set(auto2). clear(fof_reduction). formulas(sos). % Logical Axiom: Ex1At(A,x,d) is rigid all x (Object(x) -> ((exists d (Point(d) & Ex1At(A,x,d))) -> (all d (Point(d) -> Ex1At(A,x,d))))). % Logical Axiom: EncAt(x,F,d) is rigid all x all F ((Object(x) & Property(F)) -> ((exists d (Point(d) & EncAt(x,F,d))) -> (all d (Point(d) -> EncAt(x,F,d))))). % Definition: WorldAt(x,d) all x all d ((Object(x) & Point(d)) -> (WorldAt(x,d) <-> (SituationAt(x,d) & (exists d2 (Point(d2) & (all p (Proposition(p) -> (TrueInAt(p,x,d2) <-> True(p,d2))))))))). % Definition: TrueInAt(p,x,d) all p all x all d ((Object(x) & Proposition(p) & Point(d)) -> (TrueInAt(p,x,d) <-> EncpAt(x,p,d))). % Definition: SituationAt(x,d) all x all d ((Object(x) & Point(d)) -> (SituationAt(x,d) <-> (Ex1At(A,x,d) & (all F (Property(F) -> (EncAt(x,F,d) -> (exists p (Proposition(p) & F=VAC(p))))))))). % Definition: EncpAt(x,p,d) all x all p all d ((Object(x) & Proposition(p) & Point(d)) -> (EncpAt(x,p,d) <-> (exists F (Property(F) & F=VAC(p) & EncAt(x,F,d))))). % Denial L1 -(all x (Object(x) -> ((exists d (Point(d) & WorldAt(x,d))) -> (all d (Point(d) -> WorldAt(x,d)))))). end_of_list.