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Abstract

We argue that logicism, the thesis that mathematics is reducible
to logic and analytic truths, is true. We do so by (a) developing
a formal framework with comprehension and abstraction princi-
ples, (b) giving reasons for thinking that this framework is part of
logic, (c) showing how the denotations for predicates and individ-
ual terms of an arbitrary mathematical theory can be viewed as
logical objects that exist in the framework, and (d) showing how
each theorem of a mathematical theory can be given an analytically
true reading in the logical framework.
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In this paper, we defend logicism, i.e., the claim that mathematics is
reducible to logical and analytic truths alone, in the sense that the axioms
and theorems of mathematics are derivable from logical truths and ana-
lytic truths. We shall assume, in what follows, that the deductive system
of second-order logic is a part of logic, both in the usual contemporary
sense of logic but also in the sense of logic developed later in the paper.
This assumption doesn’t require a second-order, model-theoretic conse-
quence relation, and so our assumption about second-order logic doesn’t
require any set theory.

Our defense of logicism advances previous work in the following ways:
(1) we precisely formulate the non-modal type-theoretic fragment of ob-
ject theory;1 (2) we show how this fragment can be used to analyze not
just simple mathematical terms (as in previous work), but also complex
relation terms of mathematical theories; (3) we argue that, given a natural
definition of ‘logic’, this fragment of object theory is a logic and that its
analysis of mathematics achieves the goals of logicism (as part of the ar-
gument, we show how our logicism differs from neo-logicism); and (4) we
give a consistency proof by constructing (in the Appendix) a model for
this fragment of object theory.

The papers cited in footnote 1 presupposed a standard notion of logical
truth and assumed that logicism couldn’t be true because (i) mathemat-
ical theories are often committed to a large, sometimes infinite, ontology,
(ii) logic, understood to include second-order logic, requires only one indi-
vidual and two properties, and (iii) the standard for reducing mathematics
to logic is relative interpretability. Given these facts, there is no way to
reduce the axioms of mathematical theories that have strong existence
assumptions to theorems of logic.

In what follows, however, we argue that logicism is true, and indeed,
that it can be given a serious defense. Our defense is based on a more
nuanced notion of logical truth. Since the notion of logical truth defined
in what follows yields a new body of such truths, this leads us to re-
vise both (ii) and (iii) above. If logic is constituted by our new body of
logical truths, then contrary to (ii), logic is committed to more than a
non-empty domain of individuals and a 2-element domain of properties;
indeed, it may be committed to much more. Contrary to (iii), both the
conceptual and epistemological goals of the logicists can be achieved by

1This fragment has not previously been precisely formulated though it was used in
Zalta 2000, Linsky & Zalta 2006, and Nodelman & Zalta 2014.
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adopting a notion of reduction other than relative interpretability. We
suggest that relative interpretability is the wrong notion of reduction and
suggest an alternative. We argue that this alternative notion of reduc-
tion gives up nothing important when it comes to establishing the most
important goals set by the logicists for the foundations of mathematics.

In our defense of logicism, we shall attempt to show that logic includes
special domains of individuals, properties, and relations, all of which can
be asserted to exist by logical axioms. (Henceforth, we use ‘objects’ to
refer generally to individuals, properties, and relations.) Thus, we agree
with the early logicists that logic does have its own special logical objects.
But we plan to justify this assumption in Section 6, when we defend
logicism.

Moreover, when we add certain analytic truths to our background sys-
tem, we’ll be able to assert the existence of new logical objects. Given
these new objects, our revised notion of reduction should be familiar:
(a) every well-defined individual term of a mathematical theory T is as-
signed a logical individual as its denotation, (b) every well-defined prop-
erty or relation term of T is assigned a logical property or logical relation
as its denotation, and (c) every theorem of T is assigned a reading stated
in terms of these denotations on which it turns out to be analytically true.
Thus, we provide precise theoretical descriptions of the entities denoted
by the predicates and individual terms of mathematical theories and this
provides the means of stating precise truth conditions of the theorems and
non-theorems of mathematical theories (Section 5). So once we establish
that our background system is part of logic and that we’ve only extended
it with bona fide analytic truths (Section 6), we will be defending logi-
cism with respect to a genuine notion of reduction. And with a genuine
reduction of mathematics to logic, we achieve the philosophical goals that
were foremost in the minds of the early logicists.

But before we can discuss these issues, we start with a brief discussion
of the philosophical goals of logicism (Section 1). Then, after discussing
some motivating examples (Section 2), we turn to a presentation of our
logical framework (Section 3) and its axioms (Section 4). As noted above,
we discuss the application of this logical framework to mathematics (Sec-
tion 5) and present our argument that this is logicism (Section 6). We
conclude by considering some potential objections (Section 7) and by pre-
senting the smallest model of our logical framework in an Appendix.
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1 The Goals of Logicism

Why did logicians and philosophers in the very early 20th century, such
as Frege (1893/1903) and Whitehead & Russell (1910–1913), set out to
establish the logicist thesis that most, if not all, of mathematics is re-
ducible to the laws of logic and analytic truths? If logicism were true,
what would be the philosophical benefits?

We take it that there are both conceptual and epistemological benefits.
The conceptual benefit is clear: if mathematics is reducible to logic, the
conceptual machineries of two a priori sciences are reduced to one. The
concepts of mathematics become nothing other than concepts of logic.
This simplifies the philosophy of mathematics, since (a) logicism would
provide an account of all of mathematics, and not just the mathemat-
ics that is applied in, or is indispensable for, the natural sciences, and
(b) logicism would provide an account of mathematics whether or not
the mathematicians conclude that there is only one distinguished, true
mathematical theory.

As to the epistemological benefits of logicism, Benacerraf provides one
classic formulation:

The philosophical point of establishing the view was nakedly epis-
temological: logicism, if it could be established, would show that
our knowledge of mathematics could be accounted for by whatever
would account for our knowledge of language. And, of course, it
was assumed that knowledge of language could itself be accounted
for in ways consistent with empiricist principles, that language was
itself entirely learned. Thus, following Hume, all our knowledge
could once more be seen as concerning either ‘relations of ideas’
(analytic and a priori) or ‘matters of fact’.

(Benacerraf 1981, 42–43)

So if logical truths are analytic, and mathematics is reducible to logical
and other analytic truths, then we would have an explanation of mathe-
matical knowledge.2

2This doesn’t, strictly speaking, rule out the idea that some special faculty of in-
tuition plays a role in our knowledge of mathematics, but only that if there is such a
faculty, it is epistemologically innocent, in the sense that it doesn’t require that there
be a causal mechanism by which abstract mathematical objects give rise to intuitions.
We can avoid Gödel’s (1964, 268) talk of the analogy with sense perception, but keep
the notion of intuition in an enlightened sense. The thesis that intuition provides some
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In the next section we give a brief overview of the logical framework
that we shall use and the examples that motivate its application to math-
ematics. The logical framework we use is based on the logic of encoding
described in Zalta 1983, 1988, and the applications were sketched in Zalta
2000, 2006. Those familiar with this earlier work and with the general idea
can skip directly to the point where the new work in this paper emerges,
namely, the detailed formal development of the logical framework in Sec-
tions 3 and 4.

2 Some Motivating Examples

Object theory uses the predicates O! and A! to distinguish between or-
dinary and abstract objects; in this paper we will take the predicate ‘ab-
stract’ to be a primitive term of our theory. In a nutshell, abstract entities
are individuated by a group of encoded properties that they objectify. This
understanding of abstractness overlaps with common usage but doesn’t
coincide with it exactly. So we are happy to regard ‘abstract’ as a tech-
nical term the meaning of which is given more precisely by AXIOMS 3–7
(in Section 4.2) of our theory.

Our logical framework, in its full generality, is developed within a re-
lational type theory. However, after we present the framework, we’ll focus
only on a certain fragment. To keep the presentation simple, our analysis
will focus on those first- or second-order mathematical theories statable in
terms of primitive individual constants and primitive 1- and 2-place pred-
icates. Examples of such mathematical theories include Zermelo-Fraenkel
set theory (ZF), Peano Arithmetic (PA), real number theory (R), etc.3

We’ll therefore motivate our general logical framework by taking ZF as
a typical example. We note that all of the philosophically relevant ideas
concerning our analysis of mathematics can be understood by examining
this basic example, since it should be clear how to extend the framework
to analyze mathematical theories requiring more expressive power. That
is, the logical framework defined later in Sections 3 and 4 can be further

means of non-conceptual access to mathematical objects is perfectly consistent with
the view that we will be developing here as long as this access is not meant to be
causal.

3We’ll assume, for the present purposes, that any functional terms used in the
statement of the axioms of these theories have been replaced by predicates and the
relevant existence and uniqueness claims.
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applied in a variety of ways, e.g., to analyze mathematical theories stated
in terms of n-place predicates (for arbitrary n ≥ 0) and not just 1- and
2-place predicates.

We begin by illustrating what our background logical framework must
accomplish. We shall take the basic data of mathematics to be contextual-
ized mathematical claims, in the same way that sentences with theoretical
terms in empirical science only have meaning in the context of scientific
theories. For example, a set theorist, given the context of some set theory,
might make the following statement:

No set is an element of the empty set.

Though we shall later formally represent this sentence as stated (see Sec-
tion 5.2), we begin by making the context explicit and representing the
above sentence as the following, where T is some set theory:

In set theory T , no set is an element of the empty set.

The sentence displayed above would typically be represented formally as
follows, where `T indicates theoremhood with respect to theory T and
‘S’ denotes the property of being a set (relative to T ) and ‘∅’ is a constant
of T that denotes the empty set:

`T ¬∃y(Sy & y ∈ ∅)

Now to be even more specific, suppose the theory T in question is Zermelo-
Fraenkel set theory, formulated with the primitive constant ∅ and the
primitive 2-place relation ∈. On this formulation, the fact that the Null
Set Axiom is a theorem of ZF is expressed as `ZF ¬∃y(y ∈ ∅) instead of
as `ZF ∃x¬∃y(y ∈ x).

Now to analyze ZF, PA, R, etc., we shall represent their languages
within our (higher-order) framework and so include closed λ-expressions
(i.e., with no free variables) such as [λxϕ], [λF ϕ], and [λRϕ], [λxFRϕ],
all of which are governed by λ-Conversion (and α-Conversion) – see Sec-
tion 4.1.2 below. In [λx ϕ], the λ binds the individual variable ‘x’ to
produce an expression that denotes a property of individuals; in [λF ϕ],
the λ binds the first-level property variable ‘F ’ to produce an expression
that denotes a property of first-level properties; in [λR ϕ], the λ binds
the first-level 2-place relation variable ‘R’ to produce an expression that
denotes a property of first-level binary relations; and in [λxFR ϕ], the λ
binds 3 variables (of the types just mentioned).
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So where ‘∅’ denotes the empty set of ZF, ‘S’ denotes the ZF property
of being a set, and ∈ denotes the membership relation of ZF, we may
infer the following sentences from the above theorem understood now as
a theorem of ZF (in which the font sizes of the symbols ‘∅’, ‘S’ and ‘∈’
are reduced when they are in argument position):4

`ZF [λx ¬∃y(Sy & y ∈ x)]∅
`ZF [λF ¬∃y(Fy & y ∈ ∅)]S

`ZF [λR ¬∃y(Sy & yR∅)]∈
`ZF [λFRx ¬∃y(Fy & yRx)]S∈∅

That is, from the fact that it is a theorem of ZF that no set is an element of
the empty set, we know that: (a) it is a theorem of ZF that the empty set
exemplifies the (first-level) property of being an (individual) x such that
no set is a member of x; (b) it is a theorem of ZF that the property of being
a set exemplifies the second-level property of being a property F such that
nothing exemplifying F is an element of the empty set; (c) it is a theorem
of ZF that the membership relation exemplifies the second-level property
of being a relation R such that no set bears R to ∅, and (d) it is a theorem
of ZF that the empty set, the property of being a set, and the member-
ship relation stand in the relation: being a property F and relation R,
and individual x, such that nothing that exemplifies F bears R to x.

Thus, from the single theorem ∃y(Sy & y ∈ ∅), we have inferred ad-
ditional theorems about the properties exemplified by the objects S, ∈,
and ∅. We shall import all of these theorems into our logical framework
as analytic truths about what is true in ZF. In particular, sentences very
much like the following will be analytic truths of our background theory:

ZF � ¬∃y(Sy & y ∈ ∅) (A)
ZF � [λx ¬∃y(Sy & y ∈ x)]∅ (B)
ZF � [λF ¬∃y(Fy & y ∈ ∅)]S (C)
ZF � [λR ¬∃y(Sy & yR∅)]∈ (D)

These statements have the form z � p, in which ‘z’ is an individual vari-
able and ‘p’ is a variable for a proposition. Statements of this form will

4In the following examples, we preserve the infix notation for the relation ∈ by
using a formula of the form yRx. However, when we define our logical framework, we
will define relational predications in the usual way as having the form Ryx, and the
infix variant yRx will be an abbreviation of the former; it is useful for those cases of
relation terms such as ∈ which traditionally appear using infix notation.
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be explicitly defined in terms of one of the primitive logical notions em-
bedded within our logical framework. We shall introduce that definition
below, but to complete our examples, notice that if we continue to use
‘p’ as a variable for propositions, ‘F ’ as a variable ranging over first-level
properties, ‘F ’ as a variable ranging over second-level properties of first-
level properties, and ‘R’ as a variable ranging over second-level properties
of first-level relations, then:

Substitute ¬∃y(Sy & y ∈ ∅) for p in ZF � p to obtain (A).
Substitute [λx ¬∃y(Sy & y ∈ x)] for F in ZF � F ∅ to obtain (B).
Substitute [λF ¬∃y(Fy & y ∈ ∅)] for F in ZF � FS to obtain (C).
Substitute [λR ¬∃y(Sy & yR∅)] for R in ZF � R∈ to obtain (D).

Consider that we can now, as a matter of logic, single out all and only
those first-level properties F that satisfy the open formula ZF � F ∅;
single out all and only those second-level properties F that satisfy the
open formula ZF � FS; and single out all and only those second-level
properties R that satisfy the open formula ZF � R∈.

We plan to logically objectify each of the groups of properties singled
out by these open formulas. To see how, suppose that for any formula ϕ in
which F may or may not be free, there is a unique, abstract individual that
codes up all and only the first-level properties of individuals satisfying ϕ.
So given the open formula ZF � F ∅, there is a unique abstract individual
that encodes all and only the first-level properties F such that ZF � F ∅;
later, we’ll argue that this individual is a logical object. Using ‘A!’ to
denote the first-level property of being abstract, and ‘xF ’ to assert that
the individual x encodes the property F , and definite descriptions of the
form ιxϕ, we could then formulate the following theoretical identification:

∅ZF = ιx(A!x& ∀F (xF ≡ ZF � F ∅ZF))

The empty set of the mathematical theory ZF is the abstract indi-
vidual x that encodes all and only those (first-level) properties F
such that in ZF, the ZF-empty-set exemplifies F .

Here we are deploying the primitive notion of encoding, x encodes F ,
represented by the formula xF , in which the argument term x is written
to the left of the 1-place relation term F . Formulas of the form xF are
to be distinguished from the traditional form of n-place exemplification
predication Fnx1 . . . xn. The logic of encoding has been described in Zalta
1983, 1988, and elsewhere. Encoding is a primitive mode of predication
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that holds between an abstract object and the properties by which we
conceive of it. Encoding is axiomatized rather than defined, and we shall
review the axioms governing it below. Thus, in the above example, ∅ZF

is the object that encodes all and only the properties that the theory
ascribes to it, namely, all and only those F s such that in the theory ZF,
the empty set exemplifies F . In Section 6, we plan to show that this
abstract object is in fact a logical object.

Now to extend these ideas to higher types, suppose encoding formulas
can be generalized and are well-formed whenever the term on the left
signifies an object of some type and the term on the right signifies the
(immediately higher-level) property of that type that’s encoded. Suppose
that for any open formula ϕ in which F may or may not be free, there
is a unique first-level abstract property of individuals that codes up all
and only the second-level properties of properties satisfying ϕ. So if we
are now given the open formula ZF � FS (mentioned above), there is
a unique first-level abstract property of individuals that encodes all and
only the second-level properties F such that ZF � FS. Using ‘A!’ now to
denote the second-level property of being abstract, and FF to assert that
the first-level property F encodes the second-level property F , we could
then formulate the following theoretical identification of the ZF-property
of being a set (SZF):5

SZF = ιF(A!F & ∀F(FF ≡ ZF � FSZF))

The ZF-property of being a set is the (first-level) abstract property
F that encodes all and only those second-level properties F of first-
level properties such that in ZF, the ZF-property of being a set
exemplifies F .

Clearly, one of the second-level properties encoded by SZF is the property
[λF ¬∃y(Fy & y ∈ ∅)].

Finally, suppose that for any formula ϕ in which R may or may not
be free, there is unique first-level abstract relation among individuals that
codes up all and only the second-level properties of relations satisfying
ϕ. If we are now given the last of the open formulas mentioned above,
namely, ZF � R∈, there there is a unique first-level abstract relation that
can encodes all and only the second-level propertiesR such that ZF � R∈.

5Notice that in the encoding formula FF , we’ve made the italic ‘F ’ slightly smaller
in size, so as to make it clear that F is the argument and F is the second-level property
it encodes.
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Using ‘A!’ to denote the second-level property of being abstract, and ‘RR’
to assert that the first-level relation R encodes the second-level property
R, we could then formulate the following theoretical identification of the
ZF-membership relation (∈ZF):6

∈ZF = ιR(A!R & ∀R(RR ≡ ZF � R∈ZF))

The membership relation of ZF is the first-level abstract relation R
that encodes all and only those second-level properties R of first-
level relations such that in the theory ZF, the ZF-membership rela-
tion exemplifies R.

As we shall see, theoretical identifications like the ones described above
are an essential component of our reduction of mathematics to logic. It is
important here not to regard these theoretical identifications as definitions
of the expressions on the left-side of the identity sign, for they appear on
the right-side as well. Instead, they are to be regarded as theoretical
principles of object theory. We are supposing that from a well-defined
body of data, i.e., a body of analytic truths of form “In theory T , p”,
one can ‘abstract out’ objects that encode all and only the theoretical
properties of the individuals and relations denoted by the constants and
1- and 2-place predicates of T . The other essential component of our
reduction will be to show how each theorem of T is given a reading on
which it is true. This will be the topic of Section 5.2. But first, we present
our logical framework in detail.

3 The Language of the Logical Framework

Our logical framework has to be defined so that the foregoing formal
representations are well-formed. We therefore start with a relational type
theory, so that we can quantify over objects of higher type. To be specific,
let us define a type as follows:

i is a type.
Whenever t1, . . . , tn are any types (n ≥ 0), 〈t1, . . . , tn〉 is a type.

We use i as the type for individuals, and 〈t1, . . . , tn〉 as the type for re-
lations among objects having types t1, . . . , tn, respectively. Henceforth,

6Again, in the encoding formula RR, we’ve made the italic R slightly smaller in
size, so as to make it clear that R is the argument and R is the second-level property
it encodes.
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where t is any type and n = 1, we call entities of type 〈t〉 properties.
When n = 0, we say that 〈 〉 is the type for propositions. So properties
are 1-place relations and propositions are 0-place relations. We continue
to use ‘object’ to refer to entities of any type.

Constants and variables of every type t will serve as the primitive
terms of our language. For any type t, we include the distinguished pred-
icate A!, which denotes a primitive property of objects of type t, namely,
being abstract. We define the language L by (simultaneously) defining the
formulas and terms that constitute the well-formed expressions of L, and
we’ll assume that the notions of free and bound variables are definable in
the usual way.

Simple Terms. Any constant or variable of type t is a (simple) term
of type t.

Exemplification formulas. Where τ1, . . . , τn (for n ≥ 0), are terms
of type t1, . . . , tn, respectively, and Π is a term of type 〈t1, . . . , tn〉, then
the expression Πτ1 . . . τn is an exemplification formula. When n ≥ 1, we
read Πτ1 . . . τn as “τ1, . . . , τn exemplify Π”, and when n = 0, we read Π as
“Π is true”. Truth is the 0-place case of exemplification.

Encoding formulas. Where τ is any term of type t and Π is a term
of type 〈t〉, then the expression τΠ is an encoding formula. We read τΠ

as “τ encodes Π”.
Complex formulas. Where ϕ,ψ are any formulas and α is any

variable, then ¬ϕ (‘it is not the case that ϕ’), ϕ → ψ (‘if ϕ, then ψ’)
and ∀αϕ (‘every α is such that ϕ’) are complex formulas. We henceforth
employ formulas of the form ϕ & ψ, ϕ ∨ ψ, and ϕ ≡ ψ, as these can be
defined in terms of our complex formulas. We define is a subformula of
ϕ in the usual way.7 We say that ψ is a proper subformula of ϕ just in
case ψ is a subformula of ϕ but not identical to ϕ.

Propositional Formulas. ϕ is a propositional formula iff ϕ has no
encoding subformulas.

