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In [1981a] and [1981b], Barwise and Perry sketched what they called

‘situation semantics’ and argued that a full-blown theory based on their

sketch would offer a better analysis of natural language than possible

world semantics. Instead of taking objects, sets, and total ways the world

might be (i.e., worlds) as basic and reconstructing properties, relations,

and propositions as functions, Barwise and Perry took partial ways the

world might be (i.e., situations) as basic along with certain ‘uniformi-

ties’ across them, such as objects and relations. They refused to take

truth-values as the denotations of sentences, and rejected the idea that

the significance of a sentence shifted in intensional contexts. Instead, us-

ing ‘naked-infinitive reports’ as their guide, they argued that sentences

signified situations, and that these same situations were the objects of

the propositional attitudes. Moreover, their new semantics was consis-

tent with the idea that necessarily equivalent properties, relations, and

propositions can be distinct. All of these ideas contrasted sharply with

the standard assumptions of possible worlds semantics, as embodied by

Montague [1974] and Cresswell [1973]. From its inception, then, situation

semantics was thought to be incompatible with possible worlds semantics.

In their seminal work of [1983], Barwise and Perry left the impres-
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sion that this incompatibility between semantic frameworks indicated an

incompatibility between situations and worlds, considered as metaphys-

ical entities. And in Barwise [1985], in which some of Aczel’s ideas on

nonwellfoundedness were incorporated into situation theory, we find the

suggestion that ‘reality, all that is, is not a situation’ (p. 191). But in

an interchange with Stalnaker, Perry offered a picture in which worlds

could be viewed as just certain maximal situations (Perry [1986] and Stal-

naker [1986a]). Eventually, however, in [1989], Barwise developed a set of

‘branch points’ in situation theory, through which alternative versions of

the theory must travel. At one branch point, there are two alternatives:

one which leaves room only for the actual world (conceived as a maximal

situation), the other which leaves room for multiple possible worlds.

The question of whether situations and worlds can peaceably coex-

ist in the foundations of metaphysics is complicated by the fact that

world theorists disagree about what worlds are. Though many of the

researchers working within the possible worlds framework are content to

regard worlds as a useful theoretical tool, such an attitude does not satisfy

a metaphysician. Our best theories quantify over worlds and so we become

interested in them as metaphysical entities in their own right. In Lewis

[1973] and [1986], Stalnaker [1976] and [1985], Adams [1974], Chisholm

[1976], Plantinga [1974], Pollock [1984], and Fine [1977], we find various

attempts to develop a theory of worlds, often by constructing them out

of other basic metaphysical entities. Interestingly, Chisholm, Plantinga,

and Pollock defined worlds in terms of the notion of a state of affairs, a

notion which has turned out to be one of the building blocks of situation

theory. In situation theory, states of affairs are basic constructions out of

objects and relations, and they are the kind of thing that situations ‘make

factual’. This convergence of ideas, in which states of affairs are seen as

basic to both world and situation theory, leads one to wonder whether

there is a unified theory that can integrate all of these entities.

In this paper, I propose to assimilate states of affairs, situations, and

worlds into a single theory that distinguishes, yet comprehends, all three

kinds of entity. The theory is couched in some definitions and theorems,

all of which are cast in a precise logical framework. However, none of the

theorems are stipulated to be true; rather, they all result as consequences

of a formal, axiomatic theory of objects and relations for which the log-

ical framework was originally developed. An important feature of the

subtheory of situations is the volume of important definitions and theo-
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rems of naive situation theory that it successfully captures. It articulates

an interesting path through the many branch points of situation theory.

However, the most important feature of this subtheory is that it resolves

the apparent conflict between worlds and situations, for worlds are shown

to be certain maximal situations. Neither situations nor worlds are taken

to be primitive, nor does the theory make an essential appeal to possi-

ble world semantics. Rather, the notions of situation and world are both

defined (worlds and situations are identified as objects of a special sort),

and so we no longer have to decide which of these entities is more basic.

The theory may justify much of the recent work both in situation theory

and in world theory not just by showing that the two theories can be

integrated successfully, but by showing that most of the basic principles

of each theory can be derived.

I should like to emphasize that what follows constitutes a theory and

not a model of situations and worlds. Situations and worlds will not be

identified as elements of some mathematical structure. The background

theory of objects and relations is not cast within the framework of a

mathematical theory, nor do mathematical entities of any kind (not even

sets) appear in the background ontology.1 Though the theory appears

to be highly technical, in fact, it is not. From a logical point of view, it

requires only the sophistication of modal predicate logic, and so should be

readable and accessible to anyone familiar with S5 modal predicate logic.

The various symbolizations that give the theory the appearance of being

technical serve only to make everything precise (this allows logicians to

inspect the logic and axioms for consistency and completeness) and to

simplify the statement of the theorems and proofs.

To determine whether the theory proposed here is indeed a theory of

worlds and situations, it will serve well to describe the principal, prethe-

oretic intuitions that govern our conceptions of these entities. Thus, the

plan for the paper will be as follows. In §1, I examine the basic conception

of a situation, as it has developed from Barwise and Perry [1980] through

Barwise [1989]. In §2, I examine the two basic conceptions of possible

worlds. In §3, I try to sketch the intuitions that connect situations and

1I take sets to be just a special kind of object, and membership to be just a spe-

cial relation. As such, the study of sets (or any other kind of mathematical object or

relation) is posterior to the study of metaphysics, which is the study of objects and

relations in general. I have shown elsewhere how mathematical objects and mathe-

matical relations can be identified among the general objects and relations postulated

by the present theory; see [1983], pp. 147–53.
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worlds with the foundational metaphysical theory of objects. Then, in §4,

I develop the foundational theory in more detail, for those readers who

may be unfamiliar with my previous work (readers already familiar with

this work may skip this section).2 §5 contains the main results of the

paper, i.e., the statement of the basic definitions and theorems governing

situations and worlds.3

§1: The Conception of a Situation

The ideas underlying situation theory originated in Barwise and Perry

[1980], [1981a] and [1981b]. In these early papers, the authors stressed

their dissatisfaction with certain features that had become built into stan-

dard semantic theory, namely, (a) the denotation of a sentence is a truth

value, (b) the denotation of a sentence shifts when the sentence appears

in indirect, intensional contexts, and (c) properties and relations are re-

constructed as functions from possible worlds to sets of (sequences of)

individuals. Features (a) and (b) come to us from Frege [1892], whereas

(c) is an application of possible world semantics. All three features were,

in one way or another, either incorporated into Montague’s intensional

logic or presupposed in its application to natural language. Montague’s

intensional logic has been widely regarded as one of the two most for-

mally elegant ways of capturing some of Frege’s views about language.4

Barwise and Perry, however, proposed to recover our pre-Fregean seman-

tic innocence by rejecting (a) and (b). After undermining the argument

frequently used to conclude that the denotation of a sentence had to be a

truth value, they turned their attention to the development of a seman-

tics in which situations, construed as complexes of objects and properties,

played a more direct role in the interpretation of a sentence. To this end,

Barwise and Perry rejected possible world semantics and along with it, the

2Readers who skip §4 should note that the notion of a proposition used in my earlier

work is similar to the situation-theoretic notion of a state of affairs. So in order to

square the language of my theory with the language of situation theory, I now call

0-place relations ‘states of affairs’ rather than ‘propositions’. This should pose no

problems when it comes to world theory, since there are various equivalent versions of

world theory, some using states of affairs, others using propositions.
3Some of the twenty-five theorems that appear there (roughly a fifth) have been

discussed in my previous work, but the others appear here for the first time, as part

of a new application of the foundational theory and its underlying philosophy.
4The other is A. Church’s logic of sense and denotation. See Church [1951] and

especially Anderson [1984].
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mathematical reconstruction of properties and relations. Instead, prop-

erties and relations were taken as primitive. This allowed them to regard

situations as complexes of objects and properties and thus as pieces of

reality. They proposed to employ situations ‘at the level of reference’

by having sentences stand for them. Naked infinitive reports such as

‘John saw Mary run’ played an important role in the development of the

semantic theory, since these could be interpreted as expressing relation-

ships between individuals and situations; the embedded, naked infinitive

sentence ‘Mary run’ seemed to signify a limited and observable piece of

reality.

These ideas were developed in much more detail in Barwise and Perry

[1983]. Though they still thought of reality as a complex web of sit-

uations, the focus of this work was on semantic theory. The semantic

theory, however, was developed in terms of a (set-theoretic) framework

of abstract situations. Abstract situations were introduced principally to

interpret false sentences. Without abstract situations, there is nothing for

a false sentence to designate, since the conception of situations as parts

of reality does not leave room for negative situations, or negations of sit-

uations. Abstract situations were therefore constructed as (set-theoretic)

sequences of relations and objects, and thus constructed out of the kinds

of entities one typically finds in real situations. The sequence itself has a

kind of structure that was suppose to reflect the ‘complex-of-objects-and-

properties’ structure of real situations. However, some of these sequences

fail to correspond to, or classify, any real situations, since they relate ob-

jects and properties in ways not reflected by reality. These abstract sit-

uations were then incorporated into a relational theory of meaning. The

meaning of a sentence was taken to be a relation between two abstract

situations—an utterance situation u and a described situation s. Thus, a

sentence φ, would express a relation between an utterance situation u and

a described situation s, though in the case of false sentences, the related s

fails to classify any real situations. Abstract situations also proved useful

for handling false beliefs, for these could be analyzed as relations between

persons and abstract situations to which no real situations correspond.

However, Barwise and Perry also introduced into their semantical the-

ory lots of other abstract, set-theoretic constructions out of abstract situ-

ations: event types, roles, constraints, anchors, indeterminates, etc. This

profusion of abstract objects led them to reconsider the extent to which

their theory could be called ‘realistic’. Reality supposedly consisted of
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situations and a few uniformities across them (namely, objects and re-

lations), yet all of the work in their theory was being done by abstract

situations and constructs thereof. Reservations about this were expressed

in Barwise and Perry [1984].5 After realizing that they had been misled,

Barwise and Perry changed the direction of their research.6 Recognizing

that their model was not a theory, they adopted a new goal, namely, to

characterize situations directly, without the mediation of abstract situa-

tions, by elaborating the basic axioms of situation theory.

After some false starts, the rudiments of a theory began to emerge.

Abstract situations reappeared in the more realistic guise of states of af-

fairs. A state of affairs, or soa (sometimes also referred to as an infon), is

a basic piece of information, reflecting that some objects either do or don’t

stand in some relation. The expression used for designating basic states

5Consider the following passage:

Then we allowed ourselves to introduce into our semantical theory

any constructions from abstract situations and the other devices of set

theory that we needed to make the semantics work. This seemed to allow

us a lot of freedom at the level of our theory, while investing the world

only with situations, objects, locations, relations, and the like.

Somewhere along the way, though, we realized that this was an illu-

sion. After all, our theory was intended to be a theory about the world.

To the extent that it is correct the sets we constructed did get at real

uniformities in the world, so we are committed to all sorts of things. This

dawned on us as we worked out the book. . . . After all, if we are going

to get by without some Platonic realm like senses or possible worlds and

find everything one needs in the reality we inhabit, we had better be

prepared to recognize all the structure that is really there. (p. 9)

6The nature of this shift is expressed in the following passage, also in Barwise and

Perry [1984]:

I: Why didn’t you, instead, express those intuitions about types of things

and roles directly? Why not develop a theory of situations, types, role

and the like?

...

B and P: Exactly. That is another way of saying what John said ear-

lier about the illusion we were under when we thought we could get by

with set theoretic objects to classify invariants, rather than admit the

invariants as first class citizens of reality. Part II of our book was called

“A Theory of Situations,” but really all it is is a model of a theory of

situations. It is a real theory of situations that we are working on, now.

