan formulas (modified only to admit

rigid descriptions and the actuality operator). The logical axioms for

encoding are the modal closures of the following axiom:

Logic of Encoding: 3xF → 2xF

The logical axioms for the λ-predicates are the modal closures of the

following principle of λ-conversion:7

λ-Conversion:8 [λx1 . . . xn ϕ]y1 . . . yn ≡ ϕy1,...,ynx1,...,xn
, where ϕ has no

definite descriptions and ϕy1,...,ynx1,...,xn
is the result of substituting yi for

xi (1 ≤ i ≤ n) everywhere in ϕ.9

The rules of inference (see below) will allow us to derive the following

comprehension principle for n-place relations (n ≥ 0) from λ-conversion:

Relations: ∃Fn2∀y1 . . . ∀yn(Fny1 . . . yn ≡ ϕ), where ϕ has no free

F s, no encoding subformulas and no definite descriptions

7It is a logical axiom that interchange of bound variables makes no difference to the

identity of the property denoted by the λ-expression: [λx1 . . . xn ϕ] = [λy1 . . . yn ϕ′],

where ϕ and ϕ′ differ only by the fact that yi is substituted for the bound occurrences

of xi. The following is also a logical axiom: Fn = [λx1 . . . xn Fx1 . . . xn].
8It is important to remember that the formulas ϕ in λ-expressions may not contain

encoding subformulas. This restriction serves to eliminate the paradox which would

otherwise arise in connection with the comprehension principle for abstract objects.

Were properties of the form [λz ∃F (zF & ¬Fz)] formulable in the system, one could

prove the following contradiction. By comprehension for abstract objects, the following

would be an axiom:

∃x(A!x& ∀F (xF ≡ F =[λz ∃F (zF & ¬Fz)]))

Call such an object ‘a’ and ask the question: [λz ∃F (zF & ¬Fz)]a? We leave it as an

exercise to show that a exemplifies this property iff it does not.

We remove the threat of this paradox by not allowing encoding subformulas in

property comprehension. This still leaves us with a rich theory of properties, namely,

all of the predicable and impredicable properties definable in standard second-order

exemplification logic.
9A definite description ıyψ may appear in instances of λ-conversion whenever (it is

provable that) ıyψ has a denotation. Whenever we assume or prove that ∃x(x= ıyψ),

we can prove the instance of λ-conversion that asserts:

[λx Rxıyψ]z ≡ Rzıyψ

by first deriving:

∀y([λx Rxy]z ≡ Rzy),

and then instantiating the description into the universal claim for the variable y.
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The logic of the actuality operator is governed by the idea that Aϕ is

true at a world just in case ϕ is true at the distinguished actual world.10

This sets up a situation in which the first group of logical axioms for the

actuality operator are logical truths which are not necessary:11

Actuality: Aϕ ≡ ϕ

Therefore, only the ordinary non-modal instances of this axiom are as-

serted as logical axioms of the system (i.e., the modal closures of instances

of this axiom are not taken as logical axioms). The second group of logical

axioms for actuality reflect the fact that even when Aϕ occurs in a modal

context, its truth depends only on whether ϕ is actually the case. Thus,

the modal closures of the instances of the following principle are to be

logical axioms of the system:

2Actuality: Aϕ→ 2Aϕ

In other words, if it is actually the case that ϕ then necessarily, it is

actually the case that ϕ.

Finally, two features of the logic of definite descriptions are relevant:

(1) The logic of definite descriptions is free. We may not generalize on ıxϕ

or instantiate it into universal claims, unless we know that ∃y(y= ıxϕ).

(2) Definite descriptions are to be understood rigidly. As such, we take

the ordinary (non-modal) instances of the following as the logical axioms

governing definite descriptions:

Descriptions: ψıxϕy ≡ ∃x(ϕ& ∀z(ϕzx → z=x) & ψxy ), for any atomic

or identity formula ψ(y) in which y is free.

When descriptions are understood rigidly, this is a logical truth that is

not necessary.12 The following simple consequence of Descriptions plays

an important role in the reasoning that is used in what follows:

ıx(A!x & ∀F (xF ≡ ϕ))G ≡ ϕGF
10In models of this system, a distinguished actual world is always assumed. This

assumption is justified by the metaphysical theory being developed within the object

language, for ‘worlds’ are definable within this theory and it is provable that there is

a unique ‘actual’ world (i.e., a world where all and only the propositions true at that

world are true simpliciter). See Zalta [1983], [1988a], and [1993a].
11See Zalta [1988b].
12See Zalta [1988b].
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In other words, the abstract object that encodes just the properties sat-

isfying ϕ encodes a property G iff G satisfies ϕ.

To complete this logic, we take Modus Ponens and the Rule of Gener-

alization as our two primitive rules of inference. The Rule of Necessitation

is derivable, though restricted as follows: if ϕ is a theorem, and the proof

of ϕ doesn’t depend on any instance of the contingent Actuality axiom or

the contingent Description axiom, then 2ϕ is a theorem. Since the logic

is classical, it is provable that every object is complete with respect to

exemplification: Fx ∨ F̄ x (where F̄ =df [λx ¬Fx]). However, abstract

objects may be incomplete with respect to the properties they encode.

Model-theoretically, the quantifiers ∀x and ∀F of the S5 quantified

modal logic range over a fixed domain of objects and a fixed domain of

relations, respectively (the domains are mutually exclusive). However,

the validity of the first- and second-order Barcan formulas poses no philo-

sophical problem concerning the contingency of ordinary objects. Note

that the theory allows for two kinds of contingent ordinary object: (1)

those that satisfy the formula E!x & 3¬E!x and (2) those that satisfy

the formula ¬E!x & 3E!x. The former are concrete (spatiotemporal) at

our world but may fail to be concrete at other worlds. (Examples are the

rocks, tables, trees, planets, etc., of our world.) The latter are ‘contin-

gently nonconcrete’ objects; these are (actually existing) objects that are

nonconcrete in this world but concrete at other worlds. (Examples are

things that at other possible worlds are million carat diamonds, talking

donkeys, etc., there, but which are not million carat diamonds, talking

donkeys, etc., here at our world.) The appeal to both kinds of ordinary

objects demonstrates that the Barcan formulas are compatible with the

existence of contingent objects.13

The Theory of Identity: The treatment of identity is of some interest

and merits some discussion. Our strategy has been to: (1) eliminate ‘=’ as

a primitive of the language altogether, (2) introduce in its place the special

defined relation =E which is logically well-behaved on ordinary objects

and which can be used in Relations and λ-expressions to form complex

relations, and (3) define more general notions of identity that can apply

to objects and properties. It is trivial to establish that x=E y → x= y,

and so substitution of identicals applies to identicalE ordinary objects

13For a detailed defence of this simplest quantified modal logic, see Linsky and Zalta

[1994].
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as well. It is easy to establish both that x = y → 2x = y and that

F =G→ 2F =G.

This theory of identity has served well in the various applications of the

theory of abstract objects. It is important to note that whereas =E may

be used in both in λ-expressions and in the comprehension principle for

relations, the defined identity symbol ‘=’ may not be used in either. The

reason for this will be discussed in the next section, where we examine

some interesting consequences of the theory and describe the standard

model, which helps to picture these consequences.

§2: Important Consequences and the Standard Model

The comprehension principle for abstract objects is a schema that has an

infinite number of instances. Each instance involves some condition ϕ and

asserts that there is an abstract object that encodes just the properties

satisfying the condition. It turns out, however, that the traditional mode

of predication (exemplification) cannot always distinguish the abstract

objects assertible by comprehension. Here is why. From a model-theoretic

point of view, the comprehension principle for abstract objects attempts

to correlate abstract objects with (expressible) sets of properties. Thus,

the domain of abstract objects is roughly the size of the power set of

the set of properties. Therefore, there cannot be a distinct property of

the form [λz z = k] for each distinct abstract object k, for otherwise,

there would be a one-to-one mapping from the power set of the set of

properties to a subset of the set of properties, in violation of Cantor’s

Theorem.14 The system avoids paradox because the expression [λzz=k] is

not well-formed. The matrix ‘z=k’ is an abbreviation of a longer formula

14This is McMichael’s Paradox, which was first reported in McMichael and Zalta

[1980] (footnote 15) and described further in Zalta [1983] (p. 159). If there were a

distinct property of the form [λzz=k] for each distinct abstract object k, we could prove

a contradiction, as follows. By A-Objects, the following instance of comprehension

would be well-formed:

∃x(A!x& ∀F (xF ≡ ∃y(F =[λz z=y] & ¬yF )))

Call an arbitrary such object a. Now ask the question, a[λz z = a]? Suppose so.

Then, by definition of a, there exists a y, say b, such that [λz z= a] = [λz z= b] and

¬b[λz z= a]. But since a= a, we know [λz z= a]a, and hence that [λz z= b]a. Thus

a=b, and so ¬a[λz z=a], contrary to our assumption. So suppose ¬a[λz z=a]. Then,

by definition of a, every object y is such that if [λz z=a]= [λz z=y], then y[λzz=a].

So, in particular, this universal claims holds for a, and hence, if [λz z=a]= [λz z=a],

then a[λz z=a]. But, since the antecedent is clearly provable, a[λz z=a], which is a

contradiction.
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containing encoding subformulas and so this matrix cannot appear in λ-

expressions. So though there is a well-defined condition that governs the

identity of abstract objects, there is no relation of identity on abstract

objects analogous to the classical identity relation =E on the ordinary

objects.

The result is even more general. It follows that, given any relation R,

there cannot be a distinct property of the form [λxRxk] (or [λxRkx]) for

each distinct abstract object k. Intuitively, the picture underlying this

result is like the above: were there such distinct properties for distinct

abstract objects, there would be a one-to-one mapping from the power set

of the set of properties (i.e., the domain of abstract objects) to a subset

of the set of properties. The theory avoids inconsistency in this case by

yielding the following consequences:

1) Theorems: Some Non-Classical Abstract Objects.

.1) ∀R∃x∃y(A!x&A!y & x 6=y & [λz Rzx]=[λz Rzy])

.2) ∀R∃x∃y(A!x&A!y & x 6=y & [λz Rxz]=[λz Ryz])

.3) ∀F∃x∃y(A!x&A!y & x 6=y & [λ Fx]=[λ Fy])

The proofs of (1.1) and (1.3) are in the Appendix.15 It might prove helpful

here to discuss relational properties such as [λz Rzx] which appear in

(1.1) and propositions such as [λFx] which appear in (1.3). In the former

case, the expression ‘[λz Rzx]’ is to be read: being an object z such

that z bears R to x. This λ-expression denotes a one-place relational

property. So (1.1) tells us that given any relation R, there is at least

one pair of distinct abstract objects such that the relational properties

contructed out of those objects become identified. In the case of (1.3),

15Anderson [1993] notes (p. 226) that the theory also yields abstract objects x

such that every property x exemplifies is exemplified by some other abstract object

y. Though Anderson calls such objects ‘undistinguished’, I point out (Zalta [1993b],

pp. 239-240) that such objects can nevertheless be distinguished by the properties

they encode. Anderson’s point was directed at an earlier version of the present sys-

tem, in which impredicative conditions were not permitted in relation comprehension.