Complex terms. There are two kinds of complex terms: definite
descriptions and complex relation terms: (1) Definite descriptions. Where
α is any variable of type t 6= 〈 〉 and ϕ is any formula, then ιαϕ (“the α such
that ϕ”) is a complex term having type t.8 (2) Complex relation terms.

7That is: ϕ is a subformula of ϕ; if ¬ψ is a subformula of ϕ, then ψ is a subformula
of ϕ; if ψ → χ is a subformula of ϕ, then ψ and χ are subformulas of ϕ; if ∀αψ is a
subformula of ϕ, then ψ is a subformula of ϕ; and nothing else is a subformula of ϕ.

8This rules out descriptions such as ιp(p & ¬p). In this example, the description
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Where ϕ is any propositional formula that contains no descriptions, then
(a) ϕ is a complex relation term having type 〈 〉, and (b) if α1, . . . , αn
(n ≥ 1) are variables of type t1, . . . , tn, respectively, then [λα1 . . . αn ϕ]

(“being an α1, . . . , αn such that ϕ”) is a complex relation term having type
〈t1, . . . , tn〉.9

Primary Terms. We define τ is a primary term of ϕ as follows: The
primary terms of the exemplification formula Πτ1 . . . τn are Π, τ1, . . . , and
τn. The primary terms of the encoding formula τΠ are τ and Π. The
primary terms of a complex formula are the primary terms of its proper
subformulas.

Although the foregoing defines the language L of our logical framework
in complete generality, we shall frequently, in what follows, work with only
a fragment of this language. For example, we often work with abstract
objects denoted by terms limited to the following types: i, 〈 〉, 〈i〉, 〈i, i〉,
〈〈i〉〉, and 〈〈i, i〉〉. (In the Appendix, we define an explicit fragment by
defining the bounded language Ln,m, that includes these and the other
types needed in what follows.) Thus, we’ll be using the following specific
variables:

operator would bind a variable of type 〈 〉. We won’t need descriptions of this type in
our analysis of mathematics.

9For purposes of this paper, we won’t need terms of the form [λ ϕ], where the λ
doesn’t bind any variables. Moreover, the lack of descriptions in λ-expressions is not
egregious, since if a description provably denotes something, one can instantiate into
a λ-expression with a free variable. The free variables in such λ-expressions will be
subject to universal generalization and so denoting terms can be instantiated for them.

This clause also banishes encoding subformulas from λ-expressions (since none oc-
cur in propositional formulas). The justification for this is discussed in some detail
in Bueno, Menzel, & Zalta 2014 (808–810). Their justification begins with the fact
that the theory being developed, intuitively, starts with the domain of (ordinary) re-
lations with which we are all familiar from second-order logic and higher-order logic,
in which exemplification is the only form of predication. Then we build abstract
objects out of those without attempting to alter the domain of relations. (This in-
tuitive picture is captured by the model construction in the Appendix, which builds
the relations from the bottom up before it builds the abstracta from the top down.)
This justification continues by considering the fact that η-Conversion, which asserts
[λx1 . . . xnFnx1 . . . xn] = Fn, intuitively tells us that ordinary relations are defined
by their exemplification positions. See AXIOM 7 below. The reader may consult the
cited pages of Bueno, Menzel, & Zalta 2014 for a fuller discussion.

The restriction to propositional formulas in λ-expressions also has the advantage that
it avoids paradox. If such expressions as [λx ∃F (xF &¬Fx)] were well-formed, then a
contradiction would be derivable from the assertion that there is an abstract individual
that encodes such a property. (An abstract individual that encodes [λx∃F (xF&¬Fx)]

would exemplify this property iff it does not.)
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x, y, z, . . . are variables of type i
p, q, r, . . . are variables of type 〈 〉
F,G,H, . . . are variables of type 〈i〉
R,S, . . . are variables of type 〈i, i〉10
F ,G,H, . . . are variables of type 〈〈i〉〉
R,S, . . . are variables of type 〈〈i, i〉〉

Some observations about our language are in order. First, the proposi-
tional formulas are those formulas which are built up out of exemplifi-
cation formulas and the sentence-forming operations of negation, condi-
tionalization, and quantification described in the definition of complex
formulas. Consequently encoding formulas can only make an appearance
inside a propositional formula ϕ if they are buried in a term within some
propositional subformula of ϕ. For example, the formula Rxιy(yG) (‘x
and the y that encodes G exemplify the relation R’) and the formula
[λxRxιy(yG)]z (‘z exemplifies the property of being an x that bears R to
the y that encodes G’) are well-formed propositional formulas since they
have no encoding subformulas. By contrast, the formula ∀F (xF → Fx)

is not propositional, since it has xF as an encoding subformula.
Second, since the variables p, q, . . . are terms of type 〈 〉, they are

also formulas, by the definition of exemplification formulas. Thus, by
the second clause of the definition of complex terms, we can form λ-
expressions such as [λx p]. These denote a properties of individuals, i.e.,
a property with type 〈i〉, and we read [λx p] as being such that p, where
p denotes some proposition.

Finally, by the second clause of the definition of complex terms, we
shall be able to formulate λ-expressions such as [λyϕ], [λF ϕ], and [λRϕ],
when ϕ is propositional. These will denote, respectively, a property of
individuals, a property of first-level properties, and a property of first-
level binary relations. Note that the variable bound by the λ need not be
free in ϕ. As we shall see, the resulting expressions behave as expected.
For example, it is axiomatic that in the case where the variable y is not
free in ϕ, an individual x exemplifies [λy ϕ] iff (the proposition denoted
by) ϕ is true.

10Notice, here, that we’ve now used the symbol S in two ways: earlier in the paper
we used S as a constant to denote the property being a set (and thus an term of type
〈i〉) and in the above list of variables, we’ve used S as a variable ranging over first-level
relations (and thus an term of type 〈i, i〉). The context will always make it clear which
of these is intended.
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Given these observations about the language of our logical framework,
we conclude this section by:

(1) defining the property being ordinary as the negation of A!,

(2) distinguishing between abstract and ordinary objects of every type
by stating their identity conditions, and

(3) defining the conditions under which a proposition p is true in an
abstract individual x.

Concerning (1). We previously mentioned that where t is any type, then
‘A!’ is a distinguished predicate of type 〈t〉. The symbol A! is a ‘typically
ambiguous’ primitive that denotes a property exemplified by the objects
of type t that are abstract. And where t is any type and α is a variable of
type t, we say that the property being ordinary (‘O!’) is being an α such
that α fails to exemplify being abstract :

O! =df [λα ¬A!α]

Thus, the typically ambiguous predicate O! is a term of type 〈t〉, for any
type t. The predicates A! and O! consequently partition the domain of
each type t into the abstract and ordinary objects of type t. We’ll later
assert, as an axiom, that any object which encodes a property is abstract.

Concerning (2). Identity is not primitive but is rather defined. Al-
though the definitions in full generality are complex, they are easy to
grasp. If x and y are abstract objects of any type t, then x and y are
identical whenever x and y encode the same properties having type 〈t〉. If
x and y are any ordinary objects, then we define their identity by cases:
(a) ordinary individuals x and y are identical whenever they exemplify the
same properties; (b) ordinary properties F and G with type 〈t〉, where t is
any type, are identical just in case they are encoded by the same objects.
Identity for ordinary objects of the remaining types are defined in terms
of property identity: (c) ordinary propositions p and q of type 〈 〉 are iden-
tical just in case the properties being such that p and being such that q are
identical; and (d) ordinary relations F and G of type 〈t1, . . . , tn〉, where
t1, . . . , tn are any types, are identical just in case every way of projecting
F and G onto any n− 1 objects of the appropriate types yields identical
properties.11

11The foregoing can be captured formally as follows. Where x and y are both distinct
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Concerning (3). Using the notion of identity just defined, we may de-
fine two more notions that are needed to see how the framework parses
the three theoretical identifications in the illustrative examples of Sec-
tion 2. First, we define a situation to be any abstract individual x such
that every property x encodes is a property of the form [λy p], for some
proposition p. Formally, where x and y are variables of type i, A! has
type 〈i〉, and F is a variable of type 〈i〉, then:

Situation(x) =df A!x& ∀F (xF → ∃p(F =[λy p]))

Then where s is any situation, we say p is true in s, written s � p, iff s

encodes the property being such that p:

s � p =df s[λy p]

Note that since s � p is defined in terms of the encoding formula s[λy p],
it may not appear as a subformula in a propositional formula.

4 The Axioms for the Logical Framework

We can reason using the preceding language by adopting the following
groups of principles and rules:

1. The classical axioms and rules of predicate logic, as they are for-
mulated for relational type theory. These are modified only to ac-
commodate the (negative) free logic of definite descriptions. (Thus,

variables of type i, and O!, A!, and F have type 〈i〉:
x=y =df (O!x&O!y & ∀F (Fx ≡ Fy)) ∨ (A!x&A!y & ∀F (xF ≡ yF ))

Where F and G are both of type 〈t〉 and where O!, A!, and H are all of type 〈〈t〉〉:
F =G =df (O!F &O!G & ∀xt(xF ≡ xG)) ∨ (A!F &A!G & ∀H(FH ≡ GH))

Where p and q are both of type 〈 〉, x is a variable of type i and O!, A!, and H have
type 〈p〉:

p=q =df (O!p&O!q & [λx p]=[λx q]) ∨ (A!p&A!q & ∀H(pH ≡ qH))

And where F and G are both of type 〈t1, . . . , tn〉:
F 〈t1,...tn〉=G〈t1,...tn〉 =df (where n > 1)

O!F &O!G & ∀yt2 . . . ∀ytn ([λxt1 Fxt1yt2 . . . ytn ]=[λxt1 Gxt1yt2 . . . ytn ]) &

∀yt1∀yt3 . . . ∀ytn ([λxt2 Fyt1xt2yt3 . . . ytn ]=[λxt2 Gyt1xt2yt3 . . . ytn ]) & . . .&

∀yt1 . . . ∀ytn−1 ([λxtn Fyt1 . . . ytn−1xtn ]=[λxtn Gyt1 . . . ytn−1xtn ]) ∨

A!F &A!G & ∀H(FH ≡ GH)
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a definite definition ιαϕ can be instantiated into universal claims
only when it is known, by proof or by hypothesis, that ∃β(β= ιαϕ),
i.e., that the description is logically proper.12)

2. An axiom for the substitution of identicals is completely unrestricted.

3. Axioms governing the two kinds of complex terms: definite descrip-
tions and the λ-expressions.

4. Axioms governing the primitive predicateA! and governing encoding
predications.

We shall not review (1) and (2) except to say that (a) all of the usual ax-
ioms and rules of propositional logic are included, (b) the classical quanti-
fier axioms and rules (suitably modified to accommodate the free logic of
definite descriptions) apply to all quantified formulas in which the quan-
tifiers bind variables of any type, and (c) the substitution of identicals
governs our defined notion of identity for every logical type. In addition
to these axioms, we assume only the primitive rules of Modus Ponens
and Generalization, and the usual rules that are derivable from this basis.
However, axiom groups (3) and (4) are discussed in subsections below.

It is important to emphasize here, however, that our framework and its
application do not semantically presuppose anything more than general
Henkin models. The first-level property variables F,G, . . . need not range
over the full power set of the domain over which the individual variables
x, y, . . . range. And, in general, our model in the Appendix shows that the
domain of properties having type 〈t〉 is not the power set of the domain of
objects of type t.13 Nevertheless, in the model described in the Appendix,
the axioms discussed below are all true.

12 We shall assume familiarity with the following facts about negative free logic.
First, the classical quantifier axiom for universal instantiation is modified so that terms
τ can only be instantiated into a universal claim if one knows that ∃β(β = τ). Second,
for every term τ other than a description, it is axiomatic that ∃β(β = τ). Third, and
finally, for definite descriptions of the form ιαϕ it is an axiom that: ψιαϕα → ∃β(β =

ιαϕ), where ψ is any atomic exemplification or encoding formula in which α occurs as
one of the arguments, β doesn’t occur free in ϕ, and ψιαϕα is the result of substituting
ιαϕ for all the free occurrences of α in ϕ. This simply captures the principle underlying
negative free logic that any atomic formula containing a non-denoting term is false.

13In general, the domain Dt of type t is the union of the ordinary objects of type t
and the abstract objects of type t. So, D〈t〉 includes all the ordinary properties with
type 〈t〉 and the abstract properties with type 〈t〉. It will be seen, upon inspection,
that this is not the power set of Dt.
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In the remainder of this section, then, we describe the axioms that
govern the complex terms (Section 4.1) and that govern abstract and
ordinary objects of any type t (Section 4.2).

4.1 Axioms Governing the Complex Terms

4.1.1 Definite Descriptions

The principle governing definite descriptions is simply this:

AXIOM 1 (Description Axiom).
β= ιαϕ ≡ ∀α(ϕ ≡ α=β), provided β is substitutable for α in ϕ.

This asserts: β is the α such that ϕ if and only if β is uniquely ϕ. As a
simple example, let α, β be the type i variables x, y, respectively, let Q be
a type 〈i〉 constant, and let ϕ be the exemplification formula Qx. Then
the following is an instance of the Description Axiom:

y= ιxQx ≡ ∀x(Qx ≡ x=y)

This asserts: y is identical to the x such that Qx if and only if y is the
unique individual that exemplifies Q. Although we shall not take the
time to prove it here, the classical Russell axiom for descriptions is now
derivable.14

4.1.2 Principles Governing Relations

We employ the standard axiom of λ-Conversion for relations denoted by
λ-expressions in which the λ binds one or more variables:

AXIOM 2: [λα1 . . . αn ϕ]α1 . . . αn ≡ ϕ

For example, consider the sentence ¬∃yKxa, where y and a have type i
and K is a binary relation constant of type 〈i, i〉. Then the following con-
sequence of a unary instance of AXIOM 2 asserts that a certain property
of relations having type 〈〈i, i〉〉 is exemplified by K iff ¬∃yKxa holds:

[λR ¬∃yRya]K ≡ ¬∃yKya

14The proof depends on the facts about the negative free logic of descriptions noted
in footnote 12.
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Thus, instances of λ-Conversion simply require that the denotation of the
λ-expression be a relation whose exemplification extension consists of the
entities that satisfy the λ-expression’s matrix. We’ll also assume that a
principle of α-Conversion, which asserts an identity between alphabetic
variants, governs all our λ-expressions; but for simplicity, we won’t state
this axiom explicitly.

4.2 Principles Governing Encoding

We turn finally to the axioms governing our primitive predicate A! in both
exemplification and encoding predications.

4.2.1 What Is Abstract

First, we introduce the axioms that assert the existence of abstract objects
of every type. Where α is a variable of type t, F is a variable of type 〈t〉,
and A! is a predicate of type 〈t〉, we assert:

AXIOM 3: ∃α(A!α& ∀F (αF ≡ ϕ)), where ϕ has no free αs.

Here are three examples (or, rather, example schemes). In the first, x is
a variable of type i, while A! and F are of type 〈i〉. In the second, F is a
variable of type 〈i〉, while A! and F are of type 〈〈i〉〉. In the third, R is a
variable of type 〈i, i〉, while A! and R are of type 〈〈i, i〉〉:

∃x(A!x& ∀F (xF ≡ ϕ)), where ϕ has no free xs
∃F(A!F & ∀F(FF ≡ ϕ)), where ϕ has no free F s
∃R(A!R & ∀R(RR ≡ ϕ)), where ϕ has no free Rs

The first asserts that there exists an abstract individual that encodes all
and only the properties of individuals that satisfy ϕ. The second asserts
that there exists an abstract property of individuals that encodes all and
only the properties of properties of individuals that satisfy ϕ. The third
asserts that there exists an abstract relation among individuals that en-
codes exactly the properties of relations among individuals that satisfy ϕ.

Notice that from any instance of the above, we can derive the existence
of a unique such object by an appeal to the definition of abstract object
identity. Consider the second example above. There couldn’t be two dis-
tinct abstract properties of individuals that encode exactly the properties
of properties satisfying ϕ, since distinct abstract properties, by definition,
have to differ by one of their encoded properties of properties.
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Thus the above principles guarantee that the definite descriptions used
in our three illustrative examples of theoretical identifications outlined in
Section 2 are logically proper or well-defined (i.e., have denotations), since
they are constructed in terms of formulas ϕ that have no free xs, F s or
Rs, respectively. In other words, the following are theorems:

∃y(y = ιx(A!x& ∀F (xF ≡ ϕ)))

∃G(G = ιF(A!F & ∀F(FF ≡ ϕ)))

∃S(S = ιR(A!R & ∀R(RR ≡ ϕ)))

We call such descriptions canonical since for any formula ϕ (excluding
only those with an inappropriate variable), the descriptions are guaran-
teed to have a denotation.

Moreover, the following Abstraction Principle is derivable as a theorem
schema that governs canonical descriptions:

Abstraction Principle:
ια(A!α& ∀F (αF ≡ ϕ))F ≡ ϕ, where ϕ has no free αs.

As instances of this principle, we have:

ιx(A!x& ∀F (xF ≡ ϕ))F ≡ ϕ
ιF(A!F & ∀F(FF ≡ ϕ))F ≡ ϕ
ιR(A!R & ∀R(RR ≡ ϕ))R ≡ ϕ

The first theorem asserts that a specific abstract individual, namely the
abstract individual encoding just the properties F such that ϕ, encodes
a property F if and only if ϕ. The second theorem asserts that a specific
abstract property of individuals, namely the abstract property encoding
just the properties F such that ϕ, encodes a property F if and only ϕ.
The third theorem asserts that a specific abstract relation, namely the
abstract relation encoding just the properties R such that ϕ, encodes a
property R if and only if ϕ.

The final axiom of encoding is that objects of type t which encode
properties are abstract.15 Where α is of type t, and F is of type 〈t〉, this
axiom may be formalized as follows:

AXIOM 4: ∃FαF → A!α

15AXIOM 4 does not say that objects are abstract if and only if they encode prop-
erties. This is because, for each type, there is a unique null abstract object that does
not encode any properties.
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This implies, when O! is of type 〈t〉, that O!α→ ¬∃FαF . So, for example,
if we add to our language the name s for the ordinary individual Socrates
and take, as a premise, O!s, then AXIOM 4 implies that Socrates fails to
encode properties.

4.2.2 What Isn’t Abstract

Our remaining axioms tell us about what isn’t abstract. Intuitively, ab-
stract objects reify, at a lower level, higher-level patterns of properties
already present in exemplification logic; they objectify the properties that
satisfy higher-level conditions on properties. So, we conceive of abstract
relations, of any type, as follows: (a) they encode properties, (b) they ex-
emplify properties of relations and stand in relations among relations, but
(c) nothing exemplifies them. (c) implies that if a relation is exemplified,
it fails to be abstract. Where F is a variable of type 〈t1, . . . , tn〉, A! has
type 〈〈t1, . . . , tn〉〉, and α1, . . . αn are distinct variables of type t1, . . . , tn,
respectively, then for n ≥ 0, it is axiomatic that:

AXIOM 5: ∃α1 . . . ∃αnFα1 . . . αn → ¬A!F

Note that in the case of the empty type 〈 〉, this axiom implies p→ ¬A!p,
i.e., that true propositions are not abstract (in the sense of being an
abstract object that encodes properties), and hence that abstract propo-
sitions are false, i.e., that A!p→ ¬p.

AXIOM 5 implies that both sides of λ-Conversion will be false for
abstract properties and abstract relations, since nothing ever exemplifies
them. Intuitively, a property like [λxϕ] is something that is exemplifiable
by all and only the things satisfying ϕ, where ϕ expresses an exemplifi-
cation pattern. But abstract properties and relations arise by compre-
hension, i.e., by what they encode, not by what exemplifies them. So
λ-constructors build things that are apt for exemplification, whereas en-
tities defined by what they encode aren’t things that can be exemplified.
Hence λ-expressions don’t denote abstract objects. Thus we assert:

AXIOM 6: ¬A![λν1 . . . νn ϕ] (n ≥ 1)

We leave the formulation of examples of AXIOM 6 to the reader.
Finally, in the special case where F is a variable of type 〈t1, . . . , tn〉,

and α1, . . . , αn are distinct variables of type t1, . . . , tn, respectively, and
A! has type 〈〈t1, . . . , tn〉〉, then we also assert that η-Conversion holds
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for λ-expressions in which ϕ is atomic and the ‘head’ relation is not an
abstract relation:

AXIOM 7: ¬A!F→ ([λα1 . . . αn Fα1 . . . αn] = F ) (n ≥ 1)

5 Application to Mathematics

To develop our logicist account of mathematics, we note first that by
‘mathematics’ we shall be focusing on theoretical as opposed to natural
mathematics. Natural mathematics consists of the ordinary, pretheoretic
claims that seem to be about mathematical objects, such as the following:

The Triangle has 3 sides.
The number of planets is eight.
The class of insects is larger than the class of humans.
Lines a and b have the same direction.