We have found it to be a very liberating idea. (p. 23)
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of affairs is: 〈〈R, a1, . . . , an;±〉〉. In this expression, the angled brackets

are not to be construed set theoretically, but as primitive notation. The

expression ‘R’ denotes a relation, while the expressions of the form ‘ai’ de-

note objects. The expression ‘+’ (‘−’) indicates that the objects do (don’t)

stand in the relation. In addition, there is a special relationship postulated

between situations and soas, namely, the supports or makes factual rela-

tion. This relationship is designated as ‘s |= σ’, where ‘s’ designates a sit-

uation and ‘σ’ designates a state of affairs. The fact that some situations

are partial is reflected by the fact that for some situations s, there are soas

of the form 〈〈R, a1, . . . , an;±〉〉, such that neither s |= 〈〈R, a1, . . . , an; +〉〉
nor s |= 〈〈R, a1, . . . an;−〉〉. In addition to the |= relation, it is standardly

assumed that the domain of situations is partially ordered by a part-of

relation (�), which is reflexive, anti-symmetric and transitive. Some-

times, when it is supposed that there is a maximal element of this partial

ordering, such a maximal element is designated a ‘world’.

However, there were still numerous conflicting intuitions about some of

the basic properties of situations. This conflict of intuitions was canonized

in Barwise [1989]. After positing a basic ordering of situations under

the part-of relation, and assuming that there is at least one maximal

element (i.e., world), Barwise presents a list of 19 questions, each of which

constitutes a ‘branch point’ in situation theory. The various answers to

these questions lead to different sets of first principles for situation theory.

The more important questions that Barwise asked include: whether there

is more than one world, whether every part of a situation is a situation,

whether every world is a situation, whether there are nonactual situations,

whether situations are well-founded, whether every state of affairs has

a dual, and whether a richer algebra should be imposed on the domain

states of affairs. These are obviously fundamental questions, and different

answers to these questions lead to rather different theories of situations.

These, then, are the ideas that form the basic conception of a situation.

As yet, no canonical version of situation theory has been defined. The

various versions that have appeared so far have been forged by stipulating

basic axioms at many of the choice points. By contrast, the theory we

produce in §§4 and 5 makes predictions at 15 of the 19 branch points

defined in Barwise [1989]. That is, the choices made by the theory are

never just stipulations, but are rather consequences of both definitions

and general principles which govern objects and relations.
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§2: Conceptions of Possible Worlds

It is now customary to suppose that there are basically two conceptions of

possible worlds: the possibilist (or concretist) conception and the actualist

(or abstractionist) conception. Thus, in Stalnaker [1986b], we find:

Philosophers who take possible worlds seriously are often divided

into two camps. First there are the possibilists who hold that pos-

sible worlds and other possible objects may exist without actually

existing. Other possible worlds, according to the possibilist, are

concrete universes, spatially and temporally disconnected from our

own, but just as real. The claim that such universes are not actual

is, in effect, just the claim that we are not located in them. Sec-

ond, there are the actualists who hold that nothing is real except

what is actual—that is, except what exists as a part of the actual

world. According to the actualist, the things that are (perhaps

misleadingly) called ‘possible worlds’ are not really worlds, but are

properties or states of the world, or states of affairs, or proposi-

tions or sets of propositions, or perhaps set theoretic constructions

of some kind. There are many different versions of actualism; what

they have in common is the thesis that possible worlds are things

that can be instantiated or realized. A nonactual possible world is

not a concrete object that exists in some nonactual place, but an

abstract object that actually exists but is uninstantiated. (p. 121)

No one has gone further to develop the idea that there are two conceptions

of possible worlds than van Inwagen in [1986]. He says:

. . . Lewis did not content himself with saying that there were

entities properly called ‘ways things could have been’; nor did he

content himself with implying that ‘possible world’ was a heuristi-

cally useful stylistic variant on ‘way things could have been’. He

went on to say that what most of us would call ‘the universe’,

the mereological sum of all the furniture of earth and the choir

of heaven, is one among others of these ‘possible worlds’ or ‘ways

things could have been’, and that the others differ from it “not in

kind but only in what goes on in them” (Lewis [1973], p. 85). And

to suppose that the existence of a plurality of universes or cosmoi

could be established by so casual an application of Quine’s criterion

of ontological commitment has been regarded by most of Lewis’s

readers as very exceptional indeed.
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Whether or not the existence of a plurality of universes can be

so easily established, the thesis that possible worlds are universes is

one of the two ‘concepts of possible worlds’ that I mean to discuss.

. . . The other concept I shall discuss is that employed by vari-

ous philosophers who would probably regard themselves as consti-

tuting the Sensible Party: Saul Kripke, Robert Stalnaker, Robert

Adams, R. M. Chisholm, John Pollock, and Alvin Plantinga.[3]

These philosophers regard possible worlds as abstract objects of

some sort: possible histories of the world, for example, or perhaps

properties, propositions or states of affairs.

I shall call these two groups of philosophers Concretists and

Abstractionists, respectively. (pp. 185–6)

In his article, van Inwagen states a preference for the Abstractionist view

of worlds, and discusses a criticism of this view that Lewis puts forward

in [1986].

It will not be our concern here to adjudicate between these two con-

ceptions of worlds, but rather to consider the extent to which the theory

of worlds offered here captures the intuitions of the two camps. We shall

address this question in the final section of the paper, but for now, we

note that there is reason to be dissatified with both the possibilist and the

actualist conceptions in their present state of development. The Lewisian

possibilist conception seems to embrace claims that, for one reason or

another, few philosophers find plausible. Take, for example, the analysis

Lewis offers for the truth (of ordinary language) that there might have

been a talking donkey. On his analytical scheme, this becomes: there ex-

ists both a possible world w and an object x such that x exemplifies being

a talking donkey and x is a part of w. From this, it follows that there

exists a talking donkey, though Lewis is careful to say that it is non-actual

(i.e., that it is not one of our worldmates). Few philosophers seem to be

able to accept that there exist talking donkeys, million-carat diamonds,

and all the other possible but non-actual individuals, even with the pro-

viso that these objects are actual only at other possible worlds. Such a

result seems to conflict with the view that concrete things are precisely

the things that are spatiotemporally related to us.

A second dissatisfaction with Lewis’s possibilist scheme concerns the

exact nature of the theory. Though Lewis offers a translation scheme

between natural language and his own metaphysical views, this is not

quite the same as offering a theory, based on first principles, that couches
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his metaphysical views. The axioms of Lewis’s combination of mereology,

set theory, and world theory, have not yet been precisely formulated. And

there is still the question of how to classify the informal claims of Lewis’s

theory. For example, at the beginning of Lewis [1986] (p. 2), we find:

There are so many other worlds, in fact, that absolutely every way

a world could possibly be is a way that some world is.

He also repeats this claim in several other places (for example, on pp. 71

and 86). Now what exactly is the status of this claim within Lewis’s the-

ory? Is it suppose to be an axiom? If so, then the theory must quantify

over ‘ways worlds could be’ and postulate a correlation between these

‘ways’ and worlds. But ‘ways the world could be’ are not entities of the

theory. If it is not an axiom, what exactly is the status of this claim?

Questions of this sort still puzzle those interested in a more exact devel-

opment of Lewis’s views.

On the other hand, the actualist/abstractionist conception of worlds

faces its own problems. The most important of these seems to me to be

that the conception cannot simultaneously adopt a fine-grained view of

states of affairs or propositions and yet preserve the intuition that there

is a unique actual world. This latter intuition seems to be incompatible

with any theory that treats worlds as states of affairs (or propositions)

but which permits necessarily equivalent states of affairs to be distinct.

Fine-grained theories of states of affairs allow us to distinguish certain

necessarily equivalent states. For example, such a theory allows us to

distinguish the state of affairs p from the necessarily equivalent state of

affairs p & (q∨¬q), since the former is (let us suppose) simple, whereas the

latter has a more complex structure. But on the abstractionist conception,

worlds are defined, for example, to be any state of affairs p such that:

3(p & ∀q(p ⇒ q ∨ p ⇒ ¬q)).7 Now consider some particular state

of affairs p0 that satisfies the definition of a world. Note that for any

arbitrary proposition q, the state of affairs p0 & (q ∨ ¬q) also satisfies the

definition of a world. Since the latter is distinct from p0, but equivalent,

we have multiple, distinct copies of each world, contrary to intuition. And

in particular, there will be multiple, distinct copies of the actual world.

So it seems that either we have to give up our fine-grained conception of

7In this definition, ‘p⇒ q’ just abbreviates: 2(p→ q). Definitions roughly equiva-

lent to this may be found in Chisholm [1976], Plantinga [1976], and Pollock [1984]. In

Fine [1977], there is a similar definition, except using propositions.
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states of affairs or the intuition that there is a unique actual world.

One way out of this dilemma is to suppose that worlds are sets of

states of affairs (or sets of propositions). The suggestion is that a world

is a set S such that (i) for every state of affairs p, either p ∈ S or ¬p ∈ S,

and (ii) the conjunction of all of the members of S is itself a possible state

of affairs. On this view, the actual world is the set that contains all and

only the states of affairs that obtain (there is a unique such set). The

problem with this suggestion, however, is that it doesn’t constitute a gen-

uine metaphysical conception of a world. The suggestion might be useful

as a model of worlds, but not as a theory of worlds. Whatever worlds

are, they are not sets, nor any other kind of mathematical construction.

Even if one is a Platonist about mathematics, it is a mistake to think

that the fundamental properties of worlds and situations are exhibited

by mathematical entities. Whatever else they are, worlds and situations

are entities in which some states of affairs obtain and others don’t , and

it would seem that mathematical entities are the wrong kind of thing to

play this role. A more plausible candidate needs to be found.

So at present, it is unclear whether abstractionists interested in de-

veloping a genuine theory of worlds can reconcile the uniqueness of the

actual world with a fine-grained theory of propositions or states of affairs.

§3: The Intuitions Connecting Situations, Worlds, and

Objects

In order to connect the central ideas of situation theory and world theory

to those underlying our background metaphysics, we focus on a distinction

that has directed the development of situation theory from its inception

but which has never been made explicit at the level of theory. From the

beginning, situation theorists have appealed to the distinction between the

internal properties of a situation and its external properties. In [1981a],

Barwise and Perry assert:

Situations have properties of two sorts, internal and external. The

cat’s walking on the piano distressed Henry. Its doing so is what

we call an external property of the event. The event consists of a

certain cat performing a certain activity on a certain piano; these

are its internal properties. (p. 388)

This distinction between the internal and external properties appears
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throughout the course of publications on situation theory. In [1985], Bar-

wise writes:

If s |= σ, then the fact σ is called a fact of s, or more explicitly, a

fact about the internal structure of s. There are also other kinds of

facts about s, facts external to s, so the difference between being

a fact that holds in s and a fact about s more generally must be

borne in mind. (p. 185)

And in [1989], Barwise writes:

The facts determined by a particular situation are, at least

intuitively, intrinsic to that situation. By contrast, the information

a situation carries depends not just on the facts determined by

that situation but is relative to constraints linking those facts to

other facts, facts that obtain in virtue of other situations. Thus,

information carried is not usually (if ever) intrinsic to the situation.

The objects which actual situations make factual thus play a

key role in the theory. They serve to characterize the intrinsic

nature of a situation. (pp. 263-4)

The main point here is that the conception of an object having intrinsic,

internal properties as well as extrinsic, external properties is central to the

idea of a situation. But, oddly enough, situation theory does not formally

develop the distinction between internal and external properties.

However, this is just the idea that underlies the theory of objects de-

veloped in Zalta [1983] and [1988], for it is based on a language having two

modes of predication, i.e., in which there are two basic ways to predicate

properties of objects. On the one hand, a property F can be predicated

externally of an object x, in which case it is said that x exemplifies F .

On the other hand, F can be predicated internally of x, in which case

it is said that x encodes F . It is axiomatic that ordinary objects such

as electrons, tables, planets, people, etc., have only external properties.

