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iv Principia Logico-Metaphysica

Draft / Excerpt

NOTE: This is an excerpt from an incomplete draft of the monograph Prin-
cipia Logica-Metaphysica. The monograph draft currently has four parts:

Part I: Prophilosophy
Part II: Philosophy
Part III: Metaphilosophy
Part IV: Technical Appendices, Bibliography, Index

This excerpt was generated on June 4, 2023 and contains:

• Part II:
Page # PDF #

Ch. 7: The Language 174 17
Ch. 8: The Axioms 237 80
Ch. 9: The Deductive System 261 104
Ch. 10: Basic Logical Objects 414 257
Ch. 11: Platonic Forms 488 331
Ch. 12: Situations, Worlds, Times, Fictions 513 356
Ch. 13: Concepts 619 462
Ch. 14: Natural Numbers (w/ Uri Nodelman) 689 532
Ch. 15: Typed Object Theory and Applications 803 646

• Part IV:

Appendix: Proofs of Theorems and Metarules 1,008 746
Bibliography 1,412 1,150

Consequently, this excerpt omits the Preface, Part I, Part III (which is mostly
unwritten), and some Appendices in Part IV. The present excerpt sometimes
contains references to the omitted content and active links in the Table of Con-
tents to omitted content won’t work.

The work is ongoing and so the monograph changes constantly. Any citations
to this material should explicitly reference this version of June 4, 2023, since
page numbers, chapter numbers, section numbers, item (definition, theorem)
numbers, etc., may all change in future versions.
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Chapter 7

The Language

Throughout most of Part II, we prove theorems that are formulated in a second-
order modal language. This will be the language used in Chapters 7 – 14.
However this language is just a fragment of a more general, type-theoretic
modal language. We postpone the definition of the type-theoretic language
until Chapter 15, where we investigate typed object theory and its applica-
tions.

In the present and subsequent chapters, our metalanguage makes use of
some basic notions and principles of number theory and set theory, so as to
more precisely articulate certain definitions. But none of these notions and
principles are used in the object language defined in this chapter. Ultimately,
the philosophical system sketched over the next few chapters will offer us an
analysis of the basic notions and principles of number theory and set theory
used in the metalanguage, but we won’t be in a position to see this until Chap-
ter 10 (where we define and prove facts about natural classes) and Chapter 14
(where we define and prove facts about natural cardinals and natural numbers).

7.1 Metatheoretical Definitions

The definitions that generate a particular second-order language are given over
the next several items.

(1) Metadefinitions: Simple Terms. A simple term of our second-order lan-
guage is any expression that is a simple individual term or a simple n-place rela-
tion term (n ≥ 0), where these are listed as follows:

(.1) Simple Individual Terms: (Less Formal)
Individual Constants (Names):

a1, a2, . . . (a,b,c,b1,b2, . . . , c1, c2, . . .)
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Individual Variables:
x1,x2, . . . (x,y,z,u,v,w,y1, y2, . . . , z1, z2, . . .)

(.2) Simple n-ary Relation Terms (n ≥ 0):
n-ary Relation Constants (Names)

P n1 , P
n
2 , . . . (P n,Qn,Rn,Sn,T n)

n-ary Relation Variables:
Fn1 ,F

n
2 , . . . (Fn,Gn,Hn, In, Jn)

(.3) Distinguished Unary Relation Constant:
E! (read: ‘being concrete’ or ‘concreteness’)

where E! is just a rewritten version of the unary relation constant P 1
1

In what follows, we shall use the technical term primitive constant as follows:

(.4) A primitive constant is any simple individual constant or simple n-ary
relation constant (for some n ≥ 0) that occurs in the lists in (.1), (.2), and
(.3) above.

This helps us to distinguish primitive constants from new constants introduced
by definition. No similar distinction is needed for variables, since we won’t in-
troduce new variables into the language by definition. To facilitate readability,
we often use the expressions listed in the column labeled ‘Less Formal’ as re-
placements for the official expressions of the language.

(2) Metadefinitions: Syncategorematic Expressions. A syncategorematic ex-
pression represents a primitive notion of the language but is neither a term
(i.e., the kind of expression that may have a denotation) nor a formula (i.e.,
the kind of expression that has truth conditions). To list the syncategorematic
expressions of our language, we use α as a metavariable that ranges over all
variables and use ν (Greek nu), sometimes decorated with a numerical sub-
script, as a metavariable that ranges just over individual variables:

(.1) Unary Formula-Forming Operators:
¬ (‘it is not the case that’ or ‘it is false that’)
� (‘necessarily’ or ‘it is necessary that’)
A (‘actually’ or ‘it is actually the case that’)

(.2) Binary Formula-Forming Operator:
→ (‘if . . . , then . . . ’)

(.3) Variable-Binding Formula-Forming Operator:
∀α (‘every α is such that’)

for every variable α
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(.4) Variable-Binding Individual-Term-Forming Operator:
ıν (‘the ν such that’)

for every individual variable ν

(.5) Variable-Binding n-ary Relation-Term-Forming Operators (n ≥ 0):
λν1 . . .νn (‘being ν1, . . . ,νn such that’)

for any distinct individual variables ν1, . . . ,νn, and
λ (‘that . . . ’)

where no variables follow the λ.

These primitive, syncategorematic expressions are referenced in the definition
of the syntax of our language and are used to define complex formulas and
complex terms. In what follows, we sometimes call:

¬ the negation operator
� the necessity operator
A the actuality operator
→ the conditional operator
∀ the universal quantifier
ı the definite description operator
λ the relation abstraction, or λ, operator

By convention, in any conditional formula of the form ϕ→ ψ, we say ϕ is the
antecedent and ψ the consequent of the conditional.

(3) Metadefinitions: Syntax of the ‘Second-order’ Language. We present the
syntax of our second-order language by a simultaneous recursive definition of
the following four kinds of expressions: individual term, n-place relation term,
formula, and term.

Base Clauses:

(.1) Every simple individual term (i.e., every individual constant and individ-
ual variable) is an individual term and every simple n-ary relation term
(i.e., every n-ary relation constant and n-ary relation variable), is an n-ary
relation term (n ≥ 0)

(.2) Every 0-ary relation constant and 0-ary relation variable is a formula

(.3) If Πn is any n-ary relation term (n ≥ 1) and κ1, . . . ,κn are any individual
terms, then

(.a) Πnκ1 . . .κn is a formula (‘κ1, . . . ,κn exemplify Πn’)

(.b) κ1 . . .κnΠ
n is a formula (‘κ1, . . . ,κn encode Πn’)

Recursive Clauses:
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(.4) If ϕ and ψ are formulas and α any variable, then
[λϕ], (¬ϕ), (ϕ→ ψ), ∀αϕ, (�ϕ), and (Aϕ) are formulas.

(.5) If ϕ is any formula and ν any individual variable, then
ıνϕ is an individual term

(.6) If ϕ is any formula and ν1, . . . ,νn are any distinct individual variables
(n ≥ 0), then

(a) [λν1 . . .νn ϕ] is an n-ary relation term, and

(b) ϕ itself is a 0-ary relation term.

Finally, we say:

(.7) A term is any individual term or n-ary relation term (n ≥ 0).

Though it should be clear how to read the formulas and terms of the language
we’ve just defined, there are two interesting facts to note about reading certain
expressions, namely, (i) 0-ary λ-expressions of the form [λϕ] are both formulas
and terms, and (ii) every formula ϕ is a 0-ary relation term. We discuss these
in turn.

By (.4), expressions of the form [λ ϕ] are formulas and, by (.6.a), they are
also 0-ary relation terms. So expressions of the form [λϕ] should be read in one
of two ways, depending on the context. On the one hand, when [λϕ] stands by
itself or occurs in formula position (e.g., on one side of a conditional or bicon-
ditional), it asserts that ϕ is true, since truth is the 0-ary case of predication. So,
we read the formula [λϕ] ≡ ϕ as: that-ϕ is true if and only if ϕ. On the other
hand, there will be contexts in which [λ ϕ] functions as a term, and in those
contexts, we read [λϕ] simply as ‘that-ϕ’. So, for example, when we define the
notion τ exists (where τ is any term) and represent it as τ↓, then [λϕ]↓ asserts
the existence of the proposition [λϕ] and would be read as: that-ϕ exists. And
when we define the notion τ is identical to σ and represent it a τ = σ , then the
formula p = [λϕ] would be read: p is identical to that-ϕ. And when we de-
fine the notion Contingent(p), where p can be instantiated by any 0-ary relation
term, the formula Contingent([λϕ]) would be read: that-ϕ is contingent. If it
helps, one can always preface ‘the proposition’ to the reading of [λϕ] when the
latter is being used as a term. For instance, one could read our last example,
Contingent([λϕ]), as: the proposition that-ϕ is contingent.

The second interesting fact about reading the language is that (.6.b) stip-
ulates that every formula is a 0-ary relation term. This feature allows us to
regard formulas of the form ϕ ≡ ϕ as substitution instances of the universal
claim ∀p(p ≡ p). But it also means that formulas can occur in contexts where
they are simply naming rather than asserting propositions. For example, in the
previous paragraph, we noted that τ↓ will be defined for every term. So when
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a 0-ary relation term such as Fx is substituted for τ , the resulting formula, Fx↓,
is well-formed. This claim asserts existence of the proposition Fx, in which x
is some fixed but unspecified object and F is some fixed but unspecified prop-
erty. So in the claim Fx↓, the formula Fx is not asserting that x exemplifies F,
but rather naming the proposition x-exemplifies-F. Again, if it helps, one can
add ‘the proposition’ to the reading of a formula being used as term, so that
Fx↓ may be read: the proposition Fx exists. Similarly, identity will be defined
for all terms, including 0-ary relation terms. So a claim of the form ϕ = ψ is
well-formed. In claims of this form, the instances of ϕ and ψ are not making
assertions. If it helps, read such claims as: the proposition ϕ is identical to
the proposition ψ. For example, Fx = [λz Fz]x would be read: the proposition
x exemplifies F is identical to the proposition x exemplifies being an object z
that exemplifies F. It should always be clear, in what follows, when a formula
is being used, and is to be read, as a term denoting a proposition instead of as
an expression making an assertion.

When n ≥ 1, we call formulas of the form Πnκ1 . . .κn (atomic) exemplification
formulas and formulas of the form κ1 . . .κnΠ

n (atomic) encoding formulas. In
what follows, we say:

(.8) ϕ is the matrix of ∀αϕ, ıνϕ, and [λν1 . . .νn ϕ] (n ≥ 0).

Once we define ∃αϕ, then one should extend the above definition so that ϕ
counts as its matrix.

According to clause (.6.a), any formula ϕ can serve as the matrix of a re-
lation term of the form [λν1 . . .νn ϕ], where n ≥ 0. If we allow ourselves to
speak informally about the denotation of a term, then it is important to alert
the reader to the following facts about the system we shall be developing:

• Not every λ-expression is guaranteed to have a denotation (indeed, some
λ-expressions will provably fail to have denotations), and so these ex-
pressions, like definite descriptions, will be governed by a negative free
logic.

• Every 0-ary λ-expression [λ ϕ] is guaranteed to have a denotation, by
axiom (39.2), and every formula ϕ is guaranteed to have a denotation, by
theorem (104.2).

• It will be provable that [λϕ] andϕ always denote the same 0-ary relation,
by theorem (111.1).

In general, λ-expressions are not to be interpreted as terms that potentially
denote functions, but rather as terms that potentially denote relations. Thus,
when we introduce axioms and rules of inference governing λ-expressions in
the next two chapters, the resulting λ-calculus is to be understood as a calculus
of relations.
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Finally, in what follows, we use τ to range over terms. The simple terms
listed in (1) are terms in virtue of clause (.1). We say:

(.9) A term τ is complex if and only if τ is not a simple term.

So the constants and variables listed in (1) are not complex terms. Given (.9),
clauses (.5), and (.6) introduce kinds of complex terms:

• definite descriptions are complex individual terms, by (.5) and (.9)

• λ-expressions are complex relation terms, by (.6.a) and (.9)

• formulas other than 0-ary relation constants and 0-ary variables are com-
plex 0-ary relation terms, by (.6.b) and (.9)

We sometimes also use σ and ρ in addition to τ to range over terms.

(4) Metadefinition: A BNF Definition of the Syntax. We may succintly summa-
rize the essential definitions of the context-free grammar of our language us-
ing Backus-Naur Form (BNF). In the BNF definition, we repurpose our Greek
metavariables as the names of grammatical categories, as follows:

δ primitive individual constants
ν individual variables
Σn primitive n-ary relation constants (n ≥ 0)
Ωn n-ary relation variables (n ≥ 0)
α variables
κ individual terms
Πn n-ary relation terms (n ≥ 0)
ϕ formulas
τ terms

The BNF grammar for our second-order language can now be stated as fol-
lows:75

75I’m indebted to Uri Nodelman and Daniel Kirchner, each of whom suggested a different way
of simplifying the original BNF definition. Nodelman’s suggestion yielded a BNF that could be
more efficiently parsed. Kirchner’s suggestion led to the elimination of the syntactic category
propositional formula, i.e., formulas that have encoding subformulas. We may now build well-
formed complex n-ary relation terms (n ≥ 1) of the form [λν1 . . .νn ϕ] from any formula ϕ, though
not all such terms are guaranteed to have a denotation.
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δ ::= a1, a2, . . .
ν ::= x1,x2, . . .

(n ≥ 0) Σn ::= P n1 , P
n
2 , . . . (with P 1

1 distinguished and written as E!)
(n ≥ 0) Ωn ::= Fn1 ,F

n
2 , . . .

α ::= ν | Ωn (n ≥ 0)
κ ::= δ | ν | ıνϕ

(n ≥ 1) Πn ::= Σn | Ωn | [λν1 . . .νn ϕ] (ν1, . . . ,νn are pairwise distinct)
ϕ ::= Σ0 | Ω0 | Πnκ1 . . .κn (n ≥ 1) | κ1 . . .κnΠ

n (n ≥ 1) |
[λϕ] | (¬ϕ) | (ϕ→ ϕ) | ∀αϕ | (�ϕ) | (Aϕ)

Π0 ::= ϕ
τ ::= κ | Πn (n ≥ 0)

It is insightful to recognize that one could, in the above BNF, replace ϕ every-
where by Π0, except on the next-to-last line, which would then be reversed
to read ϕ ::= Π0. This alternative BNF would first introduce the individual
and relation terms of every arity and then define the formulas as 0-ary re-
lation terms. However, we’ve made a considered choice to write the BNF as
in the above display, not only for ease of readability and understanding, but
also because historically, when defining a formal language, the notion of a for-
mula (i.e., an expression that is assertible, has truth conditions, and has logical
consequences) are at least as important as terms. The logic developed below
should be conceived as governing inferences among formulas rather than a
term logic.

Since the penultimate line of the BNF implies that the 0-ary relation terms
are precisely the formulas, the metavariables ϕ and Π0 range over the same ex-
pressions. Usually, it will be more natural to use one metavariable rather than
the other to describe some feature of our system. For example, the notion of
subformula will be defined with respect to formulas ϕ rather than with respect
to 0-ary relation terms Π0. The definition, see (6) below, implies that ϕ and ψ
are subformulas of the formula ϕ→ ψ. But the formula p=q, which is defined
in (23.4), will be an instance of the form Π=Π′ (where Π and Π′ are 0-ary rela-
tion metavariables), since both p and q are being used as 0-ary relation terms.
In general, we’ll use ϕ to represent expressions being used to make assertions
(and so have truth conditions) and Π0 to represent expressions being used to
denote propositions.

If one defines a finite instance of our language by giving a limiting value to
n and listing a finite vocabulary of simple terms, the formulas and terms of the
resulting grammar can be parsed by any appropriately-configured off-the-shelf
parsing engine using the above BNF.

(5) Remark: Notational Conventions. We adopt the following conventions to
facilitate readability:
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(.1) We often use the less formal expressions listed in (1) instead of their more
formal counterparts, and we often drop the superscript indicating the
arity of a simple relation term when such terms appear in a formula,
since their arity can always be inferred from the number of individual
terms in the formula. Thus, instead of writing P 1

1 a1 and a2P
2, we might

write P a and bQ, respectively; instead of F1
1x1 and x2F

1
2 , we might write

Fx and yG, respectively; instead of F2
1a2x3 and a3x2F

2
2 , we might write

Rbz and cyS; etc. Indeed, we may sometimes use a mixture of formal and
less formal expressions in the same formula.

(.2) We substitute p,q, r, . . . for the 0-ary relation variables, F0
1 ,F

0
2 , . . .. If we

need 0-ary relation constants, we use p1,q2, . . . instead of P 0
1 , P

0
2 , . . ..

(.3) We omit parentheses in formulas whenever we possibly can, i.e., when-
ever we can do so without ambiguity. Thus, we almost always drop outer
parentheses and assume ¬, ∀, ı, �, and A apply to as little as possible.
Also, we assume that → dominates ¬. These conventions yield the fol-
lowing examples:

• ¬P a→ bQ should be parsed as ((¬P a)→ bQ), not ¬(P a→ bQ).

• ∀xP x→Qx should be parsed as (∀xP x)→Qx, not ∀x(P x→Qx).

• �P a→ bQ should be parsed as (�P a)→ bQ, not �(P a→ bQ)

• AaP →Qb should be parsed as (AaP )→Qb, not A(aP →Qb).

(.4) We sometimes add parentheses and square brackets to assist in parsing
certain formulas and terms.

(6) Metadefinition: Subformulas. Where ϕ is any formula, we define a subfor-
mula of ϕ recursively as follows:

(.1) ϕ is a subformula of ϕ.

(.2) If [λψ], ¬ψ, ∀αψ, �ψ, or Aψ is a subformula of ϕ, then ψ is a subformula
of ϕ.

(.3) If ψ → χ is a subformula of ϕ, then ψ is a subformula of ϕ and χ is a
subformula of ϕ.76

(.4) Nothing else is a subformula of ϕ.

Given this definition, we may say that ψ is a proper subformula of ϕ just in
case ψ is a subformula of ϕ but not identical to ϕ. The above definition of
subformula of has an important consequence:

76We later extend our language with definitions that introduce formulas of the form ψ&χ, ψ∨χ,
and ψ ≡ χ. When these formulas are subformulas of ϕ, so are ψ and χ. See fact (a) in the final
paragraph of (18) below.
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Metatheorem 〈7.1〉
If ψ is a subformula of χ and χ is a subformula of ϕ, then ψ is a subfor-
mula of ϕ.

There is a proof in the appendix to this chapter.
It is important to observe that, on this definition, the formula ϕ and its sub-

formulas are not a subformulas of either the term ıνϕ or the term [λν1 . . .νn ϕ]
(n ≥ 1). ϕ is a subformula of τ is not defined for any term τ other than 0-ary
relation terms.77 Thus, if ıνϕ or [λν1 . . .νn ϕ] occur within a formula ψ, those
occurrences of their matrix ϕ (and its subformulas) are not subformulas of ψ,
though other occurrences ϕ in ψ may be subformulas of ψ. Thus, the formulas
Fıxϕ and [λxϕ]b have no proper subformulas!

(7) Metadefinition: A Definition of Subterms and Primary Terms. By con-
trast, however, since formulas are terms, ϕ is a subterm of the terms ıνϕ and
[λν1 . . .νn ϕ]. And if ıνϕ or [λν1 . . .νn ϕ] occur somewhere within a formula ψ,
those occurrences of ϕ and its subformulas are subterms of ψ.

The notion of subterm will be deployed in various ways in what follows and
is an important notion of abstract syntax. To define it, we again use both τ
and σ are metavariables ranging over terms, and note that formulas are 0-ary
relation terms and so fall in the range of these metavariables. We then define
τ is a subterm of σ as follows:

(.1) If τ is σ , then τ is a subterm of σ , i.e., every term τ is a subterm of itself.

(.2) If τ is subterm of any of κ1, . . . ,κn, or Πn (n ≥ 1), and σ is either the
formula Πnκ1 . . .κn or the formula κ1 . . .κnΠ

n, then τ is a subterm of σ .

(.3) If τ is a subterm of the formula ϕ, and σ is any of the formulas ¬ϕ, ∀αϕ,
�ϕ, or Aϕ, then τ is a subterm of σ .

(.4) If τ is a subterm of the formula ϕ or the formula ψ, and σ is the formula,
ϕ→ ψ, then τ is a subterm of σ .

(.5) If τ is a subterm of the formula ϕ, and σ is a λ-expression of the form
[λν1 . . .νn ϕ] (n ≥ 0), then τ is a subterm of σ .

(.6) If τ is a subterm of the formula ϕ, and σ is a description of the form ıνϕ,
then τ is a subterm of σ

Given this definition, we may say that τ is a proper subterm of term σ just in
case τ is a subterm of σ but not identical to σ . Thus, the terms ıx(p → Gx)
and [λx p → Gx] have the same proper subterms, namely, p, G, x, Gx, and

77Complex, 0-ary relation terms of the form [λ ϕ] do have subformulas. By (6.1), [λ ϕ] is a
subformula of itself. So by (6.2), ϕ is a subformula of [λ ϕ]. And any subformulas of ϕ thereby
become subformulas of [λϕ].
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p→ Gx. Clearly, constants and variables are the only terms that have no proper
subterms.

Using the definition of subterm, we could say:

(.7) A formula ϕ contains a term τ just in case τ is a subterm of ϕ.

So, for example, the formula RyıxQx contains the terms RyıxQx, R, y, ıxQx,
Qx, Q, and x.78 However, RyıxQx contains no λ-expressions, since no λ-
expression is a subterm of RyıxQx. Moreover, the formula [λx Rxa]y contains
the terms [λx Rxa]y, [λx Rxa], Rxa, R, x, a, and y (exercise). Neither the λ-
expression [λx Rxa] nor its matrix Rxa contains a description.

It is also helpful, on occasion, to refer to the primary terms of n-ary exem-
plification and encoding formulas (n ≥ 1) as follows:

(.8) When n ≥ 1 and ϕ is an exemplification formula of the form Πnκ1 . . .κn
or an encoding formula of the form κ1 . . .κnΠ

n, then these occurrences of
Πn, κ1, . . . , and κn are the primary terms of (or in) ϕ.

Thus, the primary terms of RaıxQx are R, a, and ıxQx, and the primary terms
of ab[λxy ¬Rxy] are a, b, and [λxy ¬Rxy]. At present, we have defined primary
terms only for exemplification and encoding formulas. If ϕ is such a formula
and τ is a primary term ofϕ, then none of the proper subterms of τ are primary
terms of ϕ.

(8) Metadefinitions: Operator Scope and Free (Bound) Occurrences of Vari-
ables. Let us use β as an additional metavariable ranging over any simple
object-language variable. We then define the scope of an occurrence of the
formula- and term-building operators as follows:

(.1) The formulas ¬ψ, �ψ, and Aψ are, respectively, the scope of the occur-
rence of the operators ¬, � and A. The formula ψ→ χ is the scope of the
occurrence of the operator→.

(.2) The formula ∀βψ is the scope of the left-most occurrence of the operator
∀β in that formula. (We say that the matrix ψ is the proper scope of ∀β in
∀βψ.)

(.3) The term ıνψ is the scope of the left-most occurrence of the operator ıν
in that term. (We say that the matrix ψ is the proper scope of ıν in ıνψ.)

78This can be established as follows: (A) Since RyıxQx is a 0-ary term, it follows by (.1) that
RyıxQx is a subterm of itself. So it contains itself. (B) By (.1), R, y, and ıxQx are all subterms
of themselves and so by (.2), they are all subterms of RyıxQx. So RyıxQx also contains R, y, and
ıxQx. (C) By (.1), Qx is a subterm of itself, and so by (.6), it is a subterm of ıxQx. So by (.2), Qx
is also a subterm of RyıxQx. Hence RyıxQx contains Qx. (D) By (.1), both Q and x are subterms
of themselves, and so by (.2), they are subterms of Qx. By (.6), therefore, Q and x are subterms of
ıxQx. So by (.2) they are subterms of RyıxQx. Hence, RyıxQx contains the terms Q and x.
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(.4) The term [λν1 . . .νn ψ] (n ≥ 0) is the scope of the left-most occurrence of
the operator λν1 . . .νn in that term. (We say that the matrix ψ is the proper
scope of λν1 . . .νn in [λν1 . . .νn ψ].)

Now to define free and bound occurrences of a variable within a formula or
term, we first say that ∀β is a variable-binding operator for β, that ıν is a
variable-binding operator for ν, and that λν1 . . .νn is a variable-binding op-
erator for ν1, . . . ,νn. We then say, for any variable α and any formula ϕ (or any
complex term τ):

(.5) An occurrence of α in ϕ (or τ) within the scope of an occurrence of a
variable-binding operator for α is bound; otherwise, the occurrence is
free.

Finally, we say:

(.6) Those occurrences of β that are free in ψ are bound by the left-most oc-
currence of ∀β in ∀βψ, as is the occurrence of β in that occurrence of
∀β; those occurrences of ν that are free in ψ are bound by the left-most
occurrence of ıν in ıνψ, as is the occurrence of ν in that occurrence of ıν;
and those occurrences of νi (1 ≤ i ≤ n) that are free in ψ are bound by the
left-most occurrence of λν1 . . .νn in [λν1 . . .νnψ], as are the occurrences of
ν1, . . . ,νn in that occurrence of λν1 . . .νn.

We henceforth say that:

(.7) A variable α occurs free or is free in formula ϕ or term τ if and only if
at least one occurrence of α in ϕ or τ is free, i.e., if and only if ϕ or τ
contains at least one free occurrence of α.

(9) Metadefinitions: Encoding Position and Core λ-Expressions. To delineate
a distinguished group of λ-expressions that play a central role in one of the
key axioms of object theory, we first define:

(.1) Term τ occurs in encoding position in ϕ iff τ occurs as a primary term of
an encoding formula subterm of ϕ.

In other words, τ occurs in encoding position in ϕ just in case ϕ contains (7.7)
an encoding formula the form κ1 . . .κnΠ

n and τ is one of κ1, ...,κn, or Πn. We
then say:

(.2) [λν1 . . .νnϕ] is a core λ-expression if and only if no variable bound by the
λ occurs in encoding position in ϕ.

The intuitive idea is that a core λ-expression is one in which encoding formu-
las are incidental, rather than integral, to the complex exemplification condi-
tion formulated by the expression. Axiom (39.2) will stipulate, among other
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things, that core λ-expressions are significant (i.e., have a denotation). The
reader should confirm that in the following, the λ binds a variable in encoding
position and so fail to be examples of core λ-expressions:

• [λx¬(xG→ p)]

• [λx aG→ P ız(Rzb→ xF)]

The reader should also confirm the following rules of thumb:

• If [λν1 . . .νn ϕ] contains no encoding formulas, then it is a core λ-expres-
sion. Examples include [λx ♦E!x], [λy ¬E!y], [λz ∀xGzx], [λy E!y → E!y],
etc.

• Expressions of the form [λϕ] (in which the λ doesn’t bind any variables)
and of the form [λν1 . . .νnϕ] in which none of the variables ν1, . . . ,νn occur
free in ϕ are core λ-expressions.

• If ϕ in [λν1 . . .νn ϕ] contains encoding formulas with free variables that
aren’t bound by the λ, then [λν1 . . .νnϕ] is a core λ-expression. Examples
include [λx yF], [λx yF→¬Fx], [λz ∀G(¬xG→ �Gz)], etc.

However, here are three, somewhat more subtle examples of core λ-expressions:

• [λx y[λz Rxz] ] — the x bound by the λ is not in encoding position even
though it occurs within the context of the encoding formula y[λz Rxz].

• [λx ıy(Qyx)P ] — again, the x bound by the λ is not in encoding posi-
tion even though it occurs within the content of the encoding formula
ıy(Qyx)P .

• [λx �∀z(z[λyFyx] ≡ z[λyGyx])] — the x bound by the λ is not in encoding
position anywhere within the matrix.

Later, when we enrich our language by defining new formulas containing &, ∨,
≡, ∃, ♦, =, etc., there will be more interesting examples of core λ-expressions.

(10) Metadefinitions: Open/Closed Formulas/Terms.

(.1) A formula ϕ is closed if no variable occurs free in ϕ; otherwise ϕ is open.

(.2) A formula ϕ is a sentence if and only if ϕ is a closed formula.

(.3) A term τ is closed if no variable occurs free in τ ; otherwise, τ is open.

Since it is obvious that constants are closed terms and variables are open terms,
we typically use ‘open’ and ‘closed’ with respect to formulas and other com-
plex terms. If R is a 2-ary relation constant, F a 2-ary relation variable, a an
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individual constant, and y an individual variable, then ıxRxy and ıxFxa are
complex individual terms that are open, while ıxRxa is a complex individual
term that is closed. The λ-expressions [λxRxy] and [λxFxz] are complex unary
relation terms that are open, while [λx Rxa] is a complex, unary relation term
that is closed. Furthermore, if P is a unary relation constant, then P ıxRxy and
P ıxFxa are open formulas, while P ıxRxa is a closed formula; and a[λx Fxz] is
an open formula, while a[λx Rxa] is closed.

It sometimes helps to think of open complex terms that aren’t formulas,
such as ıxRxy and [λx Rxy], as functional terms whose value is, intuitively, a
function of the value of the variable y.79 Alternatively we may regard such
open complex terms as a kind of complex variable; for each choice of y, ıxRxy
may denote a different individual and [λx Rxy] may denote a different unary
relation. To forestall ambiguity, we always use variable in what follows to refer
to the simple variables listed in (1).

(11) Metadefinitions: Closures. We say that:

(.1) ϕ is a universal closure or universal generalization of ψ whenever ϕ is the
result of prefacing any a string of zero of more universal quantifiers to ψ,
i.e., if and only if for some variables α1, . . . ,αn (n ≥ 0), ϕ is ∀α1 . . .∀αnψ.

(.2) ϕ is an actualization of ψ whenever ϕ is the result of prefacing a string of
zero or more occurrences of the actuality operator A to ψ.

(.3) ϕ is a necessitation or modal closure of ψ whenever ϕ is the result of pref-
acing any a string of zero or more occurrences of the necessity operator
� to ψ.

Furthermore, we say:

(.4) ϕ is a closure of ψ if and only if for some variables α1, . . . ,αn (n ≥ 0), ϕ is
the result of prefacing any string of zero or more occurrences of universal
quantifiers, A operators, and � operators to ψ.

Finally, we say:

(.5) ϕ is a �-free closure of ψ if and only if ϕ is the result of prefacing any
string of zero or more occurrences of actuality operators and universal
quantifiers to ψ.

79We have taken care to call these expressions functional terms instead of function terms. The
reason is that, strictly speaking, they don’t denote functions. A function is, strictly speaking, a
binary relation R such that ∀x∃y(Rxy & ∀z(Rxz→ z= y)). The expression [λx Rxy] doesn’t denote
such an R. Instead, for each value that y takes, [λx Rxy] denotes a unary relation. We therefore
refrain from calling [λx Rxy] a ‘function term’; rather, ‘functional term’ is more appropriate.
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Since we’re counting the empty string as a string, the definitions yield that
every formula is a closure of itself.

(12) Metadefinition: Terms of the Same Type. We say that τ and σ are terms of
the same type iff τ and σ are both individual terms or are, for some n ≥ 0, both
n-ary relation terms.

(13) Remark: The Symbol ‘=’ in Both Object Language and Metalanguage.
Though some texts use different symbols for object-theoretic and metatheo-
retic identity, we shall use the symbol = for both. Object-theoretic identity is
not taken as a primitive; we instead define this notion by cases in item (23) be-
low. By contrast, we formulate metadefinitions in which the symbol ‘=’ repre-
sents a primitive metatheoretic notion of identity. Metatheoretic identity helps
us to describe facts about our system, as opposed to asserting facts within our
system. We’ve already used it in Metadefinition (6) to define proper subfor-
mulas and in Metadefinition (7) to define proper subterms, though in these
definitions, we didn’t use the formal symbol ‘=’. But now, we’ll now use ‘=’
metatheoretically in (14) below to help us define ϕτα, i.e., the result of substi-
tuting a term τ for all the free occurrences of the variable α in ϕ. The syntactic
notion ϕτα is subsequently used to state various principles (i.e., definitions, ax-
ioms, rules of inference, and theorems).

Once object-theoretic identity is defined, it should always be clear when =
is being used object-theoretically to assert something in the object language
and when it is being used metatheoretically to assert or describe something in
the metalanguage. Of course, if our philosophical project succeeds, the theory
of identity developed in the object language ultimately provides an analysis of
the primitive metatheoretic notion of identity.

(14) Metadefinition: Substitutions. The definitions in this item and the next
are required to state, for example, the axioms of quantification in item (39),
the axioms of identity in item (41), and the axioms for complex relation terms
in item (48). In what follows, we use σ as an additional metavariable ranging
over any term whatsoever.

• Where α is any variable and τ is any term of the same type as α, we use
the notation ϕτα and σ τα , respectively, to stand for the result of substitut-
ing the term τ for every free occurrence of the variable α in formula ϕ
and in term σ .

This notion may be defined more precisely by recursion, based on the syntactic
complexity of σ and ϕ as follows, where the parentheses serve only to elimi-
nate ambiguity and we suppress the obvious superscript indicating arity on
the metalinguistic relation variable Π:
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• If σ is the variable α and τ is a term of the same type as α, σ τα = τ .
If σ is a constant or variable other than α and τ is a term of the same type
as α, σ τα = σ .

• If ϕ is Πκ1 . . .κn, then ϕτα = Π
τ
ακ1

τ
α . . .κn

τ
α .

If ϕ is κ1 . . .κnΠ, then ϕτα = κ1
τ
α . . .κn

τ
αΠ

τ
α .

• If ϕ is ¬ψ, �ψ or Aψ, then ϕτα = ¬(ψτα) or �(ψτα), or A(ψτα), respectively. If
ϕ is ψ→ χ, then ϕτα = ψτα→ χτα.

• Ifϕ is ∀βψ, thenϕτα =

{
∀βψ, if α = β

∀β(ψτα), if α , β

• If σ is ıνψ, then σ τα =

{
ıνψ, if α = ν

ıν(ψτα), if α , ν

• If σ is [λν1 . . .νnψ], then σ τα =

{
[λν1 . . .νn ψ], if α is one of ν1, . . . ,νn
[λν1 . . .νn ψ

τ
α], if α is none of ν1, . . . ,νn

Note both that (a) σ τα is not defined if α and τ are terms of a different type, and
(b) if α doesn’t occur free in σ , then σ τα = σ , and if α doesn’t occur free in ϕ,
then ϕτα = ϕ. The reader should also verify that:

Metatheorems 〈7.2〉: σαα = σ and ϕαα = ϕ.

We shall also want to define multiple simultaneous substitutions of terms for
variables in ϕ and σ , but since such a recursive definition would be extremely
difficult to read, we simply rest with the following definition: where α1, . . . ,αm
are any distinct variables and τ1, . . . , τm are any terms of the same types, re-
spectively, as α1, . . . ,αm, we let ϕτ1,...,τm

α1,...,αm stand for the result of simultaneously
substituting the term τi for each free occurrence of the corresponding variable
αi in ϕ, for each i such that 1≤ i ≤m. In other words, ϕτ1,...,τm

α1,...,αm is the result of
making all of the following substitutions simultaneously: (a) substituting τ1

for every free occurrence of α1 in ϕ, (b) substituting τ2 for every free occur-
rence of α2 in ϕ, etc. Similarly, where τ1, . . . , τm are any terms and α1, . . . ,αm
are any distinct variables, we let σ τ1,...,τm

α1,...,αm stand for the result of simultaneously
substituting the term τi for each free occurrence of the corresponding variable
αi in σ , for each i such that 1≤ i≤m.

If, for any i, τi does not have the same type as αi , then ϕτ1,...,τm
α1,...,αm and σ τ1,...,τm

α1,...,αm

are not well-formed. The reader should verify that:

Metatheorems 〈7.3〉: σα1,...,αn
α1,...,αn = σ and ϕα1,...,αn

α1,...,αn = ϕ.

(15) Metadefinitions: Substitutable at an Occurrence and Substitutable For.
We say:
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• Term τ is substitutable at an occurrence of α in formula ϕ or term σ just
in case (a) τ is a term of the same type as α, and (b) that occurrence of α
does not appear within the scope of any operator binding a variable that
has a free occurrence in τ .

In other words, τ is substitutable at an occurrence of α in ϕ or σ just in case
every occurrence of any variable β free in τ remains an occurrence that is free
when τ is substituted for that occurrence of α in ϕ or σ . Then we say:

• τ is substitutable for α in ϕ or σ just in case τ is substitutable at every free
occurrence of α in ϕ or σ .

In other words, τ is substitutable for α in ϕ or σ just in case every occurrence
of any variable β free in τ remains an occurrence that is free in ϕτα or σ τα , i.e., re-
mains an occurrence that is free when τ is substituted for every free occurrence
of α in ϕ or σ .

The following are consequences of this definition:

Metatheorems 〈7.4〉:

• Every term τ is trivially substitutable for α in ϕ if there are no free
occurrences of α in ϕ.

• α is substitutable for α in ϕ or σ .

• If τ contains no free variables, then τ is substitutable for any vari-
able α in any formula ϕ or complex term σ .

• If none of the free variables in τ occur bound in ϕ or σ , then τ is
substitutable for any α in ϕ or σ .

Note: The prime symbol ′ is used to avoid overspecificity. When we attach
a prime symbol to a metavariable, the resulting metavariable stands for an
object-language expression that may be distinct from, and not necessarily
related to, the expression signified by the metavariable without the prime.
In the next item, we shall use ϕ′ to stand for an alphabetical-variant of the
formula ϕ, and use τ ′ to stand for an alphabetical-variant of the term τ . In
the next chapter, the axiom for the substitution of identicals (41) will use
ϕ′ to indicate the result of replacing zero or more free occurrences of the
variable α in ϕ with occurrences of the variable β. (So in the case where
zero occurrences are replaced, ϕ′ is ϕ.) Later we shall use the metavariable
ρ′ to denote any η-variant of the relation term ρ. Sometimes we shall
place primes on expressions in the object language; for example, in a later
chapter, c is introduced as a restricted variable in the object-language
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that ranges over classes, and we let c′, c′′, . . . be distinct restricted variables
for classes (and so on for other restricted variables). The context should
always make it clear how the prime symbol ′ is being used.

(16) Metadefinitions: Alphabetic Variants. For basic examples of alphabetic
variants, some readers may wish to check the opening of explanatory Remark
(26). The following definition presupposes an intuitive understanding of the
concept we’re trying define.80

To precisely define the general notion of alphabetic variant, i.e., for formu-
las and terms of arbitrary complexity, we first define linked and independent
occurrences of a variable.

(.1) Let α1 and α2 be occurrences of the variable α in the formula ϕ or in term
τ . Then we say that α1 is linked to α2 in ϕ or τ (or say that α1 and α2 are
linked in ϕ or τ) just in case:

(a) either both α1 and α2 are free, or

(b) both α1 and α2 are bound by the same occurrence of a variable-
binding operator.

Otherwise, we say that α1 and α2 are independent in ϕ or τ .

Examples of linked and independent variables are given in Remark (26). (.1)
gives rise to:

Metatheorem 〈7.5〉
Linked is an equivalence condition on variable occurrences in a formula
(or term).

(A proof is given in the Appendix to this chapter.) Thus, the occurrences of
each variable in a formula (or term) can be partitioned into linkage groups. Each
linkage group is a cell of the partition; in a linkage group for a variable α in
ϕ or τ , each occurrence of α in the group is linked to every other occurrence,

80Traditionally, two formulas or complex terms are defined to be alphabetic variants just in case
some sequence of uniform permutations of the bound variables (in which no variable is captured
during a permutation) transforms one expression into the other. So, for example, ∀F(Fx ≡ Fy)
and ∀G(Gx ≡ Gy) would be alphabetically-variant formulas because the permutation sequence
F→G transforms the first formula into the second. Similarly, ıx∀yMyx and ıy∀zMzy would be
alphabetically-variant terms because the permutation sequence y→ z,x→y transforms the first
description into the second. And [λyRyızQz] and [λzRzıxQx] are variant λ-expressions because the
permutation sequence z→x,y→z transforms the first λ-expression into the second. However, we
shall not follow the traditional definition but rather develop a definition that identifies alphabetic
variants by way of symmetries among bound variable occurrences.
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while occurrences of α in different linkage groups are independent of one an-
other.

We now introduce some notation (‘BV-notation’) that makes explicit the
occurrences of bound variables in formulas and terms:

(.2) When α1, . . . ,αn is the list of all the variable occurrences bound in formula
ϕ or complex term τ , in order of occurrence and including repetitions
of the same variable, the BV-notation for ϕ is ϕ[α1, . . . ,αn], and the BV-
notation for τ is τ[α1, . . . ,αn], respectively, .

The reader is encouraged to examine the examples of BV-notation given in
Remark (26).

Next we introduce notation for replacing bound variables:

(.3) We write ϕ[β1/α1, . . . ,βn/αn] to refer to the result of replacing αi by βi in
ϕ[α1, . . . ,αn], for 1 ≤ i ≤ n. Analogously, we write τ[β1/α1, . . . ,βn/αn] to
refer to the result of replacing αi by βi in term τ[α1, . . . ,αn].

Finally, we may define:81

(.4) ϕ′ is an alphabetic variant of ϕ just in case, for some n:

• ϕ′ = ϕ[β1/α1, . . . ,βn/αn],

• ϕ′ has the same number of bound variable occurrences as ϕ and so
can be written as ϕ′[β1, . . . ,βn], and

• for 1 ≤ i, j ≤ n, αi and αj are linked in ϕ[α1, . . . ,αn] if and only if βi
and βj are linked in ϕ′[β1, . . . ,βn]

(.5) τ ′ is an alphabetic variant of τ just in case, for some n:

• τ ′ = τ[β1/α1, . . . ,βn/αn],

• τ ′ has the same number of bound variable occurrences as τ and so
can be written as τ ′[β1, . . . ,βn], and

• for 1 ≤ i, j ≤ n, αi and αj are linked in τ[α1, . . . ,αn] if and only if βi
and βj are linked in τ ′[β1, . . . ,βn].

Additional examples of alphabetic variants that illustrate the above definitions
are given in Remark (26).

Note that our definitions require that if β is to replace α to produce an
alphabetic variant of a formula ϕ (or term τ), then β must not occur free within
the scope of a variable-binding operator that binds an occurrence of α in ϕ (or

81I’d like to thank Daniel West for noting that a problem with an earlier version of (.4) and (.5) –
something like the second condition was missing. And thanks to Uri Nodelman for his suggestion
that the second condition is probably the simplest solution to the problem.
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τ). For example, in the formula ∀xRxy (= ϕ), y occurs free within the scope of
∀x. We don’t obtain an alphabetic variant of ϕ by substituting occurrences of
y for the occurrences of x in the linkage group of bound occurrences of x. The
formula that results from such a replacement, ∀yRyy (= ϕ′), is very different
in meaning from the original. In this example, the single occurrence of y in
ϕ gets captured when occurrences of y replace the bound occurrences of x.
Thus, ϕ in BV-notation is ϕ[x,x] and ϕ′ in BV-notation is ϕ′[y,y,y], and so the
first condition in the definition of alphabetic variant fails because the number
of bound variables, counting multiple occurrences, is different for ϕ and ϕ′.
There are a number of observations about alphabetic variants at the end of
Remark (26) that might prove helpful.

7.2 Definitions Extending the Object Language

In what follows, we regularly state definitions that extend our object language.
These introduce new expressions into our language. Some of the axioms and
axiom schemas of object theory will be stated in terms of these new expres-
sions. In a definition extending the object language, a new expression, the
definiendum, is introduced by way of a definiens that contains only primitive ex-
pressions or previously defined expressions. We shall not regard definitions as
metalinguistic abbreviations of the object language but rather as conventions
for (a) extending the object language with new syncategorematic expressions,
formulas, and terms, and (b) conservatively extending our deductive system
with new and safe axioms. As such, theorems stated in terms of defined no-
tions become genuine philosophical statements of the object language rather
than metaphilosophical statements of the metalanguage. In this section, we
restrict our attention to how definitions achieve (a), though on occasion, we’ll
have to make reference to how they achieve (b). This latter is discussed in
Section 9.4, where we carefully characterize the inferential role that such defi-
nitions play within our deductive system.

(17) Remark: Definitions by Equivalence and Definitions by Identity. In a sys-
tem such as the present one, in which identity is defined rather than primitive
and in which there are both individual and relation terms that may fail to have
a denotation, definitions have to be formulated carefully so as to avoid misun-
derstanding.82 So it is important to begin by laying out at least some of the

82Though Frege’s insightful discussion of definitions informed his second-order system, most
discussions of the theory of formal definitions have been framed with respect to the language of
the first-order predicate calculus with identity, sometimes extended by function terms. In thinking
about the theory of definitions, I consulted Frege 1879, §24; Padoa 1900; Frege 1903a, §§55–67,
§§139–144, and §§146–147; Frege 1903b, Part I; Frege 1914, 224–225; Suppes 1957; Mates 1972;
Dudman 1973; Belnap 1993; Hodges 2008; Urbaniak & Hämäri 2012; and Gupta 2014. Hodges
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requirements for formulating definitions in the object language and at least
some of the conventions that govern them. We’ll postpone discussion of the
inferential role of definitions until Chapter 9, in items (72) and (73).

There will be two types of definition in our system: Definition by Equiv-
alence and Definition by Identity. We’ll refer to them as definitions-by-≡ and
definitions-by-=, respectively. As a rough, initial characterization of the distinc-
tion, we can say that the former stipulates an equivalence between formulas,
whereas the latter stipulates an identity between terms. Thus, a definition-by-
≡ has the form:

ϕ ≡df ψ

In the general case, where there are n-free variables α1, . . . ,αn in the definiens
and definiendum, a definition-by-≡ has the form:

ϕ(α1, . . . ,αn) ≡df ψ(α1, . . . ,αn)

By contrast a definition-by-= has the form:

τ =df σ

provided τ and σ are terms of the same type, neither of which is a variable. In
the general case, where there are n-free variables α1, . . . ,αn in the definiens and
definiendum, a definition-by-= has the form:

τ(α1, . . . ,αn) =df σ (α1, . . . ,αn)

provided τ and σ are terms of the same type.
Note that it would be incorrect to distinguish definitions-by-≡ and defini-

tions-by-= by saying that the former introduce new formulas and the latter
introduce new terms. This oversimplification is undermined by the fact that
all and only formulas are 0-ary relation terms, a fact which has the following
consequences. First, the definiendum ϕ and definiens ψ in a definition-by-≡
are 0-ary relation terms as well as formulas – so in every case, these definitions
introduce equivalences between 0-ary relation terms. Second, the definiendum
τ and definiens σ in a definition-by-= may be formulas if τ and σ are 0-ary re-
lation terms – so in some cases, these definitions introduce an identity between
formulas.

In light of these observations, we emphasize that the distinction between
definitions-by-≡ and definitions-by-= concerns their inferential role in the de-
ductive system. The inferential role of both kinds of definition has to be care-
fully formulated and this will be done in Chapter 9, as part of the development
of the deductive system. For now, we can describe their role pre-theoretically

2008 and Urbaniak & Hämäri 2012 provide insightful discussions of the contributions by Kotar-
biński, Łukasiewicz, Leśniewski, Ajdukiewicz and Tarski to the elementary theory of definitions.
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as follows: (a) a definition-by-≡ implicitly introduces necessary biconditionals
(and their closures) as axioms,83 and (b) a definition-by-= implicitly introduces
conditional identities (and their closures) as axioms, where the identities are
conditioned on the claim that the definiens has a denotation. Since bicondi-
tionals and conditional identities have very different inferential roles, the in-
ferences one can draw from the two forms of definition will be very different.
Further discussion of this point, however, is premature, for we can’t even state
the inferential role of definitions-by-= until we define formulas of the form
τ = σ .

As noted above, both types of definition may contain free variables, and so
the first requirement for formulating definitions is that the definiendum and
definiens should have matching free variables:

(.1) Matching Free Variables Requirement:
In any definition, all and only the variables that occur free in a definiens
should also occur free in the definiendum.

For some purposes, it proves useful to relax this requirement by allowing the
definiendum to contain free variables that aren’t free in the definiens.84 But
there are well-known reasons for not allowing the definiens to contain free
variables that aren’t free in the definiendum.85

Next we adopt a convention that assumes familiarity with the various rea-
sons why one might want to cast definitions as schemata involving metavari-
ables. Readers unfamiliar with those reasons are encouraged to jump ahead to
Section 7.3 (Explanatory Remarks) and read Remarks (27) and (28). Remark
(27) explains why, in a system containing complex terms that might fail to have
a denotation, any free variables in a definition should be cast as metavariables
instead of object-language variables. Remark (28) explains why, in the case of
bound variables, metavariables should be used (subject to certain restrictions)
instead of object-language variables.

However, definition schemata involving free and bound Greek metavari-
ables are often much more difficult to read and grasp. So although definitions
should, strictly speaking, be stated as schemata using metavariables, we shall
use metavariables in definitions only when it is clearer to do so, i.e., only when

83In the first instance, such definitions implicitly introduce the closures of conditionals, and it
will be derivable, from the fact that the definition ϕ ≡df ψ introduces the closures of ϕ → ψ and
ψ→ ϕ, that the definition yields �(ϕ ≡ ψ) and its closures as theorems.

84Suppes (1957) explains why one can allow definitions in which variables occur free in the
definiendum but not in the definiens; one can trivially get the variables to match by adding dummy
clauses to the definiens. For example, Suppes notes (1957, 157) that the number-theoretic defini-
tion Q(x,y) =df x > 0 can be turned into Q(x,y) =df x > 0 & y=y.

85Suppes (1957) has a nice discussion of why the definiens may not contain a free variable that
is not free in the definiendum. See his example (1957, 157) of how to derive a falsehood from a
definition such as R(x) ≡df x+ y = 0.
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doing so lightens cognitive load. For the cases where it doesn’t, we state and
adopt the following convention that will help mitigate the problem and make
definitions in the object language much more readable and user-friendly:

(.2) Convention for Variables in Definitions:
When it increases clarity and faciliates readability, we formulate defini-
tions with both free and bound object-language variables that function
as metavariables, with the understanding that they give rise to instances
of the definition as follows:

(.a) if object-language variables α1, . . . ,αn (n ≥ 0) occur free in a defini-
tion of the form ϕ ≡df ψ or τ =df σ , then where τ1, . . . , τn are any
terms substitutable, respectively, for α1, . . . ,αn in ψ or σ :

ϕτ1,...,τn
α1,...,αn ≡df ψ

τ1,...,τn
α1,...,αn

is an instance of a definition-by-≡ that extends the language with
new formulas of the form ϕτ1,...,τn

α1,...,αn , and

ττ1,...,τn
α1,...,αn =df σ

τ1,...,τn
α1,...,αn

is an instance of a definition-by-= that extends the language with
new terms of the form ττ1,...,τn

α1,...,αn ,
86 and

(.b) if any object-language variables occur bound in the definiens of an
instance of a definition of the formϕ ≡df ψ or τ =df σ , then the result
of replacing the definiens of that instance by one of its alphabetic
variants is also an instance of the definition.87

Thus, whenever the use of metavariables would make a definition significantly
more difficult to read and grasp, we may use object-language variables instead.
The two clauses of (.2) will become clearer when we start formulating defini-
tions that contain free or bound object-language variables; in the first examples
of such definitions, we include, or point to, explanatory remarks that outline
how the two clauses of (.2) operate.

86In more technical terms, the import of (.a) is that each distinct object-language variable α that
occurs free in a definition functions as a distinct Greek metavariable that ranges over terms of the
same type as α, with the proviso that if α falls within the scope of a variable-binding operator Op in
the definiens, then a term may serve as an instance of α only if it doesn’t contain free occurrences of
the variable bound by Op. We shall illustrate this technical description in Remark (31), after we’ve
introduced definition (20.1). Note separately that when the propositional variables p,q, . . . occur
free in the definiens and definiendum, they function either as metavariables for 0-ary relation
terms Π0

1,Π
0
2, . . . or as metavariables for formulas ϕ,ψ, . . . .

87In more technical terms, the import of (.b) is that each distinct object-language variable α
that occurs bound by a variable-binding operator Op in the definiens functions as a distinct Greek
metavariable ranging over variables of the same type as α, with the proviso that an object-language
variable may serve as an instance of α only if it does not occur free in any term occurring within the
scope of Op. We shall illustrate this technical description in Remark (32), after we’ve introduced
definition (20.1).
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Finally, we also adopt the following convention, regarding definitions in
which the definiens contains free variables that occur in encoding position
(9.1):

(.3) Encoding Formula Convention: In any definition in which a variable,
say α, occurs free, we regard the definiendum as having a free occurrence
of α in encoding position whenever α occurs free in encoding position
anywhere in the definiens.

It would serve well to give examples of how this convention will be used, even
though the discussion of these examples will reference some defined notions
we’ve not yet introduced (including &, ∨, ≡, and =). In (23.1), we define x is
identical to y (x=y) as follows:

x=y ≡df (O!x&O!y &�∀F(Fx ≡ Fy)) ∨ (A!x&A!y &�∀F(xF ≡ yF)) (23.1)

This definitions stipulates that x = y if and only if either x and y are both
ordinary that necessarily exemplify the same properties or both are abstract
that necessarily encode the same properties. Clearly, the variables x and y oc-
cur free in the definiens and in the definiendum. But notice also that in the
definiens, there are occurrences of x and y in encoding position. So by the
Encoding Formula Convention, the occurrences of x and y in the definiendum
x=y are to be regarded as being in encoding position. Thus, the λ-expression
[λxy x= y] is not a core λ-expression as defined in (9.2); the λ binds variables
that occur in encoding position in the matrix. This λ-expression attempts to
build encoding conditions into the exemplification conditions of a relation and
this violates an intuition underlying object theory; one may not introduce such
relations until it can be established that it is safe to do so. Since [λxy x=y] isn’t
a core λ-expression, it does not meet the conditions of axiom (39.2) and so that
axiom will not assert that [λxy x=y] signifies a relation.88

Taking the example a step further, consider the expressions [λx P ıx(x= y)]
and [λy P ıx(x = y)], where P is any property. The first of these is a core λ-
expression: since no occurrences of x in the matrix are bound by the λ, no
variable bound by the λ occurs in encoding position in the matrix. By contrast,
[λy P ıx(x=y)] fails to be a core λ-expression; the λ binds a variable, namely y,

88The expression [λz [λy Fyx] = [λyGyx] ] is a complex and interesting example. The matrix
[λy Fyx]=[λyGyx] is defined in (23.2) as F↓&G↓&�∀z(z[λy Fyx] ≡ z[λyGyx]). In this matrix, the
variable x does not occur in encoding position, as we saw when we considered a similar example
at the end of (9); intuitively, x occurs in exemplification position in Fyz and Gyz. (We need not
consider the fact that F↓ and G↓ are both defined terms as well – their definition in (20.2) doesn’t
involve a free occurrence of z.) So, by our Encoding Formula Convention, x does not occur in
encoding position in the matrix [λy Fyx]=[λyGyx]. Indeed, both λ-expressions flanking the iden-
tity sign qualify as core λ-expressions — no variable bound by the λ occurs in encoding position
in the matrix. And, given our Encoding Formula Convention, [λz [λy Fyx] = [λyGyx] ] is a core
λ-expression. Axiom (39.2) will assert that these expressions all have a denotation.
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that occurs in encoding position in the matrix P ıx(x= y). For, as we just saw,
we must regard y in this last formula as occurring in encoding position, by our
Encoding Formula Convention and the definition of x = y. Consequently (to
anticipate), axiom (39.2) will assert that the first, but not the second, of our
two examples denotes a relation.89

These issues iterate as we nest definitions. Consider the following defini-
tion, which we’ll introduce later purely for illustrative purposes in Remark
(27):

ιy =df ıx(x=y)

This defines the y as: the x such that x is identical to y. By the Encoding For-
mula Convention, since the free occurrence of y occurs in encoding position in
the definiens ıx(x=y), we must regard the free occurrence of y as occurring in
encoding position in the definiendum ιy . So [λyP ιy] is not a core λ-expressions,
as defined in (9.2). But [λx P ιy] us. To anticipate again, axiom (39.2) will as-
sert that [λxP ıy] signifies a relation, but does not assert that [λy P ıy] signifies a
relation.

One final point concerns the introduction of new constants using definien-
tia that (a) contain encoding formulas as subterms but (b) have no free vari-
ables. For example, the following definitions would be acceptable, though
hardly useful:

a =df ıx(xP &¬xP )

Q =df [λx ∃F(xF&¬Fx)]

These are both legitimate definitions even though the definiens, in each case,
provably fails to have a denotation (the matrix of the definiens in the second
definition plays a role in the Clark-Boolos paradox). Our theory of definitions
will therefore imply that both a and Q also fail to denote.

Whereas the definiens, in both cases, has an encoding formula as a subterm,
the occurrences of the variable x in the encoding formula subterms xP and xF
are bound. So if we now form the expressions [λx Rxa] and [λx Qx], where a
and Q are defined as above, no variable bound by the λ occurs in encoding po-
sition in the matrix. [λxRxa] and [λxQx] are core λ-expressions, as defined in
(9.2); by axiom (39.2), they denote properties, albeit necessarily unexemplified
properties.

89Intuitively, [λx P ıx(x=y)] signifies either a property that everything exemplifies or a property
that nothing exemplifies, depending on the value of y. Since it a theorem that y= ıx(x=y) (177.2),
the λ-expression has the same exemplification conditions as the property: being an individual x
such that y exemplifies P ([λx P y]). If the value assigned to y is an individual that exemplifies P ,
then [λx P ıx(x=y)] denotes a property that every object exemplifies, and if the value assigned to y
is an individual that doesn’t exemplify P , then the λ-expression denotes a property that no object
exemplifies.
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In what follows, it will be crucial to keep a strict eye on the status of the
individual variables when introducing definienda in terms of definientia that
contain free variables in encoding position. This is key to understanding what
is asserted by axiom (39.2). See the discussion immediately following the in-
troduction of this axiom and Remark (55) for further discussion.

7.2.1 The Classical, Sentence-Forming Operators

(18) Definitions: The Connectives, Existential Quantifier, and Possibility Op-
erator of Classical Quantified Modal Logic. Since it is clearer to use metavari-
ables to define the standard connectives, existential quantifier, and possibility
operator of classical quantified modal logic, we introduce them as follows: (.1)
ϕ and ψ just in case it is not the case that if-ϕ-then-not-ψ; (.2) ϕ or ψ just in
case if not-ϕ then ψ; (.3) ϕ if and only if ψ just in case both if-ϕ-then-ψ and
if-ψ-then-ϕ; (.4) there exists an α such that ϕ just in case it is not the case that
every α is such that not-ϕ; and (.5) It is possible that ϕ if and only if it is not the
case that necessarily not-ϕ:

(.1) ϕ&ψ ≡df ¬(ϕ→¬ψ)

(.2) ϕ ∨ψ ≡df ¬ϕ→ ψ

(.3) ϕ ≡ ψ ≡df (ϕ→ ψ) & (ψ→ ϕ)

(.4) ∃αϕ ≡df ¬∀α¬ϕ

(.5) ♦ϕ ≡df ¬�¬ϕ

When we uniformly substitute formulas of the object language for ϕ and ψ in
the above and uniformly substitute object-language variables for α, we obtain
instances of the definitions.

These definitions preserve the classical understanding of the sentence-form-
ing operators &, ∨, ≡, ∃α, and ♦.90 Where where ϕ and ψ are any formulas,
and α is any variable, the above extend our language with new formulas of the
form ϕ&ψ, ϕ∨ψ, ϕ ≡ ψ, ∃αϕ, and ♦ϕ. We henceforth call both � and ♦modal
operators.

We now stipulate that the metadefinitions of subformula, subterm, primary
term, scope, and free/bound occurrence, open/closed formulas and terms, closures,
substitutable for, alphabetic variant, etc., are to be appropriately extended to
ensure that there are facts of the following kinds, among many others: (a) ϕ is
a subformula of ∃αϕ and ♦ϕ, and ϕ and ψ are subformulas of ϕ&ψ, ϕ∨ψ, and

90Interested readers might wish to review explanatory Remark (29), where we adduce reasons
why one could have introduced this definition by using object-language variables under Conven-
tion (17.2).
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ϕ ≡ ψ; (b) if τ is a subterm of ϕ or ψ, then τ is a subterm of ϕ&ψ, ϕ∨ψ, ϕ ≡ ψ,
∃αϕ, and ♦ϕ; (c) the formulas ψ & χ, ψ ∨ χ, and ψ ≡ χ are, respectively, the
scope of the occurrence of the operators &, ∨, and ≡; (d) the formula ∃βψ is the
scope of the left-most occurrence of the operator ∃β in that formula, and ψ is
that operator’s proper scope; (e) the formula ♦ψ is the scope of the occurrence
of the operator ♦ in that formula; and (f) those occurrences of β that are free in
ψ are bound by the left-most occurrence of ∃β in ∃βψ, as is the occurrence of β
in that occurrence of ∃β; and so on.

(19) Notational Conventions: Dominance Order. In what follows, our binary
connectives shall be governed by the following partial dominance order: ≡ dom-
inates→,→ dominates both & and∨, and neither & nor∨ dominate each other.
For example:

• ϕ→ ψ ≡ ¬ψ→¬ϕ should be parsed as (ϕ→ ψ) ≡ (¬ψ→¬ϕ)

• ϕ&ψ→ χ should be parsed as (ϕ&ψ)→ χ
ϕ ∨ψ→ χ should be parsed as (ϕ ∨ψ)→ χ

• (ϕ ∨ψ) &χ and ϕ ∨ (ψ&χ) must be written as they are.

In cases such as the first two, we may drop parentheses without ambiguity.

7.2.2 Existence in the Logical Sense

(20) Definitions: Existence in the Logical Sense. We now define a condition
that asserts existence in the logical sense. This condition is distinct from the
variable-binding quantifier ∃α (which asserts ‘there exists an α such that’) and
is distinct from the physical sense in which individuals are sometimes said to
exist. The quantifier ∃α was defined in (18.4) and the physical sense of exis-
tence is already represented in our system by the distinguished term E!, which
may be interpreted as denoting the primitive property being concrete. By con-
trast, we now define a logical sense in which individuals and relations exist.
Some readers may find it useful to first read Remark (30), which attempts to
describe what is distinctive about the following definitions. The discussion
there contrasts our approach, in which existence is defined in terms of pred-
ication, with classical approaches in which existence is defined in terms of
identity. As we shall see, both logical existence and identity are definable in
terms of predication in the present system.

We use the notation ↓ to represent existence and define this notion for the
following three, mutually-exclusive and jointly-exhaustive cases: (.1) individ-
ual terms, (.2) n-ary relation terms (n ≥ 1), and (.3) 0-ary relation terms. By
employing Convention (17.2), we cast these definitions using object-language
variables.

We first define (.1) x exists just in case x exemplifies some property:
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(.1) x↓ ≡df ∃FFx

By Convention (17.2), the following are perfectly good instances of this defini-
tion:

• y↓ ≡df ∃GGy

• ızFz↓ ≡df ∃HHızFz

However, ızFz↓ ≡df ∃FFızFz is not an instance; the term ızFz is not substi-
tutable for x in the definiens of (.1) since its free variable F would get captured
by the quantifier ∃F. These facts make it clear why (.1), under Convention
(17.2), is equivalent to the schematic definition κ↓ ≡df ∃ΩΩκ, where κ doesn’t
contain any free occurrences of the unary relation variable Ω. For a full discus-
sion of this point, see Remarks (31) and (32), where we explain, respectively,
the substitutability requirement in Convention (17.2.a) and the alphabetically-
variant definientia allowed by Convention (17.2.b).

For n ≥ 1, we say (.2) Fn exists just in case there are individuals x1, . . . ,xn
that encode Fn:

(.2) Fn↓ ≡df ∃x1 . . .∃xn(x1 . . .xnF
n) (n ≥ 1)

Given Convention (17.2), the following are perfectly good instances of this def-
inition:

• G↓ ≡df ∃y(yG)

• [λx Rxy]↓ ≡df ∃z(z[λx Rxy])

However, [λx Rxy]↓ ≡df ∃y(y[λx Rxy]) is not an instance. The variable y oc-
curs free in [λx Rxy] and so one may not use y as the variable bound by the
quantifier ∃ in the definiens, since that captures the free occurrence of y in the
definiendum. In general, Convention (17.2) allows us to produce well-formed
instances of this definition by uniformly replacing Fn with any n-ary relation
term and by uniformly replacing x1, . . . ,xn, respectively, with any distinct in-
dividual variables ν1, . . . ,νn, provided none of the νi occur free in the term
replacing Fn.

Interested readers might wish to skip ahead to explanatory Remark (33), to
get some idea as to why (.2) offers a good definition of n-ary relation existence
for n ≥ 1. Moreover, readers interested in why n-ary relation existence for
n ≥ 2 can’t be defined in terms of property existence are referred to explanatory
Remark (34).

When n = 0, we say (.3) (the proposition) p exists just in case (the property)
being an individual such that p exists:

(.3) p↓ ≡df [λx p]↓
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It is important here that the variable x is vacuously bound by the λ in the
definiens. If we consider the 0-ary relation term P ızQz, then by the clauses of
Convention (17.2), the following is an instance of (.3):

P ızQz↓ ≡df [λz P ızQz]↓

This is an instance because the λ vacuously binds z – there are no free occur-
rences of z in the matrix P ızQz and so no occurrences of z are bound by λz.91

By contrast, the following is not an instance of (.3):

Rxy↓ ≡df [λx Rxy]↓

Here, the free occurrence of x in Rxy gets captured in the definiens by the
variable-binding operator λx. To define Rxy↓ as specified by (.3), we have to
formulate an instance such as Rxy↓ ≡df [λz Rxy]↓.

It is important to mention, in connection with (.3), that for some 0-ary re-
lation terms, the definiendum may need disambiguating parentheses. For ex-
ample, the formula ¬P x↓ is ambiguous between ¬(P x↓) and (¬P x)↓, given that
both P x and ¬P x are 0-ary terms. If, in any given case, parentheses don’t dis-
ambiguate which is meant, then we employ the convention: ıxϕ↓ designates
(ıxϕ)↓; otherwise ↓ applies to the smallest unit possible, so that ¬P x↓ is to be
interpreted as ¬(P x↓).

Finally, now that we have defined τ ↓ for every term τ , we note that when
τ is a term introduced by definition, we sometimes say that τ is well-defined if
it is a theorem that τ↓.

(21) Remark: An Intentional Ambiguity. In what follows, it shall be useful
to have some word in our metalanguage that that is intentionally neutral be-
tween the material mode notion of existence and the formal mode notion of
having a denotation, i.e., some studiously ambiguous word that refers both to
the material mode claim τ ↓ (pτ existsq) as well as to the formal mode claim
that τ has a denotation.92 We shall use the expressions significant, logically sig-
nificant, or logically proper for this purpose, and use empty for terms that fail to
be significant. Given such usage, it will be important to distinguish an empty
property term (i.e., a unary relation term τ that doesn’t have a denotation) from

91Note that the definiendum in this example is not ambiguous, despite the fact that ızQz↓ is
well-formed. The expression P ızQz↓ can be interpreted only as (P ızQz)↓; it can’t be interpreted as
P (ızQz↓).

92The Quine corner quotes indicate that what τ exists asserts is not a metatheoretic claim about
the term τ , but a claim in the object language. We shall, in what follows, generally omit the
Quine corner quotes around schematic notions involving metavariables, with the understanding
that our intention is to define an object-theoretic notion that applies to objects and relations, not a
metatheoretic notion that applies to terms. When we do use the Quine corner quotes, this is simply
to remind the reader that we are talking about an object-theoretic notion and not a metatheoretic
notion.
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an empty property (i.e., a property F that isn’t exemplified).93 We’ll introduce
axioms that guarantee that (.1) only significant terms can be instantiated into
universal claims – see axiom (39.1); (.2) the following terms, in the first in-
stance, are stipulated to be significant: primitive constants, variables, and core
λ-expressions (9.2), in which no variable bound by the λ occurs in encoding
position in the matrix (9.1)– see axiom (39.2); and (.3) (the primary terms of)
true exemplification formulas are significant and that (the primary terms of)
true encoding formulas are significant – see axioms (39.5.a) and (39.5.b).

7.2.3 Identity

To define identity generally, we first need to define the properties of being ordi-
nary (O!) and being abstract (A!). These take place in (22.1) and (22.2), respec-
tively. Once these definitions are in place, we may then define, for any terms
τ and σ , the condition pτ is identical to σ q (written: τ =σ ), by cases. The four
cases of the definition of τ = σ are:

• τ and σ are both individual terms (23.1)

• τ and σ are both unary relation terms (23.2)

• τ and σ are both n-ary relation terms (n ≥ 2) (23.3)

• τ and σ are both 0-ary relation terms (23.4)

The preliminary definitions of O! and A! are used only in the first of these four
cases.

(22) Definitions: Ordinary vs Abstract Objects. We may define being ordinary
(‘O!’) as a new unary relation constant as follows:

(.1) O! =df [λx ♦E!x]

In other words, being ordinary is defined as possibly exemplifying concreteness.
As we shall see, this definition implies O!=[λx ♦E!x]; this will follow from our
definitions-by-= and the fact that [λx ♦E!x]↓.94 Moreover, from O! = [λx ♦E!x]
and [λx ♦E!x]↓ it will follow that O!↓, by the symmetry of identity and the
substitution of identicals; see (115.1).

By Convention (17.2.b), O! =df [λy ♦E!y] is also an instance of the defini-
tion. Indeed, given this Convention, (.1) functions as the definition schema

93Some authors take τ ↓ to represent ‘definedness’. But we’re already using the technical term
defined and loaded it with special meaning, both theoretically and metatheoretically, and so we
won’t use definedness in what follows.

94 Since the matrix of [λx ♦E!x] contains no encoding formulas, no variable bound by the λ is in
encoding position and so the definiens is a core λ-expression; see the definition of core in (9.2). So
axiom (39.2) will guarantee that [λx ♦E!x]↓. Then our theory of definitions-by-identity (73) will
ensure that since the definiens of (.1) is significant, the identity O! = [λx ♦E!x] is derivable.
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O! =df [λν ♦E!ν]. An axiom asserted in the next chapter, namely α-Conversion
(48.1), will guarantee that [λx ♦E!x] = [λy ♦E!y], given that [λx ♦E!x]↓ and the
fact that [λx ♦E!x] and [λy ♦E!y] are alphabetic variants. So [λx ♦E!x] and
[λy ♦E!y] will be substitutable for one another in any context, by the axiom
for the substitution of identicals (41). This holds for any alphabetic variant of
[λx ♦E!x]. So it really doesn’t matter which alphabetic variant of [λx ♦E!x] we
use to define O!; it will be derivable that O! = [λν ♦E!ν], for any individual
variable ν.

We may also define being abstract, written A!, as follows:

(.2) A! =df [λx¬♦E!x]

I.e., being abstract is defined as not possibly exemplifying concreteness. Since it
will be axiomatic that [λx¬♦E!x]↓ (39.2), this definition will yield the identity
A!=[λx¬♦E!x] as a theorem. Remarks analogous to those following definition
of O! apply to A!.

(23) Definitions: Identity. As noted earlier, the definition of identity requires
four cases. We first say that individuals are identical just in case either they are
both ordinary and necessarily exemplify the same properties or they are both
abstract and necessarily encode the same properties:

(.1) x=y ≡df (O!x&O!y &�∀F(Fx ≡ Fy)) ∨ (A!x&A!y &�∀F(xF ≡ yF))

By our Convention (17.2), we obtain instances of this definition by uniformly
replacing x and y by any individual terms κ1 and κ2, respectively, and by uni-
formly replacing F by any property variable Ω, provided Ω doesn’t occur free
in the terms replacing x and y. See Remark (35), where we examine the behav-
ior of the above definition for the definiendum x= ızGz.

In the discussion accompanying the Encoding Formula Convention (17.3),
we saw that x and y occur in encoding position in x=y. So the λ in [λxy x=y]
binds variables in encoding position. The same applies to the λ in each of
[λx x = y], [λx x = a], and [λy x = y], and [λy a = y]. These are not core λ-
expressions and therefore will not be among the terms guaranteed to have a
denotation by axiom (39.2). This forestalls the McMichael/Boolos paradox dis-
cussed in Chapter 2, Section 2.1.

The second case for the definition of identity governs properties. For the
following case, we suppress the superscript on F1 and G1 and so use F and
G as unary relation variables under Convention (17.2). We then say that F is
identical to G just in case F and G both exist and, necessarily, all and only the
individuals that encode F encode G. Formally:

(.2) F=G ≡df F↓ &G↓&�∀x(xF ≡ xG)
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See Remark (36) for an extended discussion of why the existence clauses have
been added to the definiens. Though the variables F and G in the above func-
tion as metavariables under Convention (17.2), they function normally when
we state axioms and theorems. So since it will be axiomatic that F↓ and G↓, by
axiom (39.2), we will be able to derive, from the relevant instance of the above
definition, that F = G ≡ �∀x(xF ≡ xG). We’ll then be able to infer that this
holds for all F and G. Given the negative free logic of complex terms that we’ll
adopt, the following universal closure of this theorem, namely ∀F∀G(F =G ≡
�∀x(xF ≡ xG)), can only be instantiated to significant property terms; see the-
orem (116.1). Contrast this with the definition displayed above, which can be
instantiated to any property terms, significant or otherwise.

The third case of the definition of identity governs n-ary relations (n ≥ 2);
it defines relation identity in terms of the notions of existence and property
identity. Let F and G be two n-ary relation variables (n ≥ 2). Then we say that
F is identical to G if and only if F and G both exist and each way of applying F
and G to n−1 objects results in identical properties:

(.3) F=G ≡df F↓&G↓&
∀y1 . . .∀yn−1([λx Fxy1 . . . yn−1]=[λx Gxy1 . . . yn−1] &

[λx Fy1xy2 . . . yn−1]=[λx Gy1xy2 . . . yn−1] & . . .&
[λx Fy1 . . . yn−1x]=[λx Gy1 . . . yn−1x])

See Remark (37) for a discussion of why relation identity is not defined by
using n-ary encoding to generalize the definition of property identity.

The fourth case of the definition of identity governs propositions and is
stated in terms of existence and property identity. Where p and q are any 0-ary
relation variables, we may say that p is identical to q just in case p and q both
exist and being such that p is identical to being such that q:

(.4) p=q ≡df p↓& q↓& [λx p]=[λx q]

It might be of interest to note that since it will be axiomatic that p↓ and q↓ by
axiom (39.2), we will be able to derive, from the relevant instance of the above
definition, that p=q ≡ [λy p]=[λy q]. See theorem (116.2).

(24) Definitions: Non-identity. We now introduce the notion of non-identity in
terms of negation and identity as follows:

τ , σ ≡df ¬(τ = σ ),
provided τ and σ are both terms of the same type

This is not just a rewrite convention, for here we are defining non-identity in
terms of primitive and defined notions. So we’re not just introducing easier-
to-read notation.
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It is important to observe that we intentionally omitted the existence clauses
τ ↓ and σ ↓ from the definiens. That’s because we want formulas of the form
τ , σ to be provable not just when both τ and σ denote entities that fail
to be identical but also when either τ or σ fails to denote. For example, if
¬([λx ψ]↓), then by theorem (107.1), which asserts τ = σ → τ ↓, it will fol-
low that ¬([λx ψ] = [λx ψ]). So given the above definition, we may conclude
[λxψ] , [λxψ]. Clearly, we are not preserving the suggestion that τ = τ is true
even when τ denotes nothing! Though some philosophers and logicians have
argued that τ =τ should always be true, the case is not compelling and so the
suggestion will not be preserved in the present system.

(25) Remark: Four Final Observations About Definitions. The following ob-
servations about definitions may prove to be of interest. First, definitions often
have a dual role. Sometimes they merely introduce a new technical expression
that either (a) captures a certain condition about objects or relations (or both)
or (b) abbreviates a complex term. But sometimes they provide an analysis
of (one sense of) a logically or philosophically significant word or phrase of
natural language. As examples of this latter role, (18.1) analyzes one sense of
‘and’, (18.4) analyzes one sense of ‘there exists’, and (18.5) analyzes one sense
of ‘possibly’. Similarly, definition (23.1) of ‘=’ offers an analysis of the English
expression ‘is identical to’ as it is used in claims such as “Hesperus is identical
to Phosphorus” or “Clark Kent is identical to Superman”. Definition (23.2),
which provides a separate case of the definition of ‘=’, offers an analysis of the
phrase ‘is identical to’ as it is used in such claims as:

• being a brother is identical to being a male sibling

• being a circle is identical to being a closed plane figure every point of which
lies equidistant from some given point

Of course, the hope is that such definitions provide insightful analyses that
demonstrate the power of the primitive notions of the language. For example,
the definition of property identity in (23.2) is introduced as part of our theory
of identity: it (a) analyzes the identity of properties in terms of the primitives
of our language, (b) provides a precise reconstruction of a notion thought to be
mysterious, (c) is consistent with the intuition that properties may be distinct
even if necessarily exemplified by the same objects, and (d) leads to a proof
that the identity conditions of properties are extensional, i.e., leads to a proof
that properties F and G are identical just in case they are encoded by the same
objects. This is theorem (189).

Second, note that there are two ways to define new 0-ary terms. Consider:

q0 ≡df ∃x(E!x&¬AE!x)

q0 =df ∃x(E!x&¬AE!x)
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The second definition is well-formed because both terms flanking the symbol
=df are 0-ary relation terms. Moreover, the definiens is provably significant – a
theorem proved in Chapter 9, namely, (104.2), guarantees that the proposition
∃x(E!x&¬AE!x) exists, i.e., that (∃x(E!x&¬AE!x))↓. So the second definition
will imply identities of the form q0 =∃x(E!x&¬AE!x).

Though only one definition of q0 is allowed within the system, one may in-
troduce it via either the definition-by-≡ or the definition-by-=. The choice ul-
timately rests on the inferential role that one wants q0 to have. We’ll formalize
the distinct inferential roles of definitions-by-≡ and definitions-by-= in Chap-
ter 9, in items (72) and (73). But, to a first approximation, we can say the choice
of definition comes down to whether one wants to be able to derive a necessary
equivalence or an identity between q0 and ∃x(E!x&¬AE!x). In a hyperinten-
sional system such as ours, a necessary equivalence doesn’t imply identity. We
therefore leave the choice to be determined by the occasion and the way in
which the definition is to be applied. In cases like q0, however, we’ll typically
use the stronger definition-by-=, primarily so that we can simplify proofs.

Third, one of the axioms for quantification theory that we stipulate in the
next chapter asserts, among other things, that the primitive constants of the
language are significant; see (39.2). This axiom does not apply to constants that
have been introduced by definition and thereby avoids the following problem.
Our theory of definitions-by-identity will allow us to introduce a new con-
stant, say d31, by the definition d31 =df ıx(P x& ¬P x). Since ıx(P x& ¬P x) will
provably fail to have a denotation, it is not clear what use there is for such a
definition. But, in this work, we aren’t requiring that one prove in advance that
the definiens is significant in order to introduce a definition-by-identity. As
we shall see in Chapter 9, in item (73), the inferential role of a definition-by-
identity is to make it axiomatically true that if the definiens is significant, then
the identity holds, otherwise the definiendum fails to be significant. So, in the
case we’re describing, the definition introduces the following axiom:

(ıx(P x&¬P x)↓ → (d31 = ıx(P x& P x))) & (¬ıx(P x&¬P x)↓ → ¬d31↓)

So we can’t use axiom (39.2) to assert τ↓ for every constant τ , since the definiens
of a constant introduced by definition might fail to denote. A similar consid-
eration applies to new relation constants defined in terms of paradoxical λ-
expressions that aren’t significant, such as [λx ∃G(xG&¬Gx)] (this expression
is involved in the Clark/Boolos paradox). It will be provable that ¬[λx∃G(xG&
¬Gx)]↓ (192.1). While our theory of definition-by-identity allows one to intro-
duce S32 =df [λx ∃G(xG&¬Gx)], axiom (39.2) does not thereby sanction S32↓,
since S32 is a constant introduced by a definition.95

95Note how our discussion applies to (a) the case where one defines d31 as above and then defines
P33 =df [λx Rxd31], and (b) the case where one defines the term S32 as above and then defines
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The fourth and final observation is that the discussion of definitions in this
section completes the precise syntactic characterization of our formalism. This
forestalls the concerns that Gödel (1944, 120) raised about Whitehead and Rus-
sell’s Principia Mathematica:

It is to be regretted that this first comprehensive and thorough-going pre-
sentation of a mathematical logic and the derivation of mathematics from
it [is] so greatly lacking in formal precision in the foundations (contained
in *1–*21 of Principia) that it presents in this respect a considerable step
backwards as compared with Frege. What is missing, above all, is a pre-
cise statement of the syntax of the formalism. Syntactical considerations
are omitted even in cases where they are necessary for the cogency of the
proofs, in particular in connection with the “incomplete symbols”.

It is important to have taken some pains in the above development to ensure
that such a criticism doesn’t apply to the present effort. Attention to the syntac-
tic details should also be useful to those interested in both the computational
implementation and metatheoretic properties of the system.

7.3 Explanatory Remarks: Digression

In this section, we develop a number of remarks that will offer some perspec-
tive on, and examples of, the metadefinitions and definitions in this chapter.
Unfortunately, we shall need to appeal occasionally to facts about our system
not yet in evidence. Some of the choices in the foregoing can’t be explained
adequately without mentioning developments (definitions, axioms, and theo-
rems) that are formulated much later in the text. Nevertheless, I’ve tried to
make the discussion intuitive and, in some cases, have repeated later develop-
ments so that most of the Remarks can be read on their own.

(26) Remark: About Alphabetic Variants. Alphabetically-variant formulas and
terms are complex expressions that differ only orthographically with respect
to the bound variables they contain and intuitively have the same meaning.
Thus, Fx and Fy are not alphabetic variants, nor are Fa and Ga. Rather, in the
simplest cases:

• ∀xFx and ∀yFy are alphabetically-variant formulas; they not only have
the same truth conditions but denote the same proposition, namely, that
every individual exemplifies F.

d33 = ıxϕ, for some formula ϕ in which S32 occurs. In these cases, our theory of definitions-by-
identity will guarantee that P33 and d33 are significant if their definientia are.
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• ıxFx and ıyFy are alphabetically-variant descriptions; they either both
denote the unique individual that in fact exemplifies F if there is one, or
both denote nothing if there isn’t.

• [λx¬Fx] and [λy ¬Fy] are alphabetically-variant relation terms; they de-
note the same relation.

However, we shall need to define the notion of alphabetic variant for formu-
las and terms of arbitrary complexity. So we need a definition on which the
following pairs of expressions count as alphabetic variants:

• ∀F(Fx ≡ Fy) / ∀G(Gx ≡ Gy)

• ıx∀yMyx / ıy∀zMzy

• [λy RyızQz] / [λz RzıxQx]

• [λ P a→∀FFa] / [λ P a→∀GGa]

• [λ [λy ¬Fy]a→∀xMx] / [λ [λz¬Fz]a→∀yMy]

Once we have a definition that counts the above pairs as alphabetic variants,
we’ll be in a position to state and prove a number of theorems, such as (1) al-
phabetically variant formulas denote the same proposition (111.4), (2) alphabe-
tically-variant formulas are equivalent (111.5), (3) alphabetically-variant defi-
nite descriptions have the same denotation if they have one (154), (4) a formula
is derivable from some premises if and only if its alphabetic variants are deriv-
able from those premises (114), and (5) a formula is a theorem if and only if its
alphabetic variants are theorems, which is a special case of (114).

The definition of alphabetic variance also enables us to stipulate an axiom
schema that intuitively guarantees that alphabetically-variant λ-expressions
denote the same relation if they have a denotation. This is the schema α-
Conversion, introduced in (48.1). It has the following as instances, where ↓
is defined in (20.2) and (20.3) and intuitively asserts that the expression to
which it attaches has a denotation:

[λy RyızQz]↓→ [λy RyızQz] = [λx RxıyQy]

[λ P a→∀FFa]↓→ [λ P a→∀FFa] = [λ P a→∀GGa]

[λ [λy ¬Fy]a→∀xMx]↓→
[λ [λy ¬Fy]a→∀xMx] = [λ [λz¬Fz]a→∀yMy]

Note that the second and third conditionals introduce an equation between
two 0-ary relation terms.

Our definition of alphabetic variance begins with clause (16.1), which in-
troduces linked and independent variables. Here are some examples:
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• In the formula ∀F(Fa ≡ Fb), each occurrence of the variable F is linked to
every other occurrence.

• In the formula ∀FFa ≡ ∀FFb, the first two occurrences of F are linked
to each other and the last two occurrences of F are linked to each other,
while each of the first two occurrences is independent of each of the last
two occurrences and vice versa.

• In the formula ∀xFx→ Fx, the first two occurrences of x are linked, and
both are independent of the third, given that this formula is shorthand
for (∀xFx)→ Fx.

• In the term ıx(Fx→ Gy), the two occurrences of x are linked.

• In the term [λy ∀xGx→ (Gx&Gy)], the two occurrences of y are linked
(both are bound by the λ), the first two occurrences of x are linked, and
both of those occurrences of x are independent of the third occurrence
of x. Also, all three occurrences of G are free and hence linked.

Since linked is an equivalence condition on variables in a term or formula, we
call the cells of each partition a linkage group. In the first example above,
there is one linkage group for F, and in the fourth example, there is one linkage
group for x. In the second example, there are two linkage groups for F and in
the third example, there are two linkage groups for x. In the fifth example,
there are two linkage groups for x, one linkage group for y, and one linkage
group for G.

In (16.2), we defined BV-notation. Some examples help illustrate this defi-
nition:

• When ϕ = ∀F(Fx ≡ Fy), then ϕ in BV-notation is ϕ[F,F,F]

• When τ = ıx∀yMyx, then τ in BV-notation is τ[x,y,y,x]

• When τ = [λy RyıxQx], then τ in BV-notation is τ[y,y,x,x]

• When τ = [λ P a→∀FFa], then τ in BV-notation is τ[F,F]

• When τ = [λx¬Fx]a→∀yMy, then τ in BV-notation is τ[x,x,y,y]

In definitions (16.3)– (16.5), we completed the definition of alphabetic variant.
The following examples of alphabetically-variant formulas and terms may also
prove useful:

• ϕ = ∀FFa ≡ ∀GGb
ϕ′ = ∀FFa ≡ ∀FFb

• ϕ = ∀xRxx→∃ySyz
ϕ′ = ∀yRyy→∃xSxz
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• τ = ız(Fz→ Gy)
τ ′ = ıx(Fx→ Gy)

• τ = [λy ∀xGx→ (Gz&Gy)]
τ ′ = [λx ∀yGy→ (Gz&Gx)]

There are a number of final observations to make about the definition of alpha-
betic variant. First, note that even though all the free occurrences of a variable
α in ϕ (or τ) are linked, they are preserved as is (i.e., without change and in the
same position) in any alphabetic variant ϕ′ (or τ ′) since the free occurrences
are not listed in BV-notation.

Second, note that our definitions imply that:96

If τ is a term occurring in ϕ and τ ′ is an alphabetic variant of τ , then if
ϕ′ is the result of replacing one or more occurrences of τ in ϕ by τ ′, then
ϕ′ is an alphabetic variant of ϕ.

If ϕ is a formula occurring in τ and ϕ′ is an alphabetic variant of ϕ, then
if τ ′ is the result of replacing one or more occurrences of ϕ in τ by ϕ′,
then τ ′ is an alphabetic variant of τ .

Here are some example pairs of the preceding facts (the first two pairs are
examples of the first fact and the second two pairs are examples of the second
fact):

• Where ϕ1 = ∀F(FıxP x ≡ Fb), τ1 = ıxP x, and τ1
′ = ıyP y,

then ∀F(FıyP y ≡ Fb) is an alphabetic variant of ϕ1

• Where ϕ2 = ∀x([λy ¬Fy]x ≡ ¬Fx), τ2 = [λy ¬Fy], and τ2
′ = [λz¬Fz],

then ∀x([λz¬Fz]x ≡ ¬Fx) is an alphabetic variant of ϕ2

• Where τ3 = [λy ∀xGx→ Gy], ϕ3 = ∀xGx, and ϕ3
′ = ∀zGz,

then [λy ∀zGz→ Gy] is an alphabetic variant of τ3

• Where τ4 = ıy∀F(Fy ≡ Fa), ϕ4 = ∀F(Fy ≡ Fa), and ϕ4
′ = ∀G(Gy ≡ Ga),

then ıy∀G(Gy ≡ Ga) is an alphabetic variant of τ4

In the first case, ıyP y is an alphabetic variant of ıxP x, and replacing the latter
by the former in ϕ1 yields ϕ1

′. In this case, ϕ1 in BV-notation is ϕ[F,F,x,x,F]
and ϕ1

′ in BV-notation is ϕ1
′[F,F,y,y,F]. So (a) ϕ1

′ = ϕ1[F/F,F/F,y/x,y/x,F/F],

96The first of the following two facts holds because all the bound variable occurrences in
τ[α1, . . . ,αn] will appear in ϕ[γ1, . . . ,γm] and the replacements for the γis needed to replace τ
with τ′[β1, . . . ,βn] can not break any linkage groups. The only variable occurrences in τ that could
become linked to non-τ variable occurrences in ϕ are the free variables of τ and those cannot be
changed in τ′ as noted above. The same reasoning explains why the second of the following two
facts holds.
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and (b) any two variables in the list of bound variables for ϕ1 are linked in ϕ1

if and only the corresponding variables in the list of bound variables for ϕ1
′

are linked in ϕ1
′. We leave the explanation of the remaining cases as exercises

for the reader.
Third, note that our definitions give rise to the following fact:

Metatheorem 〈7.6〉
Alphabetic variance is an equivalence condition on the complex formu-
las of our language, i.e., alphabetic variance is reflexive, symmetric, and
transitive.

A proof can be found in the Appendix to this chapter.
A final observation concerns an important metatheorem that can be ap-

proached by way of an example. Let ϕ be a formula of the form ¬ψ. Then any
alphabetic variant of ϕ we pick will be a formula of the form ¬(ψ′), for some
alphabetic variant ψ′ of ψ. For example, if ϕ is ¬∀xFx, so that ψ is ∀xFx. Then
pick any alphabetic variant of ϕ, say, ¬∀yFy. In this case, the formula ∀yFy is
the witness ψ′ such that ϕ′ is ¬(ψ′). This generalizes to formulas of arbitrary
complexity, so that we have:

Metatheorem 〈7.7〉: Alphabetic Variants of Complex Formulas and Terms.

(a) If ϕ is a formula of the form [λψ] (¬ψ, Aψ, or �ψ), then each alpha-
betic variant ϕ′ is a formula of the form [λψ′] (¬(ψ′), A(ψ′) or �(ψ′),
respectively), for some alphabetic variant ψ′ of ψ.

(b) If ϕ is a formula of the form ψ → χ, then each alphabetic variant
ϕ′ is a formula of the form ϕ′→ ψ′, for some alphabetic variants ϕ′

and ψ′, respectively, of ϕ and ψ.

(c) If ϕ is a formula of the form ∀αψ, then each alphabetic variant ϕ′ is
a formula of the form ∀β(ψ′β

α), for some alphabetic variant ψ′ of ψ
and some variable β substitutable for α in ψ′ and not free in ψ′.97

(d) If τ is a term of the form ıνϕ, then each alphabetic variant τ ′ is a
term of the form ıµ(ϕ′µ

ν), for some alphabetic variant ϕ′ of ϕ and
individual variable µ substitutable for ν in ϕ′ and not free in ϕ′.

(e) If τ is a term of the form [λν1 . . .νn ϕ] (n ≥ 1), then each alphabetic
variant τ ′ is a term of the form [λµ1 . . .µn (ϕ′µ1,...,µn

ν1 ,...,νn
)], for some alpha-

betic variant ϕ′ of ϕ and individual variables µi (1 ≤ i ≤ n) substi-
tutable, respectively, for the νi in ϕ′ and not free in ϕ′).98

In the Appendix, the proof of this metatheorem is left as an exercise.

97Note that this allows for the case where β is α or the case where ψ′ is ψ.
98Note that this allows for the case where µ1, . . . ,µn are, respectively, ν1, . . . ,νn.
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(27) Remark: Why Free Variables in Definitions Should Be, or Function As,
Metavariables. In our system, we cannot use object-language variables to for-
mulate definitions if those object-language variables are given their normal
interpretation and the definition is understood classically. To see the problem
with respect to free variables, let’s first consider a definition-by-≡. Suppose
one wanted to define the condition, object x contingently exemplifies property
F, by stipulating that it holds just in case x exemplifies F but doesn’t neces-
sarily exemplify F. One might expect to see this definition formalized using
object language variables as follows:

(A) ContingentlyExemplifies(x,F) ≡df Fx&¬�Fx

In the present context, however, definitions like the above are problematic and
have to be replaced by a definition schema. The traditional understanding
of definitions like (A) fails for systems such as ours, in which individual and
relation terms may fail to denote.

On the traditional understanding, a definition such as (A) becomes avail-
able to the deductive system as a biconditional axiom, i.e., as an axiom where ≡
replaces ≡df in (A). That is its traditional inferential role. This understanding
of definitions suffices in simple systems of classical logic, in which every term
of the language has a denotation and even the free variables that may occur in
an asserted formula have some (arbitrarily assigned) value. The classical logic
of quantification permits the instantiation of any individual or relation term τ
of such a language into a universally quantified claim of the form ∀αϕ.

So in such systems, (A) not only extends the language with new formulas
of the form ContingentlyExemplifies(κ,Π) (where κ is any individual term and
Π any unary relation term), but also extends the deductive system with new
axioms, including both of the following:99

(B) ContingentlyExemplifies(x,F) ≡ (Fx&¬�Fx)

(C) ∀x∀F(ContingentlyExemplifies(x,F) ≡ (Fx&¬�Fx))

In classical systems, every object term κ and every property term Π can be in-
stantiated, respectively, for ∀x and ∀F in (C) to yield biconditional theorems
stating the necessary and sufficient conditions for ContingentlyExemplifies(κ,Π).

99In some systems (not ours, though), where both (a) formulas with free variables are assertible
and (b) the Rule of Generalization (GEN) is primitive, (A) implicitly adds only (B) as an axiom,
since (C) follows from (B) by GEN. In other systems (again, not ours), where formulas with free
variables are not assertible, the definition implicitly adds only (C) as an axiom. As we shall see,
though, in our system, where (a) formulas with free variables are assertible but (b) the Rule of
Generalization (GEN) is a metarule, the definition implicitly adds both (B) and (C) as axioms, since
all of the closures of (B), including universal closures, are taken as axioms. We’ll make this explicit
in Chapters 8 and 9.
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However, our system includes both complex individual terms (definite de-
scriptions) and complex n-ary (n ≥ 1) relation terms (λ-expressions) that may
fail to have a denotation.100 The negative free logic that governs such complex
terms ensures that a term τ can’t be instantiated into a universal claim un-
less it is (provably) significant. Now consider a description like ız(P z&¬P z),
which will provably fail to have a denotation.101 Let’s abbreviate ız(P z&¬P z)
as ızψ. If definition (A) implicitly introduces the axiom (C), then although the
classical logic of constants would allow us to instantiate the relation constant
P for the universal quantifier ∀F in (C), the negative free logic of non-denoting
terms would not allow us to instantiate the description ızψ for the universal
quantifier ∀x in (C). Thus, we wouldn’t be able to derive from (C):

(D) ContingentlyExemplifies(ızψ,P ) ≡ (P ızψ&¬�P ızψ)

So given the classical understanding of definitions on which (A) implicitly in-
troduces (B) and (C) as axioms, negative free logic prevents us from deriving
(D). Thus, the notion ContingentlyExemplifies isn’t really defined when ızψ fails
to denote; no biconditional theorem states the necessary and sufficient condi-
tions under which ContingentlyExemplifies(ızψ,Π), for any term Π.

Similarly, let Π be a property term that provably fails to denote, such as one
of the λ-expressions that leads to the Clark/Boolos paradox. For simplicity, let
[λx ϕ] be an arbitrary such property term. Then, analogously, if (A) implicitly
introduces the axiom (C), then although the classical logic of constants would
allow us to instantiate the individual constant a for the quantifier ∀x in (C),
the negative free logic of non-denoting terms would not allow us to instantiate
the λ-expression [λx ϕ] for the quantifer ∀F in (C). Thus, we wouldn’t be able
to obtain the following as a theorem:

(E) ContingentlyExemplifies(a, [λxϕ]) ≡ ([λxϕ]a&¬�[λxϕ]a)

And, clearly, if both ızψ and [λx ϕ] fail to have a denotation, we wouldn’t be
able to obtain the following as a theorem:

(F) ContingentlyExemplifies(ızψ, [λxϕ]) ≡ ([λxϕ]ızψ&¬�[λxϕ]ızψ)

100We don’t include 0-ary relation terms (and thus formulas) in this list, since it will be a theorem
that all such terms have a denotation; see theorem (104.1).
101In our system, the notion of a term’s having a denotation is represented in the object language

by the logico-metaphysical notion of existence, which is defined in (20) and symbolized by ↓. So the
proof that ız(P z&¬P z) fails to have a denotation, i.e., the proof that ¬ız(P z&¬P z)↓, goes by way of
reductio. For suppose ız(P z&¬P z)↓. Then by definition (20.1), there is some property, say Q, such
that Qız(P z & ¬P z). This implies, by the laws of definite descriptions, that ∃z(P z & ¬P z), which
yields a contradiction for any witness to the existence claim. But in our system, Qız(P z & ¬P z)
immediately implies ız(P z & ¬P z)↓, by axiom (39.5.a), thus directly contradicting our reductio
assumption.
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So the fact that (D), (E), and (F) aren’t theorems means that definition (A) isn’t
sufficient to guarantee that following formulas have the truth conditions spec-
ified by the definition:

ContingentlyExemplifies(ızψ,P )

ContingentlyExemplifies(a, [λxϕ])

ContingentlyExemplifies(ızψ, [λxϕ])

We can avoid this problem by using metavariables and formulating a definition
schema. Let κ be a metavariable ranging over individual terms and Π be a
metavariable ranging over unary relation terms. Then (G) avoids the problems
just noted (A):

(G) ContingentlyExemplifies(κ,Π) ≡df Πκ&¬�Πκ

A definition schema such as (G) implicitly extends our language with the new
syncategorematic expression ContingentlyExemplifies and new formulas of the
form ContingentlyExemplifies(κ,Π). But, just as importantly, (G) will impli-
citly introduce (the closures of) the instances of the following schema as new
axioms:

ContingentlyExemplifies(κ,Π) ≡ (Πκ&¬�Πκ)

Given such an understanding of definition schemata, (G) yields (D), (E), and
(F) as theorems, since these are all instances of the above biconditional. Con-
sequently, the use of metavariables in (G) is required and (A), strictly speak-
ing, doesn’t suffice as a definition. However, since (G) is more complex and
more difficult to read than (A), we have formulated Convention (17.2.a), which
specifically allows the free variables in (A) to function as metavariables, so that
(D), (E), and (F) become instances of the definition.

Now let’s consider definitions-by-=. Though object-language variables that
may occur free in a definition-by-= should also function as metavariables, it
is not for the reason just outlined. To see why, let’s consider a somewhat con-
cocted example that has some interesting probative features. Consider theo-
rem (177.1), i.e., ıx(x=y)↓, which asserts, for an arbitrary object y: the x such
that x is identical to y exists. Let’s use ıx(x = y) as the definiens for ιy in the
following definition-by-=:

(ϑ) ιy =df ıx(x=y)

For example, ιa (‘the a’) is thus defined as the individual x identical to a. (ϑ) is a
fine definition given that the definiens has a denotation for each value assigned
to the free variable y. No matter what is assigned to y, ιy denotes the individual
that is identical to y, i.e., denotes y.
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Traditionally, (ϑ) would be understood as extending our language with a
host of new complex terms. Though (ϑ) uses the free object-language variable
y, it is standard to assume that (ϑ) would extend our language with terms of
the form ικ, where κ is any term. So all of the following would be well-formed:
ιy , ιızϕ , ιıxψ , ιιy , etc.

Also traditionally, (ϑ) would be understood as implicitly introducing the
closures of the axiom:

(ξ) ιy = ıx(x=y)

In a classical logic, in which all terms have denotations, (ξ) yields an identity
axiom for every term other than x, only terms other than x are substitutable
for y in the matrix of the universal closure ∀y(ιy = ıx(x=y))

At first glance, this understanding of the inferential role of definitions-by-
= would appear to be desirable, for in our system, we have individual terms
that fail to denote; our negative free logic does not permit us to instantiate
empty terms into ∀y(ιy = ıx(x=y)), for that would yield identities in which the
terms flanking the identity sign fail to have a denotation. So we don’t want to
interpret (ϑ) as introducing, for any individual term κ, the axiom schema:

ικ = ıx(x=κ)

If ızψ is a description that provably fails to have a denotation, the above would
yield the following as an axiom:

(ζ) ιızψ = ıx(x= ızψ)

In (ζ), both terms flanking the identity sign fail to have a denotation, and such
a claim can’t be axiomatic.102 Identity statements can’t be true when the terms
flanking them are empty unless heroic measures are taken, something we’ll
forego here. So, in a negative free logic, the classical interpretation of (ϑ) as
introducing (ξ) blocks the introduction of identities like (ζ) with non-denoting
descriptions.

102Indeed, in our system, (ζ) would be provably false when ızψ fails to have a denotation, though
to see this we have to cite definitions, axioms, and theorems not yet introduced. Assume ¬(ızψ↓).
Then choose a variable, say x, that isn’t free in ızψ. It follows by theorem (107.2) that ¬(x= ızψ).
Since x isn’t free in our assumption, it follows by GEN that this holds for any object x, i.e., that
∀x¬(x= ızψ), i.e., ¬∃x(x= ızψ).

From this last conclusion, we may infer, by the laws of definite descriptions and the definition
of ↓ that ¬ıx(x= ızψ)↓, as follows:

Assume, for reductio, that ıx(x = ızψ)↓. Then by definition of ↓ (20.1), it follows that for
some property, say P , that P ıx(x = ızψ). But, then, by Russell’s analysis of descriptions
(143)?, it follows a fortiori that that ∃x(x= ızψ), which contradicts what we proved above.

From ¬ıx(x= ızψ)↓, we can again conclude, by theorem (107.2), that ¬(ιızψ = ıx(x= ızψ)). Thus, we
have a proof of the negation of (ζ), when ızψ fails to be significant.
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Thus, one might conclude at this point that we should interpret (ϑ) as in-
troducing (ξ) and that we need not interpret the object-language variables in
(ϑ) as metavariables. But this would be a mistake, for the classical interpre-
tation doesn’t yield a mechanism for proving that ιızψ fails to have a denota-
tion when ızψ fails to have a denotation! Though we saw in footnote 102 that
¬ıx(x = ızψ)↓ is a consequence of ¬ızψ↓, (ϑ) doesn’t allow us to derive ¬ιızψ↓
from ¬ıx(x = ızψ)↓. Intuitively, if the definiens ıx(x = ızψ), fails to be signif-
icant, then we should be able to derive that the definiendum ιızψ fails to be
significant. So the problem is that (ϑ), under the standard interpretation of
its object-language variables, doesn’t give us a means to conclude ¬ιızψ↓ when
¬ıx(x = ızψ)↓. The term ιızψ is well-formed and we know the claim ιızψ↓ to be
false when ıx(x= ızψ) is empty, but we have no means of proving it.

Our solution will be to let the object-language variables in definitions-by-=
function as metavariables but revise our understanding of the inferential role
of these definitions. We’ll allow any terms to be substituted for the free object-
language variables so that we have instances of the definition for every individ-
ual term of the language. But the inferential role of the definition, as formu-
lated in (73), will be that it becomes a metarule stipulating that (the closures
of) a certain conjunction of conditionals is (are) axiomatic. For the particular
instance of (ϑ) we’re now considering, namely, ιızψ =df ıx(x= ızψ), the metarule
will stipulate that the following is a necessary axiom schema: if ıx(x= ızψ) is
significant, then ιızψ = ıx(x= ızψ), and if ıx(x= ızψ) fails to be significant, then
ιızψ fails to be significant.103

We’ll discuss the inferential role of definitions-by-= in more detail in (73),
(119), (120), and especially in Remark (283). In that discussion, we’ll see that
the object-language variables that occur free in such definitions still function
as metavariables. So Convention (17.2.a) will apply even to definitions-by-=.

(28) Remark: Why Bound Variables in Definientia Should Be, or Function As,
Metavariables. Consider definitions-by-≡ first. Suppose one wanted to define:
x and y are indiscernible just in case x and y exemplify the same properties. We
might introduce this definition formally as:

(ϑ) Indiscernible(x,y) ≡df ∀F(Fx ≡ Fy)

However, the following would be a perfectly good instance of the definition:

Indiscernible(x,y) ≡df ∀G(Gx ≡ Gy)

103It is important to note that our example has been over-simplified, since in this instance, the
definiens ıx(x = ızψ) is significant if and only if its argument ızψ is. But this is an artifact of
the particular example. We’ll see cases later where (i) the definiens doesn’t have a denotation
even though all of its argument terms do, and (ii) the definiens has a denotation even though one
or more of its argument terms do not. See the examples discussed in Remark (283). For now,
however, the example we’ve used suffices for the purpose of giving an overview explanation of the
inferential role of definitions-by-=.
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Though we shall eventually be able to prove that the alphabetically-variant
formulas ∀F(Fx ≡ Fy) and ∀G(Gx ≡ Gy) are equivalent, this theorem doesn’t
become provable until (114). Moreover, we may not produce an instance of (ϑ)
by substituting ızFz for x, since ızFz isn’t substitutable for x in the definiens.
So, if we want Indiscernible(ızFz,y) to be defined, then something like the fol-
lowing has to be an instance of the definition:

Indiscernible(ızFz,y) ≡df ∀G(GızFz ≡ Gy)

So, if we put aside the free variables (which we already know function as
metavariables), it is important to interpret (ϑ) as follows, where Ω is a metavari-
able ranging over unary relation variables:

Indiscernible(x,y) ≡df ∀Ω(Ωx ≡Ωy)

But, clearly, this latter is more difficult to read and grasp, and so the Conven-
tion we formulate in (17.2.b) will allow us to suppose that the variables in the
definiens of (ϑ) function as metavariables.

To see an example that shows why bound variables in the definientia of
definitions-by-= should function as metavariables, we invoke an instance of a
theorem schema proved much later (250), namely, that there is a unique ab-
stract object that encodes all and only non-self-identical properties. Using the
uniqueness quantifier (∃!x) defined in item (127.1), this theorem is formally
respresented as:

∃!x(A!x&∀F(xF ≡ F,F))

Consequently, it will be a theorem (252) that the abstract object that encodes
exactly the non-self-identical properties exists, i.e.,

ıx(A!x&∀F(xF ≡ F,F))↓

So we may introduce the individual constant a
∅

as follows:104

a
∅

=df ıx(A!x&∀F(xF ≡ F,F))

However, the following would also be a perfectly good instance of the defini-
tion:

a
∅

=df ıy(A!y &∀G(yG ≡ G,G))

Though we will eventually prove that the alphabetic variants of a description
that has a denotation all denote the same individual, this theorem doesn’t

104Though we won’t actually use this definition in our work, a definition such as this will be
discussed in Remark (267). The new symbol a∅ is a complex individual term with no free variables
and should be considered as a single unit, though we sometimes use the boldface lowercase symbol
a with a different decoration to introduce other new individual constants.
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become provable until (154). So, until then, it important to ensure that the
above definitions are interpreted as the following, where no special provisos
are needed:105

a
∅

=df ıν(A!ν &∀Ω(νΩ ≡Ω,Ω))

Clearly, the definitions of a
∅

with bound object-language variables in the defi-
niens are easier to read and grasp than the one involving metavariables, and so
when developing definitions of this kind, we’ll use object-language variables
under Convention (17.2).

The foregoing therefore explains (a) why the bound variables in the defini-
entia of both definitions-by-≡ and definitions-by-= should be metavariables,
and (b) why we have developed our Convention (17.2.b), which allows bound
object-language variables to function as metavariables whenever that makes
the definition easier to read and grasp.

(29) Remark: Why We Could Have Used Object-Language Variables in Defi-
nition (18). Though the reasons why it is actually clearer to use metavariables
were given in (18), note that we could have invoked Convention (17.2.a) so as
to formulate the definitions in (18) with object-language variables as follows:

(.1) p& q ≡df ¬(p→¬q)

(.2) p∨ q ≡df ¬p→ q

(.3) p ≡ q ≡df (p→ q) & (q→ p)

(.4) (.a) ∃xp ≡df ¬∀x¬p
(.b) ∃Fnp ≡df ¬∀Fn¬p (n ≥ 0)

(.5) ♦p ≡df ¬�¬p

By Convention (17.2.a), instances of these definitions are obtained by uni-
formly substituting 0-ary terms for p and q. Since our BNF (4) stipulates that
formulas are 0-ary relation terms, we obtain instances of the above when any
formulas are uniformly substituted for p and q. That’s precisely the effect that
the Greek metavariables ϕ and ψ have in definition schemata (18.1) – (18.5).
Moreover, by Convention (17.2.b), instances of (.4.a) and (.4.b) above can be
obtained by replacing the definiens with any alphabetic variant. That’s pre-
cisely the effect of interpreting x in (.4.a) and Fn in (.4.b), respectively, as the
metavariables ν and Πn. So, combining all these conventions, (.4.a) and (.4.b)
would be interpreted as:

105The instances of ν and Ω are variables and so ν can’t occur free in Ω and Ω can’t occur free
in ν. So although, in the definiens, ν occurs under the scope of ∀Ω and Ω falls under the scope
of ıν, no provisos are needed; no variable can get captured when we uniformly replace ν by an
individual variable and uniformly replace Ω by a unary relation variable.
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∃νϕ ≡df ¬∀ν¬ϕ

∃Πnϕ ≡df ¬∀Πn¬ϕ

But this reveals another reason why it is clearer to use metavariables as we did
in (18): since α is a metavariable that ranges over both individual variables
and n-ary relation variables (n ≥ 0), these last two definitions can be captured
by the single definition schema, namely, (18.4). This single definition schema
has, as instances, all of the instances of the above two definition schemata.

(30) Remark: Concerning the Definition of Existence. When we assert, using
the logical sense of ‘existence’, that ‘Obama exists’, ‘The present king of France
exists’, or ‘the property being possibly concrete exists’, we semantically imply
that the terms ‘Obama’, ‘the present king of France’, or ‘being possibly con-
crete’ denote or signify something. So the claim pτ existsq, for any term τ , has
ontological significance when true. Such claims may be false in languages con-
taining either individual terms or relation terms that fail to denote. (For those
who are reading this remark without having read footnote 92, the Quinean cor-
ner quotes serve to make it clear that the claim τ exists is not a metalinguistic
assertion about τ , but an object-theoretic assertion that uses the term of our
language which serves as the value of τ .)

In a classical, second-order language without identity but with non-deno-
ting terms, one can’t use the exemplification mode of predication to define
logical existence generally for both individuals and relations. Exemplification
serves well enough to define existence for individuals, but not well enough to
define existence for relations. Here is why.

In a classical, second-order language, one may define: individual κ exists
just in case κ exemplifies some property. Such a definition might be offered on
the basis of the following claims, which both seem true:

Obama exists if and only if Obama exemplifies some property.

The present king of France exists if and only if the present king of France
exemplifies some property.

These last two claims might be represented formally as follows:

o↓≡ ∃FFo

ıxKx↓≡ ∃FFıxKx

To see that these serve well for defining the existence of individuals, consider
the second example. If for some property, say P , the exemplification formula
P ıxKx is true, then the term ‘ıxKx’ denotes something. That’s because a classi-
cal, second-order language is intuitively grounded on the principle that:
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An exemplification formula of the form Πnκ1 . . .κn (n ≥ 1) is true if and
only if the terms Πn, κ1, . . . , and κn all have a denotation and the indi-
viduals denoted by the terms κ1, . . . ,κn exemplify the relation denoted by
the term Πn.

So if we invoke Convention (17.2), the following would serve well as a defini-
tion of logical existence for individuals:

x↓ ≡df ∃FFx

Any biconditional licensed by this definition is true. For consider any instance
of the definition for a individual term κ that is substitutable for x. If κ has a
denotation, then κ↓ is intuitively true while ∃FFκ is semantically true: in any
model of classical second-order logic, there have to be at least two properties
(one true of everything in the model and one true of nothing in the model) and
so if κ has a denotation, the individual it denotes exemplifies a property. If κ
fails to denote an individual, then κ↓ is intuitively false and ∃FFκ becomes
false semantically: no formula of the form Πκ is true and so the claim that
κ exemplifies a property is false. So the biconditional licensed by the above
definition is true no matter whether the term replacing x has a denotation or
fails to have one.

However, if exemplification is the only mode of predication in the system,
as it is in classical second-order logic, then one can’t similarly say that a prop-
erty exists if and only if some individual exemplifies it. This might be repre-
sented as the following definition:

F↓ ≡df ∃xFx

The problem here is that F might be a property that provably isn’t exemplified,
such as being concrete and failing to be concrete, i.e., [λx E!x&¬E!x]. In a theory
on which [λxE!x&¬E!x] denotes a property, any biconditional licensed by the
above definition, such as:

[λx E!x&¬E!x]↓ ≡ ∃y([λx E!x&¬E!x]y)

would be false. The left side would be true (since the λ-expression denotes a
property), while the right side would be false (since nothing exemplifies the
property in question, on pain of contradiction). This conclusion, of course, as-
sumes that [λxE!x&¬E!x] obeys the principle ∀y([λxE!x&¬E!x]y ≡ E!y&¬E!y).

These observations may explain why some free logicians working within a
classical exemplification logic intoduce a primitive notion of identity and de-
fine existence in terms of identity. Given a primitive notion of identity, the
formula ∃β(β = τ), where β is any variable and τ is any term of the same type
as β in which β doesn’t occur free, says that there exists something identical
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to τ , i.e., there exists such a thing as τ . Consequently, one might find the fol-
lowing definition schema being used to define existence for either individual
terms or relation terms:

τ↓ ≡df ∃β(β=τ), provided β is a variable that doesn’t occur free in τ

When τ is an individual term, such as ıxKx, then the definition licenses the
equivalence ıxKx ↓ ≡ ∃y(y = ıxKx). Intuitively, this biconditional is true: if
ıxKx has a denotation, then both sides of the biconditional are true, and if
ıxKx doesn’t have a denotation, both sides of the biconditional are false. And
similarly in the case of property terms, for the above definition also licenses
the equivalence [λxϕ]↓ ≡ ∃F(F=[λxϕ]). If [λxϕ] denotes a property (even one
that nothing exemplifies), then both sides of the biconditional are true, and if
it doesn’t denote a property, then both sides are false.