Theoretical mathematics, on the other hand, involves claims that occur
in the context of some mathematical theory, whether or not the theory
has been explicitly axiomatized, and whether or not the theory has been
formalized. Examples of such claims are:

• The empty set is an element of the unit set of the empty set.
[Said with reference to Zermelo-Fraenkel set theory.]

• 2 is less than or equal to π.
[Said with reference to real number theory.]

Though our framework can be applied to the analysis of both natural and
theoretical mathematics, our present focus is only on the latter.16

We shall assume, in what follows, that to produce a logicist account
of theoretical mathematics, we have to show that arbitrary mathemati-
cal theories can be reduced to logic plus analytic truths. Our argument
divides into two parts: (1) show that an arbitrary mathematical theory
T can be reduced to the formal system described in Section 4 when sup-
plemented with analytic truths, and (2) show that the formal system of
Section 4 constitutes a logic. To achieve (1), we have to (a) assign the

16For a discussion of the former, and how the second-order modal version of the
above framework can analyze such terms as ‘The Triangle’, ‘the number of planets’,
‘the class of insects’, etc., see Pelletier & Zalta 2000, Zalta 1999, and Anderson & Zalta
2004.
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terms and predicates of T denotations that are describable in our frame-
work, and (b) assign the theorems of T a reading in our system, involving
those denotations, on which they are analytically true. If (1) and (2)
succeed, then we can reap the epistemological benefits of logicism.

In this section, we explain how the reduction of arbitrary mathemat-
ical theories is to be effected, and in the next section we argue that our
formal framework is a logic. Though our framework is capable of analyz-
ing mathematical theories of any finite order, recall that for simplicity, we
are targeting first- and second-order mathematical theories having only
primitive constants, variables, and 1- and 2-place predicates, but with-
out function terms, definite descriptions, or n-ary predicates for n > 2.
Though our system is set to handle more complex kinds of theories, we
need not be distracted here by the extra details involved.

Our first step shall be to analyze a mathematical theory as a situa-
tion, which was defined earlier as an abstract object that encodes only
propositional properties. This analysis then motivates the definition at
the end of Section 3, where we stipulated that p is true in T (‘T � p’)
means that T encodes the corresponding propositional property [λy p]. It
follows, as a theorem, that a mathematical theory T can be identified as
follows:

T = ιx(A!x& ∀F (xF ≡ ∃p(T �p & F =[λy p]))),

where we read � as having the smallest scope, so that T �ϕ&ψ is under-
stood as (T � ϕ)&ψ. In other words, a theory T is the abstract individual
that encodes exactly the properties F such that there is a proposition p
true in T for which F is being such that p. Now if we add constants of type
i to our logical framework to denote what we pretheoretically judge to be
mathematical theories (such as ‘ZF’ for Zermelo-Fraenkel set theory, ‘R’
for real number theory, ‘PA’ for Peano Arithmetic, etc.), then statements
of the form ZF � p, R � q, PA � r, etc., become well-formed.17 Moreover,
as an instance of the above theorem, it follows that:

ZF = ιx(A!x& ∀F (xF ≡ ∃p(ZF�p & F =[λy p])))

Similar identifications can be given for other mathematical theories.

17Thus, these new constants denote objects that encode the propositional content
of the systems that have been formulated, by axioms and rules, in a syntactically
second-order language.
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The mechanism by which statements of the form T � p become assert-
ible is as follows. Consider an arbitrary mathematical theory T .18 We
import the theorems of T into our framework by appeal to the follow-
ing Importation Principle (later we argue that the resulting claims are
theory-relative analytic truths):19

Importation Principle. When ϕ is a closed theorem of T , then
T � ϕ∗ shall be an axiom, where (a) ϕ∗ is the result of indexing, to
T , all the closed primary terms20 of ϕ, and (b) whenever τ is a term
of T having type t, then the indexed term τT is a constant term of
the same type as τ .

One consequence of the Importation Principle should be noted: if theo-
remhood in one of the mathematical theories to be imported is not decid-
able, the set of axioms resulting from Importation will not be decidable
either. Usually, this is to be avoided, since if the set of axioms of the
present theory is not decidable, there is no decision procedure for whether
a sequence of formulas from the language of our theory is a derivation in
the theory. However, since imported axioms don’t have the same status
as the axioms formulated in Section 4 (as we shall argue, they are analytic
rather than logical truths), we simply require the following: in order to
use an axiom T � ϕ∗ arising from importation within a derivation, one
must have a proof of ϕ within the imported theory T that demonstrates
it is a theorem.21

Before we explain the formal specifics of the Importation Principle,
we would like to highlight from the start what it is going to achieve

18In what follows, we engage in a harmless abuse of notation; the expression ‘T ’
is used sometimes as a variable ranging over what we pretheoretically judge to be a
mathematical theory, while at other times ‘T ’ is used technically as a variable ranging
over mathematical theories analyzed object-theoretically. Sometimes the expression is
used both ways within the same context, as in the Importation Principle below.

19For pre-axiomatized or non-axiomatized theories, the following principle assumes
that there is at least some body of truths that constitute the theory. Those are the
theorems to be imported.

20We defined primary terms in Section 3. By saying ‘closed’, we are excluding the
simple variables. We’ve also assumed that we’re formulating mathematical theories
with closed λ-expressions, and so there won’t be indexed λ-expressions with free vari-
ables.

21Alternatively, we could address this issue by revising the Importation Principle so
that (a) we only import the axioms of T and (b) stipulate that T � ϕ∗ within object
theory is to be closed under the deductive consequences of ϕ∗ that are formulable within
the indexed version of the original language of T . This alternative does, however, not
provide an analysis of theories that aren’t axiomatized.
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and what it will not achieve. One way of thinking of Importation is
as a kind of “positive internalization” principle by which theoremhood
in a mathematical theory gets internalized in object theory by means of
suitable encoding statements:

If T ` ϕ, then T � ϕ∗ (that is, T [λy ϕ∗]) is an axiom. (PI)

However, we will not presuppose a corresponding “negative internaliza-
tion” principle of the form:

If T 0 ϕ, then T 2 ϕ∗ (that is, ¬T [λy ϕ∗]) is an axiom. (NI)

Instead of (NI) we only have the following non-importation principle:

Non-Importation Principle. If T 0 ϕ, then it is not the case
that T � ϕ∗ is an axiom.

One reason why we do not want to presuppose (NI) is that if a recursively
axiomatized theory T is not decidable – in the manner of PA and ZF –
then the non-theorems of T are not recursively enumerable. Consequently,
we would not have a systematic method of using (NI) to generate negative
axioms of the form ¬(T � ϕ∗) in our own theory even if we exploited the
derivation of theorems within the imported theory T .

This does not mean that we do not find (NI) – or at least suitable in-
stances thereof, or alternative axioms that might entail suitable instances
thereof – to be true and plausible. It is just that, in this paper, we have
not formulated such “negative internalization” principles that conform to
the same standards of deductive rigor as the Importation Principle. As
a result, the axioms of our present theory do not exclude certain unin-
tended interpretations on which an abstract individual (theory) T encodes
“more” propositional properties of the form [λy ϕ∗] than it should. We
leave the systematic study of negative variants of Importation and their
consequences to future work.22 Note that a Carnapian might extend the
Importation Principle in a way a Platonist might reject,23 namely, by the
addition of (a) axioms that assert τT 6= τT ′ when T 6= T ′ and (b) axioms
that assert ϕ∗ 6= ψ∗ when ϕ∗ is imported from T and ψ∗ is imported from
a distinct theory T ′.

Given the Importation Principle as stated, consider the fact that

22We are grateful to an anonymous reviewer for urging us to comment on this.
23For more on Platonism, see the last paragraph of Section 7.1.
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`ZF ¬∃y(Sy & y ∈ ∅)

The closed primary terms of this theorem are S, ∈, and ∅, and so the
following statement will be an axiom of our framework:

ZF � ¬∃y(SZFy & y ∈ZF ∅ZF) (G)

In what follows, we use T -indexed terms or indexed terms to refer to the
terms introduced into object theory by means of the Importation Princi-
ple. We assume, for every such theory T and type t other than the type
for propositions, there is a distinguished 2-place identity predicate, =T

having type 〈t, t〉, which applies to the entities of type T in the usual way:
it is reflexive and governed by the principle of substitution of identicals.24

Of course, if T uses a non-standard relation of identity, we defer to the
axioms that T uses for this relation. Moreover, we shall have no need
of an identity relation on propositions when formulating mathematical
theories – it is typically no part of mathematics to be concerned with the
identities among propositions.

It is important to pause here to say something about expressivity in
the target mathematical theories we are going to analyze. Our goal is
to analyze not only the individual terms of mathematical theories but
also their relation terms. As far as we know, the best way to identify
the relations denoted by the relation terms of mathematical theories is
by the properties they exemplify in their respective theories. However,
most mathematical theories are not formulated in such a way that they
explicitly enable talk about the properties of relations. Consider that, in
ZF, you can’t talk about the properties of ∈; e.g., you can’t say that, in
ZF, ∈ exemplifies the property [λR ¬∃y(Sy & yR∅)]. So, in what follows,
we shall assume that mathematical theories have been formulated in a
formal system that includes (closed) higher-order λ-expressions. Such
expressions allow us to talk, within those theories, about the properties
of relations. Thus, we will be representing T by way of a conservative
extension in which T is formulated with λ-expressions and is closed under
the axioms of the relational λ-calculus (including a version of AXIOM
2). From such a formulation, we can abstract out, from T , the properties
that are exemplified in T by the relations of T .

Consequently, we may suppose that the following are theorems of ZF:

24See Leitgeb & Ladyman (2008) for an argument that each mathematical structure
includes an identity relation specific to that structure.
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`ZF [λx ¬∃y(Sy & y ∈ x)]∅
`ZF [λF ¬∃y(Fy & y ∈ ∅)]S

`ZF [λR ¬∃y(Sy & yR∅]∈

When these theorems are imported into object theory, we index only the
relation term and the argument term:25

ZF � [λx ¬∃y(Sy & y ∈ x)]ZF∅ZF (H)
ZF � [λF ¬∃y(Fy & y ∈ ∅)]ZFSZF (I)
ZF � [λR ¬∃y(Sy & yR∅)]ZF∈ZF (J)

Thus, not only does object theory become extended with (G), i.e., in ZF,
no set is a member of the nullset, but also with the (H), (I), and (J), which
assert that: (H) in ZF, the ZF null set exemplifies the ZF property having
no sets as members; (I) in ZF, the ZF property of being a set exemplifies
the ZF property of properties being an F such that nothing exemplifying F
is an element of the null set ; and (J) in ZF, the ZF membership relation
exemplifies the ZF property of relations being an R such that no set bears
R to the null set.

Note here that we have introduced a new kind of λ-expression; these
indexed λ-expressions will be treated somewhat differently from the prim-
itive λ-expressions of the language: they do not denote ordinary relations
and are not subject to AXIOM 2 (but see below). Instead, they will be
subject to the Reduction Axiom Schema discussed in the next section,
which precisely identifies their denotations as abstract relations.26

25This corrects the procedure in Zalta 2000 and 2006. In the former, the λ-
expressions denoting mathematical properties and relations weren’t indexed (but
should have been). And in both works, we indexed not just the primary terms but
also terms inside λ-expressions. In the present work, however, we’ve come to realize
that we need not do so. Indeed, it seems more perspicuous to index only the primary
terms, since this way, we don’t need to double-index both λ-expressions and the terms
inside them. We need not index expressions that themselves include indexed terms,
but rather index only terms that could appear in the mathematical theory in question
without its index.

26We could have also added, as an example:

ZF � [λFRx ¬∃y(Fy & yRx)]ZFSZF∈ZF∅ZF

This asserts that in ZF, the ZF entities S, ∈, and ∅ exemplify the ZF relation: being
a property F , a relation R, and an object x such that nothing exemplifying F bears
R to x. Similarly, we could add as an example from PA:

PA � [λR R23]PA[λxy x+ y = 5 & x < y]PA

This asserts that the PA relation, being an x and y such that x+ y = 5 and such that
x < y, exemplifies the PA property of being a relation that relates 2 to 3.
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We now turn to the special axioms that identify denotations of the
theoretical primitives (predicates and individual terms) of mathematical
theories.

5.1 The Denotations of the Terms of T

We can now say what the constants and λ-expressions of T denote in
our background theory. Thus far, we’ve assumed T includes primitive
constants, primitive 1-place predicates, primitive 2-place predicates (in-
cluding identity), and λ-expressions. Where τ is any primitive individ-
ual constant of T , any primitive 1-place predicate constant of type 〈i〉
of T , any 2-place predicate constant of type 〈i, i〉 of T , or any 1-place λ-
expression of type 〈t〉 of T (for any type t), let τT be the T -indexed version
of τ . By the Importation Principle, these indexed terms have the same
type as their non-indexed counterparts. We now turn to the question of
what these indexed terms denote.

We shall later argue (Section 6.2) for the view that the meaning of a
mathematical term τ in theory T is the logical role it has within T . But
we here assert an axiom that captures this view by stipulating that term
τ of type t in theory T denotes the abstract object of type t that encodes
exactly the properties (of type 〈t〉) that τT exemplifies in T . Formally,
we assert the following Reduction Axiom Schema, which uses canonical
descriptions to identify the denotations of the indexed mathematical terms
imported into object theory. Where τT and α have type t, A! and F have
type 〈t〉:

Reduction Axiom Schema:
τT = ια(A!α& ∀F (αF ≡ T �FτT ))

Note that the instances of this schema are not definitions, since the ex-
pressions on the left of the identity sign also appear on the right. But they
are principles that are analytic, or so we will argue in the next section.
Here are some simple examples of the above; these tell us exactly which
abstract objects are denoted by ∅ZF, SZF, ∈ZF (later we’ll discuss some
more complex examples):

In both of these cases, we need only apply the techniques discussed in the following
section in the text, whereby mathematical relations are analyzed as abstract relations
that encode just the properties of relations attributed to them in the theory. But we
we have omitted these examples for simplicity.
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Instances of the Reduction Axiom Schema:
∅ZF = ιx(A!x& ∀F (xF ≡ ZF �F ∅ZF))

SZF = ιF(A!F & ∀F(FF ≡ ZF � FSZF))

∈ZF = ιR(A!R & ∀R(RR ≡ ZF � R∈ZF))

These all have obvious readings.
We next focus just on the identification of the primitive constants and

predicates of a particular theory, so that we can more easily see their
consequences. The following Equivalence Theorem Schema is an imme-
diate consequence of our Reduction Axiom Schema, by the Abstraction
Principle for abstract objects and substitution of identicals:27

Equivalence Theorem Schema:
∀F (τTF ≡ T �FτT )

This asserts that a term τ (individual or relation) of theory T encodes
exactly the properties τ exemplifies in T . As somewhat more specific
examples of this schema, we have:

∀G(κTG ≡ T �GκT )

∀G(Π1
TG ≡ T � GΠ1

T )

∀S(Π2
TS ≡ T � SΠ2

T )

In other words, for any first-level property G, the individual κT encodes
G iff κT exemplifies G in T ; for any second-level property of properties
G, the property Π1

T encodes G iff Π1
T exemplifies G in T , and for any

second-level property of relations S, the property Π2
T encodes S iff Π2

T

exemplifies S in T .
Clearly, then, the following are instances of the Equivalence Theorem

schema:

∀G(∅ZFG ≡ ZF � G∅ZF)

∀G(SZFG ≡ ZF � GSZF)

∀S(∈ZFS ≡ ZF � S∈ZF)

27Here, for example, is a proof of the second theorem. The Abstraction Principle
for abstract properties has the following instance, where Π1

T is any primitive 1-place
predicate of T , and G is a free variable ranging over second-level properties of proper-
ties:

ιF(A!F & ∀F(FF ≡ T � FΠ1
T ))G ≡ T �GΠ1

T

But by the relevant Reduction Axiom, it follows by substitution of identicals that:

Π1
TG ≡ T � GΠ1

T

We can now universally generalize on the free variable G to reach our theorem.
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That is, the empty set of ZF encodes exactly the properties G that it
exemplifies in ZF; the ZF-property of being a set encodes exactly the
second-level properties of properties that it exemplifies in ZF; and the
membership relation of ZF encodes exactly the second-level properties of
relations that it exemplifies in ZF.

Now the axioms introduced by the Importation Principle become sali-
ent. For the properties that can be abstracted from those claims can be
instantiated into the above universal claims. In particular, the proper-
ties that are referenced in (H), (I), and (J) above may be instantiated,
respectively, into the above claims to yield the following theorems:

∅ZF[λx ¬∃y(Sy & y ∈ x)]ZF ≡ ZF � [λx ¬∃y(Sy & y ∈ x)]ZF∅ZF

SZF[λF ¬∃y(Fy & y ∈ ∅)]ZF ≡ ZF � [λF ¬∃y(Fy & y ∈ ∅)]ZFSZF

∈ZF[λR ¬∃y(Sy & yR∅)]ZF ≡ ZF � [λR ¬∃y(Sy & yR∅)]ZF∈ZF

Each primary term in the biconditionals displayed above has been given a
formal identification in our theory. Moreover, since the right-hand side of
each of the above equivalences is a theorem resulting from the Importation
Principle, we have a proof of the following facts about ∅ZF, SZF, and ∈ZF:

∅ZF[λx ¬∃y(Sy & y ∈ x)]ZF

SZF[λF ¬∃y(Fy & y ∈ ∅)]ZF

∈ZF[λR ¬∃y(Sy & yR ∅)]ZF

In other words, it is provable in our framework that the empty set of ZF
encodes the ZF-property of having no sets as members; the ZF-property
of being a set encodes the (second-level) ZF-property of being a property
such that nothing exemplifying it is a member of the empty set; and
the membership relation of ZF encodes the (second-level) ZF-property of
being a relation that no set bears to the empty set.

We conclude this section with two, somewhat more complex, examples.
First, recall (H):

ZF � [λx ¬∃y(Sy & y ∈ x)]ZF∅ZF (H)

We may now use the Reduction Axiom to identify the denotation of the
λ-expression as follows:

[λx ¬∃y(Sy & y ∈ x)]ZF =

ιF(A!F & ∀F(FF ≡ ZF � F [λx ¬∃y(Sy & y ∈ x)]ZF))
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This asserts that the ZF-property having no sets as members is identi-
cal to the abstract property that encodes all and only those second-level
properties that are exemplified, in ZF, by the ZF-property of having no
sets as members. As an example of such an encoded second-level property,
consider being a property exemplified by the null set ([λF F∅]ZF). It is a
fact about ZF that:

`ZF [λF F ∅][λx ¬∃y(Sy & y ∈ x)]

and this gets imported as:

ZF � [λF F ∅]ZF[λx ¬∃y(Sy & y ∈ x)]ZF

That is, in ZF, the ZF-property having no sets as members exemplifies
the ZF-property of properties being a property exemplified by the null set.
So by the Equivalence Theorem Schema:

[λx ¬∃y(Sy & y ∈ x)]ZF encodes [λF F ∅]ZF

For the final example, recall (J):

ZF � [λR ¬∃y(Sy & y R ∅)]ZF∈ZF (J)

So, where R is a variable of type 〈i, i〉, α is a variable of type 〈〈i, i〉〉,
A! has type 〈〈〈i, i〉〉〉, and Γ is a variable of type 〈〈〈i, i〉〉〉, the Reduction
Axiom Schema implies:

[λR ¬∃y(Sy & y R ∅)]ZF =

ια(A!α& ∀Γ(αΓ ≡ ZF � Γ[λR ¬∃y(Sy & y R ∅)]ZF))

We leave to the reader the formulation of a natural language gloss of this
identification. And we leave it to the reader to find examples of properties
that are exemplified by [λR ¬∃y(Sy & y R ∅)] in ZF. By the Equivalence
Theorem, these become encoded by [λR ¬∃y(Sy & y R ∅)]ZF.

5.2 Sentence Reduction: True Readings of Mathe-
matical Theorems

Since we won’t be using relative interpretability as our standard of reduc-
tion, our methodology is to outline an alternative translation procedure
that yields a true reading for every unprefixed theorem of each math-
ematical theory. We therefore show how to assign true object-theoretic
readings to the theorems of mathematical theories when we consider those
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theorems in and of themselves, unprefixed by a theory operator. Platonist
philosophers of mathematics believe that the unadorned claims of mathe-
matics, such as ‘0 is a number’, ‘the empty set is an element of unit set of
the empty set’, ‘two is less than π’, etc., are simply true, while fictionalist
philosophers argue that they are false. Our view is that this disagreement
is explained by the fact that these claims are ambiguous, for there is an
exemplification reading on which they are false and an encoding reading
on which they are true.