However, the theory asserts that there is a special subdomain of objects

the members of which have an extraordinary nature—they have both in-

ternal and external properties. In other words, these objects both encode

as well as exemplify properties. Formally, the distinction between encod-

ing and exemplifying a property is captured by having two kinds of atomic

sentences: we use the formula ‘xF ’ to assert that an object x encodes F

and use the formula ‘Fx’ to assert that x exemplifies F . Our special ob-

jects may both exemplify and encode the very same properties, or may



13 25 Basic Theorems

encode properties that are distinct from the ones they exemplify. Though

encoding is restricted to 1-place properties (which, nevertheless, may be

quite complex), exemplification can be generalized to n-place relations in

the usual way. Thus the theory allows us to (externally) predicate rela-

tions among objects (of any kind) in the usual way, using sentences of the

form ‘Fnx1 . . . xn’. Thus, exemplification is a notion that is familiar from

standard predicate logic.

Ernst Mally first distinguished the notion of encoding in [1912], to

solve the puzzles of Alexius Meinong’s naive theory of intentional objects.

Mally identified intentional objects as abstracta that are ‘determined by’

their associated properties without really ‘satisfying’ those properties. For

example, Mally would say that ‘the round square’ was an abstract object

‘determined by’ roundness and squareness, but which did not ‘satisfy’ ei-

ther of these two properties. Using our terminology, we would say that

‘the round square’ encodes just the two properties roundness and square-

ness, but does not exemplify either. Rather, given that it is abstract, it

exemplifies the negations of these properties. Such an object is consistent

with the non-logical law that whatever exemplifies being round fails to

exemplify being square. Notice the following two things: (1) since ‘the

round square’ encodes just two properties and no others, there is a sense

in which it is a partial object (though it will be complete with respect to

the properties it exemplifies); and (2) since encoding is a kind of predica-

tion (i.e., a way for an object to be F ), there is a sense in which ‘the round

square’ is round and square.8 Using this example as a model, one can

develop similar responses to the puzzles associated with such problematic

objects as ‘the existent golden mountain’, ‘the ghost John feared’, and

‘the non-square square’.9

The properties that an abstract object encodes are constitutive of its

nature, and as such, are essential to its identity as an object. These

encoded properties are even more essential to its identity than the prop-

erties it necessarily exemplifies. Some examples will demonstrate this.

8In my previously cited work, I have gathered evidence for thinking that there is a

lexical and structural ambiguity underlying the the copula ‘is’, namely, the ambiguity

between exemplifying and encoding a property.
9Recently, Mally’s distinction in kinds of predication has resurfaced in the work

of Castañeda [1974] and Rapaport [1978]. Castañeda distinguishes several modes of

predication, whereas Rapaport distinguishes exemplification from constituency. See

also E. Sosa’s [1986], where a similar distinction is utilized in the analysis of fictional

characters.
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We noted that ‘the round square’ exemplifies the properties of being non-

round and non-square. And given that it is abstract, we may also claim

that it exemplifies the property of failing to have a shape. Indeed, the

round square necessarily exemplifies all three of these properties, for since

it is abstract, it is not the kind of thing that could exemplify a shape. But

these negative properties are not as critical to the nature and identity of

the round square as the properties of being round and being square. The

theory will capture these facts by asserting both (1) that any properties

encoded by an abstract object are necessarily encoded (so the properties

that are constitutive of an object’s nature will not vary from world to

world), and (2) that two abstract objects are identical iff they necessarily

encode the same properties.

Consider, as another example, mathematical objects such as the num-

bers of Peano number theory. The number 1, if treated as an object,

contingently exemplifies having been thought about by Peano and be-

ing denoted by the numeral ‘1’, whereas it necessarily exemplifies such

properties as having no location, having no shape, having no texture, etc.

On the other hand, the theoretical properties of the number 1, such as

being greater than 0, being odd, being prime, etc., are even more cru-

cial to its identity than any of the properties previously mentioned. The

present theory treats these theoretical properties of the number 1 as the

properties it encodes. These are the properties internal to its nature.

Consider, as a final example, an object of fiction, such as Sherlock

Holmes. The present theory treats the properties attributed to Holmes

in the Conan Doyle novels as the properties he encodes. These include:

being a person, being a detective, living at 221B Baker Street in London,

having a prodigious talent for solving crimes, etc.10 These are regarded

as more crucial to the identity of Holmes than such properties as be-

ing fictional, being the main character of the Conan Doyle novels, being

an inspiration to modern criminologists, etc., which are properties that

are externally exemplified by Holmes (note that many of these properties

are relational, based on the external relations Holmes bears to ordinary

objects). These exemplified properties are contingent ones; had circum-

stances been different, the internally constituted object we have identified

as Holmes might not have had these properties. On the other hand, given

that we have identified him as a certain theoretical object, we could say

10Many of these properties are not explicitly attributed to Holmes in the novels, but

are reasonably inferred from a common sense based understanding of the novels.
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that Holmes necessarily exemplifies such properties as not being a person,

not being a detective, not living in London, not being a spoon, etc.11

Let us assume, as an intuitive principle comprehending the domain

of special, abstract objects, that for every group of properties, there is

an abstract object that encodes just the properties in the group and no

others. As an identity principle, let us assume that two such objects

are identical iff necessarily, they encode the same properties (whereas

two ordinary objects are identical iff necessarily, they exemplify the same

properties). So this populates the subdomain of abstract objects with a

wide variety of objects. Many of these objects will be partial in the sense

that there are properties F such that the object encodes neither F nor

the negation of F (‘F̄ ’). But each special object is complete with respect

to the properties it exemplifies. Indeed, for any object x whatsoever,

ordinary or special, either Fx or F̄ x.

We can now begin to see how this conception of an object having inter-

nal and external properties can be applied to our intuitive understanding

of situations. Situations are supposed to be internally characterized by

states of affairs. Note that a state of affairs is not a property, and so,

strictly speaking, doesn’t characterize anything. States of affairs either

obtain or they don’t. However, there are properties that are intimately

linked to states of affairs. These are properties that objects exemplify

in virtue of a state of affairs obtaining. Consider, for example, the fol-

lowing two properties: being such that George loves Barbara, and being

such that Barbara doesn’t love George. These are properties that are

constructed out of states of affairs—the former is constructed out of the

state George’s loving Barbara, whereas the latter is constructed out of

the state Barbara’s not loving George. If we let the formula ‘Lgb’ denote

the first state of affairs and ‘¬Lbg’ the second, then we could use the

λ-predicates ‘[λy Lgb]’ and ‘[λy ¬Lbg]’ to denote, respectively, the prop-

erties being such that George loves Barbara and being such that Barbara

doesn’t love George. In the complex λ-predicates, the variable ‘y’ is vac-

uously bound by the λ. Nevertheless, these are perfectly good predicates,

and the properties they denote are perfectly well-behaved. Necessarily,

an object x exemplifies being such that George loves Barbara iff George

loves Barbara; or in formal terms: 2([λyLgb]x↔ Lgb). And, necessarily,

x exemplifies being such that Barbara doesn’t love George iff Barbara

11The reader may consult Zalta [1983] and [1988] for further details the treatment

of mathematical and fictional objects.
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doesn’t love George; or in formal terms: 2([λy ¬Lbg]x ↔ ¬Lbg). Since

we are calling states of affairs ‘soas’ for short, we may call the properties

constructed out of states of affairs ‘soa-properties’.

Now suppose that every state of affairs p has a corresponding soa-

property [λy p]. Note that the corresponding soa-property provides a

means by which a state of affairs can characterize an object. A situation

can be characterized by a soa-property, for example, when we say that

the situation is such that p. We might have said, for example, that the

situation of unrequited love between George and Barbara is such that

George loves Barbara, but such that Barbara doesn’t love George. Un-

fortunately, as far as the logic of external predication goes, no object is

distinguished by the soa-properties that it exemplifies. If a state of af-

fairs p obtains, then everything whatsoever exemplifies [λy p]. If p fails to

obtain, then nothing whatsoever exemplifies [λyp]. But this standard fea-

ture of the logic of exemplification does not hold for the logic of encoding.

Whether or not an object encodes [λy p] is independent of whether or not

p obtains. In particular, if p obtains, it does not follow from the fact that

every object exemplifies [λy p] that every abstract object encodes [λy p].

Formally, whether or not a special object x encodes [λy p] will depend on

the whether this property satisfies the defining condition of the relevant

instance of the abstraction principle. Metaphysically, though, whether a

special object x does or does not encode [λy p] is just a brute fact. Thus,

as internally encoded properties, soa-properties may serve to distinguish

all sorts of special objects.

We now have a way to capture the intuition that situations are ‘in-

trinsically characterized by states of affairs’. We just think of a situation

as a special object that encodes (only) soa-properties. This gives us a

clear sense in which a state of affairs can be an internal property of a

situation—the property constructed out of the state of affairs is encoded

by the situation. Given the intuitive comprehension principle for special

objects described above, it follows that for every group of soa-properties,

there is a situation that encodes just the soa-properties in the group. This

guarantees, for example, that there is an object that ‘is’ such that George

loves Barbara and ‘is’ such that Barbara doesn’t love George. This is the

object that encodes [λy Lgb], [λy ¬Lbg], and no other properties. This

constitutes a situation of unrequited love between George and Barbara. It

will be a ‘part’ of any situation that encodes these properties and others as

well. The principle of identity for special objects ensures that the identity



17 25 Basic Theorems

of this situation is completely determined by its internal properties. Thus,

the situation just described is ‘partial’ in nature, for its identity is linked

just to the two states of affairs Lgb and ¬Lbg. Note that this conception

of situations leaves us free to treat the external properties of a situation

as ones that it exemplifies. Properties such as being distressing to Henry,

being seen by Mary, carrying information (of a certain kind), etc., are

all properties that situations exemplify. These happen to be examples of

contingent properties that situations may exemplify, though some prop-

erties that situations exemplify will be necessary. Properties such as not

being a number, not being a person, not being a building, being such that

p-or-not-p, etc., are all properties that situations exemplify necessarily.

All of these remarks about situations apply equally well to worlds.

A world may be thought of as having internal and external properties.

Its internal properties are just the soa-properties that characterize what

goes on at that world, and which make it that world and not some other.

These are even more important to the identity of the world than the prop-

erties the world has externally. We shall exploit this similarity between

situations and worlds, for we shall think of the latter as objects that en-

code only soa-properties but which are also maximal and possible in the

appropriate senses.12

Before developing these ideas in a precise way, let us consider the

viability of a proposal that some might think constitutes a natural al-

ternative to this view of situations and worlds. One might suggest that

the ‘intrinsic’ properties of situations and worlds that we have been dis-

cussing are just properties that situations (worlds) necessarily exemplify .

And by contrast, the ‘extrinsic’ properties would be ones they contin-

gently exemplify. This suggestion would bypass the entire distinction

12It is important to distinguish the encoding/exemplification distinction from a dis-

tinction employed by Adams [1981], Fine [1985], Deutsch [1990], and Menzel [1991].

These philosophers are trying to account for the problem of contingently existing propo-

sitions. In their actualist frameworks, if the constituent of a proposition doesn’t exist at

a world, then neither does the proposition. Yet these philosophers think such proposi-

tions can characterize worlds even if they don’t exist at that world. So they distinguish

a proposition’s being true in a world w from its being true at w (Adams [1981], pp. 20-

22), or its being true in an inner sense at w from its being true in an outer sense at w

(Fine [1985], p. 163). Such a distinction is not necessary in the present framework, for

unlike these systems, existence is not identified with quantification. If an object fails

to exist at a world w, it lacks the property of being spatiotemporal at w (and every

other property that implies that it is spatiotemporal). We may still quantify over it

(there), as well as over all the propositions that have it as a constituent.
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between exemplifying and encoding properties. Unfortunately, however,

it faces a major obstacle. Consider just situations for the moment (what

we say about situations applies to worlds as well). Suppose, according to

the suggestion, that situations necessarily exemplified the soa-properties

intrinsic to their nature. So, for an arbitrary situation s and soa-property

[λy p] that characterizes the nature of s, we have: 2[λy p]s. But, in the

context of modal logic, the λ-abstraction principle is a necessary truth,

and yields: 2([λy p]s ↔ p). It now follows that 2p. Thus, any state

of affairs p that characterizes the nature of situations has to be a neces-

sary truth. Hence, situations would never be characterized by contingent

states of affairs, and this clearly seems to be false.