Though the above definition of existence in terms of identity will not be
adopted in the present system, it does explain why either the claim ∃β(β = τ)
or the equivalent claim τ↓would typically be used in the axioms for a negative
free logic of quantification that govern a second-order language (with identity)
that includes non-denoting (individual and relation) terms. In such logics, it is
important to avoid applying, to non-denoting terms, rules of reasoning that are
valid only for denoting terms. Using a mixture of material and formal mode,
then the three main axioms of such a negative free logic assert:

• If everything is such that ϕ, then if τ has a denotation, then τ is such
that ϕ.

• Primitive constants, variables, and certain safe λ-expressions (see below)
have denotations.

• If an atomic formula is true, then the primary terms (7.8) in that formula
have denotations.

Of course, when the above axioms are formulated in a second-order language,
one uses either ∃β(β=τ) or τ↓ in place of the metalinguistic claim that τ has a
denotation.

In fact, versions of the above axioms are preserved in the present theory
and are asserted in the next chapter as axioms (39.1), (39.2), and (39.5.a) and
(39.5.b). However, the key point here is that in systems with only one mode of
predication, identity (=) is taken as a primitive, existence (↓) is defined in terms
of identity, and then either the claim τ↓ or the claim ∃β(β=τ) is used to state
the axioms of the negative free logic.106

106I’m discounting the suggestion that one define identity for properties as either F = G ≡ ∀x(Fx ≡
Gx) or F = G ≡ �∀x(Fx ≡ Gx), since such definitions collapse materially equivalent or necessarily
equivalent properties.
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By contrast, the present system has greater expressive and analytical power
than the standard second-order predicate calculus. Our system is grounded on
the additional principle:

An encoding formula of the form κ1 . . .κnΠ
n (n ≥ 1) is true if and only if

the terms κ1, . . . ,κn, and Πn all have a denotation and the individuals de-
noted by the terms κ1, . . . ,κn encode the relation denoted by the term Πn.

With two modes of predication, one can define existence (i.e., define τ ↓) in
terms of predication, as long as one uses the appropriate form of predication
for the various cases. The keys to these definitions are the following intuitions,
where κ is any individual term and Π any unary relation term: (a) pκ existsq
is true if and only if κ exemplifies some property, and (b) pΠ existsq is true if
and only if some individual encodes Π. Definition (b) can then be generalized
for n-ary relations of any arity. These definitions will be formally presented in
(20.1) – (20.3), respectively. In Remark (33), we describe why (b) is justified
and constitutes a good definition of property existence.

In light of these developments, we won’t need identity as a primitive in
order to define existence. Indeed, formulas of the form τ = σ can be defined
and, in the case of n-ary relations (n ≥ 0), will be defined in terms of existence.
Then, once our deductive system is in place, we shall prove as a theorem (121.1)
that the claim τ ↓ ≡ ∃β(β = τ) governs the defined notions τ ↓ and τ = σ . So,
the axioms of our negative free logic of quantification will use the claim τ ↓,
as defined in our language, to capture the formal mode claim that τ has a
denotation. The three axioms informally-stated in the three bullet points above
will be formally represented by the following four axioms (where the third
axiom stated informally above has been formalized using two separate claims):

• ∀αϕ→ (τ↓ → ϕτα) (39.1)

• τ↓, provided τ is a primitive constant, a variable, or a core λ-expression
(9.2) in which no variable bound by the λ occurs in encoding position
(9.1) in the matrix (39.2)

• Πnκ1 . . .κn→ (Πn↓&κ1↓& . . . &κn↓) (n ≥ 0),
where Πnκ1 . . .κn is any exemplification formula (39.5.a)

• κ1 . . .κnΠ
n→ (Πn↓&κ1↓& . . . &κn↓) (n ≥ 1),

where κ1 . . .κnΠ
n is any encoding formula (39.5.b)

Consequently, primitive notions of existence and identity won’t be needed to
state the above axioms.107 The above axioms therefore have greater signifi-
cance than their counterparts in languages where ↓ or = is primitive. The def-
initions in (20) and in (23.1) – (23.4) reveal that the two notions of predication
107Cf. Feferman 1995 (299), which includes primitive atomic formulas of the form s= t, t↓, and

R(t1, . . . , tn). Compare also his ‘Definedness’ axioms on p. 301.
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that serve as the basis of object theory are more fundamental than the notions
of existence and identity, and may thereby offer insightful definitions of both
notions.

(31) Remark: Explanation of the Substitutability Requirement in Convention
(17.2.a). To illustrate the substitutability requirement in Convention (17.2.a),
consider the definition of x↓ in (20.1), i.e.,

x↓ ≡df ∃FFx (20.1)

By Convention (17.2.a), we can uniformly replace x by any individual term κ to
obtain an instance of this definition, provided κ is substitutable for x in ∃FFx.
So the Convention says that the following are instances of the definition, since
y and ızGz are substitutable for x in the definiens:

(x↓)yx ≡df (∃FFx)yx, i.e.,
y↓ ≡df ∃FFy

(x↓)ızGzx ≡df (∃FFx)ızGzx , i.e.,
ızGz↓ ≡df ∃FFızGz

However, the substitutability requirement rules out the following as an in-
stance of (20.1):

(ω) (x↓)ızFzx ≡df (∃FFx)ızFzx , i.e.,
ızFz↓ ≡df ∃FFızFz

This is ruled out because ızFz is not substitutable for x in the definiens of
(20.1), as required by Convention (17.2.a).

In other words, we’re understanding (20.1) as the following schema, in
which the individual variable x is replaced by the metavariable κ:

(δ) κ↓ ≡df ∃FFκ, provided F doesn’t occur free in κ.

The proviso on (δ) has to be added so that only terms substitutable for x in
the definiens of (20.1) can be used to obtain instances of the definition. This
illustrates footnote 86 to Convention (17.2.a), which tells us:

each distinct object-language variable α that occurs free in a definition
functions as a distinct Greek metavariable that ranges over terms of the
same type as α, with the proviso that if α falls within the scope of a
variable-binding operator Op in the definiens, then a term may serve as
the instance of α only if it doesn’t contain free occurrences of the variable
bound by Op.

If x in (20.1) is functioning in the same way as κ does in (δ), the Convention
requires that since x falls within the scope of the variable-binding operator ∀F
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in the definiens, the terms that serve as instances of x may not contain free
occurrences of F. (ω) would change the meaning of the definition and increase
the burden of proof for the claim ıxFx↓. Intuitively, to prove ızFz exists, it
suffices to show that ızFz exemplifies some property or other; it need not be F.

If Convention (17.2.a) rules out (ω) as an instance of (20.1), then we can’t
as yet obtain an instance of the definition for the term ızFz. So what is the
definition of the expression ızFz↓? This is the topic of the next Remark, where
we discuss Convention (17.2.b).

(32) Remark: Discussion of Alphabetically-Variant Definientia. Consider the
definition of x↓ in (20.1), i.e.,

x↓ ≡df ∃FFx (20.1)

We saw in Remark (28) why the variable F in (20.1) has to function as a metavari-
able, so that the following become instances of the definition:

x↓ ≡df ∃GGx

x↓ ≡df ∃HHx

Moreover, we saw in Remark (31) that we cannot substitute every individual
term for x in (20.1) to produce an instance of the definition. In particular, we
saw that we cannot obtain the instance:

(ζ) ızFz↓ ≡df ∃FFızFz

But the following would be a viable definition of ızFz↓:

(ϑ) ızFz↓ ≡df ∃GGızFz

To see how Convention (17.2) implies that (ϑ) is an instance of (20.1), note that
by the (17.2.a), the following is an instance:

y↓ ≡df ∃FFy

So by Convention (17.2.b), the following is an instance, since the definiens is
an alphabetic-variant of the definiens in the above:

y↓ ≡df ∃GGy

But, Convention (17.2.a) tells us that the free occurrence ofG in the above func-
tions as a metavariable, and that the following is therefore also an instance:

(y↓)ızFzy ≡df (∃GGy)ızFzy , i.e.,
ızFz↓ ≡df ∃GGızFz
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By this means, (ϑ) becomes a well-formed instance of (20.1) and we obtain a
well-formed definition of ızFz↓.

Thus, given the two clauses in Convention (17.2), (20.1) becomes equivalent
to the following definition schema, in which Ω is a metavariable ranging over
unary relation variables:

(ξ) κ↓ ≡df ∃ΩΩκ,
provided Ω doesn’t occur free in κ

This understanding of definition (20.1) illustrates footnote 87 to Convention
(17.2.b), which tells us:

each distinct object-language variable α that occurs bound by a variable-
binding operator Op in the definiens functions as a distinct Greek meta-
variable ranging over variables of the same type as α, with the proviso
that an object-language variable may serve as an instance of α only if it
does not occur free in any term occurring within the scope of Op.

Since F in (20.1) is functioning as Ω does in the (ξ), we can’t obtain an instance
of the definition by replacing F with some a variable that occurs free within a
term substituted for κ, since κ falls within the scope of ∃F. The reader should
now convince him- or herself that every instance of the following is an instance
of (20.1), for any individual variable ν:

ıνϕ↓ ≡df ∃FFıνϕ,
provided F doesn’t occur free in ϕ

Finally, once it is established that alphabetically-variant formulas ψ and ψ′ are
equivalent and interderivable, then we shall be able to prove that the defini-
tions ϕ ≡df ψ and ϕ ≡df ψ

′ are equivalent. But, in the present system, the
proof that alphabetically-variant formulas are equivalent and interderivable
doesn’t occur until (111.5) and (114), respectively. So, until that time, we must
ensure that definitions-by-≡ have instances in which the definientia are alpha-
betic variants, so that we can produce instances of the definition for every open
term that might be substituted for the free variables, as in the case of (20.1) and
(ϑ) above.

Now, to see how an alphabetically-variant definiens is needed for a defini-
tion-by-=, consider the following definition of property negation:

(ω) F =df [λx¬Fx]

Since F functions as a metavariable ranging over unary relation terms, consider
the term [λy Rxy]. Note that [λy Rxy] is not substitutable for F in the definiens
of (ω). So the following is not an instance of (ω):

[λy Rxy] =df [λx¬[λy Rxy]x]



226 CHAPTER 7. THE LANGUAGE

Consequently, to produce a definition of [λy Rxy], we note that, by Convention
(17.2.b), the following is an instance of (ω), since its definiens is an alphabetic
variant of the definiens in (ω):

F =df [λz¬Fz]

But then, the variable F in the above is also functioning as a metavariable, and
so by Convention (17.2.a), the following is an instance:

[λy Rxy] =df [λz¬[λy Rxy]z]

This illustrates how Convention (17.2.b) applies in definitions-by-=. As an ex-
ercise, the reader should explain how this example also illustrates footnote 87.

(33) Remark: Justification of the Definition of n-ary Relation Existence For
n ≥ 1. It would serve well to explain in some detail why definition (20.2) is
justified. Consider first the unary case of the definition, i.e., F↓ ≡df ∃xxF. To
see that this is a good definition, we need only show that if ↓ had been an
undefined, primitive operator yielding formulas of the form Π↓, then it would
have been a theorem that F↓ ≡ ∃xxF.

To see that this would have been a theorem, we’ll again need to appeal to a
number of facts not yet in evidence. In Remark (248) we note that our theory
implies, without an appeal to the definition of existence, that every property
is encoded by some object, i.e., ∀H∃xxH . This result is a relatively straightfor-
ward consequence of the Comprehension Principle for Abstract Objects, which
is asserted as an axiom in the next chapter, in item (53).108

With this fact, it is easy to see why F↓ ≡ ∃xxF would have been a theorem if
↓ had been primitive. For the left-to-right direction, assume F↓. Then by axiom
(39.1) of our free quantificational logic for complex terms and the fact that F
doesn’t occur free in ∃xxH we can instantiate F into ∀H∃xxH to conclude
∃xxF. For the right-to-left direction, assume ∃xxF. Assume further a is a
witness to this claim, so that we know aF. Then, by axiom (39.5.b) of our free
quantificational logic for complex terms, it follows that F↓&a↓. So by Rule &E
(86.2.a), F↓.

Since it would have been a theorem that F↓ ≡ ∃xxF if ↓ had been a prim-
itive notion instead of a defined one, our system would have provided us
with an analysis of property existence. Analogous reasoning shows that, for

108To anticipate the discussion in Remark (248), let H be an arbitrary property and note that the
Comprehension Principle for Abstract Objects has the following instance:

∃x(A!x&∀F(xF ≡ ∀z(Fz ≡Hz))
So where a is an arbitrary such object, we know ∀F(aF ≡ ∀z(Fz ≡Hz)). Since we knowH↓ by axiom
(39.2) and H is substitutable for F in the matrix aF ≡ ∀z(Fz ≡ Hz), instantiate to H so that we can
conclude aH ≡ ∀z(Hz ≡ Hz). But ∀z(Hz ≡ Hz) is a simple theorem of predicate logic. Hence, it
follows that aH , and further follows that ∃xxH . Since H was arbitarily chosen, we may conclude
∀H∃xxH .
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n > 1, if ↓ had been primitive, it would have been a theorem that Fn ↓ ≡
∃x1 . . .∃xn(x1 . . .xnF

n). In this case, the result is grounded in the provability
of ∀Gn∃x1 . . .∃xn(x1 . . .xnG

n) without an appeal to the definition of existence.
This is also discussed in item (248).109 Since these would have been facts, we
reduced the number of primitives by taking the analysis of relation existence
to be a definition. Our system is powerful enough to define relation existence
in terms of predication.

(34) Remark: Digression on the Definition of Relation Existence. It may be
of interest to see why one can’t define relation existence in terms of property
existence. Suppose one were to define, for n ≥ 2:110

(ϑ) Fn↓ ≡df ∀y1 . . . ∀yn−1([λx Fnxy1 . . . yn−1]↓& [λx Fny1xy2 . . . yn−1]↓& . . . &
[λx Fny1 . . . yn−1x]↓)

(ϑ) stipulates that Fn exists just in case all of the properties projectable from it
exist, i.e., just in case all of the properties that result from the different ways
of plugging n − 1 objects into Fn exist. The problem with (ϑ) is that it would
implicitly introduce, as axioms, biconditionals that are provably false.

In particular, our conventions for definitions would introduce the following
biconditional as axiomatic, where Π is any binary relation term in which x and
y don’t occur free:

(ξ) Π↓ ≡ ∀y([λxΠxy]↓& [λxΠyx]↓)

But to see that (ξ) is false, we need only show that the right condition of (ξ) is
true when the left side is false. So suppose ¬Π↓. To show that the right side
holds, we need only show [λxΠxy]↓ & [λxΠyx]↓, since y doesn’t occur free in
our assumption. But both conjuncts will be instances of axiom (39.2); by hy-
pothesis, x doesn’t occur free in Π, and so the λ-expressions in each conjunct
are core (9.2) – no variable bound by the λ occurs in encoding position (9.1) in
the matrix. So, the right side of (ξ) is true, while the left side is false. Hence,
one can’t define relation existence in terms of property existence as in (ϑ).

109To preview the discussion, the simplest proof of this claim relies on two facts, namely, axiom
(50), which asserts that n-ary encoding facts of the form x1 . . .xnG are equivalent to a conjunction
of unary encodings of the properties that can be projected from G, and the fact that there is an
abstract object, say a, that encodes every property. Note first that axiom (39.2) guarantees that all
of the following properties exist: [λx Gxa. . .a], [λx Gaxa. . .a], . . . , and [λx Ga. . .ax]. Since ∀F aF, a
encodes all of these latter properties. So we can conclude:

[λxGxa. . .a] & a[λxGaxa. . .a] & . . . & a[λxGa. . .ax]

Hence, by axiom (50), a . . .aG, and so ∃x1 . . .∃xn(x1 . . .xnG).
110This was observed by Daniel Kirchner (personal communication, 19 September 2017), though

the reason for the conclusion has subsequently changed from his original, given subsequent im-
provements made to axiom (39.2).
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(35) Remark: About Identity for Individuals. It is important to understand the
behavior of definition (23.1) with respect to definite descriptions. Consider
a description such as ızGz. Then we obtain instances of (23.1) in which ızGz
uniformly replaces x or y. So, for example, the following becomes an instance
of the definition:

(ϑ) x= ızGz ≡df

(O!x&O!ızGz&�∀F(Fx ≡ FızGz)) ∨ (A!x&A!ızGz&�∀F(xF ≡ ızGzF))

It is important to observe:

(a) The definiens of (ϑ) implies ızGz↓, since both disjuncts imply it. The left
disjunct implies O!ızGz, which in turn implies ızGz↓, by axiom (39.5.a).
This axiom guarantees that the primary terms (7.8) of an exemplification
or encoding formula are significant; this will be discussed in a bit more
detail in (231). Moreover, the right disjunct implies A!ızGz, which also
implies ızGz↓, again by axiom (39.5.a).

(b) Consequently, if it is known, either by hypothesis or by proof, that¬ızGz↓,
then the negation of the definiens becomes derivable. So if (ϑ) impli-
citly introduces a biconditional axiom in which ≡ replaces ≡df , then the
negated identity ¬(x= ızGz) becomes derivable. Since this holds for any
x, the claim ∀x¬(x= ızGz) becomes derivable for any description ızGz for
which it is known that ¬ızGz↓.

These facts play an important role as we develop and apply our system.

(36) Remark: Why Existence Clauses Are Sometimes Needed in the Definiens
of Definitions-by-≡. Before we consider specifically why existence clauses have
been added to the definiens of (23.2), we discuss the more general problem that
arises for definitions-by-≡. To see the problem, suppose one wanted to say that
a property is conditionally necessary for an object just in case the object neces-
sarily exemplifies the property whenever it exemplifies the property. Then we
would formalize this definition as:

CondNecFor(F,x) ≡df Fx→ �Fx

with the understanding that, by Convention (17.2), the above is to be inter-
preted as the following definition schema:

(A) CondNecFor(Π,κ) ≡df Πκ→ �Πκ

Suppose further that this schema introduces the instances (and their closures)
of the following schema as axioms:

(B) CondNecFor(Π,κ) ≡ (Πκ→ �Πκ)
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Now consider an arbitrary description, say ızψ, and an arbitrary unary λ-
expression, say [λx ϕ], and suppose that both ¬ızψ↓ and ¬[λx ϕ]↓ are known,
either by hypothesis or by proof. Then where P and a are constants (for which
it will be axiomatic that P ↓ and a↓), then we should be able to derive the fol-
lowing from (B):

(C) ¬CondNecFor(P , ızψ)

(D) ¬CondNecFor([λxϕ], a)

(E) ¬CondNecFor([λxϕ], ızψ)

In general, we should be able to derive¬CondNecFor(Π,κ) whenever it is known
that either Π or κ fails to denote. Such a derivation would preserve the garbage
in, garbage out principle. However, one cannot derive such claims from (B). In
fact, one can derive:

(F) CondNecFor(P , ızψ)

(G) CondNecFor([λxϕ], a)

(H) CondNecFor([λxϕ], ızψ)

Specifically, from ¬ızψ↓ and (B), one can derive (F) and (H), and from ¬[λxϕ]↓
and (B), one can derive (G) and (H). Here’s how.

To see that (F) and (H) are derivable from (B) and ¬ızψ ↓, note that our
system will allow one to prove, from the latter, the negation of any exempli-
fication or encoding formula in which ızψ occurs as a primary term. This is
guaranteed by axioms (39.5.a) and (39.5.b); they are grounded in the fact that
an n-ary predication (n ≥ 1) is true if and only if its primary terms have denota-
tions and the objects denoted by the individual terms exemplify or encode (as
the case may be) the relation denoted by the relation term. Consequently, the
negations of P ızψ and [λx ϕ]ızψ both follow from ¬ızψ↓. But then, the condi-
tionals P ızψ→ �P ızψ and [λx ϕ]ızψ→ �[λx ϕ]ızψ are both derivable, by fail-
ure of the antecedent. Given (B), these respectively imply CondNecFor(P , ızψ),
i.e., (F), and CondNecFor([λxϕ], ızψ), i.e., (H). Since (B) is implicitly introduced
by (A), the latter leads to violations of the garbage in, garbage out principle;
given (A), CondNecFor becomes a condition that holds even though its second
argument fails to denote. So we have instances of the principle garbage in, roses
out, something one should like to avoid when one can control it. We should be
able to prove (C) and (E) when ızψ fails to denote.

By analogous reasoning, (G) and (H) are derivable from (B) and ¬[λx ϕ]↓.
The latter implies the negations of [λx ϕ]a and [λx ϕ]ızψ. So the conditionals
[λxϕ]a→ �[λxϕ]a and [λxϕ]ızψ→ �[λxϕ]ızψ are both derivable by failure of
the antecedent. Given (B), these respectively imply that CondNecFor([λxϕ], a),
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i.e., (G), and CondNecFor([λx ϕ]b, ızψ), i.e., (H). Since (B) is implicitly intro-
duced by (A), the latter again leads to violations of the garbage in, garbage out
principle; given (A), CondNecFor becomes a condition that holds even though
its first argument fails to denote. We have further instances of the principle
garbage in, roses out. We should be able to derive (D) and (E) when it is known,
either by hypothesis or proof, that [λxϕ] isn’t significant.

To solve this problem in a general way, we need to add existence conditions
to the definiens. In our example, we can reformulate our original definition,
under Convention (17.2), as:

CondNecFor(F,x) ≡df F↓& x↓ & (Fx→ �Fx)

where this is to be interpreted as the schematic definition:

(A′) CondNecFor(Π,κ) ≡df Π↓&κ↓& (Πκ→ �Πκ)

(A′) would implicitly extend our system with all of the instances, and the clo-
sures of the instances, of the following axiom or theorem schema:

(I) CondNecFor(Π,κ) ≡ (Π↓&κ↓& (Πκ→ �Πκ))

Thus, the following would all be theorems, by uniformly assigning terms to
metavariables in (I):

(J) CondNecFor(P , ızψ) ≡ (P ↓& ızψ↓& (P ızψ→ �P ızψ))

(K) CondNecFor([λxϕ], a) ≡ ([λxϕ]↓& a↓& ([λxϕ]a→ �[λxϕ]a))

(L) CondNecFor([λxϕ], ızψ) ≡ ([λxϕ]↓& ızψ↓& ([λxϕ]ızψ→ �[λxϕ]ızψ))

So from ¬ızψ↓ and (J) we can infer (C), and from ¬ızψ↓ and (L) we can infer
(E). Analogously, from ¬[λx ϕ]↓ and (K) we can infer (D), and from ¬[λx ϕ]↓
and (L) we can infer (E). This is as it should be: given (A′), the negation of
CondNecFor(Π,κ) is derivable whenever ¬Π↓ or ¬κ↓ is known either by proof
or by hypothesis. This gives us a way to preserve the garbage in, garbage out
principle.

We’re not suggesting here that every definition-by-≡ with free variables
needs to include existence clauses in the definiens. There are a number of
cases where they aren’t needed. In some cases, existence is already implied by
the definiens, such as in the example from Remark (27):

ContingentlyExemplifies(x,F) ≡df Fx&¬�Fx

This definition doesn’t require existence clauses in the definiens, since no mat-
ter what terms Π and κ uniformly replace F and x, respectively, in the defini-
tion, the definiens implies both Π↓ and κ↓. In other cases, we don’t specially
need or want the definiens to imply existence, such as in the definitions of &,
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∨, ≡, ∃αϕ, and ♦ϕ in (18), or in definition of τ ,σ in (24). And, there will be
some cases where, in order to obtain a correct definiens, existence clauses have
to be added to the definiens for some but not all of the variables that occur free
in the definition.

Now that we have a good grasp on why existence clauses are sometimes
needed in the definiens of definitions-by-≡, we can return specifically to def-
inition (23.2) of F =G. In this case, the existence clauses in the definiens are
essential. To see why, suppose we had omitted them and consider the follow-
ing instance of the definition without the existence clauses in the definiens, in
which [λy ϕ] uniformly replaces F and [λz ψ] uniformly replaces G:

(ϑ) [λy ϕ]=[λz ψ] ≡df �∀x(x[λy ϕ] ≡ x[λz ψ])

Now suppose that this definition were to introduce the following as an axiom:

(ϑ′) [λy ϕ]=[λz ψ] ≡ �∀x(x[λy ϕ] ≡ x[λz ψ])

Finally, suppose both [λy ϕ] and [λzψ] are both λ-expressions that fail to have
a denotation, i.e., suppose ¬[λy ϕ]↓ and ¬[λz ψ]↓. Then (ϑ′) would yield a
derivation of [λy ϕ] = [λz ψ]. Here’s why.

As mentioned previously, our negative free logic of quantification for com-
plex terms will require, by axioms asserted in the next chapter, (39.5.a) and
(39.5.b), that if an n-ary exemplification or encoding formula (n ≥ 1) is true,
then all the primary terms in that formula are significant. So, by the contra-
positive, it follows from ¬[λy ϕ]↓ and ¬[λz ψ]↓ that the encoding formulas
x[λyϕ] and x[λzψ] are both false. Since they both have the same truth value, it
follows by propositional logic that x[λy ϕ] ≡ x[λz ψ]. Since this holds for arbi-
trary x, it follows by quantificational logic that ∀x(x[λyϕ] ≡ x[λzψ]). Since this
universal claim was established without appealing to any contingent assump-
tions, it follows by modal logic that �∀x(x[λyϕ] ≡ x[λzψ]). But if (ϑ) implicitly
introduces (ϑ′), then we would have a proof of [λyϕ]=[λzψ]. Clearly, we don’t
want to prove that an identity holds between every pair of non-denoting λ-
expressions! Indeed, we don’t want any pair of non-denoting λ-expressions Π
and Π′ to be such that Π=Π′.

We’ve adopted the solution of adding the clauses F↓ and G↓ in (23.2). This
avoids the derivation of identities in which the terms flanking the identity sign
fail to denote. It instead implies that if a property identity statement is true,
then the terms flanking the identity sign have a denotation. Consequently, if Π
is any property term that fails to be significant, so that Π↓ is known to be false,
the negation of the definiens of (23.2) will be derivable, no matter whether Π

replaces F or G in the definition. So we’ll be able to infer ¬(Π=Π′) if either
¬Π↓ or ¬Π′↓.

(37) Remark: Digression on n-ary Relation Identity. Some readers may wonder
why we haven’t defined relation identity by using n-ary encoding to generalize
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the definition of property identity, i.e., as follows, where F and G are n-ary
relation variables (n ≥ 2):

(ϑ) F=G ≡df F↓&G↓&�∀x1 . . .∀xn(x1 . . .xnF ≡ x1 . . .xnG)

The problem with (ϑ) is that it implies: if there is exactly one necessarily un-
exemplified property, then there is at most one ordinary object.111 Here is the
argument in full, though it may be skipped and reserved for later study with-
out loss of understanding of what follows. However, the the argument makes
use of a number of concepts and theorems that aren’t derived until later. For
example, we’ll reference the relation constant =E , which isn’t introduced and
proved to be significant until (230), and reference theorems about =E , such as
its reflexivity on the ordinary objects (239.1).

We first derive some preliminary consequences of (ϑ). Suppose that the
inferential role of (ϑ) is to implicitly introduce (the closures of) its instances
as axioms. Then, if (ϑ) had been offered as a definition, the following special
case for binary relations would become axiomatic, where F and G are object-
language variables:

(ϑ′) F=G ≡ (F↓&G↓&�∀x∀y(xyF ≡ xyG))

Since F↓ and G↓ are axiomatic (39.2), (ϑ′) reduces, by Rule ≡S (91), to:

F=G ≡ �∀x∀y(xyF ≡ xyG)

Though it may not be immediately apparent why, this is equivalent to:

(ζ) F=G ≡ ∀x∀y(xyF ≡ xyG)

The reason they are equivalent is grounded in the axiom for the rigidity of
encoding (51), i.e., that xF → �xF, and we leave a full demonstration to a
footnote.112 Now the axiom governing n-ary encoding (50) has the following
instances:
111This was observed by Daniel Kirchner, who outlined the argument in personal communica-

tions (computer audio discussions and email exchanges) of 9–11 November 2017.
112The reasoning that shows that ∀x∀y(xyF ≡ xyG) is equivalent to �∀x∀y(xyF ≡ xyG) depends

on the Barcan Formula and the binary case of theorem (179.6), which is derived from the axiom
for the rigidity of encoding (51) and the theorem (178.1) that is derivable from it. The binary case
of (179.6) is:

(x1x2F ≡ y1y2G) ≡ �(x1x2F ≡ y1y2G)

(The derivation of this fact from (51) and (178.1) is in the Appendix.) By 4 applications of GEN:

∀x1∀x2∀y1∀y2((x1x2F ≡ y1y2G) ≡ �(x1x2F ≡ y1y2G))

Instantiating the quantifiers, in order, to x, y, x, and y, respectively, it follows that:

(xyF ≡ xyG) ≡ �(xyF ≡ xyG)

So by GEN:

∀x∀y((xyF ≡ xyG) ≡ �(xyF ≡ xyG))
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xyF ≡ (x[λz Fzy] & y[λz Fxz])

xyG ≡ (x[λzGzy] & y[λzGxz])

Since these are equivalences that don’t depend on a contingency, we may use
the Rule of Substitution to substitute, in (ζ), the right condition of these equiv-
alences for the left, to conclude:

(ξ) F=G ≡ ∀x∀y((x[λz Fzy] & y[λz Fxz]) ≡ (x[λzGzy] & y[λzGxz]))

But notice, independently, that it is axiomatic (52) that ordinary objects fail
to encode properties. So whenever x or y is an ordinary object, the (quanti-
fied) biconditional in the right condition of (ξ), i.e., (x[λz Fzy] & y[λz Fxz]) ≡
(x[λzGzy] &y[λzGxz]) will be true — the conjunctions on both sides of the bi-
conditional are false whenever x or y is ordinary, since in either case, one of the
conjuncts (all of which are encoding formulas) will be false. In other words, it
is provable without appealing to any contingent assumptions (exercise) that:

Fact: ∀x∀y(¬(A!x&A!y)→ (x[λz Fzy] & y[λz Fxz]) ≡ (x[λzGzy] & y[λzGxz]))

Given this Fact (which is a necessary truth given that no contingent assump-
tions are needed to prove it), (ξ) implies:

(ξ ′) F=G ≡ ∀x∀y((A!x&A!y)→ (x[λzFzy]&y[λzFxz]) ≡ (x[λzGzy]&y[λzGxz]))

A strict proof that (ξ) implies (ξ ′) is left to a footnote.113 Note that (ξ ′) holds
for any relations F and G.

Now by two applications of the basic quantifier logic theorem ∀α(ϕ ≡ ψ) ≡ (∀αϕ ≡ ∀αψ) (99.3), it
follows that:

∀x∀y(xyF ≡ xyG) ≡ ∀x∀y�(xyF ≡ xyG)

But the right side of this last biconditional is equivalent, by two instances of the Barcan formula
(167.1) and a Rule of Substitution (160.2) to �∀x∀y(xyF ≡ xyG). Hence:

∀x∀y(xyF ≡ xyG) ≡ �∀x∀y(xyF ≡ xyG) ./

113We simplify the proof that (ξ) implies (ξ′) by reasoning with respect to their form. Note that
if we let ψ be the formula (x[λz Fzy] & y[λz Fxz]) ≡ (x[λzGzy] & y[λzGxz]), then (ξ) has the form:

(ξ) F=G ≡ ∀x∀yψ
Now let χ be the formula (A!x&A!y), so that (ξ′) has the form:

(ξ′) F=G ≡ ∀x∀y(χ→ ψ)

and the Fact has the form:

∀x∀y(¬χ→ ψ)

Then we can reason that (ξ) implies (ξ′) as follows. Assume (ξ), i.e., F =G ≡ ∀x∀yψ. To show
(ξ′), we establish both directions. (→) Assume F =G. Then by (ξ), ∀x∀yψ. But this easily im-
plies ∀x∀y(χ→ ψ), since ψ → (χ→ ψ) is the first law of propositional logic (38.1). (←) Assume
∀x∀y(χ → ψ). To show F =G, it suffices by (ξ) to show ∀x∀yψ. By GEN, it suffices to show ψ.
Assume ¬ψ for reductio. But our local assumption, i.e., ∀x∀y(χ→ ψ), implies χ→ ψ. Hence, ¬χ.
But our Fact, namely ∀x∀y(¬χ→ ψ), implies ¬χ→ ψ. Hence ψ. Contradiction.
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Now recall that we are trying to show that the claim, there is a unique
property that is necessarily unexemplified, i.e.,

∃H(�¬∃xHx&∀H ′(�¬∃xH ′x→H ′ =H))

implies that there is at most one ordinary object, i.e.,

∀x∀y(O!x&O!y→ x=y)

So, for conditional proof, assume there is exactly one necessarily unexempli-
fied property. To show that there is at most one ordinary object, it suffices to
show (O!a&O!b)→ a=b, where a and b are arbitrarily chosen. So assume O!a
and O!b. Then since =E is reflexive on the ordinary objects (239.1), it follows
that a=E a and b=E b. Now consider the relations:

(R1) [λuv u=E a& v=E a]

(S1) [λuv u=E b& v=E b]

Both provably exist.114 So from the fact that a=E a, it follows by strengthened
β-Conversion (181) that R1aa. Note that if we can show R1 = S1, then it follows
that a = b and we’re done. For suppose R1 = S1. Then from the previously
established R1aa, it follows that S1aa, and so a=E b& a=E b, again by (181). A
fortiori, a=E b and therefore a=b, by the definition of = (23.1).

So it remains to show R1 = S1. Since (ξ ′) holds for any two (existing) rela-
tions, it suffices to show:

∀x∀y((A!x&A!y)→ ((x[λzR1zy]&y[λzR1xz]) ≡ (x[λzS1zy]&y[λzS1xz])))

And so by GEN, it suffices to show:

(A!x&A!y)→ ((x[λz R1zy] & y[λz R1xz]) ≡ (x[λz S1zy] & y[λz S1xz]))

So assume A!x&A!y. Now if we can establish the identities [λzR1zy] = [λzS1zy]
and [λz R1xz] = [λz S1xz], then we can establish (x[λz R1zy] & y[λz R1xz]) ≡
(x[λz S1zy] & y[λz S1xz]). For if we assume the left condition of this bicondi-
tional, x[λzR1zy]&y[λzR1xz], then by the identities just mentioned, we obtain
the right condition, x[λz S1zy] & y[λz S1xz]. And analogous reasoning estab-
lishes the right-to-left direction.

So it remains only to show [λz R1zy] = [λz S1zy] and [λz R1xz] = [λz S1xz].
Note that since we have assumed that there is exactly one necessarily unex-
emplified property, it suffices to show (exercise) that the properties [λz R1zy],

114Consider R!. It will be seen later that [λuv Fua& Fvb]↓, where F, u, and v are variables, is
axiomatic, by (39.2). Since F occurs free, the universal closure of this axiom is also axiomatic,
namely, ∀F([λuv Fua& Fvb]↓). So since =E↓, we can instantiate =E into the universal claim and
apply infix notation to obtain [λuv u=E a& v=E a]↓. And similar reasoning applies to S1.
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[λz S1zy], [λz R1xz], and [λz S1xz] are all necessarily unexemplified. Without
loss of generality, then, we show only that the first, namely [λz R1zy], is neces-
sarily unexemplified, since analogous reasoning yields the conclusion for the
other three.

Now it will be provable that [λz R1zy] exists given that R1 exists. But by
definition of R1, this property just is [λz [λuv u=E a&v=E a]zy]. Consequently,
where w is any individual, strengthened β-Conversion (181) implies the fol-
lowing biconditional chain:

[λz [λuv u=E a& v=E a]zy]w ≡ [λuv u=E a& v=E a]wy
≡ w=E a& y=E a

But, by hypothesis, y is abstract. Thus, we know, by reasoning from the defi-
nition of =E (230), that ¬(y =E a). Hence, ¬(w =E a& y =E a). So given our bi-
conditional chain, ¬([λz [λuv u=E a&v=E a]zy]w), i.e., ¬[λzR1zy]w. This holds
for any object w, i.e., ∀w¬[λz R1zy]w, i.e., ¬∃w[λz R1zy]w. Since we reasoned
our way to this conclusion without appealing to any contingent assumptions,
�¬∃w[λz R1zy]w, i.e., [λz R1zy] is necessarily unexemplified.

Since analogous reasoning allows us to establish that the other properties
[λz R1xz], [λz S1zy], and [λz S1xz] are necessarily unexemplified for abstract
x and y, it follows from the hypothesis that there is at most one necessarily
unexemplified property that [λz R1zy] = [λz S1zy] and [λz R1xz] = [λz S1xz].
And this was all that remained to be shown to complete our proof that, under
the definition of relation identity given by (ϑ), the hypothesis that there is a
unique necessarily unexemplified property implies that there is at most one
ordinary object.

One could argue that such a result is without consequence, since pretheo-
retically, it seems reasonable to assert that there are distinct, necessarily unex-
emplified properties, such as being a barber who shaves all and only those who
don’t shave themselves and being a brown and colorless dog. If we assert the exis-
tence of distinct such properties, as our system allows us to do, we avoid the
result that there is at most one ordinary object. But it is somewhat curious that
what seems like a natural definition of relation identity should force us to as-
sert the existence of distinct such properties. Further investigation is certainly
called for. Fortunately, we need not positively assert the existence of distinct
such properties if we proceed by eschewing (ϑ) in favor of the more traditional
definition (23.3).

Exercise: Give a reason for thinking that the official definition of relation iden-
tity (23.3) does not imply, when F and G exist, that if there is exactly one nec-
essarily unexemplified property, then there is at most one ordinary object. As
an outline of the reason, let F and G be any relations known to exist, so that
(23.3) reduces to:
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(ω) F=G ≡ ∀y([λz Fzy]=[λzGzy] & [λz Fyz]=[λzGyz])

Then one can show that this is equivalent to:115

F=G ≡ ∀x∀y((x[λz Fzy] ≡ x[λzGzy]) & (x[λz Fyz] ≡ x[λzGyz]))

At this point, note that the above does lead to a claim analogous to the Fact
we established for (ϑ). The Fact showed that (ϑ) yields identity conditions for
relations that are independent of the properties that result when the relations
projected to ordinary objects. But the identity conditions for relations given by
(23.3) don’t allow us to ignore such projections. It is not a fact that:

∀x∀y(¬(A!x&A!y)→ ((x[λz Fzy] ≡ x[λzGzy]) & (x[λz Fyz] ≡ x[λzGyz])))

An argument analogous to the one used to establish the Fact fails to establish
the above claim.

115Here’s why. By definition of property identity (23.2), (ω) is equivalent to:

F=G ≡ ∀y(�∀x(x[λz Fzy] ≡ x[λzGzy]) &�∀x(x[λz Fyz] ≡ x[λzGyz]))

Since �ϕ&�ψ is equivalent to �(ϕ&ψ), the above is equivalent to:

F=G ≡ ∀y�(∀x(x[λz Fzy] ≡ x[λzGzy]) &∀x(x[λz Fyz] ≡ x[λzGyz]))

By the Barcan Formula, this is equivalent to:

F=G ≡ �∀y(∀x(x[λz Fzy] ≡ x[λzGzy]) &∀x(x[λz Fyz] ≡ x[λzGyz]))

And for reasons similar to those described in footnote 112, this is equivalent to:

F=G ≡ ∀y(∀x(x[λz Fzy] ≡ x[λzGzy]) &∀x(x[λz Fyz] ≡ x[λzGyz]))

Since ∀xϕ&∀xψ is equivalent to ∀x(ϕ&ψ), the above is equivalent to:

F=G ≡ ∀y∀x((x[λz Fzy] ≡ x[λzGzy]) & (x[λz Fyz] ≡ x[λzGyz]))

Finally, since universal quantifiers commute, the above is equivalent to:

F=G ≡ ∀x∀y((x[λz Fzy] ≡ x[λzGzy]) & (x[λz Fyz] ≡ x[λzGyz])) ./



Chapter 8

Axioms

Now that we have a precisely-specified philosophical language that allows to
express claims using primitive and defined notions, we next assert the funda-
mental axioms of our theory in terms of these notions. We may group these
axioms as follows:

• Axioms for negations and conditionals.

• Axioms for universal quantification and logical existence.

• Axioms for the substitution of identicals.

• Axioms for actuality.

• Axioms for necessity.

• Axioms for necessity and actuality.

• Axioms for definite descriptions.

• Axioms for relations.

• Axioms for encoding.

The statement of certain axiom groups require preliminary definitions.
In what follows, when we assert the closures of a schema as axioms, we

mean that the closures of every instance of the schema are axioms. Moreover,
it is important to recognize that when axioms are expressed not as schemata
that use metavariables, but as statements involving object-language variables,
these variables are not functioning as metavariables. Convention (17.2) applies
only to definitions, not to axioms and theorems.

237
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8.1 Axioms for Negations and Conditionals

(38) Axioms: Negations and Conditionals. To ensure that negation and condi-
tionalization behave classically, we take the closures of the following schemata
as axioms:

(.1) ϕ→ (ψ→ ϕ)

(.2) (ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(.3) (¬ϕ→¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

By using the above, instead of defining tautology and asserting that all tautolo-
gies are axioms, we avoid the use of semantic notions in the statement of the
system.

8.2 Axioms for Universal Quantification and
Logical Existence

The axioms below assume familiarity with the syntactic notions primitive con-
stant (1), variable (1), matrix (3.8), subformula (6), primary term (7.8), free/bound
variables (8), encoding position (9.1), core λ-expressions (9.2), and substitutable
for (15). These definitions were developed in the previous chapter, along with
the definitions upon which they depend. For example, it should be clear what
is meant when (39.2) references core λ-expressions, namely, that no variable
bound by the λ occurs in encoding position in the matrix.

(39) Axioms: Quantification and Logical Existence. Where α is any variable,
τ is any term, Πn is any n-ary relation term, and κ1, . . . ,κn are any individual
terms, we assert the closures of the following as axioms:

(.1) ∀αϕ→ (τ↓ → ϕτα), provided τ is substitutable for α in ϕ

(.2) τ↓, whenever τ is either a primitive constant (i.e., one not introduced by
a definition), a variable, or a core λ-expression.

(.3) ∀α(ϕ→ ψ)→ (∀αϕ→∀αψ)

(.4) ϕ→∀αϕ, provided α doesn’t occur free in ϕ

(.5) (a) Πnκ1 . . .κn→ (Πn↓&κ1↓& . . . &κn↓),
where Πnκ1 . . .κn is any exemplification formula (n ≥ 0)

(b) κ1 . . .κnΠ
n→ (Πn↓&κ1↓& . . . &κn↓),

where κ1 . . .κnΠ
n is any encoding formula (n ≥ 1)
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As we shall see, these axioms (i) yield classical quantification theory with re-
spect to primitive constants, variables, and core λ-expressions, and (ii) yield
a negative free logic of quantification for reasoning with respect to all other
terms. (.1) asserts that significant terms can be instantiated into universal
claims;116 (.2) asserts the significance of primitive constants, variables, and
core λ-expressions; (.3) and (.4) are part of classical quantification theory; and
(.5.a) and (.5.b) assert not only that the primary terms of true exemplification
and encoding formulas are significant, but also that true formulas are signifi-
cant (this is the 0-ary case of (.5.a), since formulas are 0-ary relation terms).

The reader may find the observations in the next Remark useful for under-
standing (.2) in more depth. See also Remark (55) at the end of this chapter.

(40) Remark: Digression on the Formulation of (39.2). (39.2) asserts the sig-
nificance of primitive constants, variables, and core λ-expressions. Later, we’ll
derive that every formula, i.e., every 0-ary relation term, is significant (104.2).

We’ve already discussed, in the third observation in Remark (25), why (39.2)
asserts that primitive constants, as opposed to constants generally, are signifi-
cant. (39.2) does not assert that constants introduced by definition are signif-
icant. The loss is not an egregious one. If we have defined a new constant τ
by means of a closed complex term that is provably significant, then the infer-
ential role of definitions-by-identity, sketched earlier in (17) and articulated
precisely in (73) and (120), ensures that we can derive τ ↓; a definition-by-=
implies that if the definiens of a new constant is significant, then the identity
stipulated in the definition holds. In our system, true identity claims will im-
ply the existence of the entities identified – see the theorems in (107) – and so
there will be a means of deriving the significance of new constants introduced
by significant, closed terms in a definition-by-identity.

There should be no question as to why (39.2) stipulates that variables are
significant; in a logic in which open formulas are assertible, free variables are
assumed to have an arbitrary value. So, (39.2) tells us that we may assert α↓
for any variable α. We can always instantiate the variable α into the universal
claim ∀βϕ provided α is substitutable for β in ϕ.

It should be clear why (39.2) doesn’t assert τ ↓ when τ is a definite de-
scription. Some definite descriptions may contingently fail to be significant,
while others, such as ıx(Fx&¬Fx), provably fail to have a denotation (for every
property F). Of course, some definite descriptions will provably be significant.
We’ll see that ıx(x=y)↓ in (177) and that ıx(A!x&∀F(xF ≡ ϕ))↓, when x doesn’t
occur free in ϕ (252).

116It should be kept in mind that the formula τ↓ used in (.1) and (.2) is defined differently for
individual terms and relation terms. So what the instances of τ↓ assert when they are expanded
by definition depends on whether τ is an individual term or a relation term, and if the latter, the
arity of the relation.
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Finally, we discuss what (39.2) asserts in connection with λ-expressions.
First, it should be clear that the following are all axiomatic according to (39.2):

• [λx ιy(Qyx)P ]↓

• [λx¬ιy(Qyx)P ]↓

• [λx y[λz Rxz] ]↓

• [λx�∀z(z[λy Fyx] ≡ z[λy Gyx])]

• [λx ιy(Gx ≡ ¬yG)P ]↓

• [λx ιy(Gx ≡ yG)P ]↓

• [λx [λy ∃H(yH &¬Hy)]x]↓

In these claims, the complex term is a core λ-expression (9.2): the λ does not
bind a variable that occurs in encoding position in the matrix (9.1).

Second, to see why (39.2) only asserts the significance of core λ-expressions,
consider the fact that in classical second-order (exemplification) logic, the com-
prehension condition for relations is unrestricted; for every formula ϕ, the λ-
expression [λν1 . . .νn ϕ] is significant. But in second-order logic with encoding
formulas, the paradoxes of encoding preclude the simultaneous assertion of an
unrestricted comprehension principle for relations and an unrestricted com-
prehension principle for abstract objects. We therefore restrict comprehension
for relations while maintaining unrestricted comprehension for abstract ob-
jects. The intuitive idea is to avoid asserting, in the first instance, the existence
of relations that would make an encoding condition an integral rather than an
incidental part of the exemplification conditions of the relation. (39.2) cap-
tures this intuition mentioned in the previous chapter: if the λ in [λν1 . . .νn ϕ]
were to bind a variable that occurs in encoding position in ϕ, then it would
effectively make an encoding condition an integral rather than an incidental
part of the exemplification conditions of the relation denoted.

Now, with this understanding, there are some interesting facts about the
variety of core λ-expressions that are covered by (39.2). Note that the ax-
iom doesn’t require that core λ-expressions contain only primitive terms; core
λ-expressions may be significant even if they contain occurrences of defined
terms. Indeed, in some cases, they may even contain occurrences of empty de-
fined terms (i.e., terms introduced in a definition-by-= in which the definiens
is an empty term). We can see this by considering the examples discussed in
the penultimate paragraph of (17). Axiom (39.2) asserts that the core expres-
sion [λx Rxız(P z&¬P z)] is significant, despite having an empty description as a
subterm. The open formula Rxız(P z&¬P z) is necessarily false for every x, and
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so the λ-expression will denote a property that is necessarily unexemplified.
So if we define a =df ız(P z&¬P z), then (39.2) asserts that [λx Rxa]↓.

The second example in the penultimate paragraph of (17) is also relevant;
in this case, we have a core λ-expression that contains an empty λ-expression.
Start with the λ-expression that plays a role in the Clark/Boolos paradox,
namely, [λx ∃G(xG & ¬Gx)]; this is provably empty on pain of contradiction,
as established in theorem (192.1). Now consider the following expression:
[λy [λx∃G(xG&¬Gx)]y]. This is a core λ-expression (9.2), since y doesn’t occur
in encoding position in the matrix (9.1). So (39.2) asserts [λy[λx∃G(xG&¬Gx)]y]↓.
And if one were to define Q =df [λx ∃G(xG&¬Gx)], then (39.2) would assert
[λy Qy]↓. In Remark (155) of Chapter 9, we’ll see a number of examples of de-
scriptions and λ-expressions that are provably significant despite the fact that
they contain empty subterms.

Although (39.2) asserts that only core λ-expressions are significant, we may
still prove that some non-core λ-expressions are significant. For example, a
non-core λ-expression will be provably significant if it has a matrix that is
necessarily and universally equivalent to the matrix of a λ-expression that is
known to be significant. This will be systematized as axiom (49). And the
Kirchner Theorem (271.2) will also state conditions under which non-core λ-
expressions are provably significant. Of course, some non-core λ-expressions,
such as those leading to the Clark/Boolos, McMichael/Boolos, and Kirchner
paradoxes, will be provably empty.

8.3 Axioms for the Substitution of Identicals

(41) Axioms: The Substitution of Identicals. The identity symbol ‘=’ is not
a primitive expression of our object language. Instead, identity was defined
in items (23.1), (23.2), (23.3), and (23.4) for individuals and n-ary relations
(n ≥ 0). The classical law of the reflexivity of identity, i.e., α = α, where α is
any variable, will be derived as a theorem — see item (117.1) in Chapter 9. By
contrast, we take the classical law of the substitution of identicals as an axiom.
The closures of the following schema are therefore asserted as axioms of our
system:

α=β→ (ϕ→ ϕ′), whenever β is substitutable for α in ϕ, and ϕ′ is the re-
sult of replacing zero or more free occurrences of α in ϕ with occurrences
of β.

This is an unrestricted principle of substitution of identicals: (a) if x and y are
identical individuals, then anything we can prove about x holds of y, and (b) if
Fn and Gn are identical n-ary relations, then anything we can prove about Fn

holds of Gn.
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8.4 Axioms for Actuality

(42) Metadefinition: Modally Fragile Axioms. In (43), we shall introduce a
special group of axioms that have a profound affect on modal reasoning within
our system. We call these modally fragile axioms. We define:

ϕ is modally fragile just in case ϕ is (asserted as) an axiom, but its modal
closures are not.

There are various material or formal reasons why we may want to assert ϕ, but
not its modal closures, as axioms. Materially, we may know or believe that ϕ is
true but its necessitation is not, such as when ϕ is a contingent truth knowable
only a posteriori. Formally, it may be that ϕ is semantically valid but �ϕ is not,
such as when ϕ is a contingent truth knowable a priori. So any contingent truth
added as an axiom would be classified as modally fragile. We’ll see later on
that the notion of modal fragility also applies to a claim ϕ that is discoverable
only a posteriori but whose necessity can be subsequently established once ϕ is
asserted as an axiom or assumption. In these cases, we refrain from asserting
the necessitation of ϕ as an axiom, notwithstanding its subsequent derivation
as a theorem. (For an example of these latter cases, see (137).) In all these
cases, we shall say that the axioms in question are modally fragile, in the above
sense.

Consequently, in what follows, we use the label ‘?Axiom’ to signpost that
an axiom is modally fragile and subsequently place a ? adjacent to its item
number whenever we cite it. The ? adjacent to the axiom number thereby sig-
nals that the modal closures of that principle are not asserted as axioms. (As we
shall see, a ? adjacent to a theorem number has a slightly different, but related,
meaning.) When we reason from axioms that are modally fragile, we have to be
especially careful when applying the Rule of Necessitation. Our proof theory
will be formulated so that if the proof of a theorem ϕ contains an inferential
step that is justified by a modally fragile axiom, then we may not use the Rule
of Necessitation to infer that �ϕ is also a theorem (though we may be able to
infer �ϕ by other means).

(43) ?Axioms: Modally Fragile Axioms of Actuality. Where ϕ is any formula,
we assert only the universal closures of the following as modally fragile axioms
of the system:

Aϕ→ ϕ

The necessitation of the above schema, i.e., �(Aϕ → ϕ), is not semantically
valid, and so we do not assert the modal closures of the schema’s instances as
axioms.117 That’s why this is designated as a ?-axiom. Instances of this axiom

117Intuitively, just consider models of the theory in which there are two possible worlds, wα and
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schema are logical truths that aren’t necessary as well as contingent truths that
are knowable a priori (Zalta 1988b, 73).

We need not assert the biconditional Aϕ ≡ ϕ as a modally fragile axiom
since the right-to-left direction, ϕ → Aϕ, will be derivable by non-modally
strict means as a ?-theorem (130.1)?.118 Moreover, it is important to note that
the actualization of the above axiom, i.e., A(Aϕ→ ϕ) is derivable as a modally
strict theorem (133.1); as is A(ϕ→ Aϕ) (133.2) and A(Aϕ ≡ ϕ) (133.4). Finally,
where a �-free closure is defined as in (11), we’ll see that all the �-free closures
of Aϕ→ ϕ are derivable by modally strict means (134).

(44) Axioms: Necessary Axioms of Actuality. By constrast we take the all of
the closures of the following axiom schemata to be axioms of the system:

(.1) A¬ϕ ≡ ¬Aϕ

(.2) A(ϕ→ ψ) ≡ (Aϕ→ Aψ)

(.3) A∀αϕ ≡ ∀αAϕ

(.4) Aϕ ≡ AAϕ

We leave the axioms governing the interaction between the actuality operator
and the necessity operator for Section 8.6.119

8.5 Axioms for Necessity

(45) Axioms: Necessity. We take the closures of the following principles as
axioms:

(.1) �(ϕ→ ψ)→ (�ϕ→ �ψ) (K)

(.2) �ϕ→ ϕ (T)

(.3) ♦ϕ→ �♦ϕ (5)

Furthermore, if we read the formula ∃x(E!x&¬AE!x) as asserting the existence
of a concrete-but-not-actually-concrete object, then the following axiom asserts
that it is possible that such objects exist:

w1. In any such model where ϕ is true at the actual world wα but false at w1, then �(Aϕ→ ϕ) is
false at wα because the conditional Aϕ → ϕ is false at w1 (at w1, the antecedent is true and the
consequent is false).
118Previous versions of this monograph took the biconditional Aϕ ≡ ϕ as axiomatic. But I had

not properly done my homework; I thank Daniel Kirchner for pointing out that the left-to-right
condition of the biconditional suffices as an axiom.
119In thinking about the logic of actuality, I’ve benefited from reading Hazen 1978, 1990, and

Hazen, Rin, & Wehmeier 2013.
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(.4) ♦∃x(E!x&¬AE!x)

(.1) – (.3) are well known. Axiom (.4) may not be familiar, but it will play a
significant role in what follows. We’ll discuss it in more detail on several oc-
casions. For now, it suffices to say that its philosophical justification is that
it captures the idea that the world might have contained something distinct
from every actually concrete thing. Interested readers may wish to examine
Remark (56), in which reasons are given for preferring (.4) to alternative ax-
ioms that might suggest themselves.

Whereas many systematizations of quantified S5 modal logic use a primi-
tive Rule of Necessitation (RN), we derive RN in item (68) (Chapter 9). RN is
derived in a form that guarantees that if there is a proof of a formula ϕ that
doesn’t depend on a modally-fragile axiom, then there is a proof of �ϕ. Thus,
we can’t apply RN to any formula derived from the logic of actuality axiom
(43)?. Once RN is derived, we shall be able to derive the Barcan Formula and
Converse Barcan Formula; this occurs in item (168).

8.6 Axioms for Necessity and Actuality

(46) Axioms: Necessity and Actuality. We take the closures of the following
principles as axioms:

(.1) Aϕ→ �Aϕ

(.2) �ϕ ≡ A�ϕ

(.1) asserts that if it is actually the case that ϕ, then necessarily it is actually
the case that ϕ; (.2) asserts that ϕ is necessary if and only if it is actually the
case that ϕ is necessary.

8.7 Axioms for Definite Descriptions

(47) Axioms: Descriptions. We take the closures of the following axiom schema
as axioms:

x = ıxϕ ≡ ∀z(Aϕzx ≡ z = x), provided z is substitutable for x in ϕ and
doesn’t occur free in ϕ

We may read this as: x is identical to the individual that is (in fact) such that
ϕ just in case all and only those individuals that are actually such that ϕ are
identical to x. The notation Aϕzx used in the axiom involves a harmless ambi-
guity; it should strictly be formulated as (Aϕ)τν . But by the third bullet point
in definition (14), we know that (Aϕ)τν = A(ϕτν ).
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8.8 Axioms for Relations

(48) Axioms: Complex n-ary Relation Terms. The axioms traditionally la-
beled α-Conversion and β-Conversion govern the significant λ-expressions of
the form [λx1 . . .xn ϕ], while η-Conversion governs only elementary λ-expres-
sions of the form [λx1 . . .xn F

nx1 . . .xn]:

(.1) α-Conversion. Where ν1, . . . ,νn are any distinct individual variables, the
closures of the following are axioms (n ≥ 0):

[λν1 . . .νn ϕ]↓ → [λν1 . . .νn ϕ] = [λν1 . . .νn ϕ]′,
where [λν1 . . .νn ϕ]′ is any alphabetic variant of [λν1 . . .νn ϕ]

(.2) β-Conversion. The closures of the following are axioms (n ≥ 1):

[λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)

(.3) η-Conversion: Where n ≥ 0, the closures of the following are axioms:

[λx1 . . .xn F
nx1 . . .xn] = Fn

α-Conversion guarantees that significant, alphabetically-variant n-ary λ-ex-
pressions (n ≥ 0) denote the same relation. We shall see that a stronger, un-
conditional, version of α-Conversion can be derived for 0-ary λ-expressions;
see (111.3) and (111.4).

Note that α-Conversion is formulated entirely with metavariables, while
β-Conversion is formulated with a mixture of object-language variables and
metavariables, and η-Conversion is formulated entirely in terms of object-
language variables. Thus, α-Conversion governs any λ-expressions having the
right form.

By contrast, β-Conversion is formulated with respect to (a) λ-expressions
in which the λ binds the distinct object-language variables x1, . . . ,xn and (b)
exemplification formulas involving the individual variables x1, . . . ,xn. We’ve
formulated β-Conversion with specific object-language variables because we
can later prove a strengthened form of β-Conversion (181). It asserts that
[λµ1 . . .µn ϕ] ↓ → ([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ

ν1,...,νn
µ1,...,µn ), for any distinct individual

variables µ1, . . . ,µn and for any individual variables ν1, . . . ,νn, provided ν1, . . . ,νn
are substitutable, respectively, for µ1, . . . ,µn in ϕ.120

120It is worth observing an interesting fact about β-Conversion and λ-expressions that are built
from empty λ-expressions. The λ-expression [λz ∃G(zG & ¬Gz)] is empty (it leads to the Clark-
Boolos paradox) but the following λ-expression provably exists:

[λx [λz ∃G(zG&¬Gz)]x]

By the discussion at the end of (39), we know that [λx [λz∃G(zG&¬Gz)]x]↓ is an instance of axiom
(39.2). This establishes the antecedent of the following instance of β-Conversion:

(ϑ) [λx [λz ∃G(zG&¬Gz)]x]↓ → ([λx [λz ∃G(zG&¬Gz)]x]x ≡ [λz ∃G(zG&¬Gz)]x)
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β-Conversion (.2) guarantees that significant n-ary λ-expressions behave
classically: the left-to-right direction of the consequent is sometimes referred
to as λ-Conversion, while the right-to-left direction is sometimes referred to as
λ-Abstraction. We don’t need to assert β-Conversion for 0-ary λ-expressions
of the form [λϕ] because it follows from theorem (111.2), where we derive the
unconditional claim [λϕ] ≡ ϕ for any formula ϕ, without appealing to the 0-ary
case of (.2). Since [λϕ] ≡ ϕ is derivable without appeal to the 0-ary case of (.2),
the 0-ary case of (.2) becomes a theorem, by the axiom of propositional logic
χ→ (ψ→ χ).

Finally, η-Conversion is not schematic at all. It governs the λ-expressions
of the form [λx1 . . .xn F

nx1 . . .xn], for any n ≥ 0. These expressions have, as
a matrix, an n-ary exemplification formula Fnx1 . . .xn (with nothing but free
variables), and where the xi (0 ≤ i ≤ n) are all bound by the λ. Since the univer-
sal closures of [λx1 . . .xn F

nx1 . . .xn] = Fn with respect to the sole free variable
F are axiomatic, the negative free logic of quantification will guarantee that
only significant λ-expressions can be instantiated into such universal closures
to produce instances. For example, the following is a universal closure of the
unary case of η-Conversion and so an axiom:

∀F([λx Fx] = F)

Since the λ-expression [λz ∃G(zG&¬Gz)] isn’t significant, we won’t be able to
instantiate it into the above universal claim to derive:

[λx [λz ∃G(zG&¬Gz)]x] = [λz ∃G(zG&¬Gz)]

This can’t be a theorem, since the term on the left of the identity symbol is
significant (for the reasons mentioned in footnote 120) while the term on the
right is not (on pain of the Clark/Boolos paradox).

However, we later prove theorems that extend η-Conversion in two ways:
(a) in (111.1), we derive, for n = 0, an unconditional equation of the form
[λ ϕ] = ϕ, and (b) in (186.2), we derive Πn↓→ [λν1 . . .νn Π

nν1 . . .νn] = Πn for
n ≥ 0, where [λν1 . . .νn Π

nν1 . . .νn] is any elementary λ-expression, Πn is any
n-ary relation term, and ν1, . . . ,νn are any distinct object variables that have no
free occurrences in Πn.

(49) Axioms: Coexistence of Relations. We now assert that if the relation be-
ing x1 . . .xn such that ϕ exists and necessarily, for all x1, . . . ,xn, ϕ is materially
equivalent to ψ, then the relation being x1 . . .xn such that ψ exists (n ≥ 1):

Hence it follows that:

(ξ) [λx [λz ∃G(zG&¬Gz)]x]x ≡ [λz ∃G(zG&¬Gz)]x
But since the Clark/Boolos expression [λz ∃G(zG & ¬Gz)] can’t be significant on pain of contra-
diction, it will be provable (192.1) that ¬[λz ∃G(zG&¬Gz)]↓. Hence, it follows by axiom (39.5.a)
that ¬[λz ∃G(zG&¬Gz)]x. So from this and (ξ), it follows that ¬[λx [λz ∃G(zG&¬Gz)]x]x. No x
exemplifies the property signified by [λx [λz ∃G(zG&¬Gz)]x].
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([λx1 . . .xn ϕ]↓& �∀x1 . . .∀xn(ϕ ≡ ψ)) → [λx1 . . .xn ψ]↓ (n ≥ 1)

Intuitively, this tells us that if a λ-expression is significant, then any λ-expres-
sion with a necessarily and universally equivalent matrix is also significant.
We don’t need to assert the case when n=0, since [λψ]↓ is an instance of axiom
(39.2) and the 0-ary case, [λϕ]↓ &�(ϕ ≡ ψ)→ [λψ]↓, follows by the truth of
the consequent.

We also note, for future reference, that this axiom is not a trivial instance or
consequence of the Rules of Substitution that we derive in item (160).121 Some
readers may be interested in the discussion Remark (57), where we explain
why the necessity operator and universal quantifiers are needed in the second
conjunct of the antecedent of the above axiom.

It is worth mentioning again that this axiom allows us to prove the sig-
nificance of some λ-expression excluded by (39.2). Consider a λ-expression Π

in which the initial λ binds a variable that occurs in encoding position in the
matrix. If one can show that the matrix of Π is necessarily and universally
equivalent to the matrix of a λ-expression whose significance is known, then
we can infer that Π is significant. To see an example, examine the definiens
used in (230), namely, [λxy O!x&O!y & x= y]. In this expression, the λ binds
variables that occur in encoding position in the matrix – by Convention (17.3),
x and y occur in encoding position in x=y. However, theorem (229) establishes
that [λxy O!x&O!y & x=y] exists, and the proof in the Appendix does this by
showing that the matrix is necessarily and universally equivalent to the matrix
of a significant λ-expression, namely, [λxy O!x&O!y & x=E y].

8.9 Axioms for Encoding

(50) Axiom: n-ary Encoding Reduction. When n ≥ 2, we assert that individuals
x1, . . . ,xn encode relation Fn if and only if: x1 encodes [λy Fnyx2 . . .xn] and x2

encodes [λy Fnx1yx3 . . .xn] and . . . and xn[λy Fnx1 . . .xn−1y]. Formally, we assert
the closures of:

x1 . . .xnF
n ≡

x1[λy Fnyx2 . . .xn] & x2[λy Fnx1yx3 . . .xn] & . . . & xn[λy Fnx1 . . .xn−1y]

121In the next chapter, we introduce Rules of Substitution and the notion of modal strictness. The
Rules of Substitution (160) allow one to substitute, within a derivation, a formula ψ for a formula
ϕ only when (a) ϕ occurs as a subformula of some formula, say χ, and (b) there is either a proof
of �(ϕ ≡ ψ) or a modally strict proof (60.2) of ϕ ≡ ψ. The above axiom isn’t implied by these rules,
since by definition (6), ϕ is not a subformula of the term [λx1 . . .xnϕ] and so is not a subformula of
the claim [λx1 . . .xn ϕ]↓. Moreover, unlike the Rules of Substitution, instances of the above axiom
don’t require a proof of �(ϕ ≡ ψ) or a modally strict proof of ϕ ≡ ψ; if �∀x1 . . .∀xn(ϕ ≡ ψ) were
only an assumption, for example, we could use that fact when applying the above axiom. See the
discussion in (71). For further discussion of some of these issues, see the examples of illegitimate
uses of the Rules of Substitution in (161).
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where n ≥ 2.
It is natural to ask here: why not just formulate object theory using just

unary encoding predications of the form xF and then use the above to define
n-ary encoding predications as a conjunction of unary encoding predications?
The answer has to do with one of the motivations underlying object, namely,
to give sentences like ‘Holmes is a friend of Watson’ and ‘1 < 2’ a true reading
on which they are binary predications (in this case, the true reading is a binary
encoding predication) and not a conjunction, just as ‘Holmes is a detective’ and
‘2 is prime’ have a true reading on which they are unary encoding predications.

(51) Axiom: Rigidity of Encoding. If an object x encodes a property F, it does
so necessarily. That is, the closures of the following are axioms of the system:

xF→ �xF

In other words, encoded properties are rigidly encoded. From this axiom, we
will be able to prove both that ♦xF → �xF and ♦xF ≡ �xF. Moreover, given
axiom (50), we shall be able to prove both that x1 . . .xnF

n → �x1 . . .xnF
n and

x1 . . .xnF
n ≡ �x1 . . .xnF

n, for n ≥ 1.

(52) Axiom: Ordinary Objects Fail to Encode Properties. The closures of the
following are axioms:

O!x→¬∃F xF

We prove in the next chapter that if x is ordinary, then necessarily x fails to
encode any properties, i.e., that O!x→ �¬∃F xF.

(53) Axioms: Comprehension Principle for Abstract Objects (‘Object Compre-
hension’). The closures of the following schema are axioms:

∃x(A!x&∀F(xF ≡ ϕ)), provided x doesn’t occur free in ϕ

When x doesn’t occur free in ϕ, we may think of ϕ as presenting a condition on
properties F, whether or not F is free in ϕ (the condition ϕ being a vacuous one
when F doesn’t occur free). So this axiom guarantees that for every condition
ϕ on properties F expressible in the language, there exists an abstract object x
that encodes just the properties F such that ϕ.

(54) Remark: The Restriction on Comprehension. In the formulation of the
Comprehension Principle for Abstract Objects in (53), the formula ϕ used in
comprehension may not contain free occurrences of x. This is a traditional
constraint on comprehension schemata. Without such a restriction, a contra-
diction would be immediately derivable by using the formula ‘¬xF’ as ϕ, so as
to produce the instance:

∃x(A!x&∀F(xF ≡ ¬xF))
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Any such object, say a, would be such that ∀F(aF ≡ ¬aF), and a contradiction
of the form ϕ ≡ ¬ϕ would follow once we instantiate the quantifier ∀F to any
property. Instances such as the one displayed above are therefore ruled out by
the restriction.

8.10 Summary of the Axioms

In order to investigate a subfield of a science, one bases it on the smallest
possible number of principles, which are to be as simple, intuitive, and compre-
hensible as possible, and which one collects together and sets up as axioms.

— Hilbert 1922 (translated in Ewald 1996, 1119)

Hilbert’s observation requires one minor amendment: one should base a
science on the smallest number of principles required to systematize the prim-
itive and defined notions expressed in the language of the science. With the help
of the defined notions &, ≡, ∃, O!, A!, ↓ and =, we have axiomatized the prim-
itive notions Fnx1 . . .xn, x1 . . .xnF

n, E!, ¬, →, ∀, �, A, ı, and λ by asserting the
closures of the following principles, with the exception of (43)?, of which only
the universal closures are asserted.

Axioms for Negations and Conditionals:

• ϕ→ (ψ→ ϕ) (38.1)

• (ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (38.2)

• (¬ϕ→¬ψ)→ ((¬ϕ→ ψ)→ ϕ) (38.3)

Axioms for Universal Quantification and Logical Existence:

• ∀αϕ→ (τ↓ → ϕτα), provided τ is substitutable for α in ϕ (39.1)

• τ↓, provided τ is primitive constant, a variable, or a core
λ-expression (39.2)

• ∀α(ϕ→ ψ)→ (∀αϕ→∀αψ) (39.3)

• ϕ→∀αϕ, provided α doesn’t occur free in ϕ (39.4)

• Πnκ1 . . .κn→ (Πn↓&κ1↓& . . . &κn↓) (n ≥ 0) (39.5.a)
κ1 . . .κnΠ

n→ (Πn↓&κ1↓& . . . &κn↓) (n ≥ 1) (39.5.b)

Axioms for the Substitution of Identicals:

• α=β→ (ϕ→ ϕ′), whenever β is substitutable for α in ϕ, and
ϕ′ is the result of replacing zero or more free occurrences of α
in ϕ with occurrences of β (41)
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Axioms for Actuality:

• Aϕ→ ϕ (only universal closures) (43)?

• A¬ϕ ≡ ¬Aϕ (44.1)

• A(ϕ→ ψ) ≡ (Aϕ→ Aψ) (44.2)

• A∀αϕ ≡ ∀αAϕ (44.3)

• Aϕ ≡ AAϕ (44.4)

Axioms for Necessity:

• �(ϕ→ ψ)→ (�ϕ→ �ψ) (45.1)

• �ϕ→ ϕ (45.2)

• ♦ϕ→ �♦ϕ (45.3)

• ♦∃x(E!x&¬AE!x) (45.4)

Axioms for Necessity and Actuality:

• Aϕ→ �Aϕ (46.1)

• �ϕ ≡ A�ϕ (46.2)

Axioms for Definite Descriptions:

• x= ıxϕ ≡ ∀z(Aϕzx ≡ z=x), provided z is substitutable for x
in ϕ and doesn’t occur free in ϕ (47)

Axioms for Relations:

• [λν1 . . .νn ϕ]↓ → [λν1 . . .νn ϕ] = [λν1 . . .νn ϕ]′,
where n ≥ 0 and [λν1 . . .νn ϕ]′ is any alphabetic variant of
[λν1 . . .νn ϕ] (48.1)

• [λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ) (48.2)

• [λx1 . . .xn F
nx1 . . .xn] = Fn, for n ≥ 0 (48.3)

• ([λx1 . . .xn ϕ]↓& �∀x1 . . .∀xn(ϕ ≡ ψ)) → [λx1 . . .xn ψ]↓ (n ≥ 1) (49)

Axioms for Encoding:

• x1 . . .xnF
n ≡

x1[λy Fnyx2 . . .xn] & x2[λy Fnx1yx3 . . .xn] & . . . & xn[λy Fnx1 . . .xn−1y] (50)

• xF→ �xF (51)

• O!x→¬∃F xF (52)

• ∃x(A!x&∀F(xF ≡ ϕ)), provided x doesn’t occur free in ϕ (53)
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8.11 Explanatory Remarks: Digression

(55) Remark: Examples That Increase Understanding of Axiom (39.2). The
following considerations may help one to better understand axiom (39.2). The
axiom asserts:

τ↓, whenever τ is either a primitive constant (i.e., one not introduced by
a definition), a variable, or a core λ-expression.

In (39.2), we discussed why this axiom asserts that these terms are significant.
But it may be helpful to give some examples of λ-expressions that aren’t as-
serted to be significant by (39.2), i.e., non-core λ-expressions, in which the λ
binds a variable in encoding position in the matrix (9.1). Consider the follow-
ing extended, bulleted list of examples of such λ-expressions, some of which
have been discussed before.

• (39.2) does not assert [λx ∃G(xG & ¬Gx)]↓. In this expression, the λ binds
the variable x, which occurs in encoding position (in the formula xG) in the
matrix. This λ-expression will be provably empty (192), for otherwise one can
derive the Clark/Boolos paradox.

• Consider the following definition:

Clark-Boolos(x) ≡df ∃G(xG&¬Gx)

Then (39.2) does not assert [λx Clark-Boolos(x)]↓. By Convention (17.3), x oc-
curs in encoding position in Clark-Boolos(x) since x occurs in encoding position
in the definiens. Thus, [λxClark-Boolos(x)] fails to be a core λ-expression and
so violates the condition required by (39.2).

• Consider the following definition:

S10 =df [λx ∃G(xG&¬Gx)]

Then (39.2) does not assert S10↓, since it is a relation constant introduced by
definition and not a primitive constant. The inferential role of this definition-
by-= will ensure that ¬S10↓ follows from the fact that ¬[λx ∃G(xG&¬Gx)]↓,
i.e., follows from theorem (192.1).

But also note that [λx S10x] ↓ is asserted by (39.2), since it is a core λ-
expression! The variable bound by the λ doesn’t occur in encoding position
in the matrix S10x. Moreover, the definiens of S10 doesn’t contain any free
occurrences of x, and our Encoding Formula Convention (17.3) doesn’t ‘kick
in’. So the only variable bound by the λ in [λx S10x], namely x, occurs in ex-
emplification position. Although (39.2) rules that [λx S10x] is significant, the
property denoted will be provably empty, for given that such a property ex-
ists, β-Conversion yields, for an arbitrary x, that [λx S10x]x ≡ S10x. Since we
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explained above why ¬S10↓, it follows from axiom (39.5.a) that ¬S10x. Hence
¬[λx S10x]x, and this holds for any x.

• (39.2) does not assert [λx Gıy(y =x&∃H(xH &¬Hx))]↓. The λ-expression is
not a core λ-expression; the λ binds a variable that occurs in encoding position
in two places, namely, in y = x and in xH . This λ-expression will be provably
empty, on pain of the Kirchner paradox.

• Consider the following definition:

cx =df ıy(y=x&∃H(xH &¬Hx))

Now consider the λ-expression [λxGcx]. (39.2) does not assert [λxGcx]↓. Note
that if (39.2) were to assert [λxGcx]↓, then we could derive a contradiction.122

By not asserting [λx Gcx]↓ (and its closures), (39.2) avoids this result. In the
definiens of cx, the x occurs in encoding position (in two places). So by con-
vention, the occurrence of x in cx also occurs in encoding position. Thus, the λ
in [λx Gcx] binds a variable that occurs in encoding position and so fails to be
a core λ-expression.

• To construct our last example of a non-core λ-expression that fails to meet
the conditions of (39.2), we first define a core λ-expression. Let cx be defined
as above and let P again be any universal property. Then [λy P cx] is a core
λ-expression (the y bound by the λ doesn’t occur in encoding position in P cx)
and so (39.2) asserts [λy P cx]↓. Now since [λy P cx]↓, consider the definition:

Qx =df [λy P cx]

122For by (39.2), the universal closure would also be axiom:

(A) ∀G([λxGcx]↓)

Now it will be a theorem (193.2)? that:

(B) ∃G(¬[λxGıy(y=x&∃H(xH &¬Hx))]↓)

(A) and (B) are inconsistent. To see why, note that every universal property, i.e., every property
that is exemplified by every individual, is a witness to (B) – see the proof of (193.1)?. Since it is
easy to show that there are universal properties, let P be such a property and instantiate P into
(A), to obtain [λx P cx]↓. From this and the relevant instance of β-Conversion (48.2) we obtain:

[λx P cx]x ≡ P cx
Now by the reasoning in the proof of (193.1)?, it can be shown that P cx is equivalent to
∃H(xH &¬Hx). Hence it would follow that:

[λx P cx]x ≡ ∃H(xH &¬Hx)

Since we’ve made no assumptions about the free variable x, the last line holds for all x:

∀x([λx P cx]x ≡ ∃H(xH &¬Hx))

And since we derived [λx P cx]↓ from (A), it follows by ∃I that:

∃F∀x(Fx ≡ ∃H(xH &¬Hx))

This is a problematic assertion that leads to a version of the Clark/Boolos paradox.
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and then consider the expression [λx Qxa]. (39.2) does not assert [λx Qxa]↓.
Since x occurs free in P cx in encoding position, convention requires us to sup-
pose that x occurs in encoding position in Qx. Thus, [λx Qxa] is not a core
λ-expression.

(56) Remark: Digression on Alternatives to (45.4). Various alternatives axioms
were considered before settling on the version asserted as axiom (45.4). It may
be of interest to some readers to learn why these alternatives were ultimately
rejected in favor of (45.4). The alternatives that we considered are:

(.1) ∃x(E!x&♦¬E!x)

(.2) ♦∃x(E!x&♦¬E!x) &♦¬∃x(E!x&♦¬E!x)

(.3) ♦∃x(E!x&♦¬E!x)

(.4) ♦∃xE!x&♦¬∃xE!x

Note that none of these asserts exactly what (45.4) asserts, namely, that it is
possible that there exists a concrete-but-not-actually-concrete object.

The decision for using (45.4) can be summarized as follows. By assert-
ing the possible existence of a concrete-but-not actually-concrete object, axiom
(45.4), or a theorem that it implies, play a central role:

• in the proof of the existence of at least two contingent properties (205.5);

• in the proof of the existence of at least two contingent propositions (211.4),
and thus plays a role in the proof of the existence of at least four propo-
sitions (212.4);

• in identifying two contingent propositions (215)?, one of which is contin-
gently false (i.e., false but possibly true) and the other of which is contin-
gently true (i.e., true but possibly false);

• in the proof of (theorems used in the proof of) the possible existence of
concrete objects (205.3) and in the necessary existence of ordinary objects
(227.1);

• in the proof of the existence of at least two possible worlds (547.4);

• in the proof the predecessor relation P is not an empty relation, i.e., in the
proof that ∃x∃yPxy (803.1); and

• in the proof that natural cardinals are discernible (803.3).

This axiom accomplishes the above without requiring the existence of concrete
objects and without requiring the existence of a possible world that is devoid
of (contingently) concrete objects.
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The explanation as to why none of the alternatives have all these features
will be conducted informally, by invoking as yet undefined notions of possi-
ble world and truth at at a possible world, as well as presupposing some basic
model and set theory. So it should be remembered: (a) that, ultimately, talk
about possible worlds and truth at a possible world is to be given the analysis
in Chapter 12, Section 12.2; (b) that object theory doesn’t assume or require any
set theory or model theory; and (c) that some notions and axioms of set-theory
will be reconstructed in object theory in Chapter 10, Section 10.3.

(.1) asserts that there exists an object that is both concrete but possibly not,
i.e., there exists a contingently concrete object. If one were to assume that there
is such an object, say a, then we would know E!a&♦¬E!a. Since the expression
E!a denotes a proposition, we could conclude ∃p(p&♦¬p), and that conclusion
would remain once we discharge the assumption about a. Thus, (.1) allows us
to prove that there is a contingently true proposition, though we couldn’t actu-
ally express such a proposition in our language. And once we have established
that there is a contingently true proposition, it is straightforward to show that
there is a contingently false one; just take the negation of any witness to the
existence of a contingent truth.

Despite these virtues of (.1), the reason for not adopting it should be clear:
we cannot justifiably assert (.1) a priori given that it implies ∃xE!x, i.e., there
exist concrete objects. If we could justifiably assert (.1) a priori, Berkeley’s ide-
alism would be convincingly refutable a priori. It isn’t. A posteriori evidence
derived from our senses leads us to assign ∃xE!x a very high probability. Since
we can’t justifiably assert ∃xE!x a priori, we can’t assert (.1) a priori. By con-
trast, (45.4) can be asserted a priori; it is true a priori that there might be a
concrete-but-not-actually-concrete object, though I guess that a strict Humean
might deny this.

(.2) asserts that there might be contingently concrete objects and that there
might not be. (.2) immediately yields the existence of a contingent proposition,
namely, ∃x(E!x& ♦¬E!x), since it asserts both that this proposition is possible
and that its negation is possible. So if ∃x(E!x&♦¬E!x) is true, it is contingently
true (since it is possibly false), and if false, it is contingently false (since it is
possibly true). Of course, (.2) doesn’t tell you whether ∃x(E!x& ♦¬E!x) is con-
tingently true or contingently false. But (.2) also has the nice feature that it
grounds a presupposition of Leibniz’s famous question, “Why is there some-
thing rather than nothing?” (Article 7, Principles of Nature and Grace, 1714,
PW 199, G.vi 602). Leibniz poses this question in the context of considering the
natural world, and it is not unreasonable to suppose that he is asking, “Why is
there something contingently concrete rather than nothing contingently con-
crete?” This presupposes that there might be no contingently concrete objects,
which is precisely what the second conjunct of (.2) asserts a priori.
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However, this second conjunct of (.2) does raise some questions. In the id-
iom of possible worlds, (.2) implies that there exists a possible world in which
there are no contingently concrete objects. But consider this counterargument:
if the key to naturalizing abstract objects is to suppose that they arise from
(or even regard them as) patterns of contingently concrete objects in the nat-
ural world, then if there had been no contingently concrete objects, there would
have been no abstract objects, which seems to contradict the idea that abstract
objects are necessary beings. Even if such an argument is cogent, it isn’t knock-
down; as long as the actual world in fact has contingently concrete objects and
abstract objects arise from (or arise as) patterns of such objects, then it may
not matter that a possible world empty of contingently concrete objects fails to
give rise to abstract objects. So, although the second conjunct of (.2) gives rise
to (the appearance of) controversy. Thus, we shall not assert (.2) given that the
existence of a possible world devoid of contingently concrete objects may yield
more metaphysical questions than it answers.

By contrast, (45.4) doesn’t require the existence of a possible world devoid
of contingently concrete objects. (45.4) is true in models in which there are
exactly two possible worlds (the actual world wα and a distinct world w1) and
two distinct objects, one of which is concrete at wα but not at w1 and the other
of which is concrete at w1 but not at wα . But (.2) rules out such models. Of
course, (45.4) allows for models in which nothing is contingently concrete at
wα as long as there is a world like w1 at which some object is concrete there
but not at wα . (Of course, it is unlikely that such a model represents the way
things are.) So, in this sense, (45.4) is weaker than (.2). But (45.4) is stronger
in the sense that it rules out models with exactly two possible worlds in which
there is one contingently concrete object at wα and none at w1. Such a model
is permitted by (.2).123

(.3) doesn’t have the problem that (.2) has, since it simply drops the sec-
ond conjunct of (.2). Though (.3) doesn’t immediately yield the existence of
a contingent proposition, we may derive the existence of such a proposition
from (.3) without appealing to the current (45.4).124 The disadvantages of (.3)
emerge only in comparison with (45.4). From the latter, we shall not only

123By contrast, (.2) rules out, while (45.4) is true in, a model containing exactly two possible
worlds, in which the actual world has a single contingently concrete object while the second world
has two, since (.2) requires the existence of world empty of contingently concrete objects.
124Assume ♦∃x(E!x & ♦¬E!x). Then by BF♦ (167.3), it follows that ∃x♦(E!x & ♦¬E!x). Suppose
a is such an object, so that we know ♦(E!a & ♦¬E!a). Since a possible conjunction implies that
the conjuncts are possible, it follows that ♦E!a and ♦♦¬E!a. But by a relevant instance of the 4♦
schema (165.7), the latter implies ♦¬E!a. So we have established ♦E!a&♦♦¬E!a. Now we also know
that [λx E!a]↓, by (39.2), and so it follows that (E!a)↓, by definition (20.3). Since the formula E!a
has a denotation, ♦E!a& ♦♦¬E!a implies ∃p(♦p& ♦¬p). Thus, we have derived that there exists a
contingent proposition. This proof, however, is non-constructive; we can’t express a witness in our
language.
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be able to prove that there exist contingent propositions, but we’ll be able to
identify a particular proposition that is contingently true and one that is con-
tingently false. We’ll see in (215.1)? that ∃x(E!x&¬AE!x) is contingently false,
and in (215.2)? that its negation is contingently true. By contrast, (.3) isn’t
strong enough to yield these results.

Finally, (.4) has the virtue that it, too, implies the existence of a contingent
proposition, namely, ∃xE!x, since it asserts both that this proposition and its
negation are both possible. So if ∃xE!x is true, it is contingently true (since
it is possibly false), and if false, contingently false (since it is possibly true).
But there are two problems with the second conjunct of (.4). Since the sec-
ond conjunct requires that there be a world devoid of any concrete objects,
it requires both (a) the existence of a world where there are no contingently
concrete objects (i.e., objects that are concrete there but not concrete with re-
spect to some other world) and (b) the existence of a world where there are no
necessarily concrete objects (like Spinoza’s God). We’ve already discussed the
questions that arise in connection with (a). As for (b), if Spinoza is correct that
God just is Nature and that God is a necessary being, then given that Nature
is concrete, it would follow that God (g) is necessarily concrete, i.e., that �E!g.
If so, it wouldn’t be correct to assert that it is possible that there are no con-
crete objects; at least, we shouldn’t assert this a priori. Note that in giving this
argument, we’re not agreeing with Spinoza’s view; only suggesting that object
theory should not rule his view out a priori. (Of course, some may think it
would be a feature of the system if it were to rule out Spinoza’s view.) In any
case, (45.4) doesn’t have the disadvantages of (.4).

(57) Remark: Digression on the Coexistence of Relations. It may be of some
interest to learn why the 2nd conjunct of the antecedent of (49) must include
both a modal operator and universal quantifiers.125 Consider what the unary
case of (49) would have asserted if the modal operator and universal quantifier
had been removed from the second conjunct:

(ϑ) ([λxϕ]↓& (ϕ ≡ ψ))→ [λxψ]↓

To see why the universal quantifier ∀x must preface the second conjunct of the
antecedent, we derive a contradiction from (ϑ) that would have been avoidable
had the quantifier been present. Let ϕ be ∀p(p→ p) and let ψ be the formula
that leads to the Kirchner paradox, i.e., Gıy(y = x& ∃H(xH &¬Hx)), where G
is some universal property such as [λz ∀p(p → p)]. Then the following is an
instance of (ϑ):

125The argument that follows was sketched by Daniel Kirchner, in personal communications
(email correspondence) of 17 November 2017 and thereafter. For interested readers, we have
reconstructed the argument in greater detail, by considering the unary case of the axiom.
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(ξ) ([λx ∀p(p→ p)]↓& (∀p(p→ p) ≡ Gıy(y=x&∃H(xH &¬Hx))))→
[λxGıy(y=x&∃H(xH &¬Hx))]↓

Note that the variable x has three free occurrences in the second conjunct of
the antecedent. These occurrences become bound in the universal closure of
(ξ), which would, like (ξ), also be an axiom if (ϑ) were an axiom:

(ζ) ∀x(([λx ∀p(p→ p)]↓& (∀p(p→ p) ≡ Gıy(y=x&∃H(xH &¬Hx))))→
[λxGıy(y=x&∃H(xH &¬Hx))]↓)

Now consider any abstract object that encodes O!; for example, let a be an
abstract object that encodes justO!.126 So a is such thatA!a and ∀F(aF ≡ F=O!).
Then we know not only that aO!, but also, since A!a, that ¬O!a, by (222.3).
Hence, ∃H(aH &¬Ha). Now if we instantiate a into (ζ), we obtain:

(ξ ′) ([λx ∀p(p→ p)]↓& (∀p(p→ p) ≡ Gıy(y=a&∃H(aH &¬Ha))))→
[λxGıy(y=x&∃H(xH &¬Hx))]↓

But both conjuncts of the antecedent of (ξ ′) would now be derivable. The first
conjunct is an axiom, since the λ-expression meets the conditions of (39.2). It
then remains only to show:

∀p(p→ p) ≡ Gıy(y=a&∃H(aH &¬Ha))

Proof. Since ∀p(p → p) is a theorem, it suffices to show only that the
right condition is a theorem. But when p is true, ıy(y = x) is identical to
ıy(y =x& p). Moreover both descriptions have the same denotation as x.
Since we’ve established ∃H(aH&¬Ha), it follows that ıy(y=a&∃H(aH&
¬Ha)) denotes a. So we only need to show Ga. But this follows from the
assumption that G is a universal property. ./

So it would follow from (ξ ′) that [λxGıy(y=x&∃H(xH&¬Hx))]↓, i.e., that the
λ-expression has a denotation. Since we know this result leads to a contradic-
tion, we’ve shown why (ϑ) has to be replaced by:

(ω) ([λxϕ]↓&∀x(ϕ ≡ ψ))→ [λxψ]↓

With the quantifier ∀x prefacing the second conjunct of the antecedent, the ax-
iom can’t be true simply on the basis of a single assignment to the free variable
x in (ξ).

But (ω) still won’t do as an axiom. We must add not only the quantifier
∀x to the second conjunct of the antecedent, but also a modal operator, on
pain of contradiction. To see how the contradiction would arise, we have

126The claim ∃x(A!x&∀F(xF ≡ F=O!)) is an instance of the Comprehension Principle for Abstract
Objects (53). It asserts asserts the existence of an abstract object that encodes just O! and no other
properties.
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to appeal to modal theorem (215.2)?, which identifies a particular, contin-
gently true proposition.127 To state this theorem, we let q0 be the proposition
∃x(E!x&¬AE!x). Then (215.2)? asserts that the negation of q0 is contingently
true, i.e., that ContingentlyTrue(q0). So by definition (213.1), we know q0&♦¬q0,
i.e.,

(A) ¬q0 &♦q0

Then we derive a contradiction from this fact and (ω) as follows.
Let χ be the matrix of the expression used in the Kirchner’s Paradox, i.e.,

let χ be Gıy(y = x& ∃H(xH &¬Hx)). (As we saw earlier in (55), there are two
occurrences of x in χ that are in encoding position, one of which is buried in
the identity claim.) Since we know ¬q0 by (A), we also know ¬q0 ∨Aχ. Hence
we know the following equivalence, since the left side is easily derivable and
the right side has been shown to be true:

∀p(p→ p) ≡ (¬q0 ∨Aχ)

Hence by GEN:

(B) ∀x(∀p(p→ p) ≡ (¬q0 ∨Aχ))

Since [λx ∀p(p→ p)]↓ (39.2), it follows from (ω) that:

(C) [λx¬q0 ∨Aχ]↓

Now the following is an axiom, since it is the universal generalization of an
instance of (39.2):

(D) ∀G([λx�Gx]↓)

So from (C) and (D) it follows that:

(E) [λx�[λx¬q0 ∨Aχ]x]↓

From (E) and an instance of β-Conversion (48.2) it follows that:

(F) [λx�[λx¬q0 ∨Aχ]x]x ≡ �[λx¬q0 ∨Aχ]x

Now theorem (106) tells us that if anything exists in the logical sense, it does
so necessarily, i.e., that τ↓→ �τ↓. So, it follows from (C) that:

127Since the following, extended reasoning appeals both to theorem (215.2)? and theorem
(130.2)?, it is not modally strict in the sense of (60.2). But a contradiction is to be avoided, no
matter whether it arises by modally strict or non-modally strict reasoning. We might be able to
derive a contradiction by modally strict means if we start with theorem (217.1), which asserts that
there are contingently true propositions. But (a) the present reasoning is simpler if we just iden-
tify a specific, contingently true proposition, and (b) it suffices to make the point by deriving a
contradiction by non-modally strict reasoning.
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(G) �[λx¬q0 ∨Aχ]↓

Now the following is axiomatic, since it is the modal closure of an instance of
β-Conversion:

(H) �([λx¬q0 ∨Aχ]↓ → ([λx¬q0 ∨Aχ]x ≡ (¬q0 ∨Aχ)))

Hence, by the K axiom (45.1), it follows from (G) and (H) that:

(I) �([λx¬q0 ∨Aχ]x ≡ (¬q0 ∨Aχ))

Now (I) implies by the modal theorem (158.6) that:

(J) �[λx¬q0 ∨Aχ]x ≡ �(¬q0 ∨Aχ)

Hence, by biconditional syllogism, (F) and (J) imply:

(K) [λx�[λx¬q0 ∨Aχ]x]x ≡ �(¬q0 ∨Aχ)

Put (K) aside for the moment and let’s reason about its right side. Note that
given the second conjunct of (A), we can establish:

(L) �(¬q0 ∨Aχ) ≡ �Aχ

Proof. (→) Assume �(¬q0 ∨Aχ). This assumption and ♦¬¬q0 (which we
can easily obtain from the second conjunct of (A), i.e., from ♦q0) imply,
by (162.7), that ♦Aχ. But actuality claims are subject to modal collapse;
i.e., by theorem (174.1), we know ♦Aϕ ≡ �Aϕ. Hence, �Aχ. (←) Assume
�Aχ. A fortiori, �(¬q0 ∨Aχ).

So, (K) and (L) imply:

(M) [λx�[λx¬q0 ∨Aχ]x]x ≡ �Aχ

Put (M) aside for the moment and reason about its right side. Note that we can
establish:

(N) �Aχ ≡ χ

Proof. As an instance of axiom (46.1), we know Aχ → �Aχ. But the
T schema yields �Aχ → Aχ. By conjoining the latter and former and
applying the definition of ≡, we obtain �Aχ ≡ Aχ. But a non-modally
strict theorem governing the logic of actuality (130.2)? tells us Aχ ≡ χ.
Hence by biconditional syllogism, �Aχ ≡ χ.

So from (M) and (N) we have:

[λx�[λx¬q0 ∨Aχ]x]x ≡ χ

Since we’ve derived this from no assumptions, it follows by GEN that:
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∀x([λx�[λx¬q0 ∨Aχ]x]x ≡ χ)

Since we’ve already established that [λx �[λx ¬q0 ∨ Aχ]x]↓, it follows by ∃I
(101) that:

∃F∀x(Fx ≡ χ)

But recall that χ is the matrix of the expression used in the Kirchner paradox,
which means we have established:

∃F∀x(Fx ≡ Gıy(y=x&∃H(xH &¬Hx)))

And this, we know, leads to a contradiction when G is a necessary property.
We avoid this result by prefacing the modal operator � to the second con-

junct of the antecedent of (ω). By doing so, the conclusion (C) only follows if
we can show that (B) is necessary. But (B) can’t be necessary if ¬q0 is contin-
gent. Intuitively, consider any possible world, say w, where both ¬q0 is false
(i.e., where q0 is true) and where there is an object x that fails to be such that
Aχ. Then (B) is false at w: something is such that the left side of (B) is true
at w while the right side of (B) is false at w. Thus, the second conjunct of the
antecedent of axiom (49) has to be a necessarily true universal claim.



Chapter 9

Deductive Systems of PLM

In science, what is provable shouldn’t be believed without proof.128

— Dedekind 1888

In this chapter, we introduce the deductive system PLM by combining the
axioms of the previous chapter with a primitive rule of inference and defining
notions of proof and theoremhood. We then develop a series of basic theo-
rems, facilitated by the introduction and justification of metarules that help us
to establish theorems more easily. Many of the proofs of theorems and justifi-
cations of metarules are left to the main Appendix, though some metatheorems
are proved in chapter appendices.

Readers are reminded that object-language variables function normally in
axioms and theorems, but function as metavariables when they appear in def-
initions, as per Convention (17.2).

9.1 Primitive Rule of PLM: Modus Ponens

(58) Primitive Rule of Inference: Modus Ponens. PLM employs just a single
primitive rule of inference:

Modus Ponens (Rule MP)
ϕ, ϕ→ ψ / ψ

We may read this as: ψ follows from ϕ and ϕ→ ψ.

128Translation mine. The original German is:

Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweiß geglaubt werden.

This is the opening line from the Preface to Dedekind’s classic work of 1888; it occurs in the second
edition (1893) on p. vii and in the seventh edition (1939) on p. iii.
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9.2 (Modally Strict) Proofs and Derivations

(59) Metadefinitions: Derivations, Proofs, and Theorems of PLM. In what
follows, we say that ϕ is an axiom of PLM whenever ϕ is one of the axioms
asserted in Chapter 8. The set of axioms of PLM is recursive and we introduce
the following symbol to refer to it:

Λ = {ϕ |ϕ is an axiom }

Then we define:

(.1) A derivation in PLM of ϕ from a set of formulas Γ is any non-empty se-
quence of formulas ϕ1, . . . ,ϕn such that ϕ is ϕn and for each i such that
1 ≤ i ≤ n, ϕi either is an element of Λ ∪ Γ or follows from two of the
preceding members of the sequence by the Rule MP. When there exists a
derivation of ϕ from some Γ , we write Γ ` ϕ and we say either ϕ is deriv-
able from Γ , or ϕ is a logical consequence of Γ (in the proof-theoretic sense),
or more simply ϕ follows from Γ .

Thus, Γ ` ϕ expresses a multigrade metatheoretical relation between zero or
more formulas in Γ (traditionally called the premises or assumptions) and ϕ
(the conclusion).

The following conventions apply. We often write ϕ1, . . . ,ϕn ` ψ when Γ ` ψ
and Γ is the set {ϕ1, . . . ,ϕn}. We often write Γ ,ψ ` ϕ when Γ ∪ {ψ} ` ϕ. We often
write Γ1,Γ2 ` ϕ when Γ1 ∪ Γ2 ` ϕ.129

When a sequence of formulas ending in ϕ is a derivation of ϕ from some
set Γ , we say the sequence is a witness to (the claim that) Γ ` ϕ and we call the
members of the sequence the lines of the derivation.

Now using the definition of derivation, we may define the notions of proof
in PLM and theorem of PLM:

(.2) A proof of ϕ in PLM is any derivation of ϕ from Γ in PLM in which Γ is
the empty set ∅. A formula ϕ is a theorem of PLM, written ` ϕ, if and
only if there exists a proof of ϕ in PLM.

Two simple consequences of our definitions are:

(.3) ` ϕ if and only if there is a non-empty sequence of formulas ϕ1, . . . ,ϕn
such that ϕ is ϕn and for each i (1 ≤ i ≤ n), ϕi either is an element of Λ or
follows from two of the preceding members of the sequence by the Rule
MP.

129Consequently, since Γ1 ∪ Γ2 = Γ2 ∪ Γ1, the order in which premise sets are listed doesn’t matter,
and so in the case where Γ1 and Γ2 are singletons, the order in which the premises are listed doesn’t
matter. Thus, in general, Γ1,Γ2 ` ϕ if and only if Γ2,Γ1 ` ϕ, and in particular, ϕ,ψ ` χ if and only if
ψ,ϕ ` χ. See (63.11).
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(.4) If Γ = ∅, then Γ ` ϕ if and only if ` ϕ.

(60) Metadefinitions: Modally Strict Proofs, Theorems, and Derivations. To
precisely identify those derivations and proofs in which no inferential step is
justified by a modally fragile axiom, we first say that ϕ is a necessary axiom
whenever ϕ is any axiom such that all the closures of ϕ are also axioms. At
present, (43)? is the only axiom that fails to be necessary in this sense.

We introduce the following symbol to refer to the set of necessary axioms:

Λ� = {ϕ |ϕ is a necessary axiom }

Then the following definitions of modally-strict derivations (Γ `� ϕ) and mod-
ally-strict proofs (`� ϕ) mirror (59.1) and (59.2), with the exception that the
definientia refer to Λ� instead of Λ:

(.1) A modally-strict derivation (or�-derivation) of ϕ from a set of formulas Γ in
PLM is any non-empty sequence of formulas ϕ1, . . . ,ϕn such that ϕ = ϕn
and for each i (1 ≤ i ≤ n), ϕi is either an element of Λ�∪Γ or follows from
two of the preceding members of the sequence by Rule MP. A formula ϕ
is strictly derivable (or �-derivable) from the set Γ in PLM, written Γ `� ϕ,
just in case there exists a modally-strict derivation of ϕ from Γ .

(.2) A modally-strict proof (or�-proof ) ofϕ in PLM is any modally-strict deriva-
tion of ϕ from Γ when Γ is the empty set. A formula ϕ is a modally-strict
theorem (or �-theorem) of PLM, written `� ϕ, if and only if there exists a
modally-strict proof of ϕ in PLM.

These two definitions have simple consequences analogous to (59.3) and (59.4).
We shall suppose that all of the conventions introduced in (59) concerning `
also apply to `�.

(61) Remark: Metarules of Inference. In what follows, we often introduce, and
sometimes prove, certain claims about derivations. These facts all have the
following form:

If conditions . . . hold, then there exists a derivation of ϕ from Γ .

When call facts of this form metarules of inference. Only two metarules of in-
ference are taken as primitive and underived, namely, the Rule of Definition
by Equivalence (72) and the Rule of Definition by Identity (73). The other
metarules are proved or left as exercises in the Appendix.

Metarules of inference are to be contrasted with standard rules of inference;
the latter allow us to infer ϕ from zero or more formulas, whereas the for-
mer allow us to infer the existence of a derivation or proof of ϕ given certain
conditions. In what follows, when we are deriving ϕ from Γ , we can stop the
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reasoning when we’ve met the conditions of a metarule whose consequent as-
serts that there is a sequence of formulas constituting a derivation of ϕ from Γ .
So metarules often shorten the reasoning we use in the Appendix to establish
that Γ ` ϕ.

Consequently, when we reason with metarules to establish the claim that
Γ ` ϕ, we don’t produce a witness to the claim. However, the proof of a de-
rived metarule in the Appendix shows how to construct such a witness. As
mentioned previously, we call the proof of a derived metarule its justification.
The justification shows that reasoning with a metarule can always be converted
reasoning without it.

(62) Metarules: Modally Strict Derivations are Derivations. It immediately
follows from our definitions that: (.1) if there is a modally-strict derivation of
ϕ from Γ , then there is a derivation of ϕ from Γ , and (.2) if there is a modally-
strict proof of ϕ, then there is a proof of ϕ:

(.1) If Γ `� ϕ, then Γ ` ϕ

(.2) If `� ϕ, then ` ϕ

Clearly, however, the converses are not true in general, since derivations and
proofs in which the modally fragile axiom (43)? is used are not modally strict.
Consequently, modally-strict derivations and proofs constitute a proper sub-
set, respectively, of all derivations and proofs.

(63) Metarules: Fundamental Properties of ` and `�. The following facts are
particularly useful as we prove new theorems and justify new metarules of
PLM. Note that these facts come in pairs, with one member of the pair govern-
ing ` and the other member governing `�:

(.1) If ϕ ∈Λ, then ` ϕ. (“Axioms are theorems”)
If ϕ ∈Λ�, then `� ϕ. (“Necessary axioms are modally-strict theorems”)

(.2) If ϕ ∈ Γ , then Γ ` ϕ. (Note the special case: ϕ ` ϕ)
If ϕ ∈ Γ , then Γ `� ϕ. (Note the special case: ϕ `� ϕ)

(.3) If ` ϕ, then Γ ` ϕ.
If `� ϕ, then Γ `� ϕ.

(.4) If ϕ ∈Λ∪ Γ , then Γ ` ϕ.
If ϕ ∈Λ� ∪ Γ , then Γ `� ϕ.

(.5) If Γ1 ` ϕ and Γ2 ` (ϕ→ ψ), then Γ1,Γ2 ` ψ.
If Γ1 `� ϕ and Γ2 `� (ϕ→ ψ), then Γ1,Γ2 `� ψ.

(.6) If ` ϕ and ` (ϕ→ ψ), then ` ψ.
If `� ϕ and `� (ϕ→ ψ), then `� ψ.
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(.7) If Γ ` ϕ and Γ ⊆ ∆, then ∆ ` ϕ.
If Γ `� ϕ and Γ ⊆ ∆, then ∆ `� ϕ.

(.8) If Γ ` ϕ and ϕ ` ψ, then Γ ` ψ.
If Γ `� ϕ and ϕ `� ψ, then Γ `� ψ.

(.9) If Γ ` ϕ, then Γ ` (ψ→ ϕ), for any ψ.
If Γ `� ϕ, then Γ `� (ψ→ ϕ), for any ψ.

(.10) If Γ ` (ϕ→ ψ), then Γ ,ϕ ` ψ.
If Γ `� (ϕ→ ψ), then Γ ,ϕ `� ψ.

(.11) If Γ1, . . . ,Γi , . . . ,Γj , . . . ,Γn ` ϕ, then Γ1, . . . ,Γj , . . . ,Γi , . . . ,Γn ` ϕ (1 ≤ i ≤ j ≤ n)
If Γ1, . . . ,Γi , . . . ,Γj , . . . ,Γn `� ϕ, then Γ1, . . . ,Γj , . . . ,Γi , . . . ,Γn `� ϕ

Fact (.11) indicates that the order in which premise sets are listed makes no
difference. Note that in the case where Γ1, . . . ,Γn are singletons, it follows that
the order in which the premises are listed doesn’t matter. Thus, it follows as a
special case of (.11) that:

If ψ1, . . . ,ψi , . . . ,ψj , . . . ,ψn ` ϕ, then ψ1, . . . ,ψj , . . . ,ψi , . . . ,ψn ` ϕ (1 ≤ i ≤ j ≤ n)
If ψ1, . . . ,ψi , . . . ,ψj , . . . ,ψn `� ϕ, then ψ1, . . . ,ψj , . . . ,ψi , . . . ,ψn `� ϕ

Notice also that in the special case of (.2), ϕ `� ϕ holds even if ϕ isn’t a nec-
essary truth. In general, there can be modally-strict derivations in which nei-
ther the premises nor conclusion are necessary truths. The 3-element sequence
P a,P a→ Qb,Qb is a modally-strict derivation of Qb from the assumptions P a
and P a → Qb whether or not the premises and the conclusion are necessary
truths.

(64) Remark: Theorems That Aren’t Modally Strict (?-Theorems). For the most
part, we shall be interested in proofs generally, not just modally-strict ones,
since our primary interest is what claims we can prove (simpliciter). But since
significantly more modally-strict �-theorems are proved in what follows, it
is useful to mark the ones that are not. So we introduce the ? annotation to
make it explicit that a proof of a theorem is not modally-strict. The reader may
therefore assume that all of the items marked Theorem in what follows have
modally-strict proofs, and that ?-Theorems do not. We always concatenate a
theorem’s item number with a ? when referencing a ?-theorem.130 Similarly, in
the case where the derivation of ϕ from Γ is not modally-strict, we may speak
of ?-derivations and say that ϕ is ?-derivable from Γ .

It is important to recognize that ?-theorems and ?-derivations are not de-
fective in any way. Indeed, they are simply artifacts of a modal logic that allows

130The first such theorems are (138.1)? – (138.2)? and (140)? – (145.4)? below.
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one to reason from modally fragile axioms or contingent premises, which are
often of great philosophical significance.

(65) Metadefinition: Dependence. It is sometimes useful to indicate the dif-
ference between �-derivations and ?-derivations by saying that in the latter,
the conclusion depends upon a modally fragile axiom, or depends upon a ?-
theorem that in turn depends upon a modally fragile axiom, etc. To make this
talk of dependence precise, we define the conditions under which one formula
depends upon another within the context of a derivation:

Let the sequence ϕ1, . . . ,ϕn be a derivation in PLM of ϕ (= ϕn) from the
set of premises Γ and let ψ be a member of this sequence. Then we say
that ϕi (1≤ i ≤ n) depends upon the formula ψ in this derivation iff either
(a) ϕi = ψ, or (b) ϕi follows by the Rule MP from two previous members
of the sequence at least one of which depends upon ψ.

When Γ = ∅, the definiendum in the above becomes: ϕ depends on a formula ψ
in a given proof ofϕ. The ?-theorems formulated in what follows depend upon
axiom (43)? either because some inferential step directly cites this axiom, or
because some inferential step cites a ?-theorem that directly cites this axiom,
etc.

It follows from our definition that if a sequence S is a witness to Γ ` ϕ, then
S is a witness to Γ `� ϕ if and only if ϕ doesn’t depend upon any instance of a
modally fragile axiom in S. This holds even if, in S, ϕ depends upon a premise
in Γ that isn’t necessary. The sequence S = P a,P a → Qb,Qb is a witness to
P a,P a→ Qb ` Qb and even if P a fails to be a necessary truth, it follows that
P a,P a→ Qb `� Qb, since Qb doesn’t depend on (43)? in S. (This case will be
discussed in some detail below, when we introduce the Rule of Necessitation.)

9.3 Two Fundamental Metarules: GEN and RN

(66) Metarule: The Rule of Universal Generalization. The Rule of Universal
Generalization (GEN) asserts that whenever there is a derivation of ϕ from a
set of premises Γ , and the variable α doesn’t occur free in any of the premises
in Γ , then there is a derivation from Γ of the claim ∀αϕ (even if α occurs free
in ϕ):

Rule of Universal Generalization (GEN)
If Γ ` ϕ and α doesn’t occur free in any formula in Γ , then Γ ` ∀αϕ.

When Γ = ∅, then GEN asserts that if a formula ϕ is a theorem, then so is ∀αϕ:

If ` ϕ, then ` ∀αϕ
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We note here that the justification of this rule in the Appendix can be easily
converted to a justification of a `� version of GEN, in which `� is substituted
everywhere for `. We leave further discussion of this to Remark (67).

When Γ isn’t empty, the application of GEN requires that the variable α
not occur free in any premise in Γ . This prohibits one from using GEN, for
example, to derive ∀xRx from the premise Rx. We know Rx ` Rx by the special
case of (63.2), but intuitively, ∀xRx doesn’t follow from Rx; from the premise
that a particular, but unspecified, individual x exemplifies the property R, it
doesn’t follow that every individual exemplifies R. The proviso to GEN, of
course, is unnecessary when ϕ is a theorem since ϕ is then derivable from
the empty set of premises. Whenever any formula ϕ with free variable α is
a theorem, we may invoke GEN to conclude that ∀αϕ is also a theorem. For
example, we shall soon prove that ϕ→ ϕ is a theorem (74), so that the instance
P x→ P x is a theorem. From this latter it follows by GEN that ∀x(P x→ P x).

Here is an example of GEN in action. The following reasoning sequence
establishes that ∀x(Qx→ P x) is derivable from the premise ∀xP x, even though
strictly speaking, the sequence is not a witness to this derivability claim:

1. ∀xP x Premise
2. ∀xP x→ (x↓→ P x) Instance, Axiom (39.1)
3. x↓→ P x from 1,2, by MP
4. x↓ Instance, Axiom (39.2)
5. P x from 3,4, by MP
6. P x→ (Qx→ P x) Instance, Axiom (38.1)
7. Qx→ P x from 5, 6, by MP
8. ∀xP x `Qx→ P x from 1–7, by df Γ ` ϕ (59)
9. ∀xP x ` ∀x(Qx→ P x) from 8, by GEN

Line 9 asserts that there is a derivation of ∀x(Qx→ P x) from ∀xP x, but lines
1–8 are not such a derivation. However, lines 1–7 are a witness to line 8: each
of lines 1–7 is either an axiom, a premise, or follows by MP from two previous
lines. Since line 8 is a claim that has the form of the antecedent to the metarule
GEN, and the condition, that x is not free in the premise ∀xP x, is met, we may
apply GEN to obtain line 9.

Though lines 1–8 do not constitute a witness to ∀xP x ` ∀x(Qx → P x), the
justification (i.e., metatheoretic proof) of GEN given in the Appendix shows
us how to convert the reasoning into a sequence of formulas that is a bona
fide witness to the derivability claim. By studying the metatheoretic proof,
it becomes clear that the above reasoning with GEN can be converted to the
following derivation, in which no appeal to GEN is made:131

131Line 2 in the following derivation is an axiom: P x → (Qx → P x) is an instance of (38.1) and
since we’ve take the closures of the instances of (38.1) as axioms, ∀x(P x→ (Qx→ P x)) is an axiom.
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Witness to ∀xP x ` ∀x(Qx→ P x)
1. ∀xP x Premise
2. ∀x(P x→ (Qx→ P x)) Closure of an instance of Axiom (38.1)
3. ∀x(P x→ (Qx→ P x))→

(∀xP x→∀x(Qx→ P x)) Instance of Axiom (39.3)
4. ∀xP x→∀x(Qx→ P x) from 2,3, by MP
5. ∀x(Qx→ P x) from 1,4, by MP

This sequence is a bona fide derivation of ∀x(Qx→ P x) from ∀xP x, in the style
of Frege and Hilbert. In this particular example, the bona fide derivation is
actually shorter by three steps than the meta-derivation that appeals to GEN.
Most of the time, however, the meta-derivations that invoke GEN are shorter
than bona fide derivations that don’t. Of course, the reasoning with GEN al-
ready looks a bit more straightforward than the reasoning without it. In any
case, the two sequences described above show (a) how to use the metarule GEN
to derive a universal claim, and (b) how to eliminate the use of GEN so as to
derive the universal claim without it.

In light of the above facts, we shall take the liberty of reasoning with GEN
as if it were a rule of inference instead of a metarule. The following example,
in which we establish ∀xP x ` ∀x(Qx→ P x), will be typical of the reasoning we
use in the Appendix:

From the premise ∀xP x and the instance ∀xP x → (x↓ → P x) of axiom
(39.1), it follows that x↓ → P x, by MP. From this result and the instance
x↓ of axiom (39.2), it follows that P x, by MP. From this last conclusion
and the instance P x→ (Qx→ P x) of axiom (38.1), it follows by MP that
Qx→ P x. Since x isn’t free in our premise, it follows that ∀x(Qx→ P x),
by GEN. ./

The above discussion should have made it clear just what has and has not been
accomplished in this piece of reasoning. We sometimes deploy other metarules
in just this way.