However, since we now allow such impredicative relations, there are not only ‘undis-

tinguished’ objects, but ‘indiscernible’ objects, i.e., distinct abstract objects which

exemplify exactly the same properties (see below). Again, it is to be remembered that

the members of each such ‘pair’ of ‘indiscernible’ abstract objects can be distinguished

from one another by the fact that one encodes a property that the other one fails to

encode.
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the expression ‘[λ Fx]’ is to be read: that x exemplifies F . Here the λ

operator doesn’t bind any variables, and the resulting expression denotes

a proposition (i.e., a 0-place relation). So (1.3) tells us that given any

property F , there is at least one pair of distinct abstract objects such that

the simple atomic exemplification propositions contructed out of those

objects become identified.

Given that we are now allowing impredicative formulas in λ-predicates

and Relations, an even stronger result follows, namely, some distinct ab-

stract objects exemplify the same properties. Consider:

2) Theorems: Some Further Non-Classical Abstract Objects. There are

distinct abstract objects which are ‘indiscernible’ from the point of view

of the traditional mode of predication.

∃x∃y(A!x&A!y & x 6=y & ∀F (Fx ≡ Fy))

The proof appeals to the theorems in item (1).16

The standard models of the theory articulate a structure that helps

us to picture these facts. These models also show how abstract objects

(conceived in the model as sets of properties) can exemplify the very same

properties that they encode (i.e., how sets of properties can exemplify

their elements). In Zalta [1997], the standard model for the modal version

of the theory was constructed and discussed in detail. It was based on

Peter Aczel’s model construction for the elementary (non-modal) version

of the theory of abstract objects.17 The leading ideas of Aczel’s model are

preserved in the modal version and can be described as follows, in which

I correct a minor error in [1997].

The standard model assumes that the language has been interpreted

in a structure containing several mutually exclusive domains of primitive

entities:

1. a domain of ordinary objects O and a domain of special objects S;

the union of these domains is called the domain of ordinary∗ objects

O∗,

16Let R0 be the relation [λxy∀F (Fx ≡ Fy)]. We know from item (1.1) that, for any

relation R, there exist distinct abstract objects a, b such that [λz Rza]= [λz Rzb]. So,

in particular, there are distinct abstract objects a, b such that [λz R0za] = [λz R0zb].

But, by the definition of R0, it is easily provable that R0aa, from which it follows that

[λzR0za]a. But, then, [λzR0zb]a, from which it follows that R0ab. Thus, by definition

of R0, ∀F (Fa ≡ Fb).
17Aczel sketched models of the nonmodal version of the theory during his stay at

Stanford in 1987 and in a personal communication of January 10, 1991.
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2. a domain R of relations, which is a general union of domains of

n-place relations Rn (n ≥ 0),

3. a domain of possible worlds, which contains a distinguished actual

world.

The domain of relations R is subject to two conditions: (a) it is closed un-

der logical functions that harness the simple properties and relations into

complex properties and relations (these logical functions are the counter-

parts of Quine’s predicate functors, except that they operate on relations

instead of predicates), and (b) there are at least as many relations in

each Rn as there are elements of P([O∗]n) (= the power set of the nth-

Cartesian product of the domain of ordinary∗ objects). Relative to each

possible world w, each n-place relation rn in Rn is assigned an element of

P([O∗]n) as its exemplification extension at w (when n = 0, each propo-

sition r0 is assigned a truth value at w).18 In what follows, we refer to

the exemplification extension of a relation rn at world w as extw(rn).

The standard model is completed by letting the domain of abstract

objects A be the power set of the set of properties (i.e., A = P(R1)).

Each abstract object in A is then mapped to one of the special objects

in S; the object correlated with abstract object a is called the proxy of

a. Some distinct abstract objects will therefore get mapped to the same

proxy. Finally, the ordinary and abstract objects are combined into one

set D (= O ∪ A).19 Letting the variable x range over D, we define a

mapping | | from D into the set of ordinary∗ objects as follows:

|x| =

{
x, if x is ordinary

the proxy of x, if x is abstract

18Constraints on the logical functions ensure that the exemplification extension of

a complex relation r meshes in the proper way with the exemplification extensions of

the simpler relations r may have as a part.
19This corrects the error in [1997]. In that paper, the domain D was set to O∗ ∪

A instead of O ∪ A. But this won’t yield a model, for the following reason. Consider

distinct special objects a and b in S. Then there will be some property, say P , such

that Pa and ¬Pb. But given the definitions below, it will follow that both a and b

are abstract, i.e., that A!a and A!b are both true. Moreover, since a and b are special

objects, they necessarily fail to encode properties, so 2∀F (aF ≡ bF ). But, then, by

the definition of identity for abstract objects, it follows that a=b, and thus Pa&¬Pa.

By setting D to O ∪ A, we avoid this result. I am indebted to Tony Roy for pointing

this out to me.
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Now suppose that an assignment function g to the variables of the lan-

guage has been extended to a denotation function dg on all the terms

of the language (so that in the case of the variables x and F , we know

dg(x) ∈ D and dg(F
n) ∈ Rn). We then define true at w (with respect

to g) for the atomic formulas as follows:20 (a) ‘Fnx1 . . . xn’ is trueg at

w iff 〈|dg(x1)|, . . . , |dg(xn)|〉 ∈ extw(dg(F
n)), and (b) ‘xF ’ is trueg at

world w iff dg(F ) ∈ dg(x).21 It is easy to constrain standard models so

that extw(dg(O!)) is simply the subdomain of ordinary objects and that

extw(dg(A!)) is the subdomain of special objects.22

These definitions have the following consequences: (1) the compre-

hension principle for abstract objects is true in these standard models;23

(2) λ-Conversion and Relations are both true in such models;24 (3) an

abstract object x (i.e., set of properties) will exemplify (according to the

model) a property F just in case the proxy of x exemplifies F in the tradi-

tional way; and (4) whenever distinct abstract objects x and y get mapped

to the same proxy, x will exemplify a property F iff y exemplifies F .

This standard model construction, therefore, helps to picture the ear-

lier results about the absence of distinct ‘haecceities’ for distinct abstract

objects and about the existence of distinct but ‘indiscernible’ abstract ob-

jects.25 It is worth emphasizing at this point, however, that it would be a

20For simplicity, we are using representative atomic formulas containing only vari-

ables.
21Note that since the truth of encoding formulas at a world is defined independently

of a world, an encoding formula will be true at all worlds if true at any. This validates

the Logical Axiom of Encoding.
22We simply require that extw(d(E!)) be some subset of the domain of ordinary

objects and that the domain of ordinary objects be the union, for every w, of all the

sets extw(d(E!)). Since O! is defined as [λx 3E!x] and A! is defined as [λx ¬3E!x],

this guarantees that all the ordinary objects are in the exemplification extension of O!

and all the special objects are in the exemplification extension of A!. It should now

be straightforward to see that the proper axiom, O!x → 2¬∃F xF , is true in such a

model.
23For each condition ϕ on properties, there is a set of properties a such that: (a) the

proxy of a is a special object and (b) a property F is an element of a iff F satisfies ϕ.
24The logical functions ensure that for any condition ϕ on objects x1, . . . , xn without

encoding subformulas, there is a relation Fn whose exemplification extension, at any

given possible world, contains all and only those n-tuples of objects satisfying ϕ. See

Zalta [1983] and [1988a] for further details.
25This picture is preserved in the ‘minimal’ extensional model of the theory, in which

the following all hold: (1) there is one possible world, (2) there are no ordinary objects,

(3) there is one special object a∗, (4) there are exactly two properties, one of which

has the set {a∗} as its extension at the single world, the other having ∅ its extension
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mistake to construe abstract objects in what follows as sets of properties.

With the consistency of the theory secure, we shall assume that the world

is just the way that the theory says it is. Thus, sets and set membership

are not presupposed, nor is any other notion of set theory.

Our standard models also demonstrate that the exemplification mode

of predication can always discriminate among the ordinary objects. The

following logical theorems, concerning the classical nature of =E , govern

ordinary objects:26

3) Theorems: =E is an Equivalence Relation on Ordinary Objects. Here

are some facts about the =E relation.

O!x→ x=E x

O!x&O!y → (x=E y → y=E x)

O!x&O!y &O!z → (x=E y & y=E z → x=E z)

4) Theorems: Ordinary Objects Obey Leibniz’s IdentityE of Indiscern-

ables:

O!x&O!y & ∀F (Fx ≡ Fy)→ x=E y

5) Theorems: Distinct Ordinary Objects x, y Have Distinct Haecceities:

O!x&O!y & x 6=E y → [λz z=E x] 6=[λz z=E y]

In what follows, we exploit the classical nature of identityE by consider-

ing a certain equivalence condition on properties F and G, namely, the

equinumerosity of F andG with respect to the ordinary objects. Using this

equivalence condition, we can identify, for each property G, an abstract

object that serves as the natural cardinal numbering the Gs, namely, the

abstract object that encodes all and only the properties F that are equinu-

merous to G with respect to the ordinary objects. To develop the natural

numbers, however, we define ‘predecessor’ and follow Frege’s general plan

for deriving the Dedekind/Peano axioms. As we shall see in the coming

sections, two additional principles must be added to our system, namely,

at the single world; the latter is assigned as the extension of the property E! (since

this is an extensional model, we simply identify properties with their extensions for the

next and final clause), and (5) there are exactly four abstract objects: ∅, {{a∗}}, {∅},
and {{a∗}, ∅}. However, as both Thomas Hofweber and Tony Roy have emphasized

in recent discussions, there are non-standard models in which the domains of special

objects, properties, and abstract objects are all countably infinite.
26The proofs of some of these claims are given in the Appendix.
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(i) if there is a natural number that numbers the F s, then there might

have been a concrete object distinct from all the actual F s, and (ii) prede-

cessor and its weak ancestral are relations. The first is required to prove

that every number has a successor; the second is required to prove the

principle of induction. These additional principles appear as items (39)

and (42) in the following sections.

§3: Natural Cardinals

Throughout the following, we use u, v as variables ranging only over ordi-

nary objects. Where α is any variable, we employ the abbreviation ‘∃!αϕ’

to assert ‘there exists a unique thing α such that ϕ’. It is defined in the

usual way: ∃α∀β(ϕβα ≡ β=α). The proofs of most of the theorems that

follow are given in the Appendix.

6) Definition: Equinumerosity with Respect to the Ordinary Objects.

We say that properties F and G are equinumerous with respect to the ordi-

nary objects (‘F ≈E G’) just in case there is a relation R that constitutes

a one- to- one and onto function from the ordinary objects in the exem-

plification extension of F to the ordinary objects in the exemplification

extension of G:27

F ≈E G =df ∃R[∀u(Fu→ ∃!v(Gv &Ruv)) &

∀u(Gu→ ∃!v(Fv &Rvu))]

So F and G are equinumerousE just in case there is a relation R such

that: (a) every ordinary object that exemplifies F bears R to a unique

ordinary object exemplifying G (i.e., R is a function from the ordinary

objects of F to the ordinary objects of G), and (b) every ordinary object

that exemplifies G is such that a unique ordinary object exemplifying F

bears R to it (i.e., R is a one-to-one function from the ordinary objects of

F onto the ordinary objects of G). In the proofs of what follows, we say

that such a relation R is a witness to the equinumerosityE of F and G.