Take a simple atomic formula, e.g., the statement that ‘0 is a number’,
when this is asserted as an axiom of Peano Arithmetic. We’ve already
seen that the prefixed claim “In Peano Arithmetic, 0 is a number” is to
be represented as:

`PA N0

After importing the above into object theory, our analysis is:28

PA � NPA0PA

Now we want to give a true reading of the unprefixed “0 is a number”. But
we can infer such a reading from an instance of the Equivalence Theorem,
since the encoding formula, 0PANPA, is derivable. As a theorem, object
theory regards 0PANPA as a true reading of “0 is a number”. No such
argument can be given for the exemplification reading, NPA0PA, of the
unadorned claim “0 is a number”. In our framework, this exemplification
claim is axiomatically false, by the contrapositive of AXIOM 5 and the
fact that NPA is an abstract property of individuals. This example shows
that predications of the form ‘x is F ’ in natural language are structurally
ambiguous, and that in the case at hand, the encoding reading xF is
provably true while the exemplification reading Fx is false.

Moreover, we take there to be a structural ambiguity in simple pred-
ications of natural language, for the unadorned claim “0 is a number”
embodies not only a true atomic fact about a property that 0PA encodes
but also a true atomic fact about a property that NPA encodes, namely,
[λF F0]PA. Once we import `PA [λF F0]N so as to yield the axiom
PA � [λF F0]PANPA, the Equivalence Theorem guarantees that the encod-
ing formula NPA[λF F 0]PA is a theorem of our logical framework. Thus,

28Our analysis is not a form of deductivism (if-thenism); the following claim is not
a conditional, but rather a categorical (non-conditional) encoding claim of the form
‘xF ’. Moreover, we provide categorical readings on which unprefixed mathematical
claims are true (see below). Such readings are not a part of deductivism.
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we have another true reading of our unadorned mathematical claim. In
a manner similar to the above, the exemplification reading, that NPA ex-
emplifies [λF F 0]PA, is axiomatically false, by AXIOM 5 and the fact that
[λF F 0]PA is an abstract property of properties.

To see how to generalize the procedure for assigning true encoding
readings for complex (unadorned) mathematical theorems, let us return
to the statement, “No set is an element of the empty set”, said in the
context of ZF. We’ve seen how the representation of the claim that this
is a theorem of ZF gets imported as the following theorems of our logical
framework (the first of which is an axiom by importation, the remainder
of which are consequences):

ZF � ¬∃y(SZFy & y ∈ZF ∅ZF) (G)
ZF � [λx ¬∃y(Sy & y ∈ x)]ZF∅ZF (H)
ZF � [λF ¬∃y(Fy & y ∈ ∅)]ZFSZF (I)
ZF � [λR ¬∃y(Sy & y R ∅)]ZF∈ZF (J)

But our question is, what reading should we assign to the unadorned ZF
claim that “No set is an element of empty set”? Our answer is that we
should assign the conjunction of the following three theorems:

∅ZF[λx ¬∃y(Sy & y ∈ x)]ZF

SZF[λF ¬∃y(Fy & y ∈ ∅)]ZF

∈ZF[λR ¬∃y(Sy & yR∅)]ZF

These were all proved to be theorems at the end of Section 5.1. We suggest
that the conjunction of all three theorems captures the facts embodied by
the unadorned mathematical claim “No set is an element of the empty set”,
for this latter claim is not only a fact about the empty set of ZF, but also
a fact about the ZF-property of being a set and about the membership
relation of ZF.

Indeed, we can, in general, abbreviate the conjunction of the above
three theorems as a simple, intuitive formula:

∅ZFSZF∈ZF[λxFR ¬∃y(Fy & yRx)]ZF

We can intuitively think of this as a ternary encoding formula of the
form xyzH, where the type of H is that of a ternary relation among
entities having the types of x, y, z in that order. Of course, this isn’t
a primitive formula of our logical framework, but it doesn’t need to be,
for it simply serves as an abbreviation of a conjunction of well-formed
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formulas. In the particular case at hand, three places are needed because
there are three primitive theoretical expressions in our target sentence (∅,
S, ∈). But it is straightforward to define a function that takes as input an
unadorned theorem of ZF and yields as output a n-place encoding formula
of the above form, where the output encoding formula is an abbreviation
of n well-formed encoding formulas. We omit the details here, though
interested readers are directed to Zalta 2000 (250–251).

This, then, is a procedure for assigning a true (T -relative) reading to
every theorem of an arbitrary mathematical theory T . It completes the
reduction of mathematics to the above axiomatic system. In the next
section we will show that each of the axioms of our system counts as
logical or analytic.

We note here that the procedure and analysis described above offers
a logical reconstruction of mathematical objects and relations as they
are given antecedently by some specific mathematical theory. While this
provides, for example, a complete reconstruction of ZF-sets, we are not
claiming that the reconstruction is necessarily a complete theory of sets
since ZF isn’t a complete theory of sets. Rather, we are offering the above
as an analysis of any claim a mathematician might make in any context in
which the mathematician is adopting all and only the assumptions of ZF.
And this generalizes to other mathematical theories: in every context in
which a mathematician assumes the principles of a mathematical theory,
we can use the above methods to analyze their claims.

One final observation, about the completeness of mathematical objects
and relations, is in order. Recall that our analysis imports theorems ϕ of
T , i.e., formulas ϕ such that `T ϕ, as claims of the form T � ϕ∗. But
for incomplete theories T , a property of the derivability relation ` now
becomes relevant, namely, that `T (ϕ ∨ ψ) doesn’t imply `T ϕ or `T ψ.
Given our methodology above, this extends object theory with claims of
the form T � (ϕ ∨ ψ)∗ but not with claims of the form T � ϕ∗ or claims
of the form T � ψ∗. For example, consider the Continuum Hypothesis
(CH), where this is formulated as 2ℵ0 = ℵ1. Since `ZF (CH∨¬CH) doesn’t
imply `ZF CH or `ZF ¬CH, the object-theoretic claim ZF � (CH∨¬CH)∗

doesn’t imply ZF � CH∗ or ZF � (¬CH)∗. Moreover, though it follows
that ℵ1ZF encodes [λx (2ℵ0 = x ∨ ¬2ℵ0 = x)]ZF, it doesn’t follow either
that ℵ1ZF encodes [λx 2ℵ0 = x]ZF or that ℵ1ZF encodes [λx ¬(2ℵ0 = x)]ZF.

Note that this example highlights an important difference between the
standard of relative interpretability and our method of sentence reduction.
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The relative interpretation of a disjunction ϕ∨ψ is the disjunction of the
respective relative interpretations of ϕ and ψ, while our reduction of a
disjunctive mathematical theorem ϕ ∨ ψ does not necessarily coincide
with the disjunction of the respective reductions of ϕ and ψ. Indeed, if
neither ϕ itself nor ψ itself is a theorem, then our reduction will not apply
to ϕ and ψ at all.

These facts will help us to argue that this is a form of logicism – the
objects and relations are reified incomplete concepts. Even ‘complete’
mathematical theories (e.g., the first-order theory of real-closed fields)
are, in some sense, about objects that have only mathematical properties
and are thus incomplete with respect to what they encode. And even
‘(deductively) incomplete’ theories are complete in the sense that they
completely describe the incomplete entities they are about.

6 Why This is Logicism

In this section, we argue that our analysis of mathematics satisfies the
definition of logicism, as given below. As part of our argument we es-
tablish that our logical framework consists of axioms that are logical or
analytic (Section 6.1), and then establish that the axioms needed to assign
denotations and truth conditions to mathematical theorems are analytic
(Section 6.2). Our usage of ‘concept’ and ‘object’ in what follows will not
be the standard ones. Traditionally, mathematical individuals are referred
to as ‘mathematical objects’ and mathematical properties and relations
are referred to as ‘mathematical concepts’. But in our type-theoretic
framework, properties, relations, and propositions are also considered as
objects, i.e., as entities of which we predicate properties. Moreover our
uniform analysis of mathematical individuals and mathematical proper-
ties and relations allows us to talk about all of these mathematical objects
as mathematical concepts. Similarly, we will use the terms ‘logical object’
and ‘logical concept’ interchangeably.

Logicism, historically, is the claim that every true mathematical propo-
sition is derivable from the laws of logic extended with analytic truths
such as definitions.29 Since we are focusing only on theoretical math-
ematics, logicism can be restated as the following clearer and simpler

29Some philosophers, e.g., Roeper 2015 and Klev 2017, take logicism to be the nar-
rower claim that arithmetic is reducible to logic, but we regard logicism to be more
broadly conceived.
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thesis: all mathematical theorems are derivable from the laws of logic ex-
tended with analytic truths, where by ‘mathematical theorems’ we mean
any statement that is part of or derivable from any mathematical theory.

Moreover, in the Frege-Russell tradition, logicism consisted of an ad-
ditional claim, to the effect that mathematical concepts are (analyzable
in terms of) logical concepts.30 Thus, we may understand logicism as the
conjunction of the following two theses (Carnap 1931):

LC Logicism about Mathematical Concepts: Every mathematical con-
cept denoted by a mathematical term is (identical to) a logical con-
cept denoted by a logical term.

LT Logicism about Mathematical Theorems: For every mathematical
theorem, if each mathematical term denoting a mathematical con-
cept in any such theorem is replaced by a logical term denoting
the logical concept identical to the mathematical concept, then the
resulting theorem is logically or analytically true.

Clearly, as we have formulated these two principles, LT presupposes LC.
Logicism has traditionally been formulated primarily as a matter of

logical truth, and not logical consequence, since the emphasis has been
on reducing mathematical claims to logical truths and not on showing
that the consequences mathematicians infer from mathematical principles
are purely logical. But we want our conception of logicism to extend
to the idea that mathematical practice involves a body of inferences, so
that logicism also encompasses the idea that mathematical truths can be
derived as logical consequences of a logic (cf. Rayo 2005, 204). However,
in what follows, we focus primarily on LC and LT and, along the way,
note how our understanding yields logicism with respect to the notion of
logical consequence defined below.

Our plan, then, is as follows:

• First, we argue that the axioms presented in Section 4 are all either
logical truths or analytic. In the case where we take the axioms to be
logically true, we shall argue for their logicality by putting forward
what we take to be a correct conception of logical truth, and then

30Here we shall be talking about well-defined mathematical concepts. We take the
well-defined mathematical concepts of a theory T to be those represented by a term
(i.e., an individual term or a predicate) of T that is either primitive or uniquely defin-
able in T .
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showing that under that conception, these axioms are logical truths.
It is a consequence of our argument that the abstract objects picked
out by our canonical descriptions are logical objects.

• Second, we argue that the additional axioms, put forward in Sec-
tion 5 for the analysis of mathematical language, are all analytic.

• From the conclusions of these two arguments, we may then imme-
diately conclude that the theorems of mathematics—represented in
object theory as explained in Section 5.2—are logical or analytic
truths, since logical consequences of logical and analytic truths are
either logical or analytic. Moreover, we shall see (in Section 6.2)
that LC follows as well, namely, that every mathematical concept
denoted by a mathematical term is (identical to) a logical object.

6.1 Our Framework Axioms Are Logical or Analytic

In this section, we shall not argue, but rather assume, that the principles
of classical logic, the substitution of identicals, the axiom governing de-
scriptions, and the principle of λ-Conversion (i.e., the axioms discussed
in Section 4 prior to Section 4.2) are logically true (as this notion is de-
fined below) or analytic, where analyticity is defined in the usual way
as truth in virtue of meaning (in this case, of the logical symbols). The
principles of classical logic and the substitution of identicals have tradi-
tionally been regarded as logical. We add the law governing descriptions
and λ-Conversion (AXIOMS 1 and 2) to this list of logical truths on the
grounds that they are true in virtue of the meaning of the expressions the
(represented by the ι) and being such that (represented by the λ).31

Moreover, AXIOMS 4–7 (in Section 4.2) stipulate what is meant by the
property of being abstract and, as such, are nothing more than meaning
postulates. Once we take abstract objects to be those entities that are

31We recognize that λ-Conversion has existential import; one can derive existence
claims from it, namely, the comprehension principle for relations. That is, one can
derive ∃F∀x(Fx ≡ ϕ) from [λxϕ]x ≡ ϕ. But having existential import hasn’t disqual-
ified the laws of classical logic from being considered logical. The existential import of
λ-Conversion is analogous to that of the quantifier laws; just as the latter imply that
the domain of individuals must be non-empty, the principle of λ-Conversion implies
that each higher-order domain is not just non-empty but has at least two properties,
one that everything exemplifies and one that is empty. Both the quantifier laws and
λ-Conversion make minor existence demands.
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individuated by the properties they encode, these axioms articulate the
conception of such objects in formal detail and, hence, are analytically
true. Thus, we see the burden of the present paper as showing that the
comprehension principle for abstract objects (AXIOM 3) is a logical truth,
despite the fact that it baldly asserts the existence of abstract objects.

We begin with the observation that the classical understanding of the
model-theoretic interpretation of the predicate calculus has overlooked
one key feature of such interpretations. In particular, model-theoretic in-
terpretations should include, in the domain of interpretation of the vari-
ables, everything that is required for the very possibility of predication,
logically complex thought (including abstract mathematical thought), and
logical consequences of those thoughts. That’s the point of (a) thinking
that the predicate calculus is a fundamental system for expressing our
thoughts and validating inferences, and (b) thinking that an interpreta-
tion of that system will give us an insight into what’s required for the
possibility of having those thoughts and making those inferences.

To approach our thesis, let’s reconsider why λ-Conversion is a logical
truth. Consider one of its consequences, which is logically complex not
only because it involves the λ-expression but also because it involves the
negation symbol:

[λy ¬Gy]x ≡ ¬Gx

This holds for any property G: something exemplifies the negation of G
iff it fails to exemplify G. There exists a logical exemplification pattern
that underlies this fact, one that everything that fails to exemplify G has
in common! After all, entities in the world do divide up into those that
exemplify G and those that do not, and without the existence of the nega-
tion of G, we could not express that thought. How could two individuals a
and b which both fail to be G not share the pattern of what is most-easily
described as “exemplifying not-G”? If we treat this property of exempli-
fying not-G as reifying or representing this exemplification pattern, then
it is required in any domain that contains the entities needed for truth of
multiple predications of the form “x exemplifies not-G” ([λy¬Gy]x). And
λ-Conversion also provides the logical justification as to why it is correct
to infer one side of the biconditional from the other.

This same argument now applies to other instances of λ-Conversion,
e.g., those involving other complex formulas such as conjunctions, dis-
junctions, conditionals, etc. The instances of λ-Conversion are true in
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any domain that contains the entities needed for the truth of predications
involving complex predicates such as “x is G-and-H” ([λy Gy & Hy]x),
etc., and provide the logical justification for inferences to and from such
predicates, such as the inference from “x is G-and-H” to “x is G” (i.e.,
[λy Gy & Hy]x ` Gx). The point also applies to relations and rela-
tional λ-expressions. Complex reasoning about the converse of relation
R ([λxy Ryx])32 and relations like unrequited love ([λxy Lxy & ¬Lyx])
assumes that the domain contains such relations. And, in general, the
comprehension principle for relations, which we noted is derivable from
λ-Conversion (footnote 31), is logically true precisely because it postulates
the entities that are required for such complex relational reasoning.

This leads us to a somewhat different philosophical conception of log-
ical truth and logical consequence. Let L be any language that is an
extension of the language of object theory. Then we say: a formula ϕ in
L is logically true if and only if ϕ is true in every model of L that includes
all the entities required for the possibility of thinking thoughts express-
ible in L. For any formula ψ of L, the phrase “possibility of thinking”
that ψ refers to the activity of having the particular thought that ψ, i.e.,
entertaining the particular propositional content that ψ. So, by saying
“required for the possibility of thinking” that ψ, we also mean required
for the existence of the propositional content that ψ.33 Moreover, logic
is committed to the existence of whatever entities are required for the
possibility of drawing inferences when reasoning theoretically.34 Conse-
quently, we also say that a formula ϕ in L is a logical consequence of a set
Γ ⊆ L if and only if ϕ is true in every model of L that (i) includes all the
entities required for the possibility of thinking thoughts expressible in L
and (ii) makes every member of Γ true.

32For example, arguing that a non-symmetric relation is distinct from its converse.
33If ψ contains an empty term and doesn’t denote a proposition, it still has truth

conditions. In that case, the phrase “possibility of thinking” that ψ should be taken
to mean: required for the possibility of entertaining the truth conditions of ψ, i.e.,
required for the existence of ψ’s truth conditions.

34Though the natural ontological interpretation of object theory’s quantifiers is that
they commit one to the existence of abstract objects, others (e.g., Azzouni 2004, Priest
2005 [2016]) have suggested that one can interpret quantifiers without any ontological
commitment (e.g., read ∃ as “some”, rather than “there exists” or “there is”. For the
purposes of this paper, what matters is the reduction of mathematics to object theory,
and we leave it an open question as to how one should interpret the quantifer ∃ that
is used to express the theory. We’ll give it a natural interpretation, but others are
possible.
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The Tarskian and Fregean conceptions of logical truth dovetail in our
conception: from Tarski we take the idea that logical truth is truth in
all models of some given language L (Tarski 1936); from Frege we take
the conception of logic as providing constitutive norms of thought and
reasoning as such (MacFarlane 2002), including constitutive norms for
logically complex thought and reasoning.35 By combining the two, we end
up with a definition of the logical truth of a formula ϕ in L as ϕ’s truth
in all models that include everything that is required for the possibility
of having the (logically complex) thoughts expressible in L.36 Under this
conception, not only is λ-Conversion a logical truth, but as noted in the
example discussed above, the inference from ¬Gx to [λy ¬Gy]x is one of
logical consequence.

Let’s then see how this conception can be used to understand why
the lowest level instances of AXIOM 3 (i.e., the instances asserting the
existence of abstract individuals) are logically true. The early Greek
mathematicians adopted a method that has persisted until this day: they
attempted to characterize objects whose only properties are the properties
given by the defining principles.

Consider a simple example, such as discussions of The Equilateral
Triangle in some language LE of Euclidean geometry. Take any model
of LE that includes all the entities required for the possibility of think-
ing thoughts expressible in LE . A mathematician might have thoughts
expressible in LE such as:

The Equilateral Triangle has sides of equal length.

In thinking about this object in the abstract, the mathematician might
logically infer that The Equilateral Triangle is not scalene.37 Here we
have a logical conclusion in the form of a simple predication about The
Equilateral Triangle, and the domain must have an object that exem-
plifies or encodes being an equilateral triangle for the thought (i.e., the

35For other views on Frege’s conception of logic, see Goldfarb 2001, Linnebo 2003,
and Blanchette 2012.

36This is consistent with the idea of logical truths as those that are constitutive of
thought in general, and which are thus constitutively a priori in the sense discussed
by Friedman 1994 [1999]. (A sentence ϕ is constitutively a priori for a theory T just
in case it is presupposed by T .) Indeed, one might perhaps think of the argument to
be given in the present section as a kind of transcendental argument.

37This example is representative of modern mathematicians as well. Consider
Dedekind, who defined his simply infinite systems as consisting of objects whose only
properties were those given by the axioms in his 1888 (§71).
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propositional content) to exist and for the inference to be valid.
Thus, the mathematician has defined, objectified, and drawn infer-

ences about a pattern of properties of individuals. The assertion that
this pattern exists as an individual is true in the given model of LE , since
models include everything required for having complex thoughts and mak-
ing inferences expressible in LE and thus include the relevant pattern of
properties of individuals. It is important to emphasize here that the exis-
tence of this pattern doesn’t commit us to saying that there is an object
that exemplifies the properties defining the pattern. In fact, we have two
options that avoid this commitment but which offer an object of thought:
either treat the pattern as a property of properties in 3rd-order logic,
or treat it as an abstract individual that encodes the properties in ques-
tion. But the assertion of simple predications in LE like the one displayed
above suggests that the mathematician has conceived of The Equilateral
Triangle as an abstract individual. AXIOM 3 is therefore a logical truth
because it is true in every model that includes the entities required for
having thoughts expressible in LE .

More generally, we may reason about any other combinations of prop-
erties in L that might be of interest where these combinations could be
considered as individuals. AXIOM 3 is a logical truth given that these
individuals must be present in every model of L. There is an analogy
with λ-Conversion; if one is willing to accept λ-Conversion as logical, on
the grounds that, for any language L, λ-Conversion is true in every model
that includes the relations needed to express exemplification predications
in L, then one should likewise be willing to accept AXIOM 3 as logical.
In other words, if one recognizes that second-order comprehension is log-
ical because it merely expresses the existence of entities presupposed for
higher-order thinking and reasoning, then one should also recognize that
comprehension over abstract individuals is logical because it (analogously)
merely expresses the existence of entities presupposed for the possibility
of such activities.