One might try to repair the suggestion by saying that properties that

characterize the intrinsic nature of situations are not soa-properties such

as [λy p], but rather existence-relative soa-properties having the form

[λy E!y → p] (being a thing y such that p if existing). The amended

suggestion is that situations have such properties necessarily. From this,

it would not follow that the states of affairs involved are necessary. That

is, from 2([λy E!y → p]s) and 2([λy p]s↔ p) it does not follow that 2p.

So the amended suggestion avoids the problem discussed in the previous

paragraph. But it has its own problems, for it places properties of the form

[λy E!y → p] on a par with other properties that situations necessarily ex-

emplify. For example, take the property of not being a spoon ([λy ¬Sy]),

or the property of not being a spoon if existing ([λy E!y → ¬Sy]), or

any other property that situations exemplify necessarily (other than a

relativized soa-property) . It is an a priori fact that situations couldn’t

fail to have such properties (intuitively, a situation couldn’t possibly be

a spoon), just as they couldn’t fail to exemplify certain properties of the

form [λy E!y → p]. But now how do we capture the intuition that it is the

latter and not the former properties that are intrinsic to the nature of sit-

uations? There doesn’t seem to be a way to distinguish these (relativized)

soa-properties from the others as being more critical to their identity.

That is just what the distinction between encoding and exemplifying a

property does. With this distinction, we can tie the identity of situations

directly to, and only to, properties of the form [λy p] if we suppose that

these are the properties they encode. These encoded properties become

more critical to the identity of situations than the properties they nec-

essarily exemplify (recall the proposed definition of identity for abstract

objects). The property of not being a spoon, even though exemplified
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necessarily by all situations, is not one of the properties by which situa-

tions are identified. The same is true for most other properties necessarily

exemplified by situations. By supposing that soa-properties are encoded

by situations, we have a better picture of why some properties are part

of the nature of situations while others are not. Moreover, from the fact

that a situation s encodes [λy p], and does so necessarily, it doesn’t follow

that p is necessary, since the relevant instance of λ-Equivalence governs

only exemplified soa-properties, not encoded ones. So puzzles like the

ones raised in the previous two paragraphs have a simple solution on this

conception. And it should be mentioned that all of these considerations

apply to our understanding of worlds as well.

In fact, we’ve already outlined one other good reason for thinking

that situations and worlds are best characterized in terms of encoded

soa-properties, namely, that no object whatsoever is distinguished by

the soa-properties it exemplifies. If p obtains, then everything whatsoever

exemplifies being such that p; if p fails to obtain, then nothing exemplifies

this property (everything would exemplify the property of being such that

¬p). But not every abstract object encodes the same soa-properties.

Recall that given our abstraction principle for abstract objects, we can

expect that for every group of soa-properties, there will be an abstract

object that encodes just those properties and no others. This gives us a

wide variety of situations, each one being what it is in virtue of the states

of affairs that ‘characterize’ it.

§4: The Background Theory of Objects13

Our metaphysical foundations consist of a language, its logic, and a proper

theory. The language is an almost trivial variant of quantified ‘second

order’ modal logic. It has two primitive kinds of variables: object variables

x, y, z . . ., and n-place relation variables Fn, Gn, Hn, . . . (n ≥ 0). There

is one distinguished predicate: E!. Recall that the distinction between

exemplifying and encoding a property is captured by having two kinds

of atomic formulas in the language. Exemplification formulas of the form

‘Fnx1 . . . xn’ assert that objects x1, . . . , xn exemplify (or stand in) relation

Fn. Encoding formulas of the form ‘xF 1’ are to be read: x encodes F 1

13The following rough sketch should give one a good idea of what the system looks

like, but it is not a substitute for the precise definitions found in Zalta [1983] and

[1988]. Readers already familiar with these works may skip this section.
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(no generalization to n-place relations, for n > 1, is necessary). Using

these two atomic formulas as a basis, the language may be defined in the

usual way, so as to contain the usual sorts of molecular, quantified, and

modal formulas.

Here is an intuitive picture of the models of this language.14 The

variables x, y, . . . and Fn, Gn, . . . range over mutually exclusive domains

of primitive entities, the objects and the n-place relations, respectively.

The 2 is a universal quantifier ranging over a fixed domain of primitive

worlds (since we plan to use S5 , no accessibility relation is needed). We

emphasize that there are no world-relative domains of objects or relations,

but rather one fixed domain for objects and one for relations. Each n-

place relation receives an exemplification extension (a set of n-tuples) at

each world, and moreover, each property (i.e., 1-place relation) receives,

in addition, an encoding extension (this is just a set of objects that does

not vary from world to world). In terms of this picture, we can sketch the

truth conditions of our atomic formulas. The formula ‘Fnx1 . . . xn’ is true

at a world w (relative to a model M and assignment f to the variables)

just in case the n-tuple consisting of the objects denoted by the variables

x1, . . . , xn (relative to M and f) is a member of the exemplification ex-

tension at w of the relation denoted by Fn (relative to M and f). The

formula ‘xF ’ is true at w (relative to M and f) just in case the object de-

noted by x (relative to M and f) is an element of the encoding extension

of the property denoted by F (relative to M and f). The truth conditions

for the molecular, quantified, and modal formulas are the usual ones.

It should be reasonably clear from this picture that the classical axioms

of propositional logic, quantification theory, and S5 modal logic can be

associated with our language.15 Since the quantifiers and modal operators

range over fixed domains, the Barcan formulas, both first and second

14The reader is cautioned not to take this picture too seriously. In particular, the fact

that possible worlds appear as primitive entities in the semantics does not imply that

the metaphysical theory expressed in the object language is committed to primitive

possible worlds. It is not. It is committed only to two domains, objects and relations,

and takes the modal operator as primitive. Worlds will be defined within the theory,

and it is this definition, coupled with the object-theoretic theorems about worlds, that

grounds and justifies our use of worlds as primitive in the semantics.
15By ‘classical quantification theory’, I am simply referring to the standard axioms

and rules governing the introduction and elimination of quantifiers and terms. To

prove the theorems in the present paper, the reader may choose his or her favorite

natural deduction system or axiomatization of classical quantified modal logic. I have

used the axiomatic method to sketch the proof of the modal theorems.
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order, are valid.16 Since the encoding extension of a property does not

vary from world to world, if an encoding formula is true at some world, it

is true at all worlds. So the modal logic of encoding is expressed by the

following principle:

Logical Axiom: 3xF → 2xF

This helps to capture the intuition that the properties encoded by a special

object are internal to its nature, and so do not change with the changing

circumstances from world to world. From the usual rules and axioms of

S5 , it follows that:

Lemma: xF ↔ 3xF ↔ 2xF

This Lemma plays a very important role in what follows.

Now the first thing that our proper theory asserts is that ordinary

objects do not encode properties. Ordinary objects, like you, me, my

desk, etc., and objects like us in other possible worlds, just exemplify the

properties they have. To represent this formally, let the distinguished

predicate ‘E!’ denote the property of existence, where this is understood

as the property of having a location in spacetime. Then we say what it

is for an object x to be ordinary (‘O!x’):

O!x =df 3E!x

Things like you, me, my desk, etc., possibly have a location in space-time,

and so we satisfy the definition. Any object x that is possibly a person

or possibly a desk also satisfies the definition (given that being a person

and being a desk are existence entailing properties) and is to be counted

as ordinary. We may now capture the theoretical assertion that ordinary

objects don’t (and couldn’t) encode properties by using our notation ‘xF ’

for encoding as follows:

Proper Axiom: ∀x(O!x→ 2¬∃F xF )

The most important principles of the theory will characterize not these

ordinary objects but the extraordinary objects that encode properties. In

previous work, I have called these objects ‘abstract’, employing the symbol

‘A!’ defined as follows:

16They are quite harmless, however, given that we distinguish quantifying over an

object x from asserting that x (physically) exists. So from the fact that we can conclude

∃x3φ from 3∃xφ, it doesn’t follow that the x in question physically exists.
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A!x =df ¬O!x

Thus, abstract objects are not the kind of thing that could have a location

in spacetime.

An important principle of the theory guarantees that abstract objects

are to be identified by the properties they encode: no two distinct ab-

stract objects encode the same properties. Since the abstract objects

and ordinary objects jointly exhaust the domain of objects, the following

constitutes a completely general definition of ‘x = y’:17

x=y =df

[O!x&O!y & 2∀F (Fx↔ Fy)] ∨ [A!x&A!y & 2∀F (xF ↔ yF )]

This principle simply says that two objects x and y are identical iff either

x and y are both ordinary objects and necessarily exemplify the same

properties or they are both abstract objects and necessarily encode the

same properties. The following principle shall govern our defined notion

of identity:

Proper Axiom: x = y → [φ(x, x) ↔ φ(x, y)], provided that y is

substitutable for x in φ

In this principle, φ(x, y) is the result of substituting y for x at some, but

not necessarily all, free occurrences of x in φ(x, x), and the proviso that

y be substitutable for x ensures that y is not ‘captured’ by any quantifier

when substituted for x.

Now the main principle comprehending the domain of abstract objects

asserts that for any expressible condition φ on properties F , there is an

abstract object that encodes all and only the properties satisfying the

condition:

Proper Axiom: ∃x[A!x & ∀F (xF ↔ φ)], where φ has no free xs

Intuitively, this guarantees that for every set of properties determined

by an expressible condition φ, there is an abstract object that encodes

just the properties in the set. Since there is a wide variety of conditions

17The identity sign is not a primitive of the theory!
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on properties, this axiom ensures that there is a wide variety of abstract

objects.18

Note that, given our underlying modal logic, all of the principles of the

theory described so far turn out to be necessary truths, for by the rule of

necessitation, if φ is derivable, then so is 2φ. This means, in particular,

that the comprehension principle for abstract objects is necessarily true.

Now the greater the variety of properties and relations that there is,

the greater the variety of abstract objects. To guarantee variety in the

former domain, the object theory is supplemented by a theory of relations,

properties, and states of affairs. This theory, among other things, serves

to make precise the idea that situations and worlds are objects that have

internal properties of the form being such that p. In previous work, we

have set things up so that the main comprehension axioms for relations

and states of affairs are logical, rather than proper, axioms. The semantic

theory is cast in such a way that these axioms are true in every model.

The main comprehension schema, which circumscribes the domain

of relations, asserts that for any exemplification condition φ on objects

having no quantifiers binding relation variables, there is a relation Fn

which is such that necessarily, objects x1,. . . ,xn exemplify Fn iff φ:

Relations: ∃Fn2∀x1 . . . ∀xn(Fnx1 . . . xn ↔ φ), where φ has no free

F s, no encoding subformulas, and no quantifiers binding relation

variables.

Note that the theory doesn’t guarantee that there are any new relations

constructible in terms of encoding formulas. But all of the familiar, first-

order definable, complex relations are constructible.19 Here are some

sample instances of this schema involving 1-place relations:

18Lots of examples of instances of this axiom schema may be found in [1988], pp. 22–

27, and in [1983], pp. 13 and 35. The hypothesis that there are abstract objects that

encode as well as exemplify properties has proven to be a useful one. In [1983], I tried

to show that these objects provide an analysis of Platonic Forms, Leibnizian Monads,

Possible Worlds, fictional characters, Fregean Senses, and mathematical objects. In

[1988], I tried to show how they help us to analyze the problems of intensional logic.
19For a more complete discussion of this principle, see pp. 46–50 of [1988]. The

restriction that φ have no encoding subformulas ensures that the domain of relations

is not automatically altered by the introduction of encoding into the theory. This

formulation of Relations reflects, in part, a certain choice about which theory it is

we want to develop, namely, a theory in which we introduce encoding and abstract

objects into the foundations of metaphysics without changing our picture of the domain

of relations. In addition, the restriction serves to avoid a certain paradox—see Zalta

[1983], pp. 158–160, and [1988], p. 27.
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∃F2∀x(Fx↔ ¬Gx)

∃F2∀x(Fx↔ Gx & Hx)

∃F2∀x(Fx↔ 2(E!x→ Px))

∃F2∀x(Fx↔ ∃zRzx)

The first instance asserts that, given any property G, there is a property

F which is such that, necessarily, an object x exemplifies F iff x fails to

exemplify G. The second instance asserts that two properties G and H

have a conjunction. And so forth.