7) Theorems: EquinumerosityE Partitions the Domain of Properties.

.1) F ≈E F

.2) F ≈E G→ G ≈E F

.3) F ≈E G & G ≈E H → F ≈E H

27cf. Frege, Grundlagen, §71 and §72.
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It is important to give the reason for employing the condition ‘F ≈E G’

instead of the more traditional notion of one-to-one correspondence be-

tween properties, ‘F ≈ G’, which is defined without the restriction to

ordinary objects. It is a consequence of the theorems concerning the ex-

istence of non-classical abstract objects (items (1) and (2)) that ‘F ≈ G’

does not define an equivalence condition on properties.28 Although F ≈ G
is not an equivalence relation, F ≈E G proves to be a useful substitute.

8) Definitions: Numbering a Property. We may appeal to our definition

of equinumerosityE to say when an object numbers a property: x numbers

(the ordinary objects exemplifying) G iff x is an abstract object that

encodes just the properties equinumerousE with G:

Numbers(x,G) =df A!x& ∀F (xF ≡ F ≈E G)

9) Theorem: Every Property is Uniquely Numbered. It is an immediate

consequence of the previous definition and the comprehension and identity

conditions for abstract objects that for every property G, there is a unique

object which numbers G:

∀G∃!xNumbers(x,G)

10) Definition: The Number of (Ordinary) Gs. Since there is a unique

number of Gs, we may introduce the notation ‘#G’ to refer to the number

of Gs:

#G =df ıxNumbers(x,G)

11) Theorem: The Number of Gs Exists. It is an immediate consequence

of the logic of descriptions that for every property G, the number of Gs

exists:

28Here is the argument that establishes this. By (2), we know that there are at

least two distinct abstract objects, say a and b, which are ‘indiscernible’ (i.e., which

exemplify the same properties). Now consider any property that both a and b exem-

plify, say, P . Then there won’t be any property to which P is equinumerous. For

suppose, for some property, say Q, that P ≈ Q. Then there would be a relation R

which is a one-one and onto function from the P s to the Qs. Since R maps each object

exemplifying P to some unique object exemplifying Q, R maps a to some object, say

c, that exemplifies Q. So a exemplifies the property [λz Rzc]. But, since a and b are

indiscernible, b exemplifies the property [λz Rzc], i.e., Rbc. But this contradicts the

one-one character of R, for both Rac and Rbc and yet a and b are distinct. Thus, P

can’t be equinumerous to any property, including itself! Since F ≈ G is not a reflexive

condition on properties, it is not an equivalence condition.
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∀G∃y(y=#G)

12) Lemmas: EquinumerosityE and The Number of Gs. It now follows

that: (.1) the number of Gs encodes F iff F is equinumerousE with G,

and (.2) the number of Gs encodes G. In the following, formal renditions,

note that ‘#GF ’ asserts that the number of Gs encodes F .

.1) #GF ≡ F ≈E G

.2) #GG

13) Theorem: Hume’s Principle. The following claim has now become

known as ‘Hume’s Principle’: The number of F s is identical to the number

of Gs if and only if F and G are equinumerousE .29

#F =#G ≡ F ≈E G

14) Definition: Natural Cardinals. We may now define: x is a natural

cardinal iff there is some property F such that x is the number of F s.30

NaturalCardinal(x) =df ∃F (x=#F )

15) Theorem: Encoding and Numbering F . A natural cardinal encodes

a property F just in case it is the number of F s:

NaturalCardinal(x) → (xF ≡ x=#F )

16) Definition: Zero.31

0 =df #[λz z 6=E z]

17) Theorem: 0 is a Natural Cardinal.

NaturalCardinal(0)

18) Theorem: 0 Encodes the Properties Unexemplified by Ordinary

Objects. 0 encodes all and only the properties which no ordinary object

exemplifies:

0F ≡ ¬∃uFu
29cf. Frege, Grundlagen, §72.
30cf. Frege, Grundlagen, §72; and Grundgesetze I , §42.
31cf. Frege, Grundlagen, §74; and Grundgesetze I , §41.
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19) Corollary: Empty Properties Numbered 0. It is a simple conse-

quence of the previous theorems and definitions that F fails to be exem-

plified by ordinary objects iff the number of F s is zero:32

¬∃uFu ≡ #F =0

20) Definition: Materially EquivalentE Properties. We say that proper-

ties F and G are materially equivalent with respect to the ordinary objects

(‘F ≡E G’) iff the same ordinary objects exemplify F and G:

F ≡E G =df ∀u(Fu ≡ Gu)

21) Lemmas: EquinumerousE and EquivalentE Properties. The follow-

ing consequences concerning equinumerousE and materially equivalentE
properties are easily provable: (.1) if F and G are materially equivalentE ,

then they are equinumerousE ; (.2) if F and G are materially equivalentE ,

then the number of F s is identical to the number of Gs; and (.3) if F

is equinumerousE to G and G is materially equivalentE to H, then F is

equinumerousE to H:

.1) F ≡E G→ F ≈E G

.2) F ≡E G→ #F =#G

.3) F ≈E G&G ≡E H → F ≈E H

§4. Predecessor, Ancestrals, and Natural Numbers33

22) Definition: Predecessor. We say that x precedes y iff there is a

property F and ordinary(!) object u such that (a) u exemplifies F , (b) y is

the number of F s, and (c) x is the number of (the property) exemplifying-

F- but- not- identicalE- to-u:34

Precedes(x, y) =df ∃F∃u(Fu& y=#F & x=#[λz Fz & z 6=Eu])

Note that the definition of Precedes(x, y) contains the identity sign ‘=’,

which is defined in terms of encoding subformulas. As such, there is no

guarantee as yet that Precedes(x, y) is a relation,35 though objects x and

32cf. Frege, Grundlagen, §75; and Grundgesetze I, Theorem 97.
33I am greatly indebted to Bernard Linsky for suggesting that I try to prove the

Dedekind/Peano Axioms using just the machinery of object theory. He pointed out

that the definition of Predecessor was formulable in the language of the theory. I have

also benefited from reading Heck [1993].
34See Frege, Grundlagen, §76; and Grundgesetze I , §43.
35That is, the Comprehension Principle for Relations does not ensure that it is a

relation.
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y may satisfy the condition nonetheless.

23) Theorem: Nothing is a Precedessor of Zero.36

¬∃xPrecedes(x, 0)

Since nothing precedes zero, it follows that no cardinal number precedes

zero.

24) Lemma: Let F−u designate [λz Fz & z 6=E u] and G−v designate

[λz Gz & z 6=E v]. Then if F is equinumerousE with G, u exemplifies F ,

and v exemplifies G, F−u is equinumerousE with G−v:37

F ≈E G & Fu & Gv → F−u ≈E G−v

25) Theorem: Predecessor is One-to-One. If x and y precede z, then

x=y:38

Precedes(x, z) & Precedes(y, z) → x=y

26) Lemma: Let F−u designate [λz Fz & z 6=E u] and G−v designate

[λz Gz& z 6=E v]. Then if F−u is equinumerousE with G−v, u exemplifies

F , and v exemplifies G, then F is equinumerousE with G:39

F−u ≈E G−v & Fu & Gv → F ≈E G

27) Theorem: Predecessor is Functional. If z precedes both x and y,

then x is y:40

Precedes(z, x) & Precedes(z, y)→ x=y

36cf. Grundgesetze I, Theorem 108.
37cf. Grundgesetze I, Theorem 87ϑ. This is the line on p. 126 of Grundgesetze I which

occurs during the proof of Theorem 87. Notice that Frege proves the contrapositive.

Notice also that this theorem differs from Frege’s theorem only by two applications of

Hume’s Principle: in Frege’s theorem, #F = #G is substituted for F ≈E G in the

antecedent and #F−u = #G−v is substituted for F−u ≈E G−v in the consequent.
38cf. Frege, Grundlagen, §78; and Grundgesetze I, Theorem 89.
39cf. Frege, Grundgesetze I , Theorem 66. This theorem differs from Frege’s Theorem

66 only by two applications of Hume’s Principle: in Frege’s Theorem, #F−u = #G−v

is substituted for F−u ≈E G−v in the antecedent, and #F = #G is substituted for

F ≈E G in the consequent.
40cf. Frege, Grundgesetze I , Theorem 71.
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28) Definition. Properties Hereditary with Respect to Relation R. We

say that a property F is hereditary with respect to R iff every pair of

R-related objects are such that if the first exemplifies F then so does the

second:

Hereditary(F,R) =df ∀x, y(Rxy → (Fx→ Fy))

Hereafter, whenever Hereditary(F,R), we sometimes say that F is R-

hereditary.

29) Definition: The Ancestral of a Relation R. We define: x comes

before y in the R-series iff y exemplifies every R-hereditary property F

which is exemplified by every object to which x is R-related:41

R∗(x, y) =df ∀F [∀z(Rxz → Fz) & Hereditary(F,R)→ Fy]

So if we are given a genuine relation R, it follows by comprehension for

relations that R∗(x, y) is a genuine relation as well (the quantifier over

relations in the definition of R∗(x, y) is permitted by the comprehension

principle for relations).

30) Lemmas: The following are immediate consequences of the two pre-

vious definitions: (.1) if x bears R to y, then x comes before y in the

R-series; (.2) if x comes before y in the R-series, F is exemplified by ev-

ery object to which x bears R, and F is R-hereditary, then y exemplifies

F ; (.3) if x exemplifies F , x comes before y in the R-series, and F is

R-hereditary, then y exemplifies F ; (.4) if x bears R to y and y comes

before z in the R series, then x comes before z in the R series; and (.5) if

x comes before y in the R series, then something bears R to y:

.1) Rxy → R∗(x, y)

.2) R∗(x, y) & ∀z(Rxz → Fz) & Hereditary(F,R)→ Fy42

.3) Fx&R∗(x, y) & Hereditary(F,R)→ Fy43

.4) Rxy &R∗(y, z)→ R∗(x, z)44

.5) R∗(x, y)→ ∃zRzy45

41cf. Frege, Begriffsschrift , Proposition 76; Grundlagen, §79; and Grundgesetze I ,

§45.
42cf. Frege, Grundgesetze I , Theorem 123.
43cf. Frege, Grundgesetze I , Theorem 128.
44cf. Frege, Grundgesetze I , Theorem 129.
45cf. Frege, Grundgesetze I , Theorem 124.
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31) Definition: Weak Ancestral. We say that y is a member of the

R-series beginning with x iff either x comes before y in the R-series or

x=y.46

R+(x, y) =df R∗(x, y) ∨ x=y

The definition of R+(x, y) involves the identity sign, which is defined

in terms of encoding subformulas. So though x and y may satisfy the

condition R+(x, y), there is no guarantee as yet that they stand in a

relation in virtue of doing so.