Similar conclusions now apply to higher-level λ-Conversion and higher-
level abstracta. For take the example:

[λR ¬∀xRxx]S ≡ ¬∀xSxx

This asserts: relation S exemplifies being a non-reflexive relation iff S

fails to be reflexive. There is a pattern of which every relation that fails
to be reflexive is a part! Clearly, relations in the world do divide up
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into those that are reflexive and those that are not, and without the
existence of the negation of the property of reflexivity [λR¬∀xRxx], how
could two relations S and S′ which both fail to be reflexive not share
the pattern of what is most-easily described as “being a non-reflexive
relation”? If we treat this property of being a non-reflexive relation as
reifying or representing this pattern, then it is required in any model
that contains the 2nd-level properties of relations needed for the truth
of multiple predications of the form “S is non-reflexive” ([λR¬∀xRxx]S).
And so on to other instances of higher-order λ-Conversion. Thus, higher-
order λ-Conversion is logical because higher-order properties like being
non-reflexive exist in every model that includes the entities needed to
express such thoughts as “S is non-reflexive” and for reasoning to the
conclusion that a non-reflexive relation is not an equivalence relation.

And this is likewise the case for higher-level comprehension over ab-
stract entities. Thus, let’s consider why a particular instance of the com-
prehension principle for abstract relations, as applied to mathematical
relations, is a logical truth. Consider the less-than relation (<D) as given
by a language LD and the theory of dense linear orderings without end-
points. This relation is given by the following theory TD, in which < is
not indexed:

∀x, y, z(x < y & y < z → x < z) (Transitivity)
∀x(x 6< x) (Irreflexivity)
∀x, y(x 6= y → (x < y ∨ y < x)) (Connectedness)
∀x, y∃z(x < z < y) (Dense)
∀x∃y∃z(z < x < y) (No Endpoints)

The theorems derivable from these axioms constitute the theory TD.
What is more, we think of the <D relation itself as being constituted by
that theory as well. The world itself doesn’t contribute any facts about
<D and there is no guarantee that a relation exists that exemplifies the
properties of the <D relation — all there is to <D are the properties it
has been assigned in this theory. In other words, the truths that ground
all the facts about <D are facts of the form “In the theory TD, R<D”,
where R ranges over properties of relations. The theorems in the scope
of the operator “In the theory TD, . . . ” ascribe to relation <D various
properties of relations, such as the properties of being transitive, irreflex-
ive, connected, dense, and having no endpoints, and those that follow
from them. There exists a pattern of predications, embedded within the

Hannes Leitgeb, Uri Nodelman, and Edward N. Zalta 42

theorems of TD governing <D, that we may articulate as a pattern of
properties of relations, namely, the pattern: TD � R<D. <D just is that
pattern of properties of relations, but instead of representing this pat-
tern as a property of type 〈〈〈i, i〉〉〉 (property of properties of relations),
encoding predication turns that pattern into an abstract relation of type
〈i, i〉 that encodes the properties of relations R that satisfy the pattern
TD � R<D. (This is expressed in terms of our Reduction Axiom Schema,
discussed in Section 5.1.)

Indeed, that relation must exist for us to have a mathematical thought,
and draw inferences, about the relation <D. Hence, the notions of logical
truth and consequence defined above have the following application: a
sentence ϕ of LD containing the term <D is logically true if and only
if ϕ is true in all interpretations that include all the (abstract) objects
required for the possibility of having thoughts expressible in LD. <D is
required for the possibility of having thoughts expressible in LD. Thus,
the following claim, which expresses the existence of <D, is logically true:

∃R(A!R & ∀R(RR ≡ TD � R<D))

This asserts: there is an abstract relation that encodes all and only the
properties of relations exemplified by <D in TD. And, generally, for any
relation S of mathematical theory T , to have a thought about S, the
following must be true:

∃R(A!R & ∀R(RR ≡ T � RS))

Notice the theory TD is a simple case in which the only distinguished term
of the mathematical theory is a relation term. More complex mathemat-
ical theories involve both distinguished relation terms and distinguished
individual terms.

For example, Peano Arithmetic has as primitives: the property being
a number, the relation successor, and the individual Zero. In this case,
the existence of the abstract property being a numberPA, of the abstract
relation property successorPA, and the abstract individual ZeroPA are
asserted by the relevant instances of comprehension AXIOM 3. Thus,
when our analysis is applied to Peano Arithmetic:

• There are at least three kinds of exemplification patterns that ex-
ist in the sentences prefaced by the operator “In Peano Arithmetic,
. . . ”, namely, patterns of properties of the property of being a num-
ber, patterns of properties of the successor relation, and patterns of
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properties of the individual Zero. (There are, additionally, patterns
of properties of both the relations and properties definable in PA,
but we’ll discuss those below.)

• These particular patterns induce and ground three corresponding
kinds of encoding patterns that exist in the data of the form “In
Peano Arithmetic, . . . ”, namely, patterns of properties of the prop-
erty of being a number in PA, patterns of properties of the successor
relation in PA, and patterns of properties of the individual Zero in
PA.

So, it follows that the instances of AXIOM 3 that assert the existence
of the entities needed for the the analysis given by the Reduction Axiom
Schema are all logical truths.38

In this section, we have argued for the logicality of axioms that assert
the existence of two general kinds of logical entities:

• Those which exist as exemplification patterns among individuals,
properties and relations and which, by comprehension, are logical
objects within the domain of (higher-order) properties, i.e., those
whose existence is asserted by AXIOM 2.

• Those that exist as predication patterns (either exemplification or
encoding patterns) among properties and relations, that, by compre-
hension for abstract individuals, comprehension for abstract prop-
erties, and comprehension for abstract relations, are logical objects
within the respective domains, i.e., those whose existence is asserted
by AXIOM 3.

Both kinds of entities are logical in so far as they are patterns of predi-
cations. The entities asserted to exist by AXIOMs 2 and 3 are abstracted
from pure logical patterns formulable solely in terms of predications gen-
erally in our language. Given that the conditions under which they are
asserted to exist correlate with pure logical patterns that exist in our lan-
guage, what else could they be but logical objects? So in what follows,
we’ll refer to the entities denoted by canonical descriptions as logical ob-
jects.

38This approach to logicism advances the ideas in Hodes 1984 (143) in several ways:
his idea that the theory of natural numbers is an “encoding of a fragment of third-order
logic” has been worked out in a systematic way, with the notion of encoding made
rigorous. Moreover, we’ve applied the same technique to mathematical relations.
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Note that if our axioms are logical, then any theorem we can derive
is logical.39 Now if we can show that the claims of mathematics prefixed
by the theory operator, which are imported when we apply object theory,
are analytic, then it will follow that the unprefixed encoding claims of
mathematics derived from the prefixed claims and object theory (at the
end of Section 5.1) become logical or analytic. So we now turn to a
defense of the idea that when we extend object theory in the application
to mathematics, the new axioms are analytic.

6.2 The Additional Axioms for Mathematics are
Analytic

Our goal in this section is to show that the axioms added to object theory
in Section 5, namely, those introduced by the Importation Principle and
the Reduction Axiom, are analytic. These are principles that underlie our
analysis of mathematics.

We take it to be uncontroversial to claim that axioms introduced by
the Importation Principle are analytic: we can put aside the controversial
question of whether “∅ ∈ {∅}” is analytic, and yet still claim that “In
ZF, ∅ZF ∈ZF {∅}ZF” is. The latter is true in virtue of the meaning of the
terms ‘ZF’, ‘∅ZF’, ‘∈ZF’, and ‘{∅}ZF’. Since ‘ZF’ denotes a theory, and a
theory encodes its theorems, ‘In ZF, ∅ZF ∈ZF {∅}ZF’, when represented as
ZF � ∅ZF ∈ZF {∅}ZF, is true in virtue of the meaning of all the terms used
in the representation.

It remains to argue that axioms introduced by the Reduction Axiom
are analytic. To do this, we argue that the meanings of the terms flanking
the identity sign in instances of the Reduction Axiom are identical, i.e.,
that the meaningmτ of a mathematical term τ is identical to the meaning
of the canonical description used to identify the denotation of τ . As we
shall see, this conclusion almost immediately implies LC.

So, to argue that the instances of the Reduction Axiom are analytic,
consider any mathematical concepts and the mathematical theories in
which they occur. As examples, we again consider the concepts and the

39This point assumes that rules of inference preserve analyticity and logicality. This
is clear in the case of analyticity. But we think it holds even of our new notion of
logicality. We claim that if axioms ϕ and ϕ→ ψ are logical in virtue of being required
for the possibility of abstract thought and reasoning, then ψ is logical for the same
reason.
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axioms of ZF set theory. Recall, first of all, that we formulated the fol-
lowing instances of the Reduction Axiom Schema:

∅ZF = ιx(A!x& ∀F (xF ≡ ZF �F ∅ZF))

SZF = ιF(A!F & ∀F(FF ≡ ZF � FSZF))

∈ZF = ιR(A!R & ∀R(RR ≡ ZF � R∈ZF))

The right-hand side of these identity statements involve canonical definite
descriptions (we call them canonical T -based descriptions below). These
descriptions are formulated with the new indexed terms introduced when
the mathematical theories are imported into object theory.

By referencing these descriptions, we may give the following argument
for the claim that the instances of our Reduction Axiom Schema are an-
alytic (and once we establish that, we give an argument for the thesis LC
of Logicism about Concepts). Let τ be any unambiguous mathematical
term used in a mathematical theory T , where τ is either an individual
term or a predicate of T :

(P1) The meaning, mτ , of a mathematical term τ is the inferential role
of τ in the theory T .

(P2) The inferential role of τ in the theory T is the logical object denoted
by the canonical T -based description for τ .40

(P3) The logical object denoted by the canonical T -based description is
also the meaning of the canonical T -based description.

So by transitivity of identity, the meaning mτ of a mathematical term
τ is identical to the meaning of the canonical T -based description for τ .
And by the uncontroversial principle that if the meanings of τ and τ ′ are
identical, then τ = τ ′ is analytic, it follows that:

(A) The instances of the Reduction Axiom Schema are analytic.

40It may come as a surprise to some that we have identified an inferential as a logi-
cal object. Traditional analyses of inferential roles do not generally assign a distinct,
meaning-constituting role for each distinct non-logical symbol; for example, an infer-
ential role analysis of number theory using the Peano rules (Warren 2020, 200) doesn’t
specify, in theoretical terms, the meaning of the constant symbol ‘0’ or of the predicate
symbol ‘N’. But we are capturing the inferential role of the mathematical terms of T
by objectifying their pattern within the body of theorems of T . We’ll argue for this
below.
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Here, then, is our support for the premises of the above argument.
Concerning (P1). We think it is reasonable to suppose that a math-

ematical concept mτ is constituted by the systematic use of the mathe-
matical term τ . In turn, the systematic use of τ can be grounded in a
system of axioms and inferences in which that term appears. Thus, mτ

can be identified with the inferential role of τ in T . For example, m∅, mπ,
m∈, m<, etc., are identical to the inferential roles of ∅, π, ∈, <, etc., in
their respective theories.

We take (P1) to be a principle that is consistent with the following
historical antecedents. It is one way to spell out Wittgenstein’s meaning-
as-use doctrine (1953), as well as the work of inferential role theorists such
as Sellars (1980) and Brandom (1998). (P1) is also related to Schlick’s
and Carnap’s view of theoretical terms in science, which in turn were
influenced by Hilbert’s view of geometry in which the meanings of math-
ematical terms are determined completely by the theories in which they
figure.41 (But P1 should be even easier to accept than the corresponding
view of theoretical terms in science since, unlike the latter, mathemati-
cal terms aren’t introduced with the idea of representing some empirical
entity.) Finally, (P1) is consistent with Frege’s Context Principle, ex-
cept that the meaning for a mathematical term is not given by any single
reference-fixing sentence but rather by a whole theory.

Note also that by identifying the meaning of a mathematical term with
its inferential role, (P1) doesn’t require us to invoke either the notion of
an intension (in Carnap’s sense) or the notion of a concept (in Church’s
sense). These notions are not needed in the semantics we give in the
Appendix: meaning there is represented in terms of denotation. For any
term τ , the meaning of that term is simply its denotation relative to (our
interpretation and) an assignment to the variables, i.e., df (τ). Moreover,
we are not assuming a modal framework, and so the notion of intension-

41See, for example, Friedman 1994 [1999, 26], where we find:

In General Theory of Knowledge, his [Schlick’s] starting point is
Hilbert’s Foundations of Geometry and the notion of axiomatic or im-
plicit definition [. . .] According to the conception that Schlick derives
from Hilbert, the primitive terms of geometry require no intuitive mean-
ing or content. All we need to know about these primitives for the pur-
poses of pure geometry are their mutual logical relationships set up ex-
plicitly in the axioms. Points, lines, and planes are any system of objects
whatsoever that satisfy these axioms.
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ality, i.e., functions from worlds to (sets of) entities, doesn’t apply. The
rest of our argument will then be aimed at explicating the meaning, now
identified as an inferential role, in terms of objects that will turn out to
be logical.

Concerning (P2). We argue for P2 by considering examples such as
the following: the inferential role of ‘∅’ in ZF is properly identified by
the canonical description, ιx(A!x & ∀F (xF ≡ ZF � F ∅ZF)). This holds
because the abstract object denoted encodes all and only the properties
of the null set derivable in ZF.42 For instance, it is derivable in ZF both
that ∅ ∈ {∅} and that [λxx ∈ {∅}]∅. The latter gets imported into object
theory as ZF � [λx x ∈ {∅}]ZF∅ZF. As such, the property [λx x ∈ {∅}]ZF is
one of the properties that satisfies the formula ZF �F ∅ZF in the matrix
of the description ιx(A!x & ∀F (xF ≡ ZF � F ∅ZF)). In object theory,
the inferential role of the symbol ∅ in ZF is constituted by the object
that encodes the totality of such properties. Its representation, ∅ZF, as
identified by our canonical ZF-based description, captures the inferential
role.

Concerning (P3). Our argument for this premise begins with the in-
spection of the semantics of our formalism, which reveals that the terms
of our formalism are assigned only one semantic value. We claim that this
semantic value serves both as the denotation and meaning of the terms of
our formalism. Our semantics assigns meanings by assigning denotations.
Indeed, we take it that for our formalism, the distinction between the
denotation and meaning of its terms just collapses.43 One doesn’t have to
build a formal language with terms having both intensions and extensions
in order to model the intensions and extensions of the terms of natural
language. One simply needs to have (a) terms in the formal language that
can represent the extensions of the terms of natural language as well as
(b) terms in the formal language that can represent the intensions of the
terms of natural language. That is what our system does.44

42Again, our analysis is one way of developing a proof-theoretic semantics, since
we are generating term meanings by abstracting over the proof-theoretic roles of the
relevant terms. See Prawitz 2006, Schroeder-Heister 2006, Francez & Dyckhoff 2010.

43As a consequence of this fact, it doesn’t matter whether we say that a term “de-
notes” or “expresses” its semantic value.

44In the Appendix, we build the smallest extensional model of object theory. For
purposes of showing consistency, this suffices. But one can build models in which the
denotation of an n-place predicate is not just a set (or a truth-value, in the case of a
0-place predicate). Indeed, we take it that in the intended models, n-place predicates
denote n-place relations, where the latter are then systematized by the principles for n-
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Given P1 – P3, therefore, we’ve established (A), i.e., that the instances
of our Reduction Axiom Schema are analytic. This completes our argu-
ment that the additional axioms added to object theory for the analysis of
mathematics are analytic, and so we have established logicism in the form
of LT. Since the theorems of mathematics are representable as theorems
of extended object theory, and the axioms of extended object theory are
all either logical truths or analytic truths, the theorems of mathematics
are themselves either logical or analytic. This of course assumes that the
rules of inference in classical logic preserve logicality and analyticity. We
shall not argue for this claim.

Furthermore, premises P1 and P2 imply LC in the following form:

LC′ The meaning of a mathematical term τ , mτ , is identical to a logical
object.

LC follows from LC′ by taking the meaning of a term to be its denotation.

7 Objections and Observations

7.1 Objections

One objection that might be raised is whether we have offered an ana-
lysis that does ‘too much’, in that it would give us a means of reducing
theoretical terms in natural science to logic! The objection argues that
our very same procedure, as outlined above, would give us denotations
for theoretical terms like ‘electron’, namely, the abstract property that
encodes exactly the properties of properties attributed to this property
by our best available physics. But, here, we argue, there is a disanalogy
that prevents one from properly applying the above analysis to theoret-
ical terms of natural science. The disanalogy is that in natural science,

place relations offered by object theory (i.e., the principles laid down in Sections 4.1.2
and the definitions for the identity of relations given in Section 3). The result will
still be an ‘extensional’ model but with primitive ‘intensional’ entities or urelements
populating the relational domains. Moreover, we need not represent abstract indi-
viduals and abstract relations in these more fine-grained models as sets of properties
intensionally-conceived. Instead, they too, may be regarded as intensionally-conceived
urelements, indeed, hyperintensionally-conceived urelements, given that they correlate
with sets of intensionally-conceived properties. So the denotations of our canonical
T-based descriptions may themselves be conceived as highly intensional entities. We
see no need to add a second semantic value (i.e., an intension) for the terms of our
formal language.
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the theoretical properties like being an electron are natural properties,
whereas the theoretical properties of mathematics are not. Thus, in the
case of natural science, one might distinguish the natural property from
our various concepts of that property, as these concepts change from sci-
entific theory to scientific theory. The property of being an electron, for
example, is something there in the world, though our theories of the elec-
tron reflect our evolving concept of this property. The concept, but not
the property, is tied to the inferential role.

Given this distinction, we would argue that our analysis above could
not be applied to analyze the property of being an electron (though it
might be applied to the concept electron as this might be embodied by
some scientific theory). Thus, P1 fails in the case of the natural proper-
ties of physics: “the meaning of theoretical term τ in a physical theory”
is a natural property, not a physical concept. Hence P1 is false. Whereas
the physical concept might well be identical to an inferential role, as
(the corresponding version of) P1 would have it, the physical property is
not an inferential role at all. By contrast, in the case of mathematical
properties, there is no distinction to be drawn between our concepts of a
mathematical property and the property itself. Either the mathematical
properties and our concepts of them collapse, since the former are not
given by anything over and above the concepts, or there are no mathe-
matical properties beyond our mathematical concepts. In the former case,
we use the above analysis to identify both the property and the concept,
collapsing the two; whereas in the latter case, we use the above analysis
solely for understanding our mathematical concepts (in which case there
is nothing else to understand).

Another objection might run as follows. Our analysis assumes that
mathematical objects are identified in terms of actual theories, i.e., theo-
ries that someone has actually developed or asserted. Doesn’t this imply
that the abstract realm of mathematical objects depends on the contin-
gent actions of humans? To this, we may reply that by showing how all
axiomatically developed mathematics consists of logical/analytic truths,
we have shown a striking fact that achieves the goals of logicism. But
a deeper response is also available, since the objection suggests that the
theorems of mathematics are contingent claims.

In fact, they are not. To see why, note that we’ve analyzed the the-
orems of mathematics as encoding truths about the individuals and re-
lations of mathematics. Though we didn’t develop the modal version
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of object theory here, one modal principle included in the theory is the
claim that 3xF → 2xF , i.e., that if possibly an abstract object encodes a
property, then it does so necessarily.45 So, though it may be a contingent
fact as to what mathematicians have asserted by way of mathematical
axioms, the theory-prefixed claims of the form “In theory T , p” are not
contingent; they are analytic truths and given claims of that form, neither
the theorems of T (as we’ve analyzed them) are contingent claims nor are
the objects of the theory contingent objects.46

Thus, the realm of mathematical objects is not so closely tied to the
contingent actions of human mathematicians. Though we haven’t devel-
oped modal object theory in this paper, it would be trivial to add a modal
operator. If we adopt the axioms for S5 modal logic, then these possibility
claims about possible authors are in fact necessary, and thus the realm of
mathematics becomes defined on our view in terms of objects with no air
of contingency about them.

Finally, a Platonist might object that when we extend a theory like
ZF to ZFC, the mathematician is not talking about a different realm of
sets, while our approach implies that they are. But in fact this is not the
case: our approach is consistent with assigning “the” right denotations to
set-theoretic terms and predicates and that perhaps these denotations are
only incompletely described by both ZF and ZFC. Note that the Platonist
claim presupposes both that sets exist independently of our theories of
them and that when we move from ZF to ZFC, the new theory is simply
characterizing the objects of ZF further. So, for the sake of argument,
suppose that the sets do exist independently of our theories of them and
that there is consequently a complete body of all set-theoretic truths.
Introduce a proper name, say ‘G’, for that body of truths and replace
‘ZF’ in our reduction axioms from above by ‘G’. Then everything should
go as before, and we should be able to reconstruct the mathematical
terms of set theory as logical expressions. That is, we can plug G into
the machinery that we described above and the result, we claim, is a

45See the modal applications of object theory beginning with Zalta 1983, Ch. III.
46Our analysis extends to any possible mathematical theory (we include inconsistent

theories of mathematics; see Zalta 2024, Section 3.2). Define a possible mathematical
theory as any mathematical situation that possibly has an author, where we leave it
to the mathematicians to say which propositions are mathematical. Then our analysis
also applies to possible mathematical theories. Of course, we cannot import the theo-
rems of those possible mathematical theories into object theory until a mathematician
actually asserts a theory.
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logicist reconstruction of the concept of set. Given this reconstruction,
the theorems of ZF and ZFC will be true of the denotations that we have
assigned to the terms and predicates of set theory G since G includes
these theorems (assuming Choice is included in G). Of course, this is all
completely hypothetical: we know that if the body of truths of set theory
exists, it is not recursively axiomatizable, so we will never be “given” that
body of truths in the form of a complete axiomatic system; nor does there
seem to be any alternative manner in which we could be “given” that body
of truths in a literal sense. Indeed, since Importation does not include the
negative internalization principle (NI) as noted Section 5, our axiomatic
theory does not include any axioms that would rule out that ZF, ZFC,
and G are pairwise identical. So none of this affects the principal logicist
point that we want to make.