(67) Remark: Conventions Regarding Metarules. Although GEN was formu-
lated to apply to `, it also applies to `�. As noted earlier, the following version
can be proved (exercise) by a trivial reworking of the justification for (66), since
none of the reasoning involved an appeal to a modally fragile axiom:

• If Γ `� ϕ and α doesn’t occur free in any formula in Γ , then Γ `� ∀αϕ.

However, in what follows, we usually refrain from formulating metarules twice,
with one form for ` and a second form for `�. Instead, we adopt the conven-
tions:

(.1) Whenever a metarule of inference is formulated generally, so as to apply
to `, we usually omit the statement of the metarule for the case of `�.
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The only exception to this occurs when one of the conditions in the metarule
specifically requires `� instead of `.

(.2) No metarule is to be adopted if the justification of the rule depends on a
modally fragile axiom such as (43)?.

Though these conventions may be discussed on other occasions below, the fol-
lowing brief remarks may be sufficient for now. As noted previously, the justifi-
cations of metarules provided in the Appendix show how to convert reasoning
with the metarules into bona fide derivations that don’t use them. As long as
the justification doesn’t depend on a modally fragile axiom such as (43)?, a
justification of a rule stated for ` can be repurposed, with just a few obvious
and trivial changes, to a justification of the analogous rule for `�. Thus, any
any metarule of inference that applies to derivations and proofs generally (i.e.,
none of its conditions specifically involve `�) will be a metarule of inference
that also applies to modally-strict derivations and proofs.

The next rule we consider, RN, contrasts with GEN because it is not a
metarule that applies generally to all derivations and proofs. The antecedent of
the Rule of Necessitation requires the existence of a modally-strict derivation
or proof for the metarule to be applied.

(68) Metarules: Rule of Necessitation. The Rule of Necessitation (RN) is for-
mulated in a way that prevents us from inferring the necessitation of a formula
whose derivation or proof depends upon a modally fragile axiom. RN may be
stated as follows:

• If there is a modally strict derivation of ϕ from zero or more premises,
then there is a modally strict derivation of �ϕ from the necessitations of
the premises.

To formulate this statement precisely, we first introduce a metadefinition:

• For any set of formulas Γ , we use the notation �Γ to refer to {�ψ |ψ ∈ Γ }.

So �Γ is the set of formulas that results when a � is prefixed to every formula
in Γ . Then RN may be stated as follows:

Rule of Necessitation (RN)
If Γ `� ϕ, then �Γ `� �ϕ.

Rule of Necessitation (Weaker Form)132

If Γ `� ϕ, then �Γ ` �ϕ.

When Γ = ∅, RN reduces to:

132To see that the weaker form holds given the stronger form, assume Γ `� ϕ. Then by RN,
�Γ `� �ϕ. But then by (62.1), it follows that �Γ ` �ϕ.
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• If `� ϕ, then `� �ϕ.

• If `� ϕ, then ` �ϕ. (Weaker Form)

When we use RN to prove theorems, the reasoning almost always suggests
that we are using the weaker form (since we rarely make it explicit that the
conclusion is being derived by modally strict means). But, clearly, in what
follows, we may use either form of RN with the understanding that any con-
clusions drawn via the metarule within a larger reasoning context do not affect
the modal strictness of that context (or lack thereof). However, in the following
examples, we use the stronger form, for purposes of illustration.

Here is an example of how Rule RN is to be applied, in which we derive ϕ
(=Qb) from Γ (= {P a, P a→Qb }) and then conclude by RN that �ϕ is derivable,
by modally strict means, from �Γ :

Example 1
1. P a Premise
2. P a→Qb Premise
3. Qb from 1,2, by MP
4. P a, P a→Qb `� Qb from 1–3, by df Γ `� ϕ (60)
5. �P a, �(P a→Qb) `� �Qb from 4, by RN

Lines 1–3 in this example constitute a witness to line 4 since (a) Qb follows by
MP from two previous members of the sequence, both of which are in Γ , and (b)
the derivation ofQb from the premises doesn’t depend on a modally fragile ax-
iom. RN then states that line 5 follows from line 4, so that we end up establish-
ing that there is a modally strict derivation of �Qb from �P a and �(P a→Qb).
Note that the conclusion on line 5 doesn’t require that the premises P a and
P a→ Qb be true, nor that they be necessary. Even if the premises in a deriva-
tion are all contingently false (i.e., false but possibly true) and the conclusion is
contingently false, RN will still assert that if there is a modally strict derivation
of the conclusion from the premises, then there is a modally strict derivation
of the necessitation of the conclusion from the necessitations of the premises.
This in no way implies that the necessitations of the premises or conclusion are
true.

Now, just as with GEN, the justification of RN in the Appendix shows us
how to turn reasoning that appeals to RN into reasoning that does not. Al-
though the sequence of formulas 1–4 in Example 1 isn’t a witness to the deriv-
ability claim on line 5, the justification of RN in the Appendix shows us how
to convert Example 1 into the following 5-element annotated sequence that is
such a witness:

Witness to �P a, �(P a→Qb) `� �Qb
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1. �P a Premise in �Γ
2. �(P a→Qb) Premise in �Γ
3. �(P a→Qb)→ (�P a→ �Qb) Instance of Axiom (45.1)
4. �P a→ �Qb from 2,3, by MP
5. �Qb from 1,4, by MP

This conversion works generally for any formulas ϕ and ψ: since there is a
modally strict derivation of ψ from ϕ and ϕ → ψ, there is a modally strict
derivation of �ψ from �ϕ and �(ϕ→ ψ).

Given the above discussion, it should be straightforward to see why we
shall adopt the following, less formal style of reasoning in the Appendix when
presented with a case like Example 1:

Let �P a and �(P a → Qb) be premises. Note that from the non-modal
premises P a and P a → Qb it follows that Qb, by MP. Since this is a
modally-strict derivation of Qb from P a and P a → Qb, it follows (by
modally strict reasoning) from our first two premises that �Qb, by RN. ./

In effect, we have reasoned by producing a modally strict ‘sub-derivation’ show-
ing P a,P a→Qb `� Qb, within the larger, modally strict derivation of�Qb from
�P a and �(P a→Qb).

We now consider an example of RN involving quantifiers – one that in-
volves a slight variant of the example we used to illustrate GEN. As an in-
stance of RN we know: if there is a modally strict derivation of ∀x(Qx→ P x)
from ∀xP x, then there is a modally strict derivation of �∀x(Qx → P x) from
�∀xP x:

Example 2
1. ∀xP x Premise
2. ∀xP x→ (x↓→ P x) Instance of Axiom (39.1)
3. x↓→ P x from 1,2, by MP
4. x↓ Instance of Axiom (39.2)
5. P x from 3,4, by MP
6. P x→ (Qx→ P x) Instance of Axiom (38.1)
7. Qx→ P x from 5,6, by MP
8. ∀xP x `� Qx→ P x from 1–7, by df Γ `� ϕ (60)
9. ∀xP x `� ∀x(Qx→ P x) from 8, by GEN

10. �∀xP x `� �∀x(Qx→ P x) from 9, by RN

Here, lines 1–7 constitute a witness to line 8, which asserts that there is modally-
strict derivation of Qx → P x from ∀xP x. On line 9, we apply the version of
GEN that governs `�, which was discussed in (67). So line 9 satisfies the con-
dition for the application of RN, which then implies the conclusion on line 10.
The justification of RN itself shows us how to convert Example 2 into a witness
for �∀xP x `� �∀x(Qx→ P x):
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Witness to �∀xP x `� �∀x(Qx→ P x)

1. �∀xP x Premise
2. �[∀x(P x→ (Qx→ P x))→

(∀xP x→∀x(Qx→ P x))] Closure of an instance of Axiom (39.3)
3. �[∀x(P x→ (Qx→ P x))→

(∀xP x→∀x(Qx→ P x))]→
(�∀x(P x→ (Qx→ P x))→
�(∀xP x→∀x(Qx→ P x))) Instance of Axiom (45.1)

4. �∀x(P x→ (Qx→ P x))→
�(∀xP x→∀x(Qx→ P x)) from 2,3, by MP

5. �∀x(P x→ (Qx→ P x)) Closure of an instance of Axiom (38.1)
6. �(∀xP x→∀x(Qx→ P x)) from 4,5, by MP
7. �(∀xP x→∀x(Qx→ P x))→

(�∀xP x→ �∀x(Qx→ P x)) Instance of Axiom (45.1)
8. �∀xP x→ �∀x(Qx→ P x) from 6,7, by MP
9. �∀x(Qx→ P x) from 1,8, by MP

This is a bona fide witness to the derivability claim since every line is either a
necessary axiom, a premise, or follows from previous lines by MP. It should
now be clear how the reasoning using GEN and RN in Example 2 is far easier
to develop, or even grasp, when compared to the above reasoning. Indeed, we
may compress the reasoning in Example 2 even further. The reasoning used in
the Appendix for examples like this goes as follows:

Assume �∀xP x as a global premise. From the local premise ∀xP x and the
instance ∀xP x→ (x↓ → P x) of axiom (39.1), it follows that x↓→ P x, by
MP. From this last result and the instance x↓ of axiom (39.2), it follows
that P x, by MP. From this last conclusion and the instance P x→ (Qx→
P x) of axiom (38.1), it follows by MP that Qx → P x. Since x isn’t free
in our local premise, it follows that ∀x(Qx → P x), by GEN. Since this
constitutes a modally-strict derivation of ∀x(Qx → P x) from the local
premise ∀xP x, it follows from our global premise �∀xP x that �∀x(Qx→
P x) (by modally strict means). ./

Given the preceding discussion, this reasoning should be transparent; though
it is not an actual derivation, it shows us how to construct one. The reasoning is
a metaderivation that establishes the existence of a derivation. Consequently,
we have a way to confirm derivability claims without producing actual deriva-
tions.

(69) Remark: Preserving GEN and RN When Extending The System. It is im-
portant to note that, should one wish to extend our system with new axioms,
GEN and RN can easily be preserved as justified metarules. GEN remains valid
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as long as we axiomatically assert the universal closures of any new axioms we
assert.133 RN remains valid as long as we axiomatically assert the modal clo-
sures of any new necessary axioms we assert.134

(70) Remark: Modally Strict Reasoning, Modally Fragile Axioms, and Contin-
gent Premises. Using an intuitive notion of truth (or if you prefer, a notion of
truth relative to some fixed interpretation of our language), then we may say
that a contingent formula is one that is neither necessarily true nor necessarily
false (i.e., one that is both possibly true and possibly false). It is important
to understand the conditions under which RN can be applied when reasoning
from contingent premises. In particular, it is important to register the differ-
ence between:

(a) a derivation in which one of the premises, if there are any, is a contingent
formula, but the derivation doesn’t depend on any modally fragile axiom,
and

(b) a derivation that depends upon a modally fragile axiom.

The first kind of derivation is modally strict, while the second kind is not.
For a scenario of type (a), start with Example 1 in the discussion of (68):

Example 1
1. P a Premise
2. P a→Qb Premise
3. Qb from 1,2, by MP
4. P a, P a→Qb `� Qb from 1–3, by df Γ `� ϕ (60)
5. �P a, �(P a→Qb) `� �Qb from 4, by RN

In Example 1, the conclusion on line 4, i.e., that there exists a modally strict
derivation of Qb from P a and P a → Qb, holds even if one or more of P a,
P a → Qb, and Qb are contingent. The modal strictness of a derivation from

133The justification of GEN in the Appendix is by induction on the length of a derivation of
Γ ` ϕ. The Base Case considers the two ways in which such a derivation could consist of a single
formula, namely, either ϕ is an axiom or ϕ is in Γ . When ϕ is an axiom, then since we’ve taken all
the universal closures of axioms as axioms, it follows that ∀αϕ is an axiom as well. So ∀αϕ is a
theorem (63.1) and so is derivable from Γ (63.3).

If we extend our system with new axioms, the reasoning in this case will be preserved as long as
we always take their universal closures as axioms as well.
134Just as with GEN, the justification of RN in the Appendix is by induction on the length of

a derivation, though in this case, on the length of a derivation Γ `� ϕ. The Base Case considers
the two ways in which such a derivation could consist of a single formula, namely, either ϕ is an
necessary axiom or ϕ is in Γ . When ϕ is necessary axiom, then since we’ve taken all the modal
closures of axioms as axioms, it follows that �ϕ is an axiom as well. So �ϕ is a modally strict
theorem (63.1) and becomes derivable from Γ by modally strict means (63.3).

If we extend our system with new necessary axioms, the reasoning in this case will be preserved
as long as we always take their modal closures as axioms as well.
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contingent premises to a contingent conclusion is not undermined as long as
no modally fragile axioms (or, more generally, no ?-theorems) are used in the
derivation. So RN can be applied on line 5, for it requires only that there be a
modally strict derivation of Qb from P a and P a→Qb.

This applies even for conditional proof, which is introduced later in (75).
Suppose we reason by conditional proof to establish, as a theorem, P a→ (P a∨
Qb). That is, suppose we assume P a, derive P a∨Qb, and then conclude P a→
(P a ∨Qb) by conditional proof. Then even if P a is a contingent claim, it is
discharged when we apply conditional proof and so the theorem no longer de-
pends on a contingency; the theorem in question is modally strict. For a more
interesting example, see the discussion in (218).

Contrast this with a scenario of type (b). Suppose that we have extended our
system with the modally fragile axiom P a and annotated it with a ?, say be-
cause (we know) it is not necessarily true. (We can even suppose we’ve added
¬�P a as a further axiom to make it clear that P a is contingent.) By adding
P a as a new, modally-fragile axiom, we have extended (the definitions of) our
deductive system and consequently, of the derivability conditions ` and `�. As
such, we have a new deductive relationship between P a → Qb and Qb. Qb
becomes derivable from the sole premise P a → Qb but not by modally strict
means, i.e., P a → Qb ` Qb but not P a → Qb `� Qb. A derivation that bears
witness to P a → Qb ` Qb will fail to be modally strict because the modally
fragile axiom P a is required in the derivation. So we can’t apply RN to con-
clude �(P a→ Qb) ` �Qb.135 To take another example, suppose that we have
taken ¬�P a as a necessary axiom along with the modally fragile axiom P a.
Then, from the ?-axiom P a and the necessary axiom ¬�P a, we may derive, by
definition (213.1), that ContingentlyTrue(P a). This latter becomes a ?-theorem
since its proof depends on a modally fragile axiom.

In what follows, it will be essential to distinguish (a) modally strict deriva-
tions from contingent premises and (b) reasoning that is not modally strict
because it depends upon a modally fragile axiom.

(71) Remark: Digression on the Converse of Weak RN. For the purposes of this
remark, we consider only the form of Rule RN when the premise set Γ is empty.
When we introduced RN in (68), we noted that when the premise set is empty,
the weak form of RN asserts:

• If `� ϕ, then ` �ϕ.

We indicated that, for simplicity, we shall typically cite only this weaker form
with the understanding that any modal strictness of the reasoning context is
preserved.
135Note, however, that the deductive relationship P a,P a→ Qb `� Qb still holds and we can still

apply RN to conclude �P a,�(P a→Qb) ` �Qb. But we may not have much use for this fact if we’ve
added ¬�P a as as axiom.
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However, it is important to distinguish the converse of RN from the converse
of the weaker form. While the converse of RN is guaranteed to hold, the con-
verse of the weaker form is not. The converse of RN is: if `� �ϕ, then `� ϕ.
Clearly, this holds. For assume `� �ϕ. Since instances of the T schema �ϕ→ ϕ
are necessary axioms (45.2), it follows by (63.1) that `� �ϕ→ ϕ. But from this
and our assumption that `� �ϕ, it follows by (63.5) that `� ϕ.

By contrast, the converse of the weaker form of RN is not valid or, rather,
not robustly valid under reasonable extensions of the system. The converse as-
serts: if ` �ϕ, then `� ϕ. To see a counterexample to this claim, consider a very
natural extension of our system (or, if you prefer, a model in which certain
new axioms hold). Consider the scenario in the previous Remark, in which
we extended our system with the contingent axiom P a (‘object a exemplifies
property P ’) and where the contingency is a direct consequence of an addi-
tional axiom, namely, that ♦¬P a. So P a would be a modally fragile axiom and
marked with a ?. Then our theory would guarantee, by theorem (250), that
there is a unique abstract object that encodes all and only the properties that
a exemplifies. So we would be able to show that this abstract object, call it ca,
encodes P , i.e., that caP . This conclusion would be a ?-theorem since it was de-
rived with the help of a modally fragile axiom. But note that by the axiom for
the rigidity of encoding (51), it would also follow that ca necessarily encodes
P . So �caP becomes a theorem and, indeed, a ?-theorem. Thus, we would have
` �caP . But there would be no modally strict proof of caP ; the proof of caP re-
quires an appeal to the modally fragile axiom that P a. Hence, we would have a
formula ϕ, namely caP , such that ` �ϕ but not `� ϕ. Thus, the converse of the
weaker form of RN would fail. An example of this kind is discussed in some
detail in (257).

However, if we fix the axioms in terms of the set Λ as defined in (59), which
includes only the axioms presented in Chapter 8, then one can show that the
converse of weak RN is valid. This was pointed out and proved independently
by Daniel Kirchner and Daniel West. However, we postpone further discussion
here, since the proof of the converse of weak RN becomes extremely easy once
we establish a Fact that is discussed and proved in Remark (137).

9.4 The Inferential Role of Definitions

Definitions play an important part in the proof of many theorems; few theo-
rems are expressed using only primitive notions or rest solely on axioms that
are expressed using only primitive notions. However, the classical theory of
definitions has to be modified in a number of ways if we are to obtain a ser-
viceable theory of definitions for a system like the present one, which has far
greater expressive power than the systems for which the classical theory was
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developed. We’ve already discussed a number of issues about the formulation
and understanding of definitions, in Remarks (17), (27), (28), (31), (32), and
(36). We also developed conventions in Remark (17), governing definitions.
In particular, Convention (17.2) allows us to use object-language variables in
definitions with the understanding that they function as metavariables.

In this section, however, we describe how definitions impact our reasoning
system. Some readers may find it useful to skip ahead to Remark (282), which
offers one important reason why we don’t use the classical theory of definitions,
in which new individual terms are introduced using definitions by equivalence.
In what follows, we rigorously distinguish the inferential roles of definitions-
by-≡ and definitions-by-=. The resulting theory avoids the problems noted not
only in Remark (282), but in Remark (283) as well. By the end of this section,
the reader should have a good grasp on what is meant when we say ‘So, by
definition, . . . ’ during the course of reasoning in proofs and derivations.

(72) Primitive Metarule: The Inferential Role of Definitions by Equivalence.
Though the general case of a definition-by-≡ has the form ϕ(α1, . . . ,αn) ≡df

ψ(α1, . . . ,αn), let us abbreviate this more simply as ϕ ≡df ψ and suppose that
this represents any valid instance of the definition, i.e., any instance having the
formϕ(τ1, . . . , τn) ≡df ψ(τ1, . . . , τn), where τ1, . . . , τn are substitutable for α1, . . . ,αn,
respectively, in ψ.

Note that since the equivalence symbol (≡) is defined using a definition-
by-equivalence (18.3), we cannot present the inferential role of definitions-
by-equivalence in terms of inferences involving the biconditional. For this
wouldn’t be useful at this point; as yet, we haven’t yet proved the tautologies
(governing ≡ and &) that allow us to reason from biconditionals. So, in the first
instance, we specify the inferential role in terms of primitives of the language,
i.e., in terms of conditionals.

We therefore stipulate that the inferential role of a definition-by-≡ is cap-
tured by the following primitive metarule of inference:

Rule of Definition by Equivalence
A definition-by-≡ of the form ϕ ≡df ψ introduces the closures of ϕ → ψ
and ψ→ ϕ as necessary axioms.

So given the definition ϕ ≡df ψ, the closures of ϕ→ ψ and ψ→ ϕ (a) become
modally strict theorems, by (63.1), and (b) can be derived (by modally strict
means) from any set of premises Γ , by (63.3). Thus, the rule can be applied in
any reasoning context without affecting the modal strictness of the reasoning.

Once we have established the tautologies governing & and ≡, we will then
be in a position to establish that ϕ ≡df ψ implies ϕ ≡ ψ as a modally strict
theorem; see (90.1). Moreover, in the discussion immediately following the
presentation of (90.1), we explain how the definition ϕ ≡df ψ wil also yield the
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closures of ϕ ≡ ψ as modally strict theorems.

(73) Primitive Metarule: The Inferential Role of Definitions by Identity. Those
familiar with the classical theory of definitions and the problem of non-signifi-
cant terms will recognize that the inferential role of definitions-by-= has to be
carefully formulated. A hint as to why this is so was offered at the end of
Remark (27), but those not familiar with the issues here may find Remarks
(282) and (283) useful. The latter Remark, in particular, takes the reader step-
by-step through the motivation and justification of the following metarule as it
applies to definitions with one free variable in the definiens and definiendum.

Let τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) be a definition-by-= in which the variables
α1, . . . ,αn occur free (n ≥ 0). So when n = 0 and no variables occur free in σ , the
definition has the form τ =df σ and introduces the new constant τ . Now let us
use σ (τ1, . . . , τn) and τ(τ1, . . . , τn) to abbreviate σ τ1,...,τn

α1,...,αn and ττ1,...,τn
α1,...,αn , respectively,

so that σ (τ1, . . . , τn) and τ(τ1, . . . , τn) are the result of uniformly substituting τi
for the free occurrences of αi in σ and τ respectively (1 ≤ i ≤ n). Then we may
state the inferential role of a definition-by-= as follows:

Rule of Definition by Identity
Whenever τ1, . . . , τn are substitutable for α1, . . . ,αn, respectively, in σ , then
a definition-by-= of the form τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) introduces the
closures of the following, necessary axiom schema:

(ω) (σ (τ1, . . . , τn)↓ → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)) &
(¬σ (τ1, . . . , τn)↓ → ¬τ(τ1, . . . , τn)↓)

Ignoring closures, the rule says that the inferential role of an instance of a
definition-by-= is to introduce a necessary axiom that asserts: (a) if the defini-
ens is significant, then an identity holds between the definiendum and defini-
ens, and (b) if the definiens is empty, then the definiendum is empty.136 A full
discussion motivating and justifying this rule is given in (283), though see also
(282).

As we shall see, the Rule of Definition by Identity will yield, in (120.2),
the classical introduction and elimination rules for the definiendum when the
definiens is significant. Moreover, the Rule of Definition by Identity finesses
the problem of ‘conditional definitions’, such as division by zero in real num-
ber theory. But a full discussion of this and other interesting issues that this
rule gives rise to will be reserved for Remark (283), where we fully motivate

136Stated a bit more strictly, the inferential role of an instance of a definition-by-= is to introduce
a necessary axiom that asserts: (a) if the definiens, when applied to suitable arguments τ1, . . . , τn, is
significant, then an identity holds between the definiendum and definiens when both are applied
to those arguments, and (b) if the definiens is empty, when applied to the arguments τ1, . . . , τn,
then the definiendum, when applied to those arguments, is empty.
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the rule as stated above.137

When n = 0, the definiens in a definition-by-= is a closed term and the
definiendum is a new constant. So our rule asserts that the definition τ =df σ
introduces the necessary axiom:

(σ↓ → τ=σ ) & (¬σ↓ → ¬τ↓)

Once we have rules in place for reasoning from conjunctions, we’ll see both
that the above immediately yields τ = σ as a �-theorem whenever we can es-
tablish σ ↓ as a �-theorem, and yields τ = σ as a ?-theorem whenever we can
establish σ ↓ as a ?-theorem. In both cases, τ and σ become substitutable for
one another in any context, though in the latter case, the substitution will un-
dermine the modal strictness of the reasoning.

9.5 The Theory of Negations and Conditionals

(74) Theorems: A Useful Fact. The following fact is derivable and is crucial to
the proof of the Deduction Theorem:

ϕ→ ϕ

Although the notion of a tautology is a semantic notion and isn’t officially de-
fined in our formal system, we saw in Section 6.2 that the notion can be pre-
cisely defined if one takes on board the required semantic notions. It won’t
hurt, therefore, if we use the notion unofficially and label the above claim a
tautology. Other tautologies will be derived below. As we will see, all tautolo-
gies are derivable, but it will be some time before we have assembled all the
facts needed to prove this metatheoretic fact.

(75) Metarule: Deduction Theorem and Conditional Proof (CP). If there is a
derivation of ψ from a set of premises Γ together with an additional premise
ϕ, then there is a derivation of ϕ→ ψ from Γ :

Rule CP
If Γ ,ϕ ` ψ, then Γ ` (ϕ→ ψ).

137To anticipate the issue of conditional definition, consider that in real number theory, where
x,y,z range over real numbers, one might define the operation of division, i.e., x/y, as follows: if it
is provable or assumed that y , 0, then x/y =df ız(x = y · z). Without the antecedent condition “if it
is provable or assumed that y , 0”, the description ız(x=y · z) can fail to denote: there is no such z
when x is any positive number and y = 0, and there is no unique such z when x= 0 and y = 0. But
given our Rule of Definition by Identity, the definition yields axioms of the following form:

(ız(x=y · z)↓→ (x/y= ız(x = y · z))) & (¬ız(x=y · z)↓)→¬(x/y)↓)
So when y=0, one can establish, for any x, that ¬ız(x = 0 · z)↓, and thereby conclude ¬(x/0)↓. One
doesn’t have to use ‘conditional definitions’ that conditionally extend the language only when
some condition is provable.
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By convention (67.1), we omit the formulation of the analogous rule for `�.
And hereafter, we shall not remark upon such omissions unless a special case
calls for some such remark. Rule CP is most-often used when Γ = ∅:

If ϕ ` ψ, then ` ϕ→ ψ.

When we cite this metarule in the proof of other metarules, we reference it
as the Deduction Theorem. However, we shall adopt the following convention:
during the course of reasoning, once we have produced a derivation of ψ from
ϕ, then instead of concluding ` ϕ→ ψ and citing the Deduction Theorem, we
shall infer ϕ→ ψ and cite Conditional Proof (CP). The proof of the Deduction
Theorem in the Appendix guarantees that we can indeed construct a proof of
the conditional ϕ→ ψ once we have derived ψ from ϕ.138

(76) Metarules: Corollaries to the Deduction Theorem. The following metarules
are immediate consequences of the Deduction Theorem. They help us to prove
the tautologies in (77), (85), and (88). Recall that ‘Γ1,Γ2’ indicates ‘Γ1 ∪ Γ2’:

(.1) If Γ1 ` ϕ→ ψ and Γ2 ` ψ→ χ, then Γ1,Γ2 ` ϕ→ χ

(.2) If Γ1 ` ϕ→ (ψ→ χ) and Γ2 ` ψ, then Γ1,Γ2 ` ϕ→ χ

It is interesting that the above metarules have the following Variant forms,
respectively:

(.3) ϕ→ ψ, ψ→ χ ` ϕ→ χ [Hypothetical Syllogism]

(.4) ϕ→ (ψ→ χ), ψ ` ϕ→ χ

(.3) is a Variant of (.1) because we can derive each from the other.139 Similarly,
(.4) is a Variant of (.2).

138Metatheorem 〈6.7〉, which is proved in the Appendix to Chapter 6, establishes that Γ ,ϕ |= ψ if
and only if Γ |= (ϕ→ ψ). Furthermore, Metatheorem 〈6.8〉, which is also proved in the Appendix
to Chapter 6, establishes that ϕ |= ψ if and only if |= ϕ→ ψ.
139 Here is a proof. (↪→) Assume (.1), i.e., if Γ1 ` ϕ → ψ and Γ2 ` ψ → χ, then Γ1,Γ2 ` ϕ → χ.

We want to show ϕ → ψ, ψ → χ ` ϕ → χ. If we let Γ1 be {ϕ → ψ}, then since by (63.2) we know
ϕ→ ψ ` ϕ→ ψ, we have Γ1 ` ϕ→ ψ. By similar reasoning, if we let Γ2 be {ψ→ χ}, then we have
Γ2 ` ψ→ χ. Hence, by (.1), it follows that Γ1,Γ2 ` ϕ→ χ. But, this is just ϕ→ ψ,ψ→ χ ` ϕ→ χ.
(←↩) Assume (.3), i.e., ϕ→ ψ, ψ→ χ ` ϕ→ χ. Then by (63.7), it follows that:

Γ1,Γ2,ϕ→ ψ, ψ→ χ ` ϕ→ χ

From this, by two applications of the Deduction Theorem, we have:

(ϑ) Γ1,Γ2 ` (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ))

Now to show (.1), assume Γ1 ` ϕ→ ψ and Γ2 ` ψ→ χ. So by (63.7), it follows, respectively, that:

(a) Γ1,Γ2 ` ϕ→ ψ

(b) Γ1,Γ2 ` ψ→ χ

By (a) and (ϑ), it follows by (63.5) that:

(ξ) Γ1,Γ2 ` (ψ→ χ)→ (ϕ→ χ)

From (ξ) and (b), it follows by (63.5) that Γ1,Γ2 ` ϕ→ χ. ./
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Note that the Variants (.3) and (.4) are somewhat different from the stated
metarules (.1) and (.2): the Variants don’t have the form of a conditional but
instead simply assert the existence of a derivation. Of course they can be put
into the traditional metarule form by conditionalizing them upon the trivial-
ity “If any condition holds” or “Under all conditions”. But, given that these
metarules hold without preconditions, we may consider them derived rules of
inference, i.e., rules of inference, like Modus Ponens, that allow us to infer for-
mulas from formulas. Thus, (.3), for example, can be reconceived as a derived
rule and not just a metarule. We may justifiably use this rule within deriva-
tions and consider the result to be a bona fide derivation. The justification of
(.3) in the Appendix establishes that any derivation that yields a conclusion
by an application of the above derived rule of Hypothetical Syllogism can be
converted to a derivation in which this rule isn’t used.

This pattern, of taking the unconditional variants of metarules to be de-
rived rules, will occur often in what follows; many of the derived metarules
for reasoning with negation and conditionals have unconditional variants that
will be regarded as derived rules. In the Appendix, however, we typically rea-
son with the variant, derived rule whenever it is available.

(77) Theorems: More Useful Tautologies. The tautologies listed below (and
their proofs) follow the presentation in Mendelson 1964 [1997, 38–40, Lemma
1.11). We present them as a group because they are needed in the Appendix to
this chapter to establish Lemma 〈9.1〉 and Metatheorem 〈9.2〉, i.e., that every
tautology is derivable.

(.1) ¬¬ϕ→ ϕ

(.2) ϕ→¬¬ϕ

(.3) ¬ϕ→ (ϕ→ ψ)

(.4) (¬ψ→¬ϕ)→ (ϕ→ ψ)

(.5) (ϕ→ ψ)→ (¬ψ→¬ϕ)

(.6) (ϕ→¬ψ)→ (ψ→¬ϕ)

(.7) (¬ϕ→ ψ)→ (¬ψ→ ϕ)

(.8) ϕ→ (¬ψ→¬(ϕ→ ψ))

(.9) (ϕ→ ψ)→ ((¬ϕ→ ψ)→ ψ)

(.10) (ϕ→¬ψ)→ ((ϕ→ ψ)→¬ϕ)
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(.1) and (.2) are used to derive Double Negation rules (78); (.5) is used to prove
Modus Tollens (79); and (.10) is used to prove a form of reductio ad absurdum.

(78) Metarules/Derived Rules: Double Negation. It is easy to derive intro-
duction and elimination metarules for double negation, along with their cor-
responding derived rules:

(.1) Double Negation Introduction (Rule ¬¬I):

If Γ ` ϕ, then Γ ` ¬¬ϕ [Variant: ϕ ` ¬¬ϕ]

(.2) Double Negation Elimination (Rule ¬¬E):

If Γ ` ¬¬ϕ, then Γ ` ϕ [Variant: ¬¬ϕ ` ϕ]

(79) Metarules/Derived Rules: Modus Tollens. We formulate Modus Tollens
(MT) as two metarules:

Rules of Modus Tollens (MT)
(.1) If Γ1 ` (ϕ→ ψ) and Γ2 ` ¬ψ, then Γ1,Γ2 ` ¬ϕ

[Variant: ϕ→ ψ, ¬ψ ` ¬ϕ]
(.2) If Γ1 ` (ϕ→¬ψ) and Γ2 ` ψ, then Γ1,Γ2 ` ¬ϕ

[Variant: ϕ→¬ψ, ψ ` ¬ϕ]

The Variants are equivalent, by reasoning analogous to that in footnote 139. In
light of the discussion at the end of (76), the Variants may be conceived as the
well-known derived rules.

(80) Metarules/Derived Rules: Contraposition. These metarules also come in
two forms:

Rules of Contraposition
(.1) Γ ` ϕ→ ψ if and only if Γ ` ¬ψ→¬ϕ

[Variant: ϕ→ ψ a` ¬ψ→¬ϕ]
(.2) Γ ` ϕ→¬ψ if and only if Γ ` ψ→¬ϕ

[Variant: ϕ→¬ψ a` ψ→¬ϕ

In the Variants, χ a` θ (‘χ is interderivable with θ’) is simply means χ ` θ and
θ ` χ.140 Given the discussion at the end of (76), we typically use the derived
rules in proofs.

140Although the reasoning is again analogous to that in footnote 139, we show here the left-to-
right direction of (.1) is equivalent to the variant ϕ→ ψ ` ¬ψ→¬ϕ. (↪→) Assume metarule (.1): if
Γ ` ϕ→ ψ, then Γ ` ¬ψ→¬ϕ. Now let Γ be {ϕ→ ψ}. Then we have Γ ` ϕ→ ψ, by the special case
of (63.2). But then it follows from our assumption that Γ ` ¬ψ→¬ϕ, i.e., ϕ→ ψ ` ¬ψ→¬ϕ. (←↩)
Assume ϕ→ ψ ` ¬ψ→¬ϕ. Then by (63.7), it follows that Γ ,ϕ→ ψ ` ¬ψ→¬ϕ. By the Deduction
Theorem, it follows that Γ ` (ϕ→ ψ)→ (¬ψ→¬ϕ). But from this fact, we can derive Γ ` ¬ψ→¬ϕ
from the assumption that Γ ` ϕ→ ψ, by (63.5).

We leave the other direction, and the proof of the equivalence of (.2) and its variant, as exercises.
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(81) Metarules/Derived Rules: Reductio Ad Absurdum. Two classic forms of
Reductio Ad Absurdum (RAA) are formulated as follows:

Rules of Reductio Ad Absurdum (RAA)
(.1) If Γ1,¬ϕ ` ¬ψ and Γ2,¬ϕ ` ψ, then Γ1,Γ2 ` ϕ

[Variant: ¬ϕ→¬ψ, ¬ϕ→ ψ ` ϕ]
(.2) If Γ1,ϕ ` ¬ψ and Γ2,ϕ ` ψ, then Γ1,Γ2 ` ¬ϕ

[Variant: ϕ→¬ψ, ϕ→ ψ ` ¬ϕ]

The variant versions are, respectively, provably equivalent to their more gen-
eral formulations.141 We may therefore use them as derived rules, if needed.

(82) Remark: Introduction and Elimination Rules for→ and ¬. Note that the
metarules for the introduction and elimination of→ and ¬ have already been
presented. (63.5) is the metarule for→Elimination (→E); the Deduction Theo-
rem (75) and its corollaries (76) are metarules for→Introduction (→I). Reduc-
tio Ad Absurdum, when formulated as in (81.1), is a metarule for ¬Elimination
(¬E), and when formulated as in (81.2), is a metarule for ¬Introduction (¬I).
And we’ve formulated the introduction and elimination rules for double nega-
tion in (78).

We now work our ways towards the formulation of the introduction and
elimination metarules for &, ∨, and ≡. We also state their variant, derived
rules when applicable, though we leave the proof that they are equivalent to
the stated metarules for the reader. We also assume that, in each case, the `�
form of the metarules and derived rules can be easily proved using the ` form
as a guide.

(83) Theorems: Principle of Excluded Middle.

141We can show that (.1) is equivalent to the Variant as follows. (↪→) Assume (.1): if Γ1,¬ϕ ` ¬ψ
and Γ2,¬ϕ ` ψ, then Γ1,Γ2 ` ϕ. Now to derive the variant, note that if we let Γ1 = {¬ϕ → ¬ψ}
and Γ2 = {¬ϕ → ψ}, then we know by MP both that Γ1,¬ϕ ` ¬ψ and Γ2,¬ϕ ` ψ. Hence by our
assumption, Γ1,Γ2 ` ϕ. (←↩) Assume the variant version, i.e., ¬ϕ→¬ψ, ¬ϕ→ ψ ` ϕ. By (63.7), it
follows that:

Γ1,Γ2,¬ϕ→¬ψ, ¬ϕ→ ψ ` ϕ
So by two applications of the Deduction Theorem, we know:

(ϑ) Γ1,Γ2 ` (¬ϕ→¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

Now to show (81.1), assume Γ1,¬ϕ ` ¬ψ and Γ2,¬ϕ ` ψ. Then by (63.7), it follows, respectively,
that Γ1,Γ2,¬ϕ ` ¬ψ and Γ1,Γ2,¬ϕ ` ψ. By applying the Deduction Theorem to each of these, we
obtain, respectively:

(ξ) Γ1,Γ2 ` ¬ϕ→¬ψ

(ζ) Γ1,Γ2 ` ¬ϕ→ ψ

But from (ϑ) and (ξ), it follows by (63.5) that:

Γ1,Γ2 ` (¬ϕ→ ψ)→ ϕ

And from this last conclusion and (ζ) it follows again by (63.5) that Γ1,Γ2 ` ϕ. ./
We leave the proof of the equivalence of (.2) and its variant as an exercise.
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ϕ ∨¬ϕ

The proof in the Appendix of this classical principle involves an appeal to a
previously established theorem (74) and our Rule of Definition by Equivalence
(72).

(84) Theorems: Principle of Noncontradiction.

¬(ϕ&¬ϕ)

The proof in the Appendix of (.1) goes by way of a reductio, and involves an
appeal to a previously established theorem (77.2), the definition of & (18.1)
and the Rule of Definition by Equivalence (72).

(85) Theorems: Basic Tautologies Governing Conjunction and Disjunction.

(.1) (ϕ&ψ)→ ϕ (Conjunction Simplification)

(.2) (ϕ&ψ)→ ψ (Conjunction Simplification)

(.3) ϕ→ (ϕ ∨ψ) (Disjunction Addition)

(.4) ψ→ (ϕ ∨ψ) (Disjunction Addition)

(.5) ϕ→ (ψ→ (ϕ&ψ)) (Adjunction)

(.6) (ϕ&ϕ) ≡ ϕ (Idempotence of &)

(.7) (ϕ ∨ϕ) ≡ ϕ (Idempotence of ∨)

(86) Metarules/Derived Rules: Introduction and Elimination Rules for Con-
junction and Disjunction.

(.1) &Introduction (&I):

If Γ1 ` ϕ and Γ2 ` ψ, then Γ1,Γ2 ` ϕ&ψ [Variant: ϕ,ψ ` ϕ&ψ]

(.2) &Elimination (&E):

(.a) If Γ ` ϕ&ψ, then Γ ` ϕ [Variant: ϕ&ψ ` ϕ]

(.b) If Γ ` ϕ&ψ, then Γ ` ψ [Variant: ϕ&ψ ` ψ]

(.3) ∨Introduction (∨I):

(.a) If Γ ` ϕ, then Γ ` ϕ ∨ψ [Variant: ϕ ` ϕ ∨ψ]

(.b) If Γ ` ψ, then Γ ` ϕ ∨ψ [Variant: ψ ` ϕ ∨ψ]

(.c) Disjunctive Syllogism:
If Γ1 ` ϕ ∨ψ, Γ2 ` ϕ→ χ, and Γ3 ` ψ→ θ, then Γ1,Γ2,Γ3 ` χ∨θ

[Variant: ϕ ∨ψ, ϕ→ χ, ψ→ θ ` χ∨θ]
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(.4) ∨Elimination (∨E):

(.a) Reasoning by Cases:
If Γ1 ` ϕ ∨ψ, Γ2 ` ϕ→ χ, and Γ3 ` ψ→ χ, then Γ1,Γ2,Γ3 ` χ

[Variant: ϕ ∨ψ, ϕ→ χ, ψ→ χ ` χ]

(.b) Disjunctive Syllogism (alternative form):
If Γ1 ` ϕ ∨ψ and Γ2 ` ¬ϕ, then Γ1,Γ2 ` ψ [Variant: ϕ ∨ψ, ¬ϕ ` ψ]

(.c) Disjunctive Syllogism (alternative form):
If Γ1 ` ϕ ∨ψ and Γ2 ` ¬ψ, then Γ1,Γ2 ` ϕ [Variant: ϕ ∨ψ, ¬ψ ` ϕ]

(87) Metarules/Derived Rules. Classical and Alternative Forms of RAA. In
systems where & is a primitive connective, classical Reductio Ad Absurdum is
stated as a primitive metarule which asserts that if there is a derivation of a
contradiction from some premises and an assumption, then there is a deriva-
tion of the negation of the assumption from the premises alone. But in our
system, Reductio is derivable as a metarule, though only once the above theo-
rems and rules are in place:

(.1) If Γ ,¬ϕ ` ψ&¬ψ, then Γ ` ϕ

(.2) If Γ ,ϕ ` ψ&¬ψ, then Γ ` ¬ϕ

The reader should also confirm that Reductio Ad Absurdum also has the fol-
lowing forms:

(.3) If Γ , ϕ, ¬ψ ` ¬ϕ, then Γ ,ϕ ` ψ [Variant: ϕ, ¬ψ→¬ϕ ` ψ]

(.4) If Γ , ¬ϕ, ¬ψ ` ϕ, then Γ ,¬ϕ ` ψ [Variant: ¬ϕ, ¬ψ→ ϕ ` ψ]

(.5) If Γ , ϕ, ψ ` ¬ϕ, then Γ ,ϕ ` ¬ψ [Variant: ϕ, ψ→¬ϕ ` ¬ψ]

(.6) If Γ , ¬ϕ, ψ ` ϕ, then Γ ,¬ϕ ` ¬ψ [Variant: ¬ϕ, ψ→ ϕ ` ¬ψ]

(88) Theorems: Other Useful Tautologies. The foregoing allow us to more
easily prove many classical and other useful theorems governing the classical
connectives:

(.1) Some Basic Facts:

(.a) (ϕ→ ψ) ≡ ¬(ϕ&¬ψ)

(.b) ¬(ϕ→ ψ) ≡ (ϕ&¬ψ)

(.c) (ϕ→ ψ) ≡ (¬ϕ ∨ψ)

(.2) Commutative and Associative Laws of &, ∨, and ≡:

(.a) (ϕ&ψ) ≡ (ψ&ϕ) (Commutativity of &)
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(.b) (ϕ& (ψ&χ)) ≡ ((ϕ&ψ) &χ) (Associativity of &)

(.c) (ϕ ∨ψ) ≡ (ψ ∨ϕ) (Commutativity of ∨)

(.d) (ϕ ∨ (ψ ∨χ)) ≡ ((ϕ ∨ψ)∨χ) (Associativity of ∨)

(.e) (ϕ ≡ ψ) ≡ (ψ ≡ ϕ) (Commutativity of ≡)

(.f) (ϕ ≡ (ψ ≡ χ)) ≡ ((ϕ ≡ ψ) ≡ χ) (Associativity of ≡)

(.3) Simple Biconditionals:

(.a) ϕ ≡ ϕ

(.b) ϕ ≡ ¬¬ϕ

(.c) ¬(ϕ ≡ ¬ϕ) (Form of Noncontradiction)

(.4) Conditionals and Biconditionals:

(.a) (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ))

(.b) (ϕ ≡ ψ) ≡ (¬ϕ ≡ ¬ψ)

(.c) (ϕ ≡ ψ)→ ((ϕ→ χ) ≡ (ψ→ χ))

(.d) (ϕ ≡ ψ)→ ((χ→ ϕ) ≡ (χ→ ψ))

(.e) (ϕ ≡ ψ)→ ((ϕ&χ) ≡ (ψ&χ))

(.f) (ϕ ≡ ψ)→ ((χ&ϕ) ≡ (χ&ψ))

(.g) (ϕ ≡ ψ) ≡ ((ϕ&ψ)∨ (¬ϕ&¬ψ))

(.h) ¬(ϕ ≡ ψ) ≡ ((ϕ&¬ψ)∨ (¬ϕ&ψ))

(.5) De Morgan’s Laws:

(.a) (ϕ&ψ) ≡ ¬(¬ϕ ∨¬ψ)

(.b) (ϕ ∨ψ) ≡ ¬(¬ϕ&¬ψ)

(.c) ¬(ϕ&ψ) ≡ (¬ϕ ∨¬ψ)

(.d) ¬(ϕ ∨ψ) ≡ (¬ϕ&¬ψ)

(.6) Distribution Laws:

(.a) (ϕ& (ψ ∨χ)) ≡ ((ϕ&ψ)∨ (ϕ&χ))

(.b) (ϕ ∨ (ψ& χ)) ≡ ((ϕ ∨ψ) & (ϕ ∨χ))

(.7) Exportation and Importation:

(.a) ((ϕ&ψ)→ χ)→ (ϕ→ (ψ→ χ)) (Exportation)

(.b) (ϕ→ (ψ→ χ))→ ((ϕ&ψ)→ χ) (Importation)

(.8) Other Miscellaneous Tautologies:
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(.a) (ϕ→ (ψ→ χ)) ≡ (ψ→ (ϕ→ χ)) (Permutation)

(.b) (ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ (ψ&χ))) (Composition)

(.c) (ϕ→ χ)→ ((ψ→ χ)→ ((ϕ ∨ψ)→ χ))

(.d) ((ϕ→ ψ) & (χ→ θ))→ ((ϕ&χ)→ (ψ&θ)) (Double Composition)

(.e) ((ϕ&ψ) ≡ (ϕ&χ)) ≡ (ϕ→ (ψ ≡ χ))

(.f) ((ϕ&ψ) ≡ (χ&ψ)) ≡ (ψ→ (ϕ ≡ χ))

(.g) (ψ ≡ χ)→ ((ϕ ∨ψ) ≡ (ϕ ∨χ))

(.h) (ψ ≡ χ)→ ((ψ ∨ϕ) ≡ (χ∨ϕ))

(.i) (ϕ ≡ (ψ&χ))→ (ψ→ (ϕ ≡ χ))

We leave the proof of these tautologies, with the exception of (.8.i), as exercises.

(89) Metarules/Derived Rules: Reasoning with Biconditionals. Our standard
axiomatization of negation and conditionalization and the standard definition
of the ≡ allow us to reason using all the classical introduction and elimination
rules for the biconditional. However, we formulate them, in the first instance,
as metarules.

(.1) Disjunctive Syllogism (alternative form):
If Γ1 ` ϕ ∨ψ, Γ2 ` ϕ ≡ χ, and Γ3 ` ψ ≡ θ, then Γ1,Γ2,Γ3 ` χ∨θ

[Variant: ϕ ∨ψ, ϕ ≡ χ, ψ ≡ θ ` χ∨θ]

(.2) ≡Introduction (≡I):

If Γ1 ` ϕ→ ψ and Γ2 ` ψ→ ϕ, then Γ1,Γ2 ` ϕ ≡ ψ
[Variant: ϕ→ ψ, ψ→ ϕ ` ϕ ≡ ψ]

(.3) ≡Elimination (≡E) (Biconditional Syllogisms):

(.a) If Γ1 ` ϕ ≡ ψ and Γ2 ` ϕ, then Γ1,Γ2 ` ψ [Variant: ϕ ≡ ψ, ϕ ` ψ]

(.b) If Γ1 ` ϕ ≡ ψ and Γ2 ` ψ, then Γ1,Γ2 ` ϕ [Variant: ϕ ≡ ψ, ψ ` ϕ]

(.c) If Γ1 ` ϕ ≡ ψ and Γ2 ` ¬ϕ, then Γ1,Γ2 ` ¬ψ
[Variant: ϕ ≡ ψ, ¬ϕ ` ¬ψ]

(.d) If Γ1 ` ϕ ≡ ψ and Γ2 ` ¬ψ, then Γ1,Γ2 ` ¬ϕ
[Variant: ϕ ≡ ψ, ¬ψ ` ¬ϕ]

(.e) If Γ1 ` ϕ ≡ ψ and Γ2 ` ψ ≡ χ, then Γ1,Γ2 ` ϕ ≡ χ
[Variant: ϕ ≡ ψ, ψ ≡ χ ` ϕ ≡ χ]

(.f) If Γ1 ` ϕ ≡ ψ and Γ2 ` ϕ ≡ χ, then Γ1,Γ2 ` χ ≡ ψ
[Variant: ϕ ≡ ψ, ϕ ≡ χ ` χ ≡ ψ]
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In every case, the modally strict, `�-version of the rule holds and its justifica-
tion requires only a trivial revision to the justification of the above versions.
We leave the justification of these metarules, their variants, and their modally-
strict versions and variants, as exercises and henceforth use the derived rules
within proofs and derivations.

(90) Metarule: Derived Rule of Equivalence by Definition. Now that we have
rules for reasoning with biconditionals, we can more easily derive, and make
use of, the following rule:

(.1) Rule of Equivalence by Definition (Rule ≡Df)
If ϕ ≡df ψ is any definition-by-≡ and Γ is any premise set, then Γ ` ϕ ≡ ψ.

By convention (67.1), we omit the statement of the same rule for `�. But it
should be kept in mind that facts of the form Γ `� ϕ ≡ ψ derived from def-
initions by the `� form of the rule play an essential role proving important
theorems in what follows.

It should be noted here that once the Rule of Actualization (RA) in is for-
mulated and justified in (135), one can strengthen Rule ≡Df so that it asserts:

If ϕ ≡df ψ is a definition-by-≡, Γ is any premise set, and χ is any closure
of ϕ ≡ ψ, then Γ ` χ

Once Rule RA is in place then we can use the rules GEN, RN, and RA enough
times to show that if ϕ ≡ ψ is a theorem, then any closure of ϕ ≡ ψ is a theorem.
But this strengthened version of (.1) will not be explicitly formulated as such
in what follows.

Now, given (.1), and the various rules for reasoning with biconditionals,
(89.1) – (89.3), we can easily derive the rules that lets us directly infer a definiens
from a definiendum and infer a definiendum from a definiens, from any in-
stance of a definition-by-≡:

(.2) Rule of Definiendum Elimination (Rule ≡df E)
If Γ ` ϕ, then Γ ` ψ, whenever ϕ ≡df ψ is a definition-by-≡.

[Variant: ϕ ` ψ, whenever . . .]

(.3) Rule of Definiendum Introduction (Rule ≡df I)
If Γ ` ψ, then Γ ` ϕ, whenever ϕ ≡df ψ is a definition-by-≡.

[Variant: ψ ` ϕ, whenever . . .]

Again, by convention, we omit the statement of these rules for `�. Given that
(.1) – (.3) hold for both ` and `�, we may employ them in any reasoning envi-
ronment without affecting the modal strictness, if any, of the reasoning. Once
we gain some experience explicitly citing Rules ≡df E and ≡df I when proving
theorems, we’ll then revert to the classical citation ‘by definition’ when using
these rules to draw conclusions from definitions-by-≡.



288 CHAPTER 9. DEDUCTIVE SYSTEMS OF PLM

(91) Metarule: Conditions Permitting Biconditional Simplification. There is a
situation that will occur frequently in which certain biconditionals can be sim-
plified, namely, when one condition of the biconditional includes a number of
conjuncts that are already known by hypothesis or by proof. The metarule for
simplifying these biconditionals states that if there is a (modally-strict) deriva-
tion of ϕ ≡ (ψ&χ) from Γ and there is a (modally-strict) derivation of ψ from
Γ , then there is a (modally-strict) derivation of ϕ ≡ χ from Γ :

(.1) Rule ≡S of Biconditional Simplification
If Γ ` ϕ ≡ (ψ&χ) and Γ ` ψ, then Γ ` ϕ ≡ χ.

[Variant: ϕ ≡ (ψ&χ), ψ ` ϕ ≡ χ]

The version for `� is obtained by replacing ` by `�. The Variant simply says we
can infer (i.e., there is a derivation of) ϕ ≡ χ from the premises ϕ ≡ (ψ&χ) and
ψ. These rules are easily justified by (88.8.i).

A more general form of the above rule can also be derived. The Variant
form states that from two assumptions, the first of which is a biconditional
between ϕ and the conjunction of ψ1, . . . ,ψn (n ≥ 1), and the second of which
is just one of the ψi (1 ≤ i ≤ n), there is a (modally-strict) derivation of the
equivalence that results by omitting the conjunct ψi from the right condition
of the first assumption. Formally, for 1 ≤ i ≤ n:

(.2) Rule ≡S of Biconditional Simplification (General Form)
If Γ ` ϕ ≡ (ψ1 & . . . &ψn &χ) and Γ ` ψi ,

then Γ ` ϕ ≡ (ψ1 & . . . &ψi−1 &ψi+1 & . . . &ψn &χ)

Variant:
ϕ ≡ (ψ1 & . . . &ψn &χ), ψi ` ϕ ≡ (ψ1 & . . . &ψi−1 &ψi+1 & . . . &ψn &χ)

We leave the justification as an exercise.
A special case of the Variant of (.2) applies to biconditionals derived from

definitions-by-≡ in which the definiens has one or more existence claims as
conjuncts. Consider any such instance of such a definition having the follow-
ing form, in which the free occurrences of the variables α1, . . . ,αn (n ≥ 1) are
interpreted under Convention (17.2):

ϕ(α1, . . . ,αn) ≡df α1↓& . . . &αn↓&χ

Now let τ1, . . . , τn be any terms substitutable for α1, . . . ,αn. Then where 1 ≤ i ≤ n,
we have the following special case of the general form of Rule ≡S:

ϕτ1,...,τn
α1,...,αn ≡ (τ1↓& . . . & & τn↓&χτ1,...,τn

α1,...,αn ), τi↓ `
ϕτ1,...,τn
α1,...,αn ≡ (τ1↓& . . . & τi−1↓& τi+1↓& . . . & τn↓&χτ1,...,τn

α1,...,αn )

This special case will often be applied in reasoning from definitions-by-≡ in
which the definiens contains a non-zero number of existence clauses as con-
juncts.
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(92) Remark: Not All Tautologies Are Yet Derivable. Rule MP and our axioms
(38.1) – (38.3) for negations and conditionals are not yet sufficient for deriving
all of the formulas that qualify as tautologies, as the latter notion was defined
in Section 6.2. We discovered in that section that our system contains a new
class of tautologies that arise in connection with 0-ary relation terms of the
form [λϕ]. Instances of the following schemata are members of this new class
of tautologies: [λϕ]→ ϕ, [λϕ] ≡ ϕ, [λϕ]→¬¬ϕ, etc. To derive these tautolo-
gies, we must first prove that [λϕ] ≡ ϕ is a theorem (111.2), and to do that, we
will need to show that [λϕ] = ϕ is a theorem (111.1). The derivations of these
latter theorems appeal to η-Conversion, GEN, Rule ∀E (a rule of quantification
theory derived in item (93) below), and Rule =E (i.e., the rule for the substi-
tution of identicals, derived in item (110) below). Once we’ve derived all of
these key principles, and (111.2) in particular, we will be in a position to prove
Metatheorem 〈9.2〉, i.e., that all tautologies are derivable. This Metatheorem is
proved in the Appendix to this chapter. With such a result, we can derive Rule
T, which is formulable using the semantic notions defined in Section 6.2, as a
rule for our system:

Rule T
If Γ `ϕ1 and . . . and Γ `ϕn, then if {ϕ1, . . . ,ϕn} tautologically implies ψ,
then Γ ` ψ.

Rule T asserts that ψ is derivable from Γ whenever the formulas of which it is
a tautological consequence are all derivable from Γ . We won’t use this rule in
proving theorems, since it requires semantic notions. But it is a valid shortcut.
Rule T is proved as Metatheorem 〈9.4〉 in the Appendix to this chapter.

9.6 The Theory of Quantification

(93) Metarules/Derived Rules: ∀Elimination (∀E). The elimination rule for
the universal quantifier has two forms (with the first being the primary form):

Rule ∀E
(.1) If Γ1 ` ∀αϕ and Γ2 ` τ↓, then Γ1,Γ2 ` ϕτα, provided τ is substitutable
for α in ϕ [Variant: ∀αϕ, τ↓ ` ϕτα , if τ is substitutable for α]

(.2) If Γ ` ∀αϕ, then Γ ` ϕτα , provided τ is (a) a primitive constant, a
variable, or a core λ-expression, and (b) substitutable for α in ϕ

[Variant: ∀αϕ ` ϕτα , provided . . . ]

(Here, and in what follows, the ellipsis should be filled in by the provisos of the
official form of the rule.) In the usual manner, we may conceive the variants as
derived rules and use them to produce genuine derivations.
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Rule ∀E and its Variant have special cases when τ is the variable α. Since
every variable α is substitutable for itself in any formula ϕ (see Metatheorem
〈7.4〉 in (15)) and ϕαα = ϕ (see Metatheorem 〈7.2〉 in (14)), the following special
case obtains:

Rule ∀E Special Case
(.3) If Γ ` ∀αϕ, then Γ ` ϕ [Variant: ∀αϕ ` ϕ]

(94) Remark: A Misuse of Rule ∀E. Note that the following attempt to derive a
contradiction involves a misuse of Rule ∀E:

Let ϕ be the formula ¬yF and formulate the following instance of the
Comprehension Principle for Abstract Objects: ∃x(A!x&∀F(xF ≡ ¬yF)).
So by GEN, we may derive as a theorem:

(ϑ) ∀y∃x(A!x&∀F(xF ≡ ¬yF))

Hence, by Rule ∀E (93.2) [Variant], it follows that:

(ξ) ∃x(A!x&∀F(xF ≡ ¬xF))

From this, we can derive a contradiction.142

The problem with this bit of reasoning is the invalid application of Rule ∀E
(93.2) [Variant] to infer (ξ) from (ϑ). (ϑ) has the form ∀yψ and (ξ) has the form
ψxy , and so the inference from (ϑ) to (ξ) doesn’t obey the condition that x must
be substitutable for y in the formula ψ.143

(95) Theorems: Classical Quantifier Axioms as Theorems. Our system now
yields two quantification principles as theorems:

(.1) ∀αϕ → ϕτα , provided τ is (a) a primitive constant, a variable, or a core
λ-expression, and (b) substitutable for α in ϕ.

(.2) ∀α(ϕ→ ψ)→ (ϕ→∀αψ), provided α is not free in ϕ

Versions of these theorems are often used as the principal axioms of classical
quantification theory, with GEN as a primitive rule of inference. Cf. Mendelson

142We can see this more easily if we take the liberty of reasoning with a rule of inference we
haven’t officially introduced yet, namely Rule ∃E (102). For assume a is an arbitrary such object,
so that we know A!a&∀F(aF ≡ ¬aF). By &E, it follows that ∀F(aF ≡ ¬aF). Hence by a special case
of Rule ∀E (93.3), it follows that aF ≡ ¬aF, which by (88.3.c) is a contradiction.
143In this case, ψ is the formula ∃x(A!x& ∀F(xF ≡ ¬yF)). Then the definition of substitutable for

in (15) requires that for x to be substitutable for y in ψ, every variable that occurs free in the term
x must remain free after we substitute x for y in ψ. But x itself, which is free in the term x, doesn’t
remain free when x is substituted for y in ψ to produce ψxy , i.e., ∃x(A!x&∀F(xF ≡ ¬xF)). Instead,
x is captured by (i.e., falls within the scope of) the existential quantifier ∃x in ψxy .
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1964 [1997, 69, axioms (A4) and (A5)]; (A4) is a simpler version of (.1) because
Mendelson’s formulation of predicate logic (with function terms) assumes that
all terms have a denotation.

Clearly, since ϕαα is just ϕ, formulas of the form:

(.3) ∀αϕ→ ϕ

are special cases of (.1).

(96) Metarule/Derived Rule: Rule ∀I (Universal Introduction) or Generaliza-
tion on Constants. We introduce and explain the Rule ∀I by way of an example.
We often argue as follows:

Let P be an arbitrary property and a an arbitrary object; then as an in-
stance of the tautology ϕ ≡ ϕ (88.3.a), we know P a ≡ P a. Since a is arbi-
trary, the biconditional holds for all objects, i.e., ∀x(P x ≡ P x). Since P is
arbitrary, this last claim holds for all properties, i.e., ∀F∀x(Fx ≡ Fx).

The last two steps of this reasoning are justified by Rule ∀I, which allows us
to universally generalize once we have reached a conclusion about arbitrarily
chosen entities, as long as we haven’t invoked any special assumptions about
the chosen entities. In the example we just gave, no special facts about the
property P or the individual a played a part in our intermediate conclusion
that P a ≡ P a.

Of course, the theorem ∀F∀x(Fx ≡ Fx) could have been established without
appealing to Rule ∀I, as follows: Fx ≡ Fx is an instance of the tautology ϕ ≡ ϕ
(88.3.a) and so by two applications of GEN, it follows that ∀F∀x(Fx ≡ Fx). But
though we can reason using variables in this way, it is nevertheless sometimes
helpful (indeed, clearer) to use arbitrarily chosen (primitive) constants instead
of free variables when reasoning.

To formulate Rule ∀I generally, we first introduce some notation. Where τ
is any constant and α any variable of the same type as τ :

• ϕατ is the result of replacing every occurrence of the constant τ in ϕ by
an occurrence of α

We then have:

Rule ∀I
If Γ `ϕ and τ is a primitive constant that does not occur in Γ or Λ, then
Γ ` ∀αϕατ , provided α is a variable that does not occur in ϕ.

[Variant: ϕ ` ∀αϕατ , provided . . . ]

Note that only one distinguished constant, namely E!, is used in the statement
of the axioms in Λ and so E! is not an acceptable value for τ in Rule ∀I. So,
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for example, from axiom (39.4), i.e., ♦∃x(E!x & ¬AE!x), we cannot conclude
∀F(♦∃x(Fx&¬AFx) by Rule ∀I.

Here is another example of how we will use Rule ∀I. Consider the following
reasoning that shows ∀x(P x→Qx), ∀yP y ` ∀xQx:

1. ∀x(P x→Qx) Premise
2. ∀yP y Premise
3. P a→Qa from 1, by ∀E (93.2) [Variant]
4. P a from 2, by ∀E (93.2) [Variant]
5. Qa from 3, 4, by MP
6. ∀x(P x→Qx),∀yP y ` ∀xQx from 1–5, by ∀I

In this example, we set Γ = {∀x(P x → Qx),∀yP y }, ϕ = Qa, and τ = a. Given
that ∀E is a derived rule as well as a metarule, lines 1–5 constitute a genuine
derivation that is a witness to Γ ` ϕ. Since a doesn’t occur in Γ or Λ, and x
doesn’t occur in ϕ, we have an instance of the Rule ∀I in which α is the variable
x, which we can then apply to lines 1–5 to infer the derivability claim on line
6.

Since ∀I is a metarule, we could have reached the conclusion on line 6 with-
out it using the following reasoning, which doesn’t involve the constant a:

1. ∀x(P x→Qx) Premise
2. ∀yP y Premise
3. P x→Qx from 1, by ∀E (93.3)
4. P x from 2, by ∀E (93.2) [Variant]
5. Qx from 3,4, by MP
6. ∀x(P x→Qx), ∀yP y ` ∀xQx from 1–5, by GEN

The application of GEN on line 6 is legitimate since we have correctly derived
Qx on line 5 from the premises ∀x(P x → Qx) and ∀yP y and the variable x
doesn’t occur free in the premises. Of course, GEN itself is a metarule, but we
already know how to eliminate it.

(97) Lemmas: Re-replacement Lemmas. In the following re-replacement lem-
mas, we assume that α and β are variables of the same type as term τ :

(.1) If β is substitutable for α in ϕ and β doesn’t occur free in ϕ, then α is
substitutable for β in ϕβα and (ϕβα)

α
β = ϕ.

(.2) If τ is a constant symbol that doesn’t occur in ϕ, then (ϕτα)βτ = ϕβα.

(.3) If β is substitutable for α in ϕ and doesn’t occur free in ϕ, and τ is any
term substitutable for α in ϕ, then (ϕβα)τβ = ϕτα.

It may help to read the following Remark before attempting to prove the above.
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(98) Remark: Explanation of the Re-replacement Lemmas. By discussing (97.1)
in some detail, (97.2) and (97.3) become more transparent and less in need of
commentary. It is relatively easy to show that, in general, in the absence of any
preconditions, (ϕβα)

α
β , ϕ. The variable α may occur in (ϕβα)

α
β at a place where

it does not occur in ϕ, or α may occur in ϕ at a place where it does not occur
in (ϕβα)

α
β . Here is an example of each case:

• ϕ = Ryx. Then ϕyx = Ryy and though x is substitutable for y in ϕyx (i.e., y
doesn’t fall under the scope of any variable-binding operator that binds
x), (ϕyx )xy = Rxx. Hence (ϕyx )xy , ϕ. In this example, x occurs at a place in
(ϕyx )xy where it does not occur in ϕ.

• ϕ = ∀yRxy. Then ϕyx = ∀yRyy. Since x is trivially substitutable for y in
ϕ
y
x (there are no free occurrences of y in ϕ

y
x ), (ϕyx )xy = ϕ

y
x = ∀yRyy. By

inspection, then, (ϕyx )xy , ϕ. In this example, x occurs at a place in ϕ
where it does not occur in (ϕyx )xy .

These two examples nicely demonstrate why the two antecedents of (97.1) are
crucial. The first example fails the proviso that y not occur free in Ryx; the
second example fails the proviso that y be substitutable for x in ∀yRxy. But
here is an example of (97.1) in which the antecedents obtain:

• ϕ = ∀yP y → Qx. In this example, the free occurrence of x is not within
the scope of the quantifier ∀y. So y is substitutable for x in ϕ and y
does not occur free in ϕ. Thus, ϕyx = ∀yP y → Qy, and since y has a
free occurrence in ϕyx not under the scope of a variable-binding operator
binding x, x is substitutable for y in ϕyx . Hence (ϕyx )xy = ∀yP y → Qx, and
so (ϕyx )xy = ϕ.

These remarks and the proof of (97.1) should suffice to clarify the remaining
two replacement lemmas. (97.1) is used to prove (99.13), (103.10), and the Rule
of Alphabetic Variants (114). Lemma (97.3) is used in the proof of (103.7).

(99) Theorems: Basic Theorems of Quantification Theory. The following are
all basic consequences of our quantifier axioms and (derived) rules:

(.1) ∀α∀βϕ ≡ ∀β∀αϕ

(.2) ∀α(ϕ ≡ ψ) ≡ (∀α(ϕ→ ψ) & ∀α(ψ→ ϕ))

(.3) ∀α(ϕ ≡ ψ)→ (∀αϕ ≡ ∀αψ)

(.4) ∀α(ϕ&ψ) ≡ (∀αϕ&∀αψ)

(.5) ∀α1 . . .∀αnϕ→ ϕ

(.6) ∀α∀αϕ ≡ ∀αϕ
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(.7) (ϕ→∀αψ) ≡ ∀α(ϕ→ ψ), provided α is not free in ϕ

(.8) (∀αϕ ∨∀αψ)→∀α(ϕ ∨ψ)

(.9) (∀α(ϕ→ ψ) &∀α(ψ→ χ))→∀α(ϕ→ χ)

(.10) (∀α(ϕ ≡ ψ) &∀α(ψ ≡ χ))→∀α(ϕ ≡ χ)

(.11) ∀α(ϕ ≡ ψ) ≡ ∀α(ψ ≡ ϕ)

(.12) ∀αϕ→∀α(ψ→ ϕ)

(.13) ∀αϕ ≡ ∀β(ϕβα),
provided β is substitutable for α in ϕ and doesn’t occur free in ϕ

(.14) ∀α1 . . .∀αn(ϕ→ ψ)→ (∀α1 . . .∀αnϕ→∀α1 . . .∀αnψ),
for any distinct variables α1, . . . ,αn and n ≥ 2

(.15) ∀α1 . . .∀αn(ϕ→ ψ)→ (ϕ→∀α1 . . .∀αnψ),
provided α1, . . . ,αn (n ≥ 2) are distinct variables that don’t occur free

in ϕ

The two provisos on (.13) can be explained by referencing and adapting the
examples used in Remark (98) that helped us to understand the antecedent of
the Re-replacement Lemma (97.1):

• In the formulaϕ = Rxy, y is substitutable for x but also occurs free. With-
out the second proviso in (.13), we could set α to x and β to y and obtain
the instance: ∀xRxy ≡ ∀yRyy. Clearly, this is not valid: the left side as-
serts that everything bears R to y while the right asserts that everything
bears R to itself.

• In the formula ϕ = ∀yRxy, y is not substitutable for x and does not occur
free. Without the first proviso in (.13), we could set α to x and β to y
and obtain the instance: ∀x∀yRxy ≡ ∀y∀yRyy. Again, clearly, this is not
valid: the left side is true when everything bears R to everything while
the right side, which by (.6) is equivalent to ∀yRyy, is true only when
everything bears R to itself.

(.13) is a special case of the interderivability of alphabetic variants; indeed,
it is a special case of a special case. The interderivability of alphabetically-
variant universal generalizations is a special case of the interderivability of
alphabetically-variant formulas of arbitrary complexity. Note that there are
two basic ways in which a universal generalization of the form ∀αϕ can have
an alphabetic variant. (.13) concerns one of those ways, namely, alphabetic
variants of the form ∀β(ϕβα). But ∀αϕ can also have alphabetic variants of the
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form ∀α(ϕ′), where ϕ′ is an alphabetic variant of ϕ. We aren’t yet in a po-
sition to prove the interderivability of ∀αϕ and ∀α(ϕ′) in such a case, much
less prove the interderivability of alphabetically-variant formulas of arbitrary
complexity. (.13) tells us only that whenever we have established a theorem of
the form ∀αϕ, we may infer any formula with the same exact form but which
differs throughout only by the choice of the variable bound by the leftmost uni-
versal quantifier, provided the choice of the new variable is a safe one, i.e., one
that will preserve the meaning of the original formula when the substitution is
carried out.

(100) Metarule/Derived Rule: Corollary to Rule ∀I. Using fact (99.13), we may
prove the following:

Corollary to Rule ∀I:
If Γ ` ϕτα , and τ is a primitive constant (of the same type as α) that doesn’t
occur in Γ , Λ, or ϕ, then Γ ` ∀αϕ and there is a derivation of ∀αϕ from Γ

in which τ doesn’t occur. [Variant: ϕτα ` ∀αϕ, provided . . . ]

In the usual manner, the ellipsis in the Variant states the conditions included
in the official version of the rule.

(101) Metarules/Derived Rules: ∃Introduction (∃I). The metarules of ∃Intro-
duction allow us to infer the existence of derivations of existential generaliza-
tions, though their variant forms yield derived rules that let us existentially
generalize, within a derivation, on any term τ known to have a denotation.
Rule ∃I has two forms: one that applies to any term whatsoever and a restricted
form that applies to terms whose significance is axiomatic:

Rule ∃I

(.1) If Γ1 ` ϕτα and Γ2 ` τ↓, then Γ1,Γ2 ` ∃αϕ, provided τ is substitutable
for α in ϕ

[Variant: ϕτα , τ↓ ` ∃αϕ, provided τ is substitutable for α in ϕ]

(.2) If Γ ` ϕτα , then Γ ` ∃αϕ, provided τ is (a) a primitive constant, a
variable, or a core λ-expression, and (b) substitutable for α in ϕ.
[Variant: ϕτα ` ∃αϕ, provided . . . ]

Two examples of the Variant version of (.2) are: Gy ` ∃xGx and Gy ` ∃FFy. In
the first case, ϕ is Gx, α is x, τ is y, ϕτα is Gy. So the conditions are met: y is a
variable and substitutable for x inGx. In the second case, ϕ is Fy, α is F, τ isG,
ϕτα is Gy. So the conditions are met: G is a variable and substitutable for F in
Fy. Note that even Gx ` ∃xGx and Fy ` ∃FFy are also instances of the Variant
version.

However, P a&Qx ` ∃x(P x&Qx) is not a valid instance of the rule. Here, ϕ
is P x&Qx and the premise P a&Qx does not have the required form ϕax, since
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that is defined to be the formula P a&Qa, by (14). Thus, we can’t existentially
generalize on a in P a&Qx by using the quantifier ∃x to conclude ∃x(P x&Qx),
for that would invalidly capture the free variable x. Similarly, from P a&Fb we
may not validly use ∃I to infer ∃F(Fa&Fb).

Note also that the inference from ¬P ıxQx and ıxQx↓ to ∃x¬P x is justified
by the Variant version of (.1), as is the inference from ¬[λx ψ]y and [λx ψ]↓
to ∃F¬Fy. Since versions of Rule ∃I are covered in detail in basic courses on
predicate logic, we omit further examples and explanation of the conditions
that must be satisfied for the rule to be applied.

(102) Metarule: ∃Elimination (∃E) on Constants. Let τ be a primitive constant
(i.e., not one introduced by a definition). If we validly reason our way to ψ
from ϕτα (and some other premises) without making any special assumptions
about τ other than ϕτα, then ∃E allows us to discharge our assumption about
τ and validly conclude that we can derive ψ from (any premises we used and)
∃αϕ:

Rule ∃E
If Γ ,ϕτα ` ψ, then Γ ,∃αϕ ` ψ, provided τ is a primitive constant that does
not occur in ϕ, ψ, Γ , or Λ.

We will often use this rule along with conditional proof when proving a theo-
rem of the form ∃αϕ → ψ, as follows. First, we assume ∃αϕ, for conditional
proof. Then we assume that τ is an arbitrary such ϕ, i.e., that ϕτα , where τ is
a fresh, primitive constant (of the same type as α) that hasn’t previously ap-
peared in the context of reasoning or in our axioms. Then, once we derive ψ
from ϕτα, we appeal to Rule ∃E to discharge the assumption ϕτα and conclude
that we’ve derived ψ only from the assumption that ∃αϕ. Then we conclude
∃αϕ→ ψ by conditional proof.

(103) Theorems: Further Theorems of Quantification Theory. The various
rules for quantification theory introduced thus far facilitate the derivation of
many of the following theorems:

(.1) ∀αϕ→∃αϕ

(.2) ¬∀αϕ ≡ ∃α¬ϕ

(.3) ∀αϕ ≡ ¬∃α¬ϕ

(.4) ¬∃αϕ ≡ ∀α¬ϕ

(.5) ∃α(ϕ&ψ)→ (∃αϕ&∃αψ)

(.6) ∃α(ϕ ∨ψ) ≡ (∃αϕ ∨∃αψ)
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(.7) ∃αϕ ≡ ∃β(ϕβα),
provided β is substitutable for α in ϕ and doesn’t occur free in ϕ

(.8) (∀αϕ&∀αψ)→∀α(ϕ ≡ ψ)

(.9) (¬∃αϕ&¬∃αψ)→∀α(ϕ ≡ ψ)

(.10) (∃αϕ&¬∃αψ)→¬∀α(ϕ ≡ ψ)

(.11) ∃α∃βϕ ≡ ∃β∃αϕ

These are all classical theorems of predicate logic.

9.7 Logical Existence, Identity, and Truth

(104) Theorems: Every 0-ary Relation Term and Formula is Significant. For
any relation term Π0, it is a theorem that (.1) Π0 exists; and for any formula ϕ,
it is a theorem that (.2) ϕ exists:

(.1) Π0↓, for any 0-ary relation term Π0

(.2) ϕ↓, for any formula ϕ

Intuitively, (.1) and (.2) tells us, respectively, that every 0-ary relation term and
every formula of our language has a denotation. But though every formula
ϕ provably has a denotation, it doesn’t follow that every λ-expression of the
form [λν ϕ] constructed from ϕ has a denotation. In particular, if ϕ has a free
occurrence of ν, then although ϕ is significant, [λνϕ] may fail to be significant.
For example, the formula ∃F(xF &¬Fx), in which x occurs free, is significant,
by (.2), but [λx ∃F(xF & ¬Fx)] provably fails to be significant; this is the λ-
expression that leads to the Clark/Boolos paradox.144

144Thus, while there is, for every formula ϕ, a corresponding term of the form [λν ϕ], it doesn’t
follow that the corresponding term has a denotation. So the argument in Oppenheimer & Zalta
2011 is still valid, though it needs to be reframed. The argument in that paper, to the conclusion
that object theory can’t be straightforwardly represented in functional type theory (FTT), rested
on two premises:

(a) FTT semantically analyzes a quantifier claim such as ∀νϕ, where ν occurs free in ϕ and so
bound by ∀ν, by first converting ϕ to a term of the form [λν ϕ], and

(b) object theory includes some formulas ϕ and variables ν that can’t be converted to the cor-
responding term [λν ϕ], on pain of contradiction. (For example, where ϕ is ∃F(xF &¬Fx)
and ν is x, [λx ∃F(xF&¬Fx)] was not even well-formed.)

In the formalism we used in 2011, a λ-expression that included any encoding subformulas in its
matrix failed to be well-formed.

But in the present work, the expression [λν ϕ] is a well-formed term, for every formula ϕ, even
if occurrences of ν bound by the λ occur in encoding position in ϕ. Of course, not every ϕ gives
rise to a significant term of the form [λν ϕ]. So the argument in Oppenheimer & Zalta 2011 has to
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(105) Remark: An Interesting Fact Made Clear by the Foregoing. It is worth
remarking on how theorem (104.2) implies an important difference between
what can be inferred from the truth of a formula and what can be inferred
from the existence of the proposition signified by such a formula. Consider, for
example, an encoding formula of the form ıyϕ[λz ψ]. By axiom (39.5.b), the
truth of ıyϕ[λzψ] implies that both ıyϕ↓ and [λzψ]↓. So by the contrapositive,
if either ¬ıyϕ↓ or ¬[λz ψ]↓, then ¬ıyϕ[λz ψ].

However, the claim (ıyϕ[λz ψ])↓, i.e., that the proposition ıyϕ[λz ψ] exists,
does not imply that either ıyϕ↓ or [λz ψ]↓. One can find ϕ and ψ such that
all three of the following hold: ıyϕ[λz ψ]↓, ¬ıyϕ↓, and ¬[λz ψ]↓. For let ıyϕ
be some closed description that couldn’t be significant, say ıy(P y&¬P y), and let
[λzψ] be some closed λ-expression such as the one involved in the Clark/Boolos
paradox, so that we know ¬[λzψ]↓. It is still a theorem that (ıyϕ[λzψ])↓, as the
proof of (104.2) shows: for this particularϕ andψ, [λx ıyϕ[λzψ]]↓ is axiomatic,
by (39.2) – since the initial λ doesn’t bind x anywhere in the matrix, it is a core
λ-expression (9.2); no variable bound by the λ occurs in formula a primary
term in encoding position in the matrix (9.1). So it follows by definition (20.3)
that (ıyϕ[λz ψ])↓.

Of course, the proposition asserted to exist is necessarily false. By hy-
pothesis, ¬ıyϕ ↓ and ¬[λz ψ]↓, and each of these facts independently yield
¬ıyϕ[λzψ], by (39.5.b). Since this derivation is modally strict, it follows by RN
that �¬ıyϕ[λz ψ]. This makes it clear that although the proposition ıyϕ[λz ψ]
exists, it is necessarily false, given that its primary terms fail to denote.

In general, every formula has truth conditions and denotes a proposition,
but that fact doesn’t imply that the terms in the formula denote something.145

In particular, ıyϕ[λzψ]↓ is a theorem (indeed, an instance of (104.2)), whether
or not the terms ıyϕ and [λz ψ] are significant.

(106) Theorems: The Necessity of Logical Existence. It is derivable, for any
term τ , that if τ exists, then necessarily τ exists:

τ↓→ �τ↓

be expressed a bit differently. In particular, premise (b) in the argument of Oppenheimer & Zalta
2011 has to be revised to assert that object theory includes some formulas ϕ in which ν occurs
free in encoding position but which can’t be converted to a denoting term of the form [λν ϕ], on
pain of contradiction. This is sufficient to make the point in Oppenheimer & Zalta 2011, since
FTT’s analysis of quantification requires that every formula ϕ in which the variable ν is free be
convertible to a term of the form [λν ϕ] that has a denotation.
145We’ll see an exception to this when we move to type theory in Chapter 15, where the increased

expressive power allows us to form definite descriptions that are also formulas. In particular, we’ll
be able to form the following description of a proposition: ıp(p&¬p) (“the proposition that is both
true and not true”). This expression is both a term and a formula, and when in formula position,
it asserts: the proposition that is both true and not true is true. So this is a formula that has truth
conditions (clearly, it is false) but which does not denote a proposition.



9.7. LOGICAL EXISTENCE, IDENTITY, AND TRUTH 299

Thus, when any individual or relation exists in the logical sense, it necessarily
does so and we can reference it in any modal context. Note that when τ is
an individual term, this theorem doesn’t imply that if τ is concrete, then τ is
necessarily concrete. So-called contingent beings are ones that are concrete in
some worlds but not others. They aren’t contingent because they go in and
out of logical existence from world to world. It is also important to note that
we shall derive the necessity of logical non-existence in (169.3), once we have
derived the principles of modal logic needed to prove it.

(107) Theorems: Identity Implies Existence. For any terms τ and σ , if τ = σ ,
then both τ and σ exist:

(.1) τ=σ → τ↓

(.2) τ=σ → σ↓

Note that this theorem holds even when τ or σ is a definite description or a
λ-expression. If a term τ appears in a true identity statement, then it has a
denotation. Similarly, if we can establish either ¬τ↓ or ¬σ ↓, then the contra-
positive of (.1) or (.2) yields ¬(τ = σ ). In such a case, we can infer τ , σ , by
definition (24).

(108) Theorems: Identical Relations are Necessarily Equivalent. It is now eas-
ily provable, for any n-ary relation terms (n ≥ 0), that (.1) if an identity holds
when those terms flank the identity sign, then the relations they signify are
necessarily equivalent:

(.1) Π=Π′→ �∀x1 . . .∀xn(Πx1 . . .xn ≡Π′x1 . . .xn),
where Π and Π′ are any n-ary relation terms (n ≥ 0) in which x1, . . . ,xn

don’t occur free

The converse, however, does not hold in the present system.
Since formulas are 0-ary relation terms, it is a 0-ary instance of the above

that (.2) if ϕ is identical to ψ, then necessarily, ϕ if and only ψ, where ϕ and ψ
are any formulas:

(.2) ϕ=ψ→ �(ϕ ≡ ψ)

We formulate these theorems not only because they capture intuitions that
should be preserved, but also to make the following observation.

(109) Remark: Definitions by Equivalence vs. Definition by Identity. Theo-
rems (104.2) and (108.2) have an interesting consequence for our theory of
definitions, namely, that one could eliminate definitions-by-equivalence in fa-
vor of definitions-by-identity. To see why, note that formulas are terms and so
a definition of the form ϕ =df ψ is a definition-by-identity of the form τ =df σ .
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So by (73), the inferential role of ϕ =df ψ is to introduce (the closures of)
(ψ ↓ → (ϕ = ψ) & (¬ψ ↓ → ¬ϕ ↓) as necessary axioms. But if every formula
ψ is significant (104.2), then one can derive ϕ = ψ from any definition-by-
identity ϕ =df ψ. So, by (108.2), one can derive �(ϕ ≡ ψ) from such definitions.
Since one can derive necessarily equivalences from definitions-by-identity, our
system offers the option of foregoing definitions-by-equivalence in favor of
definitions-by-identity.146

However, we shall not eschew definitions-by-equivalence in favor of defini-
tions-by-identity. The reason has to do with maximizing our system’s ability
to preserve the hyperintensional contexts of natural language when the sen-
tences of natural language are represented within our system. For suppose S
and S ′ are sentences of natural language, that S ′ serves as an analysis of S,
and that S and S ′ exhibit hyperintensionality (i.e., there are contexts of natural
language in which S and S ′ are not substitutable for one another, despite the
fact that analysis shows them to be necessarily equivalent). Then if formulas ϕ
and ψ are formal representations of S and S ′, respectively, within our system,
we might capture that analysis by way of a definition of the form ϕ ≡df ψ. But
we wouldn’t want to capture the analysis in terms of the definition of the form
ϕ =df ψ, since that would make it impossible to represent the contexts of natu-
ral language in which S and S ′ exhibit hyperintensionality. So, unless there is
a good reason to suppose that the definiens and definiendum in a formula def-
inition bear a stronger connection than necessary equivalence, we’ll continue
to introduce definitions-by-equivalence. Such definitions yield only the modal
equivalence �(ϕ ≡ ψ) from the definition ϕ ≡df ψ, and not an identity.147

(110) Metarules/Derived Rules: Rule for the Substitution of Identicals (Rule
=E). We now have:

Rule =E
If Γ1 ` ϕτα and Γ2 ` τ = σ , then Γ1,Γ2 ` ϕ′, whenever τ and σ are any terms
substitutable for α in ϕ, and ϕ′ is the result of replacing zero or more
occurrences of τ in ϕτα with occurrences of σ . [Variant: ϕτα , τ=σ ` ϕ′]

In the usual manner, we may conceive of the Variant of Rule =E as a derived
rule that lets us infer formulas from formulas. Note also that Rule =E governs

146This observation applies to the present, second-order version of object theory. In typed object
theory, not every formula ϕ is significant, and so one may not derive ϕ = ψ from any definition-by-
identity ϕ =df ψ; one can only derive such identities when ψ is significant. Thus, in typed object
theory, whereas every definition by equivalence yields a well-formed biconditional theorem, not
every definition by identity of a 0-ary relation term yields an identity as a theorem and so we can’t
always derive an equivalence from a definition by identity. Typed object theory won’t have the
option of eliminating definitions by equivalence in favor of definitions by identity.
147If one exercises the option of using =df to define new formulas, then it should be remembered

that the following is not a valid inference: ϕ = (ψ &χ), ψ ` ϕ = χ. In general, there is no rule of
simplification for identity that corresponds to the Rule ≡S of Biconditional Simplification (91).
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any terms τ and σ . Since τ = σ is an assumption of the rule, the rule is applica-
ble only when both terms are significant, given theorems (107.1) and (107.2).
Note finally that as a special case of the rule, we have ϕτα , τ=σ ` ϕσα . This is the
case where ϕ′ is ϕσα , i.e., the result of replacing all of the occurrences of τ in ϕτα
by σ .

(111) Theorems: Special Cases of Conversion for 0-ary λ-Expressions and
Other Facts. Theorem (104.2) allows us to prove, as theorem schemata, the fol-
lowing unconditional conversion principles governing 0-ary λ-expressions and
formulas: (.1) that-ϕ is identical to ϕ; (.2) that-ϕ is true if and only if ϕ; (.3)
that-ϕ and its alphabetic variants are identical; (.4) ϕ and its alphabetic vari-
ants are identical; (.5) ϕ and its alphabetic variants are equivalent; and (.6) ϕ
is equivalent to ψ if and only if that-ϕ is equivalent to that-ψ. Formally:

(.1) [λϕ]=ϕ, for any formula ϕ (special case of η-Conversion)

(.2) [λϕ] ≡ ϕ, for any formula ϕ (special case of β-Conversion)

(.3) [λϕ]=[λϕ]′, where [λϕ]′ is any alphabetic variant of [λϕ]
(special case of α-Conversion)

(.4) ϕ=ϕ′, where ϕ′ is any alphabetic variant of ϕ

(.5) ϕ ≡ ϕ′, where ϕ′ is any alphabetic variant of ϕ

(.6) (ϕ ≡ ψ) ≡ ([λϕ] ≡ [λψ])

(.3) is a simple consequence of axiom (39.2) and the 0-ary case of the axiom
α-Conversion (48.1). (.4) is derivable from (.3) and (.1).

(112) Remark: The Theory of Truth. It should be observed that (111.2) consti-
tutes a theory of truth. In this theorem, the λ expresses ‘that’ (since it binds no
variables) and the expression [λϕ] must be read as a formula (since it stands
to the left of the biconditional sign). We observed, in (3), that since truth is the
0-ary case of predication, we should read (111.2) as: that-ϕ is true if and only
if ϕ. Assuming we’ve applied our theory in the usual way, then the instance
[λ P o] ≡ P o might assert that-Obama-is-President is true if and only if Obama
is President. With (111.2), we have established that the propositional version
of the Tarski T-Schema is a theorem!148 Some philosophers may regard this
as a deflationary theory of truth, since the concept of truth is, in some sense,
eliminated; the notion of truth is expressed one one side of (111.2) but not on
the other. Other philosophers may regard this as a primitivist theory of truth,
since truth has been reduced to the primitive, 0-ary case of exemplification

148It is also a tautology; see Zalta 2014, where this was first noted, as well as Remark (92) and the
next Remark.
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predication. Indeed, since ϕ↓ (104.2) and [λ ϕ] ≡ ϕ (111.2) hold even when
ϕ is an encoding formula, we might say that truth is just the limiting case of
predication.

(113) Remark: On the Derivability of Tautologies. The derivation of (111.1)
and (111.2) is needed for the proof of Metatheorem 〈9.1〉, which asserts that
every valuation of the prime formulas (i.e., formulas not having the form ¬ψ,
ψ → χ, or [λ ψ]) induces a certain derivability relation. This metatheorem
is the key lemma needed for the proof of Metatheorem 〈9.2〉, i.e., that every
tautology is derivable. See the proofs of these metatheorems in the Appendix
to this chapter.

(114) Metarule/Derived Rule: Rule of Alphabetic Variants. The classical Rule
of Alphabetic Variants is now easily established from the recently proved the-
orem (111.5). The classical rule asserts that ϕ is derivable from Γ if and only if
any of its alphabetic variants is derivable from Γ :

Rule of Alphabetic Variants
Γ ` ϕ if and only if Γ ` ϕ′, where ϕ′ is any alphabetic variant of ϕ

[Variant ϕ `̀ ϕ′]

As a special case, when Γ =∅, our rule asserts that a formula is a theorem if
and only if all of its alphabetic variants are theorems. We henceforth use the
Variant form within derivations as a derived rule.

Now that it is established that every pair of alphabetically-variant formulas
have the same inferential role, we no longer need to adopt the convention that
bound object-language variables in definientia function as metavariables; i.e.,
convention (17.2.b) is no longer strictly necessary. If we use object-language
variables for the bound variables in a definiens, then the alphabetic variants of
any theorem introduced by the resulting definition will also be a theorem. This
fact was mentioned in Remark (28), where we discussed why bound variables
in definientia should be, or function as, metavariables.

(115) Theorems: Individuals Are Ordinary or Abstract. We now prove that
(.1) being ordinary exists; (.2) being abstract exists; (.3) x is ordinary if and only
if it is possible that x is concrete; (.4) x is abstract if and only if x couldn’t be
concrete; and (.5) an object is either ordinary or abstract:

(.1) O!↓

(.2) A!↓

(.3) O!x ≡ ♦E!x

(.4) A!x ≡ ¬♦E!x

(.5) O!x∨A!x
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We observe here that (.5) is one of the elements needed to prove that identity is
a reflexive condition on individuals, which forms part of the proof that identity
is generally reflexive (117.1).

(116) Theorems: Facts About Relation Identity. Our definitions for relation
identity and theory of definitions yield that (.1) F1 is identical to G1 if and only
if necessarily, all and only the individuals that encode F1 encode G1; (.2) Fn is
identical to Gn if and only if each way of projecting Fn and Gn onto n−1 objects
results in identical properties; and (.3) p is identical to q if and only if being
such that p is identical to being such that q:

(.1) F1 =G1 ≡ �∀x(xF1 ≡ xG1) (n ≥ 1)

(.2) Fn=Gn ≡ (n ≥ 2)
∀y1 . . . ∀yn−1([λx Fnxy1 . . . yn−1]=[λx Gnxy1 . . . yn−1] &

[λx Fny1xy2 . . . yn−1]=[λx Gny1xy2 . . . yn−1] & . . .&
[λx Fny1 . . . yn−1x]=[λx Gny1 . . . yn−1x])

(.3) p=q ≡ [λx p]=[λx q]

These equivalences were used as definitions in previous publications on object
theory, where less attention was paid to the issues surrounding non-denoting
complex terms.

It is important not to misconstrue these theorems as principles that deter-
mine whether arbitrary relations F and G are identical. Some relation identi-
ties have to discovered a posteriori, and no a priori principle can be used as a
substitute. For example, being a woodchuck = being a groundhog is an identity
claim about properties that is discovered a posteriori and not determined by
an a priori principle, just as Hesperus = Phosphorus is an identity claim about
individuals that is discovered a posteriori rather than determined by an a priori
principle. So, in an important sense, these theorems are not ‘criteria of identity’
for relations. Rather, what they do is tell us (a) what it is we know when we
assert or prove that F=G, (b) what we have to prove if we are to show that rela-
tions (represented in our system) are identical, and (c) what the consequences
are of asserting in our system that F =G (e.g., what the consequences are of
adding being a woodchuck = being a groundhog as an axiom or hypothesis to our
system). So these are principles that govern relations by placing constraints on
their inferential role within PLM. For further discussion, see Remark (190).

(117) Theorems: Identity is an Equivalence Condition. Our system yields,
as theorems, that identity is an equivalence condition on individuals and on
relations of every arity. We can express this using schemata, in which α, β, and
γ are any individual variable or any n-ary relation variables for some n:

(.1) α=α
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(.2) α=β→ β=α

(.3) α=β& β=γ → α=γ

Clearly, it also follows that:

(.4) α=β ≡ ∀γ(α=γ ≡ β=γ)

Exercises: Prove that (.2) holds for any two terms τ and τ ′ having the same
type, and prove that (.3) holds for any three terms, τ , τ ′, and τ ′′, all of the
same type. Explain why (.4) fails in the right-to-left direction when arbitrary
terms of the same type τ and σ replace α and β, respectively, in the statement
of the claim, i.e., show that τ = σ ≡ ∀α(τ =α ≡ σ =α) fails in the right-to-left
direction. Finally, show that τ↓ → (τ=σ ≡ ∀α(τ=α ≡ σ =α)).

(118) Metarules/Derived Rules: Rules of Identity Introduction (Rule =I). The
following rules govern the terms of our language:

(.1) Rule =I
If Γ ` τ↓, then Γ ` τ=τ [Variant: τ↓ ` τ=τ]

(.2) Rule =I (Special Case)
` τ=τ , provided τ is a primitive constant, a variable, or a core λ-expression.

The Variant of (.1) tells us that whenever we take τ↓ as an assumption when
reasoning, we may infer τ=τ .149

It is worth observing here that from the Variant rule τ↓ ` τ = τ , it follows
by the Deduction Theorem (75) that τ ↓ → τ = τ is a theorem. And since we
know, by an instance of (107.1), that τ = τ → τ ↓, it follows that τ ↓ ≡ τ = τ .
So for any definite description, it follows that ıxϕ↓ ≡ (ıxϕ = ıxϕ). (Recall our
convention, mentioned at the end of (20), that ıxϕ↓ abbreviates (ıxϕ)↓.) This
captures principle ∗14 ·28 in Whitehead and Russell 1910–1913 ([1925–1927],
pp. 175, 184):

∗14 · 28. ` : E!( ιx)(ϕx) . ≡ . ( ιx)(ϕx) = ( ιx)(ϕx)

It is interesting that Whitehead and Russell read this claim as: “( ιx)(ϕx) only
satisfies the reflexive property of identity if ( ιx)(ϕx) exists” (175). Given their
discussion on pp. 30–31 ([1925–1927], Chapter I), it should be clear that our
formula ıxϕ↓ is the counterpart to Whitehead & Russell’s formula E!( ιx)(ϕx).

149To see that Rule =I and its Variant are equivalent, we derive the Variant from the Rule and vice
versa. (↪→) Assume the Rule, i.e., assume that if Γ ` τ↓, then Γ ` τ = τ . Consider the instances in
which Γ consists of the sole premise τ↓: if τ↓ ` τ↓, then τ↓ ` τ =τ . But we know the antecedent of
this last claim, by the special case of (63.2). Hence, τ↓ ` τ =τ . (←↩) Assume the Variant: τ↓ ` τ =τ .
Then ` τ↓ → τ = τ , by the Deduction Theorem/Conditional Proof (75). Now to see that Rule =I
holds, assume its antecedent: Γ ` τ ↓. It then follows from what we’ve established and assumed
that Γ ` τ=τ , by (63.5).
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(119) Remark: Preparing the Ground for the Rule of Identity by Definition.
We now show how to derive the classical inferential role of definitions-by-=
for the case in which no variable occurs free in the definiens and definiendum.
It should then be clear how this generalizes to the case in which there are free
variables in the definition and so prepare us for the general statement of the
metarule in (120).

When there are no free variables in the definiens or definiendum, a defini-
tion-by-= has the simple form τ =df σ and introduces τ as a new constant of
the same type as σ . We saw in (73) that in this case, the primitive Rule of
Definition by Identity implies that the following is an axiom:

(σ↓ → τ=σ ) & (¬σ↓ → ¬τ↓)

So whenever σ↓ is a theorem or a hypothesis it follows that τ=σ . Thus, the in-
ferential role of a definition-by-= without free variables reduces to the classical
one; if it is provable, by modally strict means, that the definiens is significant,
then the definition τ =df σ yields τ = σ as a �-theorem and, moreover, yields
that τ = σ follows from any set of premises, by (63.3). This reasoning now
generalizes to the following derived metarule.

(120) Metarule: The Rule of Identity by Definition. Let us again use σ (τ1, . . . , τn)
and τ(τ1, . . . , τn) to abbreviate σ τ1,...,τn

α1,...,αn and ττ1,...,τn
α1,...,αn , respectively (1 ≤ i ≤ n). Then

the following derived metarule is justified:

(.1) Rule of Identity by Definition
Whenever τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which α1,
. . . ,αn occur free (n ≥ 0) and τ1, . . . , τn are substitutable for α1, . . . ,αn, re-
spectively, in both definiens and definiendum, then:

if Γ ` σ (τ1, . . . , τn)↓, then Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

By convention, we omit the identical form of the rule for `�. The justification
of this metarule, which is straightforward, is in the Appendix.

It immediately follows that, for any instance of a definition-by-=, when
the definiens is significant, we have the classical introduction and elimination
rules for the definiendum:

(.2.a) Rule of Definiendum Elimination (Rule =df E):
Whenever τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which α1,
. . . ,αn occur free (n ≥ 0), τ1, . . . , τn are substitutable for α1, . . . ,αn, respec-
tively, in both the definiens and definiendum, ϕ contains one or more
occurrences of τ(τ1, . . . , τn), and ϕ′ is the result of replacing zero or more
occurrences of τ(τ1, . . . , τn) in ϕ by σ (τ1, . . . , τn), then if Γ ` σ (τ1, . . . , τn)↓
and Γ ` ϕ, then Γ ` ϕ′.

[Variant: σ (τ1, . . . , τn)↓,ϕ ` ϕ′]
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(.2.b) Rule of Definiendum Introduction (Rule =df I):
Whenever τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which α1,
. . . ,αn occur free (n ≥ 0), τ1, . . . , τn are substitutable for α1, . . . ,αn, respec-
tively, in both definiens and definiendum, ϕ contains one or more oc-
currences of σ (τ1, . . . , τn), and ϕ′ is the result of replacing zero or more
occurrences of σ (τ1, . . . , τn) in ϕ by τ(τ1, . . . , τn), then if Γ ` σ (τ1, . . . , τn)↓
and Γ ` ϕ, then Γ ` ϕ′.

[Variant: σ (τ1, . . . , τn)↓,ϕ ` ϕ′]

And similarly for `�.
Once we gain some experience citing these rules when proving theorems,

we’ll then revert to the classical citation ‘by definition’ when reasoning from
definitions-by-=. Clearly, if τ(τ1, . . . , τn) =df σ (τ1, . . . , τn) is an instance of a
definition-by-=, then reasoning is classical when σ (τ1, . . . , τn) is significant; we
can substitute τ(τ1, . . . , τn) and σ (τ1, . . . , τn) for one another in any context.

(121) Theorems: The Definitions and Axioms of Negative Free Logic Derived
as Theorems.

(.1) τ↓ ≡ ∃β(β=τ), provided that β doesn’t occur free in τ

(.2) ∀αϕ → (∃β(β = τ) → ϕτα), provided τ is substitutable for α in ϕ and β
doesn’t occur free in τ

(.3) ∃β(β = τ), provided (a) τ is either a primitive constant, a variable, or a
core λ-expression, and (b) β doesn’t occur free in τ

(.4) (Πnκ1 . . .κn∨κ1 . . .κnΠ
n)→∃β(β = τ), where τ is any of Πn, κ1, . . . , or κn,

and β doesn’t occur free in τ .

(122) Remark: Digression on the Proviso for (121). Each of the theorems in
(121) require the proviso that β doesn’t occur free in τ . To see why it is required
for the left-to-right direction of (121.1), consider the fact that the proviso rules
out [λx¬Fx]↓ → ∃F(F=[λx¬Fx]) as an instance, since the variable F (= β) oc-
curs free in [λx¬Fx] (= τ). Call this formula (ϑ). If (ϑ) had been a theorem, we
would have been able to derive a contradiction, as follows. By (39.2), we know
[λx ¬Fx]↓, since this is a core λ-expression. Hence, it would follow from this
and (ϑ) that ∃F(F=[λx¬Fx]). Suppose P were a witness to ∃F(F = [λx¬Fx]), so
that P = [λx ¬P x] and, by symmetry, [λx ¬P x] = P . Now since [λx ¬P x] is also
a core λ-expression, (39.2) would also yield [λx ¬P x]↓. So by an appropriate
instance of β-Conversion (48.2), it would follow that:

(∗) [λx¬P x]y ≡ ¬P y



9.7. LOGICAL EXISTENCE, IDENTITY, AND TRUTH 307

But since [λx¬P x] =P , Rule =E would allow us to substitute P for [λx¬P x] in
(∗) to obtain P y ≡ ¬P y, which would be a contradiction.

The reason why the proviso that β doesn’t occur free in τ is required for
the right-to-left direction of (121.1) is given in the proof of this direction in the
Appendix; in particular, see footnote 432.

Given our explanation as to why the proviso is needed for the left-to-right
direction of (121.1), it should be clear why the proviso governs (121.3); we
can’t allow ∃F(F = [λx ¬Fx]) to be an instance of (121.3), by the reasoning
just described. Intuitively, such a formula asserts the falsehood that there is a
property that is identical to its own negation.

As to (121.2) and (121.4), we leave it to the reader to come up with an
explanation as to why the proviso is needed. But note that in (121.2), if β were
to have a free occurrence in τ , then if we were to apply (121.2) by using ∀αϕ
and ∃β(β=τ) to conclude ϕτα , the latter formula would have a free occurrence
of β. While ϕτα (with a free occurrence of β) might hold for some values of β,
it is not guaranteed to hold universally for all values of β. But, if we were to
derive such a formula as a theorem, Rule GEN would let us conclude ∀βϕτα.

(123) Theorems: (Necessarily) Every Individual/Relation (Necessarily) Exists.
Where α and β are distinct variables of the same type, it is a consequence of
our axioms and rules that:

(.1) (.a) ∀αα↓
(.b) ∀α∃β(β=α)

(.2) (.a) �α↓
(.b) �∃β(β=α)

(.3) (.a) �∀αα↓
(.b) �∀α∃β(β=α)

(.4) (.a) ∀α�α↓
(.b) ∀α�∃β(β=α)

(.5) (.a) �∀α�α↓
(.b) �∀α�∃β(β=α)

Note that when α and β are the individual variables x and y, we have the
following instances of (.1.a) and (.1.b), respectively:

∀xx↓
∀x∃y(y=x)

The first asserts that every individual exists, while the second asserts that every
individual is such that there exists something identical to it. Similarly, the
following are instances of (.2.a) and (.2.b), respectively:
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�x↓
�∃y(y=x)

The first asserts that necessarily x exists, while the second asserts that neces-
sarily there exists an individual identical to x. These are distinct modal claims.
Strictly speaking, we should not read ∃y(y = x) as x exists, for otherwise we
would collapse the readings of the (.a) and (.b) forms of the above theorems.
x↓ and ∃y(y =x) make distinct claims. Since they are equivalent (121.1), it of-
ten does no harm, in some contexts, to slide between them. But the former is
literally defined as an existence claim (20.1) while the latter is literally defined
as an existentially quantified identity claim (23.1).150

(124) Theorems: Self-Identity and Necessity. It is a consequence of the forego-
ing that (.1) necessarily everything is self-identical, and that (.2) everything is
necessarily self-identical. Where α is any variable:

(.1) �∀α(α=α)

(.2) ∀α�(α=α)

These well-known principles of self-identity and necessity are thus provable.

(125) Theorems: Necessity of Identity. Where α and β are any variables of the
same type, and τ and σ are any terms of the same type, it is provable that (.1)
if α and β are identical, then necessarily they are identical, and (.2) if τ and σ
are identical, then necessarily they are identical:

(.1) α=β→ �α=β, provided α and β are variables of the same type

(.2) τ=σ → �τ=σ , provided τ and σ are terms of the same type

When α and β are the individual variables x and y, (.1) asserts x=y → �x=y.
This is the famous principle of the necessity of identity for individuals, dis-
cussed at length in Kripke 1971. But (.1) has greater significance than the
principle that Kripke discusses: (a) it is derived in a more general form as a
theorem schema whose instances apply to any individual or relation, and (b) it
doesn’t assume identity as a primitive. We’ve already seen that the definitions
of object identity in (23.1) and relation identity in (23.2), (23.3), and (23.4)
ground the reflexivity of identity (117.1). The reflexivity of identity is one of
the key facts used in the proof of (.1).

(126) Theorems: Quantification and Identity.

150Thus, given the present work, one should use the label Necessary Existence (NE) to designate
the instance ∀x�x↓ of (.4.a) (‘everything necessarily exists’) and not the instance ∀x�∃y(y = x) of
(.4.b). This differs from Linsky & Zalta 1994 (435), where identity was taken as a primitive and
the label (NE) was used to designate ∀x�∃y(y =x). Though the present work preserves the fixed-
domain understanding of quantified S5 modal logic defended in Linsky & Zalta 1994, we would
now read its theorems a bit differently.
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(.1) ϕ ≡ ∃β(β=α & ϕ
β
α), provided β is substitutable for α in ϕ and doesn’t

occur free in ϕ.

(.2) τ↓→ (ϕτα ≡ ∃α(α=τ & ϕ)), provided τ is substitutable for α in ϕ

(.3) (ϕ&∀β(ϕβα→ β=α)) ≡ ∀β(ϕβα ≡ β=α),
provided α,β are distinct variables of the same type, and β is substi-
tutable for α in ϕ and doesn’t occur free in ϕ.

(.4) (ϕβα &∀α(ϕ→ α=β)) ≡ ∀α(ϕ ≡ α=β),
provided α,β are distinct variables of the same type, and β is substi-
tutable for α in ϕ and doesn’t occur free in ϕ.

A simple example of (.1) is P x ≡ ∃y(y = x & P y), and a simple example of (.2)
is a↓ → (Qa ≡ ∃x(x=a&Qx)). But these theorems also apply to relation terms;
as examples we have Fa ≡ ∃G(G = F & Ga) and P ↓ → (P x ≡ ∃F(F=P & Fx)),
respectively. The reader should construct examples in which ϕ has greater
complexity. Note that the antecedent of (.2) restricts the consequent to signif-
icant terms. To see why, let ϕ be ¬P x, α be x, and τ be ıyQy, so that ϕτα is
¬P ıyQy. Then if ¬(ıyQy)↓, it is easy to show that ¬P ıyQy is provably true but
∃x(x= ıyQy & ¬P x) is provably false (exercise).

Theorem (.3) and (.4) are noteworthy; in each case, the two sides of the main
biconditionals are equivalent ways of asserting an important claim. Consider
(.3). When α is an individual variable, both sides of the biconditional are true
whenever α is a unique individual such that ϕ, and when α is a relation variable,
both sides are true whenever α is a unique relation such that ϕ. (In the formal
mode, we would say that both sides of the biconditional are true if and only if
α uniquely satisfies ϕ.) Similar remarks apply to (.4), except that both sides of
the biconditional intuitively assert that β uniquely satisfies ϕ.

(127) Definition and Theorem: Uniqueness Quantifier. In light of the last ob-
servation, there are two equivalent ways to define the special uniqueness quan-
tifier ‘∃!’ so that formulas of the form ∃!αϕ assert that there exists a unique α
such that ϕ. We officially define this notion as (.1) some α is such that ϕ and
every entity such that ϕ is identical to α. And then we prove, as a theorem,
that (.2) there exists an α such that all and only the entities such that ϕ are
identical to α:

(.1) ∃!αϕ ≡df ∃α(ϕ & ∀β(ϕβα→ β=α)),
provided β doesn’t occur free, and is substitutable for α, in ϕ

(.2) ∃!αϕ ≡ ∃α∀β(ϕβα ≡ β=α),
provided β doesn’t occur free, and is substitutable for α, in ϕ

The readers should take care not to confuse the defined, variable-binding,
formula-forming operator ‘∃!’ with the primitive, unary relation constant ‘E!’.
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(128) Theorems: Uniqueness Implies At Most One. It follows from the defini-
tion of the uniqueness quantifier that if there exists a unique ϕ, then at most
one entity is such that ϕ:

∃!αϕ→∀β∀γ((ϕβα &ϕγα )→ β=γ),
provided β and γ don’t occur free, and are substitutable for α, in ϕ

In this theorem schema, α, β, and γ are either all individual variables or all
n-ary relation variables, for some n.

(129) Theorems: Uniqueness and Necessity. It is now provable that if every
entity such that ϕ is necessarily such that ϕ, then if there is a unique entity
such that ϕ, there is a unique entity necessarily such that ϕ:

∀α(ϕ→ �ϕ)→ (∃!αϕ→∃!α�ϕ)

In other words, if for every α, ϕ necessarily holds of α whenever it holds of
α, then if there is exactly one entity such that ϕ, there is exactly one entity
necessarily such that ϕ.

9.8 The Theory of Actuality and Descriptions

Although the theorems in this section sometimes involve the necessity opera-
tor, no special principles for necessity other than the axioms and rules intro-
duced thus far are required to prove the basic theorems and metarules govern-
ing actuality and descriptions.

9.8.1 The Theory of Actuality

We first prove two ?-theorems that are derivable from the modally fragile ax-
iom Aϕ→ ϕ (43)?, and then focus to several groups of modally strict theorems
that are needed to prove the Rule of Actualization. Finally, we’ll develop a va-
riety of other theorems about actuality, most of which are modally strict.

(130) ?Theorems: It follows from axiom (43)? that (.1) if ϕ, then it is actually
the case that ϕ, and that (.2) it is actually the case that ϕ if and only if ϕ:

(.1) ϕ→ Aϕ

(.2) Aϕ ≡ ϕ

It is relatively straightforward to develop an intuitive, semantic argument as
to why (.1) can’t be necessitated, i.e., to describe models in which the necessi-
tation of (.1) fails to be true.151

151Consider models of the theory in which there are two possible worlds, wα and w1, and where
ϕ is false at the actual world wα but true at w1. Then �(ϕ→ Aϕ) is false at wα because ϕ→ Aϕ
is false at w1 — at w1, ϕ is true and Aϕ is false.
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(131) Theorems: Actuality Distributes Over a Conditional. It follows from
axiom (44.2) that if it is actually the case that if-ϕ-then-ψ, then if it is actually
the case that ϕ, then it is actually the case that ψ:

A(ϕ→ ψ)→ (Aϕ→ Aψ)

This is analogous to the K axiom for the modal operator �; the actuality oper-
ator distributes over a conditional.

(132) Theorems: Necessity Implies Actuality. It is straightforward to show
that if necessarily ϕ, then actually ϕ:

�ϕ→ Aϕ

Note that in the Appendix, we do not give the following proof of this theo-
rem: from the assumption �ϕ, infer ϕ by the T schema; then infer Aϕ by the
modally fragile theorem (130.1)?; then and conclude �ϕ→ Aϕ by conditional
proof. Though this is a perfectly good proof, it is not modally strict. By con-
trast, the proof in the Appendix is modally strict and so one may apply RN to
our theorem to obtain �(�ϕ→ Aϕ).

(133) Theorems: Actuality, Conjunctions, and Biconditionals. The following
theorems also have modally strict proofs. (.1) it is actually the case that if
actually ϕ then ϕ; (.2) it is actually the case that if ϕ then actually ϕ; (.3) if is
actually the case that ϕ and actually the case that ψ, then it is actually the case
that bothϕ andψ; and (.4) it is actually the case that, actuallyϕ if and only ifϕ:

(.1) A(Aϕ→ ϕ)

(.2) A(ϕ→ Aϕ)

(.3) (Aϕ&Aψ)→ A(ϕ&ψ)

(.4) A(Aϕ ≡ ϕ)

(.1) tells us that the actualizations of instances of the modally fragile axiom
(43)? are modally strict theorems. We should note that the right-to-left direc-
tion of (.3) will be established later, as the left-to-right direction of (139.2).

(134) Theorems: Actualizations and Universal Closures of the Previous The-
orem. Note that by the left-to-right direction of axiom (44.4), Aϕ → AAϕ. If
we apply this principle to theorem (133.1) and repeat the process, then (.1) the
closures of Aϕ → ϕ obtained by prefacing any string of A operators is deriv-
able:

(.1) A . . .A(Aϕ→ ϕ), for any finite string of actuality operators A . . .A

Moreover, by applying GEN to (133.1), we know (.2) every α is such that it is
actually the case that: if actually ϕ then ϕ:
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(.2) ∀αA(Aϕ→ ϕ)

Now it follows from (.2) by axiom (44.3) that (.3) actually, every α is such that:
if actually ϕ then ϕ:

(.3) A∀α(Aϕ→ ϕ)

Hence the actualization of a universal closure of an instance of axiom (43)?
is derivable by modally strict means. Moreover, by repeating the steps in the
proofs of (.2) and (.3) enough times, it follows that:

(.4) A∀α1 . . .∀αn(Aϕ→ ϕ)

By (.4), the actualization of any universal closure of the axiom schema Aϕ→ ϕ
(43)? is a modally strict theorem. Thus, given (133.1) and (.4), the actualiza-
tions of all the axioms asserted in (43)? are modally strict theorems. This fact
is needed in the proof of the Rule of Actualization, to which we now turn.