The abstraction schema Relations is in fact a logical theorem schema.

It is derivable from the logical axiom schema λ-Equivalence:

λ-Equivalence: ∀x1 . . . ∀xn([λy1 . . . yn φ]x1 . . . xn ↔ φx1,...,xn
y1,...,yn ),

where xi is substitutable for yi in φ (1 ≤ i ≤ n).20

Here are some λ-expressions that correspond to the above instances of

Relations:

[λy ¬Gy]

[λy Gy & Hy]

[λy 2(E!y → Py)]

[λy ∃zRzy]

Relations is derived from λ-Equivalence by first applying the rule of ne-

cessitation and then the rule of existential generalization. The schema

ensures that the domain of relations is well-stocked with a familiar vari-

ety of complex relations.

The restriction that φ have no quantifiers binding relation variables is not as critical

as the ‘no encoding subformulas’ restriction. See [1983], pp. 159–160.
20The notation φx1,...,xny1,...,yn stands for the result of replacing, respectively, xi for yi in

φ, and the requirement that xi be substitutable for yi guarantees that xi will not be

‘captured’ by a quantifier when the substitution is carried out.

The restrictions on the Relations schema are built right into the formation of λ-

expressions. Consequently, the λ-expressions may not contain any formula φ having

encoding subformulas or quantifiers binding relation variables. For the precise forma-

tion rules for λ-expressions, see [1983], p. 60, or [1988], p. 234.

The λ-expressions are interpreted by using an algebraic-style semantics, in which

semantic counterparts of Quine’s predicate functors in [1960] are used to generate

complex relations out of simpler relations. The structure of the λ-expression is a guide

to the structure of the relation that it denotes. See [1983], 20–27, 61–67; and [1988],

46–51. By requiring that the domain of relations be closed under these functions in

every model of the language, λ-Equivalence becomes a logical truth.
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To give a complete theory of relations, one must give both compre-

hension and identity conditions. Identity conditions for relations can be

defined in terms of identity conditions for properties, which in turn are

defined in terms of our notion of encoding. We stipulate that two prop-

erties are identical just in case, necessarily, they are encoded by the same

objects:

F = G =df 2∀x(xF ↔ xG)

In terms of this definition, we may say that two relations Fn and Gn

are identical just in case no matter which order you plug n − 1 objects

into both Fn and Gn (plugging Fn and Gn up in the same order), the

resulting properties are identical.21 Note that our definition of property

and relation identity is compatible with the idea that necessarily equiv-

alent relations may be distinct. From the fact that two properties are

necessarily exemplified by the same objects, it does not follow that they

are necessarily encoded by the same objects. One may consistently assert

that F 6= G even though 2∀x(Fx ↔ Gx). Nevertheless, our theory of

properties is extensional in an important sense. That is because prop-

erties have encoding extensions in addition to having an exemplification

extensions. The theory stipulates that two properties with the same en-

coding extensions (at every world) are identical, and this is the sense in

which the theory of properties is extensional. It is an extensional theory

of intensional entities.

Let us call a 0-place relation a ‘state of affairs’, and let the variables

p, q, r, . . . (in lieu of F 0, G0, . . .) range over states of affairs. In earlier

work, I called these entities ‘propositions’, but in situation theory, they

seem to play the role of ‘states of affairs’. Recall that we are adopting the

convention of referring to a state of affairs as a ‘soa’. In what follows,

the notion of a state of affairs being factual or obtaining is basic to the

theory (i.e., not defined). To assert that a state of affairs p is factual (or

obtains), one just uses the expression ‘p’. To assert that p isn’t factual,

that both p and q are factual, and that p’s factuality is necessary, one

21Formally, this can be stated as follows:

Fn=Gn ≡df (where n > 1)

(∀x1) . . . (∀xn−1)([λy Fnyx1 . . . xn−1]=[λy Gnyx1 . . . xn−1] &

[λy Fnx1yx2 . . . xn−1]=[λy Gnx1yx2 . . . xn−1] & . . .&

[λy Fnx1 . . . xn−1y]=[λy Gnx1 . . . xn−1y])
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uses the expressions ‘¬p’, ‘p & q’, and ‘2p’, respectively.

Now if we let n = 0, the following ‘degenerate’ case of the Relations

principle asserts that for any complex exemplification statement φ, there

is a state of affairs p such that, necessarily, p is factual (obtains) iff φ:

States of Affairs: ∃p2(p↔ φ), where φ has no free ps, no encoding

subformulas, and no quantifiers binding relation variables.

Here are some relevant theorems, where the ai are constants that (rigidly)

denote particular objects, and Rn is a constant that (rigidly) denotes a

particular relation:

∃p2(p↔ Ra1 . . . an)

∃p2(p↔ ¬Ra1 . . . an)

∀q∃p2(p↔ ¬q)
∀q∀r∃p2(p↔ q & r)

∀q∃p2(p↔ 2q)

The first example asserts that there is a soa that is factual iff the objects

a1,. . . ,an stand in the relation R. The second example asserts that there

is a state of affairs that is factual iff the soa Ra1 . . . an fails to be factual.

The third example asserts that every soa q has a negation, the fourth

that every two soas have a conjunction, and the fifth that every soa has

a necessitation.22

Since it constitutes the degenerate case of Relations, the schema States

of Affairs is also derivable from λ-Equivalence, using λ-expressions with

no variables bound by a ‘λ’. To see why, let us read expressions of the

form ‘[λ φ]’ as ‘that-φ.’ Then the following constitutes a 0-place instance

of λ-Equivalence:

[λ φ]↔ φ

This simply asserts: that-φ obtains iff φ.23 This means that each (com-

plex) exemplification formula φ can be used to construct a term (‘[λφ]’)

22These results already resolve Choices 14 – 17 in Barwise [1989]. We can freely

form states of affairs out of any objects and relations (Choice 14); not every soa is

basic (Alternative 15.2, Choice 15); there is a rich algebraic structure on the space of

soas (Choice 16); and every soa has a dual (Choice 17).
23To derive States of Affairs from this, apply necessitation and existential general-

ization.
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that denotes a (complex) state of affairs.24 To simplify the formalism,

we shall henceforth use φ both as a formula and as a term (i.e., we shall

abbreviate [λ φ] by φ). Note that in most works on situation theory, the

expression 〈〈R, a1, . . . , an; 1〉〉 is used to denote the soa that is factual iff

objects a1,. . . ,an stand in relation R; however, in the present theory, such

a soa is denoted by the formula Ra1 . . . an.

We are now in a position to consider some rather special instances of

Relations. Here are just two examples of this special group:

∃F2∀x(Fx↔ Ra1 . . . an)

∃F2∀x(Fx↔ ¬Ra1 . . . an)

Note that in these two examples, the condition φ on objects x is vacuous.

The first example asserts that there is a property F which is such that,

necessarily, an object x exemplifies F iff objects a1, . . . , an exemplify re-

lation Rn. The second asserts that there is a property F which is such

that, necessarily, an object x exemplifies F iff a1, . . . , an fail to exemplify

Rn. If a1, . . . , an exemplify Rn, then every object whatsoever exemplifies

the former of these two properties and no object exemplifies the latter. If

a1, . . . , an fail to exemplify Rn, then no object exemplifies the former and

everything exemplifies the latter. Corresponding to these two examples

are the following λ-expressions, respectively:

[λy Ra1 . . . an]

[λy ¬Ra1 . . . an]

Of course, these special kinds of properties can be generated for any soa

derived from States of Affairs. It is a simple consequence of Relations

that for any state of affairs p, there is a property F which is such that,

necessarily, an object x exemplifies F iff p (obtains):

∀p∃F2∀x(Fx↔ p)

So for every state of affairs p, there is a property of being such that p, i.e.,

[λy p], which either everything exemplifies or fails to exemplify, depending

on whether or not p obtains. If F = [λy p], we say that F is constructed

out of p and that F is a soa-property .25

24Semantically, these complex states of affairs are constructed using the same logical

functions that generate the complex relations. The resulting complexes are therefore

highly structured. For more details, see Zalta [1988], pp. 57–61.
25In earlier work, I have called these ‘propositional properties’ or ‘vacuous proper-

ties’.
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To complete the theory of states of affairs, we need to define their iden-

tity conditions. Our recent discussion of soa-properties serves to make

the following definition of identity for states of affairs understandable: p

and q are identical just in case the property of being such that p (i.e.,

[λy p]) and the property of being such that q (i.e., [λy q]) are identical.26

p = q =df [λy p] = [λy q]

This definition, therefore, defines the identity of states of affairs in terms

of the defined notion of property identity.27 It also allows necessarily

equivalent states of affairs to be distinct.

Finally, since we have now defined ‘Fn = Gn’ for n ≥ 0, we may assert

that identical relations are substitutable for one another. Consequently,

the following proper axiom shall govern our defined notions of relation

identity (n ≥ 0):

Proper Axiom: Fn = Gn → [φ(Fn, Fn) ↔ φ(Fn, Gn)], provided

Gn is substitutable for Fn in φ.28

This principle of substitution is entirely unrestricted. It completes the

presentation of the theory of relations.

§5: The Theory of Situations and Worlds

Recall that in §3 we suggested that a situation is an abstract object (one

that may both encode and exemplify properties) which is such that every

property it encodes is a soa-property. Formally, this suggestion can now

be represented in terms of the following definition:

Situation(x) =df A!x & ∀F (xF → ∃p(F = [λy p]))

26A definition somewhat similar to this was proposed in Myhill [1963], p. 306.
27This definition yields certain theorems that decide Choice 13 in Barwise [1989] in

favor of Alternative 13.2. Our semantic picture of basic soas treats them as structured

complexes, in which the objects are ‘plugged’ into places of the relation. But there are

so many abstract objects generated by the abstraction schema that the theory entails,

for some abstract objects a and b, that Pa = Pb even though a 6= b. If a and b are

ordinary, however, then Pa 6= Pb follows from a 6= b. See Zalta [1983], p. 75, footnote

8, and the discussion in Zalta [1988], pp. 31-2.
28The notation φ(Fn, Gn) stands for the result of substituting Gn for Fn at some,

but not necessarily all, free occurrences of Fn in φ(Fn, Fn).
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This definition sets the stage for the following series of definitions and

theorems.29 In what follows, we shall use the variable ‘s’ to range over

the situations.

The first and foremost theorem of situation theory is a comprehension

theorem schema that falls directly out of the proper axiom schema A-

Objects. The schema for situations asserts that for any condition on

soa-properties, there is a situation that encodes all and only the soa-

properties satisfying the condition. To represent this theorem formally,

let us say that a formula φ(F ) is a condition on soa-properties iff every

property F that satisfies φ is a soa-property. The following is then a

theorem schema that comprehends the domain of situations:

Theorems 1 : ∃s∀F (sF ↔ φ), where φ is any condition on soa-pro-

perties having no free ss.

Let us call this theorem scheme ‘Situations’. It forces the domain of

situations to be rather rich, and evidence of this richness will be presented

as we proceed through the theorems. For the present, let us look just at

the instance that yields the situation discussed previously, namely, the

situation which is only such that George loves Barbara and such that

Barbara doesn’t love George:

∃s∀F (sF ↔ F = [λy Lgb] ∨ F = [λy ¬Lbg])

In this example, φ = F = [λy Lgb] ∨ F = [λy ¬Lbg] . Any property

F satisfying this φ is a soa-property, and so the object encoding just

such properties will be a situation.30 Other instances of Situations will

be found frequently in what follows.