32) Lemmas: The following are immediate consequences of the previous

three definitions: (.1) if x bears R to y, then y is a member of the R-series

beginning with x; (.2) if x exemplifies F , y is a member of the R-series

beginning with x, and F is R-hereditary, then y exemplifies F ; (.3) if y

is a member of the R series beginning with x, and y bears R to z, then

x comes before z in the R-series; (.4) if x comes before y in the R-series

and y bears R to z, then z is a member of the R-series beginning with x;

(.5) if x bears R to y, and z is a member of the R series beginning with

y, then x comes before z in the R series; and (.6) if x comes before y in

the R series, then some member of the R-series beginning with x bears R

to y:

.1) Rxy → R+(x, y)

.2) Fx&R+(x, y) & Hereditary(F,R)→ Fy47

.3) R+(x, y) &Ryz → R∗(x, z)48

.4) R∗(x, y) &Ryz → R+(x, z)

.5) Rxy &R+(y, z)→ R∗(x, z)49

.6) R∗(x, y)→ ∃z(R+(x, z) &Rzy)50

46cf. Frege, Grundlagen, §81; and Grundgesetze I , §46.
47cf. Frege, Grundgesetze I , Theorem 144.
48cf. Frege, Grundgesetze I , Theorem 134.
49cf. Frege, Grundgesetze I , Theorem 132.
50cf. Frege, Grundgesetze I , Theorem 141.
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§5. The Dedekind/Peano Axioms

33) Definition: Natural Numbers. We may now define:51

NaturalNumber(x) =df Precedes+(0, x)

We sometimes use ‘m’, ‘n’, and ‘o’ as restricted variables ranging over

natural numbers.

34) Theorem: Natural Numbers are Natural Cardinals. It is a rela-

tively straightforward consequence of the previous definition that natural

numbers are natural cardinals:

NaturalNumber(x)→ NaturalCardinal(x)

35) Theorem: 0 is a Natural Number.52

NaturalNumber(0)

With this theorem, we have derived the ‘first’ Dedekind/Peano axiom.

36) Theorems: 0 Is Not the Successor of Any Natural Number. It now

follows that: (.1) 0 does not ancestrally precede itself, and (.2) no natural

number precedes 0.53

.1) ¬Precedes∗(0, 0)

.2) ¬∃nPrecedes(n, 0)

With (36.2), we have derived the ‘second’ Dedekind/Peano axiom.

37) Theorems: No Two Natural Numbers Have the Same Successor.

From (25), it follows that no two natural numbers have the same successor.

∀n,m, o(Precedes(n, o) & Precedes(m, o)→ m=n)

With (37), we have derived the ‘third’ Dedekind/Peano axiom. We now

work our way towards a proof that for every natural number, there is a

unique natural number which is its successor.

38) Lemma: Successors of Natural Numbers are Natural Numbers. If a

natural number n precedes an object y, then y is itself a natural number:

51cf. Frege, Grundlagen, §83; and Grundgesetze I , §46. In the latter section, Frege

informally reads the formula Precedes+(0, x) as ‘x is a finite number’, though he doesn’t

officially introduce new notation for this notion.
52cf. Frege, Grundgesetze I , Theorem 140. Frege here proves only the general theo-

rem that ∀xPrecedes+(x, x), but doesn’t seem to label the result of instantiating the

universal quantifier to the number zero as a separate theorem.
53cf. Frege, Grundgesetze I , Theorem 126.
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Precedes(n, y)→ NaturalNumber(y)

39) Modal Axiom. Richness of Possible Objects. The following modal

claim is true a priori : if there is a natural number which numbers the Gs,

then there might have been a concrete object y which is distinctE from

every ordinary object that actually exemplifies G. We may formalize

this a priori truth as the following modal axiom, using u to range over

ordinary objects:

∃x(NaturalNumber(x) & x=#G)→
3∃y(E!y & ∀u(AGu→ u 6=E y))

40) Modal Lemma. Distinctness of Possible Objects. It is a conse-

quence of the logic of actuality and the logic of the identityE relation

that if it is possible that ordinary object v is distinctE from every ordi-

nary object which actually exemplifies G, then in fact v is distinctE from

every ordinary object which actually exemplifies G:

3∀u(AGu→ u 6=E v)→ ∀u(AGu→ u 6=E v)

41) Theorem: Every Natural Number Has a Unique Successor. It now

follows from (39) and (40) that for every natural number n, there exists

a unique natural number m which is the successor of n:

∀n∃!mPrecedes(n,m)

With this theorem, we have derived the ‘fourth’ Dedekind/Peano Axiom.

42) Axioms: Predecessor and Its (Weak) Ancestral Are Relations. The

definitions of Predecessor and its weak ancestral involve encoding subfor-

mulas, and so they are not automatically guaranteed to be relations. In

what follows, we assume that these conditions do in fact define relations:

.1) ∃F∀x∀y(Fxy ≡ Precedes(x, y))

It follows from this by the comprehension principle for relations that Pre-

cedes∗(x, y)) is a relation:

.2) ∃F∀x∀y(Fxy ≡ Precedes∗(x, y))

However, since the definition of Precedes+(x, y) involves an encoding for-

mula, we explicitly assume the following:

.3) ∃F∀x∀y(Fxy ≡ Precedes+(x, y))
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In the final section of the paper, we sketch an extension of the standard

model which demonstrates that we may consistently add these assump-

tions.

43) Theorem: Generalized Induction. If R+ is a relation, then if an

object a exemplifies F and F is hereditary with respect to R when R is

restricted to the members of the R-series beginning with a, then every

member of the R-series beginning with a exemplifies F :54

∃G∀x, y(Gxy ≡ R+(x, y))→
∀F [Fa& ∀x, y(R+(a, x) &R+(a, y) &Rxy → (Fx→ Fy))→
∀x(R+(a, x)→ Fx)]

44) Corollary: Principle of Induction. The Principle of Induction falls

out as a corollary to the previous theorem and the assumption that Pre-

decessor+ is a relation:

F0 &

∀x, y[NaturalNumber(x) & NaturalNumber(y) & Precedes(x, y)→
(Fx→ Fy)]→

∀x(NaturalNumber(x)→ Fx)

We may put this even more simply by using our restricted variables n,m

which range over numbers:

F0 & ∀n,m(Precedes(n,m)→ (Fn→ Fm))→ ∀nFn

With the Principle of Induction, we have derived the ‘fifth’ and final

Dedekind/Peano axiom.

45) Definition: Notation for Successors. We introduce the functional

notation n′ to abbreviate the definite description ‘the successor of n’ as

follows:

n′ =df ıy(Precedes(n, y))

By (41), we know that every natural number has a unique successor. So

n′ is always well-defined.

46) Definitions: Introduction of the Integer Numerals. We introduce

the integer numerals ‘1’, ‘2’, ‘3’, . . . , as abbreviations, respectively, for

the descriptions ‘the successor of 0’, ‘the successor of 1’, ‘the successor of

2’, etc.:

54cf. Frege, Grundgesetze I , Theorem 152.
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1 =df 0′

2 =df 1′

3 =df 2′

...

Note that the definite descriptions being abbreviated are well-defined

terms of our formal language. So it is provable that the numerals have

denotations.

47) Definitions. Natural Arithmetic. Finally, we note that the devel-

opment of natural arithmetic is straightforward. We may define, in the

usual way:

n+ 0 =df n

n+m′ =df (n+m)′

And we may define:

n < m =df Precedes∗(n,m)

n ≤ m =df Precedes+(n,m)

From these definitions, much can be done.

§6: Observations

Since the fourth and fifth Dedekind/Peano postulates are a consequence

of the theory of abstract objects together with (39) and (42), respectively,

the question of consistency arises. Peter Aczel describes a standard model

of the extended theory:

. . . use my model construction with an infinite set of urele-

ments and have among the special objects a copy of the nat-

ural numbers. For each natural number n let αn be the set

of those ordinary properties that are exemplified by exactly n

ordinary objects. Now in choosing proxies just make sure that

the special object that is the copy of the natural number n is
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chosen as the proxy of αn for each n. The copy of the Prede-

cessor relation will be an ordinary relation, as are its (weak)

ancestral.55

Given this suggestion, we can extend the modal version of Aczel models

developed in Section 2. First, we start with a denumerably infinite do-

main O and we include a copy of the natural numbers 0∗, 1∗, 2∗, . . . in S.

Then we identify the natural numbers 0, 1, 2, . . . as those abstract objects

(i.e., sets of properties) which are sets of equinumerous properties. Next,

we set the proxy function so that |n| = n∗. We then stipulate that the

domain of relations R2 contains the Predecessor relation, and that its

extension at the actual world is the distinguished set of ordered pairs of

proxies of predecessors: {〈0∗, 1∗〉, 〈1∗, 2∗〉, 〈2∗, 3∗〉, . . .}. To constrain the

model so that the modal axiom (39) is true, we simply require that the do-

main of worlds includes an ω-sequence of possible worlds, w0,w1,w2, . . .

and stipulate that at wn, there are n ordinary objects in extwn(dg(E!)).

Thus, no matter what the characteristics of the distinguished actual world

are and no matter which property G is chosen, whenever natural number

n is the number of Gs at the actual world, there is a world wn+1 where

there is an ordinary object y that is distinctE from all the objects that

are actually G.

I shall not attempt to justify (39) and (42) in the present work. It

is perfectly reasonable to add a special axiom or two to develop some

special science. However, a few remarks about (39) are in order. This

modal axiom is not contingent. It does not assert the existence of con-

crete objects. Rather, it merely asserts the possible existence of concrete

objects (whenever a certain condition holds). The difference is vast. The

claim that concrete objects exist is an empirical claim, but the claim that

it is possible that concrete objects exist is not. Indeed, by the Rule of

Necessitation, (39) is a necessary truth. Moreover, this is the kind of

fact that logicians appeal to when defending the view that logic should

have no existence assumptions and make no claims about the size of the

domain of objects.56

55This is quoted from his personal communication of November 11, 1996, with the

symbol ‘αn’ replacing his symbol ‘Gn’ (since I have been using ‘G’ for other purposes)

and with ‘Predecessor’ replacing ‘proceeds’.
56I suspect that it is not hard to find passages where logicians have argued that

the domain of objects ‘might be of any size’ and that ‘logic therefore ought not imply

anything about the size of the domain’. The following quotation from Boolos [1987]
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The fact that every number has a successor does not imply that there

are an infinite number of concrete objects. Rather, it implies only that

there are an infinite number of possibly concrete objects.57 These possible

concrete objects are all ‘ordinary’ objects (by definition) and so can be

counted by our natural numbers. So the fourth Dedekind/Peano axiom

has no contingent consequences. Moreover, we have employed no axiom

of infinity such as the one asserted in Russell and Whitehead [1910] or

in Zermelo-Fraenkel set theory. Although the infinity of natural numbers

falls out as a consequence of our system as a whole, the principal forces

underlying this consequence are (39) and the Barcan Formula working

together. Both can be justified independently.

It is important to indicate why it is that we cannot follow Frege’s

proof that every number has a successor. Frege’s strategy was to prove

by induction that every number n immediately precedes the number of

members in the Predecessor series ending with n, i.e.,58

(a) ∀nPrecedes(n,#[λx Precedes+(x,n)])

However, given our definition of #F , (a) fails to be true; indeed, no num-

ber n is the number of members of the predecessor series ending with n.