Exercise: Show that (.1) – (.4) all hold with respect to Aϕ ≡ ϕ, i.e., show that:

• A . . .A(Aϕ ≡ ϕ), for any finite string of actuality operators A . . .A

• ∀αA(Aϕ ≡ ϕ)

• A∀α(Aϕ ≡ ϕ)

• A∀α1 . . .∀αn(Aϕ ≡ ϕ)

(135) Metadefinition and Metarule: Rule of Actualization (RA). We first de-
fine:

• AΓ = {Aψ |ψ ∈ Γ } (Γ any set of formulas)

Thus, AΓ is the result of prefixing the actuality operator to every formula in Γ .
We then have the following metarule:

Rule of Actualization (RA)
If Γ ` ϕ, then AΓ ` Aϕ

We most often use this rule in the form in which Γ is empty:

• If ` ϕ, then ` Aϕ

In other words, whenever ϕ is a theorem, so is Aϕ.
By the convention in Remark (67), we omit the `� version of RA. However,

the justification of RA in the Appendix makes it clear that the `� version of the
rule is easier to justify.152

152The base case of the inductive justification of RA (in the Appendix) considers one-step deriva-
tions of ϕ from Γ in which ϕ is an axiom. So it has to consider the case where ϕ is an instance
of (43)?. But for the `� version of RA, the base step would consider the modally strict one-step
derivations of ϕ from Γ in which ϕ is an axiom. In that case, ϕ can’t be an instance of (43)?; there
can’t be a modally strict one-step derivation of ϕ from Γ in which ϕ is an instance of (43)?.
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Note also that should one wish to extend our system with new axioms, RA
can easily be preserved as a justified metarule as long as we either (a) axiomat-
ically assert the actualizations of the new axioms or (b) show, as in the case of
axiom (43)?, that the actualizations of the new axioms are provable as theo-
rems.153

(136) Remark: Digression on the Formulation of RA. It is important to recog-
nize why RA is formulated as in (135), as opposed to the following alternative:

If Γ ` ϕ, then Γ ` Aϕ

The consequent of this rule differs from the consequent of RA by stating that
there is a derivation of Aϕ from Γ rather than from AΓ . One can prove that
this version of the rule is semantically valid.154 However, the justification of
this rule depends on the modally fragile axiom of actuality (43)?, i.e., (43)?
is used in the justification.155 Clearly, the application of this alternative rule
would undermine modally-strict derivations. For example, given that ϕ ` ϕ
is an instance of metarule (63.2), this alternative version of RA would allow
us to conclude ϕ ` Aϕ, which by the Deduction Theorem (75) yields ϕ→ Aϕ
as a theorem. But we certainly don’t want the latter to be a modally-strict
theorem; we know that its necessitation, �(ϕ→ Aϕ), fails to be valid – see the
discussion following (130.1)? and, especially, footnote 151. By formulating
the consequent of RA with AΓ , we forestall such a derivation. All that follows
from ϕ ` ϕ via RA, as officially formulated in (135), is that Aϕ ` Aϕ, which

153Here’s why. The justification of RA in the Appendix assumes Γ ` ϕ and then establishes the
conclusion, AΓ ` Aϕ, by induction on the length of any derivation that is a witness to Γ ` ϕ. The
Base Case, i.e., a derivation of length 1, considers the two ways in which such a derivation could
consist of just the single formula ϕ itself, namely, either ϕ is an axiom or ϕ is in Γ . When ϕ is an
axiom, then either (a) it is a necessary axiom or (b) it is either an instance of (43)? or a universal
closure of such an instance. If ϕ is a necessary axiom, then since the actualizations of all necessary
axioms are also axioms, Aϕ is an axiom, and so a theorem. A fortiori, Aϕ is derivable from AΓ . If ϕ
is either an instance of (43)? or a universal closure of such an instance, then we cite either (133.1)
or (134.4) to show Aϕ is a theorem and thus derivable from AΓ .

So if we extend our system with new axioms, the reasoning in the Base Case will be preserved
as long as we take their actualizations as axioms or can prove them as theorems.
154It is provable that if Γ |= ϕ, then Γ |= Aϕ. Intuitively, if Γ |= ϕ, i.e., if ϕ is true at the distin-

guished world in every interpretation in which all the formulas in Γ are true at the distinguished
world, then it follows that in every interpretation in which all the formulas in Γ are true at the
distinguished world, Aϕ is true at the distinguished world, i.e., it follows that Γ |= Aϕ.
155 To see this, assume the antecedent, i.e., Γ ` ϕ. Theorem (130.1)?, which is derived from the

modally fragile axiom of actuality (43)?, asserts ϕ → Aϕ, so that we know ` ϕ → Aϕ. So by
(63.10), we have ϕ ` Aϕ. But from Γ ` ϕ and ϕ ` Aϕ, it follows by (63.8) that Γ ` Aϕ. Alternatively,
one could justify this rule using an argument similar to that in footnote 156.

Note here how the justification of RA (135) in the Appendix doesn’t similarly use (43)?. In the
base case of the justification, we essentially showed that if ϕ is any axiom, then ` Aϕ, even when ϕ
is axiom (43)?, i.e., even in the case where ϕ is Aψ→ ψ. Thus, we showed ` Aϕ without appealing
to (43)?. See the justification of (135) in the Appendix.
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by the Deduction Theorem, yields only ` Aϕ→ Aϕ. Moreover, this derivation
of Aϕ→ Aϕ is modally-strict and we may happily apply RN to derive a valid
necessary truth.

Call those rules (like the alternative to RA considered above) whose justifi-
cation depends on the modally fragile axiom (43)? non-strict rules. If we were
to use non-strict rules, we would have to tag any theorem proved by means
of such a rule a ?-theorem and, indeed, tag the rule itself as a ?-rule. This
explains why we adopted convention (67.2) described in Remark (67), namely,
that we avoid metarules whose justification depends on modally fragile ax-
ioms. With such a convention in place, we don’t have to worry about redefin-
ing modal strictness to ensure that derivations that depend on a modally fragile
axiom or on a non-strict rule fail to be modally-strict.

Third, and finally, note that there are other valid but non-strict metarules
that we shall eschew because they violate our convention. Consider, for exam-
ple, the following rule:

If Γ ` Aϕ, then Γ ` ϕ.

This rule can be justified from the basis we now have.156 Again, however, the
justification depends on the modally fragile axiom (43)?. Since this reasoning
shows us how to turn a proof using the metarule into a proof that doesn’t use
that rule, it becomes apparent that any proof that uses the above rule implicitly
involves an appeal to the modally fragile axiom (43)?. Unless we take further
precautions, this rule could permit us to derive invalidities.157 So instead of
taking such precautions as tagging the rule with a ? (to mark it as non-strict)
and tagging any derivations involving the rule as non-strict, we simply avoid
non-strict rules altogether.

(137) Remark: The Converse of Weak RN and a Distinction Among Modally
Fragile Axioms. The ?-axiom Aϕ→ ϕ (43)? is traditionally a part of the logic
of actuality. It is a distinctive, modally fragile axiom in that its actualization,
A(Aϕ → ϕ), is a modally strict theorem (133.4). Given this theorem, an in-
teresting Fact becomes easily provable with respect to the system of axioms
Λ defined, in (59), as the axioms asserted in Chapter 8. The Fact is: if ϕ is a
theorem, then Aϕ is a modally strict theorem:158

156To see this, assume the antecedent, i.e., Γ ` Aϕ. Note that since the modally fragile axiom of
actuality (43)? asserts that Aϕ → ϕ, it follows by (63.1) that ` Aϕ → ϕ. So by (63.3), it follows
that Γ ` Aϕ → ϕ. Then from Γ ` Aϕ and Γ ` Aϕ → ϕ, it follows by Modus Ponens that Γ ` ϕ.
Alternatively, one could justify this rule using an argument similar to that in footnote 155.
157Here is a simple example. As an instance of ϕ ` ϕ (63.4), we know: Aϕ ` Aϕ. So the proposed

rule of actuality elimination would allow one to infer Aϕ ` ϕ. But by the Deduction Theorem
(75), it would follow that Aϕ→ ϕ is a modally-strict theorem. We know that the necessitation of
this claim is invalid, but without further constraints on RN, it would follow that �(Aϕ → ϕ) is a
theorem.
158The following is stronger than the metarule: if ` ϕ, then ` �Aϕ. For this latter metarule is
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Fact: If ` ϕ, then `� Aϕ.

Proof: By induction on the length of a proof of ϕ.
[The proof is given in the Appendix.]

This Fact will hold as long as our system contains only modally fragile axioms
whose actualizations are derivable as modally strict theorems. In the remain-
der of this Remark, we discuss (a) an interesting simple consequence of this
Fact, namely, a proof of the converse of weak RN (i.e., if ` �ϕ, then `� ϕ), and
(b) a reason why this Fact and the weak converse of RN will fail under natural
extensions of the sytem.

Daniel Kirchner and Daniel West have independently pointed out, and
proved, that if we limit our system to just the axioms stated in Chapter 8, then
the converse of weak RN is indeed valid. Kirchner suggested a proof based on
the above Fact:

Converse of Weak RN: If ` �ϕ, then `� ϕ.

Proof: Assume ` �ϕ. Then by the Fact just mentioned, `� A�ϕ. So by
the right-to-left direction of axiom (46.2), `� �ϕ. And by the T schema,
`� ϕ.

This nice result suggests that as long as we make sure that any new modally
fragile axioms we add to our system have actualizations that are assertible as
necessary, the distinction between `� ϕ and ` �ϕ is not too important. For
then both weak RN and converse weak RN are valid, and if we conjoin these
conditional metarules, `� ϕ and ` �ϕ are thereby established as equivalent.

That said, however, it is important to recognize that we may indeed wish
to extend our system with modally fragile axioms whose actualizations (a) are
not assertible as necessary truths and (b) should not be derivable as modally
strict theorems. To see some examples, first consider a scenario we’ve discussed
before, in which we extend our system with the axioms P a (‘a exemplifies P ’)
and ♦¬P a, say where ‘a’ names some concrete individual and P some property
that a exemplifies contingently. Alternatively, suppose we extend our system
with the axioms there exists a unique moon of Earth, i.e., ∃!xMxe, and Earth might
not have had a moon, i.e., ♦¬∃xMxe. Now in these cases, we would stipulate
that P a and ∃!xMxe are modally fragile and mark them as ?-axioms. And
to preserve our metarules under such extensions, we would also (a) take the
�-free closures of P a and ∃!xMxe as modally fragile axioms, and (b) take all
the closures of ♦¬P a and ♦¬∃xMxe as necessary axioms. Given (a), AP a and

easily proved without induction. Assume ` ϕ. Then RA yields that ` Aϕ. But by axiom (46.1) and
(63.1), we know ` Aϕ→ �Aϕ. Hence ` �Aϕ, by (63.6).
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A∃!xMxe would become asserted as ?-axioms.159 And it would immediately
follow, by (46.1), that �AP a and �A∃!xMxe become ?-theorems.

It is important that we not let this last fact mislead us into thinking that
it would be acceptable to assert AP a and A∃!xMxe as necessary axioms. If we
were to do so, then their necessitations (i.e., modal closures) would become
necessary axioms as well. Given the understanding of these claims in the pre-
vious paragraph, it should not be axiomatic that necessarily, it is actually the case
that a exemplifies P or that necessarily, it is actually the case that there is a unique
moon of the Earth. Though we can accept �AP a and �A∃!xMxe as ?-theorems
given that they become derivable from a contingency, we cannot accept �AP a
and �A∃!xMxe as necessary axioms. These latter are not unadulterated neces-
sary truths and, should not be axiomatic.

To bring the discussion full circle: if one were to extend our system with
modally fragile axioms such as P a and ∃!xMxe, the following would hold:

` P a and /̀ � AP a

` ∃!xMxe and /̀ � A∃!xMxe

So it is possible to extend our system in ways that are inconsistent with the Fact
(noted at the outset) that currently holds. P a and ∃!xMxe would be modally
fragile axioms but, unlike (43)?, their actualizations would not be modally
strict theorems. Thus, there are two kinds of modally fragile axioms: contin-
gent axioms, whether they are known a posteriori (such as P a above) or a priori
(such as Aϕ → ϕ), and necessary truths knowable a posteriori, such as AP a
and A∃!xMxe. It is extremely important to distinguish them. By designating
such necessary a posteriori claims as modally fragile axioms, we undermine the
proof of the converse of weak RN and immediately obtain a system in which
the converse of weak RN fails, as described in Remark (71).

(138) ?Theorems: Actuality and Negation. The following are simple conse-
quences of (130.2)?, and so consequences of (43)?:

(.1) ¬Aϕ ≡ ¬ϕ

(.2) ¬A¬ϕ ≡ ϕ

Given that the proofs of these theorems depend on (43)?, we may not apply
RN to either theorem.

(139) Theorems. Modally Strict Theorems of Actuality.

(.1) Aϕ ∨A¬ϕ
159Note how this complies with the requirement that one must the add the actualizations of

any new axioms to preserve the Rule of Actualization, as discussed at the end of (135) and in
footnote 153.
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(.2) A(ϕ&ψ) ≡ (Aϕ&Aψ)

(.3) A(ϕ ≡ ψ) ≡ (A(ϕ→ ψ) &A(ψ→ ϕ))

(.4) (A(ϕ→ ψ) &A(ψ→ ϕ)) ≡ (Aϕ ≡ Aψ)

(.5) A(ϕ ≡ ψ) ≡ (Aϕ ≡ Aψ)

(.6) Aϕ ≡ �Aϕ

(.7) A�ϕ→ �Aϕ

(.8) �ϕ→ �Aϕ

(.9) A(ϕ ∨ψ) ≡ (Aϕ ∨Aψ)

(.10) A∃αϕ ≡ ∃αAϕ

(.11) A∀α(ϕ ≡ ψ) ≡ ∀α(Aϕ ≡ Aψ)

Note that one can develop far simpler proofs of some of the above theorems
than the ones given in the Appendix by using the modally fragile axiom (43)?.
But our policy is to develop modally strict proofs when those are available.
Note also that (.2) is used in the proof of (.3), and (.3) and (.4) are used in the
proof of (.5). The latter is used to prove (159.1), which is a key lemma in the
proof of the Rules of Substitution proved in (160.1) and (160.2).

(140) ?Lemmas: A Consequence of the Modally Fragile Axiom of Actuality.
It is a straightforward consequence of theorem (130.2)? that an entity α is
uniquely such that Aϕ if and only if α is uniquely such that ϕ:

∀β(Aϕβα ≡ β=α) ≡ ∀β(ϕβα ≡ β=α), provided β is substitutable for α in ϕ
and doesn’t occur free in ϕ

Recall the discussion after we introduced axiom (47): the notation Aϕzx used
in this theorem involves a harmless ambiguity. Though it should strictly be
formulated as (Aϕ)τν , definition (14) implies (Aϕ)τν = A(ϕτν ).

9.8.2 The Theory of Descriptions

(141) ?Theorems: Fundamental Theorems Governing Descriptions. It follows
from the previous lemma that x is the individual that is (in fact) such that ϕ
just in case x is uniquely such that ϕ:

x= ıxϕ ≡ ∀z(ϕzx ≡ z=x), provided z is substitutable for x in ϕ and doesn’t
occur free in ϕ
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As a simple instance, we have x= ıxRxa ≡ ∀z(Rza ≡ z=x). It follows from this
instance by GEN that ∀x(x= ıxRxa ≡ ∀z(Rza ≡ z=x)). So if we instantiate the
universal claim to b, we have: b= ıxRxa ≡ ∀z(Rza ≡ z=b). In other words, b is
the object that bears R to a if and only if all and only objects that bear R to a
are identical to b.

The proof of the above theorem depends on the axiom for descriptions (47)
and lemma (140)?, and hence depends on theorem (130.2)? and ultimately on
the modally fragile axiom for actuality (43)?. So we may not apply RN to this
theorem to derive its necessitation. But even though it is a ?-theorem, it plays
a role in the proof of other important and well-known principles involving
descriptions; in the present context, these too are ?-theorems. Examples are
Hintikka’s schema (142)? and Russell’s analysis of descriptions (143)?. Though
the classical statement of these well-known principles are derived in a way
that is not modally-strict, the principles can be slightly modified so as to be
derivable by modally-strict proofs. This will become apparent below.

(142) ?Theorems: Hintikka’s Schema. We may derive the instances of Hin-
tikka’s schema for definite descriptions namely, x is identical to the individual
(in fact) such that ϕ if and only if ϕ is true and everything such that ϕ is iden-
tical to x, i.e.,

x= ıxϕ ≡ (ϕ&∀z(ϕzx → z=x)), provided z is substitutable for x in ϕ and
doesn’t occur free in ϕ

If we apply GEN to the free variable x and then instantiate the result to any
variable other than z, say y,160 then we obtain y = ıxϕ ≡ (ϕyx &∀x(ϕ→ x= y)).
Cf. Hintikka 1959 (83, 7b), i.e., py = ıxf q ↔ pf (y/x) & ∀x(f → x = y)q. Note
that whereas Hintikka’s original schema involves a primitive identity symbol,
our theorem, which we’ll henceforth call Hintikka’s schema, involves a defined
identity symbol.

The proof of Hintikka’s schema appeals to the ?-theorem (141)? and so fails
to be modally-strict. Note that in Hintikka’s schema, ϕ is within the scope of
the rigidifying operator ıx on the left side of the biconditional but not within
the scope of such an operator on the right side. This is an indicator that (the
proof of) the theorem won’t be modally strict.

(143) ?Theorems: Russell’s Analysis of Descriptions. Our derived quantifier
rules also help us to more easily prove, as a theorem, a version of Russell’s
famous (1905) analysis of definite descriptions:

ψ
ıxϕ
x ≡ ∃x(ϕ & ∀z(ϕzx → z = x) & ψ), provided (a) ψ is either an exem-

plification formula Πnκ1 . . .κn (n ≥ 1) or an encoding formula κ1 . . .κnΠ
n

160Here, z is the only variable not substitutable for the two free occurrences of x in the above,
since z would get captured if we replace the second free occurrence of x.
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(n ≥ 1), (b) x occurs in ψ and only as one or more of the κi (1 ≤ i ≤ n), and
(c) z is substitutable for x in ϕ and doesn’t occur free in ϕ

This asserts: the individual (in fact) such that ϕ is such that ψ if and only if
something x is such that ϕ, everything such that ϕ just is x, and x is such that
ψ. Note that Russell’s analysis is a ?-theorem; the proof relies on Hintikka’s
schema, which in turn depends on (141)?.

(144) ?Theorems: Significant Descriptions and Uniqueness. Recall again our
convention, mentioned at the end of (20), that ıxϕ↓ abbreviates (ıxϕ)↓. (We
henceforth omit mention of this convention in the remainder of this chapter.)
The following are now facts about descriptions and uniqueness: (.1) the x such
that ϕ exists if and only if there exists a unique x such that ϕ; and (.2) some-
thing is identical to the x such that ϕ if and only if there exists a unique x such
that ϕ. Formally:

(.1) ıxϕ↓ ≡ ∃!xϕ

(.2) ∃y(y= ıxϕ) ≡ ∃!xϕ, provided that y doesn’t occur free in ϕ

Clearly, (.2) follows from (.1) by the instance ıxϕ↓ ≡ ∃y(y = ıxϕ) of theorem
(121.1). This instance allows us to regard a description ıxϕ as significant when-
ever we know that ∃y(y= ıxϕ).

Note that with (.1), we have derived definition ∗14·02 in Principia Mathema-
tica (Whitehead & Russell 1910–1913 [1925–1927]). On p. 174 of the second
edition (p. 182 of the first), we find:

∗14 · 02 E!( ιx)(ϕx) . = : (∃b) : ϕx . ≡x . x=b Df

To show that (.1) is our version of ∗14·02, we need to show that the definiendum
and the definiens of the two definitions are equivalent. First, recall again that
the discussion on pp. 30–31 ([1925–1927], Introduction, Chapter I) makes it
clear that ıxϕ ↓ is the counterpart to their formula E!( ιx)(ϕx); their formula
E!( ιx)(ϕx) asserts that the x such that ϕ exists. Moreover, our definiens, ∃!xϕ,
is equivalent to their definiens, (∃b) : ϕx . ≡x . x = b, by (127.2), given their
notational conventions.

However, since the proofs of our theorems appeal to Hintikka’s schema, (.1)
and (.2) are both ?-theorems and so not subject to RN. The necessitations of
both (.1) and (.2) fail to be valid, in both directions.

(145) ?Theorems: Facts About the Matrices of (Significant) Descriptions.

(.1) x= ıxϕ→ ϕ

(.2) z= ıxϕ→ ϕzx, provided z is substitutable for x in ϕ

(.3) ıxϕ↓→ ϕ
ıxϕ
x , provided ıxϕ is substitutable for x in ϕ
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(.4) ∃y(y = ıxϕ)→ ϕ
ıxϕ
x , provided y doesn’t occur free in ıxϕ and ıxϕ is sub-

stitutable for x in ϕ

These theorems license substitutions into the matrix of a description under
certain conditions. Note that in (.2), z may occur free in ıxϕ. (.3) and (.4)
both intuitively tell us we can substitute a significant description into its own
matrix. Note that since the proofs appeal to Hintikka’s schema, they are all
?-theorems.

(146) Lemmas: Consequence of the Necessary Equivalence of Aϕ and AAϕ.
One of the necessary axioms for actuality is (44.4), namely, Aϕ ≡ AAϕ. It is a
straightforward, modally-strict consequence of this axiom that an entity α is
uniquely such that Aϕ if and only if α is uniquely such that AAϕ:

∀β(Aϕβα ≡ β=α) ≡ ∀β(AAϕβα ≡ β=α), provided β is substitutable for α in
ϕ and doesn’t occur free in ϕ

No appeal to the modally fragile axiom for actuality (43)? is needed to prove
this lemma.

(147) Theorems: Additional Theorems for Descriptions and Actuality. It is
provable that (.1) x is identical to the individual such that ϕ if and only if x
is identical to the individual actually such that ϕ, and (.2) if the x such that ϕ
exists, then it is identical to the x actually such that ϕ:

(.1) x= ıxϕ ≡ x= ıxAϕ

(.2) ıxϕ↓→ ıxϕ= ıxAϕ

These are modally-strict theorems.

Exercise: Develop modally strict proofs of:

• ψ
ıxϕ
x → ıxAϕ↓, provided (a) ψ is either an exemplification formula

Πnκ1 . . .κn (n ≥ 1) or an encoding formula κ1 . . .κnΠ
n (n ≥ 1), and (b) x

occurs in ψ and only as one or more of the κi (1 ≤ i ≤ n).

• ψ
ıxϕ
x → ıxϕ= ıxAϕ, provided (a) ψ is either an exemplification formula

Πnκ1 . . .κn (n ≥ 1) or an encoding formula κ1 . . .κnΠ
n (n ≥ 1) and (b) x

occurs in ψ and only as one or more of the κi (1 ≤ i ≤ n).

(148) Theorems: Modally Strict Version of Hintikka’s Schema. By a judicious
placement of the actuality operator, we obtain the following modally strict
versions of Hintikka’s schema (142)?, namely, x is the individual (in fact) such
that ϕ if and only if it is actually the case that ϕ and everything actually such
that ϕ is identical to x, i.e.,
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x= ıxϕ ≡ Aϕ&∀z(Aϕzx→ z=x), provided z is substitutable for x in ϕ and
doesn’t occur free in ϕ.

The proof of this theorem appeals to the necessary axiom (47) instead of to
theorem (141)?. Since it depends on no ?-theorems, it is modally-strict.

(149) Theorems: Descriptions, Actuality, and Necessity. The modally strict
version of Hintikka’s schema allows us to formulate and prove a nice theorem
in connection with the descriptions ıxϕ and ıxψ whose matrices are (actually or
necessarily) universally equivalent. (.1) If it is actually the case that everything
is such that ϕ iff ψ, then for any x, x is identical to the ϕ iff x is identical to
the ψ:

(.1) A∀x(ϕ ≡ ψ)→∀x(x= ıxϕ ≡ x= ıxψ)

Note that we can’t prove A∀x(ϕ ≡ ψ)→ ıxϕ = ıxψ; the consequent implies that
the descriptions are significant, which is something that is not guaranteed by
the antecedent. To see this, consider a situation in which both ¬∃xAϕ and
¬∃xAψ. Then by (103.9), it would follow that ∀x(Aϕ ≡ Aψ) and, by the right-
to-left direction of (139.11), A∀x(ϕ ≡ ψ), which is the antecedent of (.1). But
in this situation, the descriptions ıxϕ and ıxψ both fail to be significant, and
ıxϕ = ıxψ would be false.

It follows from (.1), by modally strict means, that (.2) if the x such that ϕ
exists and actually everything is such that ϕ iff ψ, then the x such that ϕ is
identical to the x such that ψ:

(.2) ıxϕ↓&A∀x(ϕ ≡ ψ)→ ıxϕ= ıxψ

Clearly, then, (.3) if the x such that ϕ exists and necessarily everything is such
that ϕ iff ψ, then the x such that ϕ is identical to the x such that ψ:

(.3) ıxϕ↓&�∀x(ϕ ≡ ψ)→ ıxϕ= ıxψ

Two other theorems are worthy of mention. (.4) if the x such that ϕ exists,
it does so necessarily, and (.5) if the x such that ϕ exists, then something is
necessarily identical to it:

(.4) ıxϕ↓→ �ıxϕ↓

(.5) ıxϕ↓→ ∃y�(y= ıxϕ), provided y doesn’t occur free in ϕ

These last two theorems also have modally-strict proofs. The fact that descrip-
tions are rigid is key to understanding both theorems. If we think semantically
in terms of a primitive notion of possible world, then we can say that when
ıxϕ is significant and occurs within the scope of the modal operator �, it still
denotes the object that, at the actual world, is uniquely such that ϕ. Note that
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(.4) is simply an instance of (106) and that (.5) follows from the instance of
theorem (124.2) that asserts: every individual is necessarily self-identical, i.e.,
∀z�(z=z).

(150) ?Theorems: Descriptions With Matrices That Obey a Universal Equiv-
alence. We obtain non-modally strict versions of some recent theorems if we
start from universalized material equivalences. (.1) If everything is such that
ϕ iff ψ, then for all x, x is identical to the ϕ if and only if x is identical to the
ψ; and (.2) if the x such that ϕ exists and everything is such that ϕ iff ψ, then
the x such that ϕ is identical to the x such that ψ:

(.1) ∀x(ϕ ≡ ψ)→∀x(x= ıxϕ ≡ x= ıxψ)

(.2) ıxϕ↓&∀x(ϕ ≡ ψ)→ ıxϕ= ıxψ

(151) Theorems: Modally Strict Version of Russell’s Analysis of Descriptions.
By a another judicious placement of the actuality operator, we can prove a
modally strict version of Russell’s analysis of descriptions. For any exemplifi-
cation or encoding formula ψ, the individual (in fact) such that ϕ is such that ψ
if and only if something x is such that actually ϕ, everything such that actually
ϕ just is x, and x is such that ψ, i.e.,

ψ
ıxϕ
x ≡ ∃x(Aϕ & ∀z(Aϕzx → z=x) & ψ), provided (a) ψ is either an exem-

plification formula Πnκ1 . . .κn (n ≥ 1) or an encoding formula κ1 . . .κnΠ
n

(n ≥ 1), (b) x occurs in ψ and only as one or more of the κi (1 ≤ i ≤ n), and
(c) z is substitutable for x in ϕ and doesn’t occur free in ϕ

No appeal to (43)? or (143)? is necessary.

(152) Theorems: Theorems for Significant Descriptions and Actuality. We now
have:

(.1) ıxϕ↓ ≡ ∃!xAϕ

(.2) x= ıxϕ→ Aϕ

(.3) z= ıxϕ→ Aϕzx, provided z is substitutable for x in ϕ

(.4) ıxϕ↓→ Aϕıxϕx , provided ıxϕ is substitutable for x in ϕ

(.5) ıxϕ= ıxψ→ A∀x(ϕ ≡ ψ)

These are modally-strict theorems. Compare (.1) with (144.1)?, and (.2) – (.4)
with (145.1)? – (145.3)?, respectively.

(153) Theorems: Modally Strict Conditions For Applying the Matrix of a De-
scription. Here are some interesting facts about descriptions. (.1) If there exists
a unique individual that is necessarily such that ϕ, then anything identical to
the x such that ϕ is such that ϕ:
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(.1) ∃!x�ϕ → ∀y(y = ıxϕ → ϕ
y
x ), provided y doesn’t occur free in ϕ and is

substitutable for x in ϕ

This is modally strict; by comparing this theorem with (145.2)?, we see that
∃!x�ϕ provides modally strict conditions under which ϕ applies to anything
identical to the x such that ϕ.

Furthermore (.1) helps us to prove another useful theorem, namely, that (.2)
if everything such that ϕ is necessarily such that ϕ, then if there is a unique
thing such that ϕ, then anything identical to the x such that ϕ is such that ϕ:

(.2) ∀x(ϕ→ �ϕ)→ (∃!xϕ→∀y(y= ıxϕ→ ϕ
y
x )), provided y doesn’t occur free

in ϕ and is substitutable for x in ϕ

Later in this chapter, we’ll see how this theorem helps us to prove facts about
a distinguished group of canonical abstract objects.

(154) Theorems: Alphabetically Variant Descriptions. It is relatively straight-
forward to show that alphabetic variants of significant descriptions can be put
into an equation:

ıνϕ↓→ ıνϕ = (ıνϕ)′, where (ıνϕ)′ is any alphabetic variant of ıνϕ

Given the Rule of Alphabetic Variants (114), this theorem is a consequence of
the facts (a) that significant descriptions can be instantiated into the universal
claim ∀x(x = x) and (b) that the two formulas ıνϕ = ıνϕ and ıνϕ = (ıνϕ)′ are
themselves alphabetic variants if ıνϕ and (ıνϕ)′ are.

(155) Remark: Digression on Significant Terms. In this Remark, we first pro-
duce some examples of complex terms (both descriptions and λ-expressions)
that are provably empty and then produce some examples of complex terms
that are provably significant despite having provably empty subterms. Specif-
ically, we develop examples of:

(A) descriptions and λ-expressions that are provably empty, i.e., complex
terms of the form ızϕ and [λxψ] such that ` ¬ızϕ↓ and ` ¬[λxψ]↓,

(B) descriptions that are provably significant despite having a provably empty
description as a subterm, i.e., ıxψ for which ` ıxψ↓ but where ıxψ con-
tains a subterm ızϕ for which ` ¬ızϕ↓,

(C) descriptions that are provably significant despite having a provably empty
λ-expression as a subterm, i.e., ıxψ for which ` ıxψ↓ but where ıxψ con-
tains a subterm [λz χ] for which ` ¬[λz χ]↓,

(D) λ-expressions that are provably significant despite having a provably
empty description as a subterm; i.e., [λxψ] for which ` [λxψ]↓ but where
[λxψ] contains a subterm ızϕ for which ` ¬ızϕ↓, and
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(E) λ-expressions that are provably significant despite having a provably
empty λ-expression as a subterm, i.e., [λy ψ] for which ` [λy ψ]↓ but
where [λy ψ] contains a subterm [λx χ] for which ` ¬[λx χ]↓.

(A) We begin with examples of a description and a λ-expression that provably
fail to be significant. For an empty description, consider ız(Hz&¬Hz), in which
H is a free variable. No matter what property is assigned to the variable H ,
no object z both exemplifies H and fails to exemplify H . Hence, the object z
that both exemplifies H and fails to exemplify H fails to exist; it is an easy
theorem that ¬ız(Hz&¬Hz)↓ (exercise). For an empty λ-expression, first recall
that in the discussion of the Clark/Boolos paradox in Section 2.1, we sketched
how a contradiction follows from the claim ∃F∀x(Fx ≡ ∃G(xG& ¬Gx)). This
reasoning can be reproduced in our system. Moreover, with the help of the
strengthened version of β-Conversion proved in (181) below, we’ll develop a
formal derivation of ¬[λx ∃G(xG&¬Gx)]↓ in (192.1).

(B) Next, we give an example of a provably significant description that con-
tains a provably empty one. Since (we’ve just seen that) ¬ız(Hz& ¬Hz)↓ is a
theorem, the contrapositive of axiom (39.5.a) implies that the exemplification
formula Gız(Hz & ¬Hz) is false, i.e., that ¬Gız(Hz & ¬Hz) is also a theorem,
for any property G. Now we shall later prove as a theorem that y = ıx(x = y)
(177.2); intuitively, every individual y is identical to the individual identical to
y. Moreover, we leave it as an exercise to show that whenever p is a true propo-
sition, ıx(x=y & p) denotes whatever ıx(x=y) denotes. Then since ¬Gız(Hz&
¬Hz) is known to be true, it follows both that:

ıx(x=y) = ıx(x=y &¬Gız(Hz&¬Hz))

y = ıx(x=y &¬Gız(Hz&¬Hz))

for any object y. Since ıx(x = y & ¬Gız(Hz & ¬Hz)) appears in true identity
claims, it is significant, i.e.,

(ξ) ıx(x=y &¬Gız(Hz&¬Hz))↓,

despite the fact that it contains the provably empty description ız(Hz&¬Hz).
(C) Next, we give an example of a provably significant description that con-
tains a provably empty λ-expression. As we’ve seen, [λx ∃G(xG & ¬Gx)] is a
provably empty λ-expression. So is its alphabetic variant [λz ∃G(zG&¬Gz)],
by analogous reasoning. Abbreviate this latter λ-expression as [λz χ], so that
¬[λz χ]↓ is provable. Then where a is some arbitrarily chosen individual, the
formula ¬[λz χ]a is provable, by (39.5.a). Hence, we may formulate the de-
scription ıx(x=y &¬[λz χ]a). Now we’ve seen that when p is true, ıx(x=y & p)
is significant. So ıx(x = y &¬[λz χ]a) is similarly significant, despite having a
provably empty λ-expression as a subterm.
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(D) Consider an example discussed in (17.3) and (40). Since we know that
ız(P z&¬P z) is a provably empty description, all it takes to see that [λxRxız(P z&¬P z)]
is a provably significant λ-expression that contains a provably empty descrip-
tion is to note that [λx Rxız(P z&¬P z)]↓ is an instance of axiom (39.2).

(E) Finally, we’ve already seen examples of a provably significant λ-expression
that contains a provably empty λ-expression, in the discussions at the end of
(39) and (48). For those who skipped those discussions, start with the provably
empty λ-expression [λx ∃G(xG&¬Gx)]. Abbreviate this expression as [λx χ].
Since [λx χ] is empty, it follows by (39.5.a) that ¬[λx χ]y, for any y. So now
consider the λ-expression [λy ¬[λx χ]y]. This is a core λ-expression and so
by axiom (39.2), [λy ¬[λx χ]y]↓. But [λy ¬[λx χ]y] contains a provably empty
λ-expression as a subterm.

Examples (A) – (E) above show why we may not add, as an axiom or hypothesis,
the assertion that if a term is significant then all of its subterms are significant,
i.e., we may not assert:

τ↓→ σ↓, whenever σ is a subterm of τ

The counterexamples to this claim also explain why we do not strengthen
(39.5.a) and (39.5.b) to assert that if an n-ary exemplification or encoding for-
mula (n ≥ 1) is true, then every term whatsoever in the formula is significant. To
find a counterexample, we construct a true exemplification formula of the form
Πκ such that both primary terms Π and κ contain the provably empty subterm
ız(Hz&¬Hz). First consider the fact that the λ-expression [λx1x2∀F(Fx1 ≡ Fx2)]
is significant, by axiom (39.2). Abbreviate this λ-expression as R, so that we
know by β-Conversion (48.2) that Ryy ≡ ∀F(Fy ≡ Fy). But since ∀F(Fy ≡ Fy)
is easily established as a theorem, it follows that Ryy. Now consider [λx Rxy],
i.e., [λx [λx1x2 ∀F(Fx1 ≡ Fx2)]xy]. This is a core λ-expression and so [λxRxy]↓,
by (39.2). Since β-Conversion now implies [λx Rxy]y ≡ Ryy, it follows that
[λx Rxy]y. Now recall that in (B) above we established, for any y, that:

y = ıx(x=y &¬Gız(Hz&¬Hz))

Abbreviate the description as κ, so that the above asserts y =κ. Then by Rule
=E, it follows from [λx Rxy]y that [λx Rxκ]κ. So where Π is [λx Rxκ], we have
established a true exemplification formula of the form Πκ in which both Π

and κ contain the provably empty description ız(Hz&¬Hz). Thus, Πκ is a true
exemplification formula having significant primary terms that contain empty
subterms.

We leave it as an exercise to show that there are true encoding formulas
with primary terms that contain empty subterms. Hence axioms (39.5.a) and
(39.5.b) respectively guarantee the significance only of the primary terms in a
true exemplification or encoding formula.
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9.9 The Theory of Necessity

9.9.1 Propositional Modal Logic

(156) Remark: Tautologies Are Necessary. In Remark (113), we called attention
to Metatheorem 〈9.2〉, that every tautology is derivable. We now observe that
since the proof of this metatheorem shows that no derivation of a tautology
requires an appeal to a modally fragile axiom or a ?-theorem, it follows by
RN, that every tautology is provably necessary. See Metatheorem 〈9.3〉 in the
Appendix to this chapter.

(157) Metarules: Rules RM, RM♦, RE, and RE♦. The classical metarule RM of
modal logic asserts that if ` ϕ→ ψ, then ` �ϕ→ �ψ. However, in our system,
Rule RM has to be adjusted slightly to accommodate reasoning with modally
fragile axioms and ?-theorems.

To see that Rule RM is inappropriate in its classical form, consider what
would happen if we were to extend our theory by asserting, for some propo-
sition p, both p and ¬�p as axioms. Clearly, p is contingent and since we
wouldn’t also assert the modal closures of p, p would have to be marked as
modally fragile. Now consider the formula Ap → p. Clearly, ` Ap → p, since
Ap → p is axiomatic (43)?. By the classical rule RM, it would follow that
` �Ap → �p. But since p is, by hypothesis, an axiom, it is a theorem, i.e.,
` p. So by Rule RA (135), we know ` Ap. But then by axiom (46.1), it follows
that ` �Ap. But this and our previous result (i.e., ` �Ap→ �p) yield ` �p. This
would mean a contradiction is derivable, since ¬�p is also, by hypothesis, an
axiom, thereby yielding ` ¬�p.

The problem here is that the classical metarule RM allows one to infer
` �ϕ→ �ψ from any proof of ϕ→ ψ, whereas in systems (like the present one)
containing modally fragile axioms, it should be restricted so that we may infer
` �ϕ→ �ψ only when there is a modally strict proof of ϕ→ ψ. In the previous
paragraph, the proof of Ap → p was not modally strict. If we formulate RM
so that it applies to conditional theorems proved by modally strict means, we
can forestall the derivation of contradictions in cases analogous to the one just
presented. But we first formulate the rule for derivations generally:

(.1) Rule RM:
If Γ `� ϕ→ ψ, then �Γ `� �ϕ→ �ψ.

Rule RM (Weaker Form):
If Γ `� ϕ→ ψ, then �Γ ` �ϕ→ �ψ.

In other words, if there is a modally-strict derivation of ϕ → ψ from Γ , then
there is a (modally strict) derivation of �ϕ → �ψ from the necessitations of
the formulas in Γ . As with RN, we almost always cite the weaker form of RM
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with the understanding that any conclusions drawn via the metarule within a
larger reasoning context do not affect the modal strictness of that context (or
lack thereof).

When Γ =∅, then RM reduces to the principle:

• If `� ϕ→ ψ, then `� �ϕ→ �ψ

• If `� ϕ→ ψ, then ` �ϕ→ �ψ (Weaker Form)

i.e., if ϕ → ψ is a modally-strict theorem, then �ϕ → �ψ is a (modally strict)
theorem.

RM♦ is a corresponding rule:

(.2) Rule RM♦:
If Γ `� ϕ→ ψ, then �Γ `� ♦ϕ→ ♦ψ.

Rule RM♦ (Weaker Form):
If Γ `� ϕ→ ψ, then �Γ ` ♦ϕ→ ♦ψ.

In other words, if there is a modally-strict derivation of ϕ → ψ from Γ , then
there is a (modally strict) derivation of ♦ϕ→ ♦ψ from the necessitations of the
formulas in Γ . When Γ =∅, then RM♦ reduces to the principle:

• If `� ϕ→ ψ, then `� ♦ϕ→ ♦ψ

• If `� ϕ→ ψ, then ` ♦ϕ→ ♦ψ (Weaker Form)

i.e., if ϕ → ψ is a modally-strict theorem, then ♦ϕ → ♦ψ is a (modally strict)
theorem. Again, as with RN and RM, we almost always cite the weaker form
of RM♦ with the understanding that any conclusions drawn via the metarule
within a larger reasoning context do not affect the modal strictness of that
context (or lack thereof).

Finally, we have Rules RE and RE♦:

(.3) Rule RE:
If Γ `� ϕ ≡ ψ, then �Γ `� �ϕ ≡ �ψ.

Rule RE (Weaker Form):
If Γ `� ϕ ≡ ψ, then �Γ ` �ϕ ≡ �ψ.

(.4) Rule RE♦:
If Γ `� ϕ ≡ ψ, then �Γ `� ♦ϕ ≡ ♦ψ.

Rule RE♦ (Weaker Form):
If Γ `� ϕ ≡ ψ, then �Γ ` ♦ϕ ≡ ♦ψ.

If we consider these rules when �Γ is empty, RE and RE♦ become, respectively:
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• If `� ϕ ≡ ψ, then `� �ϕ ≡ �ψ
If `� ϕ ≡ ψ, then ` �ϕ ≡ �ψ (Weaker Form)

• If `� ϕ ≡ ψ, then `� ♦ϕ ≡ ♦ψ
If `� ϕ ≡ ψ, then ` ♦ϕ ≡ ♦ψ (Weaker Form)

Finally, it is important to note the following, when reasoning with a definition
by equivalence, i.e., a definition having the form ϕ ≡df ψ. Rule ≡Df of Equiv-
alence by Definition (90.1) tells us that, given such a definition, we know not
just that ` ϕ ≡ ψ but also `� ϕ ≡ ψ (the `� form of the rule was omitted from
(90.1) by convention (67)). So from the definition ϕ ≡df ψ, Rules RE and RE♦
immediately allow us to conclude (by modally strict means), respectively, that
�ϕ ≡ �ψ, and ♦ϕ ≡ ♦ψ.

(158) Theorems: Basic K Theorems. The presentation and proofs of some of
the following basic theorems that depend upon the K schema have been in-
formed by Hughes & Cresswell 1968 and 1996:

(.1) �ϕ→ �(ψ→ ϕ)

(.2) �¬ϕ→ �(ϕ→ ψ)

(.3) �(ϕ&ψ) ≡ (�ϕ&�ψ)

(.4) �(ϕ ≡ ψ) ≡ (�(ϕ→ ψ) & �(ψ→ ϕ))

(.5) (�(ϕ→ ψ) & �(ψ→ ϕ))→ (�ϕ ≡ �ψ)

(.6) �(ϕ ≡ ψ)→ (�ϕ ≡ �ψ)

(.7) ((�ϕ&�ψ)∨ (�¬ϕ&�¬ψ))→ �(ϕ ≡ ψ)

(.8) �(ϕ&ψ)→ �(ϕ ≡ ψ)

(.9) �(¬ϕ&¬ψ)→ �(ϕ ≡ ψ)

(.10) �ϕ ≡ �¬¬ϕ

(.11) ¬�ϕ ≡ ♦¬ϕ

(.12) �ϕ ≡ ¬♦¬ϕ (Df�)

(.13) �(ϕ→ ψ)→ (♦ϕ→ ♦ψ) (K♦)

(.14) ♦�ϕ ≡ ¬�♦¬ϕ

(.15) (�ϕ ∨�ψ)→ �(ϕ ∨ψ)

(.16) (�ϕ&♦ψ)→ ♦(ϕ&ψ)
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We pause here to make a few remarks about (.1) – (.6) only.
If we follow the usual practice of reading the formula �(χ → θ) as χ nec-

essarily implies θ, then (.1) intuitively guarantees that a necessary truth is nec-
essarily implied by everything, and (.2) intuitively guarantees that a necessary
falsehood necessarily implies everything. These facts constituted the “para-
doxes of strict implication” (Lewis & Langford 1932 [1959], 511). However,
given the meaning of the conditional, they are harmless.161 (.3) establishes that
a necessary conjunction is equivalent to a conjunction of necessities, while (.4)
and (.5) are lemmas needed for the proof of (.6), which asserts that the neces-
sity operator distributes over a biconditional.

Note that the converse of (.6), namely (�ϕ ≡ �ψ) → �(ϕ ≡ ψ), is not a
theorem: the material equivalence of �ϕ and �ψ doesn’t imply that the bicon-
ditional ϕ ≡ ψ is necessary. To see this, consider an interpretation in which
there are two worlds, w0 and w1, such that (a) ϕ is true at w0 and false at w1,
and (b) ψ is false at w0 and true at w1. Then clearly, both �ϕ and �ψ are false
at w0 and so �ϕ ≡ �ψ is true at w0 (since �ϕ and �ψ have the same truth
value at w0). But the claim �(ϕ ≡ ψ) is false at w0: the conditional ϕ ≡ ψ fails
at both worlds given that ϕ and ψ have different truth values at each world.
(It is important to be familiar with this counterexample since as we shall see,
there are special conditions under which the converse of (.6) holds, namely, if
both ϕ and ψ are necessary when true. See (172.4) and (179.5) below.)

(159) Metarules: Rules of Necessary Equivalence. Theorems (88.4.b), (88.4.c),
(88.4.d), (99.3), (111.5), (139.5), and (158.6) each help to establish one of the
cases of the following rule:

(.1) If ` �(ψ ≡ χ), then:

(.a) ` ¬ψ ≡ ¬χ

(.b) ` (ψ→ θ) ≡ (χ→ θ)

(.c) ` (θ→ ψ) ≡ (θ→ χ)

(.d) ` ∀αψ ≡ ∀αχ

(.e) ` [λψ] ≡ [λχ]

(.f) ` Aψ ≡ Aχ

(.g) ` �ψ ≡ �χ
161To see why these results are to be expected, note that the left-to-right direction of (.12) asserts

that �ϕ → ¬♦¬ϕ. So, if the negation of a necessary truth ϕ is not possible, then a fortiori, the
negation of ϕ conjoined with any ψ is not possible, i.e., �ϕ → ¬♦(ψ & ¬ϕ). But this is provably
equivalent to (.1) (exercise). Similarly, the left-to-right direction of (162.1), which is proved later
in the text, asserts �¬ϕ → ¬♦ϕ. But if a necessary falsehood ϕ is not possible, then ϕ conjoined
with the negation of any ψ is not possible, i.e., �¬ϕ → ¬♦(ϕ &¬ψ). But this last fact is provably
equivalent to (.2) (exercise).
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It is worth noting here that, by our convention in Remark (67), we omit the
presentation of the metarule that results by subtituting `� for ` everywhere
in (.1). But such a version of (.1) is justified; the justification of (.1) in the
Appendix easily converts to a proof of the `� version, since no appeal is made
to a modally fragile axiom to justify the metarule.

Since (.1) covers all the cases where a formula ψ (or χ) can occur as a sub-
formula of a formula ϕ, the following rule is derivable:

(.2) If ` �(ψ ≡ χ), then if ϕ′ is the result of substituting the formula χ for
zero or more occurrences of ψ where the latter is a subformula of ϕ, then
` ϕ ≡ ϕ′.

By convention (67), we omit the formulation and justification of the rule ob-
tained by replacing both occurrences of ` by `� in (.2).

A weaker, but much more useful, consequence of (.2) is the following rule:
(.3) if ψ ≡ χ is a modally strict theorem, ψ is a subformula of a formula ϕ, and
ϕ′ is the result of substituting (not necessarily uniformly) χ for the subformula
ψ in ϕ, then it is a theorem that ϕ ≡ ϕ′:

(.3) If `� ψ ≡ χ, then if ϕ′ is the result of substituting the formula χ for zero
or more occurrences of ψ where the latter is a subformula of ϕ, then
` ϕ ≡ ϕ′.

Clearly, the rule obtained by replacing the second occurrence of ` by `� in (.3)
is also justified, but we leave its formulation and justification to the reader.

(.2) and (.3) are central reasoning principles and the key to the proofs of the
Rules of Substitution formulated below. Here are some examples of their use:

Examples of (.2).
If ` �(A!x ≡ ¬♦E!x), then ` ∃xA!x ≡ ∃x¬♦E!x
If ` �(Rxy ≡ (Rxy & (Qa∨¬Qa))), then
` (P a&�Rxy) ≡ (P a&�(Rxy & (Qa∨¬Qa)))

Examples of (.3).
If `� (A!x ≡ ¬♦E!x), then ` ∃xA!x ≡ ∃x¬♦E!x
If `� (Rxy ≡ (Rxy & (Qa∨¬Qa))), then
` (P a&�Rxy) ≡ (P a&�(Rxy & (Qa∨¬Qa)))

In the second example in (.2) and (.3), we’ve conjoined a tautology Qa∨¬Qa
with the formula Rxy and the result is not just necessarily equivalent to Rxy,
but also materially equivalent to Rxy by a modally strict proof. Hence we may
replace Rxy in the formula, P a& �Rxy (= ϕ) by the (necessarily and strictly)
equivalent formula Rxy&(Qa∨¬Qa), and the result ϕ′ is (provably) equivalent
to ϕ.
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Finally, since a definition-by-equivalence of the form ψ ≡df χ yields theo-
rems of the form �(ψ ≡ χ) (among others), such definitions immediately allow
us to reason by way of the following rule:

(.4) If ψ ≡df χ is a definition-by-equivalence, and ϕ′ is the result of substitut-
ing ψ for zero or more occurrences of the χ where the latter is a subfor-
mula of ϕ, then ` ϕ ≡ ϕ′.

The `� version of this rule is justified by the fact that the definition ψ ≡df χ
yields modally strict theorems of the form ψ ≡ χ. (See the footnote to the proof
of (.4) in the Appendix.)

(160) Metarules/Derived Rules: The Rules of Substitution. The principal Rule
of Substitution is (.1) if there is a proof of �(ψ ≡ χ), then in any derivation, ψ
and χ can be substituted for one another wherever one or the other occurs as a
subformula of any line of the derivation:

(.1) Rule of Substitution
If ` �(ψ ≡ χ), then where Γ is any set of formulas and ϕ′ is the result of
substituting the formula χ for zero or more occurrences of ψ where the
latter is a subformula of ϕ, Γ ` ϕ if and only if Γ ` ϕ′.

[Variant: If ` �(ψ ≡ χ), then where . . . , ϕ `̀ ϕ′]

We leave it to the reader to formulate and justify (a) the rule obtained by re-
placing the unadorned occurrences of ` in (.1) by `� and (b) the rule obtained
from the Variant by replacing ` by `� and `̀ by � `̀�.

However, a weaker, but much more useful consequence of (.1) is the fol-
lowing, namely, (.2) if there is a modally strict proof of ψ ≡ χ, then in any
derivation, ψ and χ can be substituted for one another wherever one or the
other occurs as a subformula of any line of the derivation:

(.2) Rule of Substitution
If `� (ψ ≡ χ), then where Γ is any set of formulas and ϕ′ is the result of
substituting the formula χ for zero or more occurrences of ψ where the
latter is a subformula of ϕ, Γ ` ϕ if and only if Γ ` ϕ′.

[Variant: If `� (ψ ≡ χ), then where . . . , ϕ `̀ ϕ′]

Cf. Hughes & Cresswell 1996, 242, Eq. We almost always use this form of the
rule, since it saves a step; we can reason directly from material equivalences
proved by modally strict means, instead of first using Rule RN to show that
those equivalences are provable necessary equivalences.

We leave it to the reader to formulate and justify (a) the rule obtained by
replacing the two unadorned occurrences of ` in (.2) by `� and (b) the rule
obtained by replacing `̀ in the Variant by � `̀�. The justification of these `�
versions are straightforward. Since the `� versions are justified, we may cite
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(.2) or its Variant within any derivation or proof without having any affect on
the modal strictness (or lack thereof) of the reasoning context. That is, we shall,
by convention, simply cite the Rule of Substitution with the knowledge that it
does not undermine the modal strictness of any reasoning context in which it
is applied.

Note that the following is not justifiable: if ` �(ψ ≡ χ), then Γ `� ϕ if and
only if Γ `� ϕ′. The reason is that if ` �(ψ ≡ χ) holds because the only proofs
of �(ψ ≡ χ) are ?-theorems, then the substitution of χ for ψ in ϕ to obtain ϕ′

would undermine the modal strictness of the derivation of ϕ′ from Γ .
Finally, since a definition-by-equivalence of the form ψ ≡df χ yields nec-

essary axioms, and hence modally strict theorems, of the form ψ ≡ χ, such
definitions allow us to reason by way of the following rule:

(.3) Rule of Substitution for Defined Subformulas
If ψ ≡df χ is a definition-by-equivalence, and ϕ′ is the result of substitut-
ing ψ for zero or more occurrences of the χ where the latter is a subfor-
mula of ϕ, then Γ ` ϕ if and only if Γ ` ϕ′.

[Variant: ϕ `̀ ϕ′, provided . . . ]

The `� version of (.3) is also easily justified.

(161) Remark: Digression on Legitimate and Illegitimate Uses of the Rules
of Substitution. Here are some legitimate examples of the Variant version of
(160.2):

Example 1.
If `� A!x ≡ ¬♦E!x, then ¬A!x `̀ ¬¬♦E!x.

Example 2.
If `� Rxy ≡ (Rxy& (Qa∨¬Qa)), then p→ Rxy `̀ p→ (Rxy& (Qa∨¬Qa)).

Example 3.
If `� A!x ≡ ¬♦E!x, then ∃xA!x `̀ ∃x¬♦E!x.

Example 4.
If `� ¬¬P x ≡ P x, then A¬¬P x `̀ AP x.

Example 5.
If `� (ϕ→ ψ) ≡ (¬ψ→¬ϕ), then �(ϕ→ ψ) `̀ �(¬ψ→¬ϕ).

Example 6.
If `� ψ ≡ χ, then �(ϕ→ ψ) `̀ �(ϕ→ χ).

Example 7.
If `� ϕ ≡ ¬¬ϕ, then �(ϕ→ ϕ) `̀ �(¬¬ϕ→ ϕ).
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Note, however, that the Rules of Substitution do not allow us to substitute χ for
ψ in any context whatsoever, but rather only when ψ occurs as a subformula of
some given formula:

Non-Example 1. Suppose `� ψ ≡ χ. Then (160.2) does not permit one to
substitute χ for ψ in the formula y[λxψ&θ] to infer y[λx χ&θ].

The formula ψ is not a subformula of y[λx ψ& θ], and so (160.2) is not appli-
cable.

The following case, in which Γ is empty, also fails to yield a legitimate in-
stance of (160.2):

• Non-Example 2. It can be shown that `� P a ≡ (P a& (q∨¬q)). But (160.2)
does not permit one to substitute P a& (q∨¬q) for an occurrence of P a in
the theorem P a=P a to infer P a=(P a& (q∨¬q)).

Though one can easily establish both `� P a ≡ (P a & (q ∨ ¬q)) and ` P a = P a,
we may not conclude ` P a = (P a& (q ∨¬q)) because P a is not a subformula of
P a= P a! When one expands the identity symbol in P a= P a by its definition,
the formula P a will appear nested with the matrix of complex terms and not
as a subformula.162 Hence, we may not use (160.2) to substitute P a& (q∨¬q)
for P a in P a=P a to obtain P a=(P a& (q∨¬q)).

Similarly, the following is not an instance of (160.2):

• Non-Example 3. It can be shown that `� P y ≡ [λx P x& (q ∨¬q)]y. But
(160.2) does not permit one to substitute [λxP x& (q∨¬q)]y for an occur-
rence of P y in the theorem P y=P y to infer P y=[λx P x& (q∨¬q)]y.

It is straightforward to establish `� P y ≡ [λx P x& (q∨¬q)]y.163 But P y is not a
subformula of the theorem P y=P y and so we can’t legitimately apply the rule
(160.2) to obtain P y=[λx P x& (q∨¬q)]y.

162By definition (23.4), P a=P a is equivalent (eliminating duplicate conjuncts) to:

P a↓& [λx P a]=[λx P a]

This, in turn is equivalent, by definition (23.2), (eliminating duplicate conjuncts) to:

(ϑ) P a↓& [λx P a]↓&�∀y(y[λx P a] ≡ y[λx P a])

Note that P a↓ expands, by definition (20.3), to [λx P a]↓. And [λx P a]↓ (which is also the second
conjunct of (ϑ)) expands, by definition (20.2) to ∃z(z[λxP a]). So (ϑ) expands (eliminating duplicate
conjuncts) to:

(ξ) ∃z(z[λx P a]) &�∀y(y[λx P a] ≡ y[λx P a])

The definition of subformula (6) doesn’t count P a as a subformula of (ξ). The subformulas of
the first conjunct are ∃z(z[λx P a]) and z[λx P a] and nothing else. As for the second conjunct,
�∀y(y[λx P a] ≡ y[λx P a]) is a subformula of itself; so by (6.2), ∀y(y[λx P a] ≡ y[λx P a]) is also a
subformula; by (6.2) again, y[λx P a] ≡ y[λx P a] is also a subformula; and by (6.3) and fact (a)
in the final paragraph of (18), y[λx P a] is also a subformula. These are the only subformulas of
�∀y(y[λx P a] ≡ y[λx P a]).
163By (39.2), [λx P x& (q∨¬q)]↓. So it follows from β-Conversion (48.2) that:

[λx P x& (q∨¬q)]y ≡ P y & (q∨¬q)
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There are, however, special cases where rule (160.2) can play a useful role
legitimizing a substitution that isn’t directly allowed by the rule. To see an ex-
ample, we consider a variant of Non-Example 1. Let ϕ be [λx ψ&θ]y instead
of y[λx ψ & θ]. For the reasons discussed earlier, when `� ψ ≡ χ, we may not
use (160.2) to substitute χ for ψ in the formula [λx ψ & θ]y. However, in this
particular case, when y is substitutable for x in ψ, χ, and θ, then we can substi-
tute χ for ψ in [λx ψ&θ]y, though not solely by (160.2). That is, the following
special case holds:

Fact: If `� ψ ≡ χ, then [λx ψ & θ]y `̀ [λx χ& θ]y, provided y is substi-
tutable for x in ψ, χ, and θ.

Proof. Suppose `� ψ ≡ χ and that y is substitutable for x in ψ, χ, and
θ. Without loss of generality, we show only [λx ψ & θ]y ` [λx χ & θ]y.
Our strategy is to use conditional proof and then (63.10). So assume
[λxψ&θ]y, to prove [λxχ&θ]y. Then [λxψ&θ]↓, by (39.5.a). Note that
from `� ψ ≡ χ, it follows by GEN that `� ∀x(ψ ≡ χ). Since y is, by hypoth-
esis, substitutable for x in ψ and χ, it is substitutable for x in ψ ≡ χ. So it
follows by Rule ∀E that `� ψ

y
x ≡ χyx . Note also that if y is substitutable for

x in ψ and θ, then y is substitutable for x in ψ&θ. Then since [λxψ&θ]↓,
β-Conversion tells us that [λxψ&θ]y implies (ψ&θ)yx, i.e., ψyx &θyx . From
this and the previously established fact that `� ψ

y
x ≡ χyx , the Rule of Sub-

stitution (160.2) allows us to infer χyx & θ
y
x , i.e., (χ& θ)yx. Now if we can

show [λxχ&θ]↓, then we can apply β-Conversion to conclude [λxχ&θ]y,
thereby completing our conditional proof of [λx ψ & θ]y → [λx χ& θ]y;
our Fact will then follow by (63.10). But we can show [λxχ&θ]↓ by first
noting that the following is an instance of axiom (49):

([λxψ&θ]↓&�∀x(ψ&θ ≡ χ&θ))→ [λx χ&θ]↓

We already know [λx ψ & θ]↓. So if we can show �∀x(ψ & θ ≡ χ & θ),
then we can conclude [λx χ&θ]↓ and be done. Note that, by hypothesis,
`� ψ ≡ χ. Moreover, we know by (88.4.e) that `� (ψ ≡ χ)→ (ψ&θ ≡ χ&θ).
So by (63.6), it follows that `� ψ & θ ≡ χ & θ. It follows by GEN that
`� ∀x(ψ & θ ≡ χ& θ). So by RN, ` �∀x(ψ & θ ≡ χ& θ), which is all that
remained for us to show.

So though the Rule of Substitution doesn’t by itself let us infer [λxχ&θ]y from
[λxψ&θ]y and `� ψ ≡ χ, we can nevertheless draw the inference under certain
circumstances.
Now P y&(q∨¬q) is provably equivalent to P y; it is an instance of the tautology (ϕ&(ψ∨¬ψ)) ≡ ϕ.
Thus, it follows by biconditional syllogism and the commutativity of ≡ that P y ≡ [λxP x&(q∨¬q)]y.
Since this proof is modally-strict, we’ve established that:

(ϑ) `� P y ≡ [λx P x& (q∨¬q)]y



9.9. THE THEORY OF NECESSITY 335

(162) Theorems: Additional K Theorems. The Rules of Necessary Equivalence
and Substitution also make it easier to prove the following theorems:

(.1) �¬ϕ ≡ ¬♦ϕ

(.2) ♦(ϕ ∨ψ) ≡ (♦ϕ ∨♦ψ)

(.3) ♦(ϕ&ψ)→ (♦ϕ&♦ψ)

(.4) ♦(ϕ→ ψ) ≡ (�ϕ→ ♦ψ)

(.5) ♦♦ϕ ≡ ¬��¬ϕ

(.6) �(ϕ ∨ψ)→ (�ϕ ∨♦ψ)

(.7) (�(ϕ ∨ψ) &♦¬ϕ)→ ♦ψ

(163) Theorems: The T♦ and 5♦ Schemata. The T schema (45.2) and the 5
schema (45.3) are axioms of our modal logic. Their duals are theorems:

(.1) ϕ→ ♦ϕ (T♦)

(.2) ♦�ϕ→ �ϕ (5♦)

These help us to derive the following classical theorems of propositional S5
modal logic.

(164) Theorems: Theorems of Actuality, Negation, and Possibility. The Rules
of Substitution make it easier to prove (.1) actually ϕ if and only if it is not the
case that actually not ϕ; (.2) possibly ϕ if and only if actually possibly ϕ; (.3)
if it is actually the case that ϕ, then possibly ϕ; (.4) it is actually the case that
ϕ if and only if it is possible that it is actually the case that ϕ; and (.5) possibly
actually ϕ implies actually possibly ϕ:

(.1) Aϕ ≡ ¬A¬ϕ

(.2) ♦ϕ ≡ A♦ϕ

(.3) Aϕ→ ♦ϕ

(.4) Aϕ ≡ ♦Aϕ

(.5) ♦Aϕ→ A♦ϕ

Note that the commuted form of (.2), i.e., A♦ϕ ≡ ♦ϕ, is another special case of
a formula of the form Aψ ≡ ψ that isn’t modally fragile.

(165) Theorems: Basic S5 Theorems. The following list of basic S5 theorems,
i.e., theorems provable from the K, T, and 5 schemata (45.1) – (45.3), was in-
formed by a study of Chellas 1980 (16–18):
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(.1) ♦ϕ ≡ �♦ϕ

(.2) �ϕ ≡ ♦�ϕ

(.3) ϕ→ �♦ϕ (B)

(.4) ♦�ϕ→ ϕ (B♦)

(.5) �ϕ→ ��ϕ (4)

(.6) �ϕ ≡ ��ϕ

(.7) ♦♦ϕ→ ♦ϕ (4♦)

(.8) ♦♦ϕ ≡ ♦ϕ

(.9) �(ϕ ∨�ψ) ≡ (�ϕ ∨�ψ)

(.10) �(ϕ ∨♦ψ) ≡ (�ϕ ∨♦ψ)

(.11) ♦(ϕ&♦ψ) ≡ (♦ϕ&♦ψ)

(.12) ♦(ϕ&�ψ) ≡ (♦ϕ&�ψ)

(.13) �(ϕ→ �ψ) ≡ �(♦ϕ→ ψ)

(166) Metarules: Consequences of the B and B♦ Schemata. The following rules
are derivable with the help of the B (165.3) and B♦ (165.4) schemata:

(.1) If Γ `� ♦ϕ→ ψ, then �Γ `� ϕ→ �ψ
If Γ `� ♦ϕ→ ψ, then �Γ ` ϕ→ �ψ (Weaker Form)

(.2) If Γ `� ϕ→ �ψ, then �Γ `� ♦ϕ→ ψ
If Γ `� ϕ→ �ψ, then �Γ ` ♦ϕ→ ψ (Weaker Form)

When Γ is empty and there are no premises or assumptions involved, the above
reduce to:

• If `� ♦ϕ→ ψ, then `� ϕ→ �ψ
If `� ♦ϕ→ ψ, then ` ϕ→ �ψ (Weaker Form)

• If `� ϕ→ �ψ, then `� ♦ϕ→ ψ
If `� ϕ→ �ψ, then ` ♦ϕ→ ψ (Weaker Form)

(Cf. Prior 1956, p. 62, Rule RLM.) As with RN, RM, and RE, we almost always
cite the weaker versions of these rules, with the understanding that the modal
strictness of the reasoning context remains unaffected.
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9.9.2 Quantified Modal Logic

(167) Theorems: Barcan Formulas.

(.1) ∀α�ϕ→ �∀αϕ (Barcan Formula = BF)

(.2) �∀αϕ→∀α�ϕ (Converse Barcan Formula = CBF)

(.3) ♦∃αϕ→∃α♦ϕ (BF♦)

(.4) ∃α♦ϕ→ ♦∃αϕ (CBF♦)

By an application of RN to (.1), we obtain Theorem 18 of Barcan 1946. By an
application of RN to (.3), we obtain Axiom 11 of Barcan 1946.

(168) Theorems: Other Theorems of Modal Quantification.

(.1) ∃α�ϕ→ �∃αϕ (Buridan)

(.2) ♦∀αϕ→∀α♦ϕ (Buridan♦)

(.3) ♦∃α(ϕ&ψ)→ ♦(∃αϕ&∃αψ)

(.4) ♦∃α(ϕ&ψ)→ ♦∃αϕ

(.5) (�∀α(ϕ→ ψ) &�∀α(ψ→ χ))→ �∀α(ϕ→ χ)

(.6) (�∀α(ϕ ≡ ψ) &�∀α(ψ ≡ χ))→ �∀α(ϕ ≡ χ)

9.9.3 Conditions for, and Consequences of, Modal Collapse

Though it isn’t strictly contradictory, a theory of necessity (�) is nevertheless
trivialized if it yields, for an arbitrary formula ϕ, the theorem ϕ ≡ �ϕ. For if
ϕ ≡ �ϕ were a theorem for arbitrary ϕ, then ¬ϕ ≡ �¬ϕ would be an instance,
and so by (88.4.b), ¬¬ϕ ≡ ¬�¬ϕ. Thus, by definition of ♦ and principles of
double negation, it would follow that ϕ ≡ ♦ϕ. So all modal distinctions would
disappear; every formula ϕ would be equivalent to both �ϕ and ♦ϕ. We say
that such systems suffer from modal collapse.

Clearly, a modally collapsed system is inconsistent with the claim that there
is a true proposition that might not have been true (or a false proposition that
might have been true).164 Indeed, modal collapse would produce a contradic-
tion in the present system, since the claims, there are contingent truths and
contingent falsehoods, are theorems — see (217.1) and (217.2) below.

164Suppose ∃p(p& ♦¬p) and let q0 be such a proposition, so that we know both q0 and ♦¬q0. If
the system is modally collapsed then q0 implies �q0. But ♦¬q0 implies ¬�q0. Contradiction.

Analogously, suppose ∃p(¬p&♦p) and let q1 be such a a proposition, so that we know both ¬q1
and ♦q1. If the system is modally collapsed, then as we saw above, q1 ≡ ♦q1 and so ¬q1 implies
¬♦q1. Contradiction.



338 CHAPTER 9. DEDUCTIVE SYSTEMS OF PLM

But though the theory of necessity developed in Sections 9.9.1 and 9.9.2
does not suffer from modal collapse, there are some distinctive kinds of for-
mulas ϕ for which it is provable that ♦ϕ ≡ �ϕ. We’ll therefore say that those
formulas exhibit modal collapse. As we shall see, modal collapse for these
claims is something that our system embraces to good effect. In what follows,
we investigate, in depth, (a) a variety of claims that are modally collapsed, (b)
the conditions that give rise to modal collapse, and (c) some consequences of
modally collapsed formulas. We’ll focus, in turn, on (the conditions for) modal
collapse as it affects: existence claims, identity claims, certain modal and actu-
ality claims, claims involving descriptions, and encoding predications. None
of these results imply that ordinary (i.e., possibly concrete) individuals are nec-
essarily concrete.

(169) Theorems: The Modal Collapse of Existence and Nonexistence Claims.
We’ve already seen that τ↓→ �τ↓ is a modally strict theorem (106). The modal
logic we now have makes it easy to similarly derive (.1) if it is possible that τ
exists, then τ exists:

(.1) ♦τ↓ → τ↓

From (.1) and (106), it immediately follows that (.2) it is possible that τ exists
if and only if it is necessary that τ exists:

(.2) ♦τ↓ ≡ �τ↓

So the existence claim τ↓ is subject to modal collapse. Morever, it is straight-
forward to show (.3) if τ doesn’t exist, then necessarily τ doesn’t exist, and (.4)
it is possible that τ doesn’t exist if and only if it is necessary that τ doesn’t exist:

(.3) ¬τ↓ → �¬τ↓

(.4) ♦¬τ↓ ≡ �¬τ↓

So non-existence claims are subject to modal collapse as well.

(170) Theorems: Modal Collapse of Identity and Non-identity Claims. We
established in (125.1) that α = β → �α = β is a modally strict theorem. As a
consequence, we have that (.1) if α and β are possibly identical then they are
identical; (.2) if α and β are distinct, they are necessarily distinct; (.3) if α and
β are possibly distinct, they are distinct; (.4) if α and β are possibly distinct,
they are necessarily distinct, and (.5) if α and β are possibly distinct, they are
necessarily distinct:

(.1) ♦α=β→ α=β

(.2) α,β→ �α,β
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(.3) ♦α,β→ α,β

(.4) ♦α=β→ �α=β

(.5) ♦α,β→ �α,β

In the usual manner, these theorems assume that α and β are both variables of
the same type, i.e., both individual variables or both n-ary relation variables,
for some n.

(171) Theorems: The Conditions for Modal Collapse of Complex Formulas.
Let χ be any complex formula directly formed from ϕ (and ψ) by a formation
rule (i.e., ϕ and ψ are immediate subformulas of χ, given the formation rules
of the language). Then if ϕ (and ψ) are modally collapsed then χ is modally
collapsed. One subtlety about this fact concerns the case where χ is a universal
generalization.

We establish the claim by cases, following the definition of subformula in
(6), and showing first that it holds when χ is (.1) ¬ϕ, (.2) ϕ→ ψ, (.3) �ϕ, (.4)
Aϕ, and (.5) [λϕ]:

(.1) �(ϕ→ �ϕ)→ �(¬ϕ→ �¬ϕ)

(.2) (�(ϕ→ �ϕ) &�(ψ→ �ψ))→ �((ϕ→ ψ)→ �(ϕ→ ψ))

(.3) �(ϕ→ �ϕ)→ �(�ϕ→ ��ϕ)

(.4) �(ϕ→ �ϕ)→ �(Aϕ→ �Aϕ)

(.5) �(ϕ→ �ϕ)→ �([λϕ]→ �[λϕ])

In the special case where χ is a universal generalization, we then have:

(.6) �∀α(ϕ→ �ϕ)→ �(∀αϕ→ �∀αϕ)

Observe that if �(ϕ→ �ϕ) but ¬�∀α(ϕ→ �ϕ), then the modal collapse of ϕ
is spurious, in some sense, since it relies on a particular instantiation to the
free variable α. However, if it is a theorem that �(ϕ → �ϕ), then by GEN,
∀α�(ϕ→ �ϕ), and so by BF (167.1), �∀α(ϕ→ �ϕ). Then from (.6) it follows
that �(∀αϕ→ �∀αϕ).

(172) Theorems: Conditions for, and Consequences of, Modal Collapse. By
(165.13), we already know that �(ϕ → �ϕ) is equivalent to �(♦ϕ → ϕ). We
now establish that (.1) necessarily, ϕ-implies-necessarily-ϕ if and only if, pos-
sibly-ϕ implies necessarily-ϕ:

(.1) �(ϕ→ �ϕ) ≡ (♦ϕ→ �ϕ)

It follows that (.2) if either (a) necessarily, ϕ-implies-necessarily-ϕ or (b) possi-
bly-ϕ implies necessarily-ϕ, then (c) possibly-ϕ if and only if necessarily-ϕ:
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(.2) (�(ϕ→ �ϕ)∨ (♦ϕ→ �ϕ))→ (♦ϕ ≡ �ϕ)

So if the either condition �(ϕ → �ϕ) or ♦ϕ → �ϕ holds, ♦ϕ and �ϕ become
equivalent; the distinction between possibly ϕ and necessarily ϕ collapses and
thus ϕ is not subject to modal distinctions.

It also follows that (.3) if necessarily, ϕ-implies-necessarily-ϕ, then ϕ is not
necessary if and only if ¬ϕ is necessary:

(.3) �(ϕ→ �ϕ)→ (¬�ϕ ≡ �¬ϕ)

(.3) helps us to establish an important fact about the conditions producing
modal collapse, namely, (.4) if necessarily, ϕ implies �ϕ, and necessarily, ψ
implies �ψ, then the material equivalence of �ϕ and �ψ implies that ϕ ≡ ψ is
necessary:

(.4) (�(ϕ→ �ϕ) &�(ψ→ �ψ))→ ((�ϕ ≡ �ψ)→ �(ϕ ≡ ψ))

In other words, (.4) tells us that the converse of (158.6) holds when both ϕ and
ψ are subject to modal collapse. (.4) plays an important role in the proofs of
(179.5) and (261.1), which are key theorems.

It follows from the above that (.5) if ϕ and ψ are modally collapsed, then
their material equivalence is modally collapsed:

(.5) (�(ϕ→ �ϕ) &�(ψ→ �ψ))→ �((ϕ ≡ ψ)→ �(ϕ ≡ ψ))

Finally, we introduce theorems that prove useful later, namely, (.6) if ϕ is
modally collapsed, then if ϕ implies that ψ is necessary, then the conditional
ϕ→ ψ is necessary; and (.7) if ϕ is modally collapsed, then if ϕ implies that ψ
is actually true, then the conditional ϕ→ ψ is actually true:

(.6) �(ϕ→ �ϕ)→ ((ϕ→ �ψ)→ �(ϕ→ ψ))

(.7) �(ϕ→ �ϕ)→ ((ϕ→ Aψ)→ A(ϕ→ ψ))

(173) Meta-metarule: Rule of Modal Strictness. Daniel West has contributed
a handy meta-metarule that tells us when a theorem proved by non-modally
strict means can in fact be proved by modally strict means. We call this a meta-
metarule because the rule doesn’t govern any formula-forming or term-forming
operators, but strictly relates the theorems of two deductive systems ` and `�,
as these notions are defined in (59) and (60). The meta-metarule asserts that if
there is proof of a modally collapsed formula ϕ, then there is a modally strict
proof of ϕ:

Rule of Modal Strictness:
If ` ϕ and ` �(ϕ→ �ϕ), then `� ϕ
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Proof: Assume ` ϕ and ` �(ϕ → �ϕ). Since the T schema (45.2) is an
axiom, we also know ` �(ϕ → �ϕ) → (ϕ → �ϕ). From this and our
second assumption, it follows by (63.5) that ` ϕ → �ϕ. From this and
our first assumption, it similarly follows that ` �ϕ. So by the Converse
of Weak RN, which was proved in Remark (137), `� ϕ.

Note that since we have appealed to the Converse of Weak RN, which holds
only in the system as formulated in (59) and (60), the Rule of Modal Strictness
is not robust under all extensions of PLM. It will fail in any extension of the
system in which we’ve added modally fragile axioms whose actualizations are
also modally fragile; see the discussion in (137). But the rule will hold when
we extend the system with any necessary axioms.

This rule is especially useful if one has found a non-modally strict proof of
ϕ and then finds a proof that ϕ is modally collapsed. The rule then guarantees
there is a modally strict proof of ϕ. By means of this rule, we’ve been able
to find, in earlier drafts of this monograph, theorems that were incorrectly
marked as non-modally strict theorems. So it is important to keep the rule in
mind when proving what seem to be ?-theorems.

One other interesting consequence of this rule concerns a Rule of Substi-
tution (160.2). Recall that theorem (172.5) tells us that if both ψ and χ are
modally collapsed, then ψ ≡ χ is also modally collapsed. So, any time we are
dealing with modally collapsed formulas ψ and χ, we simply have to estab-
lish their material equivalence (not necessarily by modally strict means) to use
them with the Rule of Substitution. For if we have a proof of ψ ≡ χ for modally
collapsed ψ and χ, then by the Rule of Modal Strictness, we have a modally
strict proof of ψ ≡ χ. So by the Rule of Substitution (160.2), one can intersub-
stitute ψ and χ wherever they occur as subformulas.

(174) Theorems: Modal Collapse, Actuality, Descriptions, and Unique Ex-
istence. From theorem (139.6), i.e., Aϕ ≡ �Aϕ, and theorem (164.4), i.e.,
Aϕ ≡ ♦Aϕ, it follows that (.1) possibly actually ϕ if and only if necessarily
actually ϕ:

(.1) ♦Aϕ ≡ �Aϕ

Thus, Aϕ is subject to modal collapse and exhibits no modal distinctions.
Moreover, it follows by modally strict means that if ϕ is subject to modal

collapse, then Aϕ and ϕ are provably equivalent, i.e., (.2) if necessarily, if ϕ
then necessarily ϕ, then Aϕ if and only if ϕ:

(.2) �(ϕ→ �ϕ)→ (Aϕ ≡ ϕ)

Thus, (.2) provides conditions under which Aϕ and ϕ become equivalent by
modally strict reasoning. Indeed it follows, by modally strict means, that a
formula ϕ is subject to modal collapse if and only if Aϕ necessarily implies ϕ:
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(.3) �(ϕ→ �ϕ) ≡ �(Aϕ→ ϕ)

The significance of (.3) is that it provides a proof-theoretic justification for pro-
hibiting the application of RN to any instance of axiom (43)?. For (43)? asserts
Aϕ → ϕ, where this holds for any formula ϕ. If we could apply RN to con-
clude �(Aϕ→ ϕ), then by the right-to-left direction of (.3), we could conclude
�(ϕ→ �ϕ), for any formula ϕ. So an application of RN to (43)? would lead to
the general modal collapse of the system.165

There are also results concerning the conditions for modal collapse and
definite descriptions. One can prove, by modally strict means, that (.4) if nec-
essarily everything such that ϕ is necessarily such that ϕ, then if there is a
unique thing such that ϕ, then the x such that ϕ exists; and (.5) if necessarily
everything such that ϕ is necessarily such that ϕ, then x is identical to the x
such that ϕ if and only if ϕ is true and everything such that ϕ is identical to x:

(.4) �∀x(ϕ→ �ϕ)→ (∃!xϕ→ ıxϕ↓)

(.5) �∀x(ϕ → �ϕ)→ (x = ıxϕ ≡ (ϕ & ∀z(ϕzx → z = x))), provided z is substi-
tutable for x in ϕ and doesn’t occur free in ϕ

By appeal to the Barcan Formula, (.5) implies that if the condition for the
modal collapse of ϕ is universally true, i.e., if ∀x�(ϕ → �ϕ), then a modally
strict version of the Hintikka scheme (142)? holds.

Finally, we have (.6) if for every α, ϕ necessarily holds of α whenever it holds
of α, then if there is exactly one entity such that ϕ, then necessarily there is
exactly one entity such that ϕ:

(.6) �∀α(ϕ→ �ϕ)→ (∃!αϕ→ �∃!αϕ)

(175) Theorems: Identity and Actuality. The necessity of identity, i.e., α=β→
�α=β (125.1), implies that �(α=β→ �α=β), by Rule RN. From this fact, we
can easily show that (.1) individuals and n-ary relations (n ≥ 0) are identical
if and only if actually identical, and (2) individuals and n-ary relations are
non-identical if and only if actually non-identical:

(.1) α=β ≡ Aα=β, where α,β are variables of the same type

(.2) α,β ≡ Aα,β, where α,β are variables of the same type

(176) Lemmas: Actuality and Unique Existence. Since identity claims are
modally collapsed, the actuality operator commutes with the unique existence
quantifier:

(.1) A∃!αϕ ≡ ∃!αAϕ

165I’m indebted to Daniel West for this observation.
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Furthermore, it follows from (.1) and (152.1) that:

(.2) (ıxϕ)↓ ≡ A∃!xϕ

(.2) is especially important. If we can establish a claim of the form ∃!xϕ by
way of a modally strict proof, then the `� form of the Rule of Actualization
(RA) implies that there is a modally-strict proof of A∃!xϕ. Then, by (.2), we
can derive ıxϕ↓ as a modally-strict theorem. This reasoning will play a crucial
role when we establish, by modally strict means, that canonical descriptions of
the form ıx(A!x&∀F(xF ≡ ϕ)) are significant (252).

(177) Theorem: A Distinguished Description Involving Identity. The condi-
tions for the modal collapse of α=β were cited in the proof of theorem (175.1).
It also plays a key role in the proof of the following theorems, namely, (.1) the
individual identical to y exists, and (.2) y is identical to the individual identical
to y:

(.1) ıx(x=y)↓

(.2) y = ıx(x=y)

These are modally-strict theorems and though they appears to be trivial, keep
in mind that existence and identity are defined notions and that definite de-
scriptions are axiomatized in terms of the actuality operator.

It is worth observing that Frege used a somewhat more sophisticated ver-
sion of (.2) as an axiom governing definite descriptions. In his 1893, he intro-
duces (§11) the function \ξ and uses it to assert Basic Law VI (§18), which we
may write as: y = \έ(ε = y). In this axiom, the function \ξ has been applied
to έ(ε = y), which is the extension of a concept under which falls one and only
one object, namely, y. Given Frege’s explanation of the function \ξ in §11, we
can read Law VI as: y is identical to the unique member of the extension of the
concept being identical to y. By contrast, (.2) is a theorem and asserts that y is
identical to the individual identical to y; the description operator isn’t applied
to an expression for an extension of a concept.

(178) Theorem: N -ary Encoding and Modality. The modal logic of encoding
yields both (.1) if x1, . . . ,xn encode Fn, then they necessarily encode Fn, and (.2)
if x1, . . . ,xn fail to encode Fn, then they necessarily fail to encode Fn:

(.1) x1 . . .xnF
n→ �x1 . . .xnF

n

(.2) ¬x1 . . .xnF
n→ �¬x1 . . .xnF

n

It is relatively easy to derive (.1) from axioms (50) and (51), and the proof of
(.2) is simplified by appealing to rule (166.2).
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(179) Theorem: Modal Collapse of Encoding Predications. From the rigid-
ity of unary encoding axiom (51) and the rigidity of n-ary encoding theorem
(178.1), we may prove some important modally-strict theorems pertaining to
the modal collapse of encoding predications, for n ≥ 1: (.1) possibly x1, . . . ,xn
encode Fn iff necessarily x1, . . . ,xn encode Fn; (.2) x1, . . . ,xn encode Fn iff neces-
sarily x1, . . . ,xn encode Fn; (.3) possibly x1, . . . ,xn encode Fn iff x1, . . . ,xn encode
Fn; (.4) x1, . . . ,xnF

n and y1 . . . ynG
n are materially equivalent iff �x1, . . . ,xnF

n and
�y1 . . . ynG

n are materially equivalent; (.5) x1, . . . ,xnF
n and y1 . . . ynG

n are neces-
sarily equivalent iff �x1 . . .xnF

n and �y1 . . . ynG
n are materially equivalent; (.6)

x1, . . . ,xnF
n and y1 . . . ynG

n are materially equivalent iff it is necessary that they
are materially equivalent; (.7) x1, . . . ,xn fail to encode Fn iff necessarily x1, . . . ,xn
fail to encode Fn; (.8) possibly x1, . . . ,xn fail to encode Fn iff x1, . . . ,xn fail to en-
code Fn; (.9) possibly x1, . . . ,xn fail to encode Fn iff necessarily x1, . . . ,xn fail to
encode Fn; and (.10) actually x1, . . . ,xn encode Fn iff x1, . . . ,xn encode Fn:

(.1) ♦x1 . . .xnF
n ≡ �x1 . . .xnF

n (n ≥ 1)

(.2) x1 . . .xnF
n ≡ �x1 . . .xnF

n (n ≥ 1)

(.3) ♦x1 . . .xnF
n ≡ x1 . . .xnF

n (n ≥ 1)

(.4) (x1 . . .xnF
n ≡ y1 . . . ynG

n) ≡ (�x1 . . .xnF
n ≡ �y1 . . . ynG

n) (n ≥ 1)

(.5) �(x1 . . .xnF
n ≡ y1 . . . ynG

n) ≡ (�x1 . . .xnF
n ≡ �y1 . . . ynG

n) (n ≥ 1)

(.6) (x1 . . .xnF
n ≡ y1 . . . ynG

n) ≡ �(x1 . . .xnF
n ≡ y1 . . . ynG

n) (n ≥ 1)

(.7) ¬x1 . . .xnF
n ≡ �¬x1 . . .xnF

n (n ≥ 1)

(.8) ♦¬x1 . . .xnF
n ≡ ¬x1 . . .xnF

n (n ≥ 1)

(.9) ♦¬x1 . . .xnF
n ≡ �¬x1 . . .xnF

n (n ≥ 1)

(.10) Ax1 . . .xnF
n ≡ x1 . . .xnF

n (n ≥ 1)

(.1) is especially significant, given the entanglement of logic and metaphysics.
Logically, (.1) is a fact about encoding predications, namely, that they are sub-
ject to modal collapse; the possibility and necessity of x1 . . .xnF

n are equivalent.
Metaphysically, (.1), is a fact about abstract objects, namely, which relations
abstract objects possibly encode is not relative to any circumstance.

(.4) – (.6) are also interesting. (.4) tells us that if two encoding formulas
are equivalent, then their necessitations are equivalent. (.5) is significant not
because of the left-to-right direction, which is just an instance (158.6), but be-
cause of its right-to-left direction. In general, �ϕ ≡ �ψ doesn’t materially im-
ply the claim �(ϕ ≡ ψ), as we saw in the brief discussion following (158.6). But
when ϕ and ψ are two encoding claims, such as x1 . . .xnF

n and y1 . . . ynG
n, the
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implication holds because both encoding claims are subject to modal collapse,
as we would expect from the discussion of theorem (172.4). (.6) is a simple but
interesting consequence of (.4) and (.5).

Finally, (.10) is significant because it is a modally strict theorem and has
the form Aϕ ≡ ϕ, but is provable without an appeal to the non-modally strict
theorem schema having this form (130.2)?.

Exercise: Use (.6) to prove ♦(x1 . . .xnF
n ≡ y1 . . . ynG

n) ≡ (x1 . . .xnF
n ≡ y1 . . . ynG

n),
for n ≥ 1, and that ♦(x1 . . .xnF

n ≡ y1 . . . ynG
n) ≡ �(x1 . . .xnF

n ≡ y1 . . . ynG
n).

(180) Theorems: Being Ordinary and Being Abstract are both Modally Col-
lapsed.

(.1) O!x→ �O!x

(.2) A!x→ �A!x

(.3) ♦O!x→O!x

(.4) ♦A!x→ A!x

(.5) ♦O!x ≡ �O!x

(.6) ♦A!x ≡ �A!x

(.7) O!x ≡ AO!x

(.8) A!x ≡ AA!x

The last two theorems are especially interesting. They are commuted claims
of the form Aϕ ≡ ϕ that can be proved by modally-strict means, without an
appeal to theorem (130.2)?.

9.10 The Theory of Relations

In this subsection, we describe some important theorems that govern proper-
ties, relations, and propositions.

9.10.1 Principles Governing Complex Relation Terms

(181) Theorems: Strengthened β-Conversion. The axiom β-Conversion (48.2)
governs both λ-expressions of the specific form [λx1 . . .xn ϕ] and exemplifica-
tion formulas of the specific form [λx1 . . .xn ϕ]x1 . . .xn, for n ≥ 1. But given
the Rule of Alphabetic Variants (114), we may now derive a version of β-
Conversion for every λ-expression, no matter what distinct individual vari-
ables are bound by the λ and no matter what individual variables appear as
primary terms in the exemplification formula:
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Strengthened β-Conversion: (n ≥ 1)
[λµ1 . . .µn ϕ]↓→ ([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ

ν1,...,νn
µ1,...,µn ),

provided µ1, . . . ,µn are any distinct individual variables and ν1, . . . ,νn are
any individual variables substitutable, respectively, for µ1, . . . ,µn in ϕ

The proof is involved and requires that one allow for the presence of free vari-
ables in λ-expressions. Note that if we let νi be µi for all i, 1 ≤ i ≤ n, then we
have the following:

Special Case: (n ≥ 1)
[λµ1 . . .µn ϕ]↓→ ([λµ1 . . .µn ϕ]µ1 . . .µn ≡ ϕ),

provided µ1, . . . ,µn are any distinct individual variables.

Clearly, this holds because (a) the definition of substitutable for guarantees the
µi (1 ≤ i ≤ n) is substitutable for itself in ϕ, and (b) ϕ

µ1,...,µn
µ1,...,µn is just ϕ.

(182) Remark: Digression on Free Variables in λ-Expressions. The theorems
governing n-ary relations (n ≥ 1) developed below are sometimes expressed us-
ing λ-expressions that may or may not have free variables. It may prove useful
to discuss some examples of such terms. As our first example, consider the
following, which is a perfectly good instance of Strengthened β-Conversion, in
which two free variables, F and z, occur in the λ-expression:

(ξ) [λx¬Fxz]↓→ ([λx¬Fxz]y ≡ ¬Fyz)

This tells us, relative to some F and z, that if [λx ¬Fxz] is significant, then an
object y exemplifies [λx¬Fxz] if and only if ¬Fyz. By GEN, (ξ) implies:

∀y([λx¬Fxz]↓→ ([λx¬Fxz]y ≡ ¬Fyz))

and since y doesn’t occur free in the antecedent of the conditional, we may, by
theorem (95.2), move the quantifier ∀y across the antecedent to conclude that:

(ζ) [λx¬Fxz]↓→ ∀y([λx¬Fxz]y ≡ ¬Fyz)

This tells us, relative to some F and z, that if [λx¬Fxz] is significant, then every
object y is such that y exemplifies [λx¬Fxz] if and only if ¬Fyz. And since (ζ)
was derived from no assumptions, it holds for all F and for all z, by GEN:

∀F∀z([λx¬Fxz]↓ → ∀y([λx¬Fxz]y ≡ ¬Fyz))

Here, we may not move the quantifiers ∀F and ∀z across the antecedent, since
the variables F and z occur free there. But by theorem (99.14), we may dis-
tribute the quantifiers ∀F and ∀z over the conditional to conclude:

∀F∀z([λx¬Fxz]↓)→∀F∀z∀y([λx¬Fxz]y ≡ ¬Fyz))
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Note that in this particular example, the antecedent is an axiom; it is a uni-
versal closure of an instance of (39.2). Hence, in this example, we can derive a
completely general form of β-Conversion, namely:

∀F∀z∀y([λx¬Fxz]y ≡ ¬Fyz)

in which all the free variables in the matrix [λx¬Fxz]y ≡ ¬Fyz are universally
quantified.

Our second example is related to the first; the following is a perfectly good
instance of Strengthened β-conversion (181) where, for simplicity, we may take
R to be a constant:

[λx¬Rxy]↓ → ([λx¬Rxy]y ≡ ¬Ryy)

This tells us, relative to some object y, that if [λx ¬Rxy] is significant, then y
exemplifies [λx¬Rxy] if and only if ¬Ryy. By GEN, this holds for all y, i.e.,

(ϑ) ∀y([λx¬Rxy]↓ → ([λx¬Rxy]y ≡ ¬Ryy))

For reasons noted previously, we may not move the quantifier across the an-
tecedent to conclude:

[λx¬Rxy]↓→ ∀y([λx¬Rxy]y ≡ ¬Ryy))

But we may distribute the quantifier ∀y in (ϑ) over the conditional to infer:

∀y([λx¬Rxy]↓)→∀y([λx¬Rxy]y ≡ ¬Ryy)

Again, in this case, the antecedent is an axiom. Consequently, we may derive a
general version of β-Conversion for this particular λ-expression, namely:

∀y([λx¬Rxy]y ≡ ¬Ryy)

One important moral to draw in these two cases is that it is important to keep
track of any variables that occur free in λ-expressions. If the variable α occurs
free in [λxϕ] and [λxϕ]↓ is assumed rather than provable as a theorem, we may
not infer ∀α([λxϕ]y ≡ ϕyx ). If [λxϕ]↓ is provable as a theorem, then by GEN, it
follows that ∀α([λxϕ]↓) and in this case, we can then infer ∀α([λxϕ]y ≡ ϕyx ).

(183) Theorems: Corollaries to Strengthened β-Conversion. The foregoing Re-
mark should help one to understand the significance of the following corol-
laries of strengthened β-Conversion. These hold for any variables meeting the
stated conditions:

(.1) ∀ν1 . . .∀νn([λµ1 . . .µn ϕ]↓) →∀ν1 . . .∀νn([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn ),

provided ν1, . . . ,νn are substitutable, respectively, for µ1, . . . ,µn in ϕ

(.2) [λµ1 . . .µn ϕ]↓→ ∀ν1 . . .∀νn([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn ),

provided none of ν1, . . . ,νn occur free in [λµ1 . . .µn ϕ] and ν1, . . . ,νn are
substitutable, respectively, for µ1, . . . ,µn in ϕ
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(184) Derived Rules: Simple Conditions for Classical β-Conversion. In light
of the previous theorems, we formulate simple, derived rules of inference for
β-Conversion that apply to closed λ-expressions only. Let κ1, . . . ,κn be any in-
dividual terms. Then we have:

(.1) Rule
−→
βC

(.a) [λµ1 . . .µn ϕ]κ1 . . .κn ` ϕ
κ1,...,κn
µ1,...,µn

(.b) ¬ϕκ1,...,κn
µ1,...,µn ` ¬[λµ1 . . .µn ϕ]κ1 . . .κn

provided [λµ1 . . .µnϕ] has no free variables and κ1, . . . ,κn are any individ-
ual terms substitutable, respectively, for µ1, . . . ,µn in ϕ

(.2) Rule
←−
βC

(.a) [λµ1 . . .µn ϕ]↓ , κ1↓ , . . . , κn↓ , ϕ
κ1,...,κn
µ1,...,µn ` [λµ1 . . .µn ϕ]κ1 . . .κn

(.b) [λµ1 . . .µn ϕ]↓ , κ1↓ , . . . , κn↓ , ¬[λµ1 . . .µn ϕ]κ1 . . .κn ` ¬ϕ
κ1,...,κn
µ1,...,µn

provided [λµ1 . . .µnϕ] has no free variables and κ1, . . . ,κn are any individ-
ual terms substitutable, respectively, for µ1, . . . ,µn in ϕ

One could try to make these rules stronger, so as to allow for the presence of
free variables in [λµ1 . . .µn ϕ] under certain circumstances. But, in what fol-
lows, we won’t attempt to strengthen the rules in this way; if we should ever
need to reason about λ-expressions with free variables, we’ll do so straight
from the axioms and theorems that govern them.

(185) Metadefinitions: η-Variants. We now work our way towards theorems
(186) and (187), which are further consequences of η-Conversion (48.3). Our
goal over the next few items is to prove that one can always ‘reduce’ any λ-
expression that contains an elementary λ-expression as a subterm. For exam-
ple, not only want to be able to prove that [λx Fx] = F, but also the identity
claim [λy ¬[λx Fx]y] = [λy ¬Fy]. The λ-expressions on the left side of these
identity claims are η-reducible. By contrast, it will become clear that a λ-
expression such as [λy [λz¬P z]y→ Say] is η-irreducible – none of the complex
λ-expressions occurring in this example are subject to η-Conversion.

Let ρ be any complex n-ary relation term (n ≥ 0) so that both ρ and Π range
over relation terms. Then we say:

(.1) ρ is elementary if and only if ρ has the form [λν1 . . .νnΠ
nν1 . . .νn], where

Πn is any n-ary relation term (n ≥ 0) and ν1, . . . ,νn are distinct individual
variables none of which occur free in Πn.

Note that when n = 0, [λΠ0] is elementary. Furthermore, we say:
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(.2) ρ is an η-expansion of Πn if and only if ρ is the elementary λ-expression
[λν1 . . .νnΠ

nν1 . . .νn]

(.3) Πn is the η-contraction of ρ if and only if ρ is the elementary λ-expression
[λν1 . . .νnΠ

nν1 . . .νn]

Note that ρ may have many different η-expansions, depending on the choice of
ν1, . . . ,νn, but an elementary λ-expression ρ can have only one η-contraction.

Now where ρ and ρ′ are any n-ary relation terms (n ≥ 0), we say:

(.4) ρ′ is an immediate (i.e., one-step) η-variant of ρ with respect to Πn just in
case either (a) Πn is a subterm of ρ and ρ′ results from ρ by replacing Πn

by an η-expansion [λν1 . . .νnΠ
nν1 . . .νn] or (b) the elementary expression

[λν1 . . .νnΠ
nν1 . . .νn] is a subterm of ρ and ρ′ results from ρ by replacing

[λν1 . . .νnΠ
nν1 . . .νn] by its η-contraction Πn.

Clearly, if ρ′ is an immediate η-variant of ρ with respect to Πn, then ρ is an
immediate η-variant of ρ′ with respect to Πn. Note that definition (.4) even
applies in the case where ρ is ϕ and ρ′ is [λ ϕ], or vice versa. Thus, ϕ and
[λϕ] are immediate η-variants of each other with respect to ϕ (which is a 0-ary
relation term, according to our BNF). And [λx P x& [λ p]] and [λx P x& p] are
immediate η-variants of each other with respect to p.

Finally we say, for n-ary relation terms ρ and ρ′:

(.5) ρ′ is an η-variant of ρ whenever there is a finite sequence of n-ary relation
terms ρ1, . . . ,ρm (m ≥ 1) with ρ = ρ1 and ρ′ = ρm such that, for every i such
that 1 ≤ i ≤ m − 1, there is some Πn (n ≥ 0) such that ρi+1 is an imme-
diate η-variant of ρi with respect to Πn (i.e., such that every member of
the sequence is an immediate η-variant of the preceding member of the
sequence with respect to some Πn).

(.6) ρ is η-irreducible just in case no relation subterm of ρ is subject to η-
contraction (i.e., none of the relation subterms of ρ have an η-contraction).

Thus, the syntactic relation ρ is an η-variant of ρ′ is the transitive closure of the
relation ρ is an immediate η-variant of ρ′.166 We now illustrate these definitions
with examples:

η-Variants of Elementary λ-Expressions (Expansion/Contraction Pairs):

• [λxyz F3xyz] / F3

166Intuitively, the transitive closure of R is that relation R′ that relates any two elements in a
chain of R-related elements. That is, for any elements x and y of a domain of R-related elements,
xR′y holds whenever there exist z0, z1, . . . , zn such that (i) z0 = x, (ii) zn = y, and (iii) for all 0 ≤ i < n,
ziRzi+1.
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• [λx [λy ¬Fy]x] / [λy ¬Fy]

• [λxy [λuv �∀F(Fu ≡ Fv)]xy] / [λuv �∀F(Fu ≡ Fv)]

• [λp] / p

• [λ¬P a] / ¬P a

Immediate η-Variants

• All of the above

• [λy [λz P z]y→ Say] / [λy P y→ Say]

• [λy P y→ [λuv Suv]ay] / [λy P y→ Say]

• [λy [λz P z]y→ [λuv Suv]ay] / [λy [λz P z]y→ Say]

• [λy [λz P z]y→ [λuv Suv]ay] / [λy P y→ [λuv Suv]ay]

• [λy [λp]] / [λy p]

• [λx1 . . .xn [λ P a]] / [λx1 . . .xn P a]

• [λz P z]y→ Say / P y→ Say

• [λ [λz P z]y] / [λ P y]

η-Variant Pairs

• All of the above

• [λy [λz P z]y→ [λuv Suv]ay] / [λy P y→ Say]

• [λz P z]y→ [λuv Suv]ay / P y→ Say

• [λy [λz P z]y→ Say] / [λy P y→ [λuv Suv]ay]

With a thorough grip on the notion of η-variants, we may prove the following
theorems. Note: the above examples are simple examples since none of the
λ-expressions have non-denoting subterms.

(186) Lemmas: Useful Facts About η-Conversion. We’ve already proved, for 0-
ary relation terms, that η-Conversion holds unconditionally; theorem (111.1)
asserts [λ ϕ] = ϕ. But for n-ary relation terms where n ≥ 1, η-Conversion is
conditional on the significance of the relation term to be identified with its
η-expansion:

(.1) Πn ↓ → [λx1 . . .xn Π
nx1 . . .xn] = Πn, where x1, . . . ,xn are distinct individ-

ual variables and Πn is any n-ary relation term (n ≥ 0) in which none of
x1, . . . ,xn occur free

A somewhat more general form of (.1) holds for elementary λ-expressions con-
structed with any individual variables ν1, . . . ,νn, not just those contructed with
x1, . . . ,xn:
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(.2) Πn↓ → [λν1 . . .νnΠ
nν1 . . .νn] = Πn, where ν1, . . . ,νn are any distinct indi-

vidual variables and Πn is any n-ary relation term (n ≥ 0) in which none
of ν1, . . . ,νn occur free

So while [λx∃G(xG&¬Gx)]↓ → ([λz [λx∃G(xG&¬Gx)]z] = [λx∃G(xG&¬Gx)])
is an instance of (.2), we can’t detach the consequent because it is provable that
¬[λx ∃G(xG&¬Gx)]↓ (192.1).

(187) Metarule: Conditions Under Which η-Conversion holds for Significant
η-Variants. Where ρ is any complex relation term, the most general form of
η−Conversion is the following:

Rule of η-Conversion (ηC)
If (a) ` ρ↓, (b) ρ′ is an η-variant of ρ witnessed by the sequence ρ1, . . . ,ρm,
for which ρ = ρ1 and ρ′ = ρm (m ≥ 1), and (c) `Πn↓ (n ≥ 0) whenever ρi+1

is an immediate η-variant of ρi with respect to Πn, for each i such that
1 ≤ i ≤m− 1, then ` ρ=ρ′.

This metarule allows us to collapse all the η-variants within a complex λ-
expression in a single stroke, provided that each of the elementary λ-expres-
sions involved is being collapsed to a significant relation term. It allows us to
give a handy, 2-line proof of the equation between [λy [λzP z]y→ [λuvSuv]ay]
and its η-irreducible form [λy P y→ Say]:

(a) [λy [λz P z]y→ [λuv Suv]ay]↓ (39.2)
(b) [λy [λz P z]y→ [λuv Suv]ay] = [λy P y→ Say] ηC, (a)

This is an instance of the rule because ` P ↓ and ` S ↓ and so the collapse of
[λy [λz P z]y → [λuv Suv]ay] to [λy P y → Say] goes by way of the sequence
[λy [λz P z]y → [λuv Suv]ay], [λy P y → [λuv Suv]ay], [λy P y → Say]. Each
adjacent pair of expressions in the sequence satisfies clause (c) of the rule.

So, under the conditions stated by the metarule, we may collapse some η-
variants to their η-irreducible forms to simplify formulas.

(188) Theorems: Relation Terms That Differ by Co-Denoting Descriptions. It
should be clear why we state these next theorems in the formal mode. (.1) If a
significant λ-expression contains the description ıxϕ, and ıxϕ = ıxψ, then the
result of substituting ıxψ for one or more occurrences of ıxϕ in the original
λ-expression yields a λ-expression which can be put into an equation with the
original; (.2) if ıxϕ = ıxψ, then the result of substituting ıxψ for one or more
occurrences of ıxϕ in a 0-ary relation term Π containing ıxϕ yields a 0-ary
relation term Π′ such that Π = Π′:

(.1) [λz1 . . . zn χ
ıxϕ
y ]↓& ıxϕ= ıxψ → [λz1 . . . zn χ

ıxϕ
y ]=[λz1 . . . zn χ

′],
provided ıxϕ and ıxψ are both substitutable for y in [λz1 . . . znχ] and χ′ is
the result of substituting ıxψ for one or more occurrences of ıxϕ in χıxϕy
(n ≥ 1)
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(.2) ıxϕ = ıxψ → Π
ıxϕ
y = Π′, provided Π is any 0-ary relation term, ıxϕ and

ıxψ are both substitutable for y in Π, and Π′ is the result of substituting
ıxψ for one or more occurrences of ıxϕ in Π

ıxϕ
y .

Intuitively, these theorems tell us that when we have two descriptions that
denote the same object, then any two relation terms that differ only by substi-
tuting one description for the other (not necessarily uniformly) can be put into
an equation.

Some examples might prove useful. From the fact that the property lands
on the moon of Earth exists ([λz LzıxMxe]↓) and the fact that the moon of Earth
is identical to the moon of the planet inhabited by homo sapiens (ıxMxe =
ıy(Myız(P z& Izh))), (.1) allows us to infer that the property lands on the moon
of Earth is identical to the property lands on the moon of the planet inhabited
by homo sapiens, i.e., [λz LzıxMxe]=[λz Lzıy(Myız(P z& Izh))]). From ıxMxe=
ıy(Myız(P z&Izh)), it follows by (.2) that the proposition that Armstrong lands on
the moon of Earth ([λLaıxMxe]) is equal to the proposition that Armstrong lands
on the moon of the planet inhabited by homo sapiens ([λLaıy(Myız(P z& Izh))]).

It is important to remember here that the formal representations just of-
fered are not intended to be sensitive to the cognitive significance or Fregean
sense of the English noun phrases ‘moon of Earth’ and ‘moon of the planet in-
habited by homo sapien’. Mutatis mutandis, they are not intended to be sensitive
to the cognitive significance or Fregean sense of the descriptions ‘the moon of
the Earth’ and ‘the moon of the planet inhabited by homo sapiens’, nor to be sen-
sitive to the cognitive significance or Fregean sense of the verb phrases ‘landed
on the moon of Earth’ and ‘landed on the moon of the planet inhabited by homo
sapiens’. So our formal representations are not intended to represent how these
expressions function in intensional contexts like “S believes that Armstrong
landed on the moon of Earth” and “S believes that Armstrong landed on the
moon of the planet inhabited by homo sapiens”. Our formal representations
of these inferences capture the de re reading on which only the denotation of a
(significant, natural language) description is relevant to both (a) the identity
of the property denoted by a noun or verb phrase in which that description
occurs, and (b) the identity of the proposition denoted by a sentence in which
that description occurs. Typed object theory is needed to analyze the Fregean
sense of a noun or verb phrase and explain why distinct such phrases can sig-
nify the same entity but have different senses (and hence distinct cognitive
values). Consequently, we won’t pursue this issue any further here; see Zalta
1988 (Part IV).
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9.10.2 Facts About Relations

(189) Theorem: Equivalence and Identity of Properties. The following theo-
rem establishes that our theory of properties constitutes an extensional theory
of hyperintensional entities, since it asserts that properties (which are more
fine-grained than intensions classically understood, i.e., more fine-grained than
functions from possible worlds to sets of individuals) are identical whenever
they are materially equivalent in the encoding sense:

F1 =G1 ≡ ∀x(xF1 ≡ xG1)

The proof of this theorem is relatively easy, given theorems (179.2) and (179.5).
The left-to-right direction is trivial, but for the right-to-left direction, one can
straightforwardly show that ∀x(xF1 ≡ xG1) implies �∀x(xF1 ≡ xG1), which by
theorem (116.1), implies F1 =G1.167

The important point here, then, is that when we have to prove that proper-
ties F and G are identical, we need not prove that they are necessarily encoded
by the same objects, but only that they are encoded by the same objects.

(190) Remark: A Digression on the Identity of Relations. Our theory of iden-
tity for n-ary relations now consists of the following principles (some of which
are simplifications of others):

• F=G ≡df F↓&G↓&�∀x(xF ≡ xG) (23.2)

• F=G ≡df F↓&G↓&
∀y1 . . .∀yn−1([λx Fxy1 . . . yn−1]=[λx Gxy1 . . . yn−1] &

[λx Fy1xy2 . . . yn−1]=[λx Gy1xy2 . . . yn−1] & . . .&
[λx Fy1 . . . yn−1x]=[λx Gy1 . . . yn−1x]) (23.3)

• p=q ≡df p↓& q↓& [λx p]=[λx q] (23.4)

• [λx1 . . .xn ϕ]↓ → [λx1 . . .xn ϕ] = [λx1 . . .xn ϕ]′,
where [λx1 . . .xn ϕ]′ is any alphabetic variant of [λx1 . . .xn ϕ] (48.1)

• [λx1 . . .xn F
nx1 . . .xn] = Fn (48.3)

• F=G ≡ �∀x(xF ≡ xG) (116.1)

167Note that we cannot generalize the proof of the right-to-left direction, i.e., we cannot gen-
eralize the proof of ∀x(xF1 ≡ xG1) → F1 =G1 to establish ∀x1 . . .∀xn(x1 . . .xnF

n ≡ x1 . . .xnG
n)→

Fn=Gn for n ≥ 2. Though one can show:

∀x1 . . .∀xn(x1 . . .xnF
n ≡ x1 . . .xnG

n)→ �∀x1 . . .∀xn(x1 . . .xnF
n ≡ x1 . . .xnG

n)

this isn’t sufficient for n-ary relation identity when n ≥ 2. For (23.3) requires us to show that each
way of projecting Fn and Gn onto n−1 objects yields identical properties.
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• Fn=Gn ≡ (n ≥ 2)
∀y1 . . . ∀yn−1([λx Fnxy1 . . . yn−1]=[λx Gnxy1 . . . yn−1] &

[λx Fny1xy2 . . . yn−1]=[λx Gny1xy2 . . . yn−1] & . . .&
[λx Fny1 . . . yn−1x]=[λx Gny1 . . . yn−1x]) (116.2)

• p=q ≡ [λy p]=[λy q] (116.3)

• p=q ≡ [λp]=[λq] (Exercise)

• [λϕ]=ϕ (111.1)

• [λϕ]=[λϕ]′, where [λϕ] and [λϕ]′ are alphabetic variants (111.3)

• ϕ=ϕ′, where ϕ and ϕ′ are alphabetic variants (111.4)

• Πn↓→ [λν1 . . .νnΠ
nν1 . . .νn] = Πn, where ν1, . . . ,νn are any

distinct individual variables and Πn is any n-ary relation
term (n ≥ 0) in which none of ν1, . . . ,νn occur free (186.2)

• Rule ηC (187)

• F=G ≡ ∀x(xF ≡ xG) (189)

Each of these principles provides a perspective on the question: under what
conditions are relations identical?

Note that these principles do not constitute a procedure for determining
whether an arbitrary pair of (nominalized) predicates of natural language de-
note the same property or relation, nor a procedure for determining whether
the members of such pairs denote at all. We’ve seen, for example, that the the-
ory does not predict that the property being a woodchuck is the same property
as being a groundhog. This is a theoretical identity that can’t be established a
priori. Similarly, if we represent being red and round as [λx R1x&R2x], repre-
sent being round and red as [λx R2x & R1x], then although our theory tells us
that both formal expressions are significant, it doesn’t force these expressions
to denote the same property; it leaves one free to assert or deny this particular
identity. And should one believe there is an over-riding reason to do so, one
could assert ∀F∀G([λx Fx&Gx] = [λxGx&Fx]) and other, similar principles.

(191) Theorems: Comprehension Principles for Relations and Properties. The
following is a theorem schema derivable directly from the axiom of β-Conver-
sion (48.2) and constitutes a comprehension principle for relations:

(.1) ∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), where n ≥ 1, Fn doesn’t occur free in ϕ,
and none of x1, . . . ,xn occur in encoding position in ϕ.

When n=1, (.1) becomes a comprehension principle for properties:
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(.2) ∃F�∀x(Fx ≡ ϕ), provided F doesn’t occur free in ϕ and x doesn’t occur
free in encoding position in ϕ.

We’ll derive a comprehension principle for propositions a bit later, in (194).

(192) Theorems: The Paradoxical λ-Expressions Don’t Denote Relations. It is
important to see that the λ-expression that leads to the Clark/Boolos paradox
is provably empty:

(.1) ¬[λx ∃G(xG&¬Gx)]↓

We also know that (.2) there is no property that is exemplified by all and only
the objects x that encode a property that x fails to exemplify:

(.2) ¬∃F∀x(Fx ≡ ∃G(xG&¬Gx))

Moreover, our system implies that the λ-expression which leads to the McMich-
ael-Boolos paradox, namely, [λz z=y], doesn’t denote a property for every ob-
ject y:

(.3) ¬∀y([λz z=y]↓)

Note that this does not assert that ∀y¬([λz z=y]↓). We’ll prove later that if y is
ordinary, being identical to y exists, i.e., O!y→ [λz z=y]↓. See theorem (240.2).

Consequently, our system implies (.4) it is not the case that for every object
y, there exists a property exemplified by all and only the individuals identical
to y:

(.4) ¬∀y∃F∀x(Fx ≡ x=y)

Clearly, it also follows that it is not the case that there is a relation F that objects
x and y exemplify whenever they are identical:

(.5) ¬∃F∀x∀y(Fxy ≡ x=y)

We’ll see later, however, in (229), that the relation, being an x and y such that
x and y are identical ordinary objects, exists. Thus, there are identity relations
that hold among the objects of certain restricted subdomains. We’ll see several
other such relations later in this text.

(193) ?Theorem: The Kirchner Paradox is Blocked. (.1) If everything is G, then
being an x such that the individual y, which is both identical to x and such that x
fails to exemplify a property it encodes, exemplifies G doesn’t exist:

(.1) ∀xGx→¬[λxGıy(y=x&∃H(xH &¬Hx))]↓

Since there are properties that are universal, we can conclude that (.2) there are
properties for which the λ-expressions leading to the Kirchner paradox fail to
be significant:
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(.2) ∃G(¬[λxGıy(y=x&∃H(xH &¬Hx))]↓)

Exercise: Develop and justify answers to the questions: Are there modally
strict proofs of (.1) and (.2)?