Each instance of our theorem scheme asserts that there is a situation

that encodes just the soa-properties meeting a certain condition φ. In

fact, for each instance, there is a unique situation that encodes just the

soa-properties satisfying φ. Where ‘∃!xψ’ is defined in the usual way to

assert that there is a unique x such that ψ, then the following is a lemma

to Situations:

Lemma 1 : ∃!s∀F (sF ↔ φ), for any condition φ on soa-properties

having no free ss

29The proofs of the theorems are all gathered in Appendix A.
30Some readers may find it useful to recall that the set {x |x= 1 ∨ x= 2} is a set

that contains just two numbers, and that the set {F |F = [λy Lgb] ∨ F = [λy ¬Lbg]}
contains just two properties. Therefore, the condition φ in the above instance of

Situations yields an object that encodes just two soa-properties.
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To see why this is true, note that for any particular instance of Situations,

there couldn’t be two distinct situations encoding all and only the soa-

properties satisfying the condition φ in question, for by the definition of

identity for abstract objects, distinct situations have to differ with respect

to at least one of the properties they encode.

Now one of the principal notions of situation theory is that of a state

of affairs p being factual in a situation s (sometimes it is said that s

makes p factual). In most other developments of situation theory, the

claim that p is factual in s is taken as basic (i.e., undefined) and it is

formally represented as: s |= p. But we define this notion within the

present theory. Given our basic theoretical understanding of situations,

it should be apparent that the states of affairs encoded in a situation (via

soa-properties) are the ones factual in that situation. So we shall say:

state of affairs p is factual in situation s (or, s makes p factual) iff s

encodes the soa-property of being such that p. So we may introduce the

notation of situation theory in the following definition:

s |= p =df s[λy p]

It is very important to note that ‘s |= p’ is defined in terms of the variable

‘p’ that ranges over states of affairs of any complexity. Thus, any formula

φ that contains no encoding subformulas and no quantifiers binding rela-

tion variables may be substituted for the variable p, for these constitute

terms that denote (complex) states of affairs. For such φ, the expression

‘s |= φ’ is well-defined as: s[λyφ]. Also, in order to disambiguate formulas

containing ‘|=’, we adopt the following convention: ‘|=’ shall be dominated

by all the other connectives in a formula. For example, a formula of the

form ‘s |= p→ p’ shall be short for ‘(s |= p)→ p.’ We write ‘s |= (p→ p)’

to assert that s makes the complex state of affairs p→ p factual.

Given this definition, it now follows that two situations are identical

just in case the same soas are factual in them.31

Theorem 2 : s = s′ ↔ ∀p(s |= p↔ s′ |= p)

In other applications of the theory of abstract objects, it has proven useful

to define the following notion of part-whole: x is a part-of y iff y encodes

31This determines another choice at one of the branch points of situation theory.

In Barwise [1989], Choice 5 (p. 264) concerns the question of whether situations that

support the same infons (or soas) are identical. The following theorem decides the

issue in favor of Barwise’s Alternative 5.1, namely, such soas are identical.
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every property x encodes. To capture this definition formally, let us use

the symbol ‘�’ to represent the notion part-of . We therefore have:

x� y =df ∀F (xF → yF )

Consequently, it follows that every part of a situation is a situation:32

Theorem 3: ∀x[x� s→ Situation(x)]

It is also an immediate consequence that a situation s is a part of situation

s′ iff every soa factual in s is factual in s′.

Theorem 4 : s� s′ ↔ ∀p(s |= p→ s′ |= p)

This simple theorem is significant because it shows that the theory pre-

dicts a natural situation-theoretic analysis of the notion of part-of . The

theory also makes two other simple predictions, namely, that two situa-

tions are identical iff each is part of the other, and that two situations are

identical iff they have the same parts:

Theorem 5 : s = s′ ↔ s� s′ & s′ � s

Theorem 6 : s = s′ ↔ ∀s′′(s′′ � s↔ s′′ � s′)

In light of these results, we shall say that a situation s is a proper part of

s′ just in case s is a part of s′ and s 6= s′.

In addition to these facts about parts and wholes, it turns out that the

entire domain of situations is partially ordered by the notion of part-of :33

Theorem 7 : Part-of (�) is reflexive, anti-symmetric, and transitive

on the situations.

Another important notion of situation theory is persistency . Following

the situation theorists, we say that a state of affairs p is persistent iff

whenever p is factual in a situation s, p is factual in every situation s′ of

which s is a part.34

32This rather simple theorem decides another choice point in situation theory,

namely, Choice 2, where Barwise ([1989], p. 261) asks whether every part of a sit-

uation is a situation. Our theory asserts that it is.
33Note that whereas the partial ordering of situations is assumed in Barwise [1989]

(p. 259), before the branch points of situation theory are even enumerated, this partial

ordering turns out to be a consequence of our theory.
34This definition follows Barwise [1989], p. 265.
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Persistent(p) =df ∀s[s |= p→ ∀s′(s� s′ → s′ |= p)]

Clearly, persistency is built right into the theory, for given the above

definition of part-of , it is an immediate consequence of the foregoing that

all states of affairs are persistent:35

Theorem 8 : ∀pPersistent(p)

In the next group of theorems, we consider what kinds of situations

are to be found in our domain. One of the most important questions to

ask about a situation is whether or not it is actual. In other versions

of situation theory, philosophers have restricted themselves to the actual

situations. For us, the actual situations constitute just a part of the

domain of situations. Let us say that a situation s is actual iff every soa

factual in s is factual; i.e.,

Actual(s) =df ∀p(s |= p→ p)

Given this definition, it follows that there are both actual and non-actual

situations:36

Theorem 9 : ∃sActual(s) & ∃s¬Actual(s)

Moreover, it follows that no state of affairs and its negation both are

factual in any actual situation,37 and that some soas are not factual in

any actual situations:

Theorem 10 : ∀s[Actual(s)→ ¬∃p(s |= p& s |= ¬p)]

Theorem 11 : ∃p∀s(Actual(s)→ s 6|= p).

Our comprehension principle also guarantees that for any two (actual)

situations, there is an (actual) situation of which they are both a part.38

Theorem 12 : ∀s∀s′∃s′′(s� s′′ & s′ � s′′)

35Thus, the theory comes down in favor of Alternative 6.1 at Choice 6 (p. 265) in

Barwise [1989]. It should also be clear that the theory resolves Choice 11 (p. 268)

in favor of Alternative 11.1. No relations are perspectival; the argument places of a

relation R involved in a situation s remain the same in any situation s′ of which s is

a part.
36The theory here decides Choice 4 (p. 262) of Barwise [1989] in favor of Alternative

4.2.
37Compare the Coherency Principle in Barwise [1989], p. 235.
38Compare the Compatibility Principle in Barwise [1989], p. 235.
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On our theory of situations, there are two different notions of maximality,

as well as two corresponding notions of partiality. Let us say that a

situation s is maximal1 iff every soa or its negation is factual in s. A

situation s is partial1 iff some soa and its negation are not factual in s.

A situation s is maximal2 iff every soa is factual in s. A situation s is

partial2 iff some soa is not factual in s. Formally:

Maximal1(s) =df ∀p(s |= p ∨ s |= ¬p)
Partial1(s) =df ∃p(s 6|= p & s 6|= ¬p)

Maximal2(s) =df ∀p(s |= p)

Partial2(s) =df ∃p(s 6|= p)

The reader should now be able to use Situations to demonstrate the fol-

lowing:

Theorem 13 : There are maximal1 and partial1 situations.

Theorem 14 : There are maximal2 and partial2 situations.

The discussion of maximality brings us naturally to the question of

whether there are any maximal situations that could reasonably be called

‘possible worlds’. Let us say that a situation s is a world iff it is possible

that all and only factual soas are factual in s; i.e.,

World(s) =df 3∀p(s |= p↔ p)

In other words, those situations that might make factual all and only

the facts are worlds.39 Note that since the modal operator ‘possibly’ is

defined in terms of the primitive modal operator ‘necessarily’, we are using

a primitive notion of modality to define the notion of a world. Instead of

taking possible worlds as primitive entities, as one does in ‘possible world

semantics’, we are taking the first step in developing a theory of worlds.

This theory has lots of interesting consequences, but before we de-

scribe them, it is important to make a few observations about the modal

behavior of situations. First, note that Situations is a necessary truth!

This necessary truth, or 2Situations, is derived from a comprehension

axiom (the one for abstract objects) that is (provably) necessarily true.

The derivation makes no appeal to contingent truths. So the rule of ne-

cessitation applies, yielding 2Situations. Second, recall that the logical

39This decides Choice 3 in Barwise [1989] in favor of Alternative 3.1: worlds are

situations.
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axiom for encoding asserts that if an object possibly encodes a property,

it necessarily does. This principle ensures that any soa-property that a

situation possibly encodes is one that it necessarily encodes, and a for-

tiori , one that it in fact encodes. In situation theoretic terms, this means

that if it is possible that s makes p factual, it is necessary that s makes

p factual. In fact, by the Lemma to the logical axiom for encoding (see

§4), we have the following:

Lemma 2 : s |= p↔ 3s |= p↔ 2s |= p

Lemma 2 and 2Situations combine to produce the following effect: when-

ever we are describing a particular possibility, not only can we always ap-

peal to 2Situations to tell us what situations s there are relative to this

possiblility (since 2Situations is necessary), but furthermore, any truth of

the form s |= p relative to this possibility that we discover when appeal-

ing to 2Situations turns out, by Lemma 2 , to be true simpliciter , and a

necessary truth at that. This effect proves to be crucial to the proofs of

the theorems that follow. With this observation, we turn to the theorems

of world theory.40

The first, but not foremost, theorem of world theory is that every

world is maximal:41

Theorem 15 : All worlds are maximal1.

Let us say next that a situation s is possible iff it is possible that s is

actual. Let us also say that a situation s is consistent iff s doesn’t make

incompatible states of affairs factual (i.e., iff no contradictory soas are

factual in s). Formally, we have:

Possible(s) =df 3Actual(s)

40Some of the theorems that follow were proved in Chapter IV of Zalta [1983],

and discussed further in Zalta [1987] and Zalta [1988]. They are recast here in the

framework of situation theory.
41In many of the standard works on world theory, this principle often forms part of

the very definition of a world. Specifically, the maximality of worlds forms part of the

definition of ‘world’ given by Chisholm, Plantinga, and Fine. On their view, a world

is a possible state of affairs p such that for every state of affairs q, either p ⇒ q or

p ⇒ ¬q. Since for these philosophers, a state of affairs q is true at a world w just in

case w ⇒ q, it should be clear that maximality is built right into the definition of a

world. On the other hand, in Lewis’ world theory, and in possible world semantics, this

principle is a consequence of defining a proposition p as a set of worlds and defining

the negation of p as the complement set of worlds. See the works of these authors cited

in the Bibliography.
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Consistent(s) =df ¬∃p∃q[¬3(p& q) & s |= p & s |= q].

It now follows both that:

Theorem 16 : All possible situations are consistent.

Theorem 17 : All worlds are possible and consistent.

Now that we have derived some basic truths about worlds in general, it

seems reasonable to ask whether there are worlds that are actual, and

if so, how many there are. On the present theory, the answers to these

questions are ‘yes’ and ‘one’, for there is a unique actual world:

Theorem 18 : ∃!wActual(w)

In what follows, we use the symbol ‘wα’ to (rigidly) designate the unique

actual world.

The next basic intuition concerning situations and worlds predicted

by the theory is that all and only actual situations are part of the actual

world:

Theorem 19 : ∀s(Actual(s)↔ s� wα)

Let us take a moment to reflect on these results before we turn to the

next group of theorems. In some versions of situation theory, only actual

situations are tolerated. It is assumed that there is an actual world, and

that it is a maximal element under the relation of part-of .42 Thus, the

actual world is not a proper part of anything, but is a ‘maximal element’

in the sense that every (actual) situation is a part of it.