For #[λx Precedes+(x,n)] is defined to be the number of ordinary objects

that are members of the predecessor series ending with n. That natural

(p. 18/199) is an example that may be sufficient:

In logic, we ban the empty domain as a concession to technical conve-

nience but draw the line there: We firmly believe that the existence of

even two objects, let alone infinitely many, cannot be guaranteed by logic

alone. . . . Since there might be fewer than two items that we happen to

be talking about, we cannot take even ∃x∃y(x 6=y) to be valid.

It seems clear from the antecedent of his last sentence, that Boolos takes claims of the

form ‘there might have been fewer than n objects’ to be true a priori . It seems clear

that he would equally accept the claim ‘there might have been more than n objects’ to

be true a priori . No doubt one could find other logicians who are even more explicit

about this point. Our modal axiom is simply one way of formalizing this assumption.

Since our system includes proper axioms of metaphysics, it is not logic alone that is

guaranteeing the infinity of possibly concrete objects.
57Indeed, there is a natural cardinal that numbers the ordinary objects, namely,

#[λz z=E z]. It is easy to see that that this natural cardinal is not a natural number.

For suppose it is a natural number. Then by our modal axiom (39), it is possible

for there to be a concrete object distinct from all the objects actually exemplifying

[λz z=E z]. But this is provably not possible, for such an object would be an ordinary

object distinctE from itself.
58cf. Grundgesetze I , Theorem 155.
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cardinal number will always be zero, for any n. So (a) is false in our

system because the natural numbers and natural cardinals only count the

ordinary (i.e., possibly concrete) objects that fall under a concept.

A discussion of the significance of this last fact must begin with the ob-

servation that the devices of quantification and identity are still available

for the development of ‘natural arithmetic’. We can still formulate and

prove such claims as ‘There are three (natural) numbers in the predecessor

series ending with 2’, i.e.,

∃x∃y∃z[Precedes+(x, 2) & Precedes+(y, 2) & Precedes+(z, 2) &

x 6=y & y 6=z & x 6=z &

∀w(Precedes+(w, 2)→ w=x ∨ w=y ∨ w=z)]

We just cannot infer from such claims identity statements of the form:

#[λx Precedes+(x,2)] = 3

At least, we cannot infer such claims within the present application of ob-

ject theory (however, see the discussion below of the two-stage philosophy

of mathematics described in Linsky and Zalta [1995]).

I think it is a mistake to judge this limitation on our reconstruction of

the natural numbers without having a wide perspective on the problems

involved in formulating a foundational metaphysical theory of abstract

objects, in constructing a theory of natural numbers without using math-

ematical primitives, and in reconstructing a general theory of Fregean

logical objects. The theory should be judged not on the basis of a single

issue, but on its overall success in dealing with a myriad of philosophical

issues, many of which are tangled and thorny. Although full discussion of

these issues would occupy far more space than available in this concluding

section, the following series of observations may prove useful. To focus

our attention, let us just compare the present theory of natural numbers

with ‘Frege Arithmetic’ (‘FA’), as described in Boolos [1987] and [1986].59

59For the purposes of the following discussion, I will put aside the suggestion of

adding Hume’s Principle to second order logic. Hume’s Principle obviously employs

primitive mathematical objects (‘the number of F s’). Moreover, it collapses compre-

hension and identity principles into a single principle; modern logicians typically now

separate these two kinds of principles. Hume’s principle also obscures the fact that

some non-logical existence assertions concerning objects have to be added to logic in

order to prove the existence of the natural numbers. Finally, Hume’s Principle is sub-

ject to the Julius Caesar problem, namely, it doesn’t establish conditions under which

#F = x, for an arbitrary object x. This makes it difficult to apply the system of
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In [1987] (p. 5/186), Boolos suggests that with (a simplified version

of) second-order logic as background, the sole non-logical axiom of FA is

the following principle:

Numbers: ∀G∃!x∀F (Fηx ≡ F ≈ G)

In this principle, equinumerosity among properties (≈) is not restricted in

any way. Moreover, Boolos allows formulas of the form ‘Fηx’ to appear

in comprehension conditions for complex properties.

Although Boolos’ formulation of FA has elements in common with the

present theory,60 its most striking feature is that it requires no other

special axioms (such as our (39) and (42)) for the derivation of the

Peano/Dedekind axioms. Moreover, the numbers postulated by FA can be

used to count such number-theoretic properties as being a natural number

less than or equal to 2. Finally, it seems that FA requires no mathematical

primitives; it requires only the syntactic resources of second-order logic,

the η relation, and the definable notion of one-to-one correspondence. So,

on first appearance, it would seem that this approach has clear virtues

that make it preferable as a theory of numbers and as a reconstruction of

Frege’s views about them.

A deeper look at the matter, however, seems to show otherwise. It

seems plausible to suggest that the proper philosophical formulation of FA

requires a mathematical primitive.61 Strictly speaking, the label ‘Num-

bers’ for the non-logical axiom of FA needs to be introduced as a predi-

cate and made part of the statement of the axiom. To apply this theory

(i.e., use it to count ordinary objects and properties, by adding names

for ordinary objects and ordinary predicates), Frege Arithmetic has to be

properly reformulated as follows:

∀G∃!x(Number(x) & ∀F (Fηx ≡ F ≈ G)),

second-order logic with Hume’s Principle (i.e., add to the formalism names of ordinary

objects).
60It is not too difficult to show that ‘Fηx’ and ‘xF ’ are notational variants; one

simply has to compare the paradoxes of Fηx, described in Boolos [1987] (p. 17/198-

199), with the paradoxes of ‘xF ’, described in Zalta [1983] (pp. 158-159). The two

paradoxes discussed in these works can be traced back further. One can be traced to

Clark [1978] (p. 184) and Rapaport [1978]; the other to McMichael and Zalta [1980]

(footnote 15).
61I am putting aside the question of whether ‘second-order logic’ is logic. I’ll assume

that the language of second-order logic involves only logical notions.
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just as ZF has to be reformulated with the predicate ‘Set(x)’ when ure-

lements are added. Otherwise, there is no way to distinguish the special

objects asserted to exist from ordinary objects. Indeed, it is natural to

supplement this revised formulation with the following identity conditions

for numbers:

Number(x) & Number(y)→ (x=y ≡ ∀F (Fηx ≡ Fηy))

These identity conditions properly individuate the numbers axiomatized

by FA and they are stated in terms of the distinctive feature of such

numbers, namely, that properties bear the η relation to such entities. It

is now possible to formulate completely general identity conditions on

objects as follows: x and y are identical iff either (1) x and y are both

numbers and ∀F (Fηx ≡ Fηy) or (2) x are y are both ordinary objects

(i.e., not numbers) and ∀F (Fx ≡ Fy). Given the fact that Julius Caesar

is an ordinary object, it then follows that he is not identical with the

number of planets.

A proper, philosophical formulation of FA, then, seems to require a

primitive mathematical notion, namely, the non-logical predicate ‘Num-

ber(x)’. From this apparent fact, and the fact that the non-logical axiom

of FA limits comprehension in terms of η to equinumerosity conditions,

it seems reasonable to think that FA axiomatizes a primitive domain of

mathematical objects. It was no accident that Boolos used the label

‘Numbers’ for the non-logical axiom of FA, for this axioms allows one to

define ‘#F ’ and to derive Hume’s Principle.62

By contrast, the present theory does not axiomatize a primitive kind

of mathematical object. The non-logical predicate ‘A!x’ in the present

reconstruction is a metaphysical rather than mathematical notion and

object comprehension involving encoding predication is not limited to

equinumerosity conditions. Any formula without free xs is allowed in

the comprehension schema for abstract objects, and restrictions on prop-

erty comprehension are required so as to avoid paradox. Consequently, if

we have an interest in developing a theory of natural numbers that pre-

supposes no mathematical primitives and which is formulated within the

context of a general metaphysical theory of abstract objects, it is not clear

62I think it would be a mistake, for example, to suggest replacing the non-logical

predicate ‘Number(x)’ by ‘LogicalObject(x)’. The resulting theory would be a rather

weak theory of logical objects, and it would hardly correspond to Frege’s conception

of ‘logical object’.
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that Boolos’s formulation of FA is preferable. The costs of developing a

theory of natural numbers without appeal to mathematical primitives are:

(1) the addition of two metaphysical axioms (i.e., (39) and (42)), and (2)

the consequences of the fact that unrestricted equinumerosity (≈), as op-

posed to equinumerosity with respect to the ordinary objects (≈E), is not

an equivalence condition on properties.

From the present perspective, this price may simply reflect one of the

ways in which Frege may have overextended his conception of numbers.

When Frege developed his insight that ‘a statement of number is an as-

sertion about a concept’ (Grundlagen, §46), all of his examples were of

ordinary concepts, such as ‘moon of Venus’, ‘horse that draws the King’s

carriage’, ‘inhabitant of Germany’, etc. These are concepts whose in-

stances are concrete objects. Frege assumed that it was unproblematic to

extend this insight to cover such concepts as ‘natural number less than or

equal to 2’, ‘prime number between π and 6’, etc. That is, Frege assumed

that the natural numbers could count everything whatsoever, including

any domain of logical objects and/or abstract objects that might be the

subject of an a priori investigation. It is precisely this assumption that

the present reconstruction questions. One cannot automatically assume

that an insight that unifies our conception of the natural world extends to

the domain of logical and abstract objects without having a prior theory

of what abstract objects and properties there are.

Further, in contrast to FA, the present theory can offer an account

of many of the other kinds of logical objects that interested Frege. To

give just one example, we are now in a position to define ‘the truth value

of proposition p’ as that abstract object that encodes all and only the

properties F of the form [λy q] which are constructed out of propositions

q materially equivalent to p. An abstract object will be a ‘truth-value’

just in case it is the truth-value of some proposition p and one can derive

as a theorem: the truth-value of p is identical to the truth-value of q iff

p is materially equivalent to q.63 The abstract objects The True and the

The False can be precisely identified and it can be shown not only that

these are both truth-values, but that there are exactly two truth-values.

This is only a sketch of one application; others are available (e.g., natural

sets, directions, shapes, etc.). Though a full treatment has to be reserved

for another occasion, any comparison of FA with the present approach

63Compare Boolos [1986] (p. 148/180), who identifies the claim V p=V q ≡ p ≡ q

as an axiom.
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must consider the other kinds of logical objects that might be definable

in terms of our comprehension schema.

One also has to consider whether FA can be justified epistemologi-

cally as easily as the present theory. The work in Linsky and Zalta [1995]

suggests that the comprehension principle for abstract objects can be

epistemologically justified. The particular strategy used there, of show-

ing that the comprehension principle is required for our understanding of

any possible scientific theory, can not be applied to the non-logical axiom

of FA. Suppose this is right, and further suppose that the present theory

offers not only an answer to Frege’s epistemological question ‘In what way

are we to conceive logical objects, in particular, numbers?’, but also has

a ready solution to ‘the Julius Caesar problem’ (which is not unlike the

one suggested several paragraphs back, when we ‘reformulated’ FA and

added an identity principle for numbers). Finally, assume that the fact,

that our natural numbers can’t count the abstracta in the exemplification

extension of properties, provides a partial key to the naturalization of

these particular abstract objects (i.e., makes it easier to reconcile their

existence with our naturalized conception of the world—it may be that

such objects are somehow dependent or supervenient on natural patterns

of properties). If the present theory fares better in terms of these episte-

mological considerations, then the significance of the virtues of FA may

start to fade in comparison.