(194) Theorems: Comprehension Principle for Propositions. From the fact
that every formula is a term that is provably significant (104.2), we obtain the
following comprehension principle for propositions:

∃p�(p ≡ ϕ),
where ϕ is any formula with no free occurrences of p.

This comprehension principle and theorem (116.2) jointly offer a precise the-
ory of propositions. On this theory, the claim that propositions are necessarily
equivalent, i.e., �(p ≡ q), does not entail that p and q are identical. One may
consistently assert that there are propositions p and q such that �(p≡q)&p,q.

(195) Theorems: Conditions Implying Distinctness of Relations. For any n ≥ 0,
it is straightforward to show that (.1) relations Fn and Gn that might fail to be
materially equivalent are distinct, and (.2) if it is possible that Fn’s being such
that ϕ is not equivalent to Gn’s being such that ϕ, then Fn and Gn are distinct:

(.1) ♦¬∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)→ Fn,Gn (n ≥ 0)

(.2) ♦¬(ϕ ≡ ϕ′)→ Fn,Gn, whenever Gn is substitutable for Fn in ϕ and ϕ′ is
the result of substituting Gn for one or more free occurrences of Fn in ϕ.
(n ≥ 0)

As easy corollaries, we have (.3) if Fn and Gn aren’t materially equivalent, they
are distinct; and (.4) if Fn’s being such that ϕ is not equivalent to Gn’s being
such that ϕ, then Fn and Gn are distinct:

(.3) ¬∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)→ Fn,Gn

(.4) ¬(ϕ ≡ ϕ′)→ Fn ,Gn, whenever Gn is substitutable for Fn in ϕ and ϕ′ is
the result of substituting Gn for one or more free occurrences of Fn in ϕ.

(196) Definition: Definition of Relation Negation. We define Fn (‘not-Fn’) as
being x1, . . . ,xn such that it is not the case that Fnx1 . . .xn (n ≥ 0):

Fn =df [λx1 . . .xn ¬Fnx1 . . .xn] (n ≥ 0)

Given the inferential role of definitions, as described in (73), the following
theorems holds.

(197) Theorems: Facts about the Relation Negation Operator. It is axiomatic
and so a theorem that (.1) [λx1 . . .xn ¬Πnx1 . . .xn]↓ for any appropriate n-ary
relation term Πn (n ≥ 0). So it follows, for any relation term Π obtained by
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applying the negation operator to a relation term Π, that (.2) Π can be identi-
fied with its definiens, thereby implying that (.3) every negated relation term
is significant:

(.1) [λx1 . . .xn ¬Πnx1 . . .xn]↓, where Πn is any n-ary relation term in which
x1, . . . ,xn don’t occur free

(.2) Π = [λx1 . . .xn ¬Πx1 . . .xn], where Π is any n-ary relation term (n ≥ 0) in
which x1, . . . ,xn don’t occur free.

(.3) Π↓, for any relation term Π

It may be of interest to consider the relation that [λx1 . . .xn ¬Πnx1 . . .xn] sig-
nifies when ¬(Π↓) (assuming x1, . . . ,xn don’t occur free in Π). In that case,
the contrapositive of axiom (39.5.a), which tells us that ¬(Π↓) → ¬Πx1 . . .xn
(n ≥ 0), implies ¬Πx1 . . .xn. This holds for any x1, . . . ,xn, and so in the case
we’re considering, the λ-expression [λx1 . . .xn ¬Πnx1 . . .xn] signifies a universal
n-ary relation, i.e., one exemplified by every sequence of n objects. So, even in
the case where Π fails to be significant, Π signifies what [λx1 . . .xn¬Πnx1 . . .xn]
signifies.

(198) Remark: A Reminder About Definitions by Identity. If the previous theo-
rem comes as a surprise, then it would serve well to review the conventions for,
and inferential role of, definitions-by-=, as described in (17), (73), and (120).
First, convention (17.2) permits us to use definition (196) instead of the fol-
lowing, less easy-to-read and less user-friendly definition, which is otherwise
strictly required:

Πn =df [λν1 . . .νn ¬Πnν1 . . .νn], (n ≥ 0)
where ν1, . . . ,νn are any distinct variables that don’t occur free in Πn

Thus, (196) stipulates that the overline is a relation term-forming operator that
applies to every relation term whatsoever.

Second, note that (196) has a single free variable, Fn, in both the definiens
and definiendum, and so has the form τ(α) =df σ (α). The Rule of Definition by
Identity (73) then guarantees, for any n-ary relation term Π (n ≥ 0) in which
x1, . . . ,xn don’t occur free, that the following is a necessary axiom:

(ϑ) ([λx1 . . .xn ¬Πx1 . . .xn]↓ → Π=[λx1 . . .xn ¬Πx1 . . .xn]) &
(¬[λx1 . . .xn ¬Πx1 . . .xn]↓ → ¬Π↓)

And the derived Rule of Identity by Definition (120.1) implies, when the premise
set Γ is empty, that the following holds:

(ζ) If ` [λx1 . . .xn ¬Πx1 . . .xn]↓, then `Π=[λx1 . . .xn ¬Πx1 . . .xn]
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Third, theorem (197.1) is that [λx1 . . .xn ¬Πx1 . . .xn]↓, provided Π has no free
occurrences of x1, . . . ,xn. So an identity between Π and [λx1 . . .xn ¬Πx1 . . .xn]
provably holds, thereby implying by (107.1) that Π is provably significant,
even if Π isn’t.

Although Π can be put into an equation with a significant λ-expression
even when Π itself is empty, it seems intuitive to regard Π as a kind of im-
practical, defined term when Π is empty. There will be other examples of such
terms, i.e., defined terms that have a significance even though they are the re-
sult of applying an operation to a term that is empty. Though there are ways
to further refine the Rule of Definition by Identity (and its consequences) so as
to rule out impractical terms (i.e., always ensure that defined terms are empty
whenever their arguments are empty), such refinements have a cost in system
complexity without much gain to show for it. So we’ll forego such further
refinements in this text. The reader may find a full discussion of the issues
involved in Remark (283).

(199) Theorems: Relations and their Negations. The following consequences
of the definition of relation negation are relatively straightforward:

(.1) Fnx1 . . .xn ≡ ¬Fnx1 . . .xn (n ≥ 0)

(.2) ¬Fnx1 . . .xn ≡ Fnx1 . . .xn (n ≥ 0)

(.3) p ≡ ¬p

(.4) ¬p ≡ p

(.5) Fn , Fn (n ≥ 0)

(.6) p , p

The following are also consequences:

(.7) p = ¬p

(.8) p=q→¬p=¬q

(.9) p=q→ p=q

(200) Definitions: Noncontingent and Contingent Relations. Remembering
the reasons why we sometimes have to include existence clauses in the definiens
of definitions-by-≡ (36), we may say: (.1) Fn (n ≥ 0) is necessary just in case
necessarily, all objects x1, . . . ,xn are such that x1, . . . ,xn exemplify Fn; (.2) Fn is
impossible just in case Fn exists and necessarily, all objects x1, . . . ,xn are such
that x1, . . . ,xn fail to exemplify Fn; (.3) Fn is noncontingent whenever it is nec-
essary or impossible; and (.4) Fn is contingent whenever it is neither necessary
nor impossible:
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(.1) Necessary(Fn) ≡df �∀x1 . . .∀xnFnx1 . . .xn (n ≥ 0)

(.2) Impossible(Fn) ≡df F
n↓&�∀x1 . . .∀xn¬Fnx1 . . .xn (n ≥ 0)

(.3) NonContingent(Fn) ≡df Necessary(Fn)∨ Impossible(Fn) (n ≥ 0)

(.4) Contingent(Fn) ≡df F
n↓&¬(Necessary(Fn)∨ Impossible(Fn)) (n ≥ 0)

The explicit existence clauses in (.2) and (.4) allow us to prove ¬Impossible(Πn)
and ¬Contingent(Πn) when Πn is provably empty.

(201) Remark: Observations About Definitions by Equivalence. The following
observations serve as reminders for those who may have skipped the discussion
of definitions-by-≡ in Remarks (17.2) and (36). The points made below by way
of the definitions (200.1) and (200.2) are completely general.

By Convention (17.2), definition (200.1) and (200.2) are shorthand, respec-
tively, for the following, in which Πn is any n-ary relation term (n ≥ 0):

(.1) Necessary(Πn) ≡df �∀x1 . . .∀xnΠnx1 . . .xn (n ≥ 0)

(.2) Impossible(Πn) ≡df Πn↓&�∀x1 . . .∀xn¬Πnx1 . . .xn (n ≥ 0)

Given the inferential role of definitions-by-≡ described in (72) and (90), (.1)
and (.2) (respectively), and (200.1) and (200.2) (respectively), introduce, as new
(modally strict) theorems, the instances (and their closures) of the following:

(.1′) Necessary(Πn) ≡ �∀x1 . . .∀xnΠnx1 . . .xn (n ≥ 0)

(.2′) Impossible(Πn) ≡ (Πn↓&�∀x1 . . .∀xn¬Πnx1 . . .xn) (n ≥ 0)

Consider the instances of these theorem schemata when the metavariable Π

takes the variable Fn as its value:

(ϑ) Necessary(Fn) ≡ �∀x1 . . .∀xnFnx1 . . .xn (n ≥ 0)

(ξ) Impossible(Fn) ≡ (Fn↓&�∀x1 . . .∀xn¬Fnx1 . . .xn) (n ≥ 0)

Clearly, these result by substituting ≡ for ≡df in (200.1) and (200.2). Further-
more, (ξ) and the axiom Fn↓ imply the following, by the special case of Rule
≡S of Biconditional Simplification (91):

Impossible(Fn) ≡ �∀x1 . . .∀xn¬Fnx1 . . .xn (n ≥ 0)

This kind of reduction is completely general and applies to any formula defini-
tion that (a) has a definiens that includes existence clauses, and (b) is instanced
to denoting terms. That is, when we consider the instances of the definition in
which known denoting terms (i.e., terms known to be significant by proof or by
hypothesis) are substituted for the metavariables, we may reduce the resulting
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modally strict biconditionals implied by the definition to modally strict bicon-
ditionals in which the existence clauses have been omitted from the right-side
condition.

(202) Theorems: Facts About Noncontingent and Contingent Properties. The
following facts about properties F are now derivable:

(.1) NonContingent(F) ≡NonContingent(F)

(.2) Contingent(F) ≡ ♦∃xFx&♦∃x¬Fx

(.3) Contingent(F) ≡ Contingent(F)

(203) Theorems: Some Noncontingent Properties. Since ` [λx E!x→ E!x]↓, let
L =df [λx E!x→ E!x] (i.e., being concrete if concrete). Then we have:

(.1) Necessary(L)

(.2) Impossible(L)

(.3) NonContingent(L)

(.4) NonContingent(L)

(.5) ∃F∃G(F , G& NonContingent(F) & NonContingent(G)),
i.e., there are at least two noncontingent properties.

(204) Lemmas: A Symmetry. Note that our definitions allow us to more easily
derive (.1) it is possible that there is something that exemplifies F but which
might not have if and only if it is possible that there is something that doesn’t
exemplify F but might have:

(.1) ♦∃x(Fx&♦¬Fx) ≡ ♦∃x(¬Fx&♦Fx)

But from this, it follows that (.2) it is possible that there is something that
exemplifies F but which might not have if and only if it is possible that there
is something that exemplifies not-F but might not have:

(.2) ♦∃x(Fx&♦¬Fx) ≡ ♦∃x(Fx&♦¬Fx)

If we think semantically for the moment and take possible worlds as primitive
entities, then (.2) tells us:

There is a world w and an object o, such that both (i) o exemplifies F at
w and (ii) for some (other) world w′, o fails to exemplify F at w′

if and only if
There is a world w and an object o, such that both (i) o exemplifies not-F
at w and (ii) for some (other) world w′, o fails to exemplify not-F at w′.
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Thus (.2) yields a modal symmetry between F and its negation F.

(205) Theorems: E! and E! are Contingent Properties.

(.1) ♦∃x(E!x&♦¬E!x)

(.2) ♦∃x(¬E!x&♦E!x)

(.3) ♦∃xE!x

(.4) ♦∃x¬E!x

(.5) Contingent(E!)

(.6) Contingent(E!)

(.7) ∃F∃G(Contingent(F) & Contingent(G) &F , G),
i.e., there are at least two contingent properties.

If we suppose that E!x& ♦¬E!x asserts that x is contingently concrete and that
¬E!x & ♦E!x asserts that x is contingently nonconcrete, then (.1) asserts the
possible existence of contingently concrete objects and (.2) asserts the possi-
ble existence of contingently nonconcrete objects. Linsky and Zalta 1994 show
that theorems such as (.2), on this understanding, are consistent with actu-
alism, though see Williamson 2013, Menzel 2016 and 2020, for more recent
discussion.

On an alternative interpretation of our formalism, in which (a) the quan-
tifier ∃ asserts only “there is” (and not “there exists”) and (b) the term ‘E!’
asserts existence rather than concreteness, then (.2) asserts that it is possible
that there are contingently nonexistent objects. This is a way of expressing the
view known as possibilism. See, for example, Plantinga (1974, 21).

(206) Theorems: Facts About Property Existence. Given the definition of L
as [λx E!x → E!x], we have the following general and specific facts about the
existence of properties:

(.1) NonContingent(F)→¬∃G(Contingent(G) &G = F)

(.2) Contingent(F)→¬∃G(NonContingent(G) &G = F)

(.3) L,L& L,E! & L,E! & L,E! & L,E! & E!,E!,
i.e., L, L, E!, and E! are pairwise distinct.

(207) Theorems: Facts About Noncontingent and Contingent Propositions. If
we focus now just on propositions, the following facts can be established:

(.1) NonContingent(p) ≡NonContingent(p)
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(.2) Contingent(p) ≡ ♦p&♦¬p

(.3) Contingent(p) ≡ Contingent(p)

(208) Theorems: Some Noncontingent Propositions. Let p0 abbreviate ∀x(E!x→
E!x) or, if you prefer, use a definition-by-= to stipulate p0 =df ∀x(E!x → E!x).
Then we have:

(.1) Necessary(p0)

(.2) Impossible(p0)

(.3) NonContingent(p0)

(.4) NonContingent(p0)

(.5) ∃p∃q(NonContingent(p) & NonContingent(q) & p , q),
i.e., there are at least two noncontingent propositions.

(209) ?Theorem: Fact About Concrete-But-Not-Actually-Concrete Objects. It
is straightforward to establish, by non-modally strict reasoning, that concrete-
but-not-actually-concrete objects don’t exist:

¬∃x(E!x&¬AE!x)

Though it follows by the T♦ schema that this fact is possibly true, we can prove
the possibility claim by modally strict reasoning, as shown in the next item.

(210) Theorem: Distinguished Facts About Objects that Aren’t Actually Con-
crete. It is a modally strict theorem that (.1) a concrete-but-not-actually-concrete
object doesn’t actually exist, i.e.,

(.1) ¬A∃x(E!x&¬AE!x)

Without much further reasoning, it follows that (.2) possibly, no concrete-but-
not-actually-concrete object exists:

(.2) ♦¬∃x(E!x&¬AE!x)

As we shall see, (.2) leads to a proof of the existence of a contingent proposition.
Note that the proofs of (.1) and (.2) are independent of axiom (45.4).

One other important theorem about objects that aren’t actually concrete is
that (.3) some possibly concrete object isn’t actually concrete:

(.3) ∃x(♦E!x&¬AE!x)
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(211) Theorems: Some Contingent Propositions. The formula ∃x(E!x&¬AE!x)
asserts the existence of a concrete-but-not-actually-concrete object. Let us there-
fore use a definition-by-= to stipulate: q0 =df ∃x(E!x&¬AE!x). Then, by Rule
=df I, the conjunction of axiom (45.4) and theorem (210.2) becomes ♦q0 &♦¬q0.
This makes it easy to see that the following claims regarding propositions are
derivable:

(.1) Contingent(q0)

(.2) ∃pContingent(p)

(.3) Contingent(q0)

(.4) ∃p∃q(p , q& Contingent(p) & Contingent(q)),
i.e., there are at least two contingent propositions.

(212) Theorems: Facts About Proposition Existence. The following general
facts about proposition existence are easily derivable:

(.1) NonContingent(p)→¬∃q(Contingent(q) & q = p)

(.2) Contingent(p)→¬∃q(NonContingent(q) & q = p)

And given the definitions p0 =df ∀x(E!x→ E!x) and q0 =df ∃x(E!x&¬AE!x), we
have the following specific facts about the existence of propositions:

(.3) p0,p0 & p0,q0 & p0,q0 & p0,q0 & p0,q0 & q0,q0,
i.e., p0, p0, q0, and q0 are pairwise distinct.

(.4) There are at least four propositions.

Note that our proof that there are contingent propositions is constructive, since
we showed that q0 is possibly true and possibly false.

(213) Definitions: Contingently True and Contingently False Propositions. Let
us say that: (.1) a proposition p is contingently true just in case p is true and
possibly false, and (.2) p is contingently false just in case p is false but possibly
true:

(.1) ContingentlyTrue(p) ≡df p&♦¬p

(.2) ContingentlyFalse(p) ≡df ¬p&♦p

Clearly, if one were to assert axioms having the form ContingentlyTrue(p) or
ContingentlyFalse(p), such axioms would have to be marked with a ? as modal-
ly fragile; see the discussion in Remark (70). By the same reasoning, it should
be clear that no theorem of the form ContingentlyTrue(p) or ContingentlyFalse(p)
can be be modally strict, on pain of contradiction. For suppose it were provable
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by modally strict means that ContingentlyTrue(p), i.e., p& ♦¬p. Then it would
follow that �(p & ♦¬p), by RN. But the conjuncts of a necessary conjunction
are themselves necessary, in which case it would follow that �p and �♦¬p. By
the T schema, the latter implies ♦¬p , which in turn implies ¬�p, leaving us
with a contradiction. And, by analogous reasoning, no theorem of the form
ContingentlyFalse(p) can be modally strict. Thus, in (215.1)? and (215.2)? be-
low, when we derive, respectively, a specific, contingently false proposition and
a specific, contingently true proposition, the theorems are not modally strict.

(214) Theorems: Contingently True (False) vs. Contingent. Our definitions
and theorems thus far imply the following. (.1) if p is contingently true, it is
contingent; (.2) if p is contingently false, it is contingent; (.3) p is contingently
true if and only if not-p is contingently false; and (.4) p is contingently false if
and only if not-p is contingently true:

(.1) ContingentlyTrue(p)→ Contingent(p)

(.2) ContingentlyFalse(p)→ Contingent(p)

(.3) ContingentlyTrue(p) ≡ ContingentlyFalse(p)

(.4) ContingentlyFalse(p) ≡ ContingentlyTrue(p)

Finally, two other theorems are worthy of mention. (.5) if p is contingently true
and q is necessary, then p is not identical to q; and (.6) if p is contingently false
and q is impossible, then p is not identical to q:

(.5) (ContingentlyTrue(p) & Necessary(q))→ p , q

(.6) (ContingentlyFalse(p) & Impossible(q))→ p , q

Recall that Necessary(q) was defined, by the 0-ary cases of (200.1), as �q, and
that Impossible(q), by (200.2), the axiom q↓ and Rule ≡S (91), is equivalent to
�¬q.

(215) ?Theorems: A Contingently False Proposition and a Contingently True
One. If we continue to let the constant q0 be defined as ∃x(E!x & ¬AE!x), it
follows that (.1) q0 is contingently false, and (.2) not-q0 is contingently true:

(.1) ContingentlyFalse(q0)

(.2) ContingentlyTrue(q0)

As to be expected from the discussion in (213), the reasoning in each case is
not modally strict.

(216) Remark: Actually Contingently True and False Propositions. Note that
if one were to define:
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ActuallyContingentlyTrue(p) ≡df Ap&♦¬p

ActuallyContingentlyFalse(p) ≡df A¬p&♦p

then where q0 is again defined as ∃x(E!x&¬AE!x), one can immediately estab-
lish, as modally strict theorems, that:

(ϑ1) ActuallyContingentlyTrue(p) ≡ ActuallyContingentlyFalse(p)

(ϑ2) ActuallyContingentlyFalse(p) ≡ ActuallyContingentlyTrue(p)

(ξ) ActuallyContingentlyFalse(q0)

(ζ) ActuallyContingentlyTrue(q0)

We give the proof of (ϑ1) in a footnote but leave the proof of (ϑ2) to the reader.168

Here is a proof of (ξ):

From (210.1), it follows by axiom (44.1) that A¬∃x(E!x & ¬AE!x). So,
by definition of q0, A¬q0. Independently by axiom (45.4), we know ♦q0.
Hence ActuallyContingentlyFalse(q0).

We leave the proof of (ζ) to the reader.

(217) Theorems: There Are Contingently True Propositions and Contingently
False Ones. If we were to immediately infer ∃pContingentlyFalse(p) from theo-
rem (215.1)?, and immediately infer ∃pContingentlyTrue(p) from (215.2)?, the
resulting theorems would fail to be modally strict. But, in fact, we can derive
these theorems by modally strict means:

(.1) ∃pContingentlyTrue(p)

(.2) ∃pContingentlyFalse(p)

Thus, we need not appeal to (215.2)? to derive (.1) or appeal to (215.1)? to
derive (.2).

(218) Remark: On the Existence of Contingently True Propositions and Con-
tingently False Ones. Many philosophers would grant (217.1) and (217.2), i.e.,
that there are contingently true and contingently false propositions. But by de-
riving these as theorems, our theory answers a philosophical question, namely,
what resources are needed to (a) prove rather than assert the existence of a
contingently true proposition (and a contingently false proposition) and (b) do

168We prove both directions: (→) Assume ActuallyContingentlyTrue(p). Then Ap& ♦¬p. We want
to show A¬p& ♦p. But by (199.4), we know that ¬p ≡ p. So by a Rule of Substitution, Ap implies
A¬p. Analogously, by (199.3), we know that p ≡ ¬p. So by a Rule of Substitution, ♦¬p implies ♦p.
(←) By analogous reasoning.
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so without asserting, for some particular individual x and property F, either
Fx&♦¬Fx or ¬Fx&♦Fx?

The present theory gives us both modally strict and non-modally strict
proofs that such propositions exist, and axiom (45.4) plays a role in these ar-
guments. This is another virtue of taking (45.4) as an axiom. The non-modally
strict proofs are immediate existential generalizations of (215.1)? and (215.2)?
and, as such, are constructive (specific witnesses to the existential claims can be
identified). The modally strict proofs of (217.1) and (217.2) aren’t constructive
and, indeed, can’t be; as we’ve seen, there can’t be a modally strict argument
for the contingent truth or falsehood of a particular proposition that would
serve as a witness.

Thus, we sometimes have a choice of strategies when arguing for claims
that depend on the existence of contingently true or contingently false propo-
sitions. If one directly uses (215.1)? or (215.2)? in the reasoning for the claim,
the resulting theorem is not modally strict. However, in some cases, it may be
that the very same theorem can be proved by modally strict means from (217.1)
or (217.2). Here it is important to recall and extend our discussion in Remark
(70). That discussion explained (a) how there can be modally strict deriva-
tions of contingent conclusions ϕ from contingent premises Γ , and (b) how we
can still use RN in such cases to conclude �Γ ` �ϕ. In the case of (217.1) and
(217.2), we proved a modally strict theorem, not just deriving a conclusion
from some premises. To prove the theorem, we have to discharge any premises
used in the proof and, in particular, discharge any contingent premises used
in the proof. This guarantees that the theorem rests on no contingent assump-
tions. For example, one may invoke the modally strict theorem that there are
contingently true propositions (217.1) and then assume that some arbitrarily
chosen proposition is a witness. Then we can we reason from this assump-
tion by modally strict means and once we discharge the assumption by ∃E,
the conclusions we reach depend only on the modally strict fact that there are
contingent propositions, and so these conclusions are modally strict.

To be maximally explicit, let’s rehearse the ‘Simpler Proof’ for (217.2) given
in the Appendix. The simpler proof goes as follows:

By (217.1), we know ∃pContingentlyTrue(p). Let r be such a proposition,
so that we know ContingentlyTrue(r). Then since r exists by hypothe-
sis, we may infer ContingentlyFalse(r), by (214.3). But r↓, and so by ∃I,
∃pContingentlyFalse(p). Hence, by ∃E, ∃pContingentlyFalse(p). ./

In this reasoning, the assumption ContingentlyTrue(r) is discharged, and since
the theorem depends only on (217.1), it is modally strict.

Exercise. Consider argument (A), which attempts to derive a contradiction in
our system, and before reading the discussion that follows it, explain where it
goes wrong:
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(A) By (217.1), we know ∃pContingentlyTrue(p). Suppose p1 is an arbitrary
such proposition, so that we know ContingentlyTrue(p1). Then, by defi-
nition (213.1), p1 & ♦¬p1. So by &E, p1. Since this reasoning is modally
strict, we may use RN to infer �p1, i.e., by (158.12), ¬♦¬p1. But this
contradicts ♦¬p1.

Argument (A) is interesting because it demonstrates a subtle misuse of RN. In
argument (A), it is assumed that p1 is a contingently true proposition. This as-
sumption implies, by modally strict reasoning, that p1 is true. But RN can’t be
applied to conclude that �p1, since p1 isn’t a theorem but was instead derived
from an assumption (all we’re entitled to conclude by RN at this point is that
there is a derivation of �p1 from �ContingentlyTrue(p1)). This doesn’t get us
into trouble since we can’t prove the latter. So the reasoning in (A) isn’t valid.
One may not use RN to necessitate a conclusion derived from premises, unless
those premises are known to be necessary.

(219) Theorems: There are Contingently Exemplified and Contingently Empty
Properties. By making use of contingent propositions, we can go further than
theorem (205.7), which tells us that there are at least two contingent proper-
ties; we can now establish that (.1) there are contingently exemplified proper-
ties, i.e., properties F such that some object exemplifies F but might not have,
and (.2) there are contingently unexemplified properties (i.e., properties F such
that some object that doesn’t exemplify F might have):

(.1) ∃F∃x(Fx&♦¬Fx)

(.2) ∃F∃x(¬Fx&♦Fx)

In the Appendix, the modally strict reasoning for (.1) starts with theorem
(217.1), i.e., that ∃pContingentlyTrue(p) and proceeds by assuming that p1 is
an arbitrarily chosen such proposition, i.e., that p1 & ♦¬p1. We then show that
the property [λx p1] is a witness that establishes the theorem, i.e., that any
fixed, but arbitrary object y exemplifies [λx p1] but doesn’t necessarily exem-
plify [λxp1].169 The proof illustrates the discussions in Remarks (70) and (218);
the temporary assumption p1 & ♦¬p1 isn’t a necessary truth, but since it con-
stitutes an arbitrary instance of a modally strict, and hence necessarily true,

169Propositional properties like [λx p1] will be discussed at some length in Section 9.12. For
now, all one needs to know that they are perfectly well-behaved – every λ-expression [λx ϕ] in
which x doesn’t occur free in ϕ is significant, by (39.2), and so all such expressions are governed
by β-Conversion. Thus, by β-Conversion, [λx p1]y ≡ p1 holds generally.

If one prefers, (.1) can be proved by appeal to a non-propositional property. For example,
[λx (E!x → E!x) & p1] would do the job. The variable x in the expression denoting this property
isn’t vacuously bound by the λ. But the property will suffice since the proof requires an appeal to
a universal property (i.e., everything exemplifies it), but one that is only contingently a universal
property.
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existence claim, it can be used and discharged in a way that doesn’t subvert
the modally strict reasoning in the proof.

There is a non-modally strict argument for (.1), namely, let Q in the proof
be [λx q0], where q0 is defined as ∃x(E!x&¬AE!x). By (215.2)?, we know q0 is
contingently true, i.e., such that q0 &♦¬q0. By reasoning analogous to that used
in the proof of (.1) in the Appendix, one can show that [λx q0] is exemplified
but not possibly not exemplified. Intuitively, since ♦¬q0, there is a possible
world where q0 is false and, at that world, objects fail to exemplify [λxq0]. So it
would be a witness to the claim that some property is contingently exemplified,
though the reasoning wouldn’t be modally strict.

(220) Remark: Equivalent But Possibly Not Equivalent Properties. It is straight-
forward to apply object theory by adding theoretical properties to the system
and then asserting, as an axiom, that certain theoretical properties are materi-
ally equivalent but not necessarily equivalent. A well-known example of this
phenomena is due to Quine (1951, 21–2): Let H be the property being a crea-
ture with a heart and let K be the property being a creature with a kidney. Then
let us suppose, for the sake of the example, that ∀x(Hx ≡ Kx) represents a bi-
ological fact and is asserted as an axiom, but not a necessary axiom. After all,
it seems doubtful that this claim is necessary; from a modal point of view, it
seems reasonable to assert, also as an axiom, that it is possible that there be
creatures with a heart but without kidneys or creatures with kidneys but with-
out hearts. While such extensions of the theory are straightforward, a more
interesting question arises, namely, can we prove without adding assumptions
such as the foregoing that there are properties which are materially equivalent
but not necessarily equivalent? The following theorems establish that we can.
Indeed, these theorems can be strengthened to show that for every property
F, there is a property G that is materially equivalent to F but not necessarily
equivalent to F.

(221) Theorem: Equivalent But Not Necessarily Equivalent Properties. (.1)
There are properties F and G such that F and G are materially equivalent but
not necessarily equivalent:

(.1) ∃F∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx))

In the Appendix, the modally strict reasoning for this claim again starts with
theorem (217.1), i.e., that ∃p(ContingentlyTrue(p) and proceeds by assuming
that p1 is an arbitrarily chosen such proposition, i.e., that p1 & ♦¬p1. We then
show that the properties [λx E!x→ E!x] (= L) and [λx p1] (= Q) are witnesses
to our theorem, i.e., that L and Q are materially equivalent but not necessar-
ily equivalent. The proof is another illustration of the discussions in Remarks
(70) and (218) about the circumstances in which assumptions that aren’t nec-
essarily true (e.g., our assumption that p1 &♦¬p1) can be used temporarily and
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discharged without subverting modally strict reasoning.
By analogous reasoning from the existence of contingently false proposi-

tions, it can be shown that (.2) there are properties F and G that are not mate-
rially equivalent but possibly materially equivalent:

(.2) ∃F∃G(¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

Finally, the following fact proves useful, namely (.3) there are properties F and
G that are actually not equivalent but possibly equivalent:

(.3) ∃F∃G(A¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

In fact, even stronger claims follow, namely: (.4) for every property F, there is
a property G that is equivalent to F but possibly not equivalent; (.5) for every
property F, there is a propertyG that is not equivalent to F but possibly so; and
(.6) for every property F, there is a property G that is actually not equivalent
to F but which is possibly equivalent to F:

(.4) ∀F∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx))

(.5) ∀F∃G(¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

(.6) ∀F∃G(A¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

While (.4) – (.6) don’t play an immediate role in the theorems that follows, they
will prove to be important in a later chapter.

(222) Theorems: O! and A! Are Contingent. Recall that a contingent property
is defined to be one that is neither necessary nor impossible (200), from which
it follows that a property F is contingent just in case it is both possible that
there is something that exemplifies F and possible that there is something that
fails to exemplify F (202.2). We now show that the properties being ordinary
and being abstract are distinct, contradictory contingent properties:

(.1) O! , A!

(.2) O!x ≡ ¬A!x

(.3) A!x ≡ ¬O!x

(.4) Contingent(O!)

(.5) Contingent(A!)

Moreover, the negations of being ordinary and being abstract are distinct and
contradictory contingent properties:

(.6) O! , A!
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(.7) O!x ≡ ¬A!x

(.8) Contingent(O!)

(.9) Contingent(A!)

(223) Definition: Weakly Contingent Properties. We say that a property F is
weakly contingent just in case F is contingent but anything that possibly exem-
plifies F necessarily exemplifies F:

WeaklyContingent(F) ≡df Contingent(F) &∀x(♦Fx→ �Fx)

No existence clause is needed in the definiens (cf. (17.2)), since one is already
implied by the definition of Contingent(F) (200.4).

(224) Theorems: Facts About Weakly Contingent Properties. (.1) F is weakly
contingent iff F is weakly contingent; (.2) if F is weakly contingent and G is
not, then F is not G:

(.1) WeaklyContingent(F) ≡WeaklyContingent(F)

(.2) (WeaklyContingent(F) &¬WeaklyContingent(G))→ F , G

(225) Theorems: Facts About O!, A!, E!, and L. Using the definition L =df

[λx E!x→ E!x], we have the following facts: (.1) being ordinary is weakly con-
tingent; (.2) being abstract is weakly contingent; (.3) being concrete is not weakly
contingent; (.4) being concrete if concrete is not weakly contingent; (.5) being or-
dinary is distinct from: E!, E!, L, and L; and (.6) being abstract is distinct from:
E!, E!, L, and L:

(.1) WeaklyContingent(O!)

(.2) WeaklyContingent(A!)

(.3) ¬WeaklyContingent(E!)

(.4) ¬WeaklyContingent(L)

(.5) O! , E! &O! , E! &O! , L&O! , L

(.6) A! , E! &A! , E! &A! , L&A! , L

Note that (.5) and (.6) don’t imply that O! , A! or that A! ,O!.

(226) Theorem: There Are At Least 16 Properties.170 It is provable that there
are at least sixteen properties, i.e.,

∃F1 . . .∃F16(F1 , F2 &F1 , F3 & . . . &F1 , F16 &
F2 , F3 & . . . &F2 , F16 & . . . &F15 , F16)

Exercise: Show how this theorem could be used to prove that there are at least
65,536 (i.e., 216) abstract objects.
170Contributed by Daniel Kirchner, personal communication, 29 May 2018.
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9.11 The Theory of Objects

(227) Theorem: Ordinary vs. Abstract Objects. Our system implies that (.1)
necessarily, there exists an object that exemplifies being ordinary; (.2) necessar-
ily, there exists an object that exemplifies being abstract; (.3) necessarily, it is
not the case that every object exemplifies being ordinary; (.4) necessarily, it is
not the case that every object exemplifies being abstract; and (.5) necessarily, it
is not the case that every object exemplifies being concrete:

(.1) �∃xO!x

(.2) �∃xA!x

(.3) �¬∀xO!x

(.4) �¬∀xA!x

(.5) �¬∀xE!x

It is important to note that none of these imply ∃xE!x, i.e., these theorems
don’t imply the existence of any concrete objects. The existence of concrete
objects is an empirical matter, subject to a posteriori investigation rather than a
derivation from axioms asserted a priori.

(228) Theorems: The Domain of Objects is Partitioned. Since it follows by
GEN from theorem (115.5) that ∀x(O!x∨A!x), we can show that the domain of
objects is partitioned if we now establish that no object is both ordinary and
abstract:

¬∃x(O!x&A!x)

This is a modally-strict theorem and, hence, a necessary truth.

9.11.1 Ordinary Objects

We’ve seen that there is no general relation of identity, i.e., no binary relation
F such that ∀x∀y(Fxy ≡ x=y) (192.5). It follows that the expression [λxy x=y]
isn’t significant. But a relation of identity can be defined with respect to the
ordinary objects. As it turns out, by simply restricting the defined condition
x = y to ordinary objects, we can prove the existence of a relation that holds
between objects x and y just in case they are identical ordinary objects. The
principles governing this relation, and governing ordinary objects generally,
we be investigated in this section.

(229) Theorem: A Distinguished Relation. Using axiom (49), we may prove
that being ordinary objects that are identical exists:
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[λxy O!x&O!y & x=y]↓

We may therefore use this relation to introduce a relation of identity with re-
spect to ordinary objects.

(230) Definition: The IdentityE Relation. We define the binary relation being
identical ordinary objects (or being identicalE) as: being an individual x and an
individual y such that x exemplifies being ordinary, y exemplifies being ordi-
nary, and x is identical to y:

=E =df [λxy O!x&O!y & x=y]

Since the definiens is significant, our theory of definitions guarantees that =E↓.
The Rule of Identity by Definition (120.1) yields the claim =E = [λxy O!x &
O!y & x=y] as a theorem. So by theorem (107.1), it follows that =E↓.

(231) Rewrite Convention: IdentityE Infix Notation. We adopt, as a conven-
tion, the following infix notation for formulas involving the new binary rela-
tion symbol =E . Where κ1 and κ2 are any two individual terms, we henceforth
write κ1 =E κ2 instead of =Eκ1κ2. So where κ1 is the variable x and κ2 is the
constant a, we write x=E a instead of =Exa. When κ1 is a and κ2 is ıxϕ (ϕ any
formula), then we write a=E ıxϕ instead of =Eaıxϕ. And we write ıxϕ =E ızψ
instead of =Eıxϕızψ.

It is important to note here that if either κ1 or κ2 is a description that fails
to have a denotation, i.e., if either ¬κ1 ↓ or ¬κ2 ↓, then ¬(κ1 =E κ2) will be
derivable. To see why, we note that κ1 =E κ2→ κ1↓ and κ1 =E κ2→ κ2↓will both
be implied by axiom (39.5.a), since κ1 and κ2 are primary terms of κ1 =E κ2. So
if either ¬κ1↓ or ¬κ2↓, then ¬(κ1 =E κ2) will be derivable by Modus Tollens.171

The reader is encouraged to review explanatory Remark (232) below, on
nested λ-expressions and layers of definition. That Remark contains an im-
portant preview of the methods that will become available for unpacking the
defined notation in a λ-expression such as [λx x=E a].

The formula x=E y is therefore unlike, and is to be rigorously distinguished
from, the formula x= y. The expressions [λxy x=E y], [λx x=E y], [λx a=E y],
[λy x =E y], and [λy a =E y] are provably significant; they are all instances of
(39.2), even if a were a defined constant instead of primitive, since no variable
bound by the λ occurs in encoding position in the matrix. By contrast, [λxy x=
y] is not a core λ-expression, for the reasons described in the discussions that
accompany (17.3) and (23.1).

171It is worth remembering here that τ↓ doesn’t imply σ ↓ when σ is a proper subterm of τ . So
axioms (39.5.a) and (39.5.b) don’t imply that every subterm in a true exemplification or encoding
formula has a denotation; only the primary terms. Recall the example from the discussion in
Remark (40): axiom (39.2) asserts that [λx Rxız(P z&¬P z)] is significant, even though its subterm
ız(P z&¬P z) will be provably empty. (It is provable that nothing exemplifies the property signified
by the λ-expression.) See Remark (155) for further examples.
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(232) Remark: Digression on Nested λ-expressions and Layers of Definition.
Given the foregoing discussion, it is important to note how the layers of defini-
tion are compounding and how some λ-expressions contain nested occurrences
of other λ-expressions. For example, by the convention for infix notation (231),
the λ-expression:

[λx x=E b]

is shorthand for:

[λx =Exb]

But the definition of the binary relation constant =E (230) will imply the iden-
tity claim =E = [λxy O!x&O!y & x=y], and since the substitution of identicals
holds universally, we can replace the =E by its definiens in any context. So the
last λ-expression displayed above, [λx =Exb], can be expanded, in any context
in which it appears, to:

[λx [λxy O!x&O!y & x=y]xb]

Now definition (22.1) of the unary relation constant O! will imply the identity
claim O! = [λx ♦E!x] and so we can replace O! by [λx ♦E!x] in any context. So
we can, in turn, replace the last λ-expression displayed above, in any context,
by:

(ϑ) [λx [λxy [λx ♦E!x]x& [λx ♦E!x]y & x=y]xb]

Now at this point, (ϑ) still contains the defined symbols ♦, &, and =, but we
cannot further expand the λ-expression by applying the definitions of these
symbols. These are syncategorematic symbols introduced by definitions-by-≡.
The Rule of Substitution derived in (160.3) allows us to substitute the definiens
for the definiendum in a definition-by-≡ only when the definiendum occurs as
a subformula within some formula; the formulas containing ♦, &, and = in (ϑ)
do not occur as subformulas of (ϑ). Indeed, subformula of is not defined for
terms generally and so not defined for n-ary λ-expressions (n ≥ 1). So we can’t
further unpack (ϑ).

However, asserting that an individual, say a, exemplifies (ϑ), can be simpli-
fied by the principle of β-Conversion (48.2). That is, if we assert:

[λx [λxy [λx ♦E!x]x& [λx ♦E!x]y & x=y]xb]a

then since (ϑ) is a significant λ-expression, β-Conversion will allow us to infer:

[λxy [λx ♦E!x]x& [λx ♦E!x]y & x=y]ab

Then by a further application of β-Conversion, we can infer:

[λx ♦E!x]a& [λx ♦E!x]b& a=b
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And our deductive system will then allow us to infer:

♦E!a&♦E!b& a=b

We leave further analysis to the reader; classical theorems and rules of infer-
ence will allow one to apply the definitions of &, ♦, and = to the subformulas
of the above, to expose the primitive notions deeply nested inside the matrix
of [λx x=E b].

(233) Theorems: Useful Theorems About IdentityE and Identity. The follow-
ing are simple, but useful theorems: (.1) x and y are identicalE if and only if x
exemplifies being ordinary, y exemplifies being ordinary, and x and y are iden-
tical; (.2) whenever objects are identicalE , they are identical; and (.3) x and y
are identicalE if and only if x exemplifies being ordinary, y exemplifies being
ordinary, and x and y necessarily exemplify the same properties:

(.1) x =E y ≡ (O!x&O!y & x=y)

(.2) x=E y→ x=y

(.3) x =E y ≡ (O!x&O!y &�∀F(Fx ≡ Fy))

(234) Theorems: IdentityE is Modally Collapsed. (.1) objects x and y are
identicalE if and only if they are necessarily identicalE ; (.2) objects x and y
are possibly identicalE if and only if they are identicalE ; and (.3) x and y are
possibly identicalE if and only if they are necessarily identicalE :

(.1) x=E y ≡ �x=E y

(.2) ♦x=E y ≡ x=E y

(.3) ♦x=E y ≡ �x=E y

Thus, (.3) establishes that the formula x =E y is modally collapsed and that
identityE is indifferent to modal distinctions. We’ll see further consequences
of this below. Note that in Chapter 12, when we define rigid relations (571.1),
it will follow from (.1) above that the relation =E is a rigid relation.

(235) Rewrite Conventions: DistinctnessE . Note that since =E is a (defined)
relation term (230) and is an operation on relation terms, =E is a well-defined
symbol of our language. We adopt the following conventions for the defined
relation symbol =E :

(.1) We henceforth write ,E instead of =E .

(.2) Where κ1 and κ2 are any individual terms, we henceforth write κ1 ,E κ2

instead of ,E κ1κ2.
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For example, these conventions not only allow us to write x ,E y instead of
=Exy, but also [λxy x ,E y] instead of [λxy =Exy].

(236) Theorem: Equivalence of DistinctnessE and Not IdenticalE .

x,E y ≡ ¬(x=E y)

It may come as a surprise that the proof of this theorem is not immediate but
rather requires an appeal to (39.2), (48.2), (196), (231), (235.1), and (235.2).

Though this theorem holds generally for all objects x and y, it may fail
for arbitrary individual terms κ and κ′: the schemas κ ,E κ′ and ¬(κ =E κ′)
are not equivalent. For if either ¬κ↓ or ¬κ′ ↓ is provable, then both κ =E κ′

and κ,E κ′ are provably false (they are both exemplification formulas with an
empty primary term), in which case ¬(κ=E κ′) becomes provably true.

(237) Theorems: DistinctnessE is Modally Collapsed. (.1) objects x and y are
distinctE if and only if necessarily they are distinctE ; (.2) objects x and y are
possibly distinctE if and only if they are distinctE ; and (.3) objects x and y are
possibly distinctE if and only if they are necessarily distinctE :

(.1) x,E y ≡ �x,E y

(.2) ♦x,E y ≡ x,E y

(.3) ♦x,E y ≡ �x,E y

(238) Theorems: IdentityE , DistinctnessE , and Actuality.

(.1) x=E y ≡ Ax=E y

(.2) x,E y ≡ Ax,E y

It is important to observe here that these are both modally-strict theorems hav-
ing the form ϕ ≡ Aϕ. So each constitutes another special group of formulas
which, when commuted, have the same form as the modally fragile theorem
schema (130.2)? but which are provable without appealing to that theorem.

(239) Theorems: IdentityE is an Equivalence Relation on Ordinary Objects.

(.1) O!x→ x=E x

(.2) x=E y→ y=E x

(.3) (x=E y & y=E z)→ x=E z

(240) Theorems: Ordinary Objects and Identity. It now follows that (.1) if
either x or y is ordinary, then necessarily, x is identical to y if and only if x is
E-identical to y; and (.2) if y is ordinary, then being identical to y exists:
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(.1) (O!x∨O!y)→ �(x=y ≡ x=E y)

(.2) O!y→ [λx x=y]↓

Note that (.2) tells us that if y is an ordinary object, its haecceity exists. Com-
pare theorem (192.3), which told us that there isn’t such a property for every
object whatsoever.

(241) Theorem: Exemplification Indiscernibility Implies Necessary Indiscerni-
bility. It is an interesting fact that if any objects x and y are indiscernible, i.e.,
they exemplify the same properties, then they necessarily do so:

∀F(Fx ≡ Fy)→ �∀F(Fx ≡ Fy)

(242) Theorem: Ordinary Objects Obey Leibniz’s Law. The identityE and iden-
tity of indiscernible ordinary objects are theorems:

(.1) (O!x∨O!y)→ (∀F(Fx ≡ Fy)→ x=E y)

(.2) (O!x∨O!y)→ (∀F(Fx ≡ Fy)→ x=y)

These imply that to establish ordinary objects are identical, it suffices to show
that they are indiscernible; we don’t have to show that they are necessarily
indiscernible. So if ordinary objects x,y are distinctE or distinct simpliciter,
then we know that there exists a property that distinguishes them.

(243) Theorem: Distinct Ordinary Objects Have Distinct Haecceities. It is now
relatively straightforward to show that (.1) if x and y are ordinary, then they
are distinct iff being E-identical to x is distinct from being E-identical to y, and
(.2) ordinary objects are distinct iff they have distinct haecceities:

(.1) (O!x&O!y)→ (x,y ≡ [λz z=E x], [λz z=E y])

(.2) (O!x&O!y)→ (x,y ≡ [λz z=x], [λz z=y])

(244) Theorem: Ordinary Objects Necessarily Fail to Encode Properties.

O!x→ �¬∃FxF

9.11.2 Abstract Objects

(245) Theorem: Abstract Objects Obey the Encoding Form of Leibniz’s Law.
We begin with the fact that (.1) if x and y encode the same properties, then it
is necessary that they encode the same properties:

(.1) ∀F(xF ≡ yF)→ �∀F(xF ≡ yF)
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A variant of Leibniz’s Law now becomes derivable, namely, (.2) whenever ab-
stract objects x,y encode the same properties, they are identical:

(.2) (A!x&A!y)→ (∀F(xF ≡ yF)→ x=y)

Thus, to show abstract objects x and y are identical, it suffices to prove that
they encode the same properties; we don’t have to show that they necessarily
encode the same properties. Similarly, it is provable that (.3) whenever an
object encodes a property the other fails to encode, they are distinct:

(.3) (∃F(xF&¬yF)∨∃F(yF&¬xF))→ x,y)

(246) Theorem: Objects that Encode Properties Are Abstract. We can easily
derive from the contraposition of axiom (52) that if x encodes a property, then
x is abstract:

∃FxF→ A!x

The converse fails because there exists an abstract null object that encodes no
properties. See theorem (264.1) below.

(247) Theorems: Every Property is Encoded by Some Object and Every Rela-
tion is Encoded By Some Objects.

(.1) ∀H∃xxH

(.2) ∀G∃x1 . . .∃xn(x1 . . .xnG) (n ≥ 2)

Moreover, given any n-ary relation term Π (n ≥ 1), it follows that Π is encoded
by some objects just in case there is a relation that is identical to Π:

(.3) ∃xxΠ ≡ ∃H(H =Π), where Π is any unary relation term in which x and
H don’t occur free

(.4) ∃x1 . . .∃xn(x1 . . .xnΠ) ≡ ∃G(G = Π), where Π is any n-ary relation term
(n ≥ 2) in which x1, . . . ,xn and G don’t occur free

(248) Remark: Justifying the Definition of Property Existence. Note that the
proof of (247.1) would have been much more involved if we had not defined
H↓ in (20.2) as ∃xxH . Without this definition, the proof of (247.1) requires an
appeal to the Comprehension Principle for Abstract Objects (53):

By GEN, it suffices to prove ∃xxH . Note that the following is an instance
of the Comprehension Principle for Abstract Objects (53):

∃x(A!x&∀F(xF ≡ ∀z(Fz ≡Hz)))

Suppose a is such an object, so that we know:
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A!a&∀F(aF ≡ ∀z(Fz ≡Hz))

Since H↓ (39.2) and H is substitutable for F in the matrix of the second
conjunct, we know aH ≡ ∀z(Hz ≡ Hz). But ∀z(Hz ≡ Hz) is an easily
established theorem. Hence, it follows that aH , and so by ∃I, ∃xxH . ./

Similarly, without definition (20.2), the proof of (247.2), previewed in foot-
note 109 in item (33), is more complicated:

Again, by GEN, it suffices to prove ∃x1 . . .∃xn(x1 . . .xnG). Note that the
following is an instance of the Comprehension Principle for Abstract Ob-
jects (53):

∃x(A!x&∀F(xF ≡ F=F))

Suppose a is such an object, so that we know:

A!a&∀F(aF ≡ F=F))

Now it is straightforward to show that ∀H aH (exercise). Note that by
(39.2), all of the following properties exist: [λy Gya. . .a], [λy Gaya. . .a],
. . . , and [λy Ga. . .ay]. So a encodes each of these properties. That is, we
know:

a[λy Gya. . .a] & a[λy Gaya. . .a] & . . . & a[λy Ga. . .ay]

Hence, by axiom (50), a . . .aG, and so ∃x1 . . .∃xn(x1 . . .xnG). ./

Since our system would have yielded these as theorems, it made sense to define
the existence of properties and relations in terms of the fact that there are
objects that encode them.

(249) Exercise: Practice with the Comprehension Principle for Abstract Ob-
jects. Say what is wrong with the following reasoning:

Consider any instance of the Comprehension Principle for Abstract Ob-
jects (53), say ∃x(A!x& ∀F(xF ≡ ϕ)). Assume a is such an object, so that
we know A!a&∀F(aF ≡ ϕ). Hence, by RN, �(A!a&∀F(aF ≡ ϕ)). So by the
usual sequence of ∃I and ∃E, it follows that ∃x�(A!x&∀F(xF ≡ ϕ)).

Now show that if the conclusion of this reasoning were correct, there would
be a total modal collapse of the system, i.e., show that ∃x�(A!x&∀F(xF ≡ ϕ))
implies ϕ ≡ �ϕ, for an arbitrary formula ϕ.172

172Solution to the second part of the exercise: Suppose ∃x�(A!x& ∀F(xF ≡ ϕ)), for an arbitrary
formula ϕ. Then let a be such an object, so that we know �(A!a& ∀F(aF ≡ ϕ)). Since a necessary
conjunction implies that the conjuncts are necessary, it follows that �A!a& �∀F(aF ≡ ϕ)). From
the second conjunct of this last result, it follows both that:
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(250) Theorems: Strengthened Comprehension Principle for Abstract Objects.
The Comprehension Principle for Abstract Objects (53) and the definition of
identity (23.1) jointly imply that there is a unique abstract object that encodes
just the properties such that ϕ:

∃!x(A!x&∀F(xF ≡ ϕ)), provided x doesn’t occur free in ϕ

The proof is simplified by appealing to (245.2).

(251) Theorems: Examples of Abstract Objects via Strengthened Comprehen-
sion. The Strengthened Comprehension Principle for Abstract Objects (250)
asserts the unique existence of a number of interesting abstract objects. There
exists a unique abstract object that encodes all and only the properties F such
that: (.1) y exemplifies F; (.2) y and z exemplify F; (.3) y or z exemplify F;
(.4) y necessarily exemplifies F; (.5) F is identical to property G; and (.6) F is
necessarily implied by G:

(.1) ∃!x(A!x&∀F(xF ≡ Fy))

(.2) ∃!x(A!x&∀F(xF ≡ Fy &Fz))

(.3) ∃!x(A!x&∀F(xF ≡ Fy ∨ Fz))

(.4) ∃!x(A!x&∀F(xF ≡ �Fy))

(.5) ∃!x(A!x&∀F(xF ≡ F=G))

(.6) ∃!x(A!x&∀F(xF ≡ �∀y(Gy→ Fy)))

Many of the above objects (and others) will figure prominently in the theorems
which follow.

(252) Theorems: Descriptions Guaranteed to be Significant. We can now es-
tablish, for any condition ϕ in which x doesn’t occur free, the existence of the
abstract individual that encodes just the properties such that ϕ:

(ϑ) ∀F�(aF ≡ ϕ) by the CBF schema (167.2)

(ξ) ∀F(aF ≡ ϕ) by the T schema (45.2)

If we apply ∀E to both, we obtain, respectively:

(ϑ′) �(aF ≡ ϕ)

(ξ′) aF ≡ ϕ

From (ϑ′) it follows by (158.6) that:

(ζ) �aF ≡ �ϕ
Now to see how this implies that truth and necessity are equivalent, we need only show ϕ→ �ϕ,
since �ϕ→ ϕ is an instance of the T schema. So assume ϕ. From this, it follows from (ξ′) that aF.
From this it follows that �aF, by axiom (51). So by (ζ), it follows that �ϕ.
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ıx(A!x&∀F(xF ≡ ϕ))↓, provided x doesn’t occur free in ϕ

Although a non-modally strict proof is easily obtained from (250) and (144.1)?,
we obtain a modally strict proof if we apply the Rule of Actualization to (176.2)
(250) and then appeal to the right-to-left direction of theorem (ıxϕ)↓ ≡ A∃!xϕ
(176.2).

Since the above theorem schema has a modally-strict proof, its necessitation
follows by RN. If we speak intuitively in terms of primitive possible worlds,
then note that the necessitation of this theorem does not say that, at every world
w, the x, which both exemplifies being abstract at w and encodes all and only
the properties satisfying ϕ at w, exists at w. Rather, the necessitation says that
at every possible world w, the x, which both exemplifies being abstract at the
distinguished actual world w0 and encodes exactly the properties satisfying ϕ
at w0, exists at w.

(253) Metadefinitions: Canonical Descriptions, Matrices, and Canonical In-
dividuals. The previous theorem guarantees that descriptions of the form
ıν(A!ν&∀F(νF ≡ ϕ)) are significant whenever ν is any individual variable that
doesn’t occur free in ϕ. We henceforth say:

A definite description is canonical iff it has the form ıν(A!ν&∀F(νF ≡ ϕ)),
for any formula ϕ in which the individual variable ν doesn’t occur free.

We call the matrix A!ν & ∀F(νF ≡ ϕ) of a canonical description a canonical
matrix. By an abuse of language, we shall call the individuals denoted by such
descriptions canonical individuals.

(254) ?Theorems: Canonical Individuals Encode Their Defining Properties.
As an instance of (145.2)?, it is a theorem that if y is the abstract individual
that encodes just the properties such that ϕ, then y is abstract and encodes just
the properties such that ϕ:

y= ıx(A!x&∀F(xF ≡ ϕ))→ (A!y &∀F(yF ≡ ϕ)),
provided x doesn’t occur free in ϕ

In general, we cannot give a modally strict proof of this claim. But as we shall
see, for a certain group of formulas ϕ, there is a modally strict proof.

(255) Theorems: Canonical Individuals are Abstract. While the previous theo-
rem implies that anything identical to a canonical individual exemplifies being
abstract, this particular conditional can be derived by modally strict means:

y= ıx(A!x&∀F(xF ≡ ϕ))→ A!y, provided x doesn’t occur free in ϕ

(256) ?Theorems: The Abstraction Principle for Canonical Individuals. It is a
straightforwardly provable fact about canonical descriptions that the abstract
object, which encodes exactly the properties such that ϕ, encodes F if and only
if ϕ:
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(.1) ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ, provided x doesn’t occur free in ϕ

It is sometimes easier to understand (.1) if we derive it in a slightly different
form. Note that the expression ϕGF , i.e., the result of substituting G for ev-
ery free occurrence of F in ϕ, asserts that G is such that ϕ. The Abstraction
Principle for canonical individuals then implies that the abstract object, which
encodes exactly the properties such that ϕ, encodes a property G if and only if
G is such that ϕ:

(.2) ıx(A!x&∀F(xF ≡ ϕ))G ≡ ϕGF ,
provided x doesn’t occur free in ϕ and G is substitutable for F in ϕ

To see an example, let b be an arbitrary object. Then we have the following
instance of the above theorem: ıx(A!x&∀F(xF ≡ Fb))G ≡ Gb. This asserts: the
abstract object that encodes exactly the properties that b exemplifies encodes
G iff b exemplifies G. The reason we call this ‘abstraction’ should now be clear:
in the right-to-left direction, we’ve abstracted out, from the simple predication
Gb, an encoding claim about a particular abstract object. And (.1) is even more
general: from any formula ϕ with no free xs, we may abstract out an encoding
claim about a canonical individual.

We may describe this example intuitively as follows. When ϕ is formula
Gb, then ϕ describes a unique logical pattern of predications about b, namely,
the logical pattern consisting of those properties G that are such that Gb. The
Strengthened Comprehension Principle (250) objectifies this pattern and as-
serts its unique existence. Moreover, (252) guarantees that the canonical de-
scription of the objectified pattern is significant. Finally, the Abstraction Prin-
ciple then yields an important truth about this objectified pattern, namely, that
it encodes G if and only G matches the pattern. This way of looking at the Ab-
straction Principle applies to arbitrarily complex formulasϕ in which x doesn’t
occur free, since these express a condition on properties and thereby define a
logical pattern of properties.

(257) Remark: The Abstraction Principle and Necessitation. Inspection shows
that the proof of the Abstraction Principle depends upon Hintikka’s schema
(142)?, which in turn depends on the fundamental theorem (141)? governing
descriptions. So the Abstraction Principle is not a modally strict theorem and
is not subject to the Rule of Necessitation. It would serve well to get a broad
perspective on these important facts. In the discussion that follows, we provide
such a perspective in the material mode and leave the explanation in the formal
mode to a footnote.

To understand more fully why RN can’t be applied to instances of Abstrac-
tion, suppose we want to extend our theory with some contingent facts, by
asserting those facts as new axioms. For example, we might assert, as part of
the body of truths we’d like to systematize with our theory, that the individual
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b exemplifies being a philosopher but might not have been a philosopher. So,
suppose we’ve extended our theory with the following two axioms, where P is
the property being a philosopher:

?Fact: P b

Modal Fact: ♦¬P b

Thus, the claim P b is contingently true, by definition (213.1). Hence P b is a
modally fragile axiom and that is why we’ve labeled P b as a ?Fact. If these
claims are taken as axioms, they become part of our deductive system and any
reasoning that depends on ?Fact fails to be modally strict.

Now consider the following instance of the Abstraction Principle (256.2)?:

(a) ıx(A!x&∀F(xF ≡ Fb))P ≡ P b

It then follows from (a) and our ?Fact that:

(b) ıx(A!x&∀F(xF ≡ Fb))P

Since the description in (b) is canonical, it is significant (252) and so may be
instantiated, along with P , in our axiom for the rigidity of encoding (51), which
asserts xF→ �xF. By doing so, we may infer:

(c) �ıx(A!x&∀F(xF ≡ Fb))P

Of course, the proof of (c) fails to be modally strict, since it was derived from
two ?-claims: the above contingent ?Fact (P b) and (a), which is an instance of
(256.2)?. Nevertheless, (c) is a theorem in the extended theory we’re consider-
ing.

Now if we could apply RN to (a), we would obtain:

(d) �(ıx(A!x&∀F(xF ≡ Fb))P ≡ P b)

Then from (d), (c), and the relevant instance of (158.6), which asserts that
�(ϕ ≡ ψ)→ (�ϕ ≡ �ψ), it would follow that:

(e) �P b

But this would contradict our Modal Fact ♦¬P b, which is equivalent to ¬�P b.
It should therefore be clear why RN isn’t applicable to the Abstraction Prin-
ciple — if it were so applicable, our system would become inconsistent when
extended with natural but contingent (and thus modally fragile) axioms.173

173In the formal mode, the reason why we can’t generally apply RN to instances of Abstraction
is that there are interpretations in which the necessitation of the Abstraction Principle fails to be
true, thus demonstrating its invalidity. To see this, let us again help ourselves for the moment to
the semantically primitive notion of a possible world. The semantic counterpart of the above ?Fact
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It is important to note that in the foregoing discussion, we have a described
a scenario of the kind mentioned in (71), where we outlined conditions under
which the converse of RN fails to hold. The converse of RN asserts that if ` �ϕ,
then `� ϕ. But if we let ϕ be sentence (b) in the above scenario, then we indeed
have ` �ϕ and not `� ϕ. For we saw that since (b) is an encoding formula and a
theorem, its necessitation (c) is also a theorem. But there isn’t a modally strict
proof of (b), since any proof would depend on our ?Fact P b as well as some
non-modally strict fact about descriptions, such as the right-to-left direction
of the Abstraction Principle (256.2)?.174

(258) Theorems: Actualized Abstraction. By strategically placing an actuality
operator in the Abstraction Principle, we obtain a principle that has a modally
strict proof, in two forms, namely, (.1) the abstract object, which encodes just
the properties such that ϕ, encodes a property F if and only if it is actually the
case that ϕ, and (.2) the abstract object, which encodes just the properties such
that ϕ, encodes a property G if and only if it is actually the case that G is such
that ϕ:

and Modal Fact is any interpretation of our language in which P b is true at the actual world w0
but false at some other possible world, say, w1. In such an interpretation, our instance (a) of the
Abstraction Principle fails to be necessarily true. (a) fails to be necessarily true in the left-to-right
direction by the following argument. Since P b is true at w0, ıx(A!x& ∀F(xF ≡ Fb)) encodes P at
w0. Since the properties an object encodes are necessarily encoded (179.2), ıx(A!x&∀F(xF ≡ Fb))
encodes P at w1. But, by hypothesis, P b is false at w1. Hence, w1 is a world that is the witness to
the truth of the following possibility claim:

♦(ıx(A!x&∀F(xF ≡ Fb))P & ¬P b)

Since the left-to-right condition of (a) isn’t necessary in this interpretation, the necessitation of this
condition fails to be valid.

Similarly, if we consider the negation of P , namely P , with respect to the interpretation described
above, then the following consequence of the Abstraction Principle fails to be necessarily true in
the right-to-left direction:

(f) ıx(A!x&∀F(xF ≡ Fb))P ≡ P b

To see that it is possible for the right condition of (f) to be true while the left condition false, we
may reason as follows. Since P b is true at w0 in the interpretation we’ve described, P b is false at
w0 and so ıx(A!x&∀F(xF ≡ Fb)) fails to encode P at w0. Since the properties an abstract object fails
to encode are properties it necessarily fails to encode (179.7), it follows that ıx(A!x&∀F(xF ≡ Fb))
fails to encode P at w1. But, by hypothesis, P b is false at w1 and so P b is true at w1. Hence, w1 is
a witness to the truth of the following possibility claim:

♦(P b&¬ıx(A!x&∀F(xF ≡ Fb))P )

Since this shows that the right-to-left direction of (f) isn’t necessarily true in this interpretation,
the necessitation of this direction fails to be valid.
174Since (b) is not an axiom, any proof of (b) must infer it by Modus Ponens from two previous

lines in the proof. One of those lines has to be our ?Fact P b and the other has to be the right-to-left
direction of the Abstraction Principle (256.2)?. In other words, any proof of (b) must include the
lines P b (?Fact) and P b→ ıx(A!x&∀F(xF ≡ Fb))P (256.2)?. But such lines aren’t necessary truths.
See the second part of footnote 173 for the reasoning that shows why the right-to-left direction of
the Abstraction Principle isn’t necessary.
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(.1) ıx(A!x&∀F(xF ≡ ϕ))F ≡ Aϕ, provided x doesn’t occur free in ϕ

(.2) ıx(A!x&∀F(xF ≡ ϕ))G ≡ AϕGF ,
provided x doesn’t occur free in ϕ and G is substitutable for F in ϕ

The reader is encouraged to try proving these theorems without the benefit of
the proof in the Appendix.

(259) Theorems: Properties That Are Necessarily Such That ϕ. There are
modally strict proofs of the claims: (.1) if G is necessarily such that ϕ, then
ıx(A!x& ∀F(xF ≡ ϕ)) encodes G, and (.2) if G is necessarily such that ϕ, then
necessarily, ıx(A!x&∀F(xF ≡ ϕ)) encodes G if and only if G is such that ϕ:

(.1) �ϕGF → ıx(A!x&∀F(xF ≡ ϕ))G,
provided x doesn’t occur free in ϕ and G is substitutable for F in ϕ

(.2) �ϕGF → �(ıx(A!x&∀F(xF ≡ ϕ))G ≡ ϕGF ),
provided x doesn’t occur free in ϕ and G is substitutable for F in ϕ

The proof of (.1) in the Appendix uses Actualized Abstraction (258.2), and the
proof of (.2) utilizes (.1). Note that (.2) describes sufficient conditions under
which instances of the Abstraction Principle, as formulated in (256.2)?, be-
come necessary truths, namely, when G is a property that is necessarily such
that ϕ.

Exercise: Give modally strict proofs of the simpler forms of these theorems,
i.e.,

• �ϕ→ ıx(A!x&∀F(xF ≡ ϕ))F, provided x doesn’t occur free in ϕ

• �ϕ→ �(ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ), provided x doesn’t occur free in ϕ

(260) Metadefinitions: Rigid Conditions and Strict Canonicity. We now intro-
duce terms into our metalanguage to single out the special conditions under
which canonical descriptions can be considered strictly canonical. Let ϕ be any
formula in which the variable α may occur free. Then we say:

(.1) ϕ is a rigid condition on α if and only if `� ∀α(ϕ→ �ϕ).

Thus, if `� ∀x(ϕ → �ϕ), we say that ϕ is a rigid condition on objects, and if
`� ∀F(ϕ→ �ϕ), we say that ϕ is a rigid condition on properties. Thus, we may
say:

(.2) The canonical description ıx(A!x&∀F(xF ≡ ϕ)) is strictly canonical just in
case ϕ is a rigid condition on properties.
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Henceforth, we sometimes abuse language and speak of the strictly canonical
individuals denoted by strictly canonical descriptions.

(261) Theorems: Facts About Strict Canonicity. When ϕ is a rigid condition on
properties, it is a modally strict fact that (.1) if x is an abstract individual that
encodes exactly the properties such that ϕ, then necessarily x is an abstract
individual that encodes exactly the properties such that ϕ:

(.1) (A!x&∀F(xF ≡ ϕ))→ �(A!x&∀F(xF ≡ ϕ)), provided ϕ is a rigid condition
on properties in which x doesn’t occur free.

Moreover, when ϕ is a rigid condition on properties, it is a modally strict fact
that (.2) anything identical to a strictly canonical individual both exemplifies
being abstract and encodes all and only the properties such that ϕ:

(.2) y = ıx(A!x & ∀F(xF ≡ ϕ)) → (A!y & ∀F(yF ≡ ϕ)), provided ϕ is a rigid
condition on properties in which x doesn’t occur free.

Thus, theorem (254)? has a modally strict special case, namely, when the de-
scription ıx(A!x&∀F(xF ≡ ϕ)) is strictly canonical.

Finally, we note that the Abstraction Principle formulated in (256.1)? be-
comes a modally strict theorem with respect to strictly canonical objects:

(.3) ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ, provided ϕ is a rigid condition on properties
in which x doesn’t occur free.

As it turns out, however, (.2) will be more useful than (.3). Since we’ll intro-
duce many new terms using a definition-by-identity in which the definiens
is a strictly canonical description, (.2) becomes immediately applicable to the
identity statements such definitions make available as theorems.

(262) Remark: Some Examples of Strictly Canonical Individuals. In item (251),
we presented a series of instances of the Strengthened Comprehension Princi-
ple for Abstract Objects. The last three are examples of strictly canonical in-
dividuals. Consider the following canonical descriptions based on those last
three examples:

(a) ıx(A!x&∀F(xF ≡ �Fy))

(b) ıx(A!x&∀F(xF ≡ F=G))

(c) ıx(A!x&∀F(xF ≡ �∀y(Gy→ Fy)))

These are all instances of ıx(A!x&∀F(xF ≡ ϕ)) and, hence, significant, by (252).
Moreover, in each case, the formula ϕ in question is a rigid condition on prop-
erties, i.e., `� ∀F(ϕ→ �ϕ). We can see this as follows:
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• In example (a), ϕ is �Fy. But as an instance of the 4 schema (165.5), we
know �Fy → ��Fy, i.e., ϕ → �ϕ. Hence, by applying GEN, we have
∀F(ϕ→ �ϕ).

• In example (b), ϕ is F=G, and so by (125.1), we know that ϕ→ �ϕ. So,
again, by GEN we have ∀F(ϕ→ �ϕ).

• In example (c), ϕ is �∀y(Gy→ Fy). Hence we can reason as we did in (a),
by way of the 4 schema, to establish ∀F(ϕ→ �ϕ).

Thus, (a) – (c) are examples of strictly canonical individuals.

(263) Definitions: Null and Universal Objects. We say: (.1) x is a null object
just in case x is an abstract object that encodes no properties; and (.2) x is a
universal object just in case x is an abstract object that encodes every property:

(.1) Null(x) ≡df A!x&¬∃FxF

(.2) Universal(x) ≡df A!x&∀FxF

We are taking advantage here of our conventions in (17.2) by using object lan-
guage variables as the free variables in the definiens and definiendum, instead
of metavariables. Moreover, since for any individual term κ, the claim A!κ im-
plies κ↓, no existence clauses have to be added to the definiens for (.1) and (.2),
for the reasons noted in Remark (36).

(264) Theorems: Existence and Uniqueness of Null and Universal Objects. It
is now easily established that (.1) there is a unique null object, and (.2) there is
a unique universal object:

(.1) ∃!xNull(x)

(.2) ∃!xUniversal(x)

Consequently, it follows, by a modally strict proof that (.3) the null object ex-
ists, and (.4) the universal object exists:

(.3) ıxNull(x)↓

(.4) ıxUniversal(x)↓

(265) Definitions: Notation for the Null and Universal Objects. We now intro-
duce new constants to designate the null object and the universal object:

(.1) a
∅

=df ıxNull(x)

(.2) aV =df ıxUniversal(x)
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Since ıxNull(x) and ıxUniversal(x) are provably significant, the Rule of Iden-
tity by Definition (120.1) tells us that definitions become theorems asserting
identities.

(266) Theorems: Facts Implied by the Foregoing. We begin with some facts
about the conditions Null(x) and Universal(x): (.1) if x is a null object, then
necessarily x is a null object, and (.2) if x is a universal object, then necessarily
x is a universal object:

(.1) Null(x)→ �Null(x)

(.2) Universal(x)→ �Universal(x)

We may also prove, by modally strict means, that (.3) the null object is a null
object; (.4) the universal object is a universal object; (.5) the null object is not
identical to the universal object; (.6) the null object is identical to the (canoni-
cal) abstract object that encodes all and only non-self-identical properties; and
(.7) the universal object is identical to the (canonical) abstract object that en-
codes all and only self-identical properties:

(.3) Null(a
∅

)

(.4) Universal(aV )

(.5) a
∅
, aV

(.6) a
∅

= ıx(A!x&∀F(xF ≡ F,F))

(.7) aV = ıx(A!x&∀F(xF ≡ F=F))

Though these theorems sound trivial, their proof by modally strict means is
not.

(267) Remark: A Rejected Alternative. Now that we’ve seen how to obtain a
modally strict proof of (266.3) and (266.6), one might wonder whether it would
have been simpler to define a

∅
directly as:

(ϑ) a
∅

=df ıx(A!x&∀F(xF ≡ F,F))

This alternative definition (ϑ) is certainly legitimate, but we have a good rea-
son for not deploying it. Since (ϑ) defines a

∅
as the abstract object that encodes

all and only non-self-identical properties, it does not explicitly introduce a
∅

as
the null object. Of course, one can use (ϑ) to derive that a

∅
is a unique null ob-

ject, i.e., that both Null(a
∅

) and ∀y(Null(y)→ y =a
∅

).175 One could then start

175Let ϕ be the formula F , F and let χ be the formula A!x& ∀F(xF ≡ F , F). Now by applying
GEN to an appropriate instance of (170.2), we have a modally strict proof of ∀F(ϕ→ �ϕ). Since ϕ
is therefore a rigid condition on properties (260.1), (ϑ) defines a∅ as a strictly canonical object. So
the identity a∅= ıxχ licensed by (ϑ) implies χa∅x , i.e.,A!a∅&∀F(a∅F ≡ F,F), by (261.2). But from
this we can derive Null(a∅) since all that remains to be shown is that the second conjunct implies
¬∃Fa∅F (exercise). Moreover, it is then easy to establish that ∀y(Null(y)→ y=a∅) (exercise).
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referencing it as ‘the null object’. But this fails to take advantage of the fact that
our system allows us to properly define the condition Null(x) as A!x&¬∃FxF,
prove ∃!xNull(x), show ıxNull(x)↓, and then use the well-defined description
ıxNull(x) to introduce the notation a

∅
. If we are going to use the expression

a
∅

to name the null object, the correct way to do so is to define a
∅

as ıxNull(x)
after having shown that the latter is significant. But once we do this, it takes a
little work to show that a

∅
can be instantiated into its own defining matrix by

a modally strict proof.
A similar observation may be made about whether it might have been sim-

pler to define aV directly as ıx(A!x&∀F(xF ≡ F=F)).

(268) Theorems: Facts About the Granularity of Relations. The following facts
govern the granularity of relational properties having abstract constituents:
(.1) for any binary relation F, there are distinct abstract objects x and y for
which bearing F to x is identical to bearing F to y, and (.2) for any binary relation
F, there are distinct abstract objects x and y for which being a z such that x bears
F to z is identical to being a z such that y bears F to z:

(.1) ∀F∃x∃y(A!x&A!y & x,y & [λz Fzx]=[λz Fzy])

(.2) ∀F∃x∃y(A!x&A!y & x,y & [λz Fxz]=[λz Fyz])

These theorems are to be expected if we think semantically for the moment
and reconsider the Aczel models discussed in Chapter 3. Recall that for the
purpose of modeling the theory, abstract objects may be represented as sets of
properties (though for the reasons pointed out earlier, we shouldn’t confuse
abstract objects with the sets that represent them). Now consider any relation
R. Cantor’s Theorem now tells us there can’t be a distinct property bearing F
to s for each distinct set s of properties, for then we would have a one-to-one
mapping from the power set of the set of properties into a subset of the set of
properties. This model-theoretic fact is captured by the above theorem: there
can’t be a distinct property bearing F to x for each distinct abstract object x.
Thus, Cantor’s Theorem isn’t violated: there are so many abstract objects that
for some distinct abstract objects x and y, the property bearing F to x collapses
to the property bearing F to y. This is just what one expects given that two
powerful principles, comprehension for abstract objects (53) and comprehen-
sion for properties (191.2), are true simultaneously.

It also follows that, for any property F, there are distinct abstract objects
x,y such that that-Fx is identical to that-Fy:

(.3) ∀F∃x∃y(A!x&A!y & x,y & [λFx]=[λFy])

This is as expected, given (.1) and (.2).
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(269) Theorem: Abstract Objects Are Not Strictly Leibnizian. A previous the-
orem, (268.1), has a rather interesting consequence, namely, that there exist
distinct abstract objects that exemplify exactly the same properties:176

∃x∃y(A!x&A!y & x,y &∀F(Fx ≡ Fy))

In other words, there are distinct abstract objects that are indiscernible with
respect to the properties they exemplify.177 The proof of this claim begins by
instantiating theorem (268.1) to the relation [λxy ∀F(Fx ≡ Fy)].

Thus classical Leibnizian indiscernibility doesn’t imply the identity of ab-
stract objects. Nevertheless, in light of theorem (245.2), a related form of the
identity of indiscernibles applies to abstract objects: such objects are identical
whenever they are indiscernible with respect to the properties they encode.

9.11.3 Discernible Objects

Theorem (269) opens Pandora’s Box178 by establishing that there are objects
that fail Leibniz’s principle of the identity of indiscernibles. But one can easily
carve out a domain of discernible objects that obey Leibniz’s principle. The
definition is given in (273.2) below, and though a discernible object can be
ordinary or abstract, we won’t, as yet, be able to prove that there are discernible
abstract objects. This will be established later, in Chapter 14, once we extend
object theory with a single new axiom.

Before we introduce the definition of discernibility, we first prove a theorem
that plays an important role in establishing the existence of properties and
relations. Intuitively, the theorem tells us that ϕ can serve as matrix for a
significant λ-expression just in case ϕ can’t distinguish between indiscernible
objects, i.e., just in case ϕ can’t distinguish between objects that exemplify
the same properties. This theorem was contributed by Daniel Kirchner and it
shows an interesting duality: on the one hand, discernibles are distinguished
by the pattern of their property-exemplifications, and on the other hand, a
property exists whenever it can’t distinguish indiscernibles.

(270) Remark: In Preparation for Kirchner’s Theorem. By deploying tools de-
veloped by, and in collaboration with, Christoph Benzmüller, Daniel Kirchner

176I am indebted to Peter Aczel for pointing out (in email correspondence, 11 November 1996)
that this theorem results once impredicatively-defined relations are allowed into the system.
177If one recalls the structure of the Aczel models, this result is to be expected. When properties

are modeled as sets of urelements, and abstract objects are modeled as sets of properties, then the
claim that an abstract object x exemplifies a property F is true just in case the special urelement
that serves as the proxy of x is an element of F. Consequently, since distinct abstract objects must
sometimes have the same proxy, some distinct abstract objects exemplify the same properties.
178Thanks to Uri Nodelman for noticing the appropriateness of this metaphor.
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has been implementing object theory in Isabelle/HOL.179 This implementa-
tion consists of two parts: (a) a shallow semantic embedding of object theory
in Isabelle/HOL, and (b) a reconstruction of PLM’s deductive system. (a) The
shallow semantic embedding uses the infrastructure of Isabelle/HOL (which
includes set theory in the framework of functional type theory) to (i) construct
enhanced Aczel models of object theory, (ii) reconstruct (i.e., define) the syntax
of object theory in terms of this model (by preserving and using as much of
the syntax of Isabelle/HOL as possible),180 and (iii) prove that the axioms of
object theory, thus reconstructed, are true in the model. (b) Using the shallow
semantic embedding as a basis, Kirchner implements object theory computa-
tionally by rebuilding its deductive system, as developed here, on top of the
reconstructed axioms. Thus, the automated/interactive reasoning system that
results doesn’t imply any artifactual theorems, i.e., the resulting proof system
doesn’t imply any set-theoretic consequences of the Aczel model that are not
expressible in the language of object theory or any consequences that are ex-
pressible but not derivable in object theory.

The two key principles of Aczel’s models of object theory are that (a) prop-
erties can be modeled as sets of urelements (and relations as sets of n-tuples
of urelements), and (b) abstract objects can be modeled as sets of properties.
However, the urelements include a subdomain of special proxy individuals that
stand in for abstract objects when evaluating exemplification formulas. As
noted in Chapter 3, distinct abstract objects must sometimes have the same
proxy (given that there are more sets of properties than there are urelements),
and so Aczel models demonstrate why there are distinct but indiscernible ab-
stract objects. Only encoding formulas can discriminate among distinct but in-
discernible abstract objects and these formulas can’t always express new prop-
erties or relations on pain of contradiction, for otherwise, we could establish
a one-to-one correlation from the set of abstract objects (i.e., the set of sets of
properties) to a subset of the set of properties, in violation of Cantor’s Theo-
rem.

Therefore, in building the shallow semantic embedding of object theory in

179See Kirchner 2017 [2021], Kirchner 2022, and Kirchner’s GitHub repository at
https://github.com/ekpyron/TAO/tree/NewAOT; see also Kirchner, Benzmüller, & Zalta 2020.
180Automated reasoning in object theory, to derive consequences of premises, takes place di-

rectly with respect to the formulas so defined, which are subject to the logic implemented in Is-
abelle/HOL. This stands in contrast to a deep semantic embedding, in which (i) each element of
the language of object theory would be represented in Isabelle/HOL in terms of an inductive data
structure that realizes the BNF, and (ii) the semantics of object theory would be stated, and a for-
mula would be evaluated, by recursively traversing the data structure and translating it into the
language of Isabelle/HOL. In a deep semantic embedding, automated reasoning about object the-
ory, to derive theorems and consequences of premises, would take place only after each formula
is semantically evaluated in Isabelle/HOL’s infrastructure, since those semantic evaluations are
governed by the logic implemented in Isabelle/HOL.
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Isabelle/HOL, Kirchner’s construction of enhanced Aczel models is based on a
principle governing the conditions under which a formula ϕ expresses a prop-
erty or relation, i.e., may serve as a matrix for a significant λ-expression (or as
a matrix for the comprehension principle for relations). To repeat, the idea is
that ϕ is a matrix for a significant λ-expression just in case ϕ can’t distinguish
between indiscernible objects, i.e., ϕ can’t distinguish between objects that ex-
emplify the same properties. When the current formulations of axioms (39.2)
and (49) were put into place, Kirchner found a proof of his principle in the
theory itself.181 We present this theorem next; the proof in the Appendix was
developed on the basis of Kirchner’s proof sketch.

(271) Theorems: Kirchner’s Theorem. In the unary case, Kirchner’s Theorem
asserts that a λ-expression of the form [λx ϕ] signifies a property just in case
necessarily, for any indiscernible objects x and y (i.e., for any objects that ex-
emplify the same properties), ϕ is equivalent to ϕyx . The theorem can be stated
formally as follows:

(.1) [λxϕ]↓ ≡ �∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx )),
provided y doesn’t occur free in ϕ.

Thus, the right-to-left direction tells us that as long as it is a necessary fact
that ϕ can’t distinguish among indiscernible objects, then [λxϕ] is significant,
even if it isn’t a core λ-expression (i.e., even if the λ binds an occurrence of x
in encoding position in ϕ).

Kirchner’s Theorem generalizes to:

(.2) [λx1 . . .xn ϕ]↓ ≡
�∀x1 . . .∀xn∀y1 . . .∀yn(∀F(Fx1 . . .xn ≡ Fy1 . . . yn)→ (ϕ ≡ ϕy1,...,yn

x1,...,xn )),
provided y1, . . . , yn don’t occur free in ϕ (n ≥ 1)

In other words, [λx1 . . .xn ϕ] exists just in case necessarily, ϕ and ϕ
y1,...,yn
x1,...,xn are

equivalent with respect to any objects x1, . . . ,xn and y1, . . . , yn that exemplify the
same relations.

To see (.1) in action, consider that its contrapositive implies (.3) there are
properties G such that [λx xG] fails to signify a property, i.e.,

(.3) ∃G¬([λx xG]↓)

It is not hard to find a witness, i.e., a propertyG for which the formula xG (=ϕ)
fails the right-hand condition of (.1), thereby allowing us to infer ¬([λx xG]↓).
To see this, note that by (269), there are objects, say a and b, such that A!a,
A!b, a , b, and ∀F(Fa ≡ Fb). Since a and b are distinct abstract objects, one
encodes a property that the other doesn’t encode. Without loss of generality,

181Personal email communication, 3 March 2020.
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let G be a property such that aG and ¬bG. Then we know ¬(aG ≡ bG). So we
have ∀F(Fa ≡ Fb)→¬(aG ≡ bG). Hence, ∃x∃y(∀F(Fx ≡ Fy) &¬(xG ≡ yG)). So
♦∃x∃y(∀F(Fx ≡ Fy) &¬(xG ≡ yG)). Hence, the right side of (.1) is false, and so
it follows that ¬[λxxG]↓. This holds for any G that distinguishes indiscernible
abstract objects by virtue of what they encode.

(272) Theorems: Corollaries to Kirchner’s Theorem. It follows from Kirchner’s
Theorem and the fact that indiscernibles are necessarily indiscernible (241)
that if a λ-expression of the form [λxϕ] signifies a property, then ϕ and ϕyx are
necessarily equivalent with respect to any indiscernible objects x and y:

(.1) [λxϕ]↓ → ∀x∀y(∀F(Fx ≡ Fy)→ �(ϕ ≡ ϕyx )),
provided y doesn’t occur free in ϕ.

And the theorem generalizes to:

(.2) [λx1 . . .xn ϕ]↓ →
∀x1 . . .∀xn∀y1 . . .∀yn(∀F(Fx1 . . .xn ≡ Fy1 . . . yn)→ �(ϕ ≡ ϕy1,...,yn

x1,...,xn )),
provided y1, . . . , yn don’t occur free in ϕ (n ≥ 1)

In other words, if a λ-expression of the form [λx1 . . .xn ϕ] signifies a rela-
tion, then ϕ and ϕy1,...,yn

x1,...,xn are necessarily equivalent with respect to any objects
x1, . . . ,xn and y1, . . . , yn that exemplify the same relations.

As straightforward consequences of the Corollary to the Kirchner Theorem,
it follows that (.3) whenever x and y are indiscernible objects, then being a z
such that x bears G to z is identical to being a z such that y bears G to z, and (.4)
whenever x and y are indiscernible objects, then being a z such that z bears G to
x is identical to being a z such that z bears G to y:182

(.3) ∀F(Fx ≡ Fy)→ [λzGxz] = [λzGyz]

(.4) ∀F(Fx ≡ Fy)→ [λzGzx] = [λzGzy]

Note that this generalizes to any significant term [λz ϕ] that meets a well-
defined proviso:

(.5) [λzϕ]↓→ (∀F(Fx ≡ Fy)→ [λzϕ]=[λzϕyx ]), provided that none of the free
occurrences of x in ϕ are in encoding position.

Exercise: Show that ∀F(Fx ≡ Fy) → ∀G(Gx = Gy), i.e., that if x and y are
indiscernible, then for any property G, (the proposition) that x exemplifies G
is identical to (the proposition) that y exemplifies G. (A proof is given in the
Appendix, after the proof of (.5).)

182Thanks to Daniel Kirchner for noting these consequences. They were artifactual theorems of
the his Isabelle/HOL model of object theory, but became bona fide theorems of object theory once
the final form of axiom (39.2) was reached.
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(273) Definitions and Theorems: Discernible Objects. We have been infor-
mally using the notion indiscernibles to describe objects x and y such that
∀F(Fx ≡ Fy). We could, of course, easily say when objects x and y are dis-
cernible, namely, when they fail to be indiscernible, i.e., when they exemplify
the relation [λxy¬∀F(Fx ≡ Fy)]. But this defines discernibility as a binary rela-
tion. In what follows, we want to define a property of discernibility. Intuitively,
the idea is that an object x is discernible just in case, necessarily, for any distinct
object y, some property distinguishes x and y.

To implement this idea, we first establish that (.1) [the property] being an
x such that necessarily, for every other object z, some exemplified property distin-
guishes x and z exists:

(.1) [λx�∀z(z,x→∃F¬(Fz ≡ Fx))]↓

The proof of (.1) relies on Kirchner’s Theorem. Though we might express (.1)
more intuitively as necessarily being distinguished from every other object by some
exemplified property, this is not to say that necessarily, there is some property
distinguishes x from every other object (the claim ∀z(z,x→∃Fϕ) doesn’t im-
ply ∃F∀z(z,x→ ϕ), for arbitrary ϕ). We may therefore define being discernible
(‘D!’) in terms of property guaranteed to exist by (.1):

(.2) D! =df [λx�∀z(z,x→∃F¬(Fz ≡ Fx))]

Clearly, ‘D!’ is well-defined; it follows from (.1) and (.2) that D!↓. We include
the modal operator � in the definition because discernibility is a modal notion,
in the first instance. It may help to see how (.2) captures this idea by noting that
it implies: D!x if and only if is not possible for there to be an object y distinct
from x that exemplifies exactly the same properties as x.183 However, since we
know, by theorem (241) that ∀F(Fx ≡ Fy)→ �∀F(Fx ≡ Fy), it follows that an
object is discernible if and only if it is, in fact, distinguishable from every other
object:

(.3) D!x ≡ ∀z(z,x→∃F¬(Fz ≡ Fx))

So we need not show that x is necessarily distinguishable from from every other
object to show that it is a discernible object; the mere fact that it is distinguish-
able from every other object suffices.

In what follows then, we shall use discernible to refer to the property of
objects that we just defined, but we’ll continue to use indiscernibles to refer to
the binary relation that holds between objects x and y whenever they exemplify
the same properties. So the reader is forewarned that indiscernibility is not the

183For the (→) direction, assume D!x. Then by (.2) and λ-Conversion, �∀z(z,x→∃F¬(Fz ≡ Fx)).
This is equivalent to ¬♦∃z¬(z , x → ∃F¬(Fz ≡ Fx)). In turn, this is equivalent to: ¬♦∃z(z , x &
∀F(Fz ≡ Fx)). For the (←) direction, reverse the reasoning.
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negation of discernibility, though one could easily formulate a second notion of
indiscernibility, call it non-discernibility, as a property that is the negation of
D!. But we shouldn’t need this notion in what follows.

Clearly, it now follows that (.4) ordinary objects are discernible, (.5) there
are discernible objects; and (.6) some abstract objects are not discernible:

(.4) O!x→D!x

(.5) ∃xD!x

(.6) ∃x(A!x&¬D!x)

It is also straightforward to show that (.7) indiscernible discernible objects are
identical:

(.7) (D!x∨D!y)→ (∀F(Fx ≡ Fy)→ x=y)

Furthermore, without much effort, it can be shown that an object is necessarily
discernible if discernible:

(.8) D!x→ �D!x

Hence, by RN, �(D!x → �D!x), and so D!x is a modally collapsed formula.
Thus, all the usual consequences of modal collapse are derivable, namely that
(.9) x is discernible iff necessarily discernible; (.10) x is possibly discernible iff
discernible; (.11) x is possibly discernible iff necessarily discernible; and (.12)
x is discernible iff actually discernible:

(.9) D!x ≡ �D!x

(.10) ♦D!x ≡D!x

(.11) ♦D!x ≡ �D!x

(.12) D!x ≡ AD!x

We next show that [the property] being a discernible object such that ϕ exists, for
any formula ϕ:

(.13) [λxD!x&ϕ]↓, for any formula ϕ

However, to establish the more general claim, namely that:

[λx1 . . .xnD!x1 & . . . &D!xn &ϕ]↓

it helps to have the following Lemma, which tells us that if objects x1, . . . ,xn
and z1, . . . , zn stand in the same relations, then x1 and z1 are indiscernible, and
. . . , and xn and zn are indiscernible:
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(.14) ∀F(Fx1 . . .xn ≡ Fz1 . . . zn)→∀G(Gx1 ≡ Gz1) & . . . &∀G(Gxn ≡ Gzn) (n ≥ 1)

With this lemma, we now establish that [the relation] being objects x1, . . . ,xn that
are discernible and such that ϕ exists, for any ϕ:

(.15) [λx1 . . .xnD!x1 & . . . &D!xn &ϕ]↓, for any formula ϕ (n ≥ 1)

Thus, as an instance of (.15), it is a theorem that (.16) being discernible objects x
and y that are identical exists:

(.16) [λxy D!x&D!y & x=y]↓

Hence, we may define (.1) identity for discernibles (‘=D ’) as the binary relation
being identical discernibles :

(.17) =D =df [λxy D!x&D!y & x=y]

Clearly, then, =D exists. We henceforth use =D in infix notation. Hence, it
follows immediately that (.18) x and y are identicalD if and only if they are
identical discernible objects; (.19) if x and y are identicalD then they are iden-
tical; and (.20) x and y are identicalD if and only if they are discernible objects
that are necessarily indiscernible:

(.18) x=D y ≡D!x&D!y & x=y

(.19) x=D y→ x=y

(.20) x=D y ≡D!x&D!y &�∀F(Fx ≡ Fy)

We next prove that identityD is modally collapsed and all the usual conse-
quences of that fact. Instead of first proving that x =D y → �(x =D y) is a
modally strict theorem (which is sufficient, by RN, to establish that x =D y
is modally collapsed), we first prove that (.21) x and y are identicalD if and
only if it is necessary that they are identicalD ; (.22) it is possible that x and
y are identicalD if and only if they are identicalD ; (.23) possibly x and y are
identicalD iff necessarily x and y are identicalD ; and (.24) x and y are identicalD
iff it is actually the case that x and y are identicalD :

(.21) x=D y ≡ �(x=D y)

(.22) ♦(x=D y) ≡ x=D y

(.23) ♦(x=D y) ≡ �(x=D y)

(.24) x=D y ≡ A(x=D y)

Now let us adopt the same conventions for expressing facts about the negation
of =D as those used for expressing facts about the negation of =E . We write ,D
instead of =D , and where κ1 and κ2 are any individual terms, we henceforth
write κ1 ,D κ2 instead of ,D κ1κ2. Hence it follows that:
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(.25) x,D y ≡ ¬(x=D y)

The remarks about ,E (236) now apply to ,D , for (.25) may also fail for arbi-
trary individual terms κ and κ′: the schemas κ ,D κ′ and ¬(κ =D κ′) are not
equivalent. For if either ¬κ↓ or ¬κ′↓ is provable, then both κ=D κ′ and κ,D κ′

are provably false (they are both exemplification formulas with an empty pri-
mary term), in which case ¬(κ=E κ′) becomes provably true.

Moreover, the modal collapse of x,D y and its consequences hold:

(.26) x,D y ≡ �x,D y

(.27) ♦x,D y ≡ x,E y

(.28) ♦x,E y ≡ �x,E y

(.29) x,E y ≡ Ax,E y

We next show that that =D is (.30) reflexive with respect to the discernible
objects, (.31) symmetric, and (.32) transitive:

(.30) D!x→ x=D x

(.31) x=D y→ y=D x

(.32) (x=D y & y=D z)→ x=D z

Finally, we conclude with some facts about D!, =D , and =, namely that (.33) if
x or y is discernible, then necessarily, x and y are identical just in case they are
identicalD ; (.34) if y is discernible, then its haecceity exists; and (.35) distinct
discernibles have distinct haecceities:

(.33) (D!x∨D!y)→ �(x=y ≡ x=D y)

(.34) D!y→ [λx x=y]↓

(.35) (D!x&D!y)→ (x,y ≡ [λz z=x], [λz z=y])

(274) Remark: Why Discernible Objects are Philosophically Interesting. At
present, we haven’t asserted any axioms that imply that there are discernible
abstract objects. In absence of any further axioms or applications (i.e., new
primitive properties and axioms governing those properties), the theory is con-
sistent with the claim that all abstract objects are indiscernible. (Indeed, this
is the case in the smallest models of the theory.) So, for the moment, ordinary
objects will serve well enough as paradigm examples of discernible objects.
This, of course, need not remain true once the theory is extended or applied.
In particular, in Chapter 14, we’ll assert an axiom that implies the existence of
discernible abstract objects.
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The primary philosophical interest of discernible objects, however, is to
put the lid back on Pandora’s Box, which was opened by a theorem (269) that
proved the existence of non-Leibnizian objects (i.e., distinct objects that are
indiscernible). But much of philosophy assumes that objects are Leibnizian.
In classical second-order logic without identity (i.e., with no encoding formu-
las), one typically defines object identity x=y as ∀F(Fx ≡ Fy); moreover, every
condition on objects (i.e., every formula in which x occurs free) defines a prop-
erty.184 In the present system, every condition on discernible objects (i.e., every
formula of the form D!x&ϕ, whether or not x occurs free in ϕ) defines a prop-
erty (273.13).

So a traditional assumption of classical logic, namely that individuals are
governed by the identity of indiscernibles, is preserved with respect to dis-
cernible objects. Indeed, we may regard the Kirchner Theorem (271.1) and
(271.2), and theorems (273.9) and (273.11), as establishing that relation com-
prehension is unrestricted on the domain of discernible objects and, thus, that
relation and property comprehension in (191.1) and (191.2) extends classical
second-order comprehension with new properties that behave exactly as ex-
pected on discernible objects.

9.12 Propositional Properties

(275) Definition: Propositional Properties. Let us say that a property F is
propositional iff for some proposition p, F is being such that p:

Propositional(F) ≡df ∃p(F=[λy p])

Note that if a property term Π is known to be empty (either as a theorem or
by hypothesis), then by (107.1), it follows that ¬(Π= [λy p]), for any p; i.e., it
follows that ¬∃p(Π=[λy p]). So, in that case, we can derive ¬Propositional(Π).
This shows that no existence clauses are needed in the definiens to ensure that
the definiendum is false when the variable F in the definition is instanced by
an empty term.

(276) Theorems: Existence of Propositional Properties. (.1) For any proposi-
tion (or state of affairs) p, the propositional property being an individual such
that p exists.

(.1) ∀p([λy p]↓)

Next, we leave it to the reader to find two different proofs of the following
theorem schema, namely, that (.2) being an individual such that ϕ exists:

184Thus, in second-order logic with x=y defined as ∀F(Fx ≡ Fy), any time a formula ϕ (with free
variable x) is derivable but ϕ

y
x is not, then one can establish x,y.
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(.2) [λν ϕ]↓, where ϕ is any formula in which ν doesn’t occur free

Moreover, (.3) if F is being such that p, then necessarily, for any x, x exemplifies
F iff p is true:

(.3) F=[λy p]→ �∀x(Fx ≡ p)

Finally, (.4) if F is propositional, then necessarily F is propositional:

(.4) Propositional(F)→ �Propositional(F)

Propositional properties play an extremely important role in some of the ap-
plications of object theory in later chapters.

(277) Definition: Indiscriminate Properties. Let us say that a property F is in-
discriminate if and only if necessarily, if anything exemplifies F then everything
exemplifies F:

Indiscriminate(F) ≡df F↓&�(∃xFx→∀xFx)

Clearly, then, if F is indiscriminate, then there are no objects x and y such that
Fx and ¬Fy (exercise).

Exercise. Explain why F↓ is needed as a conjunct in the definiens, i.e., show
that without this existence clause, then when Π is an empty property term, one
can derive the simpler definiens�(∃xΠx→∀xΠx), and hence Indiscriminate(F),
using axiom (39.5.a) and standard quantifier and modal reasoning.

(278) Theorem: Propositional Properties are Indiscriminate. It follows from
our two previous definitions that propositional properties are indiscriminate:

Propositional(F)→ Indiscriminate(F)

(279) Theorem: Other Facts About Indiscriminate Properties. Some of the
following facts will prove useful in later chapters: (.1) necessary properties
are indiscriminate; (.2) impossible properties are indiscriminate; (.3) E!, E!,O!,
and A! are not indiscriminate; and (.4) E!, E!, O!, and A! are not propositional
properties.

(.1) Necessary(F)→ Indiscriminate(F)

(.2) Impossible(F)→ Indiscriminate(F)

(.3) (.a) ¬Indiscriminate(E!)

(.b) ¬Indiscriminate(E!)

(.c) ¬Indiscriminate(O!)

(.d) ¬Indiscriminate(A!)
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(.4) (.a) ¬Propositional(E!)

(.b) ¬Propositional(E!)

(.c) ¬Propositional(O!)

(.d) ¬Propositional(A!)

(280) Theorems: Propositional Properties, Necessity, and Possibility. The fol-
lowing claims about propositional properties can be established: (.1) if F might
be a propositional property, then it is one; (.2) if F isn’t a propositional prop-
erty, then necessarily it isn’t; (.3) if F is a propositional property, then neces-
sarily it is; and (.4) if F might not be a propositional property, then it isn’t
one:

(.1) ♦∃p(F=[λy p])→∃p(F=[λy p])

(.2) ∀p(F, [λy p])→ �∀p(F, [λy p])

(.3) ∃p(F=[λy p])→ �∃p(F=[λy p])

(.4) ♦∀p(F, [λy p])→∀p(F, [λy p])

(281) Theorems: Propositional Properties and Encoding. It is provable that:
(.1) if it is possible that every property that x encodes is propositional, then
in fact every property x encodes is propositional, and (.2) if every property
that x encodes is propositional, then necessarily every property x encodes is
propositional:

(.1) ♦∀F(xF→∃p(F=[λy p]))→∀F(xF→∃p(F=[λy p]))

(.2) ∀F(xF→∃p(F=[λy p]))→ �∀F(xF→∃p(F=[λy p]))

Intuitively, this is a consequence of the rigidity of encoding; the condition of
encoding only propositional properties is rigid (modally collapsed) and doesn’t
admit of modal distinctions.

9.13 Explanatory Remarks on Definitions

The discussion in the following Remarks help to justify the theory of definitions-
by-= developed earlier in this chapter. The first Remark, (282) is designed to
help one see why the classical theory of definitions designed for classical logic
needs to be refined for the modal contexts in the present system. Remark (282)
doesn’t require any familiarity with our previous discussion of the inferential
role of definitions. The second Remark (283) is designed to help one under-
stand the motivations underlying the primitive Rule of Definition by Identity
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(73). The final Remark (284) offers examples of definitions for which the proof
that the definiens is significant fails to be modally strict. This Remark may be
skipped by those who aren’t concerned at present with the application of the
system.

(282) Remark: Transitioning Away From the Classical Theory of Definitions
by Identity – The Problem of Modality. Let’s consider the ways in which the
classical theory of definitions-by-= fails for a system like the present one. The
classical theory of such definitions is usually formulated for a non-modal, first-
order predicate calculus with identity, but without definite descriptions. In
such systems, it is sometimes provable that ∃!xϕ where, for simplicity, x is the
only variable that occurs free in ϕ. In such situations, one may introduce, by
definition, a new individual constant, say δ, to designate the object satisfying
ϕ. But since there are no definite descriptions in the language, one can’t for-
mulate the definition as δ =df ıxϕ. Instead, when ` ∃!xϕ, one must introduce
δ with a definition-by-≡, i.e., by stipulating:

δ=x ≡df ϕ

(cf. Suppes 1957, 159–60; Gupta 2014, Section 2.4). For the purposes of our
discussion, we shall continue to assume that x is the only variable that occurs
free in ϕ.

Now suppose that we allowed such definitions within the present system.
Then since the above example implicitly guarantees that the (closures of the)
equivalence δ=x ≡ ϕ are axioms, it correctly follows that δ↓.185 Moreover, the
definition (also correctly) allows one to eliminate δ from any formula in which
it subsequently occurs.186

185The reasoning is straightforward. The definition licenses the axiom ∀x(δ = x ≡ ϕ), since this
is a universal closure of the equivalence δ = x ≡ ϕ. But, by hypothesis, ∃!xϕ is a theorem. Then
suppose b is such an object, so that we know both ϕbx and ∀y(ϕ

y
x → y=b), by the definition of the

uniqueness quantifier (127). Instantiating the universal claim to b, it follows that δ=b ≡ ϕbx . Since
we know ϕbx , it follows that δ=b. So by (107.1), it follows that δ↓.
186To see this, we show that ψδx , i.e., any formula ψ in which δ has been substituted for all the

free occurrences of x, is equivalent to ∃!xϕ&∃x(ϕ&ψ). (→) Assume ψδx . Since we’ve just seen that
the definition of δ implies δ↓, we can conclude δ=δ ≡ ϕδx by instantiating δ into ∀x(δ=x ≡ ϕ) (a
universal closure licensed by the definition). And we can independently infer δ=δ by instantiating
δ into ∀x(x=x), which is obtained by GEN from theorem (117.1). Hence, ϕδx . Conjoining what we
know, we have ϕδx &ψδx . Hence, by ∃I, ∃x(ϕ &ψ). But, by hypothesis, ∃!xϕ is a theorem. Hence,
∃!xϕ&∃x(ϕ&ψ).

(←) Assume ∃!xϕ&∃x(ϕ&ψ), to show ψδx . Let a be a witness to the first conjunct, so that we know:

(ζ) ϕax &∀y(ϕ
y
x → y=a)

And let b be a witness to the second conjunct, so that we know:

(ξ) ϕbx &ψbx
Then by the first conjunct of (ζ) and the definition of δ, it follows that δ= a. It follows from this
and the second conjunct of (ζ) that ∀y(ϕ

y
x → y = δ). But this and the first conjunct of (ξ) imply

b=δ. So we may substitute δ for b in the second conjunct of (ξ) to conclude ψδx .
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But this method of introducing new individual constants would be disas-
trous for the present system. To explain this by way of an example, suppose
that the following two claims are provable as theorems:

(a) ∃!xϕ

(b) ♦¬∃xϕ

Since (a) is a theorem, the classical theory would allow one to stipulate:

(c) δ=x ≡df ϕ

Definition (c) would, in our system, allow us to take the (closures of) δ=x ≡ ϕ
as axioms. So, for example, we would be able to take the following as axioms:

(d) ∀x(δ=x ≡ ϕ)

(e) ∀x�(δ=x ≡ ϕ)

But these would allow us to derive �∃xϕ, which contradicts (b).187 If well-
formed definitions introduce contradictions, then something has gone wrong.

One might suggest here that in order to use (c) as a definition in our system,
we have to require more than just ` ∃!xϕ. Instead, the suggestion goes, the con-
dition ` �∃!xϕ is required. Such a condition would block the example we’ve
been discussing since (b) couldn’t be a theorem if ` �∃!xϕ. The latter implies,
a fortiori, that ` �∃xϕ, but if (b) were a theorem, then ¬�∃xϕ would be as well.
Since the example essentially assumes that a contradiction is derivable, it can
be discounted.

But this suggestion for preserving the classical theory doesn’t work. We
can see why, at least intuitively, if we temporarily speak in the familiar idiom of
semantically-primitive possible worlds. Suppose it were a theorem that �∃!xϕ.
This would be true even if there were just two possible worlds, wα (the actual
world) and w1, and two distinct objects a and b such that a is uniquely ϕ at wα

and b is uniquely ϕ at w1. In this modal situation, the equivalence licensed by

187To see why, suppose b is some witness to (a), so that we know ϕbx and ∀y(ϕ
y
x → y = b), by the

definition of the uniqueness quantifier ∃!xϕ (127). Then by (d) it follows that:

(f) δ=b ≡ ϕbx
and by (e) it follows that:

(g) �(δ=b ≡ ϕbx )

Now by the reasoning in footnote 185, definition (c) implies δ↓. Hence by (125), we know:

(h) δ=b→ �δ=b

So we can establish ϕbx → �ϕbx by a hypothetical syllogism chain, as follows: ϕbx → δ = b, by (f);
δ = b → �δ = b, by (h); and �δ = b → �ϕbx , by (g) and the modal theorem �(ψ ≡ χ)→ (�ψ ≡ �χ)
(158.6). Having thus established that ϕbx → �ϕbx , then since we know ϕbx , it follows that �ϕbx .
Hence, by ∃I, ∃x�ϕ. So by the Buridan formula (168.1), �∃xϕ, which contradicts (b).
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definition (c), namely δ=a ≡ ϕax, would fail to be necessary. For since the terms
of our language are rigid, the definition would introduce δ as a rigid designator
of a, since a is uniquely ϕ at wα. So δ= a would be true at w1, since δ rigidly
denotes a. But ϕax would be false at w1 since, by hypothesis, b is uniquely ϕ
at w1. Hence, the equivalence δ = a ≡ ϕax would fail to be true at w1. So the
universalized modal equivalence (e), which is licensed by definition (c), can’t
be true, since it has false instances.

But another suggestion along these lines presents itself, namely, that def-
inition (c) becomes legitimate if we require that ∃!x�ϕ, instead of �∃!xϕ, be
a theorem. Unfortunately, this suggestion fails as well. That’s because ∃!x�ϕ
can be true while ∃!xϕ is not. Intuitively, from the fact that there is exactly one
thing which is ϕ at every possible world, it doesn’t follow that there is exactly
one thing which is in fact ϕ. Suppose there were just two things a and b, and
just two worlds wα and w1, and that a exemplifies P at both wα and w1, and
that b exemplifies P only at wα . Then, in that modal situation, at wα, there is
exactly one object (namely a) that exemplifies P at every world, i.e., ∃!x�P x.
But it is not the case, at wα , that there is exactly one thing that exemplifies P ,
since both a and b exemplify P there. Thus, given only that ` ∃!x�ϕ, we can’t
define δ by saying δ = x ≡df ϕ, since ` ∃!x�ϕ doesn’t guarantee ` ∃!xϕ.188

By now, it may be apparent that if one wants to stipulate δ = x ≡df ϕ, the
conditions ` ∃!x�ϕ and ` ∃!xϕ are both required. But we shall not adapt the
classical theory of definitions by introducing new individual constants in this
way. Instead, we shall typically introduce a new individual constant when we
know that ` ıxϕ↓ and x is the sole variable that occurs free in ϕ. For then, the
definition-by-identity:

(c′) δ =df ıxϕ

introduces the rigidly-designating constant δ by way of a significant, rigid-
ly-designating description. This blocks the example that was problematic for
the classical theory because (c′) doesn’t license the equivalence δ = x ≡ ϕ as
axiomatic. Instead, as we’ll see in the next Remark, (c′) will imply the identity
δ= ıxϕ when it is known, by proof or by hypothesis, that ıxϕ↓. And we’ll see
that one need not require that there be a proof of ıxϕ↓ to introduce (c′) – the
inferential role of definitions by identity will imply that ¬δ↓ if ¬ıxϕ↓. So we
shall defer further discussion of the inferential role of (c′) until Remark (283).
Moreover, we postpone, until Remark (284), the discussion of what (c′) implies
when the proof that ıxϕ↓ is a ?-theorem.

188However, ` ∃!x�ϕ is sufficient to block the case that led to the original contradiction described
above, for one can’t simultaneously assert ∃!x�ϕ and ♦¬∃xϕ. A contradiction would ensue with-
out the mediation of any definitions. Moreover, it also blocks the case where, at each world, a
different witness uniquely satisfies ϕ, i.e., blocks the case where �∃!xϕ is true but not ∃!x�ϕ.
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Two final observations are in order. The first is that we should follow the
same procedures when introducing a new relation constant. We typically in-
troduce such definitions only when the definiens is provably significant. Items
(22.1), (22.2), and (230), which contain the definitions of O!, A!, and =E , re-
spectively, are examples:

O! =df [λx ♦E!x] (22.1)

A! =df [λx¬♦E!x] (22.2)

=E =df [λxy O!x&O!y & x=y] (230)

These definitions introduce new unary and binary relation constants that are
provably significant, respectively, by theorems (115.1), (115.2), and the discus-
sion in (229) and (230). In the next Remark we’ll see exactly how the above
definitions introduce the corresponding identities into our system.

The second and final observation is that the foregoing remarks about the
definition of new individual and relation constants have to be generalized to
definitions-by-= in which there are free variables in the definiens and defini-
endum. This brings with it a new set of interesting issues, which are the subject
of Remark (283).

(283) Remark: Definitions by Identity (With Free Variables) and Empty Terms.
A definition-by-= takes the following form, in which the distinct variables
α1, . . . ,αn (n ≥ 0) occur free:

τ(α1, . . . ,αn) =df σ (α1, . . . ,αn)

In any given definition-by-=, the object-language variables that would instance
the αi function as metavariables, by Convention (17.2.a).

The classical understanding of definitions-by-= is that they implicitly as-
sert identity axioms. So where τ1, . . . , τn are any terms substitutable for α1, . . . ,
αn, respectively, and where τ(τ1, . . . , τn) and σ (τ1, . . . , τn) abbreviate, respec-
tively, ττ1,...,τn

α1,...,αn and σ τ1,...,τn
α1,...,αn , then on the classical understanding, the above defi-

nition would introduce the closures of the following as an axiom schema:

τ(α1, . . . ,αn) = σ (α1, . . . ,αn)

But such an understanding won’t work in the present system, given the prob-
lem of empty terms.

To understand the simplest form of the problem, consider a ‘classical’ the-
ory such as the theory of real numbers, for illustrative purposes only.189 In

189We discussed this example briefly in footnote 137. In the following discussion, we formulate
this definition using a definite description as the definiens, so that we can use a definition-by-= to
introduce this kind of division; cf. Suppes 1957, §8.6, which introduces division using a definition-
by-≡.
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that theory, mathematicians typically use a conditional to define division, i.e.,
to introduce x/y = z, where x,y,z range over real numbers. They want to ignore
terms like 3/0, 3/(π −π), 3/(3/0), etc., and so stipulate that:

If it is a theorem that y , 0, then the following definition holds,
x/y =df ız(x=y · z)

But if this definition is supposed to conservatively extend real number theory
with new expressions and axioms, this is somewhat awkward. For now, one
can’t specify the expanded language of real number theory (i.e., the one rep-
resented by the definition) so as to only include terms of the form x/y when
y , 0; for any general specification of the language would have to allow terms
such as 3/0, 3/(π −π), 3/(3/0), etc., to be well-formed. You can’t conditionally
specify the language to include those terms only if there is a proof that their
denominator is not identical to 0, since you can’t specify the proof system until
you specify the language. One could perhaps, as a way out, specify a sequence
of language and proof system pairs, so that at each pair in the sequence, the
proof system of that pair is used to specify the language of the next pair.

But this hardly seems like a good solution to the problem of defining divi-
sion. What is needed is a way to state the definition in a completely general
way but so that (a) it doesn’t yield identities in which one of the terms is a di-
vision by 0, and (b) it gives one the ability to prove that such facts as ¬(3/0)↓,
¬(3/(π −π))↓, ¬(3/(3/0))↓, etc. We’ll see below how the Rule of Definition by
Identity solves this problem. This solution starts by admitting that real num-
ber theory is most naturally expressed in a (free) logic that allows for complex
terms that fail to have a denotation, such as 3/0, 3/(π −π), 3/(3/0), etc.