Contrast such versions of situation theory with the present one. The-

orem 19 tells us that wα is a ‘maximal element’ in the sense that every

actual situation is a part of it. But note that wα is nevertheless part of

lots of nonactual situations (though no nonactual situation will be part of

it). For example, take a situation in which all the soas factual in wα are

factual, and in addition, the negation of one of those soas is factual as

well. Such a situation is non-actual (for it makes a contradiction factual).

It is maximal1, but not maximal2. It is neither a possible nor a consistent

situation. But wα is a part of it. And wα is also a part of the ‘universal

42For example, in Barwise [1989], on p. 259, it is assumed that there is an actual

world and that it is a maximal element. On p. 261, the actual situations are defined

to be the ones that are part of the actual world.
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situation’, the situation in which every soa is factual. The universal sit-

uation is maximal1, maximal2, and is a genuine maximal element under

part-of (every situation is a part of it, but it is not a proper part of any sit-

uation). But it is neither actual, possible, nor consistent. Consequently,

though the actual world is part of lots of nonactual situations, it is not a

part of any actual situation other than itself. So our subdomain of actual

situations looks almost exactly like the domain of situations posited by

the philosophers who believe that there are only actual situations. Thus,

when restricted to the subdomain of actual situations, the theory still

yields theorems that capture most of the intuitions held by the ‘actualist’

situation theorists.

The next theorem gives us some basic information about the actual

world. It follows from the definition of the actual world wα that a state

of affairs is factual (simpliciter) iff it is factual in wα.

Theorem 20 : p↔ wα |= p

Recall that the notion of being factual is basic to the theory. But no

new primitive notation was introduced to mark this notion. Theorem

20 therefore shows that the theory offers an analysis of being factual (or

obtaining) in terms of its other primitive notions.

Theorem 20 also points us toward some important results about the

relationship between the internal and external properties of actual sit-

uations in general. We have been treating the internal properties of a

situation s as encoded properties of the form [λy p]. The external prop-

erties of a situation are the ones that it exemplifies. For example, all

situations exemplify the property of not being a spoon. Some, but not

others, exemplify the property of being seen by Mary . In general, how-

ever, situations, like all other objects, are complete with respect to the

properties they exemplify, in the sense that: ∀s∀F (Fs ∨ F̄ s), where F̄ =

[λy ¬Fy]. Consequently, situations will be complete with respect to the

soa-properties that they exemplify: ∀s∀p([λy p]s ∨ [λy ¬p]s). If we now

think about the relationship between the internal and external properties

of an actual situation, it should be clear that actual situations exemplify

(externally) every (internal) property they encode.

Theorem 21 : ∀s[Actual(s)→ ∀F (sF → Fs)]

We may express this theorem in situation theoretic terms as the following

lemma:
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Lemma 3 : ∀s[Actual(s)→ ∀p(s |= p→ [λy p]s)]

Of course, there are lots of properties that actual situations exemplify

that they won’t necessarily encode, such as not being a spoon, being seen

by Mary, being depressing, etc. But if we restrict ourselves to the soa-

properties, then the actual world wα turns out to be a rather special actual

situation that has exactly the same internal and external soa-properties.

In situation theoretic terms, a state of affairs p is factual in wα iff wα
exemplifies being such that p:

Theorem 22 : wα |= p↔ [λy p]wα

Theorems 20 and 22 have the following interesting consequence about

the actual world, namely that a state of affairs p is factual iff the state of

affairs, wα’s being such that p, is factual in wα:

Theorem 23 : p↔ wα |= [λy p]wα

What is noteworthy about this theorem is its logical form: if we think

of the formula ‘[λy p]s’ as a formula of the form φ(s), then Theorem 23

shows that wα is a situation s such that s |= φ(s). Intuitively (indeed,

semantically) this suggests that wα is a constituent of the facts that it

makes factual.43

Let us turn to the final group of theorems—ones which verify our deep-

est intuitions about the relationship between modality, situations, and

43In situation theory, statements of the form s |= φ(s) constitute the defining char-

acteristic of ‘nonwellfounded’ situations. So the actual world wα seems to be nonwell-

founded in the sense that it makes factual states of affairs p of which it is a constituent.

These theorems decide Choices 8, 9, and 10 in Barwise [1989]: situations can be con-

stituents of facts; not every object is a situation; and at least some situations are

non-well-founded.

There is other evidence for thinking that wα, and actual situations in general, are

nonwellfounded in some sense. And that has to do with what appears to be a ‘natural’

model of the theory, but which cannot be developed within the theory of wellfounded

sets. To see this, note that the actual world, and other actual situations all have the

following feature: they are objects that, for certain properties F , encode and exemplify

the very same F . Now suppose you tried to model, within ZF, ‘x encodes (internally)

F ’ as ‘F ∈ x’ (modeling x as a set of properties) and model ‘x exemplifies (externally)

F ’ as ‘x ∈ F ’ (modeling F as the set of individuals that exemplify it). This seems to

be a natural way to use ∈ to model encoding. But, then, this picture turns out to be

in violation of the wellfoundedness of ZF sets, since for certain actual situations s and

properties F , the fact that sF & Fs would require, in the model, that both F ∈ s and

s ∈ F . This result seems to square with the intuitions of the situation theorists who

believe that nonwellfounded sets provide the best picture of situations.
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possible worlds. The foremost principle of world theory is that a state

of affairs (proposition) is necessary iff it is factual (true) in all worlds.

Of course, this principle led Kripke in [1959] and [1963] to conceive of

his semantics of modal logic, and set the stage for thirty years of fruitful

research in modal logic. In Kripke’s work, this principle was the guiding

force by which the primitive notions of modality were interpreted by the

primitive semantic notions of world theory. In the present theory, how-

ever, the primitive notions of modality are couched in our object language

and the notions of world theory are defined in terms of them. We derive

the equivalence of necessity and factuality in all worlds as a theorem:

Theorem 24 : 2p↔ ∀w(w |= p)

Of course, the dual of this claim is also a theorem, namely, that a state

of affairs is possible iff it is factual in some world:44

Theorem 25 : 3p↔ ∃w(w |= p)

This could be the most important ontological consequence of world theory.

Anytime we add to the system a statement of the form ¬q & 3q (i.e., that

q doesn’t obtain but might have), Theorem 25 guarantees that there is

a world that is distinct from the actual world and in which q is factual.

For example, let q be the state of affairs: George Bush lost the 1988

presidential election. Then q is not factual but might have been. So, by

Theorem 25 , there is a world w that makes q factual. The world w is

not the actual world wα, since the former makes q factual while the latter

makes ¬q factual. So there is a possible world other than the actual world.

Thus, the principles of the theory support an argument for possible

worlds other than the actual world. The great variety of intuitive truths

of the form ¬q & 3q theoretically implies that there is a great variety of

possible worlds.45

Note that our worlds are individuals, not properties or states of af-

fairs. They are not entities that can be instantiated (compare Stalnaker’s

44Thus we derive what D. Lewis must stipulate. Recall the quotation from p. 2 of

his [1986], where he says, “There are so many other worlds, in fact, that absolutely

every way a world could possibly be is a way that some world is.” He repeats this

claim in several other places (for example, pp. 71, 86). The present theorem captures

this as the claim that for each possible state of affairs, there is a world in which that

state of affairs is factual.
45So, given at least one claim of the form ¬p & 3p, the theory decides Choice 1 in

Barwise [1989] in favor of Alternative 1.2: there is more than one world.
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description). On the other hand, they are abstract rather than concrete

or possibly concrete individuals, which distinguishes them from Lewisian

worlds. It might be thought that our conception is incompatible with that

of “actualists who hold that nothing is real except what is actual—that is,

except what exists as part of the actual world” (Stalnaker’s description).

But, in fact, our conception could be made consistent with this actualistic

view. We could simply use the predicate ‘C!’ instead of ‘E!’ as our prim-

itive predicate for having a location in spacetime, reserving the notion

of existence for reading the quantifier ‘∃’. Then the abstraction schema

for abstract objects would assert the existence of our abstract (i.e., not

possibly concrete) objects. We could then agree with the actualists that

“everything that exists (i.e., everything there is) is actual.” Our possi-

ble worlds would all be ‘actual’ in the sense that they exist; they are all

members of the single domain of objects, over which our all-embracing

quantifier ranges. Thus, whereas Lewis’s other possible worlds are ex-

isting concrete objects which are not actual (i.e., not spatiotemporally

related to us), our worlds (on this reading of the quantifier) would be

existing (actual) abstract objects, though ‘nonactual’ in the defined sense

that they encode falsehoods.

Moreover, we should not be subject to the objection that actualists

have raised against Lewis’s view, namely, that it postulates the existence

of nonactual concrete objects.46 Lewis’s worlds are a subset of his pos-

sibilia, but ours are not. Our possibilia are objects that are possibly

concrete (i.e., they possibly have a location in spacetime), but which are

not concrete. Unlike Lewis, we do not assert the existence of talking don-

keys and million carat diamonds. We accept that it is possible that there

are talking donkeys, and that it is possible that there are million carat

diamonds. And given the Barcan formulas, it follows that there are (or if

you prefer to read the quantifier as existentially loaded, that there exist)

things that are possibly talking donkeys, and that are possibly million

carat diamonds. But these possibly concrete objects are not concrete,

and so they do not exemplify the properties of being a talking donkey

or being a million carat diamond, respectively. Rather, they exemplify

the negations of both of these properties. We assert that there are (or

again, with existentially loaded quantifiers, that there exist) no objects

that exemplify the property of being a talking donkey or that exemplify

46See van Inwagen [1986], and Lycan [1988].

Edward N. Zalta 40

the property of being a million carat diamond.47

Nor do we face the dilemma faced by abstractionists who want to

treat worlds as states of affairs or properties. Our Theorem 18 estab-

lishes that there is a unique actual world. Within the present theory,

this theorem is quite compatible with the idea that necessarily equivalent

states of affairs may be distinct. Compare this with the predicament,

described at the end of §2, facing philosophers who accept only individu-

als and fine-grained properties, relations, and propositions (or states) in

their ontology. The attempt to identify worlds as maximal and possible

propositions (or states, or properties) runs up against the problem that,

on such a conception, there seem to be multiple, distinct copies of each

of the possible worlds, and in particular, multiple copies of the actual

world. We have made no ad hoc adjustments to reconcile the uniqueness

of worlds with the fine-grainedness of states of affairs.

The distinction between exemplifying and encoding a property seems

to capture what it is for a situation and world to have a nature that

is defined by the states of affairs that they make factual. It is part of

the very nature of situations and worlds that they make states of affairs

factual. This demonstrates that our worlds are not ersatz worlds. Our

worlds do not “represent the entire concrete world in all its detail, as it is

or might have been.” Unlike the other abstractionist ‘worlds’, our worlds

are characterized by the states of affairs they make factual, for encoding

is a mode of predication. If a world (or situation) makes p factual, then

that world (situation) is such that p, in an important new sense of the

copula. This fact, I believe, will serve to undermine the attempt to apply

Lewis’s objections regarding ersatz worlds to the present theory.48

Conclusion

The foregoing set of theorems forms an effective foundation for the the-

ory of situations nd worlds. All twenty-five theorems seem to be basic,

47Notice that if one were to read the quantifier as existentially loaded, all objects

would exist necessarily (since 2∃y y = τ , for any term τ , is a theorem of our simple

quantified modal logic), but this is not to say that any object would be necessarily

concrete. On this reading of the quantifier, the notion of a ‘contingent being’ is properly

analyzed as the notion of ‘contingently concrete being’. Our ordinary objects, we may

assert, are contingently concrete, and this is how our theory allows for contingent

beings.
48See Lewis [1986], pp. 136–42, and 174–91.
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reasonable principles that structure the domains of properties, relations,

states ofd affairs, situations, and worlds in true and philosophically inter-

esting ways. They resolve 15 of the 19 choice points defined by Barwise

[1989] (see footnotes 22, 27, 31, 32, 35, 36, 39, 43, and 45). Moreover,

important axioms and principles stipulated by situation theorists are de-

rived (see footnotes 33, 37, and 38). This is convincing evidence that the

foregoing constitutes a theory of situations.49 Note that worlds are just

a special kind of situation, and that the basic theorems of world theory,

which were derived in previous work, can still be derived in the situation-

theoretic setting. So there seems to be no fundamental incompatibility

between situations and worlds—they may peacably coexist in the foun-

dations of metaphysics. The theory may therefore reconcile two research

programs that appeared to be heading off in different directions. And we

must remind the reader that the general metaphysical principles underly-

ing our theory were not designed with the application to situation theory

in mind. This suggests that the general theory and the underlying dis-

tinction have explanatory power, for they seem to relate and systematize

apparently unrelated phenomena.