One last observation about the relative merits of FA and the present

theory derives from the fact that the present theory offers a two-stage

approach to the philosophy of mathematics. The second-stage analysis of

theoretical mathematics, as opposed to the first-stage analysis of natural

mathematics (the focus in the present paper), may recapture the idea

that numbers can apparently be used to count the objects falling under

distinctively mathematical properties. The difference between natural

and theoretical mathematics is simply this: natural mathematics is the

mathematics derivable from our comprehension principle alone without

any mathematical primitives; theoretical mathematics is the mathemat-

ics formulated in terms of distinctive mathematical notions. The work in

Linsky and Zalta [1995] and in Zalta (2000) establishes that the present

metaphysical system offers a way of interpreting the language of arbitrary

mathematical theories T , once analytic truths asserting that such and such

theorems are true in T are added and analyzed in terms of encoding pred-

ications. That work has an important consequence for the present essay
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once we consider those mathematical theories which postulate numbers

of various kinds and in which it can be proved that numbers of one kind

can count numbers of the same or other kinds. For the cited papers then

show us the way to interpret such claims as “In Peano Number Theory,

the number of numbers between 1 and 4 is identical to the number 2”,

and “In the theory of positive and negative integers, the number of roots

to the equation x2 − 4 = 0 is identical to the number 2”. Given such

an interpretation, the fact that our natural numbers can’t count other

numbers may not be that significant.

Let me conclude the present essay with a final observation on a dif-

ferent topic. In [1984] and [1990], Hodes argues that numbers are “fic-

tions created to encode cardinality quantifiers, thereby clothing a certain

higher-order logic in the attractive garments of lower-order logic.” ([1990],

p. 350). Our work in Section 5 validates this idea. To see how, consider

the following inductive definition of the exact numerical quantifiers ‘there

are exactly n ordinary F -things’ (‘∃!nuFu’):

∃!0uFu =df ¬∃uFu

∃!nuFu =df ∃u(Fu& ∃!nv[λz Fz & z 6=E u]v)

Note that from the point of view of higher-order logic, the condition

∃!nuFu defines a property of properties; it defines a different property

of properties for each cardinal number. Our natural numbers, in effect,

encode the first-order properties satisfying these higher-order properties

and they do so in just the way Hodes claims. This is revealed by the

following metatheorem:

48) Metatheorem: Numbers ‘Encode’ Numerical Quantifiers. For each

numeral n, it is provable that n is the abstract object that encodes just

the properties F such that there are exactly n ordinary objects which

exemplify F , i.e.,

` n = ıx(A!x& ∀F (xF ≡ ∃!nuFu))

(A sketch of the proof may be found in the Appendix.) The fact that

Hodes thinks of numbers as ‘fictions’ does not necessarily imply that our

definition of the numbers does not capture his view, for a proper analysis

of fictions might identify them as abstracta. Moreover, the work in Lin-

sky and Zalta [1995] meets his challenge to the platonist to provide an

explanation of the ‘microstructure of reference’.64

64In [1984], Hodes asks (p. 126):
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Appendix: Proofs of Selected Theorems

In this Appendix, we prove some even quite obvious theorems. This

demonstrates that the theorems can be derived in the system as it has

been developed (i.e., that nothing has been overlooked). The reader may,

of course, skip such proofs. In what follows, we use the variables x, y, z

as variables for any kind of object and the variables u, v, w as restricted

variables ranging over ordinary objects. We use a, b, . . . , l as constants for

any kind of object. We use F,G,H as variables for properties, and P,Q

as constants for properties. R is used both as a constant and a variable

for two-place relations.

(1.1): Pick an arbitrary relation R. Consider the following instance of

abstraction:

∃x(A!x& ∀F (xF ≡ ∃y(F =[λz Rzy] & ¬yF )))

Call such an object k. So we know the following about k:

∀F (kF ≡ ∃y(F =[λzRzy] & ¬yF ))

Now consider the property [λz Rzk] and ask the question whether k en-

codes this property. Assume, for reductio, ¬k[λzRzk]. Then, by definition

of k, for any object y, if the property [λz Rzk] is identical with the prop-

erty [λzRzy], then y encodes [λzRzk]. Instantiate this universal claim to

k. Since the property [λz Rzk] is self-identical, it follows that k encodes

[λz Rzk], contrary to assumption. So k[λz Rzk]. So by the definition of

k, there is an object, say l, such that the property [λz Rzk] is identical to

the property [λz Rzl] and such that l doesn’t encode [λz Rzk]. But since

k encodes, and l does not encode, [λz Rzk], k 6= l. So there are objects x

and y such that x 6=y, yet such that [λz Rzx]=[λz Rzy]. ./

(1.3): Pick an arbitrary property P . Consider the following instance of

abstraction:

∃x(A!x& ∀F (xF ≡ ∃y(F =[λz Py] & ¬yF )))

The challenge to the mathematical-object theorist [Fregean] is: Tell us

about the microstructure of reference to, e.g., cardinal numbers. In what

does our ability to refer to such objects consist? What are the facts about

our linguistic practice by virtue of which expressions in our language des-

ignate such objects and the concepts under which they fall or fail to fall?

This challenge is met once we note that the natural cardinals and natural numbers

described here are subject to the epistemology described in Linsky and Zalta [1995].
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By reasoning analogous to the above, it is straightforward to establish

that there are distinct abstract objects k, l such that [λz Pk] is identical

to [λz P l]. But, then by the definition of proposition identity (p=q =df

[λz p] = [λz q]), it follows that the proposition [λ Pk] is identical to the

proposition [λ P l]. ./

(4): Suppose O!x, O!y, and ∀F (Fx ≡ Fy). To show x =E y, we sim-

ply have to show that 2∀F (Fx ≡ Fy). But, for reductio, suppose

not, i.e., suppose 3¬∀F (Fx ≡ Fy). Without loss of generality, suppose

3∃F (Fx & ¬Fy). Then, by the Barcan formula, ∃F3(Fx & ¬Fy). Say

P , for example, is our property such that 3(Px & ¬Py). Now, consider

the property: [λz 3(Pz & ¬Py)]. We know by λ-Conversion that:

[λz 3(Pz & ¬Py)]x ≡ 3(Px& ¬Py)]

But we know the right hand side of this biconditional, and so it follows

that: [λz 3(Pz & ¬Py)]x. But it is also a consequence of λ-Conversion

that:

[λz 3(Pz & ¬Py)]y ≡ 3(Py & ¬Py)]

But clearly, by propositional modal logic, ¬3(Py & ¬Py). So we may

conclude: ¬[λz 3(Pz & ¬Py)]y. So we have established:

[λz 3(Pz & ¬Py)]x & ¬[λz 3(Pz & ¬Py)]y

So, by EG, ∃F (Fx & ¬Fy), which contradicts our hypothesis ∀F (Fx ≡
Fy). ./

(7.1): Pick an arbitrary property P . To show that equinumerosityE is

reflexive, we must find a relation that is a one-to-one function from the

ordinary objects of P onto the ordinary objects of P . However, we need

look no further than the relation =E . We have to show: (a) that =E is a

function from the ordinary objects of P to the ordinary objects of P , and

(b) that =E is a one-to-one function from the ordinary objects of P onto

the ordinary objects of P . To show (a), pick an arbitrary ordinary object,

say b, such that Pb. We need to show that there is an ordinary object

v which is such that ∀w(Pw & b=E w ≡ w=E v). But b is such a v, for

pick an arbitrary ordinary object, say c. (→) If Pc& b=E c, then c=E b.

(←) If c=E b, then since Pb by assumption, we know Pc. So Pc& b=E c.

Therefore, since c was arbitrary, we know ∀w(Pw & b=E w ≡ w =E b),

and so there is an object v such that ∀w(Pw & b=E w ≡ w=E v). This
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demonstrates (a). To demonstrate (b), we need only show that =E is a

one-to-one function from the ordinary objects of P to the ordinary objects

of P , for by previous reasoning, we know that =E is a function from the

ordinary objects of P onto the ordinary objects of P (i.e., we already know

that every ordinary object exemplifying P bears =E to an ordinary object

exemplifying P ). For reductio, suppose that =E is not one-to-one, i.e.,

that there are distinct ordinary objects P which bear =E to some third

P -object. But this is impossible, given that =E is a classical equivalence

relation. ./

(7.2): To show that that equinumerosityE is symmetric, assume that

P ≈E Q and call the relation that is witness to this fact R. We want

to show that there is a relation R′ from Q to P such that (a) ∀u(Qu →
∃!v(Pv & R′uv)), and (b) ∀u(Pu → ∃!v(Qv & R′vu)). Consider the con-

verse of R: [λxy Ryx], which we may call R−1. We need to show that (a)

and (b) hold for R−1. To show (a) holds for R−1, pick an arbitrary ordi-

nary object, say b, such that Qb. We want to show that there is a unique

ordinary object exemplifying P to which b bears R−1. By the definition

of R and the fact that Qb, we know that there is a unique ordinary object

that exemplifies P and bears R to b. But such an object bears R to b iff

b bears R−1 to it. So there is a unique ordinary object exemplifying P

to which b bears R−1. To prove that (b) holds for R−1, the reasoning is

analogous: consider an arbitrary object, say a, that exemplifies P . We

want to show that there is a unique object exemplifying Q that bears

R−1 to a. But by the definition of R and the fact that a exemplifies P ,

we know that there is a unique object that exemplifies Q and to which

a bears R. But then, by the definition of R−1, there is a unique object

exemplifying Q that bears R−1 to a. ./

(7.3): To show that equinumerosityE is transitive, assume both that

P ≈E Q and Q ≈E S. Call the relations that bear witness to these facts

R1 andR2, respectively. Consider the relation: [λxy∃z(Qz&R1xz&R2zy)].

Call this relation R. To show that R bears witness to the equinumerosityE
of P and S, we must show: (a) R is a function from the ordinary objects

of P to the ordinary objects of S, and (b) R is a one-to-one function from

the ordinary objects of P onto the ordinary objects of S. To show (a),

consider an arbitrary ordinary object, say a, such that Pa. We want to

find a unique ordinary object exemplifying S to which a bears R. To find

such an object, note that given the equinumerosityE of P and Q, it is a



37 Natural Numbers as Abstract Objects

fact about R1 that there is a unique ordinary object exemplifying Q, say

b, to which a bears R1. And from the equinumerosityE of Q and S, it is a

fact about R2 that there is a unique ordinary object exemplifying S, say

c, to which b bears R2. So if we can show that c is a unique ordinary ob-

ject exemplifying S to which a bears R, we are done. Well, by definition,

c exemplifies S. By the definition of R, we can establish Rac if we can

show ∃z(Qz &R1az &R2zc). But since b is such a z, it follows that Rac.

So it remains to prove that any object exemplifying S to which a bears

R just is (identicalE to) c. So pick an arbitrary ordinary object, say d,

such that both d exemplifies S and Rad. We argue that d=E c as follows.

Since Rad, we know by the definition of R that there is an object, say e,

such that Qe&R1ae&R2ed. But recall that a bears R to a unique object

exemplifying Q, namely b. So b =E e. But since R2ed, it then follows

that R2bd. So we know Sd&R2bd. But recall that b bears R to a unique

object exemplifying S, namely c. So c=E d.