So, let’s now examine this same problem from the point of view of a the-
ory like the present one, which allows for complex terms that may fail to de-
note. Consider the following definition, which has a single free variable in the
definiens and definiendum and which we introduce for illustrative purposes
only (though we’ve discussed this example in (27) in connection with a differ-
ent issue):

(ϑ) ιy =df ıx(x=y)

This defines ιy (‘the y’) as the individual identical to y. We’ve seen that our
system asserts, as a theorem, that the definiens is significant (177.1), and this
holds for any value assigned to y. By Convention (17.2), the free variable y in
(ϑ) functions as a metavariable, so that we know that (ϑ) has well-formed in-
stances even when a non-denoting individual term is uniformly substituted for
y. In other words, (ϑ) is to be interpreted as the following definition schema:190

190We are ignoring the fact that, strictly speaking, even the variable x should be interpreted as
a metavariable, for we now have established that alphabetic variants are interderivable. So the
reasons for treating the bound variable x as a metavariable no longer apply.
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(ξ) ικ =df ıx(x=κ), provided x doesn’t occur free in κ

Thus, ικ is well-formed, for any individual term κ. When κ is a description of
the form ızϕ, then the following is an instance of (ϑ), in its interpretation as
(ξ):

(ζ) ιızϕ =df ıx(x= ızϕ), provided x doesn’t occur free in ızϕ

Now, clearly, we can’t suppose that the inferential role of (ϑ) or (ξ) is to intro-
duce the axiom schema:

ικ = ıx(x=κ), provided x doesn’t occur free in κ

While this would be true when κ is a significant term, it fails when κ is empty;
when κ is the provably empty description ız(P z&¬P z), then the following is
not true:

ιız(P z&¬P z) = ıx(x= ız(P z&¬P z))

As we noted in Remark (27), identity statements can’t be true when the terms
flanking them are empty; nor do we plan to undertake heroic measures such
as letting all empty descriptions denote some arbitrary object, such as the null
object (265.1). So, what is the inferential role of definitions (ϑ) and (ξ)?

There is an additional issue to keep in mind before we answer this question.
Since it is provable that ¬ız(P z&¬P z)↓ and hence that ¬ıx(x= ız(P z&¬P z))↓,
then it should be provable that ¬ιız(P z&¬P z)↓. If the definiens is provably empty
then the definiendum should be provably empty. After all, the expression
ιız(P z&¬P z) is well-formed even if its definiens doesn’t have a denotation. So the
inferential role of (ϑ) and (ξ) should give us a means to conclude ¬ιız(P z&¬P z)↓
when ¬ıx(x = ız(P z&¬P z))↓. The former is well-formed and we know it to be
true, but we need a means of proving it.

These observations explain why the classical theory of definition by iden-
tity doesn’t work for the present system; a new understanding is required. This
new understanding is embodied by the primitive Rule of Definition by Identity
(73). To simplify the discussion of this metarule, let us consider definitions-by-
= with only one free variable, i.e., definitions of the form τ(α) =df σ (α). Then
the Rule of Definition by Identity stipulates that a definition of this form intro-
duces an axiom that is a conjunction of two conditionals, expressible in the for-
mal mode as follows: if σ (τ1) has a denotation, then the equation τ(τ1)=σ (τ1) is
true, and if σ (τ1) doesn’t have a denotation, then neither does τ(τ1). Formally,
this would be captured as:

Rule of Definition by Identity (One-Free Variable)
Whenever τ1 is substitutable for α in σ , then a definition-by-= of the
form τ(α) =df σ (α) introduces the closures of the following, necessary
axiom schema:
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(ω) (σ (τ1)↓ → τ(τ1)=σ (τ1)) & (¬σ (τ1)↓ → ¬τ(τ1)↓)

Though this rule gives rise to some interesting issues (discussed below), let’s
first see how it addresses the cases discussed so far.

First, consider the definition of division in real number theory. According
to the Rule of Definition by Identity, the definition x/y =df ız(x = y · z) would
introduce the axiom:

(ız(x=y · z)↓ → x/y= ız(x=y · z)) & (¬ız(x=y · z)↓ → ¬(x/y)↓)

So, for y = 0, the axiom would assert:

(ız(x=0 · z)↓ → x/0= ız(x=0 · z)) & (¬ız(x=0 · z)↓ → ¬(x/0)↓)

Since the antecedent of the second conjunct is a theorem of real number the-
ory, it would follow that ¬(x/0) ↓, and so by GEN, ∀x¬((x/0) ↓) would be a
theorem. Similarly for y = (π −π). Moreover, when y = 3/0, one can show that
¬(x/(3/0))↓, for any x, since in this case, the rule asserts that the following is
axiomatic:

(ız(x=(3/0) · z)↓ → x/(3/0)= ız(x=(3/0) · z)) & (¬ız(x=(3/0) · z)↓ → ¬(x/(3/0))↓)

Since ¬(3/0)↓, (3/0) · z is provably empty, for any z.191 So x = (3/0) · z is al-
ways false, for any x, implying thereby that ¬ız(x = (3/0) · z)↓. Thus, the rule
yields ¬(x/(3/0))↓, for any x. So the Rule of Definition by Identity handles
the definition of division in real number theory in a general way – it extends
the language with new terms of the form κ/κ′, for arbitrary individual terms
κ and κ′; it asserts that the definition yields identities when the definiens is
significant; and it allows us to prove that the definiendum is empty when the
definiens is empty.

Second, reconsider (ϑ). Let κ be any individual term substitutable for y
in ıx(x = y). Then, on the proposed inferential role, (ϑ) would introduce the
following, necessary axiom schema:

(ω′) (ıx(x=κ)↓ → ικ= ıx(x=κ)) & (¬(ıx(x=κ)↓)→¬ικ↓).

Let’s consider how this applies to specific instances, starting with a case where
the first conjunct of (ω′) is operative, i.e., a case where we can show that the
antecedent of the first conjunct of (ω′) holds. Suppose κ is the constant a, so
that the relevant instance of definition (ϑ) is:

191For reductio, suppose ((3/0) · z))↓. Then by the axioms for multiplication, (3/0) · z = 3z/0. But
by the previous case we examined in the text, we saw that ¬(x/0)↓, for any x, and so ¬(3z/0)↓.
Hence, ¬((3/0) · z = 3z/0), by theorem (107.2). Contradiction. Thus, ¬((3/0) · z)↓. Alternatively,
just assume that in the formulation of real number theory under consideration, which allows for
empty complex terms, multiplication is axiomatized in such a way that the term κ · κ′ is empty if
either κ or κ′ is empty.
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ιa =df ıx(x=a)

So, the Rule of Definition by Identity says that the inferential role of this in-
stance is to introduce the following necessary axiom (and hence a claim deriv-
able from any premises):

(ω′′) (ıx(x=a)↓→ ιa= ıx(x=a)) & (¬(ıx(x=a)↓)→¬ιa↓)

Clearly, the antecedent of the first conjunct is derivable: since ıx(x = y)↓ is a
theorem (177), it follows that ∀y(ıx(x = y)↓), and since a↓ is axiomatic (39.2),
it follows that ıx(x = a)↓. So the first conjunct of (ω′′) yields ιa = ıx(x = a) as a
theorem. On this understanding, (ϑ) enables an appeal to this identity in any
reasoning we might conduct.

Now consider a case where the second conjunct of (ϑ′) is the operative one.
Suppose κ is the description ızψ, where ψ is P z & ¬P z, so that the relevant
instance of definition (ϑ) is:

ιızψ =df ıx(x= ızψ)

Given the inferential role stipulated by the Rule of Definition by Identity, the
above introduces the following as a necessary axiom:

(ω′′′) (ıx(x= ızψ)↓→ ιızψ = ıx(x= ızψ)) & (¬(ıx(x= ızψ)↓)→ ¬ιızψ↓)

Now the laws governing descriptions will guarantee that ¬(ızψ↓), and so by
reasoning described in footnote 102, we can infer ¬(ıx(x = ızψ)↓). It follows
from the second conjunct of (ω′′′) that ¬(ιızψ ↓). So on this understanding of
(ϑ), we have a proof of ¬(ιızψ↓) from the fact that the definiens of ιızψ doesn’t
have a denotation. We may therefore continue any reasoning we’re engaged
in secure in the knowledge that no true exemplification, encoding, or identity
formula will have ιızψ as a primary term.

At this point, we have sufficiently motivated the Rule of Definition by Iden-
tity (73) as a primitive metarule. The key to its formulation and generalization
concerns the issues that arise for the classical understanding of definitions-by-
= with free variables in the definiens and definiendum. In (73), the rule is for-
mulated so that it governs definitions with n free variables in the definiens and
definiendum, i.e., so that it governs the introduction of n-ary term-forming op-
erators. Thus, the foregoing remarks indicate the conditions under which we
can preserve a classical understanding of the inferential role of term-forming
operators. We can rest assured that term-forming operators introduced into
our language by definition are logically well-behaved if they are significant
when applied to appropriate arguments.

There is, however, one final issue to discuss. By guaranteeing that the
definiendum is empty whenever the definiens is empty, the Rule of Defini-
tion by Identity does implement the garbage in, garbage out principle, but only
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in the first instance. For the rule still allows one to introduce new, impractical
terms that have denotations even though the arguments to the term-forming
operator do not. To illustrate the issue, we’ll consider some examples of new
terms of the form τ(τ1) that have denotations even though the argument term
τ1 does not. But the reader should note: these examples will not lead us to fur-
ther refine the Rule of Definition by Identity so as to ensure that τ(τ1) is prov-
ably empty if τ1 is empty. That’s because the system already has terms τ that
denote even though τ contains empty subterms, and so adding new, defined
terms of this sort won’t introduce logical problems. Moreover, the refinements
needed to forestall new, impractial terms would not only complicate the Rule
of Definition by Identity significantly, but would also give rise to a problem
of its own that requires even further revisions. So the following discussion is
primarily for edification purposes; those interested in the issues surrounding
a more sensitive rule might find the following discussion to be of value.

To see how the Rule of Definition by Identity yields impractical terms, con-
sider the following definitions of the individual-term-forming operator a( ) and
the relation-term-forming operator ( ):

(A) ay =df ıx(A!x&∀F(xF ≡ Fy))

(B) F =df [λy ¬Fy]

Intuitively, the intent of these definitions is to identify new individuals and re-
lations in terms of some given individuals and relations. But, in object theory,
we shall be able to prove the following:

(a) ıx(A!x&∀F(xF ≡ Fκ))↓, for any individual term κ in which x and F don’t
occur free

(b) [λy ¬Πy]↓, for any property term Π in which y doesn’t occur free

It is worth a brief digression to explain why these hold even when κ and Π are
terms that fail to have a denotation, though (b) should already be familiar from
the discussion of example (E) in Remark (155).

If κ is a non-denoting description in which x and F don’t occur free, say ızψ,
then consider the canonical description ıx(A!x&∀F(xF ≡ Fızψ)). This canonical
description has a denotation; it denotes the abstract object that encodes no
properties, since in such a case no property F is such that Fızψ. It is a theorem
that there is a unique abstract object that encodes no properties (264). So (a)
is true when κ is assigned the non-denoting description ızψ. The current Rule
of Definition by Identity allows us to derive, from definition (A), that aızψ =
ıx(A!x&∀F(xF ≡ Fızψ)). Thus, the new term aızψ has a denotation even though
its argument ızψ does not.
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Similarly, if Π is a non-denoting property expression in which y doesn’t oc-
cur free, say [λz ψ], then consider the λ-expression [λy ¬[λz ψ]y]. This ex-
pression has a denotation; it denotes a universal property. Intuitively, if [λz ψ]
denotes nothing, then [λz ψ]y is (universally) false and so ¬[λz ψ]y is (univer-
sally) true. So, in such a case, [λy ¬[λz ψ]y] denote a property that everything
exemplifies. Therefore (b) is true when Π is [λz ψ]. The current Rule of Defi-
nition by Identity implies, given definition (B), that [λz ψ] = [λy ¬[λz ψ]y]. In
this case, [λz ψ] has a denotation even though [λz ψ] does not – recall Remark
(198).

So we’ve now seen:

• examples of empty terms κ and Π that occur as arguments in provably
significant terms of the form (a) and (b),

• that, in these cases, the inferential role of (A) and (B) assigned by the Rule
of Definition by Identity allows us to derive an identity claim governing
aκ and Π, and

• that, in these cases, the definienda thereby provably have a denotation
even though they consist of a term-forming operator that is operating on
a non-denoting argument.

Since there are no significant logical issues posed by these facts, and the com-
plications needed to forestall them are significant, we may simply ignore them.
But if one were to rigorously pursue the garbage in, garbage out principle, one
could take the following steps.

One could refine the Rule of Definition by Identity by having it stipulate: if
the arguments to the definiens all have a denotation and the definiens (with the
arguments substituted for the free variables) has a denotation, then the equa-
tion between the definiendum and definiens holds; otherwise, the definiendum
fails to denote. In the case of a definition with one free variable, this could be
stated formally as:

Alternative Rule of Definition by Identity (1 free variable)
Whenever τ1 is substitutable for α in σ , then a definition-by-= of the
form τ(α) =df σ (α) introduces the closures of the following, necessary
axiom schema:

(ω) ((τ1↓& σ (τ1)↓) → (τ(τ1)=σ (τ1))) & ((¬τ1↓ ∨¬σ (τ1)↓) →¬τ(τ1)↓)

Before we explore how this would imply that impractical terms are empty, note
that how this rule would be generalized for the definition of term-forming
operators that take n variables (n ≥ 0):
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Alternative Rule of Definition by Identity (n free variables)
Whenever τ1, . . . , τn are substitutable, respectively, for α1, . . . ,αn in σ , then
a definition-by-= of the form τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) introduces the
closures of the following, necessary axiom schema:

(ω) [(τ1↓& . . . & τn↓& σ (τ1, . . . , τn)↓) → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)] &
[(¬τ1↓ ∨ . . .∨¬τn↓ ∨¬σ (τ1, . . . , τn)↓) →¬τ(τ1, . . . , τn)↓]

The axiom (ω) in this rule stipulates that the identity τ(τ1, . . . , τn) = σ (τ1, . . . , τn)
holds if all of the arguments τ1, . . . , τn and the definiens σ (τ1, . . . , τn) are sig-
nificant and that the new term τ(τ1, . . . , τn) is empty if any of the arguments
τ1, . . . , τn or the definiens σ (τ1, . . . , τn) are empty.

Note that the Alternative Rule of Definition by Identity still correctly allows
one to derive the following identities from (A) and (B), respectively:

(i) ay = ıx(A!x&∀F(xF ≡ Fy))

(ii) F = [λy ¬Fy]

In each case, the first conjunct of the Alternative Rule is operative, since not
only is it axiomatic that y↓ and F↓, but the definiens in each of (A) and (B) is
provably significant.

But, more significantly, definitions (A) and (B), under the Alternative Rule,
would guarantee, respectively, that:

• ¬aızψ↓ is a theorem whenever ¬ızψ↓ is a theorem

• ¬[λz ψ]↓ is a theorem whenever ¬[λz ψ]↓ is a theorem

These results follow from the second conjunct of the axiom schema implicitly
introduced by the definitions. So, given this alternative inferential role, to
show that the definiendum fails to denote, it suffices to show that the argument
to the term-forming operator fails to denote.

But even this Alternative Rule of Definition by Identity has to be further
refined. A problem arises in connection with the definition of new 0-ary re-
lation terms with free variables. The problem is that the Alternative Rule is
inconsistent with the theorem that every 0-ary relation term Π0 is significant.
Both Π0↓ (104.1) and ϕ↓ (104.2) are theorems, for any 0-ary relation term Π0

or formula ϕ. But suppose we’re introducing, by definition, a new 0-ary term-
forming operator Π( ) and suppose further that it takes a free individual term
as an argument, so that the definition takes the form Π(x) =df σ (x), where σ (x)
is a 0-ary relation term. Then, when the argument is a description, say ızψ,
the Alternative Rule of Definition by Identity stipulates that the following is
an axiom:

((ızψ↓& σ (ızψ)↓) → (Π(ızψ)=σ (ızψ))) & ((¬ızψ↓ ∨¬σ (ızψ)↓) →¬(Π(ızψ)↓))
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So if ızψ is ız(P z&¬P z) and ¬ızψ↓ is thereby derivable, the second conjunct is
operative, thereby implying ¬(Π(ızψ)↓). But this contradicts Π(ızψ)↓, which is
an instance of theorem (104.2).

To address this new problem, one might propose:

Second Alternative Rule of Definition by Identity
If τ1, . . . , τn are substitutable for α1, . . . ,αn, respectively, in σ , then a defini-
tion-by-= of the form τ(α1, . . . ,αn)=df σ (α1, . . . ,αn) introduces the closures
of the following, necessary axiom schema:

(ω) [(τ1↓& . . . & τn↓& σ (τ1, . . . , τn)↓) → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)] &
[(¬τ1↓ ∨ . . .∨¬τn↓ ∨¬σ (τ1, . . . , τn)↓) →¬τ(τ1, . . . , τn)↓],

whenever σ (α1, . . . ,σn) is an individual term, an m-ary relation term
(m ≥ 1), or a 0-ary relation term in which none of α1, . . . ,αn are indi-
vidual variables or k-ary relation variable for k ≥ 1,

and:

(ω′) [(τ1↓& . . . & τn↓& σ (τ1, . . . , τn)↓) → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)] &
[(¬τ1↓ ∨ . . .∨¬τn↓ ∨¬σ (τ1, . . . , τn)↓) → �¬τ(τ1, . . . , τn)],

whenever n ≥ 1 and σ (α1, . . . ,αn) is a 0-ary relation term in which
one or more of α1, . . . ,αn is an individual variable or k-ary relation
variable for k ≥ 1.

Though this lays the problem of defining new 0-ary term-forming operators to
rest, the reader might, at this point, be convinced that the official version of the
rule suffices and stands in need of no further refinement. The cost of ruling out
impractical terms is significant and since there is no real harm in living with
impractical terms that arise by definition, we have chosen not to pursue the
above alternatives.

(284) Remark: When the Significance of the Definiens Rests on a ?-Theorem.
Consider, again, the general case of any individual constant δ introduced by
the following definition, in which ıxϕ is a closed term:

δ =df ıxϕ

The inferential role of this definition, as we just saw in Remark (283) is to
introduce the following as a necessary axiom:

(ω) (ıxϕ↓ → (δ = ıxϕ)) & (¬ıxϕ↓ → ¬δ↓)

Now suppose that we can prove ıxϕ↓, but that the proof rests on a ?-theorem,
so that ıxϕ↓ is a ?-theorem. Then when we appeal to ıxϕ↓ to detach the con-
sequent from the antecedent of the first conjunct of (ω), the resulting identity
δ = ıxϕ becomes a ?-theorem. And since identities are necessary, �(δ = ıxϕ)
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becomes a ?-theorem. This is as it should be: a necessary identity has been
proved as a theorem on the basis of a contingency and should therefore be
flagged as such.

To see how this works in practice, suppose one were to extend our the-
ory by adding, as an axiom, the contingent claim that there exists a unique
moon of Earth. If we use ‘e’ as the name of Earth and represent this axiom
as ∃!xMxe, then we would annotate the axiom as modally fragile and decorate
its item number with a ?.192 Since ∃!xMxe is asserted as a modally fragile ax-
iom, all of its �-free closures are also taken to be modally fragile axioms and
so become ?-theorems. So by theorem (144.1)?, or by RA and theorem (176.2),
it would follow that ıxMxe↓ is a ?-theorem. Since ıxMxe is provably signifi-
cant, we might introduce a name, say m, to designate this unique object, via
the following definition:

m =df ıxMxe

Given the inferential role of definitions-by-= described in (283), this intro-
duces the necessary axiom:

(ω1) (ıxMxe↓ → (m= ıxMxe)) & (¬ıxMxe↓ → ¬(m↓))

In this scenario, note that all of the following become provable as ?-theorems:

? m = ıxMxe, by (ω1) and the ?-theorem ıxMxe↓

? m↓, by the ?-theorem m = ıxMxe and the �-theorem (107.1)

? �ıxMxe↓, by the ?-theorem ıxMxe↓ and the �-theorem (106)

? �m↓, by the ?-theorem m↓ and the �-theorem (106)

? �m= ıxMxe, by the ?-theorem m= ıxMxe and the �-theorem (125.2)

And so on. These consequences, again, are as they should be: all are claims
derived from an axiom whose necessitation was not asserted and so flagged as
such.193

We conclude these observations by generalizing the discussion to relation
terms. Suppose [λx1 . . .xnϕ] is a closed term and that the proof of [λx1 . . .xnϕ]↓
is a ?-theorem. If we introduce a new n-ary relation constant, say P10 by the
definition:
192Since the claim ∃!xMxe is, intuitively, contingent, we could also assert ♦¬∃!xMxe as a (neces-

sary) axiom. But the possibility claim is not needed for the present discussion; it suffices that the
axiom is marked as modally fragile, for that just means, by definition (42), that we’re not asserting
its modal closures as axioms.
193See Remark (695) in Chapter 13, Section 13.3, where Leibniz’s notion of a hypothetical necessity,

which he deploys in defense of his containment theory of truth against an objection by Arnauld, is
analyzed as a necessary truth derived on the basis of a contingency.
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P10 =df [λx1 . . .xn ϕ]

then the identity claim P10 = [λx1 . . .xnϕ] becomes a ?-theorem, given the infer-
ential role of a definition-by-= described in (283), for the reasons just discussed
in connection with new individual constants. The reader might try to construct
an example of a λ-expression whose significance is provable only by appeal to
a contingency.194

194The λ-expression [λy y=E ıxMxe], when ∃!xMxe has been asserted as a modally fragile axiom,
is not such an example. The resulting ?-theorem, ıxMxe↓, isn’t required to establish the modally
strict claim that [λy y =E ıxMxe]↓, since (a) the λ-expression is a core λ-expression and so this
claim axiomatic by (39.2) or (b) the claim is provable in the manner discussed at the end of Remark
(231). So it takes some work to develop an example of a λ-expression [λxϕ] such that [λxϕ]↓ is a
?-theorem.

Here is one suggestion: let ıxMxe↓ be the ?-theorem from the above example and consider the λ-
expression [λx ıxMxe↓]. It can be shown that [λx ıxMxe↓]↓ is a ?-theorem. In the discussion above
we established that �ıxMxe↓ is a ?-theorem. From this, and the fact that �(E!x→ E!x), it follows
by (158.7) that �((E!x→ E!x) ≡ ıxMxe↓) is a ?-theorem. So by GEN and then an application of BF
(167.1), it follows that �∀x((E!x→ E!x) ≡ ıxMxe↓) is a ?-theorem. So by axiom (49) and the fact
that [λx E!x→ E!x]↓, it follows that [λx ıxMxe↓]↓ is a ?-theorem.



Chapter 10

Basic Logical Objects

In this chapter, we prove the existence of some basic logical objects and some
fundamental theorems about them. Such objects include the truth-value of
proposition p (◦p), the extension of property F (εF), the class of Fs ({y |Fy}),
the direction of line a (~a), the shape of figure c (c̃), etc. We also generalize these
applications to develop theorems governing any logical object abstracted from
an equivalence condition or an equivalence relation.195

10.1 Truth-Values

(285) Remark: On Truth-Values. Frege postulated truth-values in his lecture of
1891 (13), and they are the very first logical objects that he officially introduces
in his Grundgesetze der Arithmetik; they appear in Volume I, §2, just after the
section on functions (see Frege 1893, 7). In what follows, we identify truth-
values as abstract, logical objects, prove they exist, and further prove, among
other things: (a) that necessarily there are exactly two truth-values, and (b)
that the truth-value of p is identical to the truth-value of q if and only if p is
equivalent to q. The theorems about truth-values proved below are often prin-
ciples that Frege implicitly assumed. The key idea underlying truth-values of

195Some of the definitions and theorems below are revised and enhanced versions of those de-
veloped in Anderson & Zalta 2004. The main difference is that, in the present work, we develop
definitions of such notions as truth-value, class, etc., so as to allow for modally strict theorems
about these notions. By contrast, in Anderson & Zalta 2004, the definitions often used rigid def-
inite descriptions, thereby making it difficult to establish modally strict theorems. Compare, for
example, the definition of x is a truth-value in Anderson & Zalta (2004, 14) with the one devel-
oped below in (290). There are modally strict facts about truth-values proved below for which the
version in Anderson & Zalta 2004 not modally strict. For example, theorem (292), that there are
exactly two truth-values, is modally strict in the present work, but the corresponding version in
Anderson & Zalta (2004, 14) is not.

414
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propositions is that, given a proposition p, the condition, q is materially equiv-
alent to p, intuitively defines a logical pattern relative to p. This pattern can
be objectified into an abstract, logical object that encodes just those properties
F having the form [λy q] for propositions q materially equivalent to p. Such a
logical object is identified as the truth-value of p.

(286) Definitions: Truth-Value of a Proposition. Recall that in (275) we de-
fined a propositional property to be any property F such that ∃q(F = [λy q]).
Employing our conventions for definitions-by-≡ in (17), we now say that x is
a truth-value of p just in case x is an abstract object that encodes all and only
those properties F such that for some proposition q materially equivalent to p,
F is the propositional property [λy q]:

TruthValueOf (x,p) ≡df A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q]))

If we informally say F is constructed from q whenever F = [λy q], then we may
read the above definition as follows: x is a truth-value of p whenever x is an
abstract object that encodes all and only properties constructed from proposi-
tions materially equivalent to p.196

(287) Remark: Reminder About Definitions. Note the following facts about
the foregoing definition:

• We no longer need to interpret the bound variables under Convention
(17.2.b); that is, we need not suppose that the bound variables F, q, and
y function as metavariables. By Rule ≡Df, the definition introduces a
biconditional axiom. Since axioms are theorems, we can derive, as a the-
orem, any alphabetic variant of the axiom, by the Rule of Alphabetic
Variants (114). Indeed, given Rules GEN, RN, and RA, any closure of the
biconditional axiom is derivable as a theorem and, therefore, so are their
alphabetic variants. So the discussion in Remarks (32) and (28) no longer
applies.

• We no longer need to interpret the free variable p under Convention
(17.2.a); that is, we need not suppose that p functions as a metavariable.
Since every 0-ary relation term provably has a denotation (104.1), every
0-ary relation term in which F doesn’t occur free can be substituted for
∀p in the universally quantified biconditional that can be derived from
the definition. So the discussion in Remark (27) no longer applies to the
variable p.

196We’ll discover in Chapter 12, in Section 12.1 on situations, that the above definition can be
‘simplified’. But this simplification requires a lot of machinery that isn’t strictly necessary for
defining, and proving facts about, the notion of a truth-value. See the Exercise at the end of (486).
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• The variable x does still function as a metavariable, under Convention
(17.2.a); every individual term κ in which F doesn’t occur free, whether
significant or not, can be used to form an instance of the definition in
which κ is uniformly substituted for x. So the discussion in Remark (27)
still applies to the variable x.

• For instances of the definition involving individual terms κ such that
` ¬κ↓, we don’t need to add an existence clause to the definiens to ensure
that ¬TruthValueOf (x,κ) is provable. If ` ¬κ↓, then A!κ is provably false
and the definiens will be provably false, thereby yielding a derivation of
¬TruthValueOf (x,κ). See the discussion in Remark (36).

See the Remarks indicated if these facts aren’t clear.

(288) Theorem: There Exists a (Unique) Truth-Value of p.

(.1) ∃xTruthValueOf (x,p)

(.2) ∃!xTruthValueOf (x,p)

So, by applying GEN to (.2), we have established the principle have every
proposition has a unique truth-value. Thus ∃!xTruthValueOf (x,ϕ) is a theo-
rem schema provable for any formula ϕ. Finally, we derive, by modally strict
means, an important, unheralded principle, namely (.3) if x is a truth-value of
p and y is a truth-value of q, then x is identical to y if and only if p is materially
equivalent to q:

(.3) (TruthValueOf (x,p) & TruthValueOf (y,q))→ (x=y ≡ (p ≡ q))

(289) Lemmas: Facts About Propositional Properties and Truths (or False-
hoods). Some basic facts about propositional properties are: (.1) p is true if and
only if the propositional properties constructed from true propositions are pre-
cisely the propositional properties constructed from propositions materially
equivalent to p; and (.2) it is not the case that p if and only if the propositional
properties constructed from false propositions are precisely the propositional
properties constructed from propositions materially equivalent to p):

(.1) p ≡ ∀F[∃q(q&F=[λy q]) ≡ ∃q((q ≡ p) &F=[λy q])]

(.2) ¬p ≡ ∀F[∃q(¬q&F=[λy q]) ≡ ∃q((q ≡ p) &F=[λy q])]

Note that these theorems are modally-strict.

(290) Definition: Truth-Values. When Frege introduced truth-values in 1891,
he not only stipulated that they exist (without defining them) but also asserted
that there are exactly two of them, naming them The True and The False. By
contrast, our procedure has been to first define what it is for an object to be
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a truth-value-of a proposition and show that for any proposition p, there is a
unique such entity. We now define what it is for an object to be a truth-value
in terms of the notion truth-value-of. We say that x is a truth-value iff x is a
truth-value of some proposition:

TruthValue(x) ≡df ∃p(TruthValueOf (x,p))

We now prove some general facts about truth-values and then prove that there
are exactly two of them. Then we’ll define The True and The False as abstract
objects and prove that The True and The False are truth-values.

(291) Lemmas: Abstract Objects That Encode Just The Truths (or Just The
Falsehoods) Are Truth-Values. We now prove (.1) if x is an abstract object that
encodes all and only properties constructed from true propositions, then it is
a truth-value, and (.2) if x is an abstract object that encodes all and only prop-
erties constructed from false propositions, then it is a truth-value:

(.1) (A!x&∀F(xF ≡ ∃q(q&F=[λy q])))→ TruthValue(x)

(.2) (A!x&∀F(xF ≡ ∃q(¬q&F=[λy q])))→ TruthValue(x)

These facts are modally strict.

(292) Theorem: There are Exactly Two Truth-Values. We prove the claim that
there are exactly two truth-values in the following form:

∃x∃y[TruthValue(x)&TruthValue(y)&x,y&∀z(TruthValue(z)→ z=x∨z=y)]

By RN, this is a necessary truth.

(293) Theorem: The Truth-Value of p Exists. It now follows that the truth-value
of p exists:

ıxTruthValueOf (x,p)↓

So, by GEN, for every proposition p, the truth-value of p exists.
Note that the above theorem can be easily proved in one of two ways:

(a) from the previous theorem (288.2), the Rule of Actualization (RA), and a
lemma for actuality and existence (176.2), or (b) from an instance of theorem
(252), definition (286), and theorem (149.3), by the substitution of identicals.

(294) Definition: Notation for the Truth-Value of p. The previous theorem
guarantees that the description ıxTruthValueOf (x,p) is significant and so holds
for every proposition p. Let us therefore introduce the notation ◦p to refer to
p’s truth-value:

◦p =df ıxTruthValueOf (x,p)
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This definition is interesting in the following respect. We know by (104.1) that
Π↓, for every 0-ary relation term Π. We can therefore prove from (293) that
ıxTruthValueOf (x,Π)↓, for any 0-ary relation term Π in which x doesn’t occur
free. And if x does occur free in Π, we can always pick some individual variable
that doesn’t occur free in Π, say y, to prove ıyTruthValueOf (y,Π)↓. So given
the inferential role of definitions-by-=, as described in (73), we can establish
an identity of the form ◦Π = ıνTruthValueOf (ν,Π), for any 0-ary relation term
Π. It is interesting when a term-forming operator yields an identity relative to
every term that can serve as its argument.

(295) Definition: When Objects Encode Propositions. We now extend the no-
tion of encoding. We say that object x encodes proposition p (written xΣp) just
in case x encodes being-a-y-such-that-p, i.e., encodes [λy p]:

xΣp ≡df x[λy p]

It is important to remember that although every formula ϕ signifies a propo-
sition (104.1), one may not substitute a formula ϕ for p in this definition if y
occurs free in ϕ. That would not result in a valid instance of the definition,
for the free variable in ϕ would get captured by λy in the term [λy ϕ]! As we
noted in the Convention for Variables in Definitions (17.2.b), the y in the above
definition is functioning as a metavariable. If we state the definition using a
metavariable, say ν, instead of y, then we must add the proviso that ν is not
free in ϕ. Clearly, the operator λy in the term [λy p] doesn’t capture any vari-
able in the matrix p, and so any well-formed instance of the definition has to
conform to this standard – the variable bound by the λ may not capture any
variable free in the substitution instance for p. So if y does occur free in ϕ, then
we find a variable not free in ϕ, say z, and regard the definition as asserting
xΣϕ ≡df x[λz ϕ]. Thus, the λ-expression in the definiens of any substitution
instance of the definition of xΣp will always be a core λ-expression (9.2) and
hence significant (39.2).

We henceforth adopt the convention that ‘xΣ . . .’ is to be interpreted with
the smallest scope possible. For example, xΣp→ p is to be parsed as (xΣp)→ p
rather than as xΣ(p→ p).

(296) Theorem: The Truth-Value of p is Canonical. It is an easy consequence
of our definitions that (.1) the truth-value of p is identical to the abstract object
that encodes exactly the properties F constructed out of propositions materi-
ally equivalent to p:

(.1) ◦p = ıx(A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q])))

Thus, by (253), ◦p is (identical to) a canonical individual. Moreover, it follows
by modally strict means that (.2) the truth-value of p encodes p:
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(.2) ◦pΣp

(297) Theorem: When the Submatrix is Contingent. To help set up the obser-
vation that ◦p is not strictly canonical, it will prove useful to show that: for
some proposition p and some property F, it is possible that both (a) for some
proposition q materially equivalent to p, F is the property being such that q and
(b) it is possible that there is no proposition q materially equivalent to p such
that F is being such that q:

∃p∃F♦(∃q((q≡p) &F=[λy q]) &♦¬∃q((q≡p) &F=[λy q]))

Note that if we let ϕ be the formula ∃q((q≡p)&F=[λyq]), then this theorem es-
tablishes, for some proposition p and property F, that ♦(ϕ&♦¬ϕ). By (165.11),
we have established, for some p and F, that ♦ϕ & ♦¬ϕ. Thus, for some values
of the free variables, the submatrix of the canonical description of ◦p (296) is
a contingent condition. This is a key to the observation that ◦p is not strictly
canonical, to which we now turn.

(298) Remark: ◦p is Not Strictly Canonical. Though we know, by (296) that
◦p is (identical to) a canonical object, we are now in a position to show that it
is not (identical to) a strictly canonical object. In (260.2), we stipulated that a
canonical description ıx(A!x & ∀F(xF ≡ ϕ)) is strictly canonical just in case ϕ
is a rigid condition on properties, i.e., by (260.1), just in case `� ∀F(ϕ→ �ϕ).
Now the relevant ϕ for ◦p is ∃q((q≡p) &F=[λy q]).

Suppose, for reductio, that this particular ϕ were a rigid condition on prop-
erties. Then if we reason as follows (freely using the Rule of Substitution in
many of the steps), we can show that our system would yield contradiction:

`� ∀F(ϕ→ �ϕ) by definition of strict canonicity
` �∀F(ϕ→ �ϕ) by RN
` ¬♦¬∀F(ϕ→ �ϕ) by Df� (158.2)
` ¬♦∃F(ϕ&¬�ϕ) by classical quantifier reasoning
` ¬♦∃F(ϕ&♦¬ϕ) by (158.11)
` ¬∃F♦(ϕ&♦¬ϕ) by BF♦ (167.3)
` ∀p¬∃F♦(ϕ&♦¬ϕ) by GEN
` ¬∃p∃F♦(ϕ&♦¬ϕ) by quantifier negation

But the proof of (297) establishes ` ∃p∃F♦(ϕ & ♦¬ϕ). So, on pain of system
inconsistency, ϕ fails to be a rigid condition on properties and ◦p fails to be
(identical to) a strictly canonical object.

For the record, we could have strengthened (297) to the claim:

∀p∃F♦(∃q((q≡p) &F=[λy q]) &♦¬∃q((q≡p) &F=[λy q]))
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In the proof of (297), we didn’t have to choose our witnesses to the existential
quantifiers be a contingently true proposition and a propositional property
constructed from a necessarily true proposition. We could have chosen the
witnesses to be:

• a contingently false proposition and a property constructed from a nec-
essarily false proposition,

• a necessarily true proposition and a property constructed from a contin-
gently true proposition, or

• a necessarily false proposition and a property constructed from a contin-
gently false proposition.

Since every proposition has to be either contingently true, contingently false,
necessarily true, or necessarily false, we would have covered all the cases.
Thus, we would have a proof of the stronger claim displayed above.

But it suffices, for our purposes to show only (297), since that establishes
that the formula ϕ we’re considering isn’t a rigid condition on properties. This
is instructive because it tells us that any general conclusions we draw about
the properties ◦p encodes will rest on a contingency and so such conclusions
will fail to be modally strict. The theorems in (299)? below constitute good
examples. If the point comes as a surprise, a closer inspection of the proofs of
the theorems that follow should make it clearer. It may also be worth noting
that when we define possible worlds in Chapter 12, we shall be in a position to
define, for each world w, the truth-value of p with respect to w. The truth-value
of p with respect to a world w is, by contrast, a strictly canonical object. For
more on this world-relativized notion of the truth-value of p, see (557) – (562).

(299) ?Lemmas: Lemmas Concerning Truth-Values of Propositions. The fol-
lowing lemmas are simple consequences of our definitions: (.1) the truth-value
of p is a truth-value of p; (.2) the truth-value of p encodes a property F just in
case F is identical to being such that q, for some proposition q materially equiv-
alent to p; (.3) the truth-value of p encodes proposition r iff r is materially
equivalent to p; and (.5) x is a truth-value of p if and only x is identical to the
truth-value of p. Formally:

(.1) TruthValueOf (◦p,p)

(.2) ∀F(◦pF ≡ ∃q((q≡p) & F=[λy q]))

(.3) ◦pΣr ≡ (r≡p)

(.4) TruthValueOf (x,p) ≡ x=◦p
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These consequences are not modally-strict. Exercise: Show that the following
variant of (.3), ◦pΣr ≡ A(r≡p), has a modally strict proof.197

(300) ?Theorem: The Fregean Biconditional Principle for Truth-Values of Prop-
ositions.

◦p=◦q ≡ p≡q

That is, the truth-value of p is identical to the truth-value of q if and only if p
is materially equivalent to q.

(301) ?Theorem: The Truth-Value of q is a Truth-Value.

TruthValue(◦q)

We next work our way to the modally-strict claim that there are exactly two
truth-values.

(302) Definitions and Theorem: The True and The False. We take advantage
of the fact that canonical descriptions are significant (252) to define The True
(‘>’) as the abstract object that encodes all and only properties constructed
from true propositions, and define The False (‘⊥’) as the abstract object that
encodes all and only properties constructed from false propositions:

(.1) > =df ıx(A!x&∀F(xF ≡ ∃p(p&F=[λy p])))

(.2) ⊥ =df ıx(A!x&∀F(xF ≡ ∃p(¬p&F=[λy p])))

Clearly, both > and ⊥ are canonical objects (253), but we leave it as an exercise
to show that they are not strictly canonical (260.2).198 The conditions under
which > and ⊥ encode properties fail to be rigid and any conclusions we draw
about the properties these two objects encode will fail to be modally strict.

197Here is a solution. Where ϕ is the formula ∃q((q ≡ p) & F = [λy p]), then the following is an
instance of (258):

ıx(A!x&∀F(xF ≡ ∃q((q ≡ p) &F=[λy q])))F ≡ A∃q((q ≡ p) &F=[λy q])

So by theorem (296.1), Rule =E, and GEN we know:

(ϑ) ∀F(◦pF ≡ A∃q((q ≡ p) &F=[λy q]))

(→) Assume ◦pΣr. Then by definition (295), ◦p[λy r]. So by (ϑ), A∃q((q ≡ p) & [λy r] = [λy q]).
By (139.10), ∃qA((q ≡ p) & [λy r] = [λy q]). Suppose q1 is such a proposition, so that we know
A((q1 ≡ p)&[λy r]=[λy q1]). Then it follows that A(q1 ≡ p) and A[λy r]=[λy q1], by (139.2). But the
latter implies [λy r]=[λy q1], by (175.1). So r=q1, by the definition of proposition identity. Hence
A(r ≡ p).

(←) Assume A(r ≡ p). Since [λy r] = [λy r], we know A[λy r] = [λy r]. So A(r ≡ p) &A[λy r] = [λy r].
Hence A((r ≡ p) & [λy r] = [λy r]), which implies ∃qA((q ≡ p) & [λy r] = [λy q]). So by (ϑ), ◦p[λy r].
Hence by (295), ◦pΣr. ./
198In a later chapter, when we introduce possible worlds and use w as a restricted variable to

range over possible worlds, we will define The-True-at-w (>w) and The-False-at-w (⊥w). These
distinguished world-relativized truth-values are strictly canonical. See items (559.1) and (559.2).



422 CHAPTER 10. BASIC LOGICAL OBJECTS

Nevertheless, one can prove by modally strict means that The True and The
False are distinct objects:199

(.3) > ,⊥

(303) ?Theorems: The True and The False Are Truth-Values:

(.1) TruthValue(>)

(.2) TruthValue(⊥)

Note that (.1) and (.2) are not trivialities. We haven’t stipulated that The True
and The False are truth-values. Note that one could use (.1) and (.2) to inde-
pendently prove that there are exactly two truth-values: we would only need
to show that any truth-value is identical to > or ⊥. But though this would be a
perfectly good proof, it wouldn’t be a modally strict proof, whereas the proof
of (292) is.

(304) ?Lemmas: TruthValueOf, The True, and The False.

(.1) TruthValueOf (x,p)→ (p ≡ x=>)

(.2) TruthValueOf (x,p)→ (¬p ≡ x=⊥)

These lemmas need no gloss; they help us to prove the next theorems.

(305) ?Theorems: Facts About ◦p, >, and ⊥. The following two principles
governing truth-values are provable: (.1) a proposition is true iff its truth-value
is The True; (.2) a proposition is false iff its truth-value is The False:

(.1) p ≡ (◦p =>)

(.2) ¬p ≡ (◦p =⊥)

These two principles seem obvious a priori. But they are capable of proof and
so have been proved, in compliance with Dedekind’s maxim that serves as the
epigraph to Chapter 9.

It is also straightforward to show that: (.3) p is true iff The True encodes p;
(.4) p is true iff The False fails to encode p; (.5) ¬p is true iff The False encodes
p, and (.6) ¬p is true iff The True fails to encode p, i.e.,

(.3) p ≡ >Σp

(.4) p ≡ ¬⊥Σp
199An earlier version of this monograph incorrectly annotated the following claim as a ?-theorem.

I’d like to thank Daniel West for pointing that out and for the detailed sketch he sent, showing how
it could be proved by modally strict means. The proof in the Appendix reconstructs the underlying
idea and eliminates all the appeals to a Rule of Substitution.
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(.5) ¬p ≡ ⊥Σp

(.6) ¬p ≡ ¬>Σp

Exercises: Show that the following variants of (.3) and (.5), namely Ap ≡ >Σp
and A¬p ≡ ⊥Σp, have modally strict proofs. (Hint: The proofs are analogous
to the proof in footnote 197, which contains a solution to the Exercise in (299)
of showing that there is a modally strict proof of ◦pΣr ≡ A(r ≡ p).)

10.2 Extensions of Propositions

Though Frege thought that sentences denote truth-values, he never claimed
that a truth-value was the extension of a sentence. But in Carnap 1947 (26),
section numbered 6-1 is titled “The extension of a sentence is its truth-value”
and section numbered 6-2 is titled “The intension of a sentence is the propo-
sition expressed by it”. These stipulations on Carnap’s part are central to his
method of extension and intension (1947, 1–68) and to the semantics of formal
logical systems based on that method.

By contrast, we define an extension of a proposition p to be an abstract object
of a certain kind and show that these abstract objects are truth values. So,
object-theoretic extensions apply, in the first instance, to propositions rather
than to sentences. In the next section, we investigate the extension of a property.

(306) Definitions: Extension of a Proposition. Let us say that x is an extension
of p just in case x is an abstract object, x encodes only propositional properties,
and x encodes all and only propositions materially equivalent to p:

ExtensionOf (x,p) ≡df A!x&∀F(xF→ Propositional(F)) &∀q((xΣq) ≡ (q ≡ p))

No special existence clauses are needed in the definiens.

(307) Theorems: An Equivalence. It now follows that ExtensionOf (x,p) is
equivalent to TruthValueOf (x,p):

ExtensionOf (x,p) ≡ TruthValueOf (x,p)

Since this equivalence is established by a modally strict proof, a Rule of Sub-
stitution allows us to substitute one for the other wherever either occurs as a
subformula. Note also that if we apply GEN and the Rule of Actualization to
this theorem, then it follows by (149.1) that, for any individual x, x is identical
to ıxExtensionOf (x,p) iff x is identical to ıxTruthValueOf (x,p).

(308) Theorems: Fundamental Theorems of Extensions of Propositions. It is
now provable that: (.1) there is a unique extension of p; (.2) the extension of
p exists; (.3) the extension of proposition p is the truth-value of p, and (.4) the
extension of proposition p is a truth-value:
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(.1) ∃!xExtensionOf (x,p)

(.2) ıxExtensionOf (x,p)↓

(.3) ıxExtensionOf (x,p) = ◦p

Cf. (.3) with Carnap’s assertion (1947, 26) that the extension of a sentence is
its truth-value. On our reconstruction, this is a principle is about propositions,
not sentences.

10.3 Extensions of Properties: Natural Classes

(309) Remark: Natural vs. Theoretical Mathematics. In what follows it is im-
portant to distinguish between natural mathematics and theoretical mathemat-
ics. Natural mathematics consists of ordinary, pretheoretic claims we make
about mathematical objects, such as the following:

• The number of planets is eight.

• There are more individuals in the class of insects than in the class of hu-
mans.

• The lines on the pavement have the same direction.

• The figures drawn on the board have the same shape.

By contrast, the claims of theoretical mathematics are the axioms, theorems,
hypotheses, conjectures, etc., asserted in the context of some explicit mathe-
matical theory or in the context of some implicit or informal, but distinctly
mathematical, assumptions. Example of such claims are:

• In Zermelo-Fraenkel set theory, the null set is an element of the unit set
of the null set.

• In Real Number Theory, 2 is less than or equal to π.

The sentence operator “In theory T ” is frequently omitted when mathemati-
cians make such claims.

One distinguishing feature of pure theoretical mathematics is that the fun-
damental axioms and assumptions of those theories govern special, abstract
mathematical relations and operations (e.g., membership, predecessor, less
than, addition, etc.) and don’t involve ordinary relations or individuals.200

An analysis of theoretical mathematics is reserved for Chapter 15, where its

200Of course, there may be non-mathematical relations and assumptions in impure or applied
mathematics, but such relations won’t be subject to our analysis; rather they are subject to the
investigations of natural science.
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objects and relations are identified as abstract objects and abstract relations,
respectively. Prior to that chapter, however, we shall have occasion to analyze
various natural mathematical objects, by identifying them as abstractions from
the body of ordinary (exemplification) predications that are independent of
any mathematical theory.

The first group of natural mathematical objects we examine are the natural
classes. A natural class is not an abstraction based on the axioms of some math-
ematical theory of sets, but is rather an abstraction from the facts about the
exemplification of properties (both as to how they are exemplified by different
individuals and how different properties may be exemplified by the very same
individuals). In what follows, then, we shall be investigating natural classes
and analyzing them as the extensions of properties.201

(310) Remark: In Sections 10.1 and 10.2, we introduced the notion of a truth-
value and then the notion an extension of a proposition. In this section, however,
we first define the notion of an (exemplification) extension of a property and
subsequently use it to define the notion a (natural) class. The change in the
order of presentation can be understood as follows. Frege (Frege 1891) intro-
duced the notion of a truth-value prior to Carnap’s claim (1947, 26) that the
extension of a sentence is its truth value. But Carnap extended the historical
notion of an extension, which had traditionally been applied to general terms
(see below), to sentences. So we introduced truth values, then extensions of
propositions, and then validated a version of Carnap’s insight in the present
system.

But the notion of an extension of a general term goes back to medieval logic
and is well-entrenched in the Port Royal Logic (1662), whereas the notion of
a class is much more modern.202 We therefore define the modern notion of a
class in terms of the older philosophical notion, though in our system, we take
extensions to apply, in the first instance, to properties rather than to general
terms.

Our analysis retains some features of Whitehead & Russell’s no class theory
(1910–1913 [1925–1927], ∗20·02 and ∗20·3), in so far as it attempts to introduce
classes by definition. We’ll also prove a theorem (368)? that bears a similarity
to their theorem ∗20 · 3 (and corresponding definition ∗20 · 01). But, unlike
the no class theory, we explicitly define classes rather than contextually define

201If we think semantically for the moment and allow ourselves some primitive set theory, then
properties would naturally be assigned two extensions – an exemplification extension (which could
vary from world to world) and an encoding extension. The exemplification extension of F is the
set of objects x that make Fx true and the encoding extension of F is the set of objects that make
xF true. The natural classes we now plan to investigate are the objects that represent the exempli-
fication extensions of properties.
202See Buroker 2014 (Section 3), for a discussion of the notion of an extension of a general term in

the Port Royal Logic.
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them. Before we develop our analysis, we begin with an important distinction.

(311) Remark: The Naive/Logical Conception of Set or Class. The conception
of natural classes just described is very closely related to the naive conception of
set, which derives from Cantor. In the opening lines of Cantor 1895, 481 (1915,
85; 1932, 282), we find:203

By a ‘set’ we understand any collection into a whole M of definite well-
differentiated objects m of our intuition or thought (which are called the
‘elements’ of M).

Moreover, in Cantor 1932, 204, we find:204

By a ‘manifold’ or ‘set’ I understand a many which can be thought of as one,
i.e., a totality of particular elements that can be combined into a whole by
a law, and I believe something is defined thereby that is related to Platonic
Forms or Ideas, . . . .

The final clause of the quoted passage, in which Cantor relates sets to Platonic
Forms, is interesting. We’ll see, in Chapter 11, that for each property F, the
Form of F (ΦF) can be defined as abstract object. But one way to interpret Can-
tor here is that that for each property F, the ‘totality’ of which Cantor speaks
is the extension of F and the ‘law that combines into a whole’ is the axiom or
definition that states the exemplification conditions of F (i.e., the principle that
provides the exemplification conditions for something to be in the extension of
F). Then our work in Chapter 11 will indeed show that sets bear a connection
to Platonic Forms.

Boolos elaborates on the naive conception of set as follows (1971, 216):205

203The original is:

Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens
(welche die ‘Elemente’ von M genannt werden) zu einem Ganzen.

204The original is:

Unter einer “Mannigfaltigkeit” oder “Menge” verstehe ich nämlich allgemein jedes
Viele, welches sich als Eines denken läßt, d.h. jeden Inbegriff bestimmter Elemente,
welcher durch ein Gesetz zu einem Ganzen verbunden werden kann, und ich glaube
hiermit etwas zu definieren, was verwandt ist mit dem Platonischen ἐ͂ιδος oder ἰδέα,
. . . .

205Later, Boolos contrasts the naive conception with the iterative conception, where sets are struc-
tured in such a way that they arise in an ordered series of stages. In describing the iterative con-
ception, Boolos writes (1971, 221):

At stage zero, there is a set for each possible collection of individuals (and if there
are no individuals, there is only one set, namely, the null set). At stage one, there
exists a set for each possible collection consisting of individuals and sets formed at
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Here is an idea about sets that might occur to us quite naturally, and
is perhaps suggested by Cantor’s definition of a set as a totality of definite
elements that can be combined into a whole by a law.

By the law of excluded middle, any (one-ary) predicate in any language
either applies to a given object or does not. So, it would seem, to any pred-
icate there correspond two sorts of thing: the sort of thing to which the
predicate applies (of which it is true) and the sort of thing to which it does
not apply. So, it would seem, for any predicate there is a set of all and
only those things to which it applies (as well as a set of just those things
to which it does not apply). Any set whose members are exactly the things
to which the predicate applies—by the axiom of extensionality, there can-
not be two such sets—is called the extension of the predicate. Our thought
might therefore be put: “Any predicate has an extension.” We shall call this
proposition, together with the argument for it, the naive conception of set.

Boolos then generalizes further by moving from property terms to open formu-
las ϕ in which y doesn’t occur free (but which typically have a free occurrence
of x). Using K to denote a standard first-order language having (a) variables
that range over both sets and individuals, (b) a distinguished property term S
for being a set, and (c) a distinguished binary relation term ∈ for membership,
Boolos writes (1971, 217):

If the naive conception of set is correct, there should (at least) be a set of
just those things to whichϕ applies, ifϕ is a formula ofK. So (the universal
closure of) p(∃y)(Sy & (x)(x ∈ y ≡ ϕ))q should express a truth about sets (if
no occurrence of ‘y’ in ϕ is free).

Of course, Boolos takes it that he has properly represented the central claim
(“every predicate has an extension”) of the naive conception because he is as-
suming that every open formula ϕ with free variable x defines a property, ei-
ther by way of the λ-expression [λxϕ] or by way of the instance ∃F∀x(Fx ≡ ϕ)
of property comprehension.206

But this is an assumption that object theory doesn’t completely endorse. In
object theory, though every open formula ϕ with a free occurrence of an in-
dividual variable y can be used to formulate a λ-expression [λy ϕ], not every
such expression is guaranteed to be significant. Axiom (39.2), for example,

stage zero. And so on, until one reaches stage omega, at which there exists a set for
each possible collection consisting of individuals and sets formed at stages one, two,
three, . . . . Of course, this is only the beginning.

We shall put aside further discussion of the iterative conception of set, since that conception
informs our understanding of the theoretical mathematics of sets and, in particular, Zermelo-
Fraenkel set theory (ZF). The philosophical analysis of the language and theorems of ZF will be
discussed in Chapter 15, where we analyze theoretical mathematics generally.
206See also Cocchiarella 1986, 1988, who also distinguishes a ‘logical’ notion of a class.
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only guarantees that [λx ϕ] is significant if it is a core λ-expression. Axiom
(49) guarantees that [λx ϕ] is significant if for some formula ψ, both [λx ψ] is
significant and �∀x(ψ ≡ ϕ). And the Kirchner Theorem (271.1) guarantees that
a λ-expression is significant if and only if, necessarily, its matrix can’t distin-
guish indiscernible objects. These principles forestall the paradoxes of naive
object theory. And we’ll see that they additionally forestall the paradoxes of
naive set theory once we formally define the logical notion of a set and define
member of. We shall nevertheless be able to approximate, in the material mode,
the central claim of the naive conception of set (“every predicate has an exten-
sion”) as a theorem. We shall do this by defining the notion of Class(x) and then
deriving: for every property F, there is a class whose elements are precisely the
individuals exemplifying F, i.e.,

Fundamental Principle of Naive Set Theory
∀F∃x(Class(x) &∀y(y ∈ x ≡ Fy))

See (318) below. Thus, Boolos’ talk of predicates and predicate application
becomes represented by talk of properties and property exemplification, and
so the claim “every predicate has an extension” becomes represented as the
principle: for every property F, there is a class whose members are precisely
the individuals exemplifying F. Indeed, we’ll see in Remark (313) below that
one may even preserve the idea that every ‘predicate’ has an extension, if one
accepts that λ-expressions (i.e., complex unary relation terms) that aren’t sig-
nificant have an empty extension.

If this is correct, then the natural conception of a class and the logical con-
ception of set nicely dovetail and can be formalized together. One of our goals
in what follows, therefore, is to show that this analysis is indeed correct. To do
this, we: (a) precisely define what it is for an abstract object to be an extension
of a property, (b) define classes to be extensions of properties, (c) prove that
every property has an extension, (d) prove that every class is the extension of
some property, (e) define membership in a class, and (f) prove that for every
property F, there is a class whose members are precisely the individuals exem-
plifying F. Since these and other principles formulated below make the naive
conception of set formally precise, we shall henceforth re-label the ‘naive’ con-
ception with the following, less rhetorical label: the logical conception of set.
Thus, in what follows, natural classes are identified with sets logically con-
ceived.

10.3.1 Basic Definitions and Theorems

(312) Definition: Extension Of, Class Of, and Class. We now say that x is an
(exemplification) extension of G, or x is a class of Gs, if and only if x is an ab-
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stract object, G exists, and x encodes just the properties materially equivalent
to G (with respect to exemplification):

(.1)
ExtensionOf (x,G)

ClassOf (x,G)

}
≡df A!x&G↓&∀F(xF ≡ ∀z(Fz ≡ Gz))

In the usual way, this is shorthand for a definition that uses metavariables κ
and Π1 instead of the object language variables x and G.207

Whereas Carnap famously stipulated that the extension of a predicate is a
class (1947, 19, 4-14), we adopt the view that a natural class may be defined as
an extension of a property. Accordingly, we say (.2) x is a (natural) class, or x is
a logical set, if and only if x is an extension of (a or class of) some property G:

(.2)
LogicalSet(x)

Class(x)

}
≡df

{
∃G(ExtensionOf (x,G))
∃G(ClassOf (x,G))

For simplicity, we’ve used Class(x) instead of NaturalClass(x) as one of the
definienda. We don’t need x ↓ in the definiens, by the following reasoning.
If it is known, by proof or by hypothesis, that κ is a non-denoting individual
term, then ¬ExtensionOf (κ,G) becomes derivable, for every G. Hence we can
derive ¬∃G(ExtensionOf (x,G)), and so ¬Class(κ) when κ is any term known to
be empty. The clause x↓ is therefore not needed in the definiens.

(313) Remark: Intuitions About What Extensions Are. In the definiens of the
foregoing definitions, none of the notions of collection, whole, totality, ele-
ment, membership, etc., are used. Nevetheless, the definition isn’t completely
unrelated to Cantor’s conception of a set as a collection of definite entities com-
bined into a whole by a law (quoted above). Let us analyze Cantor’s conception
as involving a law, a collection of entities, and the combining into a whole. On the
above definition, a class is an extension of some property G, where an exten-
sion is an abstract object that encodes the properties F such that ∀F(Fz ≡ Gz).
So, for any property G, the formula ∀z(Fz ≡ Gz) constitutes a rule, or law-like
condition on properties, that defines a collection of properties F which comply
with the law. Any x that encodes all and only such properties F, is an object
that combines into a whole the collection of those properties F that satisfy the
law. Thus, whereas Cantor conceived of the set of Gs from below, as the total-
ity of objects x obeying the rule Gx, our more Fregean conception carves out

207Since we can use bound object-language variables in the definiens (given that alphabetically-
variant formulas are inter-derivable), the definition just formulated in the text is short for:

ExtensionOf (κ,Π1)
ClassOf (κ,Π1)

}
≡df A!κ&Π1↓&∀F(κF ≡ ∀z(Fz ≡Π1z))

provided F and z don’t occur free in Π1. This ensures (a) that there is an instance of the definition
for every individual term κ and unary relation term Π, and (b) that the definiens, and hence the
definiendum, will be false whenever either κ or Π1 is an empty term.
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the extension of G from above, as the reified totality of properties that obey the
higher-order rule: being a property exemplified by the same objects that exem-
plify G.208 In what follows, we’ll define a member or element of the extension
of G to be any individual x such that Gx. But the extension itself encodes prop-
erties, in the first instance, and derivatively contains individuals as members.

If we temporarily allow ourselves some intuitive notions from set theory,
then one could say that, for each G, the class of Gs objectifies the equivalence
class of properties F that are materially equivalent to G. So the x in the defi-
nition of ExtensionOf (x,G) is an abstraction over the properties that are in the
cell of the partition that contains G.

Another observation about extensions concerns the temptation to eliminate
the conjunct G↓ from definition (312), so that the definition, in the case of
extensions, becomes:

(ϑ) ExtensionOf (x,G) ≡df A!x&∀F(xF ≡ ∀z(zF ≡ zG))

Given our conventions for definitions, we could instantiate (ϑ) to property
terms that aren’t significant. Then, where Π is such a term (because, say,
` ¬Π↓), it would follow that the abstract object that encodes all and only prop-
erties F that are unexemplified is the extension of Π. For those are precisely
the properties that would satisfy the formula ∀z(Fz ≡ zΠ). And, when we de-
fine membership in (316) below, (ϑ) would yield that the extension of Π has no
members. Thus, one might reformulate definition (312) so that property terms
that aren’t significant have an extension.

But this option will not be pursued in what follows, for several reasons.
First, we discussed in Remark (36) how the inclusion of claims like G↓ in the
definitions-by-≡ forestalls violations of the garbage in, garbage out principle.
We prefer to avoid the situation in which ExtensionOf (x,Π) is true when Π

doesn’t have a denotation. Moreover, (ϑ) would lead to the introduction of an
impractical term, as discussed in Remark (283). When we introduce the opera-
tor ε( ) in (322) below, (ϑ) would yield terms the form εΠ that are significant
even though the argument Π is not. Though the discussion in Remark (283)
explains why these don’t pose a logical problem, we can avoid introducing such
impractical terms in this case by including the conjunct G↓ in definition (312).

One final note concerns the question of whether we should also define an

208Note that it is not an option to define an extension of G as encoding all and only those Fs that
are the haecceities of objects that exemplify G. That is, we may not define:

(ξ) ExtensionOf (x,G) =df A!x&G↓ &∀F(xF ≡ ∃y(Gy &F=[λz z=y]))

We know, from the McMichael-Boolos paradox, that [λz z=y] doesn’t signify a property when y is
an abstract object. So if G is exemplified by some abstract object y, F = [λz z=y] is false for every
F. Hence, given (ξ), the null object would be the extension of such a G, contrary to intuition. So
we won’t be using that definition.
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encoding extension of G to be an abstract object that encodes exactly the prop-
erties F that are encoded by the same objects as G, as in:

EncodingExtensionOf (x,G) ≡df A!x&G↓&∀F(xF ≡ ∀z(zF ≡ zG))

But since ∀z(zF ≡ zG) ≡ F=G (189), an encoding extension of G would encode
only G and no other properties. Intuitively, this definition would partition the
domain of properties into equivalence classes each of which contains a single
property. We won’t be exploring this development in what follows, though see
the discussion of the thin Form of G in the next chapter.

(314) Theorem: Pre-Basic Law V and Other Facts. It is a modally strict fact
underlying Frege’s Basic Law V that (.1) if x is an extension of G and y is an
extension of H , then x is identical to y if and only if G and H are exemplified
by the same objects:

(.1) (ExtensionOf (x,G) & ExtensionOf (y,H))→ (x=y ≡ ∀z(Gz ≡Hz))

It is also a useful fact that (.2) if x is an extension of some property H and
encodes both F and G, then F and G are materially equivalent:

(.2) (ExtensionOf (x,H) & xF& xG) →∀z(Fz ≡ Gz)

It follows straightforwardly that (.3) if an object x encodes properties that
aren’t materially equivalent, then x is not a class:

(.3) (xF& xG&¬∀z(Fz ≡ Gz))→¬Class(x)

(315) Theorems: There is a (Unique) Extension/Class of G and the Existence
of Classes.

(.1)

{
∃xExtensionOf (x,G)
∃xClassOf (x,G)

(.2)

{
∃!xExtensionOf (x,G)
∃!xClassOf (x,G)

It follows from (.2) by GEN that for every property G, there is a unique exten-
sion of G. This consequence doesn’t quite yet capture the intuition that every
property has an extension whose members are precisely the objects exemplify-
ing the property, since we haven’t yet defined membership or shown that if x
is an extension of G, then the members of x are all and only the objects that ex-
emplify G. However, from (.2) we can derive that (.3) the extension of G exists:

(.3) ıxExtensionOf (x,G)↓
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In the next section, we’ll use this last fact to reconstruct a Fregean operator that
takes a property term Π as an argument and yields a term that denotes the ex-
tension of the property denoted by Π if Π denotes a property, and denotes
nothing otherwise.

It is a straightforward consequence of (.1) and definition (312.2) that (.4)
classes exist:

(.4) ∃xClass(x)

(316) Definition: Membership. We now say that y is a member of x, or y is an
element of x, written y ∈ x, if and only if x is an extension of some property that
y exemplifies:

y ∈ x ≡df

{
∃G(ExtensionOf (x,G) &Gy)
∃G(ClassOf (x,G) &Gy)

This definition of membership is similar to, but doesn’t quite match, Frege’s.
Frege’s definition (1893, §34, A) is discussed in some detail below, in Remark
(332), and we’ll see there that the above differs from Frege’s definition in a
number of ways.

(317) Theorem: Membership and Exemplification. A precise correlation be-
tween membership and exemplification now obtains for extensions, namely,
(.1) if x is an extension of H , then y is an element of x iff y exemplifies H

(.1) ExtensionOf (x,H)→∀y(y ∈ x ≡Hy)

From this, it is straightforward to show that (.2) the Russell property, being an
x that is a member of itself, doesn’t exist:

(.2) ¬[λx x 6∈ x]↓

Hence, we may not instantiate [λx x 6∈ x] into the universal generalization of
theorem (315.1) to obtain that ∃xExtensionOf (x, [λx x 6∈ x]). Indeed, it is prov-
able that:

(.3) ¬∃xExtensionOf (x, [λx x 6∈ x])

(318) Theorem: The Fundamental Theorem for Natural Classes and Logically-
Conceived Sets. We saw in Remark (311) that the fundamental principle gov-
erning the conception of natural classes and logical sets is: for every property
F, there is a natural class (i.e., logical set) whose members are precisely the
individuals exemplifying F. We now have a proof of this claim:

∀F∃x(Class(x) &∀y(y ∈ x ≡ Fy))
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The proof in the Appendix shows how this follows from previous theorems.

(319) Theorem: Existence of a Self-Membered Natural Class.209 It is a signifi-
cant fact that there exists a natural class that is a member of itself:

∃x(Class(x) & x ∈ x)

10.3.2 Natural Classes, Logical Sets, and Modality

(320) Theorem: Natural Classes Aren’t Necessarily Classes. Recall that in
(221.1) we proved that there are properties that are materially equivalent but
possibly not materially equivalent, and that in (221.3) we proved that there are
properties that are actually materially equivalent but possibly not materially
equivalent. In light of this, let’s extend our earlier observation that appealed to
some intuitive set theory, on which the class of Gs objectifies the equivalence
class of properties materially equivalent to F. If we now appeal to the intu-
itive (i.e., not yet defined) notion of possible world, then we could say: since
the equivalence classes of materially equivalent properties vary from world to
world, the abstractions that arise from materially equivalent properties at one
world are not the same as those that arise from materially equivalent prop-
erties at another world. Indeed, given any property F whose exemplification
extension varies from world to world, the object abstracted from the properties
materially equivalent to F at one world won’t be the same object as the ones ab-
stracted from the properties materially equivalent to F at other worlds – they
will encode different properties.

These observations may help one to appreciate the following interesting
facts. The first is that (.1) it is not the case that for every x and G, if x is an
extension of G, then necessarily x is an extension of G:

(.1) ¬∀x∀G(ExtensionOf (x,G)→ �ExtensionOf (x,G))

The second interesting fact is (.2) not every (natural) class is necessarily a (nat-
ural) class:

(.2) ¬∀x(Class(x)→ �Class(x))

Thus, some classes are not necessarily classes. The final interesting fact is (.3)
it is not necessary that every class is actually a class:

(.3) ¬�∀x(Class(x)→ AClass(x))

(.2) and (.3) have some interesting consequences when we start reasoning with
restricted variables, especially in modal contexts. This will be discussed in
Section 10.5, in (341).

209I’d like to thank Daniel West for suggesting that I add this theorem.
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Recall also that in (221.4) we proved that for every property F, there is a
property materially equivalent to F but possibly not. From this, we can prove
a claim even stronger than (.1) – (.3), namely, that (.4) if x is an extension of H ,
then x might not be an extension ofH , and (.5) classes (in general) possibly fail
to be classes:

(.4) ExtensionOf (x,H)→ ♦¬ExtensionOf (x,H)

(.5) Class(x)→ ♦¬Class(x)

It follows trivially from (.5) that natural classes aren’t necessarily classes! This
is a fact about natural classes abstracted, in part, from contingent exemplification
predications. For an alternative conception of classes, one defined by axioms
governing the mathematically primitive notion of set membership, we have to
turn to theoretical mathematics and (axiomatic) set theory. This takes placve in
Chapter 15

(321) Theorem: Membership is not a Necessary Condition. It is important to
observe that the condition y ∈ x, as defined in (316), does not generally hold
by necessity when it holds – it is not the case that for every x and y, if x is a
member of y then necessarily x is a member of y:

(.1) ¬∀x∀y(y ∈ x→ �y ∈ x)

The proof of this claim in the Appendix appeals only to resources within the
system. But if we temporarily (a) extend our system with some plausible (modal)
facts, such as that Socrates is wise (Ws) but might not have been (♦¬Ws), and
(b) appeal to the semantically primitive notion of a possible world, we can
give an intuitive argument for this theorem by showing why it holds in mod-
els where the modal facts hold. In such models, we can find an x and y such
that y ∈ x holds at the actual world w0, but fails to hold at some other possible
world. It is to be emphasized, however, that the proof of this theorem given
in the Appendix makes no use of the modal facts in (a), but rather analogous
modal facts available within the system.

Here then is the semantic proof sketch. By hypothesis, Ws is true at w0

but false at some other possible world, say w1. Now consider any x such that,
at w0, ExtensionOf (x,W ). Then we know several things: by definition of ∈, it
follows that (a) s ∈ x holds at w0, and by definition of ExtensionOf , it follows
that (b) x encodes at w0 all and only the properties materially equivalent to W
at w0. Hence, it follows from (b) that x encodes W at w0 and since encoding is
rigid, it follows that (c) x encodes W at w1.

Now to see that ¬(s ∈ x) holds at w1, suppose, for reductio, that s ∈ x holds
at w1. Then, ∃G(ExtensionOf (x,G) &Gs) holds at w1, by definition. Let P be
such a property, so that we know both ExtensionOf (x,P ) and P s hold at w1.
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The former implies (d) x encodes at w1 all and only the properties materially
equivalent to P at w1. But, by hypothesis, ¬Ws at w1, and so W and P are not
materially equivalent at w1. Hence, by (d), x doesn’t encode W at w1. But by
(c), x encodes W at w1. Contradiction.

Indeed, as one might expect, an even stronger claim can be established,
namely, that (it is generally the case that) membership, when it holds, fails to
hold necessarily:

(.2) y ∈ x→¬�y ∈ x

10.4 Reconstructing the Fregean Extension of F

(322) Definition: Notation for the Extension of a Property. Recall that for an
arbitrary property G, we established that the description ıxExtensionOf (x,G) is
significant, by a modally strict proof (315.3). So let’s introduce εG to rigidly
refer to the extension of G:

εG =df ıxExtensionOf (x,G)

Note that whereas Frege’s ἐ-operator is a variable-binding operator, our ε-opera-
tor is not; it is simply a functional, term-forming operator; it can operate on
any property term Π. We’ll say more about how our operator compares with
Frege’s in (330) and (332) below.

(323) Theorems: The ε-Operator Doesn’t Yield Impractical Terms. It is impor-
tant to observe that if Π is an empty property term, then ıxExtensionOf (x,Π) is
an empty term, and so is the defined term εΠ:

(.1) ¬Π↓ → ¬ıxExtensionOf (x,Π)↓, where Π is any unary relation term in
which x doesn’t occur free

(.2) ¬Π↓ → ¬εΠ↓, where Π is any unary relation term

Thus, the ε-operator doesn’t give rise to any impractical terms, i.e., complex
terms that denote even though the argument to the defined term-forming op-
erator is empty. As discussed in the latter part of Remark (283), though our
system doesn’t rule out such impractical terms, they don’t occur in this case
because ExtensionOf (x,Π) fails to be true when Π is empty. Consequently, the
derived Rule of Identity by Definition (120.1) allows us to immediately con-
clude that εΠ = ıxExtensionOf (x,Π) when Π is significant, and the primitive
Rule of Definition by Identity (73.1) yields ¬εΠ↓ when it is not.210

210Note that if we had defined ExtensionOf (x,G) more simply as A!x&∀F(xF ≡ ∀z(Fz ≡ Gz), then
there would have been property terms Π such that ¬Π↓ & εΠ↓. Under this simpler definition of
ExtensionOf (x,G), εΠ would have denoted (when Π is empty) the abstract object that encodes all
and only the unexemplified properties.
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(324) Theorem: The Extension of G is Canonical. It now follows, for an arbi-
trary property G, that (.1) the extension of G is identical to the abstract object
that encodes exactly the properties that are materially equivalent to G:

(.1) εG = ıx(A!x&∀F(xF ≡ ∀z(Fz ≡ Gz)))

So by (253), εG is (identical to) a canonical individual. Moreover, it can be
shown by modally strict means that (.2) the extension of G encodes G:211

(.2) εGG

Note the convention of putting the first occurrence of ‘G’ in a slightly smaller
font, to make it easier to parse such formulas as encoding formulas of the form
xG with the complex individual term εG substituted for x.

(325) Theorem: Another Fact About Contingently Equivalent Properties. Re-
call again that in (221.1) we proved that there are properties that are materially
equivalent but possibly not materially equivalent. It is straightforward conse-
quence of this that there are properties F and G such that possibly, F and G are
materially equivalent but possibly not materially equivalent:

∃G∃F♦(∀z(Fz ≡ Gz) &♦¬∀z(Fz ≡ Gz))

This theorem will help us show that εG is not a strictly canonical object. Where
ϕ is the formula ∀z(Fz ≡ Gz), the above establishes that there are properties G
and F such that ♦(ϕ&♦¬ϕ), i.e., by (165.11), that ♦ϕ&♦¬ϕ.

(326) Remark: εG is Not Strictly Canonical. By (324.1), we know εG is (iden-
tical to) a canonical object. But it isn’t too hard to see that εG isn’t (identical
to) a strictly canonical object. We have to show that where ϕ is the formula
∀z(Fz ≡ Gz), that ϕ isn’t a rigid condition on properties, i.e., by (260.2), that
there is no modally strict proof of ∀F(ϕ→ �ϕ). By reasoning analogous to that
displayed in Remark (298), we can argue that the assumption that ϕ is rigid
would require our system to be inconsistent:

`� ∀F(ϕ→ �ϕ) assumption, definition of strict canonicity
` �∀F(ϕ→ �ϕ) by RN
` ¬♦¬∀F(ϕ→ �ϕ) by Df� (158.2)
` ¬♦∃F(ϕ&¬�ϕ) by classical quantifier reasoning
` ¬♦∃F(ϕ&♦¬ϕ) by (158.11)
` ¬∃F♦(ϕ&♦¬ϕ) by BF♦ (167.3)
` ∀G¬∃F♦(ϕ&♦¬ϕ) by GEN
` ¬∃G∃F♦(ϕ&♦¬ϕ) by quantifier negation

211Thanks to Daniel West for noting, with respect to an earlier draft of this monograph, that this
theorem was incorrectly tagged as non-modally strict.
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But the proof of (325) establishes ` ∃G∃F♦(ϕ & ♦¬ϕ). So, on pain of system
inconsistency, ϕ fails to be a rigid condition on properties and εG fails to be
(identical to) a strictly canonical object.

(327) ?Lemmas: Facts About the Extension of a Property. The previous defini-
tion, together with earlier theorems, straightforwardly yield, as non-modally
strict theorems, that: (.1) the extension of G is an extension of G; (.2) the ex-
tension of G encodes a property F iff F is materially equivalent to G; and (.3) x
is an extension of G iff x is identical to the extension of G:

(.1) ExtensionOf (εG,G)

(.2) ∀F(εGF ≡ ∀z(Fz ≡ Gz))

(.3) ExtensionOf (x,G) ≡ x=εG

We’ve again used the convention using a slightly smaller font for the symbol
‘G’ on occasion, to make it easier to parse certain formulas.

(328) ?Theorem: Frege’s Basic Law V. A consistent version of Frege’s Basic Law
V is now derivable, namely, the extension of F is identical with the extension
of G iff all and only the objects that exemplify F exemplify G:

εF = εG ≡ ∀x(Fx ≡ Gx)

Cf. Frege, Grundgesetze I, §20. See Remark (335) for a discussion about how
this ?-theorem can be turned into a modally strict one. Also, it should be
mentioned that in a later chapter, we’ll develop a modally strict proof of: the
extension of F at w is identical to the extension of G at w if and only if F and G
are materially equivalent at w. See (567).

(329) Remark: Fregean Epsilon Notation. In what follows, the reader should
carefully distinguish the symbols ∈, ε, and ε. We’ve introduced the symbol ∈
for the defined notion of membership, as in the formula x ∈ y (316). And we’ve
introduced ε as a term-forming operator, as in εF (322). We shall now start
using ε to represent Frege’s variable-binding epsilon operator, in expressions
such as ἐf (ε). Since the use of the modern, stylized ∈ symbol for set member-
ship is historically connected to Peano’s use of a Greek epsilon (Peano 1889, vi,
x; Russell 1903, 19), we are therefore using this Greek letter in at least three
different font faces. Fortunately, it is easy to tell them apart.

(330) Remark: Frege on the Contradiction. After receiving the letter from
Russell (dated 16 June 1902) that outlined the paradox that affects predica-
tion and set membership, Frege added an Appendix to his (then forthcoming)
1903a and reconstructed the paradox in two different ways: the first derivation
doesn’t use the defined notion of membership whereas the second one does. So
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let’s focus on the first derivation; later, in (332), we’ll compare his notion of
membership with ours.

In 1903a ([2013, 256]), Frege explicitly notes that the following formula
says that ∆ is a class that does not belong to itself:

g g(∆)
ἐ( g(ε)) = ∆

But strictly speaking, this formula says: not every concept g is such that its
extension ∆ falls under it, i.e., some concept g has an extension (∆) that doesn’t
fall under g, i.e., ∆ is the extension of a concept under which ∆ does not fall.
Frege then goes on to show how a contradiction can be derived using this for-
mula, by building a paradoxical extension from the concept it expresses.

Frege’s formula can be reconstructed in our system, but it doesn’t lead to a
contradiction because it can’t be used to construct an expression for a paradox-
ical property. If we ignore all the judgment strokes and write his formula using
our notation for negations, conditionals, quantifiers, and identity, we have:

¬∀g(ἐg(ε)=∆→ g(∆))

Now if we take the liberty of representing Fregean concepts as properties (Frege
1892, 51), use upper case G for the property variable g, and use our notation
εG instead of ἐg(ε) to refer to the extension ofG, the above formula converts to:

¬∀G(εG=∆→ G(∆))

If we use x instead of ∆ and exemplification instead of functional application,
this becomes:

¬∀G(εG=x→ Gx)

But by quantifier laws and the symmetry of identity, this is equivalent to:

∃G(x=εG&¬Gx)

This formula explicitly asserts: x is the extension of a property that x doesn’t
exemplify. But we now show that the relation term [λx ∃G(x = εG& ¬Gx)] is
provably empty, and that the individual term ε[λx∃G(x=εG&¬Gx)] is as well.

(331) Theorems: Some Interesting Empty Terms. In our system, the expression
[λx ∃G(x = εG & ¬Gx)] is not a core λ-expression, as defined in (9.2); by the
Encoding Formula Convention (17.3) and the definition of identity (23.1), the
variable x in x=εG occurs in encoding position (9.1) and so the λ in [λx∃G(x=
εG&¬Gx)] binds a variable that occurs in encoding position in the matrix.212

So (39.2) doesn’t assert [λx ∃G(x=εG&¬Gx)]↓. Instead, one can prove:
212The Encoding Formula Convention (17.3) requires us to regard the variable x in x = εG as

occurring free in encoding position since the definiens of x=εG (23.1) is:

(O!x&O!εG&�∀F(Fx ≡ FεG)) ∨ (A!x&A!εG&�∀F(xF ≡ εGF))

Here, the variable x occurs free in encoding position in the formula xF.
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(.1) ¬[λx ∃G(x=εG&¬Gx)]↓

Thus, the λ-expression with the Fregean formula in (330) as matrix provably
fails to be significant. Consequently, given how εF has been defined, it is prov-
able that the extension of being an extension x of a concept under which x doesn’t
fall doesn’t exist:

(.2) ¬ε[λx ∃G(x=εG&¬Gx)]↓

Thus, the problematic extension provably doesn’t exist.

(332) Remark: Digression on Frege’s Definition of Set Membership. We men-
tioned in (316) that the definition of y ∈ x is similar to Frege’s definition, but
differs from it in a number of ways. Those readers with an interest in a more
exact comparison with Frege’s work may therefore find the following to be of
interest. In Frege 1893 (§34, [2013, 52]), Frege says:

. . . our concern is only to designate the value of the function Φ(ξ) for the
argument ∆, that is, Φ(∆), using ‘∆’ and ‘ἐΦ(ε)’. I do so in this way:

‘∆SἐΦ(ε)’

which is to be co-referential with ‘Φ(∆)’.

So Frege doesn’t really say that S is the notion of membership in a set, or even
membership in an extension. Immediately after the above passage, he offers
the following, formal definition of the binary function ξSζ, where we’ve re-
placed Frege’s variable u with the variable x, and Frege’s variable a with the
variable y:

Kἀ
( g g(y) = α

x = ἐg(ε)

)
= ySx (A

What’s being defined here is the value of the function ySx. And Frege defines
it as: the object α such that there exists a function g for which x is the course-
of-values for g and α is the value of g for the argument y. But let’s limit the
definition to the case where g is a concept, so that we can replace it with our
variableG. Then we might initially render Frege’s definition in our notation as:

ySx =df ıα∃G(x=ἐG(ε) &G(y)=α)

However, in the case where G is a concept, the course-of-values x becomes the
extension of G and the α in Frege’s definiens ranges over truth values and, in-
deed, signifies the truth-value The True when y falls under the concept G. So
the claim G(y) = α in Frege’s definition can be represented by the exemplifi-
cation predication Gy. That means the variable α is no longer needed and so
we can transform Frege’s definition-by-=, which assigns a value to the function
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term ‘ySx’, into a definition-by-≡ that assigns truth conditions to the formula
‘ySx’ – we eliminate the variable-binding description operator and the vari-
able α from Frege’s definiens, so that the definiens in Frege’s definition now
becomes:

ySx ≡df ∃G(x=ἐG(ε) &Gy)

Finally, Frege’s claim x = ἐg(ε) can be represented in our notation as x = εG.
However, by (327.3)?, x = εG is materially equivalent to ExtensionOf (x,G).213

So Frege’s definiens, in our notation, now becomes:

ySx ≡df ∃G(ExtensionOf (x,G) &Gy)

This is the definition of y ∈ x found in (316) above.

(333) ?Corollary: Fregean Principle of Extensions. It is an immediate, though
not modally strict, corollary of (317.1) that an individual x is a member of the
extension of F if and only if x exemplifies F:

x ∈ εF ≡ Fx

Cf. Frege 1893, §55, Theorem 1 (2013, 75), where Frege proves f (a) = aSἐf (ε).

(334) ?Theorem: The Extension of G is a Class. Finally, the extension of a
property is a class:

Class(εG)

This captures a claim found in Carnap (1947, 19, 4-14), but as a logico-meta-
physical claim about properties, not a semantic claim about predicates.

(335) Remark: Actual Extensions. As the reader works through the following
definitions and theorems, it should be kept in mind that many of the theorems
that fail to be modally strict could be turned into modally strict theorems by
defining:

ActualExtensionOf (x,G) ≡df A!x&∀F(xF ≡ A∀z(Fz ≡ Gz))
213Since Frege didn’t work within a modal context, it is not clear how x = ἐg(ε) would or

should behave when we evaluate it with respect to such a context; it depends on whether the
term ἐg(ε) is interpreted rigidly and whether identity claims are necessary if true. In our sys-
tem, the counterpart of x = ἐg(ε), namely, x = εG, is a rigid condition on properties: the claim
�∀x(x=εG→ �x=εG) follows by GEN and RN from an instance of the necessity of identity. But
(327.4)?, i.e., ExtensionOf (x,G) ≡ x=εG, is not a modally strict theorem, and so it is to be expected
that ExtensionOf (x,G) is not a rigid condition on properties. This should be relatively easy to see
from the discussion in Remark (326).

It should be clear, then why we have substituted the condition ExtensionOf (x,G) for the equiv-
alent condition x=εG in the Fregean definition of membership. This allows certain general theo-
rems about extensions to be proved in a modally strict manner. By contrast, if we had preserved
x = εG as part of the definition, then since εG is defined in terms of a rigid definite description,
certain general theorems about membership would fail to be modally strict.
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This definition also yields as theorems:

∃!xActualExtensionOf (x,G)

ıxActualExtensionOf (x,G)↓

Thus, we could introduce the notation:

ε̂G =df ıxActualExtensionOf (x,G)

Clearly, ε̂G is a strictly canonical object, since the application of GEN to an
appropriate instance of axiom (46.1) yields a modally strict proof of:

∀F(A∀z(Fz ≡ Gz)→ �A∀z(Fz ≡ Gz))

The reader should therefore keep in mind that non-modally strict theorems
about extensions and εGcan often be converted to modally strict theorems
about actual extensions and ε̂G by strategic placement of the actuality oper-
ator A.

Exercises: (a) Show that:

∀x∀G(ActualExtensionOf (x,G)→ �ActualExtensionOf (x,G))

(b) Use ActualExtensionOf (x,G) to formulate modally-strict counterparts of the
theorems proved above. (c) Show that if we define:

Class∗(x) ≡df ∃G(ActualExtensionOf (x,G))

then it follows that ∀x(Class∗(x)→ �Class∗(x)).

10.5 Interlude: Restricted Variables

Our next goal in the application of object theory is to derive the basic prin-
ciples of natural classes (logical sets). But to simplify the expression of the
theorems, we shall adopt the expedient of restricted variables. While the use
of bound restricted variables to express theorems and free restricted variables
to state definitions is straightforward enough, the presence of free restricted
variables can easily lead one astray when reasoning. In this section, then, we’ll
discuss the principles and conventions that govern the use of restricted vari-
ables, and explain the problems of reasoning with free restricted variables in
modal contexts.

(336) Metadefinition: Restricted Variables. A restricted variable is, intuitively,
a variable introduced to range over just those individuals or relations satisfying
a restriction condition ψ that meets three requirements:

(.1) ψ contains a single free, unrestricted variable, say α,
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(.2) ψ is strictly non-empty in the sense that `� ∃αψ, and

(.3) ψ has strict existential import in the sense that `� ψτα→ τ↓, for any term τ
substitutable for α.

For example, the conditions O!x, D!x, Propositional(F), and Class(x) are restric-
tion conditions. Let’s confirm this before we indicate how one might introduce
corresponding restricted variables. By inspection, each condition contains a
single free variable. Moreover, each is strictly non-empty since all of the fol-
lowing are provable by modally strict means: ∃xO!x, ∃F(Propositional(F)), and
∃xClass(x) (exercises). And each has strict existential import, for the following
are all modally strict theorems:

• O!κ→ κ↓, for any individual term κ
D!κ→ κ↓, for any individual term κ

• Propositional(Π)→Π↓, for any property term Π

• Class(κ)→ κ↓, for any individual term κ

We leave the first two as exercises, but to see that the third holds, assume
Class(κ). Then by definition (312.2), it follows that ∃G(ExtensionOf (κ,G)), at
which point definition (312.1) implies A!κ, and thus, by axiom (39.5.a), κ↓.214

Later, we’ll discuss what may be labeled weak or empty restriction condition.
A weak restriction condition is a condition ψ such that:

• ψ has a single free variable α

• ψ is non-empty in the sense that ` ∃αψ, and

• ψ has existential import in the sense that ` ψτα → τ↓, for any term τ sub-
stitutable for α.

Speaking loosely, we might say that a weak restriction condition differs from a
restriction condition in that modally strict proofs aren’t required to show that
ψ is non-empty and has existential import. Weak restriction conditions are of
interest when ∃αψ is either a modally fragile axiom or a ?-theorem.

By contrast, an empty restriction condition is a condition ψ that has a single
free variable α and has existential import, but which may be empty, i.e., it is
not a theorem that ∃αψ. One might want to introduce restricted variables
for empty restriction conditions in situations where the condition ψ is well-
defined and it is assumed (but not axiomatic) that ∃αψ, without this claim
being a known theorem.

214By contrast, ¬Class(x) is not a restriction condition. Though it contains a single free variable
and is strictly non-empty (i.e., `� ∃x¬Class(x)), it doesn’t have existential import. The formula
¬Class(κ) doesn’t strictly imply κ↓, for when ¬κ↓, both ¬Class(κ) and ¬κ↓ hold.
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In what follows, we’ll avoid introducing variables for empty restriction con-
ditions though, on occasion, we introduce variables for weak restriction con-
ditions. We’ll see some examples of weak restriction conditions when we con-
sider the ordinary language properties being a line and being a figure and use
them to develop the theory of directions and shapes (in Section 10.8.1), and
when we discuss stories (in Section 12.6). When we introduce variables for di-
rections, shapes, stories, etc., they will be weak, rather than rigid, restricted
variables. See (342) for further discussion of empty and weak restriction con-
ditions.

But let’s now focus on restriction conditions as defined in (.1) – (.3) above.
SinceO!x,D!x, Propositional(F), and Class(x) are restriction conditions, we may,
in each case, introduce distinguished variables that range over the entities sat-
isfying the condition. Later, we’ll use u,v, . . . to range over ordinary objects
in certain contexts and to range over distinguished objects in other contexts,
and use the letters c,c′, c′′, . . . to range over classes. Though we could also dis-
tinguish certain upper case letters to range over propositional properties, we
shall not have the need to do so. By requiring that restriction conditions be
strictly non-empty, we ensure that quantifier principles such as ∀uϕ → ∃uϕ
and ∀cϕ → ∃cϕ hold, and we ensure that u↓, v↓, c↓, and c′↓ are still ax-
iomatic. By requiring that restriction conditions have existential import, we
ensure that definitions-by-equivalence using free restricted variables always
abbreviate definitions in which the definiens will be false for any terms that
either fail to denote or fail to meet the restriction condition. This will become
clear in (338) below.

Restricted variables allow us to write long formulas and terms in abbrevi-
ated form. Thus, any expression (formula or term) written using a restricted
variable is simply shorthand for an expanded expression that uses unrestricted
variables. The primary purpose of restricted variables, therefore, is to reduce
cognitive load by simplifying the expression of complex claims. Bound occur-
rences of restricted variables are easily eliminable; there is a straightforward
way to interpret formulas containing them. Similarly, it is straightforward
to interpret free occurrences of restricted variables in definitions. But, when
reasoning, free occurrences of restricted variables aren’t as easily eliminable;
their interpretation is highly dependent on the context. The use of free re-
stricted variables to state axioms and theorems, and when reasoning in proofs
and derivations, is highly problematic when modal operators, actuality opera-
tors, and rigid definite descriptions are present; in particular, reasoning with
free restricted variables often increases cognitive load and it is important to see
why this is so, if only to counterbalance the strong temptation to use them.
It is also worthwhile to determine conditions under which one may safely use
them. We’ll discuss these issues at length in (340) and (341).
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Accordingly, our discussion of restricted variables will be divided into the
following remarks:

• conventions for bound restricted variables (337),

• conventions for free restricted variables in definitions-by-≡ (338),

• conventions for free restricted variables in definitions-by-= (339),

• reasoning with bound restricted variables (340), and

• the problem of, and conditions for, using free restricted variables to as-
sert axioms/theorems and to reason within derivations/proofs (341).

(337) Remark: Bound Restricted Variables. In this Remark, we consider re-
stricted variables that are bound by sentence- and term-forming operators. We
begin with a general statement of our conventions followed by a discussion of
each convention and some of its implications. We can summarize these con-
ventions in two groups – one group for the quantifiers and one group for the
term-forming operators.

To introduce our conventions for the quantifiers ∀ and ∃, let:

• ψ be any restriction condition, as defined in (336),

• α be the unrestricted variable that occurs free in ψ (where α is either an
individual variable or an n-ary relation variable, for some n),

• γ be introduced a variable of the same type as α but restricted by the
condition ψ, and

• ϕ be any formula in which γ is substitutable for α.

Then we may introduce, as abbreviations, formulas in which restricted vari-
ables are bound by quantifiers:

(.1) ∀γϕγα =abbr ∀α(ψ→ ϕ)

(.2) ∃γϕγα =abbr ∃α(ψ&ϕ)

Strictly speaking, since we only have one primitive quantifier in the system,
we don’t need the second abbreviation; we can derive from (.1) that ∃γϕγα ab-
breviates ∃α(ψ&ϕ), by the definition of ∃.215

215To avoid clash of metavariables, we derive, for an arbitrary formula χ, that ∃γχγα abbreviates
∃α(ψ & χ). By definition (18.4), ∃γχγα expands to ¬∀γ¬χγα . Now let ϕ in (.1) be ¬χ. Then, (.1)
tells us that the universal claim in the scope of the initial negation operator, i.e., ∀γ¬χγα , is an
abbreviation of ∀α(ψ → ¬χ). So ¬∀γ¬χγα abbreviates ¬∀α(ψ → ¬χ), i.e., ∃α¬(ψ → ¬χ). But by
definition (18.1), we know ψ & χ ≡df ¬(ψ → ¬χ). So by a Rule of Substitution (160.3), it follows
that ∃α(ψ&χ).
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Before we introduce our conventions for the term-forming operators ı and
λ, it would serve well to give some examples of (.1) and (.2). A simple example
of (.1) can be obtained by considering a theorem about discernible (D!) ob-
jects, defined in (273.2). Apply GEN to theorem (273.30) to obtain ∀x(D!x→
x=D x)). Using convention (.1) however, with u as a restricted variable ranging
over discernible objects, we may abbreviate this claim to:

∀u(u=D u)

An example that shows how (.1) suffices to interpret a string of universal quan-
tifiers binding restricted variables is left to a footnote.216 For a rather different
example of (.1), let c be a restricted individual variable ranging over classes.
Then we may write the (true) claim ¬∀x(Class(x)→ ∃y(y ∈ x)) (i.e., not every
class has members), as ¬∀c∃y(y ∈ c). Moreover, we may write the (false) claim
∀x(Class(x)→¬∃y(y ∈ x)) (i.e., every class fails to have members) more simply
as ∀c¬∃y(y ∈ c).

For an example of (.2), note that theorem (210.3) implies ∃x(O!x&¬AE!x).
If we now let u be a restricted variable ranging over ordinary objects, we may
therefore write this last claim as ∃u¬AE!u. Similarly, the (true) claim that
some class fails to have members, i.e., ∃x(Class(x) &¬∃y(y ∈ x)) may be more
simply written with restricted variables as ∃c¬∃y(y ∈ c). And, using both
u and v as restricted variables ranging over ordinary objects, we leave it to
the reader to show why ∀u∃v(v =E u), by (.1) and (.2), abbreviates ∀x(O!x →
∃y(O!y & y=E x)).

We now introduce our convention for the term-forming operators ı and λ.
Let ψ, α, γ , and ϕ be as above but where ψ is a restriction condition on in-
dividuals, so that α and γ are some individual variables ν and µ, respectively,
where µ is substitutable for ν in ϕ. Then we may introduce, as abbreviations,
definite descriptions in which restricted variables are bound by the ı symbol:

(.3) ıµϕµν =abbr ıν(ψ&ϕ)

216Consider the following claim, which is easily derivable from theorem (273.7): (D!x&D!z)→
(∀F(Fx ≡ Fz)→ x=z). By (88.7.a) and (88.7.b), this is equivalent to D!x→ (D!z→ (∀F(Fx ≡ Fz)→
x = z)). After applying GEN to universally generalize on z, moving the quantifier ∀z across
the antecedent by (95.2), and then applying GEN to universally generalize on x, it follows that
∀x(D!x→∀z(D!z→ (∀F(Fx ≡ Fz)→ x=z))). Using convention (.1) however, with u,v as restricted
variables over discernible objects, we may abbreviate the embedded universal claim and so ob-
tain ∀x(D!x → ∀v(∀F(Fx ≡ Fv) → x = v)), and by a second application of (.1), shorten this to
∀u∀v(∀F(Fu ≡ Fv)→ u = v). It should be evident from this example that since the following two
claims, (ψ1 & . . . &ψn)→ ϕ and ψ1→ (. . .→ (ψn→ ϕ) . . .), are equivalent, our system is indifferent
as to which of the following ∀γ1 . . .γnϕ

γ1 ,...,γn
αn ,...,αn abbreviates:

∀α1 . . .∀αn((ψ1 & . . . &ψn)→ ϕ)

∀α1 . . .∀αn(ψ1→ (. . .→ (ψn→ ϕ) . . .))
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As an example of (.3), note that ıu(u , u) could be used as shorthand for ei-
ther of the empty descriptions ıx(O!x& x,x) or ıx(D!x& x,x), depending on
whether u is a restricted variable for ordinary objects or discernible objects. For
a more interesting example, suppose we could prove ∃!x(Class(x)&¬∃y(y ∈ x)).
It would follow that ıx(Class(x) &¬∃y(y ∈ x))↓. Then we could abbreviate this
last claim as ıc¬∃y(y ∈ c)↓.

Finally, to introduce our convention for the term-forming operator λ, let:

• ψ1, . . . ,ψn be any restriction conditions on individuals,

• ν1, . . . ,νn be, respectively, the unrestricted and distinct individual vari-
ables that occur free in ψ1, . . . ,ψn,

• µ1, . . . ,µn be respectively introduced as distinct individual variables re-
stricted by the conditions ψ1, . . . ,ψn, and

• ϕ be any formula in which µ1, . . . ,µn are substitutable, respectively, for
ν1, . . . ,νn.

Then we may introduce, as abbreviations, λ-expressions in which restricted
variables are bound by the λ symbol:

(.4) [λµ1 . . .µn ϕ
µ1,...,µn
ν1,...,νn ] =abbr [λν1 . . .νn ψ1 & . . . &ψn &ϕ]

For an example of (.4), consider that [λu¬E!u] might abbreviate [λxO!x&¬E!x]
or [λx D!x & ¬E!x], depending on the context. And [λc ¬∃y(y ∈ c)] abbre-
viates [λx Class(x) & ¬∃y(y ∈ x)]. And if we let ψ1, . . . ,ψn be D!x1, . . . ,D!xn,
respectively, let u1, . . . ,un be restricted variables ranging over discernible in-
dividuals, and let ϕ be ¬Rnx1 . . .xn, then [λu1 . . .un ¬Rnu1 . . .un] abbreviates
[λx1 . . .xn D!x1 & . . . &D!xn &¬Rx1 . . .xn], the latter which has been established
as significant in (273.15).

(338) Remark: Conventions for the Use of Free Restricted Variables in Defini-
tions-by-Equivalence. One often finds free restricted variables in definitions-
by-equivalence and definitions-by-identity. For example, set theorists intro-
duce α,β,γ,δ as restricted variables ranging over ordinals. They then define
functions on, and properties of, ordinals by using these restricted variables.217

217In standard texts on set theory, one typically finds an ordinal to be defined as any set strictly
well-ordered with respect to ∈ and such that every element is also a subset. Then, using the
restricted variables α and β to range over ordinals, one might find the following definition of the
function term the successor of α and the notion α is a limit ordinal:

Suc(α) =df α ∪ {α}

LimitOrdinal(α) ≡df α,∅& ¬∃β(α = Suc(β))

In Drake 1974 (41), for example, we find ordinal addition defined basically as follows, where λ
ranges over limit ordinals and 0 is defined earlier (25) as ∅:
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In this Remark, we confine ourselves to definitions-by-equivalence and begin
with an example concerning classes.

Suppose we stipulate that a class c is empty just in case c has no members:

(A) Empty(c) ≡df ¬∃y(y ∈ c)

How are we to understand this definition, i.e., what definition does (A) abbre-
viate? In the present text, the answer is that (A) abbreviates (B):

(B) Empty(x) ≡df Class(x) &¬∃y(y ∈ x)

where (B) is governed by a version of Convention (17.2), i.e., one where the
free variable x functions as a metavariable but the bound variable y needs no
special interpretation (since we know that alphabetically-variant formulas are
interderivable).218 So (B) is, in turn, shorthand for the definition:

(B′) Empty(κ) ≡df Class(κ) &¬∃y(y ∈ κ), provided y doesn’t occur free in κ

As we know from various remarks and theorems in the foregoing, (B′) extends
our language to include formulas of the form Empty(κ) and implies the closures
of the following theorem schema:

(C) Empty(κ) ≡ Class(κ) &¬∃y(y ∈ κ), provided y doesn’t occur free in κ.

But it is important to see why (A) should not be interpreted as a kind of con-
ditional or contextual definition, i.e., as shorthand for adding Empty(κ) to the
language and stipulating the closures of the following as new axioms:

(D) Class(κ)→ (Empty(κ) ≡ ¬∃y(y ∈ κ)), provided y doesn’t occur free in κ

Note that (C) and (D) aren’t equivalent; (C) implies (D) but not vice versa, since
ϕ ≡ (ψ&χ) implies ψ→ (ϕ ≡ χ), but the converse doesn’t hold.219

There are two (related) reasons why (D) is a problematic way to eliminate
the restricted variables in (A). The first is that (D) fails the eliminability crite-
rion for definitions-by-equivalence: (D) doesn’t generally define Empty(κ) but

α + 0 = α

α + Suc(β) = Suc(α + β)

α +λ =
⋃
δ<λ(α + δ)

Though Drake says how we should interpret restricted variables when they appear as bound vari-
ables (1974, 22, 26), he never indicates what is meant when they occur free in definitions.
218It is worth mentioning that in a properly formulated definition with free restricted variables,

we won’t need existence clauses in the definiens, since by (336.3), any condition ψ(α) that is used
to introduce a restricted variable γ has to be such that, for any term τ substitutable for α, it is
provable that ψτα → τ ↓. So we don’t need existence clauses in definientia using free restricted
variables, since a definiens ϕ(γ) will imply τ↓ if ϕτγ holds.
219Theorem (88.8.i) establishes that ϕ ≡ (ψ & χ) implies ψ → (ϕ ≡ χ). To see that the converse

doesn’t hold, consider the scenario in which ψ is false but ϕ and χ are both true. Then ψ→ (ϕ ≡ χ)
is true, by failure of the antecedent, but ϕ ≡ (ψ&χ) is false.
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rather defines it only when κ is a class.220 The second, related problem is that
if κ is an empty singular term, then (D) doesn’t give one the means to prove
¬Empty(κ), whereas (B) does.

Of course, some texts allow conditional/contextual definitions-by-≡, but
in the present work, we prefer to avoid them.221 Any condition needed for a
definition-by-≡ can be built into the definiens. Thus, we consider it preferable
to regard (A) as an abbreviation of (B). (B) defines Empty(x) in all contexts, and
has the virtue that if we know Class(x), then by Rule ≡S, the biconditionals
that (B) gives rise to become equivalent to Empty(x) ≡ ¬∃y(y ∈ x). So in what
follows, we’ll use free restricted variables in a definition-by-≡ on the model of
(A) and (B).

We may summarize this discussion of free restricted variables in definitions-
by-≡ as follows. Let ψ be a restriction condition with α free and γ be the re-
stricted variable, and let ϕ and χ be conditions on α. Furthermore, let us use
the simple notation χ(γ) and ϕ(γ), respectively, instead of χγα and ϕγα . Then:

(.1) A definition of the form χ(γ) ≡df ϕ(γ) abbreviates the definition:

χ ≡df ψ&ϕ,

where this latter definition is governed by Convention (17.2).

Thus, (A) and (B) are a simple example.222 Of course, (.1) should be generalized
to the case where the definiens and definiendum have multiple (free) restricted
variables as arguments. Let ψ1, . . . ,ψn be conditions on the distinct variables
α1, . . . ,αn, respectively; i.e., ψi is a condition on αi , for 1 ≤ i ≤ n, and αi is the
only variable that occurs free in ψi . Suppose further that γ1, . . . ,γn have been
introduced as distinct restricted variables of the same type, respectively, as
α1, . . . ,αn, so that γi (1 ≤ i ≤ n) ranges over the entities such that ψi . Moreover,
for simplicity, let χ(γ1, . . . ,γn) and ϕ(γ1, . . . ,γn), respectively, abbreviate χγ1,...,γn

α1,...,αn

and ϕγ1,...,γn
α1,...,αn . Then:

(.2) A definition of the form χ(γ1, . . . ,γn) ≡df ϕ(γ1, . . . ,γn) abbreviates the
definition:

220This gives rise to a version of Frege’s infamous ‘Julius Caesar’ problem. The problem is that
(D) doesn’t give us the means to prove whether or not Julius Caesar (‘j’) is empty, even given that
¬Class(j).
221Note that §8.6 in Suppes 1957 is titled Conditional Definitions and the discussion (pp. 165–

166) is primarily about the definition of the operation symbol of division (x/y). But, since there
are no definite descriptions in the system Suppes is discussing, he can’t define x/y outright using a
definition-by-=. Instead he defines it using a conditional definition-by-≡ as follows: if y , 0, then
x/y=z ≡ x=y · z. It is thus clear from his discussion that Suppes allows conditional definitions-by-
≡. But we shall not. However, we’ll discuss a form of conditional definition-by-= in (366) and in
the following Remark (367).
222In the case of (A) and (B), α is the variable x, ψ is the formula Class(x), ϕ is the formula
¬∃y(y ∈ x), γ is c, and χ is the expression Empty(x). Then the definiendum χ(γ) becomes Empty(c)
and the definiens ϕ(γ) becomes ¬∃y(y ∈ c).
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χ ≡df ψ1 & . . . &ψn &ϕ,

where this latter definition is governed by convention (17.2).

To see an example, consider the following, which is officially presented as item
(350) in the next section. The definition for c is the union of c′ and c′′ is:

UnionOf (c,c′, c′′) ≡df ∀y(y ∈ c ≡ y ∈ c′ ∨ y ∈ c′′)

This has the form:

χ(γ1,γ2,γ3) ≡df ϕ(γ1,γ2,γ3)

and is to be regarded as shorthand for:

UnionOf (x,z,w) ≡df Class(x) & Class(z) & Class(w) &∀y(y ∈ x ≡ y ∈ z∨ y ∈ w)

which has the form:

χ ≡df ψ1 &ψ2 &ψ3 &ϕ

where the substitutions for the metavariables are straightforward.223 And by
Convention (17.2), the strict form of the above definition is:

UnionOf (κ1,κ2,κ3) ≡df

Class(κ1) & Class(κ2) & Class(κ3) &∀y(y ∈ κ1 ≡ y ∈ κ2 ∨ y ∈ κ3),
provided y doesn’t occur free in κ1, κ2, or κ3

One final observation is that our conventions, thus far, for bound and free
restricted variables lead to some redundancies. For an example of such a re-
dundancy, consider the following. In (344), we define a class c to be empty just
in case it has no members:

Empty(c) ≡df ¬∃y(y ∈ c) (344)

Now suppose we want to prove ∃cEmpty(c). Then by our convention (337.2)
for bound restricted variables, we have to show:

(ϑ) ∃x(Class(x) & Empty(x))

But by our convention (.1), the definition of Empty(c) (344), which we repeated
above, abbreviates:

Empty(x) ≡df Class(x) &¬∃y(y ∈ x)

By a Rule of Substitution (160.3), we can exchange the definiens and definien-
dum when they occur as subformulas. So to show (ϑ), it would suffice to show:

223Specifically, α1 is x, α2 is z and α3 is w, ψ1 is Class(x), ψ2 is Class(z), ψ3 is Class(w), χ is
UnionOf (x,z,w), ϕ is ∀y(y ∈ x ≡ y ∈ z∨ y ∈ w), and γ1,γ2,γ3 are c,c′, c′′, respectively.



450 CHAPTER 10. BASIC LOGICAL OBJECTS

∃x(Class(x) & Class(x) &¬∃y(y ∈ x))

But here, our conventions have lead us to prove something with an otiose con-
junct. We can simply ignore this redundancy, for the idempotence of &, i.e.,
(ϕ&ϕ) ≡ ϕ, is a modally strict theorem (85.6). So we may simplify and prove
only:

(ξ) ∃x(Class(x) &¬∃y(y ∈ x))

We’ll henceforth disregard other redundancies of this kind that might arise
from combining our conventions for restricted variables.

(339) Remark: On the Use of Free Restricted Variables in Definitions-by-Iden-
tity. The conventions for interpreting free restricted variables in definitions-
by-identity are straightforward. Let ψ1, . . . ,ψn, α1, . . . ,αn, and γ1, . . . ,γn be as
stipulated in the foregoing remarks, but where α1, . . . ,αn occur free in both ıνϕ
and [λν1 . . .νn ϕ]. Finally, let κ and Π be definienda in which α1, . . . ,αn occur
free, and let:

• κ(γ1, . . . ,γn) represent κγ1,...,γn
α1,...,αn

• Π(γ1, . . . ,γn) represent Πγ1,...,γn
α1,...,αn

• ϕ(γ1, . . . ,γn) represent ϕγ1,...,γn
α1,...,αn

Then we observe the following conventions:

(.1) κ(γ1, . . . ,γn) =df ıνϕ(γ1, . . . ,γn) abbreviates the definition:

κ =df ıν(ψ1 & . . . &ψn &ϕ)

(.2) Π(γ1, . . . ,γn) =df [λν1 . . .νn ϕ(γ1, . . . ,γn)] abbreviates the definition:

Π =df [λν1 . . .νn ψ1 & . . . &ψn &ϕ]

Let’s start with an example of (.2). Let u be a restricted variable ranging over
discernible objects. Then, if given a property F, we might define the property
F+u as the property being F or identicalD to u, as follows:

F+u =df [λx Fx& x=D u]

Then (.2) tells us that this abbreviates the definition:

F+y =df [λxD!y &Fx& x=D y]

In this case, α is y, γ is u, and ν is x, so that:

• Π is F+y ,

• [λν ψ&ϕ] is [λxD!y &Fx& x=D y],
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• Π(γ) is F+u , and

• [λν ϕ(γ)] is [λx Fx& x=D u]

As an example of (.1), let γ1 be u and γ2 be v, where u and v are restricted
variables ranging over discernible (D!) objects, as defined in (273.2). We might
then define the natural pair class of discernible objects u and v, written {u,v}D
as follows:

(A) {u,v}D =df ıc∀y(y ∈ c ≡ y=D u ∨ y=D v))

In fact, we’ll define natural pair classes somewhat differently in (381), but for
now, (A) offers a good illustration. Where ψ1 is D!z and ψ2 is D!w, (.1) tells us
that (A) abbreviates:

(B) {z,w}D =df ıc(D!z&D!w&∀y(y ∈ c ≡ (y=D z∨ y=Dw)))

And if we then eliminate the bound restricted variable in the definiens, (B)
abbreviates:

(C) {z,w}D =df ıx(Class(x) &D!z&D!w&∀y(y ∈ x ≡ (y=D z∨ y=Dw)))

Given that (A) and (B) abbreviate (C), the expression {κ,κ′}D is well-formed
for any individual terms κ and κ′, by our convention that variables in defini-
tions function as metavariables (17.2.a). But we can’t assume that {κ,κ′}D is
significant for every pair of individual terms κ and κ′. For example, if it is
known, by proof or by hypothesis, that one or both of κ and κ′ is an empty
term or that one or both of κ and κ′ denotes an indiscernible (D!) object, then
the Rule of Definition by Identity (73) yields that {κ,κ′}D is an empty term, by
the following extended argument.

Without loss of generality, consider just κ and assume ¬κ↓ ∨D!κ. Then,
in either case, ¬D!κ (exercise). Moreover, in either case, �¬D!κ.224 Note that
from ¬D!κ it follows that no object satisfies the condition: x is a class such that
both κ and κ′ are discernible and such that the members of x are identicalD to
either κ or κ′, i.e.,

(D) ¬D!κ ` ¬∃x(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))

A fortiori, ¬D!κ implies that there is no unique such object, i.e.,

224We reason separately from the disjuncts ¬κ↓ and D!κ. If ¬κ↓, then by (169.3), �¬κ↓. But
¬κ↓ → ¬D!κ is the contrapositive of axiom (39.5.a) and so by Rule RN, �(¬κ↓ → ¬D!κ). The K
axiom then implies �¬κ↓ → �¬D!κ. Since we’ve established �¬κ↓, it follows that �¬D!κ.

Alternatively, supposeD!κ. Then κ↓. We may use this fact and the fact that [λx¬D!x]↓ (exercise)
to derive, by β-Conversion, [λx¬D!x]κ ≡ ¬D!κ. So by definition of D! (273.2), it is a modally strict
theorem that D!κ ≡ ¬D!κ. Hence ¬D!κ, and so it follows by modus tollens from an appropriate
instance of the T schema that ¬�D!κ. Now if we apply Rule RN and GEN to (273.8) and instantiate
to κ, we obtain �(D!κ→ �D!κ). Hence, by (172.3) ¬�D!κ ≡ �¬D!κ. So �¬D!κ.
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(E) ¬D!κ ` ¬∃!x(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))

So by the Rule of Actualization:

(F) A¬D!κ ` A¬∃x(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))

But, from the previously noted fact that �¬D!κ, it follows that A¬D!κ, by
(132). It follows from this and (F) that:

A¬∃x(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))

Then by axiom (44.1), we have:

¬A∃!x(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))

So by theorem (176.2):

(G) ¬ıx(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))↓

But (C) tells us, by the Rule of Definition by Identity (73), that:

(H) (ıx(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))↓ →
{κ,κ′}D = ıx(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))) &

(¬ıx(Class(x) &D!κ&D!κ′ &∀y(y ∈ x ≡ (y=D κ∨ y=D κ′)))↓ →
¬{κ,κ′}D↓)

So (G) and the second conjunct of (H) imply ¬{κ,κ′}D↓.
Thus the inferential role and conventions for using restricted free variables

in definitions-by-identity may combine to preserve the garbage in, garbage out
principle. When we substitute an argument term (of the appropriate type) for
a free restricted variable in a term-forming operator with such a variable, the
resulting complex term fails to be significant whenever the argument term is
empty or has a denotation not in the domain over which the restricted variable
ranges. Our definitions-by-identity that have free restricted variables follow
this pattern.

(340) Remark: (The Pitfalls of) Reasoning with Bound Restricted Variables. In
this Remark, we examine the use of bound restricted variables when reasoning
and, after examining some expected results, outline both the issues that arise
and the precautions that have to be taken when modal, actuality, and descrip-
tion operators are involved. In what follows, assume that the formulas ϕ being
discussed have only the bound restricted variables indicated in the example,
and no free restricted variables.

It is well-known that if ψ is a restriction condition with α free and γ is
a restricted variable introduced via this condition, then ∀αϕ implies ∀γϕγα ,
i.e., if a claim is true of everything in the domain, it is true for the restricted
class. This follows from the principle ϕ → (ψ → ϕ) (38.1) and we leave the
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proof to a footnote.225 For example, if every individual is ordinary or abstract,
i.e., ∀x(O!x ∨A!x), then every class is ordinary or abstract, i.e., ∀c(O!c ∨A!c).
But, clearly, ∀γϕγα doesn’t imply ∀αϕ; from the fact that every class is abstract
(∀cA!c), it doesn’t follow that every object is abstract (∀xA!x).