49For a more extensive discussion of the way in which the theory captures the stan-

dard conception of a situation, see Zalta [1991], §4.
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Appendix A: Proofs of the Theorems

Proof of T1: The comprehension principle for abstract objects is:

∃x(A!x & ∀F (xF ↔ φ)), where φ has no free xs. But the conditions

φ on soa-properties constitute a subset of the conditions that may be

used in this comprehension schema for abstract objects. Moreover, any

object ‘generated’ by such a condition on soa-properties encodes only

soa-properties, and will therefore be a situation.

Proof of T2: (←) Our hypothesis is that the same soas are factual in

both s and s′, and we want to show that these two situations are identical.

Since both s and s′ are situations, and hence abstract objects, to show

that they are identical, we must show that necessarily, they encode the

same properties. We reason by showing, for an arbitrary property Q,

that 2(sQ ↔ s′Q), for then by universal generalization and the Barcan

formulas we are done.

The first step is to show sQ ↔ s′Q, and then we’ll show that this is

necessary. (→) Assume sQ. Then since s is a situation, Q must be a soa-

property, say [λy q] (for some state of affairs q). So s encodes [λy q], and

by the definition of ‘factual in’, q is factual in s (s |= q). But our initial

hypothesis is that the same soas are factual in s and s′, and so s′ |= q,

i.e., s′[λy q]. So s′ encodes the property Q. (←) Reverse reasoning. Thus

we have sQ↔ s′Q.

Now, for reductio, suppose that this biconditional is not necessary.

Then, it must be possible that sQ and s′Q differ in truth value. So,

without loss of generality, let us say 3(sQ & ¬s′Q). But if so, then (a)

3sQ and (b) 3¬s′Q. Now in virtue of the Logical Axiom 3xF → 2xF ,

it follows from (a) that 2sQ, and so in fact sQ. Now (b) is equivalent to

¬2s′Q, and so it also follows from the Logical Axiom (this time by Modus

Tollens) that ¬3s′Q, i.e., 2¬s′Q. So in fact, ¬s′Q. But we have now

proved both sQ and ¬s′Q, and this contradicts our first result that sQ

and s′Q in fact have the same truth value.

Thus, 2(sQ ↔ s′Q). And so by universal generalization and the

Barcan formulas,2∀F (sF ↔ s′F ). Thus, s and s′ are identical. 1

Proof of T3: Suppose x is a part of situation s and that x encodes

G (to show G is a soa-property). Then, since s encodes every property x

encodes, s encodes G. But since s is a situation, every property it encodes

is a soa-property. So G is a soa-property.

Proof of T4: (→) Assume s is a part of s′ and that s |= q (to
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show s′ |= q). By definition of s |= q, we have s[λy q]. Since every

property encoded by s is encoded by s′, s′[λy q], i.e., s′ |= q. (←) Assume

∀p(s |= p→ s′ |= p) and that s encodes G (to show s′ encodes G). Since

s is a situation, G = [λy q], for some soa q, and so s |= q. By hypothesis,

then, s′ |= q, and so s′ encodes G.

Proof of T5: (←) If s and s′ are both parts of each other, then they

encode exactly the same properties. So by the definition of identity for

abstract objects, they are identical.

Proof of T6: (←) Suppose s and s′ have the same parts. To show that

s and s′ are identical, we must show that they encode the same properties.

For reductio, suppose they don’t. Then (without loss of generality) s

encodes a property G that s′ fails to encode. Now by the lemma to

Situations, there is a unique situation, call it ‘s0’, that encodes just the

property G. Clearly, s0 is a part of s, but since s0 encodes a property s′

doesn’t encode, s0 is not a part of s′. Thus, s and s′ don’t have the same

parts, contrary to hypothesis.

Proof of T7: Reflexivity is straightforward. To see that part-of is

anti-symmetric, assume s � s′ and s 6= s′. Then, there is a property s′

that is not encoded in s. So, ¬(s′ � s). To see that part-of is transitive,

assume s � s′ and s′ � s′′ and that s encodes property G (to show that

s′′ encodes G). Since s is a part of s′, s′ encodes G. Since s′ is a part of

s′′, s′′ encodes G.

Proof of T8: Assume s |= p and that s � s′. Then by Theorem 4 ,

s′ |= p.

Proof of T9: Consider the following two instances of Situations:

∃s∀F (sF ↔ F = [λy q])

∃s∀F (sF ↔ F = [λy ¬q])
Now if q obtains, then ¬q doesn’t. So the first instance gives us an

actual situation (in which q and no other soa is factual), while the second

instance gives us a non-actual situation (in which ¬q and no other soa is

factual). However, if ¬q obtains, then q doesn’t obtain. Then, the first

instance gives us a non-actual situation whereas the second gives us an

actual one. But either q or ¬q obtains.

Proof of T10: Assume s is actual. Then ∀p(s |= p → p). For

reductio, assume that there is a soa q such that both s |= q and s |= ¬q.
Then, since s is actual, both q and ¬q obtain, which is impossible.

Proof of T11: By States of Affairs, for an arbitrary soa q, there
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is a complex soa q & ¬q. Assume for an arbitrary situation s that s is

actual and that s |= (q & ¬q). Then by the actuality of s, q & ¬q, which

is impossible. So, for any actual situation s, if s is actual, s 6|= (q & ¬q).
So there is a soa p that is not made factual by any situation.

Proof of T12: By Situations, there is a situation that encodes all

and only the soa-properties F constructed out of soas factual in either

s or s′; i.e.,

∃s′′∀F [s′′F ↔ ∃p((s |= p ∨ s′ |= p) & F =[λy p])]

Note that if s and s′ are both actual, so is s′′.

Proof of T13: Consider the following two instances of Situations:

∃s∀F [sF ↔ ∃p(F = [λy p])]

∃s∀F (sF ↔ F = [λy q])

The first instance yields a situation (‘s1’) that makes every state of affairs

factual. A fortiori , s1 is maximal1. The second instance yields a situation

(‘s2’) that makes just q factual. Then, for any soa r such that q 6= r and

q 6= ¬r, s2 makes neither r nor ¬r factual. So s2 is partial1.

Proof of T14: Consider the same two instances of Situations utilized

in the previous proof. Situation s1 is maximal2, and s2 is partial2.

Proof of T15: Suppose s is a world. Then 3∀p(s |= p ↔ p). We

first try to establish, for an arbitrary soa q, that 3(s |= q ∨ s |= ¬q),
for then it will follow by Lemma 2 that s |= q ∨ s |= ¬q, and hence

that Maximal1(s). Now if we momentarily assume ∀p(s |= p ↔ p), we

can use the fact that 2(q ∨ ¬q) to establish that s |= q ∨ s |= ¬q. So

by conditional proof: ∀p(s |= p ↔ p) → (s |= q ∨ s |= ¬q). Since this

conditional was proved without appealing to any contingencies, the rule of

necessitation applies and we get: 2[∀p(s |= p↔ p)→ (s |= q ∨ s |= ¬q)].
From this fact, and the original fact that 3∀p(s |= p↔ p), we may apply

the following well known theorem of modal logic: 2(φ → ψ) → (3φ →
3ψ). Applying this theorem yields: 3(s |= q ∨ s |= ¬q), which is our

first objective.

From this fact, it follows that 3s |= q ∨ 3s |= ¬q. But by Lemma

2 , each disjunct gives us a nonmodal truth about s, and so it follows that

s |= q ∨ s |= ¬q. Since q was arbitrary, we have shown: Maximal1(s).

Proof of T16: Assume s is possible. Then, 3∀p(s |= p → p). For

reductio, assume s is not consistent. Then, there are states of affairs

q and r such that ¬3(q & r) and for which both s |= q and s |= r.

Note that by Lemma 2 , these last two facts are necessary. Moreover,
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they are all that is needed to establish: ∀p(s |= p → p) → (q & r).

Since this conditional is provable using only necessary truths, the rule

of necessitation applies and yields: 2[∀p(s |= p → p) → (q & r)]. But,

by hypothesis, 3∀p(s |= p→ p). So it follows by a previously mentioned

principle of modal logic that 3(q & r), which contradicts the fact (derived

from our reductio hypothesis) that ¬3(q & r).

Proof of T17: Suppose s is a world. Then it follows immediately

that s is possible. So by Theorem 16 , it follows that s is consistent.

Proof of T18: Consider the situation that encodes all and only those

properties F constructed out of soas that are factual; i.e,

∃s∀F [sF ↔ ∃p(p & F =[λy p])]

Call such a situation ‘s0.’ It is straightforward to show that s0 has the

following feature, for an arbitrary soa q: s0 |= q ↔ q. So, a fortiori , s0 is

both a world and actual. Now to see that there couldn’t be two distinct

actual worlds, suppose for reductio that s′ is a distinct actual world. Since

s′ and s0 are distinct, there must be a soa q factual in one but not in the

other (by Theorem 2 ). Suppose, without loss of generality, that s0 |= q

and s′ 6|= q. Then since s′ is a world, it is maximal1. So s′ |= ¬q. But

since both s0 and s′ are actual, both q and ¬q must obtain, which is a

contradiction.

Proof of T19: (→) Suppose s is actual and that q is a state of affairs

factual in s. Then q must be factual. But since all and only the factual

soas are factual in wα (by definition of wα), q is factual in wα. So by

Theorem 4 , s� wα. (←) By reverse reasoning.

Proof of T20: By definition of wα.

Proof of T21: Assume s is actual and encodes G (to show s exem-

plifies G). Then, for some p, G = [λy p]. So s makes p factual, and

since s is actual, p obtains. But, by λ-abstraction, necessarily, an object

x exemplifies [λy p] iff p obtains (i.e., [λy p]x ↔ p). So, in particular, s

exemplifies [λy p], i.e., s exemplifies G.

Proof of T22: (→) By Lemma 3 . (←) Suppose [λy p]wα. Then, by

λ-abstraction, p is factual. So, by Theorem 20 , wα |= p.

Proof of T23: (→) Suppose p. Then by Theorems 20 and 22 ,

[λy p]wα. But let q = [λy p]wα. Then, by Theorem 20 , wα |= q, i.e.,

wα |= [λy p]wα. (←) By reverse reasoning.

Proof of T24: (→) Assume 2q. We want to show, for an arbitrarily

chosen world w, that w |= q. Since w is a world, 3∀p(w |= p ↔ p).
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Moreover, by appealing to 2q, it is easy to establish: 2[∀p(w |= p↔ p)→
w |= q]. Since we know 3∀p(w |= p ↔ p), it follows by now familiar

reasoning that 3w |= q, and by Lemma 2 , w |= q. (←) Assume that

∀w(w |= q). By Lemma 2 , we know that if w |= q then 2w |= q. So

∀w2(w |= q), and by the Barcan formulas that 2∀w(w |= q). Now if we

can show 2[∀w(w |= q) → q], then by a familiar theorem of S5, namely,

2(φ → ψ) → (2φ → 2ψ), we are done. But recall that, by hypothesis,

∀w(w |= q). So, in particular, wα |= q. So q. By conditional proof,

∀w(w |= q) → q. Since no contingent information was used in the proof,

2[∀w(w |= q)→ q].

Proof of T25: By contraposition and modal negation of Theorem 24.
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