To show (b), pick an arbitrary ordinary object b such that b exemplifies

S. We want to show that there is a unique ordinary object exemplifying

P that bears R to b. Since R2 is, by hypothesis, a one-to-one function

from the ordinary objects of Q onto the ordinary objects of S, there is

a unique object, say c, such that c exemplifies Q and R2cb. And since

R1 is, by hypothesis, a one-to-one function from the ordinary objects of

P onto the ordinary objects of Q, there is a unique object, say d, such

that d exemplifies P and R1dc. We now establish that d is a unique

object exemplifying P that bears R to b. Clearly, d is an object that

exemplifies P . Moreover, d bears R to b, for there is an object, namely

c, that exemplifies Q and is such that both R1dc and R2cb. To show

that d is unique, suppose, for reductio, that there is an object e, e 6=E d,

such that Pe and Reb. Then by the definition of R, there is an object,

say f such that Qf and R1ef and R2fb. Since e 6=E d, we know by the

functionality of R1, that f 6=E c. But we now have that Qc, R2cb, Qf ,

R2fb, and f 6=E c, and this contradicts the fact that c is the unique object

exemplifying Q that bears R2 to b. ./

(12.1): This is immediate from the definition of #G and the definition

of Numbers(x,G). ./

(12.2): This follows from (12.1) and the fact that equinumerosityE is

reflexive. ./

(13): (→) Assume that the number of P s is identical to the number of Qs.
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Then, by the definition of identity for abstract objects, we know that #P

and #Q encode the same properties. By (12.2), we know that #P encodes

P . So #Q encodes P . But, by (12.1), it follows that P ≈E Q. (←)

Assume P ≈E Q. We want to show that #P =#Q, i.e., that they encode

the same properties. (→) Assume #P encodes S (to show: #Q encodes

S). Then by (12.1), S ≈E P . So by the transitivity of equinumerosityE ,

S ≈E Q. But, then, by (12.1), it follows that #Q encodes S. (←) Assume

#Q encodes S (to show: #P encodes S). Then by (12.1), S ≈E Q. By

the symmetry of equinumerosityE , it follows that Q ≈E S. So, given our

hypothesis that P ≈E Q, it follows by the transitivity of equinumerosityE
that P ≈E S. Again, by symmetry, we have: S ≈E P . And, thus, by

(12.1), it follows that #P encodes S. ./

(15): Assume k is a natural cardinal. Then, by definition, there is a

property, say P such that k = #P . (→) Assume k encodes Q. Then

#P encodes Q. So by (12.1), it follows that Q ≈E P . And by Hume’s

Principle, it follows that #Q=#P . So, k=#Q. (←) Assume k=#Q. By

(12.2), we know that #Q encodes Q. So, k encodes Q. ./

(18): (→) Assume 0 encodes P . Then P is equinumerousE to [λz z 6=E z],

by (12.1). So there is an R that is a one-to-one function from the ordinary

objects of P onto the ordinary objects of [λzz 6=E z]. So, for every ordinary

object x such that Px, there is an (unique) ordinary object y such that

[λz z 6=E z]y and Rxy. Suppose, for reductio, that ∃uPu, say Pa. Then

there is an ordinary object, say b, such that Rab and [λz z 6=E z]b. But

this contradicts the fact that no ordinary object exemplifies this property.

(←) Suppose ¬∃uPu. It is also a fact about [λz z 6=E z] that no ordinary

object exemplifies it. But then P is equinumerousE with [λz z 6=E z], for

any relation R you pick bears witness to this fact: (a) every ordinary

object exemplifying P bears R to a unique ordinary object exemplifying

[λz z 6=E z] (since there are no ordinary objects exemplifying P ), and

(b) every ordinary object exemplifying [λz z 6=E z] is such that there is a

unique ordinary object exemplifying P that bears R to it (since there are

no ordinary objects exemplifying [λz z 6=E z]). Since P ≈E [λz z 6=E z], it

follows by (12.1), that #[λz z 6=E z] encodes P . So 0 encodes P . ./

(19): By (17), 0 is a natural cardinal, and so by (15), 0P iff 0=#P . But

by (18), 0P iff ¬∃uPu. So ¬∃uPu iff 0=#P . ./

(23): Suppose, for reductio, that something, say a, is a precedessor of

0. Then, by the definition of predecessor, it follows that there is an
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property, say Q, and an ordinary object, say b, such that Qb, 0 = #Q,

and a = #[λz Qz & z 6=Eb]. But if 0 = #Q, then by (19), ¬∃uQu, which

contradicts the fact that Qb. ./

(24): Assume that P ≈E Q, Pa, and Qb. So there is a relation, say

R, that is a one-to-one function from the ordinary objects of P onto the

ordinary objects of Q. Now we use P−a to designate [λz Pz & z 6=E a],

and we use Q−b to designate [λz Qz & z 6=E b]. We want to show that

P−a ≈E Q−b. By the definition of equinumerosityE , we have to show that

there is a relation R′ which is a one-to-one function from the ordinary

objects of P−a onto the ordinary objects of Q−b. We prove this by cases.

Case 1 : Suppose Rab. Then we choose R′ to be R itself. Clearly,

then, R′ is a one-to-one function from the ordinary objects of P−a to the

ordinary objects of Q−b.

Case 2 : Suppose ¬Rab. Then we choose R′ to be the relation:

[λxy (x 6=E a&y 6=E b&Rxy) ∨ (x=E ıu(Pu&Rub)&y=E ıu(Qu&Rau))]

To see that there is such a relation, note that the following is an instance

of the comprehension principle for Relations, where u,w are free variables:

∃F∀x∀y(Fxy ≡ (x 6=E a& y 6=E b&Rxy) ∨ (x=E u& y=Ew))

By two applications of the Rule of Generalization, we know:

∀u∀w∃F∀x∀y(Fxy ≡ (x 6=E a& y 6=E b&Rxy) ∨ (x=E u& y=Ew))

Now by the assumptions of the lemma, we know that the descriptions

ıu(Pu & Rub) and ıu(Qu & Rau) are well-defined and have denotations

(if R is a one-to-one function from the ordinary objects of P onto the

ordinary objects of Q, and Pa and Qb, then there is a unique ordinary

object that exemplifies P that bears R to b and there is a unique ordinary

object that exemplifiesQ to which a bearsR). So we may instantiate these

descriptions for universally quantified variables u and w, respectively, to

establish that our relation R′ exists.

We now leave it as a straightforward exercise to show: (A) that R′ is

a function from the ordinary objects of P−a to the ordinary objects of

Q−b, and (B) that R′ is a one-to-one function from the ordinary objects

of P−a onto the ordinary objects of Q−b. ./

(25): Assume that both a and b are precedessors of c. By the definition

of predecessor, we know that there are properties and ordinary objects

P,Q, d, e such that:
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Pd& c=#P & a=#P−d

Qe& c=#Q & b=#Q−e

But if both c=#P and c=#Q, then #P =#Q. So, by Hume’s Principle,

P ≈E Q. And by (24), it follows that P−d ≈E Q−e. If so, then by Hume’s

Principle, #P−d = #Q−e . But then, a=b. ./

(26): Assume that P−a ≈E Q−b, Pa, and Qb. So there is a relation, say

R, that is a one-to-one function from the ordinary objects of P−a onto

the ordinary objects of Q−b. We want to show that there is a function

R′ which is a one-to-one function from the ordinary objects of P onto the

ordinary objects of Q. Let us choose R′ to be the following relation:

[λxy (P−ax&Q−by &Rxy) ∨ (x=E a& y=E b)]

We know such a relation exists, by the comprehension principle for rela-

tions. We leave it as a straightforward exercise to show: (A) that R′ is a

function from the ordinary objects of P to the ordinary objects of Q, and

(B) that R′ is a one-to-one function from the ordinary objects of P onto

the ordinary objects of Q. ./

(27): Assume that a is a precedessor of both b and c. By the definition

of predecessor, we know that there are properties and ordinary objects

P,Q, d, e such that:

Pd& b=#P & a=#P−d

Qe& c=#Q & a=#Q−e

But if both a= #P−d and a= #Q−e , then #P−d = #Q−e . So, by Hume’s

Principle, P−d ≈E Q−e. And by (26), it follows that P ≈E Q. Now, by

Hume’s Principle, #P = #Q. But then, b=c. ./

(30.1): Assume Rab. Pick an arbitrary property, say P and assume

∀z(Raz → Pz) and Hereditary(P,R). Then Pb, by the first two of our

three assumptions. ./

(30.2): This follows immediately from the definition of R∗. ./

(30.3): Assume Pa, R∗(a, b), and that Hereditary(P,R). Then by the

lemma we just proved (30.2), all we have to do to show that b exemplifies

P is show that P is exemplified by every object to which R relates a. So

supposeR relates a to some arbitrarily chosen object c (to show Pc). Then
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by the fact that P is hereditary with respect to R and our assumption

that Pa, it follows that Pc. ./

(30.4): Assume Rab and R∗(b, c). To prove R∗(a, c), further assume

∀z(Raz → Pz) and Hereditary(P,R) (to show Pc). So Pb. But from Pb,

R∗(b, c), and Hereditary(P,R), it follows that Pc, by (30.3). ./

(30.5): Assume R∗(a, b) to show ∃zRzb. If we instantiate the variables

x, y in (30.2) to the relevant objects, and instantiate the variable F to

[λw ∃zRzw], the we know the following fact (after λ-conversion):

[R∗(a, b)&∀x(Rax→ ∃zRzx)&∀x, y(Rxy → (∃zRzx→ ∃zRzy))]→
∃zRzb

So we simply have to prove the second and third conjuncts of the an-

tecedent. But these are immediate. For an arbitrarily chosen object c,

Rac → ∃zRzc. So ∀x(Rax → ∃zRzx). Similarly, for arbitrarily chosen

c, d, the assumptions that Rcd and ∃zRzc immediately imply ∃zRzd. So

∀x, y(Rxy → (∃zRzx→ ∃zRzy)). ./

(32.1): This is immediate from (30.1). ./

(32.2): Assume Pa, R+(a, b), and Hereditary(P,R). Then by the defini-

tion of weak ancestral, either R∗(a, b) or a=b. If the former, then Pb, by

(30.3). If the latter, then Pb, from the assumption that Pa. ./

(32.3): Assume R+(a, b) and Rbc. Then either (I) R∗(a, b) and Rbc or

(II) a=b and Rbc. We want to show, in both cases, R∗(a, c):

Case I: R∗(a, b) and Rbc. Pick an arbitrary property P . To show

R∗ac, we assume that ∀z(Raz → Pz) and Hereditary(P,R). We

now try to show: Pc. But from the fact that R∗(a, b), it then

follows that Pb, by the definition of R∗. But from the facts that

Hereditary(P,R), Rbc, and Pb, it follows that Pc.

Case II: a=b and Rbc. Then Rac, and so by (30.1), it follows that

R∗(a, c).