Dual principles hold for the restricted variables bound by existential quan-
tifiers. A theorem of the form ∃γϕγα implies ∃αϕ,226 but again the converse
doesn’t hold. We leave it to the reader to construct examples.

Another consequence of our definition of a restriction condition was pre-
viously mentioned, namely, the fact that ∀γϕγα → ∃γϕγα is a modally strict
theorem.227 Later, in Remark (342), we’ll discuss (a) empty restriction con-
ditions ψ (i.e., ones that nothing satisfies), for which ∀γϕγα → ∃γϕγα doesn’t
hold, and (b) weak restriction conditions ψ (i.e., ones that are satisfied but not
by a modally strict proof), for which ∀γϕγα →∃γϕγα holds but not as a modally
strict theorem.

It is also important to observe that adjacent pairs of universal quantifiers
commute even if one member of the pair binds a restricted variable and the
other binds an unrestricted variable. To be specific, the following is a modally
strict fact:

∀γ∀βϕγα ≡ ∀β∀γϕγα , where γ is a restricted variable introduced by some
restriction condition which has only α free

The proof is left to a footnote.228

Though the foregoing principles for bound restricted variables suggest that
reasoning with them is unproblematic, it is important to note that modal prin-
ciples involving such variables fail. For example, given our conventions in
(337.1) and (337.2), the Barcan and Converse Barcan Formulas fail for quanti-
fied claims with restricted variables. The following are not theorems:

225Assume ∀αϕ. Then, ϕ, by ∀E. Hence, ψ→ ϕ, by axiom (38.1). So by GEN, ∀α(ψ→ ϕ). Hence,
by our convention (337.1), it follows that ∀γϕγα .
226Assume ∃γϕγα . Then by (.2), ∃α(ψ&ϕ). Hence, ∃αϕ.
227Assume ∀γϕγα . Then by (.1) this abbreviates ∀α(ψ→ ϕ). But, by hypothesis, ψ is a restriction

condition, and so ∃αψ is a modally strict theorem, by (336). Let τ be any witness, so that we
know ψτα . Then ϕτα , and by conjoining the last two claims and using our rules for the existential
quantifier, it follows that ∃α(ψ&ϕ).
228Suppose ψ is the restriction condition. Then if we eliminate the bound restricted variable from

both sides of the biconditonal, we have to show:

∀α(ψ→∀βϕ) ≡ ∀β∀α(ψ→ ϕ)

(→) Assume ∀α(ψ→ ∀βϕ). Then ψ→ ∀βϕ, by ∀E. We want to show ∀β∀α(ψ→ ϕ). Since α and
β don’t occur free in our assumption, it suffices by GEN to show ψ→ ϕ. So assume ψ. Then ∀βϕ
and hence ϕ. (←) Assume ∀β∀α(ψ→ ϕ). We want to show ∀α(ψ→ ∀βϕ). Since α doesn’t occur
free in our assumption, it suffices to show ψ → ∀βϕ. So assume ψ. Since β doesn’t occur free in
our assumption, it suffices by GEN to show ϕ. But our initial assumption implies ψ → ϕ, and ψ
holds by assumption.
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∀γ�ϕγα → �∀γϕγα

�∀γϕγα →∀γ�ϕγα

To see why, consider that the above abbreviate, respectively:

∀α(ψ→ �ϕ)→ �∀α(ψ→ ϕ)

�∀α(ψ→ ϕ)→∀α(ψ→ �ϕ)

By appealing, for the sake of argument, to semantically-primitive possible
worlds, one can see, intuitively, why these fail; we leave this to a footnote.229

So when reasoning with a restricted variable γ , one may not commute ∀γ and
�, and the same applies to ♦ and ∃γ . This suggests that any quantified modal
theorems derived from the Barcan and Converse Barcan formulas won’t have
instances in which the quantifier binds restricted variables.

There is a special case, however, where ∀γ and � do validly commute. If
γ ranges over the entities that satisfy a rigid restriction condition, i.e., a re-
striction condition that, by a modally strict proof, is necessarily satisfied by
anything that satisfies it, then we may safely apply RN or RA. In such a situa-
tion, the Barcan and Converse Barcan formulas are valid.

To see this, first recall that in (260.1), we stipulated that ψ is a rigid condi-
tion on α just in case `� ∀α(ψ→ �ψ). Then let us first define:

ψ is a rigid restriction condition on α just in caseψ is a restriction condition
on α that is also a rigid condition on α.

For example, O!x is a rigid restriction condition on individuals, given that by
GEN, it follows from (180.1) that `� ∀x(O!x→ �O!x). And similarly forD!x, by

229In what follows, we simplify notation by writing ψe
α as ψ(e). To see that the first is false,

consider any 2-world model in which w0 is the actual world and where e ranges over the entities
in the range of the variable α:

at w0: ∀e¬ψ(e)

at w1: ∃e(ψ(e) &¬ϕ(e))

Then the antecedent ∀α(ψ → �ϕ) is true (i.e., true at w0) by failure of the antecedent, but the
consequent �∀α(ψ→ ϕ) is false (i.e., false at w0) because w1 is a world where ∀α(ψ→ ϕ) is false.

To see that the second is false, consider the following 2-world model in which entity e1 is in the
range of the variable α:

at w0: ψ(e1), ϕ(e1), ∀e(e,e1→¬ψ(e))

at w1: ∀e¬ψ(e), ¬ϕ(e1)

Then the antecedent�∀α(ψ→ ϕ) is true (i.e., true at w0) because at both worlds, the claim ∀α(ψ→
ϕ) is true: at w0, if the value of α is e1, then both ψ and ϕ are true, so that ψ→ ϕ is true, and if
the value of α is something other than e1, then the antecedent is false, making ψ→ ϕ true; and at
w1, ψ is false for all values of α and so ∀α(ψ→ ϕ) is true. But the consequent ∀α(ψ→ �ϕ) is false
(i.e., false at w0) because when α has the value e1, ψ is true at w0 while �ϕ is false at w0 (since at
w1, ¬ϕ(e1) is false).
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(273.8). By contrast, Class(x) is not a rigid restriction condition on individuals,
given theorem (320.2); indeed, in (320.4) we saw that classes fail to be classes
necessarily.230

Now we may say:

γ is a rigid restricted variable just in case, for some rigid restriction con-
dition ψ on α, γ is (introduced as) a variable whose values may be any α
such that ψ.

So, we may now establish that if γ is a rigid restricted variable, then the Barcan
and Converse Formulas hold with respect to γ , i.e., that ∀γ�ϕγα → �∀γϕγα
and that �∀γϕγα → ∀γ�ϕγα . It suffices to show that the formulas that they
abbreviate are modally strict theorems:

• ∀α(ψ→ �ϕ)→ �∀α(ψ→ ϕ), when ψ is a rigid restriction condition.

Proof. Assume:

(ϑ) ∀α(ψ→ �ϕ)

Since we want to show �∀α(ψ→ ϕ), it suffices, by BF, to show ∀α�(ψ→
ϕ), and since α isn’t free in our assumption, it suffices to show �(ψ→ ϕ).
Note first that since ψ is, by hypothesis, a rigid restriction condition, we
know `� ∀α(ψ→ �ψ). So by RN, �∀α(ψ→ �ψ). By CBF, ∀α�(ψ→ �ψ),
and so by ∀E, �(ψ → �ψ). But (ϑ) similarly implies ψ → �ϕ. So by
(172.6), �(ψ→ ϕ), which is what we had to show.

• �∀α(ψ→ ϕ)→∀α(ψ→ �ϕ), when ψ is a rigid restriction condition.

Proof. Assume �∀α(ψ → ϕ). To show ∀α(ψ → �ϕ), it suffices, by GEN,
to show ψ → �ϕ, since α isn’t free in our assumption. So assume ψ.
Since ψ is a rigid restriction condition, we know that it is a modally strict
theorem that ∀α(ψ → �ψ). By ∀E, ψ → �ψ. Hence �ψ. But by the
Converse Barcan Formula (167.2), our assumption implies ∀α�(ψ→ ϕ).
So, �(ψ→ ϕ). It follows by the K axiom that �ψ→ �ϕ. Hence, �ϕ.

230Note that in (262), we saw three examples of rigid conditions on properties, namely, �Fy,
F =G, and �∀y(Gy → Fy). But these aren’t (rigid) restriction conditions on properties, since they
contain two free variables. If we assign y and G a value, say a and P (i.e., a and P are primitive
constants, so that we know a↓ and P ↓), respectively, then �Fa and F =P are rigid restriction con-
ditions on properties, but �∀y(P y → Fy) is not. (Exercise: Identify the clause in the definition
of restriction condition that �∀y(P y → Fy) fails and say why.) We’ve also seen two examples of
defined restriction conditions: Null(x) is a restriction condition on objects and Propositional(F) is
a restriction condition on properties. Theorems (266.1) and (276.4), by GEN, imply, respectively,
that ∀x(Null(x)→ �Null(x)) and ∀F(Propositional(F)→ �Propositional(F)) are modally strict theo-
rems.
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Thus, the Barcan formulas apply to bound restricted variables when those vari-
ables are rigid.

A final observation about reasoning with conventions (337.1) and (337.2)
is that there is an analogous phenomena affecting the actuality operator; both
directions of axiom (44.3) fail to be necessary truths when the variables are
restricted. The following are not modally strict theorems:

∀γAϕγα → A∀γϕγα

A∀γϕγα →∀γAϕγα

To see why, consider what they abbreviate:

∀α(ψ→ Aϕ)→ A∀α(ψ→ ϕ)

A∀α(ψ→ ϕ)→∀α(ψ→ Aϕ)

Both of these latter are theorems, but they are not modally strict theorems.
Again, we leave the argument to a footnote.231 So it is important to recognize
when reasoning with restricted variables that ∀γ and A commute at the price
of modal strictness.

Here again, though, the requirements that ψ be a rigid restriction condition
and γ a rigid restricted variable restores the necessity of these commutation
principles. For one can show that if ψ is a rigid restriction condition, then
∀γAϕγα → A∀γϕγα and A∀γϕγα → ∀γAϕγα abbreviate modally strict theorems,

231Here, we not only have to show that they are in fact ?-theorems, but also that their necessi-
tations are invalid. To see that the first is a ?-theorem, assume ∀α(ψ → Aϕ). Then by theorem
(130.1)?, it suffices to show ∀α(ψ→ ϕ), and by GEN it suffices to show ψ→ ϕ. So assume ψ. But
our initial assumption implies ψ→ Aϕ, by ∀E. So Aϕ. Hence, by (43)?, ϕ. To see that the second
is a theorem, assume A∀α(ψ→ ϕ). Then by GEN, it suffices to show ψ→ Aϕ. So assume ψ. Our
initial assumption implies, by (43)?, that ∀α(ψ→ ϕ). So ψ→ ϕ and, hence, ϕ. And so by (130.1)?,
Aϕ.

Now to see that their necessitations are invalid, we again appeal to semantically primitive pos-
sible worlds. We just need to describe a model where these claims are true at w0 but fail at some
other possible world w1. For the first, consider a model where:

at w0: ∃e(ψ(e) &¬ϕ(e))

at w1: ¬∃eψ(e)

Then the claim, ∀α(ψ→ Aϕ)→ A∀α(ψ→ ϕ), is true at w0 (because the antecedent ∀α(ψ→ Aϕ) is
false at w0), but false at w1 (because the antecedent ∀α(ψ→ Aϕ) is true at w1 and the consequent
A∀α(ψ→ ϕ) false at w1).

For the second, consider a model where:

at w0: ¬ϕ(e1), ¬∃eψ(e)

at w1: ψ(e1)

Then then the claim A∀α(ψ → ϕ) → ∀α(ψ → Aϕ) is true at w0 (because the antecedent and
consequent are both true at w0), but false at w1 (because the antecedent A∀α(ψ → ϕ) is true at
w1 and the consequent ∀α(ψ→ Aϕ) is false at w1).
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by arguments somewhat similar to the proofs displayed in the bulleted points
above. We leave the proof of the first to a footnote, and leave the proof of the
second to the reader.232

(341) Remark and Metatheorem: The Problem of Free Restricted Variables in
Axioms/Theorems and Derivations/Proofs. Once bound restricted variables
are used to assert axioms and theorems, and free restricted variables are used
to formulate definitions, it won’t be long before one attempts to reason with
free restricted variables. The discussion in (340) already suggests why there
may be concerns about doing so, but let’s now explicitly identify some of the
problems.

First, note that the use of free restricted variables immediately raises ques-
tions of interpretation. To see why, consider the formula ¬∃FuF, in which u
is a free restricted variable ranging over ordinary objects. It could be used to
assert a theorem or a conclusion of a derivation, in which case it would be inter-
preted conditionally, as O!x→ ¬∃FxF; indeed, on this understanding, ¬∃FuF
would simplify the statement of the axiom for encoding (51). However, if one
is reasoning in a derivation and one takes the formula ¬∃FuF as an assumption
or premise, then it would be interpreted conjunctively, as O!x&¬∃FxF, since
¬∃FuF carries the information that u is an ordinary object. So formulas with
free restricted variables give rise to ambiguities, which can often be resolved
by the context.

Despite the threat of ambiguity, the tendency to use free restricted variables
is a strong one. Given that the conditional interpretation helps to simplify
the statement of theorems and conclusions of reasoning, and the conjunctive
interpretation helps to simplify assumptions and premises, one is tempted to
let the context determine the interpretation of a formula with free restricted
variables. But even if the context is always clear, the use of such variables can
give rise to errors in reasoning, particularly in modal contexts.

We can approach the problem by first examining a simple case where we
escape error only by a happy coincidence. Clearly, it is a modally strict theo-
rem that O!x→ O!x. So, if we use free restricted variables, we should be able
to assert this as the modally strict theorem O!u. Since the theorem is modally

232We want to show that what ∀γAϕγα → A∀γϕγα abbreviates, namely:

∀α(ψ→ Aϕ)→ A∀α(ψ→ ϕ), where ψ is a rigid restriction condition

is a modally strict theorem. So assume:

(ϑ) ∀α(ψ→ Aϕ)

Since we want to show A∀α(ψ → ϕ), it suffices by axiom (44.3) to show ∀αA(ψ → ϕ). Since α
isn’t free in our assumption, it suffices by GEN to show A(ψ→ ϕ). Now since ψ is, by hypothesis,
a rigid restricted condition, we know `� ∀α(ψ → �ψ). So by RN, �∀α(ψ → �ψ). So by CBF,
∀α�(ψ → �ψ), and by ∀E, �(ψ → �ψ). But (ϑ) implies ψ → Aϕ. From these last two results, it
follows by (172.7) that A(ψ→ ϕ).
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strict, suppose we were to apply Rule RN to conclude �O!u. Then by the con-
ventions just described for eliminating the restricted variable, this last claim
would abbreviate O!x→ �O!x. This is, in fact, a theorem (180.1), and so is its
universalization ∀x(O!x → �O!x), by GEN. So it looks like we have reasoned
validly. But although the conclusions we’ve reached are theorems, we’ve not
reasoned to them by valid means. The inference from O!u to �O!u by appeal
to RN is not strictly valid, for the conclusion, �O!u, i.e., O!x→ �O!x, does not
validly follow by RN from the premise O!u, i.e., from O!x → O!x. The only
reason we reached a theorem, despite our invalid application of RN, is that
the theorem in question, O!x→ �O!x, is derivable by other, completely valid
means, as in the proof of (180.1). Analogous remarks apply to D!x.

To see how the application of RN to theorems with free restricted variables
could turn out to be disastrous, consider an analogous piece of reasoning in
connection with classes. Clearly, it is a modally strict theorem that Class(x)→
Class(x). So, by the conventions described in the foregoing, we should be
able to assert this as the modally strict theorem Class(c). Since the theorem is
modally strict, suppose we apply Rule RN to conclude that �Class(c) is a the-
orem. Then by the conventions just described for eliminating the restricted
variable, this last claim would abbreviate Class(x) → �Class(x). And since
we’ve just apparently established it as a theorem, we may infer ∀x(Class(x)→
�Class(x)), by GEN. But this contradicts theorem (320.2), which explicitly as-
serts ¬∀x(Class(x) → �Class(x)). By contrast, if we had simply applied RN
to the modally strict theorem with which we began, i.e., Class(x) → Class(x),
then we obtain �(Class(x)→ Class(x)). And by GEN, we have ∀x�(Class(x)→
Class(x)). Both of these last conclusions are theorems and harmless.

A related problem affects Rule RA, as follows. Start again with the modally
strict theorem Class(x)→ Class(x), and abbreviate this as Class(c). Then Rule
RA implies AClass(c) is a theorem. So by the conventions just described for
eliminating the restricted variable, this last claim would abbreviate Class(x)→
AClass(x). And since we’ve just apparently established it as a theorem, we may
infer ∀x(Class(x) → AClass(x)), by GEN, and then �∀x(Class(x) → AClass(x)),
by RN. But theorem (320.3) is ¬�∀x(Class(x)→ AClass(x)).

Thus, any modal reasoning with Rules RN and RA has to be undertaken
with great care if there are free restricted variables present; this calls into ques-
tion whether we can invoke instances, with such variables, of any theorems
derived with the help of RN and RA. Moreover, there are issues with other ax-
ioms and theorems as well. For example, one might wonder, when c is the only
restricted variable occurring free in ϕ, whether the following is a legitimate
instance of axiom (47) and whether it is a necessary truth:

c= ıcϕ ≡ ∀c′(Aϕc′c ≡ c′ =c)

This is interesting because the restricted variable c has both bound and free
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occurrences. Let consider an example, say, when ϕ is UnionOf (c,c′, c′′), i.e., c is
the union of c′ and c′′, in (338), and consider the fact that a description such as
ıcUnionOf (c,c′, c′′) has free restricted variables c′ and c′′ that are governed by
restriction conditions that are not within the scope of the ı-operator, whereas
the bound variable c is governed by a restriction condition that is within the
scope of that operator. So as example of the question above, we have to con-
sider whether the following, with both bound and free occurrences of c, is an
instance of necessary axiom (47) and whether it is subject to Rule RN:

c= ıcUnionOf (c,c′, c′′) ≡ ∀c′′′(AUnionOf (c′′′, c′, c′′) ≡ c′′′ =c)

Similarly, consider theorem (176.2). If c is the only free restricted variable in
ϕ, then it is not obvious whether the following is an instance of this theorem:

ıcϕ↓ ≡ A∃!cϕ

And it is not obvious whether the following, with additional free restricted
variables, is also an instance:

ıcUnionOf (c,c′, c′′)↓ ≡ A∃!cUnionOf (c,c′, c′′)

In all these cases, the use of free restricted variables increases cognitive load;
one has to spend significant cognitive resources to answer one or more of these
questions and this can be distracting when one is in the middle of reasoning
for some conclusion. We leave further discussion of these particular questions
to an appendix to this chapter (Appendix IV). For now it should be clear that
there are real concerns about reasoning with free restricted variables.

To address these concerns, we adopt two methodologies, i.e., two sets of
conventions; one is for free variables introduced by non-rigid restriction con-
ditions, while the other is for free variables introduced by rigid restriction con-
ditions:

(.1) Reasoning with Free Restricted Variables (Non-rigid)
In the remainder of this text, we:

(a) officially banish free restricted variables from the statement of ax-
ioms and theorems and use only bound restricted variables when
those can simplify the statement of the principle in question (infor-
mally, however, we may use free restricted variables only when we
specify that they are to be interpreted under the generality interpre-
tation, as discussed below), and

(b) as the first step of any derivation or proof, eliminate the bound re-
stricted variables so as to avoid reasoning with premises and con-
clusion that contain free restricted variables; thus we never apply
Rules RN and RA to formulas with free restricted variables when
these are non-rigid.
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Note how (.1.a) and (.1.b) combine to avoid the problems discussed above. By
(a), we may not abbreviate the theorem Class(x) → Class(x) as Class(c). In-
stead, since ∀x(Class(x) → Class(x)) is a theorem that has a form that can be
abbreviated with bound restricted variables, then we may either abbreviate
this as ∀cClass(c) or stipulate that Class(c) is to be understood as ∀cClass(c),
thereby giving the variable c the generality interpretation. If we apply RN or RA
to ∀cClass(c), to obtain �∀cClass(c) or A∀cClass(c), no untoward consequences
arise. When expanded, these last claims assert �∀x(Class(x) → Class(x)) and
A∀x(Class(x)→ Class(x)), both of which are trivially true.

To take a more interesting example, consider the Principle of Extensionality
(343), which we shall prove in the next section:

(Class(x) & Class(y))→ (x=y ≡ ∀z(z ∈ x ≡ z ∈ y)) (343)

By GEN, it is a theorem that:

∀x∀y((Class(x) & Class(y))→ (x=y ≡ ∀z(z ∈ x ≡ z ∈ y))) (343)

This has a form that we can abbreviate with bound restricted variables, so we
may either assert the above as:

(ϑ) ∀c∀c′(c=c′ ≡ ∀z(z ∈ c ≡ z ∈ c′))

or assert the following under the generality interpretation:

(ζ) c=c′ ≡ ∀z(z ∈ c ≡ z ∈ c′)

Under the generality interpretation of the variables, (ζ) simply abbreviates (ϑ).
So by adopting either of these two expediencies, we can’t get into trouble by
applying RN or RA to an axiom or theorem. For if we apply RN or RA to (ϑ)
and then eliminate the bound restricted variable, we obtain:

�∀x∀y((Class(x) & Class(y))→ (x=y ≡ ∀z(z ∈ x ≡ z ∈ y)))

A∀x∀y((Class(x) & Class(y))→ (x=y ≡ ∀z(z ∈ x ≡ z ∈ y)))

These follow validly from theorem (343) by two applications of GEN and one
of RN or RA.

Clearly, this first method ensures that Rules RN and RA are never improp-
erly applied to axioms or theorems that contain free restricted variables. More-
over, part (.1.b) of this method ensures that we don’t formulate instances of
axioms like (47) and theorems like (176.2) unless we know that they or their
closures have a form that can be abbreviated with bound restricted variables.

The second method for reasoning with free restricted variables applies to
those introduced by rigid restriction conditions; these allow us to both assert
axioms and theorems with such variables and to reason with them, as follows:
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(.2) Reasoning With Free Restricted Variables (Rigid)
If γ is a rigid restricted variable introduced in connection with the rigid
restriction condition ψ:

(.a) assert axioms and theorems containing free occurrences of γ (giving
them a conditional interpretation), and

(.b) when reasoning, (i) we may at any point take ψ(γ) as a necessary ax-
iom, (ii) we may regard the principles of quantification theory, e.g.,
GEN, Existential Introduction (101), Existential Elimination (102)
as valid for such variables, and (iii) we may regard the modal Rules
RN and RA as valid for such variables; in cases (ii) and (iii), we give
any premises a conjunctive interpretation and the conclusion a con-
ditional interpretation.

We leave examples of (.2.b.i) and (.2.b.ii) to the reader, and conclude with an
extended discussion of a fact about Rules RN and RA:

(.3) Metatheorem: Rules RN, RA, and Rigid Restricted Variables.
Let γ1, . . . ,γn be rigid restricted variables introduced by the rigid restric-
tion conditions ψ1, . . . ,ψn, respectively, where n ≥ 1 and each ψi has αi as
its single, free unrestricted variable, for 1 ≤ i ≤ n. Suppose some possibly
empty subset of α1, . . . ,αn occur free in the formulas in Γ , and a possi-
bly distinct (also possibly empty) subset of α1, . . . ,αn occur free in ϕ. Let
ϕ(γ1, . . . ,γn), Γ (γ1, . . . ,γn), �Γ (γ1, . . . ,γn), and AΓ (γ1, . . . ,γn), respectively,
be the result of substituting γi for any free occurrences of αi in ϕ and
in the formulas of Γ , �Γ , and AΓ , for 1 ≤ i ≤ n.233 Then the following
metarules are justified:

(.a) If Γ (γ1, . . . ,γn) `� ϕ(γ1, . . . ,γn), then �Γ (γ1, . . . ,γn) `� �ϕ(γ1, . . . ,γn)

(.b) If Γ (γ1, . . . ,γn) ` ϕ(γ1, . . . ,γn), then AΓ (γ1, . . . ,γn) ` Aϕ(γ1, . . . ,γn)

where the premises in Γ (γ1, . . . ,γn), �Γ (γ1, . . . ,γn), and AΓ (γ1, . . . ,γn) are
given the conjunctive interpretation, and the conclusions ϕ(γ1, . . . ,γn),
�ϕ(γ1, . . . ,γn), and Aϕ(γ1, . . . ,γn) are given the conditional interpretation.

A few observations are in order. First, the proof given in the Appendix adopts
the following strategy: we use our conventions to unpack the abbreviations in

233Recall that �Γ is the set of necessitations of all the formulas in the set Γ , i.e., {�χ |χ ∈ Γ }, and
AΓ is the set of actualizations of all the formulas in the set Γ , i.e., {Aχ |χ ∈ Γ }. So:

Γ (γ1, . . . ,γn) is the set of formulas of the form χ(γ1, . . . ,γn) such that χ ∈ Γ .

�Γ (γ1, . . . ,γn) is the set of formulas of the form �χ(γ1, . . . ,γn) such that χ ∈ Γ .

AΓ (γ1, . . . ,γn) is the set of formulas of the form Aχ(γ1, . . . ,γn) such that χ ∈ Γ .
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the metarule (i.e., eliminate the free restricted variables) and then show that
the resulting metarule is justified. The conjunctive interpretation has to be
given to each formula in each premise set.234 But when we give the conditional
interpretation to the conclusion ϕ(γ1, . . . ,γn), then it doesn’t matter whether we
abbreviate it as (ψ1 & . . . &ψn)→ ϕ or as ψ1 → (. . .→ (ψn → ϕ) . . .). They are
equivalent. Similarly, it doesn’t matter whether the conclusion �ϕ(γ1, . . . ,γn)
abbreviates (ψ1 & . . . & ψn)→ �ϕ or ψ1 → (. . .→ (ψn → �ϕ) . . .). And similar
considerations apply to conclusions of the form Aϕ(γ1, . . . ,γn). Once these ab-
breviations are unpacked, the proof in the Appendix shows that the resulting
metarule is justified.

Second, note that (.3.a), the analogue metarule for RN, is the strong version
of the rule. By the reasoning in footnote 132, the weak version of the metarule
will follow from the strong version, where the weak version of the metarule is:

If Γ (γ1, . . . ,γn) `� ϕ(γ1, . . . ,γn), then �Γ (γ1, . . . ,γn) ` �ϕ(γ1, . . . ,γn)

The only difference here is that in the consequent of the metarule, the deriv-
ability relation is ` rather than `�.

Third, when Γ (γ1, . . . ,γn) is empty, then (.3.a) and (.3.b) reduce, respectively,
to the metarules:

If `� ϕ(γ1, . . . ,γn), then `� �ϕ(γ1, . . . ,γn)

If ` ϕ(γ1, . . . ,γn), then ` Aϕ(γ1, . . . ,γn)

Here it is easy to see and state what these abbreviate:

If `� (ψ1 & . . . &ψn)→ ϕ, then `� (ψ1 & . . . &ψn)→ �ϕ,
where ψ1, . . . ,ψn are rigid restriction conditions.

If ` (ψ1 & . . . &ψn)→ ϕ, then ` (ψ1 & . . . &ψn)→ Aϕ,
where ψ1, . . . ,ψn are rigid restriction conditions.

The proofs of (.3.a) and (.3.b) in the Appendix imply that both of these metarules
are justified.

Fourth, it would make the foregoing even clearer to see (.3.a) in action.
We’ve chosen an example using restricted variables u,v ranging over discernible
objects, though there is a similar example using restricted variables ranging
over ordinary objects. The following is an instance of (.3.a):

(A) If ∀F(Fu ≡ Fv) `� u=D v, then �∀F(Fu ≡ Fv) `� �u=D v

234When we give the premises the conjunctive interpretation, then each χ(γ1, . . . ,γn) in
Γ (γ1, . . . ,γn) abbreviates ψ1 & . . . & ψn & χ. Each �χ(γ1, . . . ,γn) in �Γ (γ1, . . . ,γn) abbreviates
ψ1 & . . . &ψn &�χ. And each Aχ(γ1, . . . ,γn) in AΓ (γ1, . . . ,γn) abbreviates ψ1 & . . . &ψn &Aχ.



10.5. INTERLUDE: RESTRICTED VARIABLES 463

By the reasoning in the proof of (.3.a) in the Appendix and the fact that the
same variables occur free in the premise and conclusion of the derivations in
both the antecedent and consequent, (A) abbreviates:

(B) If D!x,D!y,∀F(Fx ≡ Fy) `� x=D y, then D!x,D!y,�∀F(Fx ≡ Fy) `� �x=D y

To see that (B) is justified, assume D!x,D!y,∀F(Fx ≡ Fy) `� x =D y. Then we
have to show that there is a modally strict proof of �x =D y from D!x, D!y,
and �∀F(Fx ≡ Fy). So assume D!x, D!y, and �∀F(Fx ≡ Fy). Since D!x and
D!y are rigid restriction conditions (273.8), we know D!x→ �D!x and D!y →
�D!y. Hence, �D!x and �D!y. But it follows from our initial assumption by the
original Rule RN (68) that �D!x,�D!y,�∀F(Fx ≡ Fy) `� �x =D y. Since we’ve
established all of the premises, it follows that �x=D y. Thus, there is a modally
strict proof of �x=D y from D!x, D!y, and �∀F(Fx ≡ Fy).235

We can repurpose this example to show how Rule RN applies to a theorem
with free but rigid restricted variables. Consider the following theorem, which
is easily derivable from (273.7) (we used this example in footnote 216):

(C) (D!x&D!z)→ (∀F(Fx ≡ Fz)→ x=z)

When u and v are rigid restricted variables ranging over discernible objects,
then (C) can be expressed as follows:

(D) ∀F(Fu ≡ Fv)→ u=v

Then the version of (.3.a) in which Γ is empty implies:

(E) �(∀F(Fu ≡ Fv)→ u=v)

where this abbreviates:

(F) (D!x&D!z)→ �(∀F(Fx ≡ Fz)→ x=z)

Clearly, (F), which differs from (C) only by the presence of a single �, is a
theorem:

235The foregoing example is not optimal for two reasons:

• The formula being derived in the antecedent of (A), u=D v, is a necessary truth when true
(273.21), and that might vitiate the example since its necessitation can be derived by other
means. But it should be remembered that we are considering a particular instance of (.3.a),
to see why a meta-inference from one derivation to another is justified.

• The very same variables appear free in the premises and conclusion. But we’ve formulated
(.3.a) in a more general way, so that the rigid restricted variables that are free in Γ are dif-
ferent from the rigid restricted variables free in ϕ (indeed, the variables may be of different
types and involve different restriction conditions).

The same issues would arise if we were to replace D! by O! and =D by =E in the example. So the
reader is encouraged to try to construct an example without these deficiencies.



464 CHAPTER 10. BASIC LOGICAL OBJECTS

Proof. Assume D!x&O!y. If we apply Rule RM (or apply Rule RN and the
K axiom) to theorem (242.1), which is reproduced above, then we know:

(G) �(D!x&D!z)→ �(∀F(Fx ≡ Fz)→ x=z)

But D!x → �D!x and D!z → �D!z, by (273.8). Hence we know �D!x&
�D!z. And this implies, by (158.3), �(D!x &D!z). From this last result
and (G), it follows that �(∀F(Fx ≡ Fz)→ x=z).

Thus, we’ve established (F) by conditional proof, and this shows that this par-
ticular application of Rule RN to theorems with free, but rigid, restricted vari-
ables is justified. We leave it to the reader to construct examples that show
Rule RA can be deployed in derivations and applied to theorems when all the
free restricted variables are rigid.

By contrast, since Class(x) is a non-rigid condition, the restricted variables
c,c′, c′′, . . . will be governed by the conventions for reasoning with free, non-
rigid restricted variables and, when we turn to the theorems about natural
classes in the next section, those conventions will direct our method of proof in
the Appendix. By eschewing free but non-rigid restricted variables in deriva-
tions and proofs, we avoid the burden of establishing the validity of reasoning
with terms that advertise themselves one way, but which fail to behave as ad-
vertised when the modal context changes.

(342) Remark: Digression on Restricted Variables and Empty/Weak Restric-
tion Conditions. In (336), we saw that a weak restriction condition is formula ψ
that has a single free variable α and for which there are proofs, but not modally
strict proofs, that ψ is non-empty and has existential import. And we saw that
an empty restriction condition is a formula ψ (with a single free variable α) that
has existential import but that is empty – i.e., it is not a theorem that ∃αψ.

It is important to mention why we shall altogether avoid introducing vari-
ables in connection with empty restriction conditions, and minimize the in-
troduction of restricted variables in connection with weak restriction condi-
tions. The problems for restricted variables introduced for empty restriction
conditions are: (a) such variables don’t obey axiom (39.2) and (b) the condi-
tional ∀γϕ→∃γϕ (where γ is restricted) would be false in the situation where
¬∃αψ, even though it has the form of a logical theorem. To see (a), note that
if γ is a variable introduced in connection with an empty restriction condition,
then γ↓ wouldn’t be axiomatic. Thus we would have a class of variables that
don’t obey axiom (39.2). To see (b), consider claim:

(ϑ) ∀γϕγα →∃γϕγα

This claim has the form of a logical theorem: ∀βϕ→∃βϕ (103.1). But it fails to
hold in the case where in fact ¬∃αψ. To see why, note that by the conventions
for bound restricted variables given in (337.1), (ϑ) is shorthand for:
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(ξ) ∀α(ψ→ ϕ)→∃α(ψ&ϕ)

Then, under the hypothesis ¬∃αψ, one can derive the antecedent of (ξ) and
the negation of its consequent. From ¬∃αψ, i.e., ∀α¬ψ, it would follow that
¬ψ; hence ψ→ ϕ, and so ∀α(ψ→ ϕ), by GEN. But if ¬∃αψ, then ¬∃α(ψ&ϕ).
Thus, we would have a class of variables for which the classical quantifier law
∀βϕ→ ∃βϕ fails to be generally true. So if one were to introduce a restricted
variable γ to range over those αs such that ψ without having a proof that ∃αψ,
one would have to be much more careful when reasoning with them.

We’re a little better off with weak restriction conditions and weak restricted
variables. For such conditions ψ, it is provable, but not modally strictly prov-
able, that ∃αψ. So if we introduce γ as a restricted variable ranging over the
entities such that ψ, then the quantifier law ∀γϕ → ∃γϕ will be valid, but it
will not be a modally strict law, since it will fail in modal contexts in which
¬∃αψ. So when we introduce weak restricted variables in what follows, we
should remember that when reasoning in modal contexts, the usual quantifier
laws may fail. We are, of course, safe in the case of Class(x), since we’ve estab-
lished ∃xClass(x) (315.4) as a modally strict theorem. So Class(x) is restriction
condition, though not a weak or empty one. It is a (modally strict) theorem
that ∀cϕcx→∃cϕcx.236

10.6 The Laws of Natural Classes and Logical Sets

With the foregoing understanding of free restricted variables, we now offi-
cially make use of c,c′, c′′, . . . to range over classes, as the latter were defined
in (312.2). Since Class(x) is not a rigid restricted condition, we must assert the
universal closures of any theorems asserted with variables c,c′, . . . or take the
generality interpretations of these variables, as discussed in (341). But since
we’ve established that classes exist, the principle ∀cϕ→∃cϕ holds, and we are
assured that c↓, c′↓, are always axiomatic.

It should be noted that the laws of natural classes and logical sets derived
below are not intended to capture the iterative conception of membership; the
axiom for power sets will not be derivable. The iterative conception, as cap-
tured by Zermelo-Fraenkel set theory, is part of theoretical mathematics and,
as such, its objects will be discussed in Chapter 15.

(343) Theorem: The Principle of Extensionality. For any classes c and c′, c and
c′ are identical if and only if they have the same members:

236By (315.4), we know ∃xClass(x). So let a be an arbitrary such individual, so that Class(a). Now
assume ∀cϕcx . Then by our convention, ∀x(Class(x)→ ϕ). In particular, Class(a)→ ϕax . Hence, ϕax .
Conjoining what we know, we may infer Class(a)&ϕax . So by ∃I, ∃x(Class(x)&ϕ), which conclusion
remains once we discharge our assumption that Class(a) by ∃E. So by our convention, ∃cϕcx .
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∀c∀c′(c=c′ ≡ ∀z(z ∈ c ≡ z ∈ c′))

This theorem shows our definitions of natural classes (i.e., logically-conceived
sets) and membership in a class preserve a fundamental and intuitive principle
about the individuation of these objects.

(344) Definition: Natural Empty Classes. We say that a class c is empty just in
case it has no members:

Empty(c) ≡df ¬∃y(y ∈ c)

(345) Theorems: There Exists a (Unique) Empty Class.

(.1) ∃cEmpty(c)

(.2) ∃!cEmpty(c)

(.2) uses bound restricted variables in the context of a unique-existence quan-
tifier. To interpret it, eliminate the uniqueness quantifier first and then apply
the metadefinition in (337.2).237 Though, of course, one could just as well add
the convention that ∃!cEmpty(c) abbreviates ∃!x(Class(x) & Empty(x)).

The reader should confirm why it is that one can validly apply the Rule of
Actualization to (.2) and then apply (176.2) to yield the modally strict conclu-
sion:

(.3) ıcEmpty(c)↓

(346) Definition: Given (345.3), we may introduce the empty class symbol ∅
to designate the empty class:

∅ =df ıcEmpty(c)

(347) Theorem: ∅ Exists and Is Canonical.

(.1) ∅↓

(.2) ∅ = ıx(A!x&∀F(xF ≡ ¬∃zFz))

Though (.1) is a simple consequence of our definitions and theorems, we’ve
taken the trouble to formulate it because of its philosophical significance. In
general, the existence of abstract objects seems to confound a number of philo-
sophers, and the empty class in particular is an egregious example; its exis-
tence offends the naturalist. But object theory offers a way to understand the

237To be maximally explicit, (.2) abbreviates ∃c(Empty(c) & ∀c′(Empty(c′)→ c′ = c)). This in turn
abbreviates: ∃x(Class(x) & Empty(x) &∀z((Class(z) & Empty(z))→ z=x)). In other words, there is a
class x that is empty and such that every class that is empty is identical to x.
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empty class as a natural, (objectified) pattern of properties, namely, the pattern
consisting of (i.e., encoding) all those properties that are unexemplified.238 In
object theory, (.2) provably identifies the null set with that objectified pattern.

(348) Definition: Universal∗ Classes. We’ve already defined the notion of a
universal object; in (263.2) we defined: Universal(x) iff x is an abstract object
that encodes every property. To avoid clash of notation, we introduce a differ-
ent expression to define a universal class. We say that a class c is universal∗ just
in case every individual is a member of c:

Universal∗(c) ≡df ∀y(y ∈ c)

(349) Theorems: There Exists a (Unique) Universal∗ Class.

(.1) ∃cUniversal∗(c)

(.2) ∃!cUniversal∗(c)

(350) Definition: Unions. We say that a class c is a union of c′ and c′′ just in
case the elements of c are precisely the elements of c′ supplemented by the
elements of c′′:

UnionOf (c,c′, c′′) ≡df ∀y(y ∈ c ≡ (y ∈ c′ ∨ y ∈ c′′))

Note that we explained how to eliminate the free restricted variables from this
particular definition in (338.1).

(351) Theorems: Existence of (Unique) Unions. It now follows that (.1) for any
classes c′ and c′′, there is a class c that is their union; and (.2) for any classes c′

and c′′, there is a unique class that is their union:239

(.1) ∀c′∀c′′∃cUnionOf (c,c′, c′′)

(.2) ∀c′∀c′′∃!cUnionOf (c,c′, c′′)

(352) ?Theorem: The Union of Two Classes Exists. It is a theorem, but not a
modally strict one, that for any classes c′ and c′′, the class that is a union of c′

and c′′ exists:
238Such a pattern clearly exists; we encounter such properties not just in logic but also in the

pursuit of science—just consider properties like being a molecule of DNA at a time before any such
molecules existed. Surely there are properties like that now, and¬∃zFz defines a pattern consisting
of those properties.
239If we eliminate the unique-existence quantifier, then where x,y,z,w are all unrestricted vari-

ables, (.2) is short for:

∀x∀y(Class(x)&Class(y)→∃z(Class(z)&UnionOf (z,x,y)&∀w(Class(w)&UnionOf (w,x,y)→ w=z)))

I.e., for any two classes x and y, there is a unique class that is their union.
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(.1) ∀c′∀c′′(ıcUnionOf (c,c′, c′′)↓)

This can’t be necessitated. For given theorem (320.3), we may intuitively rea-
son that from the fact that x and y are classes at some other possible world, it
doesn’t follow that they are classes at the actual world; without such a guaran-
tee, there is no guarantee that there is something at the actual world that is the
union of x and y, since unions are classes that can only be formed from two
classes (350). So from the fact that x and y are classes at some other possible
world, the existence of the z, which (in fact) is a class and a union of x and y, is
not assured.

For a purely object-theoretic account of why this theorem can’t be necessi-
tated, we simply prove the following:

(.2) ¬�∀c′∀c′′(ıcUnionOf (c,c′, c′′)↓)

That is, it is not necessarily the case that for any classes c′ and c′′, the union of
c′ and c′′ exists.

(353) Theorem: Modally Strict Version of the Foregoing. The previous theorem
can be proved by modally strict means:

¬�∀c′∀c′′(ıcUnionOf (c,c′, c′′)↓)

(354) Definition: Notation for the Union of Two Classes. Given (352.1)?, we
may introduce the standard notation c′ ∪ c′′ to denote the union of classes c′

and c′′:

c′ ∪ c′′ =df ıcUnionOf (c,c′, c′′)

Since we proved that ıcUnionOf (c,c′, c′′) exists (352.1)? by a non-modally strict
proof, the (derivation of the) identity c′∪c′′ = ıcUnionOf (c,c′, c′′) from the prim-
itive Rule of Definition by Identity (73) or the derived Rule of Identity by Def-
inition (120.1) is not modally strict. See the discussion in Remark (284). And
see Remarks (339.1) and (337.3) for a full discussion of the conventions for
eliminating the free and bound restricted variables in this definition. Exer-
cise: Suppose we have extended our language with name s (Socrates) and that
we have extended our system with the (necessary) axiom that Socrates is an
ordinary object (O!s). Prove that ¬(s ∪∅)↓. That is, prove that the term s ∪∅
isn’t significant. [Hint: See the discussion at the end of Remark (339).]

(355) ?Theorem: The Principle of Unions. For any classes c′ and c′′, an object
z is an element of c′ ∪ c′′ if and only if z is an element of c′ or an element of c′′:

∀c′∀c′′∀z(z ∈ c′ ∪ c′′ ≡ (z ∈ c′ ∨ z ∈ c′′))
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(356) Definition: Class Complements. Let us say that c′ is a class complement of
c just in case the members of c′ are all and only those individuals that fail to be
members of c. Then, if we write κ 6∈ κ′ instead of ¬(κ ∈ κ′), we may formalize
our definition as:

ComplementOf (c′, c) ≡df ∀y(y ∈c′ ≡ y 6∈c)

It may worth mentioning that if κ1 is a provably empty individual term, then
although we can prove that for any class c, κ1 6∈ c,240 we can’t instantiate the
claim ∀y(y ∈ c′ ≡ y 6∈ c) to obtain κ1 ∈ c′ ≡ κ1 6∈ c. So if ComplementOf (c′, c), one
can’t derive that κ1∈c′ from the fact that κ1 6∈c.

(357) Theorems: Existence of (Unique) Complements. It now follows that (.1)
for any class c, there is a class c′ that is its complement, and (.2) for any class c,
there is a unique class c′ that is its complement:

(.1) ∀c∃c′ ComplementOf (c′, c)

(.2) ∀c∃!c′ ComplementOf (c′, c)

(358) ?Theorems: The Complement of a Class Exists. By reasoning analogous
to that used in the proof of (352.1)?, we may now infer that for every class c,
the complement of c exists:

∀c(ıc′Complement(c′, c)↓)

(359) Definition: Intersections. We say that c is an intersection of c′ and c′′

just in case c has as members all and only the individuals that are common
members of c′ and c′′:

IntersectionOf (c,c′, c′′) ≡df ∀y(y ∈c ≡ y ∈c′ & y ∈c′′)

(360) Theorem: Existence of (Unique) Intersections. It follows that (.1) for any
classes c′ and c′′, there is a class c that is their intersection; and (.2) for any
classes c′ and c′′, there is a unique class c that their intersection:

(.1) ∀c′∀c′′∃cIntersectionOf (c,c′, c′′)

(.2) ∀c′∀c′′∃!cIntersectionOf (c,c′, c′′)

These are modally strict theorems.

(361) ?Theorem: The Intersection of Two Classes Exists. By contrast, it is a
theorem, but not a modally strict one, that for any two classes c′ and c′′, the
intersection of c′ and c′′ exists:
240From ¬κ1↓, it follows by axiom (39.5.a) that ¬Gκ1. Since this holds for every G, it can then be

established that ¬∃G(ExtensionOf (x,G) &Gκ1). Since this holds for every x, we can infer from the
definition of ∈ (316) that ¬∃x(κ1 ∈ x). A fortiori, ¬∃c(κ1 ∈ c), for any c.
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∀c′∀c′′(ıcIntersectionOf (c,c′, c′′)↓)

Exercise: Show by either modally strict, or non-modally strict means, that it is
not necessary that for any classes c′ and c′′, the intersection of c and c′′ exists,
i.e., ¬�∀c′∀c′′(ıcIntersectionOf(c,c′, c′′)↓).

(362) Definition: Notation for the Intersection of Two Classes. Given (361)?,
we introduce the notation c′ ∩ c′′ to denote the intersection of c′ and c′′:

c′ ∩ c′′ =df ıcIntersectionOf (c,c′, c′′)

Note that since the proof of (ıcIntersectionOf (c,c′, c′′)↓ in (361)? is not modally
strict, the proof of the identity c′ ∩ c′′ = ıcIntersectionOf (c,c′, c′′) isn’t either.
Moreover, given the inferential role of definitions-by-= and our conventions
for restricted variables, expressions of the form κ∩κ′ are significant only when
we know, either by proof or by hypothesis, that Class(κ) and Class(κ′). Thus, ∩
is a binary functional symbol that produces significant terms only when both
arguments are significant and denote classes.

(363) ?Theorem: The Principle of Intersections. It is now straightforward to
show that for any classes c′ and c′′, an individual z is a member of c′∩ c′′ if and
only if z is a member of both c′ and c′′:

∀c′∀c′′∀z(z ∈ c′ ∩ c′′ ≡ (z∈c′ & z∈c′′))

(364) Theorems: Conditional Class Comprehension. In the present system,
we obtain a conditional comprehension schema that is immune to Russell’s
paradox if we limit the schema to those matrices that are guaranteed to define
properties. Thus, (.1) if being a y such that ϕ exists, then there is a class whose
members consist of all and only the individuals such that ϕ; (.2) if being an y
such that ϕ exists, then there is a unique class whose members consist of all
and only the individuals such that ϕ; and (.3) if being an y such that ϕ exists,
then the class of individuals such that ϕ exists:

(.1) [λy ϕ]↓ → ∃c∀y(y ∈c ≡ ϕ), provided ϕ has no free occurrences of c

(.2) [λy ϕ]↓ → ∃!c∀y(y ∈c ≡ ϕ), provided ϕ has no free occurrences of c

(.3) [λy ϕ]↓ → ıc∀y(y ∈c ≡ ϕ)↓, provided ϕ has no free occurrences of c

By convention, (.1) is shorthand for [λy ϕ]↓ → ∃z(Class(z) & ∀y(y ∈ z ≡ ϕ)),
provided ϕ has no free occurrences of z. And analogously for (.2) and (.3). It is
also worth noting that by (63.10), it follows from the fact that (.3) is a theorem
that [λy ϕ]↓ ` ıc∀y(y ∈c ≡ ϕ)↓.

(365) Metadefinitions: ν-Predicable Formulas and the Restricted Metavari-
ables That Range Over Them. The foregoing group of theorems exhibits a cer-
tain pattern that we can exploit. Where ν is any individual variable, let us
say:
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• A formula ϕ is ν-predicable if and only if there is a proof that being an
individual ν such that ϕ exists, i.e., if and only if ` [λν ϕ]↓.

For present purposes, we need not generalize the above definition to define
ν1, . . . ,νn-predicable formulas.

Clearly, there are ν-predicable formulas — any unary λ-expression of the
form [λνϕ] asserted to exist by (39.2) has a ν-predicable matrix. This includes
those λ-expressions of the form [λν ϕ] in which ϕ taken by itself contains no
free occurrences of ν. Another source of ν-predicable formulas arises when we
can prove [λνϕ]↓ by means of axiom (49) or by means of the Kirchner Theorem
(271.1). Just as clearly, there are formulas that fail to be ν-predicable for some
variable ν. If ϕ is a formula such as the matrix in the Clark/Boolos paradox,
namely ∃G(xG & ¬Gx), then ϕ is not x-predicable. And if ϕ is the formula
involved in the McMichael/Boolos paradox, namely x=y, then ϕ is neither x-
nor y-predicable.

In what follows, let us adopt the conventions that:

• ϕ[ν],ψ[ν], . . . are metavariables that range over ν-predicable formulas.

• The use of ϕ[ν] to express a theorem schema serves to indicate that the
theorem is conditional on [λν ϕ]↓.

For example, ` . . .ϕ[y] . . . is shorthand for ` [λy ϕ]↓ → . . .ϕ . . . .
Thus, we may rewrite the theorems in (364) about Conditional Class Com-

prehension as follows. (.1) there is a class whose members consist of all and
only the individuals y such that ϕ[y]; (.2) there is a unique class whose mem-
bers consist of all and only the individuals y such that ϕ[y]; and (.3) the class
of individuals y such that ϕ[y] exists:

(.1) ∃c∀y(y ∈c ≡ ϕ[y]), provided ϕ[y] has no free occurrences of c

(.2) ∃!c∀y(y ∈c ≡ ϕ[y]), provided ϕ[y] has no free occurrences of c

(.3) ıc∀y(y ∈c ≡ ϕ[y])↓, provided ϕ[y] has no free occurrences of c

(366) Definition: Class Abstracts. By (364.3) and our conventions in (365), it is
a theorem that ıc∀y(y ∈ c ≡ ϕ[y])↓, for any y-predicable formula ϕ[y] in which
c doesn’t occur free. So we could introduce the class abstract notation {y |ϕ[y]}
(“the class of individuals y such that ϕ[y]”) and be assured that it is significant.
However, our theory of definitions-by-= allows us to give the following, more
general definition of class abstracts, where ϕ is any formula:

{y |ϕ} =df ıc∀y(y ∈c ≡ ϕ), where ϕ has no free occurrences of c
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One of the distinctive features of this definition is that there are instances of
the definiens that fail to be significant, and so the corresponding instance of
the definiendum fails to be significant. See the discussion in Remark (367).

Observe also that in the above definition, ϕ may have free variables other
than y. If ϕ is y-predicable and y is the only variable that has a free occurrence
in ϕ, then {y |ϕ } is a closed term that denotes a particular class if ıc∀y(y ∈c ≡ ϕ)
is significant. But if ϕ is y-predicable and there are variables other than y with
free occurrences in ϕ, then {y |ϕ }will denote a class relative to the values of the
other free variables whenever ıc∀y(y ∈ c ≡ ϕ) denotes a class relative to those
values of the free variables.

(367) Remark: Defined Variable-Binding Term-Forming Operators. There are
two distinctive features of definition (366). The first is that the expression be-
ing introduced, {y | . . .} doesn’t take variables as arguments but rather binds the
occurrences of those variables in any formula ϕ that appears within the ellipsis
(i.e., within its scope). (We haven’t discussed this kind of term previously, for
the term-forming operators defined heretofore haven’t been variable-binding
operators, nor have they had formulas within their scope; instead they have
had a free variable as an argument.) The first occurrence of the variable y in
{y |ϕ} is not a free occurrence, but rather part of the variable-binding operator
and serves to indicate which of the variables with free occurrences in ϕ are
bound by the operator (just as the first occurrence of x in the expression [λxϕ]
is not a free occurrence but rather bound by the λ and serves to indicate which
of the variables with free occurrences in ϕ are bound by the λ). Thus, {y |ϕ} is
rather different from such terms as F, ◦p, εG, c′ ∪ c′′, c′ ∩ c′′, etc.

The second distinctive feature of (366) is that the definiens, ıc∀y(y ∈ c ≡
ϕ), is a provably empty term for some formulas ϕ. For example, the definite
description ıc∀y(y ∈ c ≡ ∃G(yG&¬Gy)) doesn’t denote anything, not even the
empty set.241 Consequently, the second conjunct of the Rule of Definition by
Identity (73) implies that ¬{y |∃G(yG&¬Gy)}↓. This is to be expected since the

241To show that ıc∀y(y ∈ c ≡ ∃G(yG&¬Gy)) is a provably empty term, it suffices to show:

¬∃x(Class(x) &∀y(y ∈ x ≡ ∃G(yG&¬Gy)))

For reductio, suppose otherwise and let a be such an object, so that we know Class(a) and:

(ϑ) ∀y(y ∈ a ≡ ∃G(yG&¬Gy))

Since a is a class, we know by definitions (312.2) that ∃G(ExtensionOf (a,G)). Suppose P is such a
property, so that we know ExtensionOf (a,P ). Then by (317.1), it follows that:

(ξ) ∀y(y ∈ a ≡ P y)

From (ϑ) and (ξ) it follows that:

(ζ) ∀y(P y ≡ ∃G(yG&¬Gy))

But now, one can use (ζ) to derive a contradiction, as in the Clark/Boolos paradox, by consider-
ing the abstract object, say b, that encodes just the property P and asking the question: does b
exemplify P ? It does if and only if it does not.
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Clark/Boolos paradox shows that ∃G(yG&¬Gy) is not y-predicable.
However, as long as we use a y-predicable formula ϕ[y] to introduce class

abstracts of the form {y |ϕ[y]}, then since ıc∀y(y ∈ c ≡ ϕ[y])↓ is a theorem, by
(364.3) and our conventions in (365), we can invoke the first conjunct of the
Rule of Definition by Identity (73) and validly assert the identity {y | ϕ[y]} =
ıc∀y(y ∈ c ≡ ϕ[y]) as a theorem.

(368) ?Theorems: Class Abstraction Principles. The classical abstraction prin-
ciples now govern class abstracts built with ν-predicable formulas. (.1) y is a
member of {y |ϕ[y]} if and only if ϕ[y]; and (.2) z is an element of the class of
individuals such that ϕ[y] just in case z is such that ϕ[y]:

(.1) y ∈ {y |ϕ[y]} ≡ ϕ[y]

(.2) z ∈ {y |ϕ[y]} ≡ ϕ[y]zy , provided z is substitutable for y in ϕ[y]

(.2) is an analogue of a definition in Principia Mathematica. In Whitehead &
Russell 1910–1913 [1925–1927], ∗20·02, we find xε (ϕ ! ẑ) . = .ϕ !x stipulated as
a definition, and we find ` : xε ẑ(ψz) . ≡ .ψx asserted as a theorem (∗20·3). They
read the theorem in the 2nd edition as “x is a member of the class determined
by ψ when, and only when, x satisfies ψ” (1910–1913 [1925–1927, 193]).

(369) Theorems: Modally Strict Identities. We now establish a modally strict
proof of (.1) the class of individuals y such that ϕ[y] is identical to the exten-
sion of the property [λy ϕ[y]]. From this, it follows that (.2) the class of Gs is
identical to the extension of the property G:

(.1) {y |ϕ[y]} = ε[λy ϕ[y]]

(.2) {y |Gy} = εG

By the symmetry of identity, (.2) yields εG = {y |Gy}. This is another object-
theoretic analogue of Carnap’s semantic assertion in 1947 (19, 4-14) that “the
extension of a predicator . . . is the corresponding class.” This latter claim was
part of Carnap’s extended definition of the general semantic notion of an exten-
sion, with the notion of a class taken as a primitive axiomatized by the math-
ematical theory of sets or classes. By contrast, our theorem is in the object
language, with ClassOf defined in terms of our mathematics-free primitives.

Of course, given that we defined ClassOf(x,G) as ExtensionOf (x,G), it is to
be expected that εG = {y |Gy} is a theorem. Nevertheless, the result serves as a
sanity check, given the many subsequent definitions and theorems needed to
state and prove it.

(370) Theorems: The Separation Schema. Let ϕ[y] be any y-predicable for-
mula (365). Then (.1) for any class c′, there is a class whose elements y are
precisely the members of c′ and such that ϕ[y]; and (.2) for any class c′, there is
a unique class whose elements are precisely the members of c′ such that ϕ[y]:
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(.1) ∀c′∃c∀y(y ∈c ≡ y ∈c′ &ϕ[y]), provided ϕ[y] has no free occurrences of c

(.2) ∀c′∃!c∀y(y ∈c ≡ y ∈c′ &ϕ[y]), provided ϕ[y] has no free occurrences of c

(371) ?Theorems: The Separation Set. Where ϕ[y] is any y-predicable formula
(365), it follows, as a non-modally strict theorem, that for any class c′, the class,
whose elements are precisely the members of c′ such that ϕ[y], exists:

∀c′(ıc∀y(y ∈c ≡ y ∈c′ &ϕ[y])↓), provided ϕ[y] has no free occurrences of c

(372) Definition: Class Separation Abstracts. In light of (371)?, the following
definition:

{y | y ∈ c′ &ϕ} =df ıc∀y(y ∈c ≡ y ∈c′ &ϕ), provided c isn’t free in ϕ

yields a significant class abstract whenever ϕ is a y-predicable formula.
However, it is important to recall here the discussion in (120.1) of the Rule

of Identity by Definition. Ignoring derivations and the premise set Γ , this rule
says that if it is a (modally-strict) theorem that the definiens is significant, then
the identity introduced by the definition is a (modally-strict) theorem. This is
relevant here since theorem (371)? tells us, with respect to the above defini-
tion, that the significance of the definiens is not a modally strict theorem. So
the identity claim derived from this definition is a theorem, but not a modally
strict one. Note also that this definition also introduces a variable-binding,
term-forming operator, of the kind discussed in Remark (367).

(373) ?Theorem: Separation Abstraction Principle. Letϕ[y] be any y-predicable
formula. Then the class abstracts introduced in (372)? are subject to the prin-
ciple that for any class c and for any object z, z is an element of the class of
individuals y such that y is an element of c and such that ϕ[y] if and only if z
is an element of c and such that ϕ[y]:

∀c∀z(z ∈ {y | y ∈ c&ϕ[y]} ≡ z ∈ c&ϕ[y]zy),
provided z is substitutable for y in ϕ[y]

(374) ?Theorem: Consequence of Class Separation and Intersection. Where
ϕ[y] is any y-predicable formula, it follows that for every class c, the class
whose elements are members of c and such that ϕ[y] is identical to the inter-
section of c and the class whose elements are such that ϕ[y]:

∀c({y | y ∈ c&ϕ[y]} = c∩ {y |ϕ[y]})

(375) Theorem: Collection. For any binary relation R and class c, there is a
class c′ whose members are precisely those objects y such that some member
of c bears R to y:
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∀R∀c′∃c∀y(y ∈ c ≡ ∃z(z ∈ c′ &Rzy))

Clearly, c need not be a subset of c′, since the members of c′ may be R-related
to non-members of c′.

(376) Theorem: Not Every Object Has a Singleton. It is provable that:

¬∀x∃c∀y(y ∈ c ≡ y=x)

Intuitively, the formula y=x is not y-predicable, on pain of contradiction; if it
were y-predicable, i.e., it if were a theorem that [λy y =x]↓, then it would fol-
low that ∀x([λy y = x]↓), which contradicts (192.3), thereby reintroducing the
McMichael/Boolos paradox. So we cannot use y=x in an instance of class com-
prehension (364.1). Moreover, since the expression [λy y =x] doesn’t denote a
property, it can’t be substituted for F to produce an instance of the Funda-
mental Theorem for Natural Classes (318). Indeed, none of the other existence
principles we’ve derived for natural classes allow us to assert the existence of
{y |y=x}. This makes sense, given the existence of indiscernible abstract objects.
Nevertheless, our theory does assert that there are well-behaved singletons of
discernible objects.

(377) Theorems: Natural Singletons for Discernibles. Since D!y & y = x is a
y-predicable formula (273.13), the theory guarantees that (.1) there is a class
whose members are the discernible objects identical to x; (.2) there is a unique
class whose members are the discernible objects identical to x; and (.3) the class
whose members are discernible individuals identical to x exists:

(.1) ∃c∀y(y ∈ c ≡D!y & y=x)

(.2) ∃!c∀y(y ∈ c ≡D!y & y=x)

(.3) ıc∀y(y ∈ c ≡D!y & y=x)↓

Hence, it follows that (.4) the class of discernible individuals identical to x
exists:

(.4) {y |D!y & y=x}↓

(378) Definition: The Natural Singleton of an Individual. In virtue of (377.4),
we may define the natural singleton, or natural unit class, of x, written {x}D , to
be the class of discernible y identical to x:

{x}D =df {y |D!y & y=x}

Note here that we’ve introduced a new functional term by way of a defined
class abstraction term.

(379) Theorems: Modally Strict Facts About Singletons. It follows that (.1) the
natural singleton of an indiscernible abstract object is the empty class:
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(.1) (A!z&¬D!z)→ {z}D = ∅

Consequently, if x and y are distinct but indiscernible abstract individuals,
then both {x}D and {y}D are identical to the empty class and so identical. Thus,
the principle, x , z→ {x}D , {z}D , fails to hold generally:

(.2) ¬∀x∀z(x,z→ {x}D , {z}D )

However, (.3) the natural singletons of discernible objects aren’t identical with
the empty class:

(.3) D!x→ ({x}D ,∅)

Moreover, the following principle is provable, namely, that (.4) distinct dis-
cernible objects have distinct natural singletons:

(.4) (D!x&D!z)→ (x,z→ {x}D , {z}D )

The above results show that when κ signifies a discernible object, the term {κ}D
behaves as expected.242

(380) ?Theorem: Fact About Singletons. Finally, we show that a discernible
object is the sole member of its natural singleton:

D!x→∀y(y ∈{x}D ≡ y=x)

(381) Theorems: Existence of Natural Pair Classes. We may prove the exis-
tence of natural pair classes; for any objects x and z, there is a (unique) class
whose members are all and only those discernible individuals y that are either
identical to x or identical to z:

(.1) ∃c∀y(y ∈c ≡D!y & (y=x ∨ y=z))

242Thus, in a system like the present one, with no primitive notions of set or membership and no
axioms asserting the existence of sets, the reconstruction of natural classes (logical sets) implies that
natural singletons are well-behaved only on the discernible objects. This preserves an assumption
that is part of the classical understanding of singletons; the notion of a singleton only makes sense
with respect to discernibles.

It should also be mentioned that the present theory offers a second analysis of singletons when
these are part of some theoretical mathematics (i.e., when asserted to exist by an axiomatic set
theory). Object theory would not identify those objects along the lines indicated above. Instead,
it would identify such singletons as abstract objects whose encoded properties are the ones at-
tributed to them in the set theory in question. Such an identification would be part of the analysis
of theoretical mathematics in Chapter 15. On that analysis, each distinct axiom system for charac-
terizing a primitive notion of set membership (i.e., for each system that leads to a distinct body
of theorems) yields a different (abstract) membership relation. If a set theory T attributes classical
properties to singleton sets, stated in terms of the relation of identity, =T , that is assumed in T ,
then object theory will identify the singletons described by T as abstract objects that encode their
mathematical properties and so the singletons described by T encode those classical properties.
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(.2) ∃!c∀y(y ∈c ≡D!y & (y=x ∨ y=z)

Exercise. Show:

ıc∀y(y ∈ c ≡D!y & (y=x∨ y=z))↓

Then define:

{x,z}D =df ıc∀y(y ∈ c ≡D!y & (y=x∨ y=z))

Then show that if x and z are discernible objects, the natural pair class {x, z}D
behaves classically (i.e., that its sole members are x and z). That is, prove:
(D!x&D!z)→∀y(y ∈ {x,z}D ≡ y=x∨ y=z).

(382) Theorems: Natural Adjunction. It is a theorem that there is a (unique)
class c whose elements are all and only those objects that are either the mem-
bers of a given class c′ or identicalD to some given object x:

(.1) ∀c′∃c∀y(y ∈c ≡ y ∈c′ ∨ y=D x)

(.2) ∀c′∃!c∀y(y ∈c ≡ y ∈c′ ∨ y=D x)

Exercise. Find and prove a connection between {y | y ∈ c′ ∨ y=D x} and c′ when
x is an indiscernible abstract object. Show that {y | y ∈ c′ ∨ y =D x} behaves
classically when x is ordinary.

(383) Exercises: Anti-Extensions. Let us say that x is an anti-extension of prop-
erty G if and only if x is an abstract object that encodes exactly the properties
F that are exemplified by all and only those objects that fail to exemplify G.
Prove that for any G, there is a unique anti-extension of G, and define εG as
the anti-extension of G. Show εG = εG. Formulate and prove some interesting
theorems about anti-extensions.

10.7 Abstraction via Equivalence Conditions

(384) Metadefinition: Equivalence Conditions on Relations. We now observe
a general pattern that has emerged in the previous two sections. Let ϕ be any
formula in which there are free of occurrences of the two distinct n-place re-
lation variables (for some n). Suppose we’ve distinguished these free variables
from any other free variables that may occur in ϕ, and that we may refer to one
of these distinguised variables as ‘the first’ if it has the first free occurrence in
ϕ (and refer to the other as ‘the second’). Then where α and β are any two n-ary
relation variables, let us write ϕ(α,β) for the result of simultaneously substi-
tuting α for all the free occurrences of the first distinguished free variable in ϕ
and substituting β for all the free occurrences of the second distinguished free
variable in ϕ. Thus, if ϕ happens to have α and β as the two distinguished free
variables, then ϕ(α,β) just is ϕ. Given this notational convention, we say:
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Equivalence Condition:
A formula ϕ with two distinct n-place relation variables is an equivalence
condition on n-ary relations whenever the following are all provable:

ϕ(α,α) (Reflexivity)

ϕ(α,β)→ ϕ(β,α) (Symmetry)

ϕ(α,β)→ (ϕ(β,γ)→ ϕ(α,γ)) (Transitivity)

For example, it is easy to show that the formulas q ≡ p is an equivalence con-
dition on propositions, and that ∀z(Fz ≡ Gz) is an equivalence condition on
properties, i.e., to prove:

• q ≡ q
(q ≡ p)→ (p ≡ q)
((q ≡ p) & (p ≡ r))→ q ≡ r

• ∀z(Fz ≡ Fz)
∀z(Fz ≡ Gz)→∀z(Gz ≡ Fz)
(∀z(Fz ≡ Gz) &∀z(Gz ≡Hz))→∀z(Fz ≡Hz)

Intuitively speaking, an equivalence condition with free n-ary relation vari-
ables α,β partitions the domain of n-ary relations over which α,β range in
much the same way that an equivalence relation on individuals partitions the
domain of individuals. The formula q ≡ p partitions the domain of proposi-
tions into mutually exclusive and jointly exhaustive cells of materially equiva-
lent propositions. The formula ∀z(Fz ≡ Gz) partitions the domain of properties
into mutually exclusive and jointly exhaustive cells of materially equivalent
properties.

When the free variables in ϕ are both proposition or property variables,
then we can easily build objects that represent the equivalence classes of the
partition.243 Truth-values and extensions of properties (i.e., classes), as de-
fined earlier, are both based on instances of comprehension for abstract objects
involving equivalence conditions:

• We used the equivalence condition q ≡ p on propositions in (286) to de-
fine TruthValueOf (x,p).

• We used the equivalence condition ∀z(Fz ≡ Gz) on properties in (312.1)
to define ExtensionOf (x,G).

These definitions were in turn used to define the canonical objects ◦p and εG,
respectively. This process can be generalized, as the next series of definitions
and theorems show.
243To see the beginnings of a technique for representing the equivalence classes of relations, see

Linsky &.. Zalta 2006, 83, n. 27.
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(385) Definitions: Abstractions from Equivalence Conditions. For the next
sequence of definitions and theorems we adopt the following conventions:

• Let ϕ be any equivalence condition on propositions.

• Let ψ be any equivalence condition on properties.

Then we can define (.1) x is the ϕ-abstraction of p if and only if x is an ab-
stract object that encodes all and only the properties [λy q] such that q is some
proposition ϕ-equivalent to p; and (.2) x is the ψ-abstraction of G if and only if
x is an abstract object, G exists, and x encodes exactly the properties that are
ψ-equivalent to G:

(.1) ϕ-AbstractionOf (x,p) ≡df A!x&∀F(xF ≡ ∃q(ϕ(q,p) &F=[λy q]))

(.2) ψ-AbstractionOf (x,G) ≡df A!x&G↓&∀F(xF ≡ ψ(F,G))

(386) Theorems: Existence of Unique Abstractions. Where ϕ and ψ are equiv-
alence conditions of the kind just defined, the Strengthened Comprehension
Principle for Abstract Objects (250) yields the existence of a unique abstrac-
tion:

(.1) ∃!x(ϕ-AbstractionOf (x,p))

(.2) ∃!x(ψ-AbstractionOf (x,G))

So by (252), we can prove that the corresponding canonical descriptions are
significant:

(.3) ıx(ϕ-AbstractionOf (x,p))↓

(.4) ıx(ψ-AbstractionOf (x,G))↓

(387) Theorems: Principles Underlying the Fregean Biconditionals. (.1) if x is
a ϕ-abstraction of p and y is a ϕ-abstraction of q, then x is identical to y if and
only if p and q satisfy ϕ; (.2) if x is a ψ-abstraction of G and y is a ψ-abstraction
of H , then x is identical to y if and only if G and H satisfy ψ:

(.1) (ϕ-AbstractionOf (x,p) &ϕ-AbstractionOf (y,q))→ (x=y ≡ ϕ(p,q))

(.2) (ψ-AbstractionOf (x,G) &ψ-AbstractionOf (y,H))→ (x=y ≡ ψ(G,H))

These modally strict principles underlie (389) proved below.

(388) Definitions: Notation for Abstractions of Equivalence Conditions. Where
ϕ and ψ are equivalence conditions on propositions and properties, respec-
tively, we may introduce notation for the ϕ-abstraction of p and the ψ-abstract-
ion of G:
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(.1) p̂ϕ =df ıx(ϕ-AbstractionOf (x,p))

(.2) Ĝψ =df ıx(ψ-AbstractionOf (x,G))

Intuitively, for any equivalence condition on propositions or properties, our
theory distinguishes a canonical logical object for each cell of the partition it
induces. For any proposition p, p̂ϕ encodes all and only the propositions q such
that ϕ(q,p) and, for any property G, Ĝψ encodes all and only the properties F
such that ψ(F,G).

(389) ?Theorems: Frege’s Principle for Abstractions. Our results now justify
one classical form of definition by abstraction, since the above definitions and
theorems yield the following non-modally strict theorems, where ϕ and ψ are
equivalence conditions on propositions and properties, respectively:

(.1) p̂ϕ = q̂ϕ ≡ ϕ(p,q)

(.2) F̂ψ = Ĝψ ≡ ψ(F,G)

Finally, note that Frege’s ‘Julius Caesar problem’ doesn’t arise for any abstrac-
tions defined along the above lines. The conditions p̂ϕ = x and F̂ψ = x are de-
fined for every x. These are simply instances of definition (23.1). We’ve not
introduced p̂ϕ and F̂ψ as primitive notions and stipulated (.1)? and (.2)? as ax-
ioms. Rather, we’ve defined p̂ϕ and F̂ψ in terms of canonical descriptions. The
identity conditions of p̂ϕ and F̂ψ, with respect to any other object x, have been
defined independently.

10.8 Abstraction via Equivalence Relations

We now turn from abstractions over equivalence conditions on relations to
abstractions over equivalence relations on individuals.

10.8.1 Directions and Shapes

We begin by analyzing directions and shapes as natural mathematical objects
(in a later chapter, when we analyze mathematical theories generally, the theo-
retical mathematical notions of direction and shape will thereby receive an anal-
ysis; but we’re putting that aside here). We shall be assuming (a) an ordinary,
pretheoretic understanding of the properties being a line and being a figure,
and (b) an ordinary, pretheoretic understanding of the relations being paral-
lel to and being similar to. By starting with our pretheoretic understanding of
these notions, we intend to apply them to (possibly) concrete objects and not
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to the idealizations of geometry. Thus, we don’t assume any theoretical axioms
of geometrical theories in what follows.244

(390) Remark: Pretheoretic Conception of Lines. Consider the property be-
ing a line familiar to us from ordinary language. In what follows, we use L to
denote this property (note that, up to now, we have used L for a different pur-
pose, namely, as an abbreviation for the property [λx E!x → E!x]). We won’t
make use of any assumptions governing this property other than the modally
fragile claim that lines exist (∃xLx) and they obey the assumptions governing
the relation of being parallel to described below.245

Now the ordinary binary relation being parallel to (written ‘‖’ using infix
notation), is an equivalence relation restricted to individuals that exemplify
the property being a line. That is, we assume the following principles governing
being a line and being parallel to:

Lx→ x ‖x

Lx&Ly→ (x ‖y→ y ‖x)

Lx&Ly &Lz→ (x ‖y & y ‖z→ x ‖z)

Now since we’re taking the claim that lines exist as a modally fragile assump-
tion, let’s suppose for the purposes of this section, that in fact it is a modally
fragile axiom that ∃xLx. Then Lx becomes a weak restriction condition, as de-
fined in (336), since it is a condition with a single free variable that is provably

244We trust one can distinguish the pretheoretic properties and relations such as being a line, be-
ing a figure, being parallel to, being similar to, etc., from their theoretical counterparts. Whereas
the theoretical counterparts are governed by the axioms of some implicit or explicit mathematical
theory, the pretheoretic properties and relations are not. For now, we shall discuss only the prethe-
oretic properties and relations, as referenced in ordinary, everyday language. We make this a bit
more explicit below.

By contrast, the theoretical counterparts will be subject to our analysis of the relations of theoret-
ical mathematics in Chapter 15. In that later chapter, we assert the existence of abstract relations
(including abstract properties) in addition to abstract individuals. Abstract relations will be distin-
guished from ordinary relations; the former, but not the latter, may encode properties of relations.
Similarly, abstract properties will be distinguished from ordinary properties; the former may en-
code properties of properties. In Chapter 15, theoretical mathematical properties axiomatized in
some mathematical theory, such as being a number, being a set, and being a line, will be identified as
particular abstract properties (relative to the theory in question).
245It does no harm to fill in the pretheoretic notion of a line a bit with the following observations,

since they won’t play a role in what follows. But, pretheoretically, lines (e.g., lines on a piece of
paper, lines in the sand, etc.) are concrete objects (i.e., ∀x(Lx→ E!x)), and may consist of discrete
parts (e.g., a line of people) or may be continuous at a certain level of granularity (e.g., a line of
ink on paper). Moreover, lines have some (approximate) physical length and (average) thickness.
Of course, if the reader finds any of this controversial, she is entitled to ignore it; none of these
observations are needed for understanding the analysis that follows. But I take it that Frege’s
discussion of the Earth’s axis as an example of a line is an abstraction and would be analyzed as a
theoretical entity of science, and hence as an abstract object, not an ordinary one.
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(but not strictly provably) non-empty and provably (but not strictly provably)
has existential import. It also follows that Lx is not a rigid restriction condition,
as defined in (340).246 So, over the course of the next few items, we may use
the variables u,v as weak and non-rigid restricted variables ranging over lines
(we continue to use the variables x,y,z as variables for any kind of object).

Hence, the principles displayed immediately above may be written as fol-
lows:

∀u(u ‖u)

∀u∀v(u ‖v→ v ‖u)

∀u∀u′∀u′′(u ‖u′ &u′ ‖u′′→ u ‖u′′)

So let us extend object theory for the moment with these assumptions. It
should be remembered here that care must be taken when reasoning with weak
restricted variables in modal contexts, for the reasons mentioned in (340) and
(342).

(391) Lemma: Fact About Being Parallel To. From the assumption that being
parallel to is an equivalence relation on lines, we can establish that for any two
lines u and u′, the properties being a line parallel to u and being a line parallel to
u′ are materially equivalent if and only if u is parallel to u′:

∀u∀u′(∀z([λv v ‖u]z ≡ [λv v ‖u′]z) ≡ u ‖u′)

This fact plays a key role in what follows.

(392) Definition: Directions of Lines. We may define: x is a direction of line u
just in case x is an extension of the property being a line v parallel to u:

DirectionOf (x,u) ≡df ExtensionOf (x, [λv v ‖u])

By our conventions in (338.1) and (337.4), this abbreviates:

DirectionOf (x,y) ≡df Ly & ExtensionOf (x, [λz Lz& z ‖y])

(393) Theorems: The Conditional Existence of Directions Of. It now follows
that (.1) every line has a direction; and (.2) every line has a unique direction:

(.1) ∀u∃xDirectionOf (x,u)

246This is a consequence of taking ∃xLx as a modally fragile axiom, since such an axiom allows for
the possibility that there are no concrete lines (♦¬∃xLx). For suppose that ♦¬∃xLx, i.e., ¬�∃xLx.
Then to see that it follows that ¬∀x(Lx→ �Lx), suppose otherwise, i.e., ∀x(Lx→ �Lx), for reductio.
Given our modally fragile axiom ∃xLx, suppose a is such an object, so that we know La. Then by
our reductio hypothesis, �La. Hence ∃x�Lx, and so by the Buridan formula (168.1), �∃xLx, which
contradicts the assumption ♦¬∃xLx. So we can’t regard Lx as a rigid restriction condition, since
the definition in (340) requires that there be a (modally strict) proof that ∀x(Lx→ �Lx).
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(.2) ∀u∃!xDirectionOf (x,u)

Note that (.1) and (.2) abbreviate quantified conditionals, since the variable u
is restricted.

(394) Theorem: Principle Underlying the Fregean Abstraction Principle for
Directions. If x is a direction of line u and y is a direction of line v, then x is
identical to y if and only if u is parallel to v:

(DirectionOf (x,u) & DirectionOf (y,v))→ (x=y ≡ u ‖ v)

This is the modally strict principle which underlies the Fregean principle proved
in (399)?.

(395) Definition: Directions. A direction is any object that is a direction of
some line:

Direction(x) ≡df ∃uDirectionOf (x,u)

Cf. Frege 1884, §66.

(396) ?Theorem: Existence of Directions. If we assert, as modally fragile ax-
iom, that lines exist (∃xLx), then it follows as a ?-theorem that directions exist:

∃xDirection(x)

In Remark (390), we discussed taking ∃yLy as a modally fragile axiom. But it
is not crucial – if this axiom is omitted, one can still prove, as a modally strict
theorem, that ∃xLx→∃xDirection(x).

(397) ?Theorem: The Conditional Significance of The Direction of Line u.

∀u(ıxDirectionOf (x,u)↓)

The present theorem also abbreviates a quantified conditional. Neither it nor
the previous theorems require the existence of ordinary lines.

(398) Definition: Notation for The Direction of Line u. Though our con-
ventions for using free restricted variables in definitions, developed in (339)
weren’t designed for weak restricted variables, they can be straightforwardly
adapted without giving rise to logical problems. So we may introduce the fol-
lowing notation for the direction of line u:

~u =df ıxDirectionOf (x,u)

The expression ~κ is significant whenever κ is significant and known to be a
line, either by hypothesis or by proof. But note that since the axiom or as-
sumption that there exist lines (∃xLx) is modally fragile, one can’t derive that
the definiens in the above is significant by modally strict means. So the identi-
ties derived from this definition will be theorems, but not modally strict ones.
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(399) ?Theorem: Fregean Biconditional for Directions. It now follows that for
any two lines u and v, the direction of u is identical to the direction of v iff u
and v are parallel:

∀u∀v(~u=~v ≡ u ‖v)

We have therefore established the Fregean biconditional principle for direc-
tions (Frege 1884, §65).

(400) Remark: Pretheoretic Conception of Shapes. Consider the pretheoretic
property being a figure (P ) and the pretheoretic relation being similar to, where
the latter is written ∼ in infix notation. Let us suppose, as in the case of lines,
that it is a modally fragile axiom that there figures exist (∃xP x), that P x is a
weak restriction condition, and that∼ is an equivalence relation among figures,
i.e., where u,v are now weak restricted variables that range over figures, that

∀u(u∼u)

∀u∀v(u∼v→ v∼u)

∀u∀u′∀u′′(u∼u′ &u′∼u′′→ u∼u′′)

We may then apply our theory by abstracting over similar figures to define
shapes.

(401) Lemma: Fact About Similarity. By the same reasoning we used in (391),
we know that for any two figures u and v, the properties being a figure similar
to u and being a figure similar to v are materially equivalent if and only if u is
similar to v:

∀u∀u′(∀z([λv v∼u]z ≡ [λv v∼u′]z) ≡ u∼u′)

We now derive a Frege-style analysis of shapes.

(402) Definition: Shapes of Figures. Given the principles in Remark (400), we
may define: x is a shape of figure u just in case x is an extension of the property
being a figure similar to u:

ShapeOf (x,u) ≡df ExtensionOf (x, [λv v∼u])

(403) Theorems: The Conditional Existence of ShapeOf. It now follows that
(.1) every figure has a shape; and (.2) every figure has a unique shape:

(.1) ∀u∃xShapeOf (x,u)

(.2) ∀u∃!xShapeOf (x,u)
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(404) Theorem: Principle Underlying the Fregean Abstraction Principle for
Shapes. If x is a shape of figure u and y is a shape of figure v, then x is identical
to y if and only if u is similar to v:

(ShapeOf (x,u) & ShapeOf (y,v))→ (x=y ≡ u ∼ v)

This is the modally strict principle which underlies the Fregean principle proved
in (409)?.

(405) Definition: Shapes. A shape is any object that is a shape of some figure:

Shape(x) ≡df ∃uShapeOf (x,u)

(406) ?Theorem: Existence of Shapes. It now follows, as a ?-theorem, that
shapes exist:

∃xShape(x)

This theorem is analogous to theorem (396)?. If one prefers not to temporarily
take ∃xP x (‘there exist shapes’) as a modally fragile axiom, then it is still a
modally strict theorem that ∃xP x→∃xShape(x).

(407) ?Theorems: The Conditional Significance of The Shape of u.

∀u(ıxShapeOf (x,u)↓)

Again, this theorem, (403.1), and (403.2) are quantified conditionals, given the
presence of the restricted variable u.

(408) Definition: Notation for The Shape of a Figure u. We are therefore justi-
fied in introducing the following notation for the shape of figure u:

ũ =df ıxShapeOf (x,u)

Again, this notation requires us to adapt our conventions for using free re-
stricted variables in definitions, developed in (339), to weak restricted vari-
ables. Also, note again that the identities derivable from this definition are
theorems, but not modally strict ones.

(409) ?Theorem: Fregean Biconditional for Shapes. It now follows that for any
two figures u and v, the shape of u is identical to the shape of v iff u and v are
similar:

∀u∀v(ũ= ṽ ≡ u∼v)
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10.8.2 General Abstraction via Equivalence Relations

In this remainder of this chapter, we revert to using w as an unrestricted in-
dividual variable. Hence, in this final subsection, x,y,z,w are all unrestricted
individual variables.

(410) Definition: Equivalence Relations. Let F be a binary relation variable.
Then we say that F is an equivalence relation on individuals if and only if F is
reflexive, symmetric, and transitive:

Equivalence(F) ≡df

∀xFxx & ∀x∀y(Fxy→ Fyx) & ∀x∀y∀z(Fxy &Fyz→ Fxz)

(411) Theorem: Example of an Equivalence Relation. It is straightforward to
establish that the relation of exemplifying the same properties is an equivalence
relation:

Equivalence([λxy ∀F(Fx ≡ Fy)])

(412) Metatheorem: Equivalence(F) is a Restriction Condition. By the defini-
tion of a restriction condition in (336) and the fact that Equivalence(F) has a
single free variable, the metatheorem is established by the following two facts:

(.1) `� ∃F(Equivalence(F))

(.2) `� Equivalence(Π)→Π↓, where Π is any binary relation term

Since Equivalence(F) is a restriction condition on relations, we henceforth use
F̃ as a restricted variable ranging over equivalence relations.

(413) Lemmas: Fact About Equivalence Relations. (.1) For any equivalence
relation F̃, the properties bearing F̃ to x and bearing F̃ to y are materially equiv-
alent if and only if x bears F̃ to y:

(.1) ∀F̃(∀w([λz F̃zx]w ≡ [λz F̃zy]w) ≡ F̃xy)

Note also that (.2) for any equivalence relation F̃, the individuals that bear F̃ to
x are precisely the individuals to which x bears F̃, i.e.,

(.2) ∀F̃∀y([λz F̃zx]y ≡ [λz F̃xz]y)

As a fact about properties, (.2) says that [λz F̃zx] is materially equivalent to
[λz F̃xz]. Hence, (.3) for any binary equivalence relation F̃, the properties ma-
terially equivalent to [λzF̃zx] are precisely the properties materially equivalent
to [λz F̃xz], i.e.,

(.3) ∀F̃∀G(∀y(Gy ≡ [λz F̃zx]y) ≡ ∀y(Gy ≡ [λz F̃xz]y))
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(414) Definition: Abstractions from Equivalence Relations. Where F̃ is any
equivalence relation, we say that w is an F̃-abstraction of x just in case w is an
extension of the property [λz F̃zx]:

F̃-AbstractionOf (w,x) ≡df ExtensionOf (w, [λz F̃zx])

(415) Theorem: Principle Underlying Frege’s Abstraction Principle. If w is an
F̃-abstraction of x and z is an F̃-abstraction of y, then w is identical to z if and
only if x and y exemplify F̃:

(F̃-AbstractionOf (w,x) & F̃-AbstractionOf (z,y))→ (w=z ≡ F̃xy)

(416) Theorems: The Conditional Existence of F̃-Abstractions. It now follows
that for every equivalence relation F̃, (.1) there is an F̃-abstraction of individual
x; and (.2) there is a unique F̃-abstraction of individual x:

(.1) ∀F̃∃wF̃-AbstractionOf (w,x)

(.2) ∀F̃∃!wF̃-AbstractionOf (w,x)

These are all really quantified conditionals, given that F̃ is a restricted variable
ranging over equivalence relations.

(417) ?Theorems: The Conditional Significance of the F̃-Abstraction of x. As
with (397)? and (407)?, we now have that (.3) the F̃-abstraction of individual
x exists:

∀F̃(ıwF̃-AbstractionOf (w,x)↓)

(418) Definition: Notation for the F̃-Abstraction of x. Whenever F̃ is an equiv-
alence relation, we notate the F̃-abstraction of x as follows:

x̂F̃ =df ıwF̃-AbstractionOf (w,x)

Cf. Frege 1884, §68.

(419) ?Theorem: The Fregean Biconditional for Definition by Abstraction. To
establish that the F̃-abstraction of x is indeed defined by classical abstraction
over an equivalence relation, we prove that it obeys the classical principle,
namely, that for any equivalence relation F̃, the F̃-abstraction of x is identical
to the F̃-abstraction of y if and only if x bears F̃ to y:

∀F̃(x̂F̃ = ŷF̃ ≡ F̃xy)

Thus, the classical principle used for ‘definitions by abstraction’ falls out as
a theorem. This theorem and the theorems in (389)? justify the practice of
definition by abstraction.247

247See Mancosu 2017 for a comprehensive history of this practice in mathematics.
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Platonic Forms

(420) Remark: Platonic Forms. Plato is well-known for having postulated
Forms to explain why it is that, despite an ever-changing reality, we can truly
say that different objects have something in common, such as when we say that
distinct objects x and y are both red spheres, or beautiful paintings, virtuous
persons, etc. Plato thought that since concrete objects are always undergoing
change and have many of their characteristics only temporarily, there must be
something that is universal and unchanging if we can truly say that different
objects are both F. Plato called the aspects of reality that are universal and
unchanging the Forms and supposed that objects acquire their characteristics
by participating in, or partaking of, these Forms.

Plato’s fundamental principle about the Forms is the One Over Many Prin-
ciple. This principle is most famously stated in Parmenides 132a, and though
we shall discuss it in more detail in what follows, a study of the seminal pa-
pers in Plato scholarship suggests that the following statement of the principle
is accurate:248

(OM) One Over Many Principle
If x and y are both F, then there exists something that is the Form of F,
or F-ness, in which they both participate.

In this principle, we are to substitute predicate nouns or adjectives for the
symbol ‘F’, so that we have instances like the following:

If x and y are both human, then there exists something that is the Form
of humanity, or humanness, in which they both participate.

If x and y are both red, then there exists something that is the Form of
redness in which they both participate.

248See, e.g., Vlastos 1954, principles (A1) and (B1); Vlastos 1969, principle (1); and Strang 1963,
principle (OM).
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Though ‘The Form of F’ and ‘F-ness’ are two traditional ways of referring to
the same thing, we must remember that in the expression ‘F-ness’, the letter ‘F’
is representing an arbitrary predicate noun or adjective and must be replaced
by such an expression to produce a term denoting a Form. By contrast, in the
theoretical/technical expression ‘The Form of F’, the symbol ‘F’ is a variable
ranging over properties and so requires that ‘F’ be replaced by a gerund or
abstract noun to yield a term denoting a Form.249

Now questions about (OM) immediately arise:

• What is The Form of F?

• What is participation?

• Is (OM) to be regarded as an axiom or can it be derived from more general
principles?

To answer these questions, some philosophers have been tempted to identify
The Form of F with the property F and to analyze: an object x participates in, or
partakes of, The Form of F just in case x exemplifies F. We can formulate these
analyses as follows:

(A) The Form of F =df F

(B) ParticipatesIn(x,F) =df Fx

Given (A) and (B), there is a natural formal representation of (OM):

(C) (Fx&Fy & x,y)→∃G(G=F&Gx&Gy)

This formula is a simple theorem of the second-order predicate calculus with
identity.250 So, (A), (B) and (C) provide answers, respectively, to the bulleted
questions above.

Of course, some philosophers (e.g., the followers of Quine, nominalists,
logical positivists, etc.) would object that the above analysis assumes second-
order logic and its ontology of properties. But object theory has a theory of
properties as rigorous as any mathematical theory and so provides a precise
framework in which the above analysis can be put forward.

249For example, we may substitute ‘human’ for ‘F’ to produce the term ‘humanness’ (i.e., ‘hu-
manity’) and substitute ‘red’ for ‘F’ to produce the term ‘redness’. But we must substitute ‘being
human’ or ‘humanity’ for ‘F’ to produce the term ‘The Form of Being Human’ or ‘The Form of
Humanity’, and must substitute ‘being red’ or ‘redness’ to produce the term ‘The Form of Being
Red’ or ‘The Form of Redness’. A good rule of thumb is that if the symbol ‘F’ is being used in a
natural language context, such as when we say ‘x is F’, then the symbol ‘F’ may be replaced by a
predicate noun or adjective, but when the symbol ‘F’ is being used in a theoretical/technical or
formal context, then the symbol ‘F’ is being used as a variable ranging over properties.
250Suppose Fx& Fy & x , y. Then by &E we have Fx& Fy. Moreover, the laws of identity yield
F=F. Hence, by &I, we obtain F=F&Fx&Fy. Hence, by ∃I, it follows that ∃G(G=F&Gx&Gy).
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Despite its precision, however, analysis (A) – (C) is problematic as a theory
of Platonic Forms. We can begin to see why by considering a passage in Vlastos
(1954), where he reformulates Plato’s One Over Many Principle, as it occurs in
Parmenides 132a1–b2 (1954, 320):

This is the first step of the Argument, and may be generalized as follows:

(A1) If a number of things, a, b, c are all F, there must be a single Form,
F-ness, in virtue of which we apprehend a, b, c, as all F.

Here ‘F’ stands for any discernible character or property. The use of the
same symbol, ‘F,’ in ‘F-ness,’ the symbolic representation of the “single
Form,”[5] records the identity of the character discerned in the particular
(“large”) and conceived in the Form (“Largeness”) through which we see
that this, or any other, particular has this character.

The footnote numbered 5 in this passage is rather interesting, for it includes the
claim “That F and F-ness are logically and ontologically distinct is crucial to
the argument” (1954, 320). So Vlastos is distinguishing the Form of F from the
property F, though in other passages, he calls the property F “the predicative
function of the same Form” (1954, note 39).

Geach (1956) also balks at the suggestion that, for Plato, the Form of F is
the attribute or property F, at least in connection with Forms corresponding to
‘kind terms’ such as ‘man’ and ‘bed’. He notes (1956, 74):

Surely his [Plato’s] chosen way of speaking of these Forms suggests that for
him a Form was nothing like what people have since called an “attribute”
or a “characteristic.” The bed in my bedroom is to the Bed, not as a thing to
an attribute or characteristic, but rather as a pound weight or yard measure
in a shop to the standard pound or yard.

Geach thus takes the Form of F to be a “paradigm” individual that exemplifies
F (1956, 76).251 In his paper, he uses variables x,y, . . . to range over individuals

251 In 1956, 76, Geach says that a paradigm F is something that is F; it is a standard F insofar as it
is an exemplar of F par excellence. But Geach’s suggestion is problematic; an alleged paradigmatic
example of F has any number of properties that undermine that the suggestion that it is a paradig-
matic exemplar. For suppose b is alleged to be a paradigm sphere. Then b will have a radius of a
particular length l, be constructed of a particular material m, reflect light of a particular color c,
etc. None of these properties are representative of spheres generally and the fact that b exemplifies
these specific properties tends to undermine the claim that it is paradigmatic.

Intuitively, what Geach intends, is that the paradigm sphere, in so far as it is to serve as the
Form of Sphericity, should be something abstracted from properties not strictly implied by being
a sphere (like having a radius of a particular length l, being constructed of a particular materialm,
reflecting light of a particular color c), while exemplifying all and only the properties necessarily
implied by being a sphere. This understanding of a paradigm, as something that ‘has’, in the sense
of encodes, all and only the properties necessarily implied by being a sphere, will be captured by the
‘thick’ conception of the Forms discussed in the Section 11.2. Consequently, we postpone further
discussion of this issue until then, and specifically until Remark (450).
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(including Forms), and uses a different style of variable, namely F,G, . . ., for
properties (or attributes). Similarly, Strang (1963, 148) formulates a version of
(OM) by using the notation ‘A’ to refer to the property A and ‘F(A)’ to refer to
a Form of A (“Given any set of A’s, they participate in one and the same F(A)”).

Allen (1960) offers a second reason why analysis (A) – (C) should not be
adopted, namely, it doesn’t make sense of a principle to which Plato often ap-
peals:

(SP) Self-Predication Principle
The Form of F is F.

Allen explicitly notes (1960, 148):252

Plato obviously accepts the following thesis: some (perhaps all) entities
which may be designated by a phrase of the form “the F Itself,” or any
synonyms thereof, may be called F. So the Beautiful Itself will be beautiful,
the Just Itself just, Equality equal.[3]

Allen assumed these facts in the following lines from the opening passage of
his article (1960, 147):

The significance—or lack of significance—of Plato’s self-predicative state-
ments has recently become a crux of scholarship. Briefly, the problem is
this: the dialogues often use language which suggests that the Form is a
universal which has itself as an attribute and is thus a member of its own
class, and, by implication, that it is the one perfect member of that class.
The language suggests that the Form has what it is: it is self-referential,
self-predicable.

Now such a view is, to say the least, peculiar. Proper universals are
not instantiations of themselves, perfect or otherwise. Oddness is not odd;
Justice is not just; Equality is equal to nothing at all. No one can curl up for
a nap in the Divine Bedsteadity; not even God can scratch Doghood behind
the Ears.

The view is more than peculiar; it is absurd. . . .

With this, we are in a position to appreciate a later passage about (SP) in this
same paper. Allen writes (1960, 148–9):

But this thesis [SP] does not, by itself, imply self-predication; for that, an
auxiliary premise is required. This premise is that a function of the type
“. . . is F” may be applied univocally to F particulars and to the F Itself,
so that when (for example) we say that a given act is just, and that Justice
is just, we are asserting that both have identically the same character. But

252The footnote numbered 3 in the following quotation provides his documentation. Allen cites
the following passages where Plato offers a version of the claim in question: Protagoras, 330c, 331b;
Phaedo, 74b, d, 100c; Hippias Major, 289c, 291e, 292e, 294a-b; Lysis, 217a; Symposium, 210e-211d.
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this premise would be false if the function were systematically equivocal,
according as the subject of the sentence was a Form or a particular. In that
case, to say that Justice is just and that any given act is just would be to
say two quite different (though perhaps related) things, and the difficul-
ties inherent in self-predication could not possibly arise. . . . I propose to
show that functions involving the names of Forms exhibit just this kind of
ambiguity.

Though I do not endorse many of the subsequent conclusions Allen draws in
his paper, the conclusion in the above passage strikes me as insightful. The
idea that there is ambiguity in predication and, indeed, that Plato saw the
ambiguity, has been picked up by other Plato scholars, notably Frede (1967)
and Meinwald (1992).253

Thus, the problem with the analysis (A) – (C) above is that it doesn’t really
make sense of Plato’s text: it doesn’t distinguish the property F from The Form
of F and it can’t make sense of the Self-Predication Principle. Vlastos’ sugges-
tion, that the property F and the Form of F are ontologically as well as logically
distinct, and Allen’s suggestion, that the language in the Self-Predication Prin-
ciple involves a systematic ambiguity, are central to the analyses developed in
this chapter.

Object theory distinguishes the property F from the abstract, logical indi-
viduals encoding F that might serve as The Form of F. Two such individuals
immediately come to mind: (1) the abstract object that encodes just F and no
other properties, and (2) the abstract object that encodes all and only the prop-
erties necessarily implied by F. The former offers a ‘thin’ conception on which
The Form of F is the ‘pure’, objectified form of the property F (‘thin’ in the
sense that it encodes a single property and ‘pure’ in the sense that it encodes
no other property). The latter offers a ‘thick’ conception on which The Form
of F encodes exactly what all F-exemplifiers necessarily exemplify in virtue of
exemplifying F, i.e., those properties G such that �∀x(Fx→ Gx). The thin con-
ception of Forms was developed in Zalta 1983 (Chapter II, Section 1), whereas
the thick conception was developed in Pelletier & Zalta 2000. These concep-
tions are discussed below in some detail, in Sections 11.1 and 11.2, respec-
tively. Though the thick conception may be a more considered and scholarly
approach to Plato, the thin conception is not without interest, for it already
yields theorems that provide plausible readings of (OM) and (SP).

253For a more complete history of Plato scholarship in which it is proposed that there is an am-
biguity in predication, see the Appendix to Pelletier & Zalta 2000.
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11.1 The Thin Conception of Forms

(421) Definition: A Thin Form of G. Intuitively, an individual x is a thin Form
of property G if and only if x is an abstract object, G exists, and x encodes just
the property G:

ThinFormOf (x,G) ≡df A!x&G↓&∀F(xF ≡ F=G)

Recall here that we are assuming Convention (17.2). Thus, where Π is an prop-
erty term, ThinFormOf(x,Π) is false, for any x, when ¬Π↓.

(422) Theorems: There Exists a (Unique) Thin Form of G.

(.1) ∃x(ThinFormOf (x,G))

(.2) ∃!x(ThinFormOf (x,G))

(.3) ıxThinFormOf (x,G)↓

It also follows that if x is a thin Form of G and also a thin Form of H , then G is
identical to H :

(.4) ThinFormOf (x,G) & ThinFormOf (x,H)→ G=H

(423) Definition: Notation for the Thin Form ofG. We may therefore introduce
notation, aG, to designate the thin Form of G:

aG =df ıxThinFormOf (x,G)

Exercise. Explain why the inferential role of the above definition-by-= guar-
antees, for any property term Π, that aΠ = ıxThinFormOf (x,Π) is a theorem if
Π↓, and ¬aΠ↓ is a theorem otherwise.

(424) Theorem: The Thin Form of G Is Canonical. It now follows that the thin
Form of G is identical to the abstract object that encodes exactly the properties
identical to G:

aG = ıx(A!x&∀F(xF ≡ F=G))

So aG is a canonical individual.

(425) Remark: aG is Strictly Canonical. Given metadefinition (260.1), it can be
shown that F=G is a rigid condition on properties:

`� ∀F(F=G→ �F=G)
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Given that aG is canonical (424), the rigidity of the condition F = G tells us
that aG is (identical to) a strictly canonical individual, as this was defined in
(260.2). So the theorems in (261) apply to aG.

(426) Theorems: Facts About the Thin Form of G. It now follows, by modally
strict proofs, that: (.1) the thin Form of G is abstract and encodes all and only
the properties identical to G; and (.2) the thin Form of G is a thin Form of G:

(.1) A!aG & ∀F(aGF ≡ F=G)

(.2) ThinFormOf (aG,G)

The interesting fact about (.2) is that it is derived without appeal to (145.2)?.

(427) Theorem: A Thin Form of G Encodes G. It is a simple consequence of
definition (421) that if x is a thin Form of G, then x encodes G:

ThinFormOf (x,G)→ xG

(428) Definition: Participation. We now say that y participates in x if and only
if there is a property F such that x is a thin Form of F and y exemplifies F:

ParticipatesIn(y,x) ≡df ∃F(ThinFormOf (x,F) &Fy)

Cf. Zalta 1983 (42).254 This definition will be refined in Section 11.2, where we
discuss the thick conception of Forms and distinguish two kinds of participa-
tion corresponding to the two kinds of predication. But the above definition
serves well enough for our purposes in the present section.

(429) Lemma: Thin Forms, Predication, and Participation. It is an immediate
consequence of the previous definition that if x is a thin Form of G, then an
individual y exemplifies G iff y participates in x:

ThinFormOf (x,G)→∀y(Gy ≡ ParticipatesIn(y,x))

(430) Theorem: The Equivalence of Exemplification and Participation. It is
now a consequence that an object x exemplifies a property G iff x participates
in the thin Form of G:

Gx ≡ ParticipatesIn(x,aG)

This theorem verifies that, under our analysis, Plato’s notion of participation is
equivalent to the modern notion of exemplification.

(431) Theorem: The One Over the Many Principle. As noted in Remark (420),
Plato’s most important principle governing the Forms is (OM): if there are two

254In Zalta 1983, ParticipatesIn(y,x) was defined as: ∃F(xF&Fy). By reformulating the definition
as we’ve done in here, an object participates only in those abstract objects that are thin Forms.
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distinct individuals exemplifying G, then there exists something that is the
Form of G in which they both participate. (OM) is validated by the following
theorem:

Gx&Gy & x,y→∃z(z=aG & ParticipatesIn(x,z) & ParticipatesIn(y,z))

So we’ve preserved the main principle of Plato’s theory without collapsing the
distinction between the property G and the thin Form of G.

(432) Theorems: Facts About Thin Forms. Consider the property being ordi-
nary, O!. It follows that (.1) the thin Form of G fails to exemplify O!:

(.1) ¬O!aG

Since (.1) holds for every G, by GEN, it follows that (.2) the thin Form of O!
fails to exemplify O!:

(.2) ¬O!aO!

(.2) will play a role in the Remark that follows the next theorem.

(433) Theorem: The Thin Form of G Encodes G and a Unique Property.

(.1) aGG

This is an encoding formula in which the individual term, aG, is complex. It
also follows that the Thin Form of G encodes exactly one property:

(.2) ∃!HaGH

(434) Remark: The ‘Self-Predication’ Principle. Recall that (SP) was formu-
lated in Remark (420) as “The Form of G is G”. As we saw in that remark,
Allen (1960) suggests that in Plato’s work, the context “. . . is G” does not apply
univocally to both individuals and the Form of G. Furthermore, as noted in
Section 1.3, Meinwald (1992, 378) argues that the second half of Plato’s Par-
menides leads us “to recognize a distinction between two kinds of predication,
marked . . . by the phrases ‘in relation to itself’ (pros heauto) and ‘in relation to
the others’ (pros ta alla).” (Intuitively, the Form of F is F in relation to itself, but
ordinary things that exemplify F are F in relation to some other thing, namely,
the Form of F.) Thus, Meinwald also takes (SP) to exhibit an ambiguity, and
she suggests that it is true only if interpreted as a pros heauto predication.

Once we represent pros heauto predications as encoding predications and
represent pros ta alla predications as exemplification predications, the ambigu-
ity in (SP) can be resolved within the present system. The pros heauto reading
is aGG, i.e., the thin Form of G encodes G. This is derivable as theorem (433.1)
and hence true. The pros ta alla reading is GaG, i.e., the thin Form of G exem-
plifies G. We can prove in object theory that this is not generally true, since
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a counterexample is derivable. Indeed, we’ve already seen the counterexam-
ple, namely theorem (432), which asserts that ¬O!aO!. The thin Form of being
ordinary fails to exemplify being ordinary. Hence ¬∀F(FaF).

Note also that ¬GaG follows from the assumption that G is a concreteness-
entailing property. A property F is concreteness-entailing just in case �∀x(Fx→
E!x). Intuitively, one might suppose that the following are such properties: be-
ing extended in spacetime, being colored, having mass, being human, etc. (Indeed,
the property being concrete (E!) is provably concreteness-entailing.) So one can
prove that if G is concreteness-entailing, then ¬GaG.255

Although we’ve now seen that the general form of (SP) is provably false
when we represent the copula ‘is’ as exemplification, we shall see that there are
special cases where, for some properties F, aF does provably exemplify F.

(435) Definition: Thin Forms. We define: x is a thin Form if and only if x is a
thin Form of F, for some F:

ThinForm(x) ≡df ∃F(ThinFormOf (x,F))

(436) Theorem: A Fact About Thin Forms. Clearly, the thin Form of G is a thin
Form:

ThinForm(aG)

By GEN, this holds for any property G.

(437) Theorems: Facts About Thin Forms and Platonic Being. Suppose that
instead of reading the defined term A! as being abstract, we temporarily read it
as Platonic Being. Then we can prove: (.1) Thin Forms exemplify Platonic Being
(in ambiguous natural language, “Thin Forms are Platonic Beings”); (.2) thin
Forms exemplify any property necessarily implied by Platonic Being; (.3) the
thin Form of Platonic Being exemplifies Platonic Being; (.4) thin Forms partic-
ipate in the thin Form of Platonic Being; and (.5) if F is necessarily implied by
Platonic Being, then thin Forms participate in the thin Form of F:

(.1) ThinForm(x)→ A!x

(.2) �∀y(A!y→ Fy)→ (ThinForm(x)→ Fx)

(.3) A!aA!

255Assume that P is a concreteness-entailing property and, for reductio, that PaP . Now since P
is concreteness-entailing, it follows from the definition by the T-schema that ∀x(P x→ E!x). Hence
PaP → E!aP . Since PaP is our reductio assumption, it follows that E!aP . But by by (426.1), we

know A!aP , which by definition (22.2) is the claim [λx¬♦E!x]aP . By Rule
−→
β C (184.1.a), it follows

that ¬♦E!aP , i.e., �¬E!aP . By the T schema, this implies ¬E!aP , at which point we’ve reached a
contradiction.
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(.4) ThinForm(x)→ ParticipatesIn(x,aA!)

(.5) �∀y(A!y→ Fy)→ (ThinForm(x)→ ParticipatesIn(x,aF))

(438) Theorems: Thin Forms and Participation. (.1) There exists a thin Form
that participates in itself; and (.2) there exists a thin Form that doesn’t partici-
pate in itself:

(.1) ∃x(ThinForm(x) & ParticipatesIn(x,x))

(.2) ∃x(ThinForm(x) &¬ParticipatesIn(x,x))

In case (.2) sounds familiar, we’ll note here that in (440), we’ll prove that being
a thin Form that doesn’t participate in itself doesn’t exist; otherwise, it would be
a Russell-style paradoxical property that implies a contradiction.

(439) Remark: The Third Man Argument. Plato puts forward an argument
in Parmenides (132a) that has come to be known as the Third Man Argument
(TMA). This argument raises a concern as to whether the theory of Forms in-
volves an infinite regress. As Vlastos (1954, 321) develops the argument, Plato
appears to draw an inference from (A1) to (A2), both of which are supposed to
be instances of (OM):

(A1) If a number of things, a, b, c are all F, there must be a single Form, F-ness,
in virtue of which we apprehend a, b, c, as all F.

(A2) If a, b, c, and F-ness are all F, there must be another Form, F1-ness, in
virtue of which we apprehend a, b, c, and F-ness as all F.

If this inference is valid and F1-ness is distinct from F-ness, then it raises the
concern that the inference is only the first step of a regress that commits Plato
to an infinite number of Forms corresponding to the single property F. But
Vlastos then notes (1954, 324–325) that for the inference from (A1) to (A2)
to be valid, there seems to be two implicit assumptions, the Self-Predication
Principle (SP) discussed earlier and the following:256

(NI) Non-Identity Principle
If x is F, x is not identical with The Form of F.

256Vlastos credits A. E. Taylor (1915-1916) for the suggestion that Plato needs the Self-Predication
Principle. Indeed, if we examine Taylor 1915-1916, we find (253) that although that he accepts that
it makes sense to predicate a universal of itself, he says:

. . . we must deny the tacit premiss of Parmenides that a universal can be predicated
of itself as it is predicated of its instances.

So even as far back as 1915, Plato scholars recognized that by introducing two modes of predica-
tion, one can forestall the TMA.
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Vlastos then observes (1954, 326) that these two tacit assumptions are jointly
inconsistent. This was a trenchant observation, for if the two claims are for-
mally represented as:

(SP′) FaF

(NI′) Fx→ x , aF

then the inconsistency becomes manifest; we can instantiate aF into a universal
generalization of (NI′) to obtain FaF → aF , aF , and this, together with (SP′),
yields the odious conclusion that aF , aF . Of course, the inconsistency of (SP′)
and (NI′) involves a system in which there are: (a) principles that assert the
existence and uniqueness of aF and (b) principles governing (terms defined
by) definite descriptions in general, and aF in particular.

The literature that developed in response to Vlastos 1954 focused on (a) how
to reformulate TMA so as to avoid the above inconsistency, and (b) whether
there is textual support for the revised version of TMA. This literature in-
cluded the papers Sellars 1955, Geach 1956, with rejoinders in Vlastos 1955
and 1956. Vlastos 1969 (footnote 2) includes a list of papers that were sub-
sequently published on TMA, though see Cohen 1971, Meinwald 1992, and
Pelletier & Zalta 2000 for further discussion and additional bibliography.

We conclude our discussion of TMA, as well as this section on the thin con-
ception of the Forms, by noting that both of the tacit assumptions that Vlastos
formulated for TMA, as he understood them, are provably false on the present
theory. We’ve already seen that the above reading (SP′) of (SP) has a coun-
terexample. Object theory also implies that the reading (NI′) of (NI) has a
counterexample. By (437.3), we know A!aA!, and by the existence of aA! and
the reflexivity of identity (117.1), we know aA! = aA!. But the conjunction of
these two conclusions, A!aA! & aA! = aA! is a counterexample to (NI′), as for-
mally represented above. Hence, we shouldn’t accept either of the two tacit
assumptions that Vlastos thought were needed for TMA, at least not if the
predication involved in (SP) and in the antecedent of (NI) are understood as
exemplification predications. We’ll return to the discussion of TMA at the end
of Section 11.2, where we discuss the thick conception of the Forms.

(440) Theorem: An Empty λ-Expression. We now establish that (.1) being a thin
Form that doesn’t participate in itself doesn’t exist, and (.2) there is no property
F that is exemplified by all and only those objects x that are thin Forms that
don’t participate in themselves:

(.1) ¬[λxThinForm(x) &¬ParticipatesIn(x,x)]↓

(.2) ¬∃F∀x(Fx ≡ ThinForm(x) &¬ParticipatesIn(x,x))

So the property one might try to formulate to derive a Russell-style paradox
from Plato’s Theory of Forms doesn’t exist.
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11.2 The Thick Conception of Forms

(441) Remark: The Need for a Thick Conception of the Forms.257 We’ve seen
how our work thus far validates (a) the view that truly predicating F of a Form
of F is different from truly predicating F of ordinary things, and (b) Meinwald’s
(1992) idea that in the Parmenides, Plato is attempting to get his audience (i) to
appreciate a distinction in predication, namely, between saying that x is G pros
heauto (i.e., in relation to itself) and saying that x isG pros ta alla (i.e., in relation
to the others),258 and (ii) to recognize that the Self-Predication principle (SP)
is generally true only if read as a pros heauto predication. We’ve also seen that,
in object theory, where encoding predication formally represents pros heauto
predication and the Form of G is conceived as the ‘thin’ abstract object that
encodes just the single property G, (SP) is preserved as theorem (433.1), which
asserts that the Form of G encodes G.

In what follows, however, we consider some new data that our analysis
thus far doesn’t accommodate. According to Meinwald, there are also true pros
heauto predications such as “The Form ofG is F”, where F is a property distinct
from G. Meinwald lists the following such claims as ones Plato would endorse
(1992, 379):259

The Just is virtuous (pros heauto).
Triangularity is three-sided (pros heauto).
Dancing moves (pros heauto).

She explains these as follows (1992, 379–80):260

The Just is Virtuous

257I’m indebted to F. Jeffry Pelletier for his critical contributions to Pelletier & Zalta 2000. The
thick conception of Forms was first developed in that paper; Jeff recognized that the Plato scholars
had developed a view of the Forms that called for a thick conception. Many of the ideas in what
follows were first developed in that paper.
258We remind the reader again that Meinwald (1992, 381) relates the two kinds of predication in

the Parmenides to the kath’ hauto and pros allo uses of ‘is’ in the Sophist, as these are distinguished
in Frede 1967, 1992.
259Meinwald writes:

It is clear that such sentences come out true in Plato’s work, as well as fitting our
characterizations of predication of a subject in relation to itself.

Unfortunately, though, Meinwald doesn’t identify any passages where Plato discusses examples
like the ones to follow.
260In the following quotation, Meinwald refers to a tree predication. The tree in question is a

genus-species structure, in which the characteristics associated with a genus are inherited by, and
thus predicable of, the members of the species covered by the genus. Thus, a true tree predication
is one in which a member of a species is F in virtue of the fact that F is one of the characteristics
associated with the covering genus. In Meinwald’s example, since dancing is a species of motion,
‘Dancing moves’ is a true tree predication.
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holds because of the relationship between the natures associated with its
subject and predicate terms: Being virtuous is part of what it is to be
just. Or we can describe predication as holding because Justice is a kind
of Virtue. If we assume that to be a triangle is to be a three-sided plane
figure (i.e., that Triangle is the species of the genus Plane Figure that has
the differentia Three-Sided), then

Triangularity is three-sided.

holds too. We can also see that

Dancing moves.

is a true tree predication, since Motion figures in the account of what Danc-
ing is.