7.2 Comparison with Other Approaches

At the present time, we know of no other successful version of logicism,
i.e., no successful attempt to establish LC and LT. While Frege’s version of
logicism failed due to the inconsistency of his Basic Law V, Whitehead and
Russell’s account of logicism was based on principles, such as the Axiom
of Reducibility and the Axiom of Infinity, whose status as logical truths
were unclear at best. Similarly, efforts by Hodes (1991) and Tennant
(2004) both require an appeal to non-logical, or even non-analytic, axioms
of infinity,47 and it is not clear how the methodology in Tennant (1987,
2022) can be extended to the logicist analysis of an arbitrary mathematical
theory T (i.e., it is not clear how, for an arbitrary theory T , to state
introduction and elimination rules for the terms and predicates of T in a
way that yields all and only the theorems of T ).48

In recent years, neologicist theories have been developed that rely
on abstraction principles.49 These neologicist theories add new abstrac-

47So our worry concerning such axioms of infinity is not due to them postulating
the existence of some kind of infinite object—which would be fine, as far as we are
concerned, as long as the object in question is a logical object—rather what we worry
is about is whether one can argue that these axioms of infinity are logical or, at the
very least, analytic.

48We also note the following difference between the present analysis and that in Ten-
nant 1987, 2022: we offer a theoretical identification of the well-defined mathematical
terms of T .

49See the work of Wright 1983, Hale 1987, Boolos 1986/87, Cook 2003, etc., and for
an overview, see Linsky & Zalta 2006.
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tion principles for each new kind of mathematical object introduced and
each of these new ‘double abstraction-identity principles’ (like Hume’s
Principle, which introduces two abstractions, #F and #G, in the same
principle) combines both a comprehension (or existence) claim and an
identity claim for the new kind of mathematical object. Clearly, any
reduction of mathematics to logic will have to use some definitions or
principles for identifying the mathematical objects as logical objects. On
our view, however, only a single comprehension principle for objects is
needed and, moreover, a single identity principle for objects is specifiable
independently of comprehension.

Our approach differs from previous approaches in the following ways.
(a) We appeal only to principles that are arguably logical or analytic and,
in particular, we don’t appeal to any non-logical axiom of infinity. Our
unapplied and purely logical theory still has a finite model (described in
the Appendix). When we apply the theory to mathematics, we some-
times import an infinite number of theorems into our own theory in the
form of analytic truths. The infinity of mathematical entities that re-
sults from this extension is a presupposition of mathematical thought
and thus counts as logical in our understanding of the term. (b) We
don’t have to continually re-prove our system is consistent since we use
a uniform method for analyzing every kind of mathematical object. The
model we have proposed in the Appendix—even though it is merely a
minimal model for our background logical theory—grounds our conjec-
ture that no special steps need be taken to guarantee consistency each
time a new part of mathematics is analyzed in the manner outlined in
Section 5. Though early forms of neologicism faced the ‘bad company’
and ‘embarassment of riches’ objections, recent forms have employed more
general methods to guarantee consistency.50 (c) Our approach is not sub-

50For the bad company objection, see Boolos 1990 (214), Field 1989 (158), and
Dummett 1991 (188–189). For the embarassment of riches objection, see Heck 1992
and Weir 2003 (16). For recent work on the bad company objection, see the papers
in Linnebo (ed.) 2009. See MacBride 2003 and Linnebo 2009 for a summary of the
problem.

The neologicist could adopt some constraints, such as those proposed in Fine 2002,
and suggest that any abstraction principle meeting those constraints would be ‘safe’
and not require a new consistency proof. But as far as we can tell, by placing those
constraints on abstraction principles, one couldn’t then derive all parts of mathematics
from Fregean biconditionals. See Burgess 2003, 2005. Moreover, even if we adopt the
constraints on abstract principles described in Fine 2002, it is not clear what final set of
abstract principles emerge as the ones to be adopted. Which abstraction principles are
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ject to the Julius Caesar problem.51 (d) Our analysis is prepared even for
not-yet-formulated mathematical theories and new kinds of mathemati-
cal objects. Finally, (e) our approach gives an account of the denotations
of both the individual terms as well as the predicates of mathematical
theories.

Finally, our logicist proposal also differs from Linnebo’s (2018) recent
theory of thin objects. Linnebo develops another closely related follow-up
project to Frege in which a comprehensive class of abstraction principles
is employed to introduce abstract objects that are “thin” in the sense
that their existence does not make any substantial demand on the world.
There are three main differences to Linnebo’s approach. (i) His abstrac-
tion principles are dynamic and predicative (“new” domains of objects
are being introduced by iterated abstraction from “old” or given domains
of objects), whereas the abstraction principles that are derivable from
our theory are of the more traditional static and impredicative type.52

(ii) We defend our basic principles to be logically or analytically true,
while Linnebo does not and instead argues that his abstraction principles
don’t make a substantial demand on the world. Indeed, Linnebo does
not argue that his theory is a version of logicism. (iii) While Linnebo
offers solutions for the standard problems for neo-logicism, we may not
know how to show that some present or future mathematical theories are
derivable from any of his abstraction principles. If this is right, our ap-
proach would seem preferable, as it is based on the actual presentations
of mathematical theories in mathematical practice. We will have to leave
a more substantial comparison with Linnebo’s theory of thin objects to
future work.

to be asserted? A satisfying answer might be supplied by Cook (2012) who conjectures
the class of acceptable abstraction principles to be the so-called class S-STB, which,
other than not being affected by the bad company objection, has the highly attractive
formal properties of being (i) field-conservative and (ii) maximally strictly logically
symmetrically class conservative. (For the definitions of these notions and of the class
S-STB itself, see Cook 2012; for some conceptual amendments, see Cook and Linnebo
2018.) We will have to leave a more detailed comparison with that neo-logicist proposal
to future work.

51This is the problem that Frege himself raised for his own view: when abstraction
principles like Hume’s Principle (#F = #G ≡ F ≈ G) are added to second order logic
as the basis for identifying the numbers, identity is given only when two numbers are
given in the form #F and #G. The condition ‘x= #F ’ is left undefined, and so the
analysis yields no answer to questions like, “Is Julius Caesar identical to the number
of F s”. In our system, ‘x=#F ’ is always defined, since ‘x=y’ is defined for every x, y.

52For the definition of ‘(im)predicative abstraction principle’, see Linnebo 2018 (97).
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The principles of object theory are general in the sense accepted by
both Kant and Frege (as described in MacFarlane 2002), namely, they are
constitutive of, and provide a norm for, the possibility of having complex
logical thoughts, including abstract mathematical thought. That is very
different from the more standard conception of logic, since our conception
allows that some existence claims can be logical truths. Indeed, we suggest
that the argument (in the previous section) for the logicality of both of
our comprehension principles (one for relations of every higher-order type
and one for abstract objects of every type) justifies the early logicist view
that logic may endorse existence claims, namely, those that assert the
existence of the logical objects that Frege, Russell, and Whitehead used
to reduce mathematics. The only existence claims logic is committed to
are those required for the possibility of having complex logical thoughts.

So logic does have ontological commmitments, but it commits one
to nothing more than what is required for the possibility of formulating
and interpreting complex predications. In particular, unapplied object
theory has ontological commitments (see the model in the Appendix),
but the unapplied theory is not committed to anything more that what is
required for the possibility of reifying structural relations among relations,
i.e., what is required to make sense of the abstract relations that emerge
from patterns of exemplification predication that are available in first-
and second-order logic.

As we’ve mentioned, our understanding of logic and logicality has con-
sequences for certain controversies concerning existence claims. Logicians
have faced the following issue: what should one say about the fact that
standard first-order logic entails existence claims (such as ∃xx=x). This
has traditionally been seen as an uncomfortable conclusion since it was
thought, on the one hand, that logic should be free of existential com-
mitment, whereas on the other hand, that first-order logic should be the
background system for the assertion of any non-logical existence prin-
ciples. However, we can comfortably accept the fact that logical axioms
imply existence claims because a non-empty classical domain should come
pre-stocked with a minimum group of abstract objects.

Moreover, some philosophers have argued that ∃x∃y(x 6= y) can’t be
a logical truth, since it asserts the existence of more than a non-empty
domain. Our arguments in Sections 6.1 and 6.2 show that this formula
is a logical truth.53 We argued that some formulas are in fact logically

53Note that ∃x∃y(¬A!x&¬A!y&x 6= y) is not a necessary truth – this isn’t required
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true in the sense that they are true in all models that make it possible to
have logically complex thoughts. Moreover, once we import mathematics
into our system in the form of analytic truths, then we can derive the
existence of new logical objects.

7.3 Epistemology Redux

We claim, finally, that the epistemological benefits of logicism now accrue.
By showing that mathematical statements are analytic, it follows that by
knowing the meanings of (the terms in) these statements, we are equipped
with all the tools we need to determine whether they are true. We can
know mathematical theorems by deriving them solely from logically true
statements and analytic statements. Thus, no special cognitive faculty
for knowledge of mathematical truths is needed other than the faculty of
understanding, which is a faculty we, like Benacerraf (1981), take to be
explainable in naturalistic terms.

So we don’t have to posit a causal information pathway, like the causal
theory of reference, to explain how we come to understand the terms of
mathematical statements. Our comprehension principles already consti-
tute the paths by which we apprehend abstract objects: they just are the
means by which we cognitively grasp the objects denoted by the terms of
mathematical theory T .

Note that the claim that mathematical truths are logical or analytic
truths does not entail that for each mathematical claim it would be easy
to determine that it is a mathematical truth. Moreover, what we have
not done in the present paper is to say anything about the a priori jus-
tification of the logic underlying object theory. To be clear, though, the
epistemological situation is very different from that surrounding the foun-
dational system of Principia Mathematica. Whitehead & Russell couldn’t
very well argue that the axioms of reducibility and infinity are logical, even
if they had tried to use the grounds we provided above: it is hard to see
how such axioms are required for the possibility of (abstract) thought.
Our logical framework, by contrast, requires no such axioms and the ax-
ioms it does assert are required for such thought. But in the present case,
even if one accepts that our axioms are logical, there is still the question
of whether they are justified. We have not addressed that latter ques-

for logically complex thought. But ∃x∃y(A!x & A!y & x 6= y) is and, thus, so is
∃x∃y(x 6= y), since the latter is implied by the former.
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tion. We could argue that a logic such as ours is justified because it is
presupposed somehow, or because the logic, through a process of reflec-
tive equilibrium, offers a rational reconstruction of the data (i.e., logical
consequences we accept pretheoretically) that is better than other logical
systems. But we have to leave this argument for another paper.

Appendix: A Minimal Model of the Logical
Framework

The logic in the foregoing is consistent, as can be demonstrated by the
construction of the smallest model. This model happens to be an ex-
tensional one: ordinary properties and ordinary relations are not distin-
guished from their exemplification extensions, and ordinary propositions
are not distinguished from the two truth values The True and The False.
Of course, this extensional model is not the intended one.54. We empha-
size, however, that our model doesn’t require “full higher-order semantics”;
we don’t require, of any higher-order domain, that it be the full power set
of the lower order domain.

A Bounded Language

Our analysis of mathematics does not require the full unbounded language
defined in the paper in Section 3. So, as we develop a model of typed
object theory, we restrict our attention to the fragment we need. We
shall therefore define the bounded language Ln,m, where n and m are
bounds that set, respectively, the width and height of the types for the
terms of the language. We begin by defining the functions h and w for
the height and width, respectively, of a given type.

The width of type t, written w(t), is defined as:

• w(i) = 1

• w(〈 〉) = 1

• w(〈t1, . . . , tk〉) =
∑k

1 w(tk)

54An intended model would distinguish properties and relations from their exempli-
fication extensions, and would distinguish propositions from their truth values. Thus,
an intended model would be intensional, and if modality were added, would be hyper-
intensional.
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The height of type t, written h(t), is defined as:

• h(i) = 0

• h(〈 〉) = 1

• h(〈t1, . . . , tk〉) = 1 + max{h(t1), . . . , h(tk)}

Then we define Ln,m as the language that includes any well-formed ex-
pression of L that can be formulated only with terms τ of type t such
that w(t) ≤ n and h(t) ≤ m.

Before we define a model for the bounded language Ln,m, a few obser-
vations are in order. Intuitively, we want to choose bounds that will yield
the smallest language and model needed for our analysis. The following
two considerations play a role in setting the bounds on Ln,m:

• In Section 5.1, we analyze the property of being a ZF-set as an ab-
stract property having type 〈i〉. Abstract properties of this type
encode properties of type 〈〈i〉〉. And properties of this latter type
can be both ordinary and abstract, though the mathematical prop-
erties will encode only abstract properties of type 〈〈i〉〉. But these
abstract properties must, in turn, encode properties of type 〈〈〈i〉〉〉.
Note this requires the bound on the height of the types in the lan-
guage to be at least 3 and the bound on the width to be at least 1.

• In Section 5.1, we analyze the membership relation of ZF as an
abstract relation having type 〈i, i〉. Abstract relations of this type
encode properties of type 〈〈i, i〉〉. And properties of this latter type
can be both ordinary and abstract, though the membership relation
will encode only abstract properties of type 〈〈i, i〉〉. But these ab-
stract properties must, in turn, encode properties of type 〈〈〈i, i〉〉〉.
Note this requires the bound on the height of the types in the lan-
guage to be at least 3 and the bound on the width to be at least 2.

Given these facts, it should be clear that the minimal fragment our anal-
ysis of mathematics requires is the bounded language L2,3. In line with
what we said above, L2,3 includes any well-formed expression of L that
can be formulated only with terms τ of type t such that w(t) ≤ 2 and
h(t) ≤ 3. So in specifying a general model for Ln,m, we shall occasionally
focus on the model for the language L2,3.
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The Smallest, Extensional Model for Ln,m
We construct our model in two basic stages: first we construct the struc-
tural domains of the model, and second, we specify the domains of quan-
tification and a proxy function (that assigns to each element in a domain
of quantification to an element of a structural domain). The construction
of the structural domain occurs in two stages: (1) the kernel of each type
and (2) the abstract objects of each type.

Structural Domains: Kernel

(1) We define the kernel Kt of objects of type t, by induction, as follows:

• Where t = i, the kernel Ki of individuals is the union of two sub-
domains: the ordinary individuals Oi and the special individuals
Si. For the purposes of building a specific minimal model, we stip-
ulate that Oi is empty and Si contains a single special individual
si, which we henceforth label as b.

• Where t = 〈 〉, the kernel K〈 〉 of propositions is the union of two
subdomains: the ordinary propositions, O〈 〉 and the special propo-
sitions S〈 〉. For the purposes of building a specific minimal model,
we stipulate that O〈 〉 contains two propositions, labeled T and F,
and S〈 〉 contains a single special proposition s〈 〉, which we hence-
forth label as a.

• Where t = 〈t1, . . . , tn〉 (n ≥ 1), for any types t1, . . . , tn, the ker-
nel K〈t1,...,tn〉 of relations among objects having types t1, . . . , tn, re-
spectively, is the union of two subdomains, O〈t1,...,tn〉 and S〈t1,...,tn〉,
where O〈t1,...,tn〉 = ℘(Kt1×...×Ktn) and S〈t1,...,tn〉 contains at least
one special object s〈t1,...,tn〉. For the purposes of building a specific
minimal model, we label:

s〈i〉 as c
s〈i,i〉 as e
s〈〈i〉〉 as u
s〈〈i,i〉〉 as v.

Given these stipulations, we have the following consequences:

• K〈i〉 (i.e., the kernel of objects of type 〈i〉) = ℘(Ki) ∪ {c}, and so
K〈i〉 = { {b}, { }, c }. (This is pictured in the graphic.)
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O〈 〉 S〈 〉
•T
•F

•a

K〈 〉

Ki

Oi Si

•bK〈i〉

O〈i〉 S〈i〉

•{b}
•{}

•c

K〈i,i〉

O〈i,i〉 S〈i,i〉

•{〈b, b〉}
•{}

•e

K〈〈i〉〉

•{{b}} •{c}
•{{}, {b}} •{{}, c}
•{{b}, c} •{{}, {b}, c}
•{} •{{}}

•u

O〈〈i〉〉

S〈〈i〉〉

K〈〈i,i〉〉

•{{〈b, b〉}} •{e}
•{{}, {〈b, b〉}} •{{}, e}
•{{〈b, b〉}, e} •{{}, {〈b, b〉}, e}

•{} •{{}}
•v

O〈〈i,i〉〉

S〈〈i,i〉〉

...

...
...

...

A〈i〉

=


℘(O〈〈i〉〉 ∪A〈〈i〉〉),

if m > 1 = h(〈i〉)
∅, otherwise

A〈i,i〉

=


℘(O〈〈i,i〉〉 ∪A〈〈i,i〉〉),

if m > 1 = h(〈i, i〉)
∅, otherwise

Ai

=


℘(O〈i〉 ∪A〈i〉),

if m > 0 = h(i)

∅, otherwise

Figure 1: A fragment of the minimal model with unrestricted typed comprehension
for abstracta. The domains of ordinary objects, from the bottom up, are: the kernel
of propositions K〈 〉 (= O〈 〉 ∪ S〈 〉); the kernel of individuals Ki (= Oi ∪ Si); the
kernel of properties of individuals K〈i〉 (= O〈i〉 ∪ S〈i〉); the kernel of binary relations
among individuals K〈i,i〉 (= O〈i,i〉 ∪ S〈i,i〉); the kernel of properties of properties of
individuals K〈〈i〉〉; the kernel of properties of relations among individuals K〈〈i,i〉〉;
and so on. The domains of abstract objects, from the top down, are: the abstract
individuals Ai (= the power set of O〈i〉 ∪A〈i〉); the abstract properties of individuals
A〈i〉 (= the power set of O〈〈i〉〉∪A〈〈i〉〉); and the abstract relations among individuals
A〈i,i〉 (= the power set of O〈〈i,i〉〉 ∪A〈〈i,i〉〉); and so on.
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• K〈i,i〉 (i.e., the kernel of objects of type 〈i, i〉) = ℘(Ki ×Ki) ∪ {e},
and so K〈i,i〉 = { {〈b, b〉}, { }, e }. (This is pictured in the graphic.)

• K〈i,〈 〉〉 (i.e., the kernel of relations between individuals and proposi-
tions) = ℘(Ki×K〈 〉)∪{s〈i,〈 〉〉}, and soK〈i,〈 〉〉 = { {〈b,T〉}, {〈b,F〉},
{〈b,a〉},{〈b,T〉, 〈b,F〉},{〈b,T〉, 〈b,a〉},{〈b,F〉, 〈b,a〉},{〈b,T〉, 〈b,F〉,
〈b,a〉}, { }, s〈i,〈 〉〉 }. (This is not pictured in the graphic.)

Etc.

Structural Domains: Abstract Objects

(2) Given m as the maximum height, we recursively define the domain
At as follows:

At =

{
℘(O〈t〉 ∪A〈t〉) if h(t) < m

∅ otherwise.

The identity conditions for elements of At depend on the higher-type
elements of O〈t〉. Given these stipulations, we have the following conse-
quences for A〈i〉 and Ai when m=1:

A〈i〉 = ∅

Ai = ℘(O〈i〉 ∪A〈i〉)

= ℘(O〈i〉 ∪ ∅))
= ℘({ {b}, {} })
= { {}, {{b}, {}}, {{b}}, {{}} }

When m = 2:

A〈〈i〉〉 = ∅

A〈i〉 = ℘(O〈〈i〉〉 ∪A〈〈i〉〉)

= ℘(℘(K〈i〉) ∪ ∅)
= ℘({. . . all 8 subsets of K〈i〉 . . .})
= {. . . all 256 subsets of ℘(K〈i〉) . . .}

Ai = ℘(O〈i〉 ∪A〈i〉)

= ℘(O〈i〉 ∪ {. . . all 256 elements of A〈i〉 . . .})
= ℘({ {b}, {} } ∪ {. . . all 256 elements of A〈i〉 . . .})
= ℘({{b}, . . . all 256 elements of A〈i〉 . . . })
= ℘({. . . all 257 elements of O〈i〉 ∪A〈i〉 . . .})
= {. . . all 2257 subsets of O〈i〉 ∪A〈i〉 . . .}
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But as noted earlier, for the purposes of building a specific model for our
analysis of mathematics, we will set the bound of m to 3.