./

(32.4): Assume R∗(a, b) and Rbc (to show R+(a, c)). Then by the first

assumption and the definition of R+, it follows that R+(a, b). So by (32.3),

it follows that R∗(a, c). So R+(a, c), by the definition of R+. ./
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(32.5): Assume Rab and R+(b, c) (to show: R∗(a, c)). By definition of

the weak ancestral, either R∗(b, c) or b= c. If R∗(b, c), then R∗(a, c), by

(30.4). If b=c, then Rac, in which case, R∗(a, c), by (30.1). ./

(32.6): Assume R∗(a, b) (to show: ∃z(R+(a, z) &Rzb)). The following is

an instance of (30.2):

R∗(a, b) & ∀x(Rax→ Fx) & Hereditary(F,R)→ Fb

Now let F be the property [λw ∃z(R+(a, z) & Rzw)]. So, by expanding

definitions and using λ-conversion, we know:

R∗(a, b) & ∀x(Rax→ ∃z(R+(a, z) &Rzx)) &

∀x, y[Rxy → (∃z(R+(a, z) &Rzx)→ ∃z(R+(a, z) &Rzy))]→
∃z(R+(a, z) &Rzb)

Since the consequent is what we have to show, we need only establish the

three conjuncts of the antecedent. The first is true by assumption. For

the second, assume Rac, where c is an arbitrarily chosen object (to show:

∃z(R+(a, z)&Rzc)). But, by definition of R+, we know that R+(a, a). So,

from R+(a, a)&Rac, it follows that ∃z(R+(a, z)&Rzc). For the third con-

junct, assume Rcd and ∃z(R+(a, z)&Rzc) (to show: ∃z(R+(a, z)&Rzd)).

Since we know Rcd, we simply have to show R+(a, c) and we’re done. But

we know that for some object, say e, R+(a, e) &Rec. So by (32.3), it fol-

lows that R∗(a, c). But, then R+(a, c), by definition of R+. ./

(34): Let n be a natural number. Then, by definition, Precedes+(0, n).

By definition of R+, it follows that either Precedes∗(0, n) or 0 = n. (I)

If the former, then by (30.5), there is an object, say a, such that Pre-

cedes(a, n). So by the definition of Predecessor it follows that there is a

property, say P , and an ordinary object, say b, such that:

Pb& n=#P & a=#P−b ,

(where P−b is defined as in the proof of (24) ). Since n is the number

of some property, n is a natural cardinal number. (II) If the latter, then

since 0 is a natural cardinal, by (17), it follows that n is a natural cardinal.

./

(36.1): By (30.5), we know that if x ancestrally precedes y, then there is

something that precedes y. But, by (23), we know that nothing precedes

zero. So nothing ancestrally precedes zero, and in particular, zero doesn’t

ancestrally precede itself. ./
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(36.2): By (23), nothing precedes zero. So no natural number precedes

zero. ./

(37): By (25), Predecessor is one-one. A fortiori , it is a one-one when

restricted to the members of the Predecessor series beginning with 0. ./

(38): Assume Precedes(n, a). Since n is a number, Precedes+(0, n). So

by (32.3), it follows that Precedes∗(0, a), and so by the definition of weak

ancestral, it follows that Precedes+(0, a); i.e., NaturalNumber(a). ./

(40): Suppose, for an arbitrary ordinary object b, that 3∀u(AGu→ u 6=E

b). We want to show that ∀u(AGu→ u 6=E b). So assume, for an arbitrary

ordinary object c, that AGc (to show: c 6=E b). Since, AGc, it follows

that 2AGc, by 2Actuality. Since we know that 3∀u(AGu → u 6=E b),

we know there is a world where ∀u(AGu→ u 6=E b) is true. Let us, for the

moment, reason with respect to that world. Since 2AGc is true at our

world, we know that AGc is true at the world where ∀u(AGu→ u 6=E b)

is true. So c 6=E b is true at that world. So, from the point of view of

our world, we know that 3c 6=E b (since c 6=E b is true at some world).

But, by the logic of =E , we know that x =E y → 2x =E y. That is,

by modal duality, we know that that 3x 6=E y → x 6=E y. So since

3c 6=E b, it follows that c 6=E b, which is what we had to show. [NOTE:

This proof involved the natural deduction version of the modal axiom

2(ϕ→ ψ)→ (3ϕ→ 3ψ).] ./

(41): Suppose NaturalNumber(a). We want to show ∃!mPrecedes(a,m).

But in virtue of (27), we simply have to show that ∃mPrecedes(a,m), and

in virtue of (38), it suffices to show that ∃yPrecedes(a, y). Since Natural-

Number(a), it follows that NaturalCardinal(a), by (34). So ∃F (a = #F ).

Suppose a = #Q. Then we know that there is a natural number which is

#Q and so we may apply our modal axiom (39) to conclude the following:

3∃y(E!y & ∀z(AQz → z 6=E y))

By the Barcan formula, this implies:

∃y3(E!y & ∀z(AQz → z 6=E y))

Let c be an arbitrary such object. So we know:

3(E!c& ∀z(AQz → z 6=E c))

By the laws of possibility, it follows that:
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3E!c& 3∀z(AQz → z 6=E c)

From the first conjunct, it follows that O!c, and by (40), the second

conjunct implies:

∀z(AQz → z 6=E c) (I)

Now the property [λz Qz ∨ z =E c] exists by comprehension. Call this

property Q+c. By (11), it follows that #Q+c exists. Now if we can show

Precedes(a,#Q+c), we are done. So we have to show:

∃F∃u(Fu& #Q+c =#F & a=#[λz Fz & z 6=Eu])

So we now show that Q+c and c are such a property and object. c ex-

emplifies Q+c, by the definition of Q+c and the fact that c is an ordinary

object. #Q+c =#Q+c is true by the laws of identity. So it simply remains

to show:

a=#[λz Q+cz & z 6=Ec]

Given that, by definition of Q, a = #Q, we have to show:

#Q = #[λz Q+cz & z 6=Ec]

By Hume’s Principle, it suffices to show:

Q ≈E [λz Q+cz & z 6=E c]

But given (21.3), we need only establish the following two facts:

(a) Q ≈E [λz Qz & z 6=E c]

(b) [λz Qz & z 6=E c] ≡E [λz Q+cz & z 6=E c]

Now to show (a), we simply need to prove that Q and [λz Qz & z 6=E c]

are materially equivalentE , in virtue of (21.1). (→) Assume, for some

arbitrary ordinary object d, that Qd. Then by the logical axiom Actuality,

it follows that AQd. But then by fact (I) proved above, it follows that

d 6=E c. Since Qd& d 6=E c, it follows that [λz Qz & z 6=E c]d. (←) Trivial.

Finally, we leave (b) as an exercise. ./

(43): Assume that R+ is a relation and:

Pa & ∀x, y(R+(a, x) &R+(a, y) &Rxy → (Px→ Py)).
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We want to show, for an arbitrary object b, that if R+(a, b) then Pb. So

assume R+(a, b). To show Pb, we appeal to Lemma (32.2):

Fx&R+(x, y) & Hereditary(F,R)→ Fy

Instantiate the variable F in this lemma to the property [λzPz&R+(a, z)]

(that there is such a property is guaranteed by the comprehension princi-

ple for relations and the assumption that R+ is a relation), and instantiate

the variables x and y to the objects a and b, respectively. The result is,

therefore, something that we know to be true (after λ-conversion):

Pa&R+(a, a) &R+(a, b) & Hereditary([λz Pz &R+(a, z)], R)→
Pb&R+(a, b)

So if we can establish the antecedent of this fact, we establish Pb. But

we know the first conjunct is true, by assumption. We know that the

second conjunct is true, by the definition of R+. We know that the third

conjunct is true, by further assumption. So if we can establish:

Hereditary([λz Pz &R+(a, z)], R),

we are done. But, by the definition of heredity, this just means:

∀x, y[Rxy → ((Px&R+(a, x))→ (Py &R+(a, y))].

To prove this claim, we assume Rxy, Px, and R+(a, x) (to show: Py &

R+(a, y)). But from the facts that R+(a, x) and Rxy, it follows from

(32.3) that R∗(a, y), and this implies R+(a, y), by the definition of R+.

But since we now have R+(a, x), R+(a, y), Rxy, and Px, it follows from

the first assumption in the proof that Py. ./

(44): By assumption (42), Predecessor+ is a relation. So by (43), it

follows that:

Fa&

∀x, y[Precedes+(a, x) & Precedes+(a, y) & Precedes(x, y)→
(Fx→ Fy)]→

∀x(Precedes+(a, x)→ Fx)

Now substitute 0 for a, NaturalNumber(x) for Precedes+(0, x), and Nat-

uralNumber(y) for Precedes+(0, y). ./

(48): We prove this for n= 0 and then we give a proof schema for any

numeral n′ which assumes that a proof for n has been given. This proof

schema has an instance which constitutes a proof of:
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` n′ = ıx(A!x& ∀F (xF ≡ ∃!n′uFu))

from the assumption:

` n = ıx(A!x& ∀F (xF ≡ ∃!nuFu))

Base case. n = 0. We want to show:

` 0 = ıx(A!x& ∀F (xF ≡ ∃!0uFu))

That is, we want to show:

` 0 = ıx(A!x& ∀F (xF ≡ ¬∃uFu))

But this is an immediate corollary of (18).

Inductive case. Our Inductive Hypothesis is:

` n = ıx(A!x& ∀F (xF ≡ ∃!nuFu))

We want to show that the following holds for the numeral n′:

` n′ = ıx(A!x& ∀F (xF ≡ ∃!n′uFu))

To do this, we have to show that there is a proof that the objects flanking

the identity sign encode the same properties; i.e.,

` ∀G[n′G↔ ıx(A!x& ∀F (xF ≡ ∃!n′uFu))G]

(→) Assume that n′P , where P is an arbitrary property. We want to

show that:

ıx(A!x& ∀F (xF ≡ ∃!n′uFu))P

By the laws of description, we have to show

∃!n′uPu,

i.e.,

∃u(Pu& ∃!nv[λz Pz & z 6=E u]v)

In other words, we have to show:

∃u(Pu& ∃!nvP−uv),

where P−u stands for [λz Pz & z 6=E u].

Since Precedes(n, n′), there is some property, say Q and some ordinary

object, say a, such that:
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Qa& n′ = #Q & n = #Q−a ,

where Q−a denotes [λz Qz & z 6=E a]. Note that since n′P (our ini-

tial assumption) and n′ = #Q, we know that #QP , and thus that P is

equinumerousE to Q and vice versa. So there is a relation R which is

a one-to-one and onto function from Q to P . Since Qa, we know that

ıu(Pu&Rau) exists. Call this object b. If we can show:

Pb& ∃!nvP−bv

then we are done. But Pb follows by definition of b and the laws of

description. To see that ∃!nvP−bv, note that n = #Q−a . And by (24),

we may appeal to the facts that Q ≈E P , Qa, and Pb to conclude that

Q−a ≈E P−b. So by Hume’s Principle, #Q−a = #P−b . So n = #P−b and

by (15) and the fact that n is a natural cardinal, it follows that nP−b.

But we are assuming that the theorem holds for the numeral n:

n = ıx(A!x& ∀F (xF ≡ ∃!nuFu))

This entails, by the laws of descriptions, that:

nF ≡ ∃!nvFv

So since nP−b, it follows that ∃!nvP−bv, which is what we had to show.

(←) Exercise.

./
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