Domains of Quantification and the Proxy Function

The domains over which the variables of our language range are now
defined simply as follows. Where Dt is the domain of quantification for
type t:

Dt = At ∪Ot

We next define an extended proxy function ‖ · ‖ in two steps. In the first
step, we define a proxy function | · | so that it maps abstract individuals,
abstract properties, and abstract relations to special individuals, special
properties, and special relations, respectively. In the second step, we
extend this function to the extended proxy function ‖ · ‖ which is defined
on all the domains of quantification: it preserves what | · | assigns to the
abstract entities but also assigns each ordinary element in each domain
of quantification to itself as proxy.

The function | · | is defined generally as, for each type t:

| · | : At → St

In the minimal model, there is only one special object in each domain St,
and so all the abstract objects in At get mapped to the same proxy.55

For example, in the minimal model:

• where ai is an abstract individual in Ai (i.e., where ai is a set of
1st level properties), then |ai| = b,

• where a〈i〉 is a 1st level abstract property in A〈i〉 (i.e., where a〈i〉 is
a set of 2nd level properties of properties), then let |a〈i〉| = c, and

• where a〈i,i〉 is a 1st level abstract relation in A〈i,i〉 (i.e., where a〈i,i〉
is a set of 2nd level properties of relations), then let |a〈i,i〉| = e.

55This is not just an artifact of the extensional model construction. Since abstract
objects are individuated by bundles of properties, there must be more abstract objects
than properties. That means that there must be distinct abstract objects that are
indiscernible—i.e., they have the same pattern of exemplifications. Since the proxy
determines the exemplification pattern, such indiscernible but distinct abstract objects
must share the same proxy.
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We then extend | · | to the extended proxy function ‖ · ‖ as follows. Where
t is any type and Dt is the domain of type t (as defined below), and o is
a variable ranging over the entities of domain Dt, then for all o ∈ Dt:

‖o‖ =

{
|o| when |o| is defined
o otherwise

The Model

We now introduce a bounded domain, Dn,m, as follows:

Dn,m =df {Dt | w(t) ≤ n& h(t) ≤ m}

In other words, a bounded domain collects all the domains of the types t
within the width and height bounds n and m.

In order to preserve the information about whether objects in the
domain are ordinary or abstract, we define two indicator functions A and
O defined as follows. Where o is again a variable ranging over the entities
of domain Dt, then for all o ∈ Dt:

A(o) =

{
T if o ∈ At, where o is of type t

F otherwise

O(o) =

{
T if o ∈ Ot, where o is of type t

F otherwise

We next define an interpretation V that assigns to each constant κ of the
language an element of an appropriate domain of quantification, i.e.,

If κ is a constant of type t, V(κ) ∈ Dt

V also assigns a special entity to each predicate A! of the language:

V(A!〈t〉) = St

That is, the interpretation of the predicate constant A!〈t〉 is the set St of
proxy elements of type t. Using the definitions above, we then define a
model M as a structure of the form:

M = 〈Dn,m, ‖ · ‖,A,O,V〉
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where Dn,m is a bounded domain, ‖ · ‖ is an extended proxy function,
A and O are the indicator functions that identify which elements of the
bounded domain are abstract and ordinary, respectively, and V is an
interpretation function. These elements have all been defined as above.

As noted earlier, for analysis of mathematics developed in this paper,
we need models with bounded domain D2,3. We leave the complete list
of types included within this bound to a footnote.56 Note that many of
these types don’t play a role in our analysis of mathematics and aren’t
represented in Figure 1.

Simultaneous Definition of Denotation and Truth

Assignments to the Variables

In the usual way, an assignment f to the variables is a function that takes
each variable in the language to an element of the domain over which the
variable ranges. Strictly speaking, f should be relativized to the model
M, but we now always suppress the index to M. More specifically:

• If αt is a variable of type t, f(αt) ∈ Dt.

Moreover, where αt is a variable of type t and o is an object in the domain
Dt, we use the notation f [α/o] to refer to the assignment function just
like f except that it assigns the object o to the variable α. And where
α1, . . . , αn are variables of type t1, . . . , tn, respectively, and o1, . . . ,on are
objects in the domains Dt1 , . . . ,Dtn , respectively, we use the notation

56We list the types for each width and height:

• w = 1, h = 0: Di

• w = 1, h = 1: D〈 〉, D〈i〉

• w = 1, h = 2: D〈〈 〉〉, D〈〈i〉〉

• w = 1, h = 3: D〈〈〈 〉〉〉, D〈〈〈i〉〉〉

• w = 2, h = 0: (empty)

• w = 2, h = 1: D〈i,i〉

• w = 2, h = 2: D〈i,〈〉〉, D〈i,〈i〉〉, D〈〈〉,i〉, D〈〈i〉,i〉, D〈〈〉,〈〉〉, D〈〈〉,〈i〉〉, D〈〈i〉,〈〉〉,
D〈〈i〉,〈i〉〉

• w = 2, h = 3: D〈〈i,〈〉〉〉, D〈〈i,〈i〉〉〉, D〈〈〈〉,i〉〉, D〈〈〈i〉,i〉〉, D〈〈〈〉,〈〉〉〉, D〈〈〈〉,〈i〉〉〉,
D〈〈〈i〉,〈〉〉〉, D〈〈〈i〉,〈i〉〉〉, D〈i,〈〈〉〉〉, D〈i,〈〈i〉〉〉, D〈〈〈〉〉,i〉, D〈〈〈i〉〉,i〉, D〈〈〉,〈〈〉〉〉,
D〈〈〉,〈〈i〉〉〉, D〈〈i〉,〈〈〉〉〉, D〈〈i〉,〈〈i〉〉〉, D〈〈〈〉〉,〈〉〉, D〈〈〈i〉〉,〈〉〉, D〈〈〈〉〉,〈i〉〉,
D〈〈〈i〉〉,〈i〉〉, D〈〈〈〉〉,〈〈〉〉〉, D〈〈〈〉〉,〈〈i〉〉〉, D〈〈〈i〉〉,〈〈〉〉〉
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f [αi/oi]
n
i=1 to refer to the assignment just like f except that it assigns

o1, . . . ,on to α1, . . . , αn, respectively.

Denotation and Satisfaction

Relative to the model M and variable assignment f , we next define, by
simultaneous recursion, (a) the denotation df (τ) of term τ , and (b) f

satisfies ϕ. Strictly speaking, df (τ) should also be indexed to the model
M, but we now always suppress the index to M:

D1 Where κ is any constant of type t, df (κ) = V(κ).

D2 Where α is an variable of type t, df (α) = f(α).

S1 If Π is a term of type 〈t1, . . . , tn〉 (n ≥ 1), and τ1, . . . , τn any terms
of types t1, . . . , tn, respectively, then f satisfies Πτ1 . . . τn iff (a)
df (τ1), . . . ,df (τn) are all defined, (b)O(df (Π)) = T (which implies
df (Π) is defined as well), and (c) 〈‖df (τ1)‖, . . . , ‖df (τn)‖〉 ∈ df (Π).

S2 If Π is any constant or variable of type 〈 〉, then f satisfies Π iff
df (Π) = T.

S3 If Π is any term of type 〈t〉 and τ is any term of type t, then f

satisfies τΠ iff (a) df (τ) is defined, (b) A(df (τ)) = T, and (c)
df (Π) ∈ df (τ).

S4 And so on for the clauses for negation, conditionals, universal quan-
tification, etc. E.g., f satisfies ∀αϕ iff ∀o(f [α/o] satisfies ϕ).

D3 Where [λα1 . . . αn ϕ] is any λ-expression (n ≥ 1), α1, . . . , αn are
variables of type t1, . . . , tn, respectively, and o1, . . . ,on are objects
of type t1, . . . , tn, respectively, then

df ([λα1 . . . αn ϕ]) = {〈‖o1‖, . . . , ‖on‖〉 | f [αi/oi]
n
i=1 satisfies ϕ},

where this set of n-tuples is an element of O〈t1,...,tn〉.

In the special case where [λα1 . . . αn ϕ] is elementary, i.e., has the
form [λα1 . . . αn Πα1 . . . αn], then the above definition has the con-
sequence that

• if O(df (Π)) = T, then df ([λα1 . . . αn ϕ]) = df (Π), and
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• if A(df (Π)) = T, then df ([λα1 . . . αn ϕ]) = {} in O〈t1,...,tn〉
57

D4 Where α is any variable of type t and o is any object of type t, then

df (ιαϕ) =


o ∈ Dt, if f [α/o] satisfies ϕ&

∀o′(f [α/o′] satisfiesϕ→ o′=o)

undefined, otherwise

D5 And so on for the other cases where ϕ is a complex term of type 〈 〉,
i.e., where ϕ is any complex propositional formula. E.g., df (¬ϕ) =

T iff df (ϕ) = F.

Truth

In the usual manner we say that ϕ is true just in case every assignment
f satisfies ϕ.

Axioms

Since we’ve assumed classical logic in the description of our model, it
remains to show that the axiom groups of Section 4.1 and 4.2 are true in
the above model. It is easy to see that the following lemma holds:

Substitution Lemma. If df (τ) is defined and ϕ is any formula,
then f satisfies ϕτα if and only if f [α/df (τ)] satisfies ϕ.

In other words, f satisfies ϕτα whenever the assignment just like f except
that it assigns df (τ) to α satisfies ϕ (assuming df (τ) is defined). This
Lemma holds because, according to our semantics, the truth value of an
atomic formula is calculated in terms of the denotations of its terms, as-
suming they all have such, and this feature is inherited by all the molecular
and quantified formulas built out of such formulas.

In what follows, we omit the proofs that the axioms for classical logic
hold in our model. We also omit proofs for the Hintikka (1959) axiom for
descriptions (AXIOM 1) and AXIOMS 4 – 7. These are obviously true in
the model (since the model was constructed in part to make these axioms

57In other words, if the head relation term in an elementary λ-expression denotes
an abstract relation, then the λ-expression denotes an ordinary relation (of type
〈t1, . . . , tn〉 that is never exemplified.
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true).58 It remains to show only that the three distinctive principles, the
AXIOM for the substitution of identicals, and AXIOMS 2 and 3, are true
in the model.

Axiom: Substitution of Identicals

The proof that substitution of identicals is true in the model is by cases.
The cases are:

x = y

F = G

R = S

p = q

Consider the first case:

Assume some assignment, say f , satisfies x = y. We want to show
f satisfies ϕ if and only if f satisfies ϕ′, where ϕ′ is the result
of replacing 0 or more free occurrences of x by y in ϕ. Now our
assumption implies, by definition of x = y, that f satisfies:

(O!x&O!y & ∀F (Fx ≡ Fy)) ∨ (A!x&A!y & ∀F (xF ≡ yF ))

But since there are no ordinary individuals in the model (the domain
Oi is empty), it follows that f satisfies:

A!x&A!y & ∀F (xF ≡ yF )

So by S4, f satisfies ∀F (xF ≡ yF ). Now by S3, we know:

f satisfies ‘xF ’ iff (a) df (x) is defined, (b) A(df (x)) = T, and
(c) df (F ) ∈ df (x).

And we know something analogous for f satisfies yF . Now suppose
for reductio that df (x) 6= df (y). Since both objects are in Ai, they
are both sets of type 〈i〉 properties, so there must be a property
that is an element of one, say, df (x), and not the other, that is,

58For example, AXIOM 4 asserts that objects encoding properties are abstract.
AXIOM 5 asserts that if a relation is exemplified, it is not abstract. AXIOM 6 asserts
that λ-expressions don’t denote abstract relations. And, given the definition of an
elementary λ-expression in D3 above, AXIOM 7 asserts that η-Conversion holds for
elementary λ-expressions in which the head relation is ordinary. It should be relatively
straightforward to see that these are all true in the model.
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df (y). Let κ be such a property, so that we know κ ∈ df (x) and
not κ ∈ df (y). Now consider the variable assignment f [F/κ]. Since
κ ∈ df (x), it follows by S3 that f [F/κ] satisfies xF . And since
κ 6∈ df (y), it follows by S3 that f [F/κ] doesn’t satisfy yF . So
by the biconditional clause of S4, f [F/κ] doesn’t satisfy xF ≡ yF .
Then, by the universal quantifier clause of S4, f doesn’t satisfy
∀F (xF ≡ yF ), This contradicts the assumed fact that f does satisfy
∀F (xF ≡ yF ). Hence, df (x) = df (y). So by reasoning from the
Substitution Lemma, we can argue as follows: f satisfies ϕ if and
only if f [x/df (x)] satisfies ϕ iff f [x/df (y)] satisfies ϕ iff f satisfies
ϕ′.

Given the definitions for identity in Section 3, the proof of the remain-
ing cases, i.e., F = G, R = S, and p = q, are similar to the above.59

AXIOM 2: λ-Conversion

To see AXIOM 2 holds, note that the axiom is trivially true in the case
where [λα1 . . . αn ϕ] is an elementary λ-expression. For in that case, the
λ-expression has the form:

[λα1 . . . αn Πα1 . . . αn]

where α1, . . . , αn have types 〈t1, . . . , tn〉, respectively, and Π is any simple
n-place relation term (i.e., constant or variable) of type 〈t1, . . . , tn〉. So,
by the consequence noted at the end of D3, the following holds:

[λα1 . . . αn Πα1 . . . αn]β1 . . . βn ≡ Πβ1 . . . βn

For there are two cases: if Π denotes an ordinary relation, then the de-
notation of the λ-expression is just the denotation of Π itself, and if Π

denotes an abstract relation, then Π denotes the empty set and both sides
of the biconditional [λα1 . . . αn Πα1 . . . αn]β1 . . . βn ≡ Πβ1 . . . βn are false
(given that the contrapositive of AXIOM 5 tells us that abstract relations
aren’t exemplified).

59For example, if f satisfies F = G, it satisfies (O!F & O!G & ∀x(xF ≡ xG)) ∨
(A!F & A!G & ∀H(FH ≡ GH)). If the values of F and G are both in O〈i〉 and the
same individuals encode them (which in the model means they are members of the
same members of Ai), then they are identical. And if the values of F and G are both
in A〈i〉, and they encode the same properties of properties (which in the model means
they have the same members), they are identical.
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When [λα1 . . . αn ϕ] is non-elementary, then ϕ is any propositional
formula that is free of descriptions (by the clause for Complex terms in
the definition of our language). Our semantic definition of truth requires
us to show that every assignment function f satisfies:

[λα1 . . . αn ϕ]β1 . . . βn ≡ ϕβ1...βn
α1,...,αn

, provided βi is substitutable for
αi in ϕ (1 ≤ i ≤ n)

For simplicity and ease of readability, we prove this only for the 1-place
case, so that where α, β are variables of some type t, our task is to show
that every assignment function f satisfies:

[λα ϕ]β ≡ ϕβα, provided β is substitutable for α in ϕ

Moreover, if we use x, y, z, . . . as arbitrarily chosen variables of type t, we
simply have to show:

[λx ϕ]y ≡ ϕyx, provided y is substitutable for x in ϕ

So suppose f is an arbitrary assignment function. Then, by the clauses
in S4, we have to show f satisfies [λx ϕ]y if and only if f satisfies ϕyx:

Note that by clause S1, f satisfies [λx ϕ]y if and only if:

(a) df (y) is defined

(b) O(df ([λx ϕ])) = T, i.e., df ([λx ϕ]) ∈ O〈t〉, by definition of O

(c) ‖df (y)‖ ∈ df ([λx ϕ])

But (a), (b) and (c) hold if and only if:

‖df (y)‖ ∈ {‖o‖ | f [x/o] satisfies ϕ},
where this latter set is an element of O〈t〉

by clause D3.60 So by set-abstraction, the fact that ϕ is propositional
and description-free, and the Lemma on Proxies (see below), the above
holds if and only if:

60The left-to-right direction, i.e., from (a), (b) and (c) to this conclusion, is imme-
diate from D3 and (c). Now for the right-to-left direction, assume that ‖df (y)‖ ∈
{‖o‖ | f [x/o] satisfies ϕ}. But since y is a variable, ‖df (y)‖ is defined and so (a)
holds. And since ‖df (y)‖ is an element of {‖o‖ | f [x/o] satisfies ϕ}, the latter can’t
be empty, and so by D3, df ([λx ϕ]) is an element of O〈t〉. Thus (b) holds. And by
D3, (c) holds.
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f [x/df (y)] satisfies ϕ

i.e., by the Substitution Lemma, if and only if:

f satisfies ϕyx

For this conclusion to hold, it remains only to show:

Lemma on Proxies: Let x be a variable of type t. Then if ϕ is
a description-free propositional formula and and o and o′ have the
same proxy, then:

L1 for any term τ in ϕ, ‖df [x/o](τ)‖ = ‖df [x/o′](τ)‖, and

L2 f [x/o] satisfies ϕ iff f [x/o′] satisfies ϕ

Proof. The proof proceeds by induction on the λ-rank of propositional
formulas ϕ, i.e., how deeply nested is the deepest λ expressions in ϕ. But
in what follows, the notion of λ-rank applies to any formula or term.61

(We ignore the trivial case where x doesn’t occur free in ϕ.) For L2,
without loss of generality, we need only prove the left to right direction,
i.e., that if f [x/o] satisfies ϕ, then f [x/o′] satisfies ϕ. So assume f [x/o]

satisfies ϕ.
The base case is where ϕ is a formula of λ-rank 0, i.e., without λ-

expressions. We first consider atomic formulas ϕ of the form Πnτ1 . . . τn
(n ≥ 0) where none of Πn, τ1, . . . , τn are λ-expressions. Note that to
prove L1, we must show that (1) df [x/o](Π) = df [x/o′](Π) and (2) for
each τi, df [x/o](τi) = df [x/o′](τi). We will prove (1) and (2) in the course
of proving L2. There are two subcases for L2: n ≥ 1 or n = 0. When
n ≥ 1, then each of Πn, τ1, . . . , τn is either a constant or a variable. And
when n = 0, then ϕ has the form Π where Π is a constant or a variable
of the empty type. We cover these two subcases in turn.

In the first subcase (n ≥ 1), ϕ is governed by S1. So ϕ has the form
Πnτ1 . . . τn and contains no λ-expressions. So we know62 (i) x is either
Πn or one of the τi, (ii) τ1, . . . , τn have any types and (iii) Π is of an

61If ϕ (or τ) contains no λ-expressions, it has a λ-rank of 0. If no λ-expression in
ϕ (τ) contains a λ-expression, then its λ-rank is 1. If ϕ (τ) contains a λ-expression
whose matrix has λ-rank n and no λ-expression in ϕ (τ) has a λ-rank greater than n,
then ϕ (τ) has a λ-rank of n+ 1.

62We need not consider the case where Π contains x free as proper subterm because
the only way for that to happen is if Π were a λ-expression (which is ruled out in the
base case) or if Π were a description (which is ruled out because ϕ is description-free).
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appropriate type to relate τ1, . . . , τn. Then, since f [x/o] satisfies ϕ, it
follows that:

(a) df [x/o](τ1), . . . ,df [x/o](τn) are all defined

(b) O(df [x/o](Π)) = T

(c) 〈‖df [x/o](τ1)‖, . . . , ‖df [x/o](τn)‖〉 ∈ df [x/o](Π).

We’re trying to show f [x/o′] satisfies ϕ, i.e., all of (d) – (f) have to hold:

(d) df [x/o′](τ1), . . . ,df [x/o′](τn) are all defined.

(e) O(df [x/o′](Π)) = T.

(f) 〈‖df [x/o′](τ1)‖, . . . , ‖df [x/o′](τn)‖〉 ∈ df [x/o′](Π).

Proof of (d). This follows from (a) because for any term τ , if df [x/o](τ)

is defined, then df [x/o′](τ) is defined. (If df [x/o′](τ) were undefined, then
τ would have to be a description. But ϕ is description-free.)

Proof of (e). This follows from (b) by cases. (i) If Π is a constant or a
variable other than x, then df [x/o](Π) = df [x/o′](Π), because f [x/o] and
f [x/o′] differ only by their assignment to the variable x which is different
than Π. So if O(df [x/o](Π)) = T, then O(df [x/o′](Π)) = T. (ii) If Π is
x, then by (b), df [x/o](Π)) = o. Since o and o′ have the same proxy and
O(o) = T (i.e., o is ordinary), o = o′. So O(df [x/o′](Π)) = T. Note that
we have now proved part (1) of L1 where ϕ falls under the first subcase.

Proof of (f). There are 2 cases to consider: one or more of the τi is
x or Π is x. Suppose one or more of the τi is x. Then we note that
df [x/o](Π) = df [x/o′](Π) because x does not occur in Π (because Π isn’t
a λ-expression and x has to have a different type from Π and so can’t
be Π). Moreover, for each τi, ‖df [x/o](τi)‖ = ‖df [x/o′](τi)‖. If τi is x
in which case this follows from the fact that o and o′ have the same
proxy. Otherwise, τi is a constant or or a variable other than x and so
the denotation of τi under f [x/o′] is the same as that under f [x/o]. The
claim then follows from (c). Alternatively, suppose then that Π is x.
Then ‖df [x/o](τi)‖ = ‖df [x/o′](τi)‖ (since in this case, x isn’t one of the
τi). Since, by (b), Π is ordinary, then by the argument in (e), o = o′, and
so the claim is trivially true by (c). Note that we have now proved part
(2) of L1 where ϕ falls under the first subcase.
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In the second subcase (n = 0), ϕ has the form Π where Π is of the empty
type. So Π can only be a constant or a variable. If ϕ is a constant or
variable of type 〈 〉, S2 applies. Then either Π is either a constant, or a
variable other than x, or x itself. If Π is a constant or a variable other than
x, then f [x/o] satisfies Π iff df [x/o](Π) = T (by S2) iff df [x/o′](Π) = T

(since Π doesn’t contain a free occurrence of x) iff f [x/o′] satisfies Π

(by S2). If Π is x, then f [x/o] satisfies ϕ iff df [x/o](x) = T (by S2) iff
o = T iff o′ = T (see below) iff df [x/o′](x) = T iff f [x/o′] satisfies ϕ.
To see that o = T iff o′ = T, recall that ‖o′‖ = ‖o‖ (by hypothesis)
and since T 6∈ S〈 〉, the only object with T at its proxy is T itself. So
‖o′‖ = ‖o‖ = T iff o′ = o = T. Note that this proves part (1) of L1
where ϕ falls under the second subcase. There is no part (2) of L1 for
this subcase.

We now have that L1 and L2 hold for atomic formulas ϕ of λ-rank 0.
We conclude this base case by noting that L1 and L2 hold for complex
formulas ϕ of the form ¬ψ, ψ → χ, and ∀αψ. By S4 and D5, the truth
of L1 and L2 for these complex formulas is grounded in the truth of L1
and L2 for the atomic formulas with no λ-expressions given that complex
formulas of rank 0 contain no λ-expressions.

Inductive cases: IH: The lemma holds for ψ with λ-rank of n or less,
i.e., for ψ with λ-rank of n or less we may assume:

IH-L1: ‖df [x/o](τ)‖ = ‖df [x/o′](τ)‖, for any term τ in ψ, and

IH-L2: f [x/o] satisfies ψ if and only if f [x/o′] satisfies ψ.

We need to show that it holds for ϕ with λ-rank of n+ 1.
To show L1, we need to show that ‖df [x/o](τ)‖ = ‖df [x/o′](τ)‖, for

any term τ in ϕ. We first consider the case where ϕ is atomic. Fix an
arbitrary such τ and consider its denotation:

• D1 and D2 only apply if τ has a λ-rank of 0, so the result follows
immediately from IH-L1.

• D3 applies when τ is of the form [λα1 . . . αnψ]. Now if τ has λ-rank
n or less, then the result follows by IH-L1. So we need only be con-
cerned with the case when τ has λ-rank n+1 where ψ has λ-rank n.
We have to show ‖df [x/o]([λα1 . . . αnψ])‖ = ‖df [x/o′]([λα1 . . . αnψ])‖.
Note that D3 defines the denotation of the λ-expression as the set
of n-tuples (of proxies of objects) such that f [αi/oi]

n
i=1 satisfies ψ.
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But ψ has λ-rank n (one less than τ), so by IH-L2, f [αi/oi]
n
i=1 satis-

fies ψ if and only if f [αi/o
′
i]
n
i=1 satisfies ψ, so the set of proxy-tuples

must be the same and L1 holds.

• D4 would apply if τ were a description. But ϕ is description-free.

We now have the L1 holds for atomic formulas ϕ of λ-rank up to n + 1.
We can then conclude that L1 holds for complex formulas ϕ of the form
¬ψ, ψ → χ, and ∀αψ. By D5, the truth of L1 for these complex formulas
is grounded in the truth of L1 for the atomic formulas with λ-rank up to
n+ 1 given that a complex formula can not have a λ-rank higher than its
component atomic formulas.

To show L2, we have to show: f [x/o] satisfies ϕ if and only if f [x/o′]

satisfies ϕ, when ϕ has an λ-rank of n + 1. We now make use of L1,
which has been proved for all λ-ranks. So we know that for any term τ

in ϕ, ‖df [x/o](τ)‖ = ‖df [x/o′](τ)‖. We first consider the case where ϕ is
atomic. Moreover, we need only consider formulas governed by S1, for
(a) if the λ-rank of ϕ is some n other than 0, then ϕ is not a constant or
variable, and so S2 doesn’t apply, (b) S3 doesn’t apply since that governs
encoding formulas, which aren’t propositional. So we are consider ϕ of
the form Πτ1 . . . τn where any of Π, τ1,. . . ,τn can have a λ-rank of n+ 1.
Without loss of generality, we need only prove the left to right direction,
i.e., that if f [x/o] satisfies ϕ, then f [x/o′] satisfies ϕ. So assume f [x/o]

satisfies ϕ. By assumption, it follows that:

(a) df [x/o](τ1), . . . ,df [x/o](τn) are all defined.

(b) O(df [x/o](Π)) = T.

(c) 〈‖df [x/o](τ1)‖, . . . , ‖df [x/o](τn)‖〉 ∈ df [x/o](Π).

We’re trying to show f [x/o′] satisfies ϕ, i.e., all of (d) – (f) have to hold:

(d) df [x/o′](τ1), . . . ,df [x/o′](τn) are all defined.

(e) O(df [x/o′](Π)) = T.

(f) 〈‖df [x/o′](τ1)‖, . . . , ‖df [x/o′](τn)‖〉 ∈ df [x/o′](Π).

Proof of (d). This follows by the exact reasoning for clause (d) in the
base case, which did not depend on the λ-rank of τi.

Proof of (e). There are three cases to consider, two of which are identical
to the proof of clause (e) in the base case. The three cases are (i) Π
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is a constant or a variable other than x, (ii) Π is x, or (iii) Π is a λ-
expression. So it remains to show only (iii). Π is a λ-expression and by
D3, the denotation of all λ-expressions are ordinary. Thus (e) follows
since O(df [x/o′](Π)) = T.

Proof of (f). By assumption (b), we know that the denotation of Π is
ordinary. And since the denotation of Π is ordinary, the proxy of the
denotation is just equal to the denotation itself. So:

df [x/o](Π) = ‖df [x/o](Π)‖ (since Π is ordinary)
= ‖df [x/o′](Π)‖ (by L1)
= df [x/o′](Π) (since Π is ordinary)

Moreover, we also know, by L1, that the proxies of the denotations for
each τ are identical, that is for each τi ‖df [x/o](τi)‖ = ‖df [x/o′](τi)‖. So
the tuple in (f) is identical to the tuple in (c). Hence it follows that (f)
must hold if (c) holds.

We now have that L2 holds for atomic formulas ϕ of λ-rank n+1. We
conclude this inductive case by noting that L2 holds for complex formulas
ϕ of the form ¬ψ, ψ → χ, and ∀αψ. By S4, truth of L2 for these complex
formulas is grounded in the truth of L2 for the atomic formulas with λ-
rank less than or equal to n + 1, given that complex formulas only have
rank n+ 1 in virtue of the ranks of their atomic components. That is, S4
doesn’t increase the λ-rank.

AXIOM 3: Comprehension Principles for Abstracta

At the beginning of the appendix, we noted that our analysis of mathe-
matics does not require the full unbounded language. In general we need
only validate comprehension up to a given fixed type height h. So we
fix n and m such that the bounded language Ln,m has m > h. Now
we will show AXIOM 3 holds in the model for any arbitrary t such that
h(t) < m. Recall that by definition (2) of At (in the Appendix subsection
Structural Domains: Abstract Objects), when h(t) < m, we have that
At = ℘(O〈t〉 ∪A〈t〉). We now show that ∃α(A!α & ∀F (αF ≡ ϕ)) holds
by showing that {F |ϕ} defines an abstract object of type t.

Proof. Pick an arbitrary formula ϕ, where α of type t doesn’t occur free in
ϕ. To show that the instance ∃α(A!α&∀F (αF ≡ ϕ)) is true in the model,
we have to show that every assignment f satisfies this instance. So pick
an arbitrary assignment f . By S4 (and the definition of the existential

Hannes Leitgeb, Uri Nodelman, and Edward N. Zalta 74

quantifier), we have to show that for some element, say o∗, in the domain
over which α ranges, f [α/o∗] satisfies A!α & ∀F (αF ≡ ϕ). So again by
S4, we have to show that for some element o∗ in the domain over which
α ranges, (a) f [α/o∗] satisfies A!α and (b) f [α/o∗] satisfies ∀F (αF ≡ ϕ).
So we show that when we choose the set {o | f [F/o] satisfies ϕ} as our
witnesss, both (a) and (b) hold.

(a) To show:

f [α/{o | f [F/o] satisfies ϕ}] satisfies A!α

we have to show, by S1, that:

(i) df [α/{o|f [F/o] satisfies ϕ}](α) is defined,

(ii) O(df [α/{o|f [F/o] satisfies ϕ}](A!)) = T, and

(iii) ‖df [α/{o|f [F/o] satisfies ϕ}](α)‖ ∈ df [α/{o|f [F/o] satisfies ϕ}](A!).

I.e., by applying definitions, we have to show:

(i) {o | f [F/o] satisfies ϕ} ∈ At.

(ii) A! is ordinary.

(iii) ‖{o | f [F/o] satisfies ϕ}‖ ∈ V(A!〈t〉) = St.

(ii) is trivial; (iii) follows directly from (i) by definition of the proxy func-
tion, and so it remains to show (i).

Note that {o | f [F/o] satisfies ϕ} is a fixed set of objects of type 〈t〉.
But all objects of type 〈t〉 are in O〈t〉 or A〈t〉. Since h(t) < m, it follows
that {o | f [F/o] satisfies ϕ} ∈ ℘(O〈t〉 ∪A〈t〉) = At.

Bibliography

Anderson, D., and E. Zalta, 2004, ‘Frege, Boolos, and Logical Objects’,
Journal of Philosophical Logic, 33/1 (February): 1–26.

Azzouni, J., 2004, Deflating Existential Consequence: A Case for Nom-
inalism, New York: Oxford University Press.

Benacerraf, P., 1981, ‘Frege: The Last Logicist’, in Midwest Studies in
Philosophy: VI , P. French et al. (eds.), Minneapolis: U. Minnesota
Press; page reference is to the reprint in Demopoulos [1995].



75 A Defense of Logicism

Blanchette, P., 2012, Frege’s Conception of Logic, New York: Oxford
University Press.

Boolos, G., 1986/87, ‘Saving Frege From Contradiction’, Proceedings of
the Aristotelian Society , 87/1: 137–151; reprinted in Boolos [1998],
171–182.

Boolos, G., 1990, ‘The Standard of Equality of Numbers,’ in Meaning
and Method: Essays in Honor of Hilary Putnam, G. Boolos (ed.),
Cambridge: Cambridge University Press, pp. 261–277; page refer-
ence is to the reprint in Boolos [1998], pp. 202–19.

Boolos, G., 1998, Logic, Logic, and Logic, Cambridge MA: Harvard Uni-
versity Press.

Brandom, R., 1998, Making it Explicit, Cambridge, MA: Harvard Uni-
versity Press.

Bueno, O., C. Menzel, and E. Zalta, 2014, ‘Worlds and Propositions Set
Free,’ Erkenntnis, 79: 797–820.

Burgess, J., 2003, ‘Review of Kit Fine, The Limits of Abstraction’, Notre
Dame Journal of Formal Logic, 44/4: 227–251.

Burgess, J., 2005, Fixing Frege, Princeton: Princeton University Press.

Carnap, R., 1931, ‘Die logizistische Grundlegung der Mathematik’, Erken-
ntnis, 2: 91–105.

Carnap, R., 1947,Meaning and Necessity, Chicago: University of Chicago
Press.

Church, A., 1951, ‘A Formulation of the Logic of Sense and Denotation’,
in Structure, Method and Meaning: Essays in Honor of Henry M.
Sheffer, P. Henle et al. (eds.), New York: Liberal Arts Press, 3–24.

Cook, R., 2003, ‘Iteration One More Time’, Notre Dame Journal of
Formal Logic, 44(2): 63–92.

Cook, R., 2012, ‘Conservativeness, Stability, and Abstraction’, The British
Journal for the Philosophy of Science, 63(3): 673–696.

Cook, R., and Ø. Linnebo, 2018, ‘Cardinality and Acceptable Abstrac-
tion’, Notre Dame Journal of Formal Logic, 59(1): 61–74.

Hannes Leitgeb, Uri Nodelman, and Edward N. Zalta 76

Dummett, M., 1991, Frege: Philosophy of Mathematics, Cambridge,
MA: Harvard University Press.

Field, H., 1989, Realism, Mathematics, and Modality , Oxford: Blackwell.

Fine, K., 2002, The Limits of Abstraction, Oxford: Clarendon Press.

Francez, N., and R. Dyckhoff, 2010, ‘Proof-theoretic Semantics for a
Natural Language Fragment’, Linguistics and Philosophy, 33: 447–
477.

Friedman, M., 1994 [1999], ‘Geometry, Convention, and the Relativized
A Priori: Reichenbach, Schlick, and Carnap’, in W. Salmon and
G. Wolters (eds.), Logic, Language, and the Structure of Scientific
Theories, Pittsburgh: University of Pittsburgh Press, pp. 21–34;
reprinted in M. Friedman, Reconsidering Logical Positivism, Cam-
bridge: Cambridge University Press, 1999, pp. 59–70. [Page refer-
ence is to the original.]

Frege, G., 1893/1901, Grundgesetze der Arithmetik, 2 volumes, Band I
(1893), Band II (1903), Jena: Verlag Hermann Pohle.

Göedel, K., 1964, ‘What is Cantor’s Continuum Problem,’ reprinted
in S. Feferman et al., Kurt Göedel: Collected Works (Volume II:
Publications 1938–1974), Oxford: Oxford University Press, 1990,
254–270.

Goldfarb, W., 2001, ‘Frege’s Conception of Logic,’ in J. Floyd and S.
Shieh (eds.), Future Pasts: The Analytic Tradition in Twentieth
Century Philosophy, Oxford: Oxford University Press, 25–41.

Hale, B., 1987, Abstract Objects, Oxford: Blackwell.

Heck, R., 1992, ‘On the Consistency of Second-order Contextual Defini-
tions,’ Noûs, 26: 491–94.

Hintikka, J. 1959, ‘Towards a Theory of Definite Descriptions,’ Analysis,
19(4): 79–85.

Hodes, H., 1984, ‘Logicism and the Ontological Commitments of Arith-
metic,’ The Journal of Philosophy, 81(3): 123–149.

Hodes, H., 1991, ‘Where Do Sets Come From?’, Journal of Symbolic
Logic, 56(1): 151–175.



77 A Defense of Logicism

Kirchner, D., 2017, Representation and Partial Automation of the Prin-
cipia Logico-Metaphysica in Isabelle/HOL, Master’s Thesis, Institut
für Mathematik, Freie Universität Berlin.

Klev, A.M., 2017, ‘Dedekind’s Logicism’, Philosophia Mathematica, 25(3):
341–36.

Leitgeb, H., and Ladyman, J., 2008, ‘Criteria of Identity and Structural-
ist Ontology’, Philosophia Mathematica 16(3): 388–396.

Linnebo, Ø., 2003, ‘Frege’s conception of logic: From Kant to Grundge-
setze,’ Manuscrito - Rev. Int. Fil. Campinas, 26(2): 235–252.

Linnebo, Ø., 2009, ‘Introduction’, in Linnebo (ed.) 2009, pp. 321–329.

Linnebo, Ø. (ed.), 2009, The Bad Company Problem, special issue, Syn-
these, 70/3 (October).

Linnebo, Ø., 2018, Thin Objects: An Abstractionist Account, Oxford:
Oxford University Press.

Linsky, B., and Zalta, E., 1995, ‘Naturalized Platonism vs Platonized
Naturalism’, The Journal of Philosophy , 92(10): 525–555.

Linsky, B., and Zalta, E., 2006, ‘What is Neologicism?’, Bulletin of Sym-
bolic Logic, 12/1: 60–99.

MacBride, F., 2003, ‘Speaking with Shadows: A Study of Neo-Logicism,’
British Journal for the Philosophy of Science, 54: 103–163.

MacFarlane, J., 2002, ‘Frege, Kant, and the Logic in Logicism’, The
Philosophical Review, 111(1): 25–65.

Montague, R., 1973, ‘The Proper Treatment of Quantification in Ordi-
nary English’, Approaches to Natural Language, in K.J.J. Hintikka,
J.M.E. Moravcsik, and P. Suppes (eds.), D. Reidel, Dordrecht, 1973,
pp. 221–242; reprinted in R. Thomason (ed.), Formal Philosophy:
Selected Papers of Richard Montague, New Haven: Yale University
Press, 247–270.

Myhill, J., 1963, ‘An Alternative to the the Method of Extension and
Intension’, in The Philosophy of Rudolf Carnap, P. Schilpp (ed.), La
Salle: Open Court, 299–310.

Hannes Leitgeb, Uri Nodelman, and Edward N. Zalta 78

Nodelman, U. and Zalta, E., 2014, ‘Foundations for Mathematical Struc-
turalism’, Mind, 123/489: 39–78.

Pelletier, F.J., and Zalta, E., 2000, ‘How to Say Goodbye to the Third
Man’, Noûs, 34/2 (June): 165–202.

Prawitz, D., 2006, ‘Meaning Approached via Proofs’, Synthese, 148: 507–
524.

Priest, G., 2005 [2016], Towards Non-Being: The Logic and Metaphysics
of Intentionality, Oxford: Clarendon; revised 2nd edition, 2016.

Rayo, A., 2005, ‘Logicism Reconsidered’, in Stewart Shapiro (ed.), The
Oxford Handbook of Philosophy of Mathematics and Logic, New
York: Oxford University Press, 203–235;
doi:10.1093/0195148770.003.0007

Roeper, P., 2015, ‘A Vindication of Logicism’, Philosophia Mathematica,
24(3): 360–378.

Schroeder-Heister, P., 2006, ‘Validity Concepts in Proof-Theoretic Se-
mantics’, Synthese, 148: 525–571.

Sellars, W., 1980, ‘Inference and Meaning’, in Pure Pragmatics and Pos-
sible Worlds, J. Sicha (ed.), Atascadero: Ridgeview, pp. 261–313.

Tarski, A., 1933, ‘Pojęcie prawdy w językach nauk dedukcyjnych’, Prace
Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Mate-
matyczno-Fizycznych, 34, Warsaw; translated as ‘The Concept of
Truth in Formalized Languages’,’ by J.H. Woodger, in Logic, Se-
mantics, Metamathematics, 2nd edition, John Corcoran (ed.), 152–
278. Indianapolis: Hackett, 1983.

Tarski, A., 1936, ‘On The Concept of Logical Consequence’, in Tarski
1983, 409–420.

Tarski, A., 1983, Logic, Semantics, Metamathematics, second edition, J.
H. Woodger (trans.), John Corcoran (ed.), Indianapolis: Hackett.

Tennant, N., 2004, ‘A General Theory of Abstraction Operations’, The
Philosophical Quarterly, 54(214): 105–133.

Tennant, N., 2022, The Logic of Number, Oxford: Oxford University
Press.



79 A Defense of Logicism

Warren, J., 2020, Shadows of Syntax, New York: Oxford University
Press.

Weir, A., 2003, ‘Neo-Fregeanism: An Embarrassment of Riches’, Notre
Dame Journal of Formal Logic, 44/1: 13–48.

Whitehead, A.N., and B. Russell, 1910–1913, Principia Mathematica,
3 volumes, Volume 1 (1910), Volume 2 (1912), Volume 3 (1913),
Cambridge: Cambridge University Press.

Wittgenstein, L., 1953, Philosophical Investigations, G.E.M. Anscombe
and R. Rhees (eds.), G.E.M. Anscombe (trans.), Oxford: Blackwell.

Wright, C., 1983, Frege’s Conception of Numbers as Objects, Scots Philo-
sophical Monographs, vol. 2, Aberdeen: Aberdeen University Press.

Zalta, E., 1983, Abstract Objects: An Introduction to Axiomatic Meta-
physics, Dodrecht: D. Reidel.

Zalta, E., 1988, Intensional Logic and the Metaphysics of Intentionality,
Cambridge, MA: Bradford/MIT Press.

Zalta, E., 1999, ‘Natural Numbers and Natural Cardinals as Abstract
Objects: A Partial Reconstruction of Frege’s Grundgesetze in Ob-
ject Theory’, Journal of Philosophical Logic, 28(6): 619–660.

Zalta, E., 2000, ‘Neo-Logicism? An Ontological Reduction of Mathe-
matics to Metaphysics’, Erkenntnis, 53(1–2): 219–265.

Zalta, E., 2006, ‘Essence and Modality’, Mind, 115/459: 659–693.

Zalta, E., 2024, ‘Mathematical Pluralism’, Noûs, 58(2): 306–332. doi:10.1111/nous.12451