Clearly, if the Form of G is identified as it was in the preceding section, i.e.,
as the abstract object that encodes G and no other property, then we cannot as
yet interpret the above pros heauto predications as encoding predications about
the Forms in question. For on such a ‘thin’ conception, the Form of Justice, aJ ,
encodes only the property being just (J) and so does not encode the distinct
property being virtuous (V ). Similarly, the Form of Triangularity (aT ) encodes
only the property being triangular (T ) and not the distinct property being three-
sided (3S), and so isn’t three-sided pros heauto. And similarly for the Form of
Dancing.

However, on the thick conception, the Form of G is the abstract object that
encodes all the properties necessarily implied by G, i.e., encodes all and only
the properties F such that, necessarily, anything that exemplifies G exemplifies
F. In what follows, we shall introduce the functional term ΦG to designate this
thick Form of G. So if the Form of Justice (ΦJ ) encodes all of the properties
necessarily implied by being just, then from the premise that being virtuous (V )
is necessarily implied by being just, it follows that ΦJ encodes V . Thus, the
encoding claim ΦJV (“the Form of Justice encodes being virtuous”) provides a
reading of the pros heauto predication “The Just is virtuous”.

Similarly, from the facts that:

Being triangular necessarily implies being three-sided.

Dancing necessarily implies being in motion.

it follows, on the thick conception of the Forms of Triangularity (ΦT ) and Danc-
ing (ΦD ), that:

The Form of Triangularity encodes being three-sided.
ΦT 3S
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The Form of Dancing encodes being in motion.
ΦDM

So the thick conception of the Forms is distinguished from the thin conception
by the fact that it can provide an analysis of pros heauto predications of the form
“The Form of G is F” when supplemented by facts about property implication
and property distinctness. Under the thin conception, we cannot derive aGF
given the premises that F is distinct from G and necessarily implied by G.
Under the thick conception, we can derive ΦGF from G necessarily implies
F; this is a consequence of theorem (449.2) established below. A fortiori, we
can derive ΦGF from the conjunction of F , G and G necessarily implies F.
These derivations, we suggest, are the best way to understand and represent
the conditions under which “The Form of G is F pros heauto” is true.

(442) Definition: Property Implication and Equivalence. To define the thick
conception of Plato’s Forms, we need some preliminary definitions. We first
define G necessarily implies F, written ‘G⇒ F’, as: necessarily, everything that
exemplifies G exemplifies F:

(.1) G⇒F ≡df F↓&G↓&�∀x(Gx→ Fx)

Thus, the claim being triangular necessarily implies being three-sided is defined
to mean that being triangular and being three-sided both exist, and necessarily,
any object exemplifying the former exemplifies the latter. In the usual manner,
we may not formulate instances of this definition by uniformly replacing G or
F with property terms in which x occurs free.

Clearly, we need to add the existence clauses to the definiens so that a claim
of the form Π⇒Π′ will be provably false if either Π or Π′ fails to be signif-
icant. Without the existence clause Π↓ in the definiens, the claim Π⇒ Π′

would be provably true when ¬Π↓, since it would immediately follow that
¬Πx by axiom (39.5.a), thereby implying Πx → Π′x, which by GEN and RN
yields �∀x(Πx→Π′x). Without the existence clause Π′↓ in the definiens, the
claim Π⇒Π′ would be provably true when ¬Π′↓, Π↓, and Π is necessarily
unexemplified (i.e., �∀x¬Πx), for in that case, it would again follow that ¬Πx
(this time by the T schema and ∀E), again implying Πx → Π′x and yielding
�∀x(Πx→Π′x).

We also say that properties G and F are necessarily equivalent just in case
they necessarily imply each other:

(.2) G⇔F ≡df G⇒ F & F⇒ G

Of course, when reasoning with (.1) and (.2), we can ignore the existence clauses
as long as significant terms are in play.
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(443) Theorems: Facts About Necessary Equivalence. As simple consequences
of the preceding definitions, we have (.1) G and F are necessarily equivalent
just in case necessarily, all and only the individuals exemplifying G exemplify
F; (.2) necessarily equivalence is a reflexive, symmetric, and transitive condi-
tion; and (.3) properties are necessarily equivalent if and only they necessarily
imply the same properties:

(.1) G⇔F ≡ �∀x(Gx ≡ Fx)

(.2) ⇔ is an equivalence condition:

(.a) G⇔G (⇔ is reflexive)

(.b) G⇔F→ F⇔G (⇔ is symmetric)

(.c) (G⇔F&F⇔H)→ G⇔H (⇔ is transitive)

(.3) G⇔F ≡ ∀H(G⇒H ≡ F⇒H)

Moreover, recall that by definition (200.1), a property F is necessary just in
case �∀xFx, and by definition (200.2), a property F is impossible just in case
�∀x¬Fx. Then we have: (.4) if G and F are necessary properties, then G and F
are necessarily equivalent; and (.5) if G and F are impossible properties, then
G and F are necessarily equivalent:

(.4) (Necessary(G) & Necessary(F))→ G⇔F

(.5) (Impossible(G) & Impossible(F))→ G⇔F

(444) Definition: A (Thick) Form of G. We define: x is a Form of G iff x is an
abstract object, G exists, and x encodes all and only the properties necessarily
implied by G:

FormOf (x,G) ≡df A!x&G↓&∀F(xF ≡ G⇒F)

Note that the existence clause G ↓ is still needed in the definiens, notwith-
standing its presence in the definiens of G⇒ F. Without it, one could prove
that FormOf (x,Π) when Π is an empty property term and x is assigned the null
object.261

(445) Theorems: There Exists a (Unique) Form of G.

261Suppose we had defined: FormOf (x,G) ≡df A!x& ∀F(xF ≡ G⇒F). Then following theorem
would be licensed by the definition, where a∅ is the null object and Π is any empty property term:

FormOf (a∅,Π) ≡ (A!a∅ &∀F(a∅F ≡ Π⇒F))

Now by definition of⇒, it is a modally strict theorem that:

Π⇒F ≡ (Π↓&F↓&�∀z(Πz→ Fz))

So it would follow by a rule of substitution that:

(ϑ) FormOf (a∅,Π) ≡ (A!a∅ &∀F(a∅F ≡ Π↓&F↓&�∀z(Πz→ Fz)))
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(.1) ∃xFormOf (x,G)

(.2) ∃!xFormOf (x,G)

(.3) ıxFormOf (x,G)↓

(446) Definition: Notation for the Form of G. Given the previous theorem, we
introduce the notation ΦG to designate The Form of G:

ΦG =df ıxFormOf (x,G)

(447) Theorem: The Form of G is Canonical. It follows that the Form of G is
identical to the abstract object that encodes all and only the properties neces-
sarily implied by G:

ΦG = ıx(A!x&∀F(xF ≡ G⇒F))

(448) Remark: The Form of G is Strictly Canonical. Note that the condition
G⇒ F is a rigid condition on properties, as this was defined in (260.1):

`� ∀F(G⇒F → �G⇒F)

Since ΦG is canonical (447) and G⇒ F is a rigid condition on properties, we
know that ΦG is (identical to) a strictly canonical individual, as this was de-
fined in (260.2). So the theorems in (261) apply to ΦG.

(449) Theorems: Facts About ΦG. It now follows, by modally strict reason-
ing, that: (.1) The Form of G is abstract and encodes exactly the properties F
necessarily implied G; and (.2) The Form of G is a Form of G:

(.1) A!ΦG & ∀F(ΦGF ≡ G⇒F)

(.2) FormOf (ΦG,G)

It follows a fortiori from the second conjunct of (.1) that (G⇒ F) → ΦGF. So
by (63.10), G⇒ F ` ΦGF. And by (63.7), F , G, G⇒ F ` ΦGF. Thus, our theo-
rems validate the distinguishing feature of the thick conception of the Forms
discussed at the end of Remark (441).

(450) Remark: Thick Forms as Paradigms. It is worth pausing to note the
sense in which the thick conception of Forms validates Geach’s suggestion that

One could then derive FormOf (a∅,Π) by deriving the right-side of (ϑ). Clearly, A!a∅. So, by GEN,
it remains to show:

(ξ) a∅F ≡ Π↓&F↓&�∀z(Πz→ Fz)

But, this is easy to establish, since both sides are provably false. It is a fact that ¬a∅F, by (266.3)
and (263.1). And since ¬Π↓ by assumption, the right-side of (ξ) is false.

So, without the clause G↓ in the definiens of FormOf, we could prove FormOf (a∅,Π) when ¬Π↓.
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Forms are paradigms. Let S denote the ordinary property being spherical that we
use pre-theoretically to characterize concrete objects, and consider the Form of
Being Spherical, ΦS . On the thick conception, ΦS encodes all and only those
properties necessarily implied by being spherical. Thus, ΦS encodes having a ra-
dius of some particular length, since that is implied by being spherical, although
there isn’t a particular length l such that ΦS encodes being of length l. Similarly,
ΦS encodes being constructed of some particular material, since that is implied by
being spherical, but there won’t be a particular materialm such that ΦS encodes
being constructed of material m. And so on. Properties not strictly implied by
G aren’t encoded by the (thick) Form of G. The above conception avoids the
problem, discussed in footnote 251, that afflicts Geach’s suggestion that the
Form of G is a paradigm exemplifier of G, since a paradigm G-exemplifier ex-
emplifies properties not implied by G. And, clearly, since encoding is a mode
of predication, there is a sense in which the (thick) Form of G has just those
properties necessarily implied by G.

(451) Definitions: Two Kinds of Participation. We may introduce two kinds
of participation to correspond to the two kinds of predication. We say: (.1) an
object y participates pros ta alla in x (written ParticipatesIn

PTA
(y,x)) iff there is a

property F such that x is a Form of F and y exemplifies F, and (.2) an object y
participates pros heauto in x (written ParticipatesIn

PH
(y,x)) iff there is a property

F such that x is a Form of F and y encodes F:

(.1) ParticipatesIn
PTA

(y,x) ≡df ∃F(FormOf (x,F) &Fy)

(.2) ParticipatesIn
PH

(y,x) ≡df ∃F(FormOf (x,F) & yF)

(452) Lemmas: Forms, Predication, and Participation. It is an immediate con-
sequence of the previous definitions that (.1) if x is a Form of G, then every
individual y is such that y exemplifies G if and only if y participatesPTA in x;
(.2) if x is a Form of G, then every individual y is such that if y encodes G, then
y participatesPH in x:

(.1) FormOf (x,G)→∀y(Gy ≡ ParticipatesIn
PTA

(y,x))

(.2) FormOf (x,G)→∀y(yG→ ParticipatesIn
PH

(y,x))

(453) Remark: Why the Consequent of (452.2) is not a Quantified Bicondi-
tional. One might wonder why the consequent of (452.2) is just a quantified
conditional and not a quantified biconditional. Specifically, when FormOf (x,G),
why doesn’t ParticipatesIn

PH
(y,x) imply yG? The key fact behind an answer to

this question is that the Forms of distinct, but necessarily equivalent, prop-
erties are identical to one another, and this creates the conditions for a coun-
terexample to:
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(ϑ) FormOf (x,G)→∀y(ParticipatesIn
PH

(y,x)→ yG)

This was reported in Fitelson & Zalta 2007.262 An extended discussion is re-
quired to fully document such a counterexample.

Consider the following two properties:

P = [λxQx&¬Qx] (Q any property)

T = [λx Bx&∀y(Sxy ≡ ¬Syy)] (B any property, S any relation)

If, say, Q is being round, B is being a barber, and S is the relation x shaves y,
then P is the property being round and not round while T is the property being
a barber who shaves all and only those individuals that don’t shave themselves. It
is reasonable to assert that these are distinct properties, i.e., that P , T .263 But
note that P and T are both provably impossible properties, for it is straightfor-
ward to show:

�∀x¬P x

�∀x¬T x

Hence by (443.5), it follows that P and T are necessarily equivalent, and so by
(443.3), that P and T necessarily imply the same properties, i.e.,

(ζ) ∀F(P⇒F ≡ T⇒F)

Now consider the following two instances of theorem (445.1):

∃xFormOf (x,P )

∃xFormOf (x,T )

Let b and c be such objects, respectively, so that we know FormOf (b,P ) and
FormOf (c,T ). By definition (444), we know all of the following, among other
things:

(A) A!b

(B) ∀F(bF ≡ P⇒ F)

262The counterexample described in that paper was discovered computationally, using prover9.
The counterexample corrected an error in Pelletier & Zalta 2000, which had mistakenly suggested
that one could prove (452.2) when the connective in the consequent is strengthened to a bicondi-
tional.
263There are various pretheoretic reasons one might give for this: (a) the informal argument that

shows an object couldn’t possibly exemplify P must appeal to the property Q rather than to the
property B and the relation S, whereas the informal argument that shows an object couldn’t pos-
sibly exemplify T must appeal to B and S rather than to Q; and (b) one can tell a story about an
object that is T without thereby telling a story about an object that is P .
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(C) A!c

(D) ∀F(cF ≡ T⇒ F)

Despite the fact that P , T , it can be shown that b and c are identical, and this
is crucial to the construction of our counterexample. To show that b and c are
identical, it suffices, by (A), (C), and (245), to show ∀F(bF ≡ cF). But this last
claim follows straightforwardly from (ζ), (B) and (D). Hence by definition of
abstract object identity, we’ve established:

(G) b = c

Now to see how this leads to a counterexample to (ϑ), consider the fact that
by the Comprehension Principle for Abstract Objects (53), there is an abstract
object that encodes just T and no other properties:

∃x(A!x&∀F(xF ≡ F=T ))

This is, of course, the thin Form of T , but let’s not get distracted by that at the
moment. Let d be such an object, so that we know:

(H) A!d &∀F(dF ≡ F=T )

Now we can show that the following elements of the counterexample to (ϑ) are
all true:

(i) FormOf (b,P )

(ii) ParticipatesIn
PH

(d,b)

(iii) ¬dP

(i) is already known. To show (ii), i.e., ParticipatesIn
PH

(d,b), we have to show:

∃F(FormOf (b,F) & dF)

By ∃I, it suffices to show FormOf (b,T )&dT . But FormOf (c,T ) is already known,
and from (G) we know b = c. Hence FormOf (b,T ), by Rule =E. Moreover, dT
follows immediately from (H), by instantiating the second conjunct of (H) to T
and applying the reflexivity of identity. So ∃F(FormOf (b,F) & dF). It remains
to show (iii), i.e., ¬dP . Note that from the right conjunct of (H), it follows that
dP ≡ P =T . But by hypothesis, P , T . Hence, ¬dP .

Thus, we’ve established the elements of the counterexample to (ϑ). Con-
sequently, under the reasonable hypothesis that there are distinct, impossible
properties, ParticipatesIn

PH
(y,x) doesn’t imply yG when FormOf (x,G).

Exercise: Show that ThinFormOf (x,G)→ ∀y(yG ≡ ParticipatesIn(y,x)) is
a theorem when ThinFormOf is defined as in (421) and ParticipatesIn is
defined as in (428).
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(454) Theorems: Exemplification, ParticipationPTA, Encoding, and Participa-
tionPH. It is now a consequence that (.1) x exemplifies G iff x participatesPTA in
The Form of G; and (.2) if x encodes G, then x participatesPH in the Form of G:

(.1) Gx ≡ ParticipatesIn
PTA

(x,ΦG)

(.2) xG→ ParticipatesIn
PH

(x,ΦG)

The discussion in Remark (453) explains why (.2) is a conditional and not a bi-
conditional. Note also that these theorems are modally strict, despite the fact
that they are conditionals in which a term defined by a rigid definite descrip-
tion appears in one of the conditions.

(455) Theorem: ParticipatesIn
PTA

Fact. It is a consequence of the foregoing def-
initions that if y participatesPTAin x, then y exemplifies every property x en-
codes:

ParticipatesIn
PTA

(y,x)→∀F(xF→ Fy)

(456) Theorems: Two Versions of the One Over Many Principle. (OM) may now
be derived in two forms: (.1) if there are two distinct individuals exemplifying
G, then there exists something that is (identical to) the Form of G in which they
both participatePTA; (.2) if there are two distinct individuals encoding G, then
there exists something that is (identical to) the Form of G in which they both
participatePH:

(.1) Gx&Gy&x,y→∃z(z = ΦG&ParticipatesIn
PTA

(x,z)&ParticipatesIn
PTA

(y,z))

(.2) xG& yG&x,y→∃z(z = ΦG & ParticipatesIn
PH

(x,z) & ParticipatesIn
PH

(y,z))

So we’ve preserved the main principle of Plato’s theory not only in a version
that governs exemplification and participationPTA, but also in a version that
governs encoding and participationPH.

(457) Theorems: Counterexample to One Version of SP. Under the thick con-
ception of the Forms, there are counterexamples to the principle that “The
Form of F is F” when ‘is’ is interpreted as exemplification. Consider the prop-
erty being ordinary, O!. It follows that (.1) the Form of G fails to exemplify
O!; (.2) the Form of O! fails to exemplify O!; and (.3) for some property G, the
Form of G fails to exemplify G:

(.1) ¬O!ΦG

(.2) ¬O!ΦO!

(.3) ∃G¬GΦG
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The first two are the counterparts of theorems (432.1) and (432.2) governing
the thin conception of Forms. (.3) can be stated in an equivalent form: it isn’t
universally the case that ΦG isG pros ta alla. Thus, an observation similar to the
one discussed in Remark (434) holds for the thick conception of Forms: (457.3)
establishes that the exemplification reading of (SP) fails to be universally true.

(458) Theorem: Version of SP that is Provable. When we interpret the ‘is’ in
“The Form of F is F” as encodes, the result “The Form of F encodes F is a
theorem:

ΦGG

As Plato would put it, The Form of G is G pros heauto. Thus, the reading of the
Self-Predication Principle (SP) discussed in (433.1) also holds for ΦG.

(459) Definition: Forms. Forms, under the thick conception, are defined in
the same general way as under the thin conception: x is a Form if and only if x
is a Form of G, for some G:

Form(x) ≡df ∃G(FormOf (x,G))

(460) Theorems: Some Facts About Forms. (.1) The Form of G is a Form;
(.2) there exists a Form that doesn’t participatePTA in itself; and (.3) every Form
participatesPH in itself:

(.1) Form(ΦG)

(.2) ∃x(Form(x) &¬ParticipatesIn
PTA

(x,x))

(.3) ∀x(Form(x)→ ParticipatesIn
PH

(x,x))

As an exercise, explain why the existence of Forms that don’t participatePTA in
themselves doesn’t give rise to paradox.

(461) Theorems: Facts About ‘Self-Predication’ Pros Ta Alla and Self-Participa-
tion. Again, if we suppose that the property being abstract is the property Pla-
tonic Being, then we have the following theorems: (.1) The Form of Platonic
Being exemplifies Platonic Being; (.2) The Form of Platonic Being participatesPTA

in itself; (.3) there exists a Form that participatesPTA in itself; (.4) if Platonic
Being necessarily implies H , then for every property G, The Form of ΦG ex-
emplifies H ; hence, (.5) if Platonic Being necessarily implies H , then The Form
of ΦH exemplifies H . Moreover, (.6) if Platonic Being necessarily implies the
negation of H , then for every property G, ¬HΦG, and hence (.7) if Platonic
Being necessarily implies the negation of H , then ¬HΦH :

(.1) A!ΦA!
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(.2) ParticipatesIn
PTA

(ΦA!,ΦA!)

(.3) ∃x(Form(x) & ParticipatesIn
PTA

(x,x))

(.4) (A!⇒H)→∀G(HΦG)

(.5) (A!⇒H)→HΦH

(.6) (A!⇒H)→∀G(¬HΦG)

(.7) (A!⇒H)→¬HΦH

Theorem (.1) is a special case where a Form, namely The Form of Platonic
Being, unconditionally exemplifies its defining property pros ta alla. This im-
mediately implies (.2), that this Form participatesPTA in itself. (.3) is then an
immediate consequence of (.2). As an example of (.4), we now know that if
Platonic Being necessarily implies being at rest, then for every property G, ΦG
exemplifies being at rest. In particular, (.5) if Platonic Being necessarily implies
being at rest (R), then The Form of being at rest, ΦR, exemplifies being at rest.
This constitutes a conditional ‘self-predication’ pros ta alla. Note also that the-
orem (.7) is a simple consequence of (.6); as an example of (.7), if Platonic Being
necessarily implies not being extended (E), then The Form of being extended, ΦE ,
fails to exemplify being extended.

(462) Theorems: Necessary Implication and Participation.

(.1) (A!⇒H)→∀G(ParticipatesIn
PTA

(ΦG,ΦH ))

(.2) (G⇒H)→ ParticipatesIn
PH

(ΦG,ΦH )

As an example of (.1), if being abstract necessarily implies being at rest (R), then
for any G, The Form of G participatesPTA in The Form of Rest ΦR. As an ex-
ample of (.2), if being just (J) necessarily implies being virtuous (V ), then The
Form of Justice, ΦJ , participatesPH in The Form of Virtue, ΦV ; and if being a
triangle (T ) necessarily implies being three-sided (3S), then ΦT participatesPH

in Φ3S . These last examples of (.2) show that given certain modal facts about
properties, the data that Meinwald adduces for a thick conception of Forms,
described in (441), become derivable.

(463) Remark: Platonic Analysis and Derivation of a Syllogism. Our defini-
tions of participation and our definition of The Form of G offers a Platonic
analysis of a classic form of syllogism. Consider:

Humans are mortal.
Socrates is a human.
———
Socrates is mortal.
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On a Platonic analysis of this argument, the conclusion is validly derivable
from the premises. Both the minor premise (‘Socrates is a human’) and the
conclusion can be analyzed as asserting that Socrates participatesPTA in a certain
Form. The major premise (‘Humans are mortal’) can be analyzed as asserting
that The Form of Humanity is mortal pros heauto. Formally, where ‘s’ denotes
Socrates, ‘H ’ denotes being human, and ‘M’ denotes being mortal, these analyses
can be captured as follows:

ΦHM
ParticipatesIn

PTA
(s,ΦH )

———
ParticipatesIn

PTA
(s,ΦM )

It is straightforward to show that the conclusion follows from the premises. By
the second conjunct of theorem (449.1), the first premise implies that H ⇒M,
i.e., �∀x(Hx→Mx). By the T schema, we may infer ∀x(Hx→Mx). By theorem
(454.1), the second premise of the argument implies Hs. Hence, it follows that
Ms. But, again by theorem (454.1), it now follows that ParticipatesIn

PTA
(s,ΦM ).264

(464) Remark: The Non-Identity Principle. Recall that in the section on the
thin conception of the Forms, in Remark (439), we noted Vlastos’s claim that
the following principle was implicitly presupposed in the Third Man Argu-
ment:

(NI) Non-Identity Principle
If x is F, x is not identical with The Form of F.

We’ve already discussed a version of (NI) in connection with the thin concep-
tion of Forms. We leave it as an exercise for the reader to explain why, on the
thick conception of Forms, object theory not only rejects Fx→ x,ΦF but also
xF→ x,ΦF . Instead we consider the corresponding versions of (NI) when the
antecedent is formally represented by the two different forms of participation.
For then we obtain:

(NIa) If x participatesPTA in The Form of F, x is not identical with that Form.
ParticipatesIn

PTA
(x,ΦF)→ x,ΦF

(NIb) If x participatesPH in The Form of F, x is not identical with that Form.
ParticipatesIn

PH
(x,ΦF)→ x,ΦF

264This discussion corrects an error in Pelletier & Zalta 2000. In that paper, we analyzed the
major premise as ParticipatesInPH(ΦH ,ΦM ), mistakenly believing that this implied that ΦHM, i.e.,
that this implied that The Form of Humanity is mortal pros heauto. But the discussion in (453)
explains why this is an error. The error is corrected in the analysis above: “Humans are mortal” is
analyzed as the claim that The Form of Humanity is mortal pros heauto. Given this as a premise,
we may infer via the second conjunct of theorem (449.1) that H ⇒M.
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It is interesting to consider why both claims are rejected by the present theory.
To disprove (NIa), we produce an x and F such that ParticipatesIn

PTA
(x,ΦF)

and x = ΦF . But let x be ΦA! and F be A!. Then ParticipatesIn
PTA

(ΦA!,ΦA!), by
(461.2), and since ΦA!↓, Rule =I yields ΦA! =ΦA!.

To disprove (NIb), we produce an x and F such that ParticipatesIn
PH

(x,ΦF)
and x=ΦF . But let our witnesses be ΦG and G. Then ParticipatesIn

PH
(ΦG,ΦG),

by (458), and since ΦG↓, Rule =I yields ΦG=ΦG.

(465) Remark: The Third Man Argument Under the Thick Conception. It is
now straightforward to see how the Third Man Argument (TMA) is under-
mined in object theory. We begin with the fact that the existence of two forms
of predication led Pelletier & Zalta 2000 to distinguish two forms of participa-
tion. Consequently, here are two versions of each of (OM), (SP), and (NI):

• The two versions of (OM), in (456.1) and (456.2), are both provably true.

• The two versions of (SP) fare differently. In (457), we saw that when we
interpret the ‘is’ in “The Form of F is F” as exemplification, the result is
subject to counterexample. And in (458), we saw that when we interpret
the ‘is’ in “The Form of F is F” as encodes, the result is provably true. Let
us henceforth use the abbreviations (SPa) and (SPb) to represent these
two formalized versions of (SP), respectively:

(SPa) FΦF

(SPb) ΦFF

• The two versions of (NI), namely (NIa) and (NIb), were discussed in (464),
and both are provably false.

It should also be clear that (NIa) and (SPa) are inconsistent, given (454.1) and
the reflexivity of identiy.265

Similarly, we can distinguish two versions of TMA in light of these results.
If we assume for the moment (contrary to what we’ve established) that all of
the principles involved are true, then the original TMA begins with the premise
that there are two distinct F-things pros ta alla and leads to a contradiction as
follows:266

Suppose Fx&Fy&x,y. Then by (456.1), it follows that ∃z(z = ΦF &Parti-
cipatesIn

PTA
(x,z) & ParticipatesIn

PTA
(y,z)). Assume that a is such an object,

so that we know a = ΦF&ParticipatesIn
PTA

(x,a)&ParticipatesIn
PTA

(y,a). The
first and second conjunct of this result imply ParticipatesIn

PTA
(x,ΦF), and

265From (SPa) it follow by (454.1) that ParticipatesInPTA(ΦF ,ΦF ), and from this it follows by (NIa)
that ΦF ,ΦF . So (NIa) and (SPa) can’t both be true.
266The following analysis differs from that of Pelletier & Zalta 2000 in that we now derive the

contradiction without appealing to the Uniqueness Principle (i.e., that the Form of F is unique.
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so by (NIa) in (464), it follows that x,ΦF . By (SPa) above, we know FΦF .
Since we now know that Fx, FΦF , and x ,ΦF , it follows by (456.1) that
∃z(z = ΦF & ParticipatesIn

PTA
(x,z) & ParticipatesIn

PTA
(ΦF , z)). Assume that b

is such an object, so that we know b = ΦF & ParticipatesIn
PTA

(x,b) & Partici-
patesIn

PTA
(ΦF ,b). The first and third conjunct of this last result imply

ParticipatesIn
PTA

(ΦF ,ΦF), and so by (NIa) above, it follows that ΦF , ΦF .
But this contradicts ΦF = ΦF , which we know by the fact that ΦF ↓ and
Rule =I (118.1).

Our discussion thus far has produced a number of reasons why the above ar-
gument isn’t sound.

Again, assuming for the moment that all the principles are true, the second
version of the Third Man Argument begins with the premise that there are two
distinct F-things pros heauto and leads to a contradiction as follows:267

Suppose xF, yF, and x , y. Then it follows by (456.2) that ∃z(z = ΦF &
ParticipatesIn

PH
(x,z)&ParticipatesIn

PH
(y,z)). Assume c is such an object, so

that we know:

c=ΦF & ParticipatesIn
PH

(x,c) & ParticipatesIn
PH

(y,c)

ParticipatesIn
PH

(x,ΦF), which by (NIb), implies x,ΦF . Moreover, by (458),
we know ΦFF. Hence, we know xF, ΦFF, and x , ΦF . So by (456.2), it
follows that ∃z(z = ΦF & ParticipatesIn

PH
(x,z) & ParticipatesIn

PH
(ΦF , z)). As-

sume d is such an object, so that we know:

d=ΦF & ParticipatesIn
PH

(x,d) & ParticipatesIn
PH

(ΦF ,d)

The first and third conjunct of this result imply ParticipatesIn
PH

(ΦF ,ΦF),
which by (NIb) implies ΦF ,ΦF . But this contradicts ΦF =ΦF , which we
know by the fact that ΦF↓ and Rule =I.

In this case, the soundness of the argument is undermined by the failure of
(NIb), as described at the end of (464), since the version of the Self-Predication
Principle used in the argument is a theorem (458). These considerations put
the Third Man Argument to rest, under both the thick and thin conceptions of
the Forms.

267See Pelletier & Zalta 2000 (174), and Frances 1996 (59).



Chapter 12

Situations, Worlds, Times,
and Stories

In this chapter we develop the theory of situations, worlds (both possible and
impossible), moments of time, and world-states. Along the way we introduce
three kinds of world-indexed objects: world-indexed truth-values, classes and
relations. In what follows, we do not distinguish propositions and states of
affairs. Indeed, we shall often refer to 0-ary relations as states of affairs, since
that more closely follows the traditional language of situation theory.

12.1 Situations

(466) Remark: On the Nature of Situations. In a series of papers (1980, 1981a,
1981b) that culminated in their book of 1983, Barwise and Perry argued against
views that were widely held in the field of natural language semantics. Here
are some of the widely held views that they criticized: (a) that possible worlds,
taken as primitive, constitute a fundamental semantic domain for interpreting
natural language, (b) that properties (and relations) are analyzable as functions
from possible worlds to sets of (sequences of) individuals, (c) that the denota-
tion of a sentence is a truth-value, and (d) that the denotation of a sentence
shifts when the sentence appears in indirect, intensional contexts. Barwise
and Perry suggested that a better semantic theory of language could be devel-
oped if possible worlds were replaced with situations, i.e., parts of the world
in which one or more states of affairs hold, where states of affairs consist of
objects standing in relations.

Barwise and Perry (1984, 23) subsequently realized that their book of 1983
offered a model of situations rather than a theory of them and, consequently,
changed the direction of their research. In their early attempts to develop a

513
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theory of situations, they brought to bear certain intuitions they had previously
had about the nature of situations. The fundamental intuition never wavered
(Barwise 1985, 185):

By a situation, then, we mean a part of reality that can be comprehended as
a whole in its own right—one that interacts with other things. By interact-
ing with other things, we mean that they have properties or relate to other
things. They can be causes and effects, for example, as when we see them or
bring them about. Events are situations, but so are more static situations,
even eternal situations involving mathematical objects. We use s, s′, s′′, . . .
to range over real situations. There is a binary relation s |= σ , read “σ holds
in s”, that holds between various situations s and states of affairs σ ; that
is, situations and states of affairs are the appropriate arguments for this
relation of holding in.

One of the guiding intuitions was the distinction between the internal and
external properties of situations. In Barwise and Perry 1981b (388), we find:

Situations have properties of two sorts, internal and external. The cat’s
walking on the piano distressed Henry. Its doing so is what we call an ex-
ternal property of the event. The event consists of a certain cat performing
a certain activity on a certain piano; these are its internal properties.

This distinction between the internal and external properties appears through-
out the course of publications on situation theory. For example, Barwise writes
(1985, 185):

If s |= σ , then the fact σ is called a fact of s, or more explicitly, a fact about
the internal structure of s. There are also other kinds of facts about s, facts
external to s, so the difference between being a fact that holds in s and a
fact about s more generally must be borne in mind.

And in Barwise 1989a (263–4), we find:

The facts determined by a particular situation are, at least intuitively,
intrinsic to that situation. By contrast, the information a situation carries
depends not just on the facts determined by that situation but is relative to
constraints linking those facts to other facts, facts that obtain in virtue of
other situations. Thus, information carried is not usually (if ever) intrinsic
to the situation.

The objects which actual situations make factual thus play a key role
in the theory. They serve to characterize the intrinsic nature of a situation.

Interestingly, the intuitive distinction between the intrinsic, internal proper-
ties of a situation and its extrinsic, external properties, never made it to the
level of theory; situation theorists never formally regimented the distinction.
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However, we take it to be the key to the analysis of situations in what follows.
If we identify a situation s to be an abstract object that encodes only prop-
erties of the form [λy p] (where p is some state of affairs or proposition), so
that we can say p is encoded in s whenever s encodes [λy p], then the intrinsic,
internal properties of s are its encoded properties, while the extrinsic, exter-
nal properties of s will be any exemplification facts about s or any logical or
natural-law-based exemplification generalizations either about s or about the
relations in the states of affairs encoded in s.

This analysis of situations was worked out originally in Zalta 1993. In what
follows, we reprise the most important definitions and theorems from that pa-
per, as well as many new ones. Readers familiar with the classical works of
situation theory in the Barwise & Perry tradition should note that the infons of
later situation theory:

〈〈Rn, a1, . . . , an;1〉〉

〈〈Rn, a1, . . . , an;0〉〉

are simply states of affairs in which objects a1, . . . , an do or do not stand in
relation Rn, depending on whether the polarity is 1 or 0. Thus, we have no
need of infon notation, since we not only have the standard notation Rna1 . . . an
and ¬Rna1 . . . an but also the λ-notation [λRna1 . . . an] and [λ¬Rna1 . . . an], both
of which denote states of affairs. Moreover, we shall represent the following
situation-theoretic claims asserting that an infon holds in situation s:

s |= 〈〈Rn, a1, . . . , an;1〉〉

s |= 〈〈Rn, a1, . . . , an;0〉〉

more simply as follows:

s |= Rna1 . . . an

s |= ¬Rna1 . . . an

These claims will be defined, respectively, as:

s[λy Rna1 . . . an]

s[λy ¬Rna1 . . . an]

We shall, on occasion, point out (a) where axioms central to situation theory
are derived as theorems, and (b) where unsettled questions of situation theory,
as collated in Barwise 1989a, are settled by a theorem of object theory. Note
that our work thus far has already resolved Choices 14–17 in Barwise 1989a
(270–1). The Comprehension Principle for Propositions (i.e., states of affairs),
derived as theorem (194), guarantees that we can freely form states of affairs
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out of any objects and relations (Choice 14); that not every state of affairs is
basic (Choice 15, Alternative 15.2); that there is a rich algebraic structure on
the space of states of affairs (Choice 16); and that every state of affairs has a
dual (Choice 17). Moreover, theorem (268.3) resolves Choice 13 in favor of
Alternative 13.2: for each property F, there are distinct abstract objects a,b
such that [λFa] = [λFb]. In such cases, the states of affairs [λFa] and [λFb] are
identical, but it is not the case that a = b. In Barwise 1989a (270), Alternative
13.2 is in effect when 〈〈R,a; i〉〉 = 〈〈S,b; j〉〉 fails to imply R = S, a = b, and i = j.

12.1.1 Basic Definitions and Theorems

(467) Definition and Theorems: Situations. Using the notion of propositional
property defined in (275), we may say that x is a situation just in case x is an
abstract object that encodes only propositional properties:

(.1) Situation(x) ≡df A!x & ∀F(xF→ Propositional(F))

By the definition (275), it follows that a situation is an abstract object x such
that every property F that x encodes is a property of the form [λy p], for some
proposition p. Note that the above definition of situation decides Choice 9 in
Barwise 1989a (267) since it is easy to show that there are objects (e.g., ordinary
objects and abstract objects that encode non-propositional properties) that are
not situations.

It is easy to establish that (.2) situations exist:

(.2) ∃xSituation(x)

Let R be any relation, and a and b be any objects, and consider the instance of
the Comprehension Principle for Abstract Objects (53) that asserts ∃x(A!x &
∀F(xF ≡ F = [λy Rab] ∨ F = [λy ¬Rba])). Let c be such an object. Clearly, it
is provable that c encodes just the two properties [λy Rab] and [λy ¬Rba]. So
every property c encodes is a propositional property. Hence, c is a situation;
intuitively, c is the ‘smallest’ situation that encodes [λy Rab] and [λy ¬Rba].

Note that (.3) Situation(κ) implies κ↓, for any individual term κ. That is, it
is a modally strict theorem schema, for any individual term κ, that:

(.3) Situation(κ)→ κ↓

Given (.2) and (.3), it follows from the metadefinition in (336) that Situation(x)
is a restriction condition: it has a single free variable, it is �-theorem that
∃xSituation(x) (i.e., it is a strictly non-empty condition), and it is a �-theorem
that Situation(κ) → κ ↓ (i.e., it has strict existential import). But before we
introduce restricted variables, we establish a theorem needed to show that
Situation(x) is a rigid restriction condition.
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(468) Theorem: Some Known Situations. Given our definitions, it follows that
truth-values are situations:

TruthValue(x)→ Situation(x)

From this and the theorems that TruthValue(◦p) (301)?, TruthValue(>) (303.1)?,
and TruthValue(⊥) (303.2)?, we can infer, as ?-theorems, that ◦p, >, and ⊥
are all situations. But see the discussion following the next group of lemmas,
which explain why we can conclude that in fact Situation(◦p), Situation(>), and
Situation(⊥) are all modally strict theorems.

(469) Lemmas: Modal Collapse of Situation(x) and Restricted Variables for
Situations. The following lemmas prove useful. (.1) x is a situation if and only
if necessarily x is a situation; (.2) possibly x is a situation if and only if x is a
situation; (.3) possibly x is a situation if and only if necessarily x is a situation;
and (.4) actually x is a situation if and only if x is a situation:

(.1) Situation(x) ≡ �Situation(x)

(.2) ♦Situation(x) ≡ Situation(x)

(.3) ♦Situation(x) ≡ �Situation(x)

(.4) ASituation(x) ≡ Situation(x)

Note that by applying RN to the left-to-right direction of (.1), it follows that
�(Situation(x) → �Situation(x)) is a theorem. In other words, Situation(x) is
modally collapsed. Since we established, at the end of (468), that Situation(◦p),
Situation(>), and Situation(⊥) are all theorems, it follows by the Rule of Modal
Strictness (173) that these latter are all modally strict theorems:

(.5) Situation(◦p)

(.6) Situation(>)

(.7) Situation(⊥)

Note further that by applying GEN to the left-to-right direction of (.1), it we
know that `� ∀x(Situation(x) → �Situation(x)). Hence Situation(x) is a rigid
condition on objects, as defined in (260.1).

Thus, Situation(x) not only meets the definition of a restriction condition,
as we saw in (467), but also that of a rigid restriction condition, as defined
in (340). So, we may henceforth use the symbols s, s′, s′′, . . . as rigid restricted
variables ranging over situations and s1, s2, s3, . . . as constants denoting situa-
tions. And, given our discussion of reasoning with restricted variables in (340)
and (341), we can both (a) assert theorems and instantiate modal principles
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with free situation variables, and (b) reason with bound and free occurrences
of these variables. See Remark (472) below.

From the fact that there are situations, we also know that the quantifiers
binding the restricted variable s, ∀s and ∃s, behave classically in the sense
that ∀sϕ → ∃sϕ is a theorem; cf. Remark (342). Moreover, from the fact that
Situation(κ) → κ ↓, for any individual term κ, we may use the variable s in
the definiens and definiendum of a definition-by-≡ without having to add ex-
istence clauses to the definiens; for any instance of the definition in which a
provably empty term has been uniformly substituted for s, the negation of the
definiendum is provable.

12.1.2 Truth in a Situation

(470) Definition: Truth In a Situation. Recall that in (295) we defined: x en-
codes p, written xΣp, just in case x exists and encodes [λy p]. We now say
that proposition p is true in x, written x |= p, just in case x is a situation that
encodes p:

x |= p ≡df Situation(x) & xΣp

Given our conventions in (338.1), we may use restricted variables to recast the
above definition by saying that p is true in s just in case s encodes p:

s |= p ≡df sΣp

Note that there are other ways to read this definition. If we regard 0-ary rela-
tions as states of affairs, then the variable p ranges over such states and we may
then read ‘s |= p’ in situation-theoretic terms as follows:

State of affairs p holds in situation s

State of affairs p is a fact in situation s

Situation s makes p true

Finally, note that in what follows, we always read ‘|=’ with smallest possible
scope. So, for example, x |= p → p is to be parsed as (x |= p)→ p rather than
x |= (p→ p) and s |= q&¬q is to be parsed as (s |= q) &¬q.

(471) Lemma: Truth in a Situation and Encoding. Whenever x is a situation,
then p is true in x if and only if x encodes being such that p:

Situation(x)→ ((x |= p) ≡ x[λy p])

Using restricted variables, this can be expressed as (s |= p) ≡ s[λy p].

(472) Remark: Rule RN and Restricted Variables. Readers who skipped the
discussion of reasoning with restricted variables in (340) and (341) may find
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the following discussion useful. It is extremely important to remember that
when reasoning with rigid restricted variables, we are making use of the ex-
tended rules RN and RA justified in (341.3.a) and (341.3.b), respectively. For
example, as we just saw, we can express (471) using restricted variables as:

(A) (s |= p) ≡ s[λy p]

But whereas (B) does follow from (A), it doesn’t follow by the Rule RN formu-
lated in (68), but by the expanded version in (341):

(B) �((s |= p) ≡ s[λy p])

Though (B) is in fact a theorem, it isn’t provable by a single application of
RN to (A). To see why this inference isn’t valid, consider first that when we
eliminate the restricted variable, then (B) is given a conditional interpretation
and so asserts:

(C) Situation(x)→ �((x |= p) ≡ x[λy p])

But, clearly, (C) is not derivable from (471) by Rule RN (68). However, as we
noted, (B), i.e., (C), is a theorem:

Proof. Assume Situation(x). So by (469.1), �Situation(x). Moreover, since
(471) is a modally strict theorem, we can apply Rule RM (157.1) to con-
clude:

�Situation(x)→ �((x |= p) ≡ x[λy p])

Hence �((x |= p) ≡ x[λy p]). So by conditional proof, (C), i.e., (B).

The key fact about this reasoning is that in order to derive (B), we had to ap-
peal to the left-to-right direction of theorem (469.1), which tells us that if x is
a situation, then necessarily x is a situation. Our expanded rule RN, proved in
(341.3.a), tells us that when we have a rigid restricted variable, then we can as-
sume that it ranges over objects that necessarily satisfy the restriction condition
on the variable whenever they satisfy the condition. For further discussion, see
Remarks (337), (340), and (341).

(473) Lemmas: Rigidity of Truth In a Situation. Our definitions and theorems
also guarantee that: (.1) p is true in s if and only if it is necessary that p is true
in s; (.2) it is possible that p is true in s if and only if p is true in s; (.3) it is
possible that p is true in s if and only if it is necessary that p is true in s; (.4)
actually p is true in s if and only if p is true in s; and (.5) p fails to be true in s
if and only if necessarily p fails to be true in s:

(.1) s |= p ≡ �s |= p

(.2) ♦s |= p ≡ s |= p
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(.3) ♦s |= p ≡ �s |= p

(.4) As |=p ≡ s |=p

(.5) ¬s |= p ≡ �¬s |= p

The proof of (.1) in the Appendix is in two parts. First, we prove the claim by
eliminating the restricted variable. Then we show how to prove the claim as
it is stated above with restricted variables, by making use of what we learned
in Remark (472) and in our discussion of reasoning with restricted variables in
(340) and (341).

12.1.3 Situation Identity and Parts of Situations

(474) Theorem: Situation Identity. A fundamental fact concerning situation
identity is now derivable, namely, that situations s and s′ are identical if and
only if they make the same propositions true:

s = s′ ≡ ∀p(s |= p ≡ s′ |= p)

This decides Choice 5 in Barwise 1989a (264) in favor of Alternative 5.1.

(475) Definition: Parts of Situations. We say that situation s is a part of situa-
tion s′, written sE s′, just in case every proposition true in s is true in s′:

sE s′ ≡df ∀p(s |= p→ s′ |= p)

This definition determines Choice 2 in Barwise 1989a (261), since it requires
that every part of a situation be a situation. By our conventions for using free
restricted variables in definitions-by-≡ (338.2), the above definition is short
for:

xE y ≡df Situation(x) & Situation(y) &∀p(x |= p→ y |= p)

(476) Theorems: Part of is a Partial Order on Situations. Part of is reflexive,
anti-symmetric, and transitive on the situations:

(.1) sE s

(.2) sE s′ & s,s′→¬(s′ E s)

(.3) sE s′ & s′ E s′′→ sE s′′

Whereas a partial ordering of situations by E is assumed in situation theory
(cf. Barwise 1989b 185; 1989a, 259), such an ordering falls out as a theorem of
object theory.
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(477) Theorems: Parts and Identity. Two other constraints on the identity of
situations are derivable, namely, that (.1) situations s and s′ are identical if and
only if each is part of the other, and that (.2) situations s and s′ are identical if
and only if they have the same parts:

(.1) s = s′ ≡ sE s′ & s′ E s

(.2) s = s′ ≡ ∀s′′(s′′ E s ≡ s′′ E s′)

In the usual way, when sE s′ and s , s′, it may be useful to say that s is a proper
part of s′.

(478) Definition: Persistency. In situation theory, a state of affairs p is persistent
if and only if whenever p holds in a situation s, p holds in every situation s′ of
which s is a part:

Persistent(p) ≡df ∀s(s |= p‘→∀s′(sE s′→ s′ |= p))

Cf. Barwise 1989a (265).

(479) Theorem: Propositions are Persistent. The following is therefore an im-
mediate consequence of the definitions of E and Persistent:

∀pPersistent(p)

Thus, our theory implies Alternative 6.1 at Choice 6 in Barwise 1989a (265).268

12.1.4 Comprehension Conditions for Situations

(480) Metadefinition: Conditions on Propositional Properties. In what fol-
lows, let us say that ϕ is a condition on propositional properties if and only if
there is a modally strict proof of: every property such that ϕ is a propositional
property, i.e.,

ϕ is a condition on propositional properties if and only if
`� ∀F(ϕ→ Propositional(F))

Note that, on this definition, F,F counts as a condition on propositional prop-
erties; one can derive the definiens by failure of the antecedent and GEN. But
no propositional property satisfies F , F. However, the definition rules out
formulas that are satisfied by non-propositional properties.269

268By its very set-up, our theory assumes Alternative 11.1 of Choice 11 (Barwise 1989a, 268): no
relations are perspectival. The argument places of a relation are now allowed to vary and so if
a relation R is a constituent of a state of affairs that is true in situation s, then R has the same
argument places in any situation s′ of which s is a part.
269For example, let ψ be the condition F = F & ¬P a, where P a is some contingently true fact

asserted as a modally fragile axiom. Intuitively, ψ shouldn’t count as a condition on propositional
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(481) Theorems: An Important Equivalence. Whenever ϕ is a condition on
propositional properties, then x is a situation that encodes all and only the
properties F such that ϕ if, and only if, x is an abstract object that encodes all
and only the properties F such that ϕ:

(Situation(x) &∀F(xF ≡ ϕ)) ≡ (A!x&∀F(xF ≡ ϕ)),
provided ϕ is a condition on propositional properties.

This theorem makes it easier to derive comprehension conditions for situa-
tions.

(482) Theorems: Comprehension Conditions for Situations. Where ϕ is a con-
dition on propositional properties in which x doesn’t occur free, there exists a
(unique) situation x that encodes all and only those properties F such that ϕ:

(.1) ∃x(Situation(x)&∀F(xF ≡ ϕ)), provided ϕ is a condition on propositional
properties in which x doesn’t occur free

(.2) ∃!x(Situation(x)&∀F(xF ≡ ϕ)), provided ϕ is a condition on propositional
properties in which x doesn’t occur free

Thus, whereas the classic works in situation theory (e.g., Barwise and Perry
1983, 7–8; Barwise 1989a, 261) assume the existence of situations, object the-
ory yields, as theorems, existence principles that comprehend the domain of
situations.

Notice also that with these theorems, we have developed a precise theory of
situations, since (.1) and (474), respectively, constitute fully general compre-
hension and identity principles for situations.

(483) Theorems: Canonical Situation Descriptions. It now follows that when
ϕ is a condition on propositional properties, there exists something which is
the situation that encodes exactly the properties F such that ϕ:

(.1) ıx(Situation(x)&∀F(xF ≡ ϕ))↓, provided ϕ is a condition on propositional
properties in which x doesn’t occur free

Moreover, it is straightforward to show:

(.2) ıx(Situation(x) &∀F(xF ≡ ϕ)) = ıx(A!x&∀F(xF ≡ ϕ)), provided ϕ is a con-
dition on propositional properties in which x doesn’t occur free

properties: at worlds where P a is false, every property is such that ψ. This intuition is preserved,
for we can’t show that ψ is a condition on propositional properties. Since P a is a (contingent)
axiom, it follows that ¬(F=F&¬P a), i.e., ¬ψ. So ψ→ Propositional(F), by (77.3). By GEN, ∀F(ψ→
Propositional(F)). But this universal generalization was proved by appeal to a contingency, namely
P a, and so fails to be a modally strict theorem, as required by the definition.
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Hence, when ϕ is a condition on propositional properties, we may say that
descriptions of the form ıx(Situation(x) & ∀F(xF ≡ ϕ)) and ıs∀F(sF ≡ ϕ) are
canonical situation descriptions. If permitted a modest abuse of language, we
may say that these canonical descriptions denote canonical situations (cf. (253)),
though see (486) for an simpler, alternative method of describing canonical
situations.

(484) Theorems: Canonical Situations and Rigid Conditions on Properties.
Since we’ve defined what it is for ϕ to be a condition on propositional prop-
erties (480) and what it is for ϕ to be a rigid condition on properties (260.1),
we may combine the two to talk about formulas ϕ that are rigid conditions
on propositional properties. Consequently, whenever ϕ is a rigid condition on
propositional properties, then it is a modally strict fact that if something is
identical to a canonical situation, then it encodes exactly the properties such
that ϕ:

y= ıs∀F(sF ≡ ϕ)→∀F(yF ≡ ϕ), provided ϕ is a rigid condition on propo-
sitional properties in which x isn’t free.

(485) Metadefinitions: Strict Canonicity and Situations. Given the preced-
ing results, we say that ıs∀F(sF ≡ ϕ) is a strictly canonical situation description
whenever ϕ is a rigid condition on propositional properties. In the usual way,
we sometimes abuse language to say that ıs∀F(sF ≡ ϕ) is a strictly canonical sit-
uation. Though this notion has now been defined in a familiar way, (486) below
offers simpler comprehension conditions for situations and simpler canonical
and strictly canonical descriptions for situations. Before we examine these de-
velopments, the reader may wish to try the following.

Exercises:

1. Show that ◦p (294), > (302.1), and ⊥ (302.2) are (identical to) canonical
situations.

2. Consider the following situation description:

ıs∀F(sF ≡ F=[λy Rab]∨F=[λy ¬Rba])

(a) Show that this is a canonical situation description; i.e., show that the
condition F = [λy Rab] ∨ F = [λy ¬Rba] is a condition on propositional
properties. (b) Show that this is a strictly canonical situation description.

3. Show that ◦p, >, and ⊥ are not (identical to) strictly canonical situations.

(486) Theorems: Simplified Comprehension Conditions for Situations and Sim-
pler Notions of (Strict) Canonicity. Without too much effort, one can show that
when ϕ is any formula in which s doesn’t occur free, there exists a situation
that makes true all and only the propositions such that ϕ:



524 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

(.1) ∃s∀p(s |= p ≡ ϕ), provided s doesn’t occur free in ϕ

Clearly, every formula ϕ constitutes a condition on propositions – if the vari-
able s occurs free in ϕ, then choose a variable, say s′, that doesn’t occur free in
ϕ and then the alphabetic variant ∃s′∀p(s′ |= p ≡ ϕ) becomes derivable. So the
above theorem schema offers unrestricted comprehension conditions for situ-
ations. This schema proves its worth primarily when one considers instances
in which the variable p occurs free in ϕ. But if the variable p doesn’t occur
free in ϕ, then ϕ places a vacuous condition on propositions – if ϕ is true, then
every proposition satisfies such a ϕ (with the resulting instance asserting the
existence of the a situation that encodes every proposition) and if ϕ is false,
then no proposition does (with the resulting instance asserting the existence of
a situation that encodes no propositions).

It follows, in the usual way, that (.2) there exists a unique situation that
makes true all and only the propositions p such that ϕ, and that (.2) the situa-
tion that makes true all and only the propositions p such that ϕ exists:

(.2) ∃!s∀p(s |= p ≡ ϕ), provided s doesn’t occur free in ϕ

(.3) ıs∀p(s |= p ≡ ϕ)↓, provided s doesn’t occur free in ϕ

Thus, we now have another canonical way of describing situations, namely, in
terms of the descriptions in (.3). So let us we continue with our innocuous
abuse of language and say that ıs∀p(s |= p ≡ ϕ) is a canonical situation. More-
over, if ϕ is a rigid condition on propositions, i.e., if `� ∀p(ϕ → �ϕ), then
ıs∀p(s |= p ≡ ϕ) is a strictly canonical situation. Thus we have the following
analogue of (484):

(.4) y= ıs∀p(s |= p ≡ ϕ)→∀p(y |= p ≡ ϕ),
provided ϕ is a rigid condition on propositions

Exercise: In light of the fact that truth-values are situations (468), we can sim-
plify the definition of TruthValueOf (x,p) that we introduced in Section 10.1.
Instead of the definition given in (286):

TruthValueOf (x,p) ≡df A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q])) (286)

we may instead define:

TruthValueOf (s,p) ≡df ∀q(s |= q ≡ (q ≡ p))

In other words, a situation s is a truth-value of p just in case all and only the
propositions q that are materially equivalent to p are true in s. Show that this
new definition is equivalent to (286). Then simplify and definitions and proofs
of the theorems in Section 10.1.270 Then show how to revise the definition
of ϕ-AbstractionOf (x,p) in (385.1), and derive (386.1), (386.3), and (387.1) in
light of the new definition.
270Since the revised definition of TruthValueOf (s,p) appears to be simpler than the original in
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12.1.5 Null and Trivial Situations

(487) Definitions: Null and Trivial Situations. We define: (.1) x is a null situa-
tion if and only if x is a situation in which no propositions are true, and (.2) x
is a trivial situation iff x is a situation in which every proposition is true:

(.1) NullSituation(x) ≡df Situation(x) &¬∃p(x |= p)

(.2) TrivialSituation(x) ≡df Situation(x) &∀p(x |= p)

(488) Theorems: Existence and Uniqueness of Null and Trivial Situations. It
is now easily established that (.1) there is a unique null situation and that (.2)
there is a unique trivial situation:

(.1) ∃!xNullSituation(x)

(.2) ∃!xTrivialSituation(x)

Consequently, it follows, by a modally strict proof that (.3) the null situation
exists, and that (.4) the trivial situation exists:

(.3) ıxNullSituation(x)↓

(.4) ıxTrivialSituation(x)↓

(489) Definitions: Notation for The Null Situation and The Trivial Situation.
We now introduce:

(.1) s
∅

=df ıxNullSituation(x)

(.2) sV =df ıxTrivialSituation(x)

In the notation s
∅

and sV , we use a boldface, italic s as part of the name. This
boldface, italic s is to be distinguished from the (nonbold, italic) restricted
variable s. The reason for this should be clear: expressions such as s

∅
and sV

(286), one might wonder why I didn’t change the order of presentation, and expound the theory
of situations prior to the theory of truth-values. I did consider revising the present work so as
to re-order the presentation, but in the end, I decided against doing so, for two reasons: (1) His-
torically, truth-values were systematized first; they are the very first logical objects introduced in
Frege’s Grundgesetze (1893) and they are introduced right at the outset, in I.1.§2, right after the
introduction of functions in I.1.§1. Given the subsequent importance of truth-values in the de-
velopment of contemporary logic and the relatively recent systemization of situations in Barwise
& Perry 1983, it seemed appropriate to present the theory of truth-values before presenting the
theory of situations. (2) There is a extended network of defined notions and theorems that have
to be introduced before one can prove the Simplified Comprehension Conditions for Situations in
(.1) above. It seemed to me that one could, and should, introduce truth-values directly, without all
of the intermediary notions of situation, truth in a situation, conditions on propositional properties,
theorems (481), (482.1), etc., all of which are needed to introduce and prove (.1) above. None of
this machinery is strictly necessary to define, and prove facts about, truth-values.
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(with nonbold italic s) should be used only when we are introducing functional
terms having denotations that vary with the value of s. By contrast, we are here
introducing new names for distinguished objects.

(490) Theorems: Facts About s
∅

and sV . It is now to be established that (.1)
if x is a null situation x is necessarily so, and (.2) if x is a trivial situation, x is
necessarily so:

(.1) NullSituation(x)→ �NullSituation(x)

(.2) TrivialSituation(x)→ �TrivialSituation(x)

From these, we may produce modally strict proofs of the following:

(.3) NullSituation(s
∅

)

(.4) TrivialSituation(sV )

(491) Theorems: Further Facts About Null and Trivial Situations. Recall that
we defined the null object a

∅
in (265.1) as ıxNull(x), where Null(x) was defined

in (263.1) as A!x & ¬∃FxF. Recall that we also defined the universal object
aV in (265.2) as ıxUniversal(x), where Universal(x) was defined in (263.2) as
A!x&∀FxF. It then follows that: (.1) NullSituation(x) and Null(x) are equivalent
conditions; (.2) the null situation is identical to the null object; and (.3) the
trivial situation is not identical to the universal object:

(.1) NullSituation(x) ≡Null(x)

(.2) s
∅

= a
∅

(.3) sV , aV

The proof of (.3) is especially interesting, since to show that the trivial situa-
tion and the universal object fail to be identical, we must find a property that
one encodes which the other doesn’t. Since the universal object encodes every
property whatsoever and the trivial situation encodes all and only proposi-
tional properties, we know the former encodes every property the latter en-
codes. So one has to show there is a property that the universal object encodes
that the trivial situation doesn’t. It suffices to prove the existence of a property
that is not a propositional property, and the proof of (.3) is interesting because
it does just that.

12.1.6 Actual Situations

(492) Definition: Actual Situations. We say that a situation s is actual iff every
proposition true in s is true:
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Actual(s) ≡df ∀p(s |= p→ p)

Note here that an actual situation has been defined in terms of truth, without
using the actuality operator. See Remark (494) below.

(493) Theorem: Some Actual Situations Might Not Be Actual. It is a conse-
quence of our definition of Actual that some actual situations might fail to be
actual:

∃s(Actual(s) &♦¬Actual(s))

The proof of this theorem identifies a witness (i.e., a situation) in which a con-
tingent truth is true. Of course, if s is a situation that is actual because every
proposition true in s is a necessary truth, then s couldn’t fail to be an actual
sitation.

(494) Remark: Actual vs. Actual∗ Situations. In (492), we defined an actual
situation s to be one such that every proposition true in s is true. We did not use
an actuality operator in the definiens. This is partly a gesture to the tradition:
the actuality of a situation hasn’t traditionally been defined in terms of an
actuality operator.

But one could say that a situation s is actual∗ just in case every proposition
true in s is actually true:

Actual∗(s) ≡df ∀p(s |= p→ Ap)

Given such a definition, a theorem emerges that stands in contrast to the fact
that actual situations that might not be actual (493). For it is provable that
every actual∗ situation is necessarily actual∗:

Actual∗(s)→ �Actual∗(s)

The proof is left to a footnote.271 In what follows, we shall work primarily with
the notion of an actual situation. It is important to keep in mind how it differs
from the notion of an actual∗ situation. In particular, we shall use the notion
of an actual situation to define an actual world, and so some of the theorems
governing this notion may not be subject to modally strict proofs.

(495) Theorems: Actual and Nonactual Situations. It is an immediate conse-
quence that there are both actual and nonactual situations:

271Assume Actual∗(s), i.e.,

(ϑ) ∀p(s |=p→ Ap)

We have to show �∀p(s |=p→ Ap). By BF (167.1), it suffices to show ∀p�(s |=p→ Ap). By GEN, it
suffices to show �(s |=p→ Ap), i.e., �(¬s |=p∨Ap). By (158.15), it suffices to show:

(ξ) �¬s |=p∨�Ap
But by (ϑ), we know s |=p→ Ap, i.e., ¬s |=p∨Ap. So we can show (ξ) by disjunctive syllogism from
this last fact. If ¬s |= p, then it follows by (473.5), �¬s |= p. Hence (ξ), by ∨I. If Ap, then �Ap, by
(46.1). Hence (ξ), by ∨I.
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(.1) ∃sActual(s)

(.2) ∃s¬Actual(s)

The theory therefore decides Choice 4 in Barwise 1989a (262) in favor of Alter-
native 4.2. Note, moreover, that some propositions are not true in any actual
situation:

(.3) ∃p∀s(Actual(s)→ ¬s |= p)

(496) Lemma: Embedding Situations in Another Situation. Where s′ and s′′

are any situations, there exists a situation s of which both s′ and s′′ are a part
and which is a part of every situation s′′′ of which both s′ and s′′ are a part:

∃s(s′ E s & s′′ E s & ∀s′′′(s′ E s′′′ & s′′ E s′′′→ sE s′′′))

It is tempting to call any such s a least upper bound on s′ and s′′, but we are
going to postpone further discussion of algebraic notions until Exercise (505)
below.

(497) Theorems: Facts About Actual Situations. (.1) If p is true in an actual
situation s, then s exemplifies being such that p, and (.2) for any two actual
situations, there exists an actual situation of which both are a part:

(.1) Actual(s)→ (s |= p→ [λy p]s)

(.2) (Actual(s′) & Actual(s′′))→∃s(Actual(s) & s′ E s & s′′ E s)

(.2) establishes what Barwise (1989b, 235) calls the Compatibility Principle.

12.1.7 Consistent, Possible and Incompatible Situations

(498) Definition: Consistency. A situation s is consistent iff there is no propo-
sition p such that both p is true in s and ¬p is true in s:

Consistent(s) ≡df ¬∃p(s |= p & s |= ¬p)

(499) Remark: Types of Consistency. We take the preceding definition of con-
sistency to be a standard one.272 However, it is interesting to consider how the
above definition differs from the suggestion that a situation s is consistent just
in case there is no proposition p such that the contradiction p&¬p is true in s:

Consistent∗(s) ≡df ¬∃p(s |= (p & ¬p))

272Our definition is clearly an object-theoretic counterpart of the classical syntactic definition of
a consistent set of sentences Γ . For example, in Enderton 1972 [2001, 134]), we find that a set of
sentences Γ is consistent iff there is no formula ϕ such that both Γ ` ϕ and Γ ` ¬ϕ.
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It is important to recognize that Consistent and Consistent∗ are independent
conditions; there are situations s such that Consistent(s) and ¬Consistent∗(s),
and there are situations s′ such that Consistent∗(s′) and ¬Consistent(s′).

To see the former, let q1 be any proposition and let s1 be the following
canonical situation, which we know exists by (486.3):

ıs∀p(s |= p ≡ p=(q1 &¬q1))

Clearly, s1 is (identical to) a strictly canonical situation, as this was defined at
the end of (486); if we let ϕ be the formula p=q1 &¬q1, then there is a modally
strict proof that ∀p(ϕ→ �ϕ). So it follows by modally strict means that exactly
one proposition, namely q1 &¬q1, is true in s1. Now since every proposition is
provably distinct from its negation, it follows that Consistent(s1), i.e., there is no
proposition p such that s1 |= p and s1 |= ¬p. However, clearly, ¬Consistent∗(s1),
since there is a proposition p, namely q1, such that s1 |= (p&¬p).

Now to see that there are situations s′ such that Consistent∗(s′) and ¬Consis-
tent(s′), first note that by (217), we know ∃pContingentlyTrue(p). Suppose q2 is
such a proposition, so that by definition (213.1), we know both q2 and ♦¬q2.
Now let s2 be the following situation:

ıs∀p(s |= p ≡ ((p=q2)∨ (p=¬q2)))

s2 is also (identical to) a strictly canonical situation (exercise). And so we can
establish, by modally strict means, that exactly two propositions, namely, q2

and ¬q2, are true in s2. But, from what we know about q2, it is easy to show
that there is no proposition p such that q2 = (p & ¬p), and that there is no
proposition p such that ¬q2 = (p&¬p).273 Hence, it follows that Consistent∗(s2),
since there is no proposition p such that s2 |= (p&¬p). But ¬Consistent(s2), since
there is a proposition p, namely, q2, such that both s2 |= p and s2 |= ¬p.

Thus, Consistent and Consistent∗ are independent notions. However, as we
shall see, the notions are equivalent with respect to actual and possibly actual
situations.

(500) Theorem: Actual Situations are Consistent. If a situation s is actual, then
it is consistent:

Actual(s)→ Consistent(s)

Thus, we’ve derived what Barwise (1989b, 235) calls the Coherency Principle
for actual situations. (We’ll introduce a different notion of coherency below.)

Exercise: Using the definition of consistent∗ in Remark (499), show (a) that
actual situations are consistent∗ and (b) that if s is actual, then s is consistent if
and only if s is consistent∗.
273There can’t be a proposition p such that q2 = (p & ¬p) since q2 is true (by hypothesis) while
p&¬p is false for every p (by theorem). Moreover, there can’t be a proposition p such that ¬q2 =
(p&¬p) since ♦¬q2 is true (by hypothesis) and ♦(p&¬p) is false for every p (by theorem).
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(501) Lemmas: Facts About Consistency. Note also that: (.1) a situation s fails
to be consistent if and only if s necessarily fails to be consistent; and (.2) a
situation s is possibly consistent if and only if s is consistent:

(.1) ¬Consistent(s) ≡ �¬Consistent(s)

(.2) ♦Consistent(s) ≡ Consistent(s)

(502) Definition: Possible Situations. We say that a situation s is possible iff it
is possible that s is actual:

Possible(s) ≡df ♦Actual(s)

(503) Theorem: Facts About Possible Situations. Clearly, (.1) if a situation s is
actual, then it is possible; and (.2) if some impossible proposition p is true in s,
then s is not possible:

(.1) Actual(s)→ Possible(s)

(.2) ∃p((s |= p) &¬♦p)→¬Possible(s)

(504) Theorems: Consistency and Possible Situations. (.1) Possible situations
are consistent; and (.2) there are situations that are consistent but not possible:

(.1) Possible(s)→ Consistent(s)

(.2) ∃s(Consistent(s) &¬Possible(s))

One can see why (.2) is a theorem by considering situation s1 discussed in Re-
mark (499), in which a single proposition, namely q1 &¬q1, is true. s1 is con-
sistent, for inconsistency requires that at least two propositions be true in s1,
namely, some proposition and its (distinct) negation. But s1 is not possible; it
couldn’t be the case that every proposition true in s1 is true. A fuller proof is
in the Appendix.

Exercise: Using the definition of consistent∗ in Remark (499), show (a) that
possible situations are consistent∗ and (b) that if s is possible, then s is consis-
tent if and only if s is consistent∗.

(505) Exercises: Sum (Join, Fusion) and Product (Meet) Operations on Situ-
ations and a Bounded Lattice. Let us define binary sum (join, or fusion) and
product (meet) operations on situations, ⊕ and ⊗, respectively, as follows: (.1)
s′ ⊕ s′′ is the situation s that makes true all and only the propositions p such
that either s′ or s′′ make p true, and (.2) s′ ⊗ s′′ is the situation that makes true
all and only the propositions p such that both s′ and s′′ make p true:

(.1) s′ ⊕ s′′ =df ıs∀p(s |= p ≡ s′ |= p∨ s′′ |= p))
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(.2) s′ ⊗ s′′ =df ıs∀p(s |= p ≡ s′ |= p& s′′ |= p))

So⊕ and⊗ are binary term-forming operation symbols that are well-defined on
any pair of situation terms. As the first step in this exercise, the reader should
confirm that s′ ⊕ s′′ and s′ ⊗ s′′ are (identical to) strictly canonical situations,
i.e., that `� ∀p(ϕ → �ϕ) when (.3) ϕ is s′ |= p ∨ s′′ |= p and when (.4) ϕ is
s′ |= p& s′′ |= p:

(.3) `� ∀p((s′ |= p ∨ s′′ |= p)→ �(s′ |= p ∨ s′′ |= p))

(.4) `� ∀p((s′ |= p& s′′ |= p)→ �(s′ |= p& s′′ |= p))

As the next step in the exercise, use (.3) and (.4) to give modally strict proofs
of the following laws for join and meet:

(.5) s⊕ s = s
s⊗ s = s (Idempotence)

(.6) s⊕ s′ = s′ ⊕ s
s⊗ s′ = s′ ⊗ s (Commutativity)

(.7) s⊕ (s′ ⊕ s′′) = (s⊕ s′)⊕ s′′
s⊗ (s′ ⊗ s′′) = (s⊗ s′)⊗ s′′ (Associativity)

(.8) s⊕ (s⊗ s′) = s
s⊗ (s⊕ s′) = s (Absorption)

These laws are characteristic of lattices, as defined algebraically. We leave it as
a further exercise to show that the situations form a bounded lattice, i.e., that
s
∅

and sV serve as the identity elements for ⊕ and ⊗, respectively, i.e., that:

(.9) s⊕ s
∅

= s

(.10) s⊗ sV = s

Finally, the reader may find it interesting to confirm that s is a part of s′ if and
only if the sum of s and s′ just is s′:

(.11) sE s′ ≡ s⊕ s′ = s′

Cf. (629). (.11) is not unrelated to the theorems that show E to be a reflexive,
anti-symmetric and transitive condition on situations (476.1) – (476.3).

We’ve configured the above as exercises because later we shall develop ex-
tend these operations and develop even more general results. The study of
(Leibnizian) concepts, in subsection 13.1.4 of Chapter 13, will establish that
there are operations ⊕ and ⊗ that operate on abstract objects generally (though
viewed in the guise of concepts). These operations show that the entire domain
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of abstract objects is structured as a bounded lattice and, indeed, as a Boolean
algebra.

(506) Definitions and Theorems: Notions of Incompatible Situations. Recall
that by (199.7), p = ¬p. With this in mind, we may formulate three different
conditions under which situations s and s′ are incompatible:

• s and s′ are incompatible situations just in case there is a proposition p
such that p true in s and p is true in s′.

• s and s′ are incompatible situations just in case there are propositions p
and q such that (a) the conjunction of p and q is impossible, (b) p is true
in s, and (c) q is true in s′.

• s and s′ are incompatible situations just in case there are propositions p
and q such that (a) the conjunction of p and q is false, (b) p is true in s,
and (c) q is true in s′.

We may label these notions, respectively, as s and s′ are explicitly-incompatible
(written: s!s’), s and s′ are modally-incompatible (written: s�s′), and s and s′

are factually-incompatible (written: s|s′), formalized as follows:

(.1) s!s′ ≡df ∃p(s |= p & s′ |= p)

(.2) s�s′ ≡df ∃p∃q(¬♦(p& q) & s |= p & s′ |= q)

(.3) s|s′ ≡df ∃p∃q(¬(p& q) & s |= p & s′ |= q)

Clearly, (.4) explicit incompatibility implies modal incompatibility, (.5) modal
incompatibility implies factual incompatibility, and (.6) explicit incompatibil-
ity implies factual incomptability:

(.4) s!s′→ s�s′

(.5) s�s′→ s|s′

(.6) s!s′→ s|s′

However, (.7) modal incompatibility doesn’t imply explicit incompatibility, (.8)
factual incompatibility doesn’t imply explicit incompatibility, and (.9) factual
incompatibility doesn’t imply modal incompatibility:

(.7) ∃s∃s′(s�s′ &¬s!s′)

(.8) ∃s∃s′(s|s′ &¬s!s′)

(.9) ∃s∃s′(s|s′ &¬s�s′)
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The proofs in the Appendix construct witnesses to the existential claims.

Exercises: Use definition (505.1) of the sum/join/fusion operation ⊕ on situa-
tions to show:

s!s′→ (s⊕ s′′)!(s′ ⊕ s′′′)

s� s′→ (s⊕ s′′)� (s′ ⊕ s′′′)

s|s′→ (s⊕ s′′)|(s′ ⊕ s′′′)

(507) Theorems: Incompatibility, Consistency, and Possibility. We now exam-
ine simple consequences of our definitions that show how the variable forms
of incompatibility line up with our notions of consistency and possibility. (.1)
if s and s′ are explicitly incompatible, then there is no consistent situation of
which they are both a part; (.2) if s and s′ are modally incompatible, then there
is no possible situation in which they are both a part; and (.3) if s and s′ are
explicitly incompatible, then there is no possible situation of which they are
both a part:

(.1) s!s′→¬∃s′′(Consistent(s′′) & sE s′ & s′ E s′′)

(.2) s�s′→¬∃s′′(Possible(s′′) & sE s′ & s′ E s′′)

(.3) s!s′→¬∃s′′(Possible(s′′) & sE s′ & s′ E s′′)

12.1.8 The Routley Star Operation on Situations

The Routley ‘star’ operation was initially introduced in Routley & Routley
1972. Their study of the semantics of entailment assumed the existence of sit-
uations (‘set-ups’) that are neither consistent nor maximal (ibid., 335–339).274

(508) Definitions and Theorems. For any situation s, we may define (.1) the
Routley star image of s, written s∗, as the situation s′ that makes a proposition
p true just in case the negation of p fails to be true in s:

(.1) s∗ =df ıs
′∀p(s′ |= p ≡ ¬s |= p)

Clearly, for any s, we know s∗↓, since s∗ has been defined in terms of a strictly
canonical description. So by familiar, modally strict reasoning it follows that
(.2) s∗ makes p true just in case p fails to be true in s:

274Some logicians use the term ‘non-normal worlds’ to describe situations that are neither max-
imal (complete) nor consistent. The Routleys, however, used the term ‘world’ for consistent and
maximal situations (1972, 339). In what follows, we reserve the term ‘world’ for maximal situa-
tions, where a maximal situation s is defined in (520) below as one such that, for every proposition
p, either s makes p true or s makes the negation of p true. Thus, possible worlds will be maximal
situations that are possible, while impossible worlds will be ones that are not.
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(.2) ∀p(s∗ |= p ≡ ¬s |= p)

Before we explore the consequences of s∗ as just defined, it is important to
digress for a moment to consider an alternative definition. One might suppose
that instead of s∗ being the situation that makes true the propositions whose
negations fail to be true in s, one might consider defining s∗ as the situation
that makes true all the negations of propositions that fail to be true in s, i.e., in
terms of the following definition and consequence:

s∗ =df ıs
′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q))

∀p(s∗ |= p ≡ ∃q(¬s |= q& p=q))

On this definition, s∗ would make p true just in case p is the negation of some
proposition that fails to be true in s. Note that in object theory, the condition
∃q(¬s |= q&p=q) used in this alternative definition is not equivalent to the con-
dition ¬s |= p used in (.1). The two conditions become equivalent only under
the assumption that propositions are identical to their double negations, i.e.,

(ϑ) ∀p(p = p)

For note how (ϑ) plays a role in the proof of both directions of the biconditional
asserting the equivalence:

∃q(¬s |= q& p=q) ≡ ¬(s |= p)

Proof : (→) Assume ∃q(¬s |= q& p = q) and suppose it is r, so that ¬(s |=
r)&p=r. Now it is easy to show that ∀p∀q(p=q→ p=q). So ¬(s |= r)&p=
r. But by (ϑ), it then follows that ¬(s |= r) & p= r. Hence, ¬(s |= p). (←)
Assume ¬(s |= p). Then ¬(s |= p) & p = p. So, by (ϑ), ¬(s |= p) & p = p.
Existentially generalizing on p, we obtain ∃q(¬(s |= q) & p = q).

Since object theory doesn’t imply (ϑ) and is consistent with the hyperinten-
sional claim that propositions and their double negations are distinct (albeit
necessarily equivalent), we can’t use the alternative definition that replaces
¬s |= p in (.1) with ∃q(¬s |= q& p=q).

So to properly capture the definition in Routley & Routley 1972 (338),
where they stipulate, that in their canonical model:

H ∗ just is the class of propositions A such that ¬A is not in H

we use the condition ¬s |= p, as we’ve done in (.1).
We can now easily confirm that (.1) is correct by establishing that s∗ behaves

as designed. It is straightforward to see that (.3) if s is consistent w.r.t. p (i.e.,
either p is true in s and p is not, or p is true in s and p is not), then p is true in
s∗ if and only if p is true in s:
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(.3) ((s |= p&¬s |= p)∨ (s |= p&¬s |= p))→ (s∗ |= p ≡ s |= p)

Next, (.4) a situation is classical w.r.t. double negation (i.e., for every p, s makes
p true iff s makes p true) just in case s∗∗ = s:

(.4) ∀p(s |= p ≡ s |= p) ≡ s∗∗= s

Cf. Routley & Routley 1972, 338, where it is noted that s is classical (‘normal’)
w.r.t. double negation when s∗∗ = s.

It also follows that when s is classical w.r.t. double negation, then that s∗∗

exhibits additional intended behavior, for (.5) if s is classical w.r.t. double nega-
tion, then if s has a ‘gap’ with respect to q (i.e., ¬s |= q and ¬s |= q), then s∗ has a
‘glut’ with respect to q (i.e., s∗ |= q and s∗ |= q); and (.6) if s is classical w.r.t. dou-
ble negation, then if s has a glut with respect to q, then s∗ has a gap with respect
to q:

(.5) ∀p(s |= p ≡ s |= p)→ ((¬s |= q&¬s |= q)→ (s∗ |= q& s∗ |= q))

(.6) ∀p(s |= p ≡ s |= p)→ ((s |= q& s |= q)→ (¬s∗ |= q& s∗ |= q))

Finally, our definitions imply that (.7) if s is classical w.r.t. double negation,
then s is not explicitly incompatible with s∗; (.8) if s is not incompatible with
s′ and s′ is classical w.r.t. double negation, then s′ is a part of s∗; and (.9) if s
is not incompatible with s′ and s′ is classical w.r.t. double negation, then the
sum/fusion of s′ and s∗ just is s∗

(.7) ∀p(s |= p ≡ s |= p)→¬s!s∗

(.8) ¬s!s′ &∀p(s′ |= p ≡ s′ |= p)→ s′ E s∗

Thus, (.7) and (.8) jointly imply that s∗ is the ‘largest’ situation (classical w.r.t.
double negation) not explicitly incompatible with s. Finally, for those who
completed the Exercises in (505):

Exercise: ¬s!s′ &∀p(s′ |= p ≡ s′ |= p)→ s′ ⊕ s∗ = s∗)

The reader should confirm that this follows from (.8) by Exercise (505.11).

(509) Remark: On the Ontology of HYPE. Leitgeb (2019, 321ff) builds a se-
mantics for a system of hyperintensional propositional logic (‘HYPE’). He first
builds a propositional language L by starting with atomic propositional letters
p1,p2, . . ., and logical symbols ¬, ∧, ∨, →, and > (where → does not express
the material conditional). He writes pi for ¬pi , where pi is just an abbreviation
for pi . The proposition letters and their negations constitute the literals. Leit-
geb then constructs HYPE-models for such a propositional language in terms
of structures 〈S,V ,◦,⊥〉, where the elements of the model are simultaneously
constrained by the requirements of a Routley star operation ∗. First, we may
describe the elements of the models as follows (Leitgeb 2019, 321–22):
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• S is a non-empty set of states.

• V is a function (the valuation function) from S to the power set of the set
of literals of the language L, so that each state s in S is associated with a
set of literals V (s).

• ◦ is a partial fusion function on states that is idempotent and, when de-
fined, commutative and partially associative.

• ⊥ is a relation of incompatibility that relates states s and s′ when some
proposition p is true at one and its negation p is true at the other.

Moreover, the requirements on the Routley star operation are that:

• V (s∗) = {v |v 6∈ V (s) },

• s∗∗ = s,

• s and s∗ are not incompatible, i.e., ¬(s ⊥ s∗), and

• s∗ is the largest state compatible with s, i.e., if s is not incompatible with
s′, then the fusion of s′ and s∗ is defined and the fusion of s′ ◦ s∗ = s∗.

In object theory, we may partially reconstruct the elements of HYPE mod-
els, in the spirit of footnote 9 (Leitgeb 2019, 323). First we work our way
to a definition of a HYPE-state, by first defining atomic-, literal-, and HYPE-
propositions:

Atomic(p) ≡df ∃Fn∃x1 . . .∃xn(p = [λFnx1 . . .xn])

Literal(p) ≡df ∃q(Atomic(q) & (p=q∨ p=q))

HYPE(p) ≡df Literal(p) & p=p

HYPE-state(x) ≡df Situation(x) &∀p(x |= p→HYPE(p))

So we’re identifying HYPE-states not as primitive entities but as situations.
Thus when Leitgeb speaks of the members of V (s) as the facts or states of affairs
obtaining at s (2019, 322), we may interpret this in terms of our defined notion
proposition p is true in situation s, as follows:

p ∈ V (s) ≡df s |= p

Note that object theory doesn’t guarantee the existence of HYPE-propositions,
since it is consistent with the claim that p , p. That is, object theory exhibits
hyperintensionality at the level of propositions: though �(p ≡ p) is a theorem,
it doesn’t follow that p = p. So in Leitgeb’s initial construction of HYPE models,
this kind of hyperintensionality is omitted; later, however, a negated formula
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¬A is defined to be true in a HYPE-state s just in case s is incompatible with
every state in which A is true (2019, 326, Df. 5).

Consequently, let us assume, for the remainder of this Remark, that there
are HYPE propositions, so as to guarantee the existence of HYPE-states, and
let p be a restricted variable over HYPE-propositions and ‘s’ be a restricted
variable for HYPE-states (defined above as object-theoretic situations). Then
object theory yields comprehension conditions for HYPE-states, which follow
a fortiori from (486.2):

∃!s∀p(s |= p ≡ ϕ),
provided ϕ is a condition on HYPE-propositions in which s isn’t free

Next, if we put aside, for the moment, the fact that ◦ in HYPE is a partial binary
operation and instead take it to be a total binary fusion operation, then we can
model it in terms of the ⊕ operation on situations that was defined in (505.1).
As Exercises (505.5) – (505.7) demonstrate, ⊕ is idempotent, commutative, and
associative with respect to the situations. But to model the partiality that ◦
exhibits in HYPE, one must introduce a ternary relation R3 that may or may
not relate a pair of situations s and s′ to a unique third situation ıuRss′u. We
leave the details for another occasion.275

Clearly, we can model the HYPE relation s ⊥ s′ in terms of the explicit incom-
patibility condition s!s′. The two principles governing s ⊥ s′ in HYPE (Leitgeb
2019, 322) can be represented in object theory and derived as the following
two theorems:

• (s |= p& s′ |= p)→ s!s′

• s!s′→ (s⊕ s′′)!(s′ ◦ s′′′)

The first follows from the definition of s!s′ (506.1), while the second is the first
Exercise at the end of (506).

Finally, note that the Routley star operation in defined in HYPE as V (s∗) =
{v |v 6∈ V (s) }, instead of as V (s∗) = {v |v 6∈ V (s) }. However, these two definitions
of V (s∗) collapse given that p and p are identified in the propositional lan-
guage L (as noted above). As we saw in the discussion immediately following
(508.2), when ∀p(p=p), the definition of s∗, as the situation that makes true all

275Intuitively, R would be a partial operation that is idempotent and commutative when
(ıuRss′u)↓. Then we could further stipulate that R and the HYPE ◦ operation must meet the
following conditions:

s ◦ s′ =df ıs
′′∀p(s′′ |= p ≡ s |= p ∨ s′ |= p ∨ ıu(Rss′u) |= p)

ıs4Rs1((s1 ◦ s2) ◦ s3)s4 E (s1 ◦ s2) ◦ s3
The intuition here is that R ensures that s◦s′ contains propositions other than the ones that are in s
and s′. Constraints on R make the conditions (idempotence, commutativity when defined, partial
associativity when defined) true. The extra constraint on R guarantees partial associativity.
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the propositions whose negations fail to be true in s, becomes equivalent to the
definition of s∗ as the situation that makes true all of the negations of propo-
sitions that fail to be true in s. So, by identifying p = p in the HYPE language
L, HYPE models exhibit ∀p(p ∈ V (s) ≡ p ∈ V (s)). In object-theoretic terms, this
condition becomes ∀p(s |= p ≡ s |= p). As we saw in (508.4), this last condition
is equivalent to s∗∗ = s.

Thus, the Routley star operation in HYPE can by modeled by the operation
s∗ defined in (508.1). Under the stipulation that s∗∗ = s, the theorems governing
s∗ in (508.3) – (508.7) match the requirements of the Routley star operation
defined in Leitgeb 2019 (322), modulo the partiality of the HYPE ◦ operation.

12.2 Possible Worlds

(510) Remark: On the Nature of Possible Worlds. It is only relatively recently
that philosophers and logicians have started to think seriously and systemati-
cally about the nature of possible worlds. Of course, Leibniz mentioned them
in both his Theodicy (T 128 = G.vi 107) and in the Monadology §53 (PW 187
= G.vi 615–616). But contemporary philosophers have expressed skepticism
about Leibniz’s conception of possible worlds, as in the following passage in
Stalnaker 1976 (65):276

According to Leibniz, the universe—the actual world—is one of an infi-
nite number of possible worlds existing in the mind of God. God created
the universe by actualizing one of these possible worlds—the best one. It
is a striking image, this picture of an infinite swarm of total universes,
each by its natural inclination for existence striving for a position that can
be occupied by only one, with God, in his infinite wisdom and benevo-
lence, settling the competition by selecting the most worthy candidate. But
in these enlightened times, we find it difficult to take this metaphysical
myth any more seriously than the other less abstract creation stories told
by our primitive ancestors. Even the more recent expurgated versions of
the story, leaving out God and the notoriously chauvinistic thesis that our
world is better than all the rest, are generally regarded, at best, as fanciful
metaphors for a more sober reality.

So let’s, for the moment, suspend judgment about Leibniz’s conception of pos-
sible worlds, and instead focus next on Wittgenstein’s famous characterization
of the actual world in the opening lines of his Tractatus (1921), where we find
the claims “The world is all that is the case” and “The world is the totality of

276One shouldn’t conclude on the basis of this passage that Stalnaker is a possible worlds skeptic,
since he goes on to employ possible worlds in his work on the analysis of counterfactual condi-
tionals. He just takes them to be properties of a special kind. See the discussion below.
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facts, not of things” (1921, 7, Propositions 1 and 1.1). It is unclear whether
Wittgenstein had a view about nonactual possible worlds; subsequent propo-
sitions in the Tractatus mention possible states of affairs but the text doesn’t ex-
plicitly say whether any are so total and complete as to constitute a possible
world (see, e.g., Propositions 2.012, 2.0124, and 2.013 in the Tractatus). Inter-
estingly, Carnap (1947, 9) interpreted Wittgenstein’s text as if some are.

In what follows, we shall be attempting to prove theorems about the nature
of possible worlds; we shall not be interested in models of them. We take it
that possible worlds are none of the following: (a) complete and consistent sets
of sentences, of the kind described in Lindenbaum’s Lemma (Tarski 1930, 34,
fn. ‡), (b) state descriptions, as defined by Carnap (1947, 9), (c) model sets, as
defined by Hintikka (1955), (d) variable assignments agreeing on the values of
the individual variables, as defined by Kripke (1959, 2–3), or (e) Tarski models,
as put to use in Montague 1960. Similarly, I take the following works to con-
tain mathematical models, not theories, of possible worlds: (f) Pollock 1967
(317), in which a possible world is identified as any set of states of affairs that
is maximal and consistent, (g) Quine 1968 (14–16), in which possible worlds
are identified with sets of quadruples of real numbers representing the coordi-
nates of spacetime points occupied by matter, (h) Cresswell 1972a (6), in which
possible worlds are identified as sets of basic particular situations, (i) Adams
1974 (225), in which talk of possible worlds is reduced to talk about maximal,
consistent sets of propositions (‘world-stories’), and (j) Menzel 1990 (371ff),
in which appropriately structured Tarski models represent possible worlds in
virtue of having the modal property possibly being a representation of the way
things are. The proposals mentioned in (a) – (j) fail to be theories of possi-
ble worlds because possible worlds, whatever they are, are not mathematical
objects.277 They are not sets of formal sentences, sets of propositions, sets of
states of affairs, formal models, model sets, or assignments to variables. Of
course, for some purposes, these mathematical objects might serve to represent
possible worlds, but our interest is in the worlds as objects in their own right.

Although the notion of possible world gained currency in the 1950s, the
philosophers and logicians in that decade weren’t especially interested in their

277The physicist Mark Tegmark (2008) asserts that the physical universe is a mathematical struc-
ture. Of course, this modern-day Pythagoreanism requires an analysis of what a mathematical
structure is, something Tegmark doesn’t provide. By contrast, we shall analyze mathematical
structures as certain abstract objects. See Chapter 15. Hence, even if Tegmark is right about what
the physical universe is, the present theory offers a further analysis of the mathematical structure
in question.

For the present purposes, however, it suffices to note that Tegmark’s conception of a physical
universe as a mathematical structure doesn’t lead to a theory of worlds as mathematical structures.
Possible worlds are objects whose identity is, in part, tied to the non-mathematical propositions
that are true or false at them; mathematical structures are just not the kind of thing at which
non-mathematical propositions can be true or false.
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nature as entities in their own right. Copeland (2006, 381) describes a letter
from Carew Meredith to Arthur Prior, dated 10 October 1956, in which Mered-
ith uses the term ‘possible world’ when demonstrating how to falsify a certain
formula. Copeland also describes a 1957 lecture handout from Timothy Smi-
ley at the University of Cambridge, which indicates that necessary truths are
true in all ‘possible worlds’, and a proposition is possible if it is true in some
‘possible world’ (2002, 121; 2006, 385; quotes in the original).278 Moreover,
Hintikka (1957, 61–62) suggested that models and model sets:

. . . correspond to the different situations we want to consider in modal
logic, and they are interconnected, in the first place, by a rule saying (roughly)
that whatever is necessarily true in the actual state of affairs must be (sim-
ply) true in all the alternative states of affairs.

The text doesn’t make it clear whether “alternative states of affairs” can be
partial (i.e., similar to situations) or are always total (and hence alternative
possible worlds). Finally, though Kripke (1959) interprets modal logic in terms
of a set of alternative assignments to variables, he then says (1959, 2):

The basis of the informal analysis which motivated these definitions is that
a proposition is necessary if and only if it is true in all “possible worlds”.
(It is not necessary for our present purposes to analyze the notion of a
“possible world” any further.)

These invocations of possible worlds played an important role in the develop-
ment of the semantics of modal logic in the early 1960s (Kripke 1963a, 1963b;
Prior 1963). In all of these cases, however, it is fair to say that modal logicians
weren’t yet interested in the nature of the possible worlds, even though they
thought that some such notion helps us to understand formal frameworks for
interpreting modal language.

The study of the nature of possible worlds began in earnest when Lewis
(1968) introduced axioms governing worlds. Though Lewis was, in the 1968
paper, primarily interested in formulating his ‘counterpart theory’ of possi-
bilia, his axioms used variables ranging over worlds and implicitly defined
properties he took worlds to have. His work gave rise to the goal of precisely
specifying the nature of possible worlds, however, and theories of them were
subsequently developed in a variety of other works, including Lewis 1973;
Plantinga 1974, 1976; Fine 1977; Chisholm 1981; Zalta 1983; Pollock 1984;
Lewis 1986; Armstrong 1989, 1997; and Stalnaker 2012.279

278In Copeland 2002, footnote 25, and again in Copeland 2006, footnote 18, we find an acknowl-
edgment to David Shoesmith for providing a copy of the lecture handout. I’ve not been able to
acquire a copy.
279Interestingly, Stalnaker’s position, until 2012, was that one can assume the existence of pos-
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It is worthwhile recalling a famous passage in the work of David Lewis that
contains a kind of credo and justification for the belief in possible worlds (Lewis
1973, 84):

I believe that there are possible worlds other than the one we happen to
inhabit. If an argument is wanted, it is this. It is uncontroversially true
that things might be otherwise than they are. I believe, and so do you,
that things could have been different in countless ways. But what does
this mean? Ordinary language permits the paraphrase: there are many
ways things could have been besides the way they actually are. On the
face of it, the sentence is an existential quantification. It says that there ex-
ist many entities of a certain description, to whit ‘ways things could have
been’. I believe things could have been in countless ways; I believe permis-
sible paraphrases of what I believe; taking the paraphrase at its face value,
I therefore believe in the existence of entities that might be called ‘ways
things could have been’. I prefer to call them possible worlds.

Lewis, in a later work, offers a further justification for belief in possible worlds.
He writes (1986, 3):

Why believe in a plurality of worlds? – Because the hypothesis is service-
able, and that is a reason to think that it is true. The familiar analysis of
necessity as truth at all possible worlds was only the beginning. In the last
two decades, philosophers have offered a great many more analyses that
make reference to possible worlds, or to possible individuals that inhabit

sible worlds in semantic analysis without endorsing any particular theory about their nature. In
1984 (Chapter 3), the final paragraph of his 1976 paper is revised and expanded, to include the
following (57):

. . . the moderate realism I want to defend need not take possible worlds to be
among the ultimate furniture of the world. Possible worlds are primitive notions
of the theory, not because of their ontological status, but because it is useful to the-
orize at a certain level of abstraction, a level that brings out what is common in a
certain range of otherwise diverse activities. The concept of possible worlds that I
am defending is not a metaphysical conception, although one application of the no-
tion is to provide a framework for metaphysical theorizing. The concept is a formal
or functional notion, like the notion of individual presupposed by the semantics for
extensional quantification theory. . . .

Similarly, a possible world is not a particular kind of thing or place. The the-
ory leaves the nature of possible worlds as open as extensional semantics leaves the
nature of individuals. A possible world is what truth is relative to, what people
distinguish between in their rational activities. To believe in possible worlds is to
believe only that those activities have a certain structure, the structure which possi-
ble worlds theory helps to bring out.

But in 2012 (8), Stalnaker puts forward the suggestion that possible worlds are properties, i.e.,
ways a world might be. So a possible world is “the kind of thing that is, or can be, instantiated or
exemplified” (2012, 8).
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possible worlds. I find that record most impressive. I think it is clear that
talk of possibilia has clarified questions in many parts of the philosophy
of logic, mind, of language, and of science – not to mention metaphysics
itself. Even those who officially scoff often cannot resist the temptation to
help themselves abashedly to this useful way of speaking.

And on the page before, Lewis states what seems to be the most important prin-
ciple governing worlds, namely, “. . . absolutely every way that a world could
possibly be is a way that some world is” (1986, 2, [emphasis in the original]).

It is not surprising that Lewis’ suggestion, that possible worlds are physic-
ally-disconnected concrete entities inhabiting some logical space, was contro-
versial. Van Inwagen 1986 (185–6) contrasts two of the leading conceptions of
worlds that emerged:

Lewis did not content himself with saying that there were entities prop-
erly called ‘ways things could have been’; . . . He went on to say that what
most of us would call ‘the universe’, the mereological sum of all the furni-
ture of earth and the choir of heaven, is one among others of these ‘possible
worlds’ or ‘ways things could have been’, and that the others differ from it
“not in kind but only in what goes on in them” (Lewis 1973, 85).

Whether or not the existence of a plurality of universes can be so eas-
ily established, the thesis that possible worlds are universes is one of the
two ‘concepts of possible worlds’ that I mean to discuss. . . . The other con-
cept I shall discuss is that employed by various philosophers who would
probably regard themselves as constituting the Sensible Party: Saul Kripke,
Robert Stalnaker, Robert Adams, R.M. Chisholm, John Pollock, and Alvin
Plantinga.[3] These philosophers regard possible worlds as abstract objects
of some sort: possible histories of the world, for example, or perhaps prop-
erties, propositions or states of affairs.

Van Inwagen goes on to call Lewis a ‘concretist’ about worlds while the mem-
bers of the ‘Sensible Party’ are called ‘abstractionists’. The main difference
between these two conceptions is whether worlds are to be defined primarily
in terms of a part-whole relation (concretists) or in terms of the propositions
true at them (abstractionists).

Given this opposition, it seems that the abstractionist conception is a kind
of generalization of Wittgenstein’s view of the actual world in the Tractatus,
mentioned above. But Menzel (2015) notes that there is a third important con-
ception of worlds, namely, the ‘combinatorialist’ conception, on which possible
worlds are taken to be “recombinations, or rearrangements, of certain meta-
physical simples,” where “both the nature of simples and the nature of recom-
bination vary from theory to theory” (Section 2.3). This view is exhibited in
the work of Quine, Cresswell, and Armstrong, op. cit.. On Menzel’s analysis,
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Wittgenstein’s view is more closely allied with the combinatorialist concep-
tion than the abstractionist one.280 Of course, if one defines actualism in some
other way (i.e., other than by eschewing possible but non-actual objects), then
the present theory might fail to be actualist.

With these introductory remarks, we may turn to the subtheory of possible
worlds that is developed in object theory. I take the theory described below
to be unique in that the principles governing worlds are precisely derived as
theorems rather than stipulated as axioms. Some of the theorems below may
already be familiar, having appeared in Zalta 1983 (78–84), 1993, Fitelson &
Zalta 2007, Bueno, Menzel & Zalta 2014, and Menzel & Zalta 2014. Many of
these theorems have been reworked and enhanced in several ways. Moreover,
the theorems now have greater significance, since object theory now asserts
that every formula signifies a proposition (104.2), including those with encod-
ing subformulas or encoding formulas as subterms. So when the theory im-
plies, for an arbitrary possible world w, that w is maximal (i.e., implies that for
every proposition p, either p is true at w or ¬p is true at w), every formula can
be instantiated for the universal quantifier over all propositions.281

Even with these improvements, the basic idea has remained the same: pos-
sible worlds are defined to be situations of a certain kind and, hence, abstract
individuals.282 Thus, our conception of worlds can be traced back to Wittgen-

280See again Menzel 1990, where a way that philosophers might do without possible worlds al-
together is suggested. Menzel develops a homophonic interpretation of modal language that may
suffice for the purposes of analyzing our modal beliefs. Menzel suggests that we use certain Tarski
models to represent the possible worlds of Kripke models and then he attributes modal properties
to them. On Menzel’s proposal, a Tarski model meeting certain conditions could have represented
the world as it would have been had things been different. One could put the view more simply
as follows: each such Tarski model might have been a model of the actual world. So not only does
Menzel avoid claiming that Tarski models are possible worlds, strictly speaking he also avoids the
claim that the former represent the latter, since on his view, we can simply rest with the primitive
modal properties of Tarski models and thereby provide a precise, but homophonic, interpretation
of modality.

Linsky and Zalta (1994, 444) raised some concerns about this suggestion. I only add here that
if Menzel’s goal of doing without possible worlds is to avoid the committment to ‘possible but
non-actual objects’, then the theory of possible worlds developed below achieves this goal, given
the Quinean interpretation of the quantifiers of our formalism. For on that interpretation, our pos-
sible worlds are existing, actual (abstract) objects and are ‘possible’ only in a defined sense that is
consistent with actualism; see theorem (517) below and the definitions in terms of which it is cast.
281When we move to typed object theory in Chapter 15, there will be some formulas that denote

nothing. For example, the definite description ıp(p& ¬p), where p is a proposition variable, be-
comes expressible. This description is both a term and a formula. As a term it denotes nothing,
but as a formula, it has truth conditions. So, in what follows, when we remark upon the fact that
a theorem of world theory expressed with propositional variables holds for arbitrary formulas,
this only applies to second-order object theory. In typed object theory, we can instantiate such
theorems only to significant formulas.
282Our theory therefore reconciles situation theory and world theory. In the early 1980s, situation

theory was thought to be incompatible with world theory. See the early publications of Barwise
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stein, but with the added insight about the distinction between the internal
and external properties of situations discussed in Remark (466). The Trac-
tarian conception “the world is all that is the case” will be validated by the
theorem that p is true if and only if p is true at the actual world (536.2)?, since
this theorem implies that the actual world encodes all that is the case. The Trac-
tarian conception will be preserved in our definition of a possible world (512)
as a situation s that might be such that all and only true propositions are true
in s, since this definition implies that a possible world is a situation that might
be such that it encodes everything that is the case. But we begin our study of
possible worlds with some important lemmas about a key group of situations.

(511) Lemmas: Situations In Which All and Only True Propositions are True.
We may import and export the classical connectives on the basis of the follow-
ing theorems. (.1) If all and only true propositions are true in s, then for every
proposition q, ¬q is true in s if and only if it is not the case that q is true in s; and
(.2) if all and only true propositions are true in s, then for every proposition q
and r, q→ r is true in s if and only if, if q is true in s then r is true in s:

(.1) ∀p(s |= p ≡ p)→∀q((s |= ¬q) ≡ ¬(s |= q))

(.2) ∀p(s |= p ≡ p)→∀q∀r((s |= (q→ r)) ≡ ((s |= q)→ (s |= r)))

Now if we switch to theorem schemata, so as not to have to worry about cap-
tured variables, we have (.3) if all and only true propositions are true in s, then
every-α-is-such-that-ϕ is true in s if and only if, every α is such that ϕ-is-true-
in-s:283

(.3) ∀p(s |= p ≡ p)→ ((s |= ∀αϕ) ≡ ∀α(s |= ϕ))

Clearly if we let ϕ be the variable q, then (.3), GEN, and (39.3) imply that if all
and only true propositions are true in s, then for every proposition q, ∀αq is
true in s iff for every α, q is true in s.

Turning now to modality, we switch back to variables ranging over propo-
sitions. We now show that if s makes true all and only true propositions, then
the necessity operator can only be exported from, not imported into, a truth-in-
s context. For the existence of contingently true propositions undermines the

and Perry, op. cit.
283If we had formulated (.3) as:

∀p(s |= p ≡ p)→ ((s |= ∀αq) ≡ ∀α(s |= q))

and then universally generalized on q, then even though ϕ↓ holds for every formula ϕ, the only
formulas we could substitute for ∀q are those in which α doesn’t occur free. So if a formula ϕ has
α free, we’d have to switch to an alphabetic variant of the above, e.g.,

∀p(s |= p ≡ p)→ ((s |= ∀βq) ≡ ∀β(s |= q))

and universally generalize on q in order to instantiate to ϕ. But by formulating (.3) as in the text,
the theorem holds straightaway for any formula.
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importation. We thus have following theorems: (.4) if all and only true propo-
sitions are true in s, then if necessarily-q is true in s, then necessarily q-is-true-
in-s; and (.5) if all and only true propositions are true in s, then for some propo-
sition q, then necessarily, q is true in swhile it is not the case that �q is true in s:

(.4) ∀p(s |= p ≡ p)→∀q((s |= �q)→ �(s |= q))

(.5) ∀p(s |= p ≡ p)→∃q(�(s |= q) &¬(s |= �q))

Exercise: Determine whether the following is provable and, if so, whether
there is a modally strict proof: ∀p(s |= p ≡ p)→∀q((s |= Aq) ≡ A(s |= q)).

Finally, we establish that (.6) there is a situation that makes true all and
only true propositions:

(.6) ∃s∀p(s |= p ≡ p)

Situations that might make true all and only truths will now be identified as
possible worlds.

(512) Definition and Theorems: Possible Worlds. Recall that in definition
(470), we stipulated that a proposition p is true in x whenever x is a situation
and x encodes p, where the latter was defined as x[λy p] (295). Then since
situations are abstract objects, we now say that an object x is a possible world iff
x is a situation that is possibly such that all and only the propositions true in x
are true:

(.1) PossibleWorld(x) ≡df Situation(x) &♦∀p(x |=p ≡ p)

Note that our definition decides Choice 3 in Barwise 1989a (261) in favor of
Alternative 3.1: worlds are situations. The question may arise, why haven’t we
defined possible worlds as maximal and consistent situations? We take up this
question in (523), after we formulate the definition of maximality and prove, in
(521) and (518) below, that possible worlds are maximal and consistent.

To see that PossibleWorld(x) is a restriction condition, as this metatheoretic
notion was defined in (336), we first establish, as a modally strict theorem, that
(.2) there exist possible worlds, and then establish, as a modally strict theorem
schema, (.3) if κ is a possible world, then κ is significant, for any individual
term κ:

(.2) ∃xPossibleWorld(x)

(.3) PossibleWorld(κ)→ κ↓

(.2) tells us that PossibleWorld(x) is strictly non-empty, and (.3) tells us that
PossibleWorld(x) has strict existential import. Thus, by (336), PossibleWorld(x)
is a restriction condition. But before we introduce restricted variables, we es-
tablish facts that show PossibleWorld(x) is a rigid restriction condition.
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(513) Theorem: Rigidity of PossibleWorld(x). Our definitions imply that (.1) x
is a possible world if and only if necessarily x is a possible world; (.2) possibly
x is a possible world if and only if x is a possible world; and (.3) possibly x is a
possible world if and only if necessarily x is a possible world; and (.4) actually
x is a possible world if and only if x is a possible world:

(.1) PossibleWorld(x) ≡ �PossibleWorld(x)

(.2) ♦PossibleWorld(x) ≡ PossibleWorld(x)

(.3) ♦PossibleWorld(x) ≡ �PossibleWorld(x)

(.4) APossibleWorld(x) ≡ PossibleWorld(x)

(514) Remark: Restricted Variables for Possible Worlds. If we apply GEN to
the left-to-right direction of (513.1), then we know:

`� ∀x(PossibleWorld(x)→ �PossibleWorld(x))

Thus, PossibleWorld(x) is not only a restriction condition in the sense of (336)
but a rigid restriction condition in the sense of (340). So let w,w′,w′′, . . . be
rigid, restricted variables that range over any x such that PossibleWorld(x). We
may use these variables according to the conventions described in (337) – (341).

Note that our restricted variables for possible worlds present us with two
interpretive options: we may regard them either as singly-restricted variables
ranging over objects x such that PossibleWorld(x) or we may regard them as
doubly restricted variables that range over the situations s such that Possible-
World(s). The latter option has some advantages: by using the rigid restricted
variable s for situations, the definition of possible world in (512) can be more
simply expressed as follows, given our conventions for free restricted variables
in definitions:

PossibleWorld(s) ≡df ♦∀p(s |=p ≡ p)

Moreover, by regarding w,w′, . . . as doubly restricted variables that range over
situations, we can immediately regard notions defined with respect to situ-
ations (using a free restricted variable s) as defined with respect to possible
worlds w. For example, since Consistent(s) is defined with respect to situations
(498), the claim Consistent(w) doesn’t need to be defined. See the next Remark
(515) for another example.

Of course, we are free to exercise either interpretation of the rigid restricted
variables w,w′, . . . when it is convenient to do so. But note that we now have
two ways of eliminating the bound restricted variable w. Consider just the
variable-binding sentence-forming operators. Then ifw is interpreted as singly
restricted, then we may expand the claims:
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(A) ∀wConsistent(w)

(B) ∃wActual(w)

as the claims:

(C) ∀x(PossibleWorld(x)→ Consistent(x))

(D) ∃x(PossibleWorld(x) & Actual(x))

But if w is interpreted as doubly restricted, i.e., as a restricted variable ranging
over situations s such that PossibleWorld(s), then (A) and (B) may be interpreted
as:

(E) ∀s(PossibleWorld(s)→ Consistent(s))

(F) ∃s(PossibleWorld(s) & Actual(s))

Of course (E) and (F) have bound restricted variables which in turn may be
eliminated.284

Another advantage of regarding w as doubly restricted is that by treating
(A) and (B) as shorthand, respectively, for (E) and (F) instead of as shorthand
for (C) and (D), we can often simplify the reasoning process: the consequences
of (E) and (F) obtained by Rules ∀E and ∃E, for example, will involve terms
that are known or assumed to refer rigidly to situations.

Consequently, in what follows, we sometimes prefer to reason as if our re-
stricted variables for possible worlds are doubly restricted. Of course, in some
cases, we continue to reason by eliminating the possible world variables in the
usual way, as singly restricted. We do this on those occasions when it clari-
fies the reasoning using a principle (axiom, theorem, or definition) for which
it may not be immediately evident how it applies to restricted variables.

Moreover, in what follows, the reader may encounter a series of principles
(i.e., definitions and theorems) in which (a) the definition introduces some new
notion defined on situations using the variable s while (b) the subsequent theo-
rem governs possible worlds and is stated using the variable w. The reason for
this should now be clear: in general, we always choose the variable, restricted
or otherwise, that is the most appropriate for the occasion, i.e., the variable
that either (i) yields the simplest formulation of the definition and the simplest
statement of the theorem (without compromising generality), or (ii) minimizes
the amount of reasoning that has to be done to prove the theorem (thereby

284In the usual way, (E) and (F) expand to:

∀x(Situation(x)→ (PossibleWorld(x)→ Consistent(x)))

∃x(Situation(x) & PossibleWorld(x) & Actual(x))

Note, however, that we shall not have occasion to regard (A) and (B), respectively, as short for the
above, since the clause Situation(x) is redundant in both.
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minimizing the chances of introducing reasoning errors and maximizing the
clarity of the justification).

(515) Remark: Truth At a Possible World. In the previous Remark, we noted
that if possible world variables are interpreted as doubly restricted, i.e., as
ranging over situations s such that PossibleWorld(s), then notions defined on
situations apply to possible worlds without having to be redefined. An impor-
tant example is the notion of truth in a situation, i.e., s |= p. By interpretingw as
a doubly restricted variable, one can see that w |= p is defined. Note, however,
that whereas we read s |= p as ‘p is true in s’, we shall, for historical reasons,
read w |= p as ‘p is true at w’. Thus, truth at a possible world is simply a spe-
cial case of the notion truth in a situation. Moreover, since worlds are a special
type of situation, it follows by theorem (471) thatw |= p is equivalent tow[λyp].
Hence, when a proposition p is true at w, the property [λy p] characterizes w by
way of an encoding predication.

(516) Theorem: Identity Conditions for Possible Worlds. It is a consequence of
the fact that possible worlds are situations that w and w′ are identical just in
case they make the same propositions true:

w=w′ ≡ ∀p(w |= p ≡ w′ |= p)

This theorem validates a pre-theoretic intuition about Wittgensteinian possi-
ble worlds and it does so (a) by proof rather than by stipulation and (b) without
identifying possible worlds as sets. Though possible worlds have extensional
identity conditions, they are nevertheless hyper-hyperintensional objects; they
are even more fine-grained than the hyperintensional propositions they en-
code.

(517) Theorem: A Non-Trivial Theorem. It is now straightforward to show that
possible worlds are possible:

Possible(w)

The reader is encouraged to think twice about this theorem. It is not a trivi-
ality; the claim to be established is not a tautology of the form (ϕ &ψ)→ ϕ.
We’re not proving Possible(s) & World(s) → Possible(s). A second look reveals
that, given the definition of Possible(s) (502) as ♦Actual(s), the theorem cap-
tures a fundamental intuition about possible worlds, namely, that each world
w might have been actual, i.e., might have been such that every proposition true
at w is true. This claim is so fundamental to our conception of possible worlds
that we tend to overlook the suggestion that it is capable of proof. And, just as
importantly, we’ve not used a primitive notion of possibility to assert a modal
claim about a primitive notion of possible world. It would be a mistake to
use the primitive notions of possibility and possible world to simply assert that
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possible worlds might have been actual. Such a move borders on nonsense:
since the primitive, non-modal concept of a possible world was (historically)
introduced to interpret primitive modal claims, the use of a primitive modal
notion to assert modal claims about primitive possible worlds seems confused
at best, and nonsense at worst. By contrast, we are using a single modal prim-
itive (�) and its defined dual (♦), and the defined conditions PossibleWorld(x)
and Possible(x), to derive an fact that many philosophers assume when reason-
ing about possible worlds. So, this theorem has greater significance than meets
the eye.

(518) Theorem: Possible Worlds Are Consistent and Non-Trivial. Clearly, (.1)
possible worlds are consistent, and (.2) non-trivial situations:

(.1) Consistent(w)

(.2) ¬TrivialSituation(w)

Exercises: (a) Prove that Consistent∗(w), as this was defined in Remark (499).
(b) Prove that possible worlds are not null situations, as the latter were defined
in (487.1).

(519) Lemmas: Rigidity of Truth At a Possible World. It is straightforward to
establish that (.1) p is true at w if and only if necessarily p-is-true-at-w; (.2)
possibly p-is-true-at-w if and only if p is true at w; (.3) possibly p-is-true-at-w
if and only if necessarily p-is-true-at-w; (.4) actually p-is-true-at-w if and only
if p is true at w; and (.5) p fails to be true-at-w if and only if necessarily p fails
to be true-at-w:

(.1) w |= p ≡ �w |= p

(.2) ♦w |= p ≡ w |= p

(.3) ♦w |= p ≡ �w |= p

(.4) Aw |= p ≡ w |= p

(.5) ¬w |= p ≡ �¬w |= p

(520) Definition: Maximality. A situation s is maximal iff for every proposition
p, either p is true in s or ¬p is true in s:

Maximal(s) ≡df ∀p(s |=p ∨ s |=¬p)

(521) Theorem: Possible Worlds Are Maximal.

Maximal(w)
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We’ve therefore now established that possible worlds are maximal and consis-
tent.

(522) Theorem: Maximality, Possible Worlds, and Possibility.

(.1) Maximal(s)→ �Maximal(s)

(.2) PossibleWorld(s) ≡Maximal(s) & Possible(s)

(523) Remark: Possible Worlds as MaxCon Situations. It would serve well
to remark upon the difference between defining possible worlds as in (512)
and defining them as maxcon situations, i.e., as situations that are maximal,
consistent, and consistent∗. The simple answer is that the definitions aren’t
equivalent; whereas situations satisfying (512) are maxcon, it doesn’t follow
that situations that are maxcon satisfy (512). To see this, consider a maxcon
situation in which (it is true that) Socrates might have been a chunk of rock or
might have had different parents. If certain essentialist principles are true and
it is a metaphysical fact that Socrates couldn’t have been a chunk of rock and
couldn’t have had different parents, then a maxcon situation in which Socrates
is a chunk of rock or had different parents is one that fails to be a possible
world in the sense of (512). In other words, there may be modal facts that
place constraints on what maxcon situations are possible worlds. (512) defines
possible world in a way that respects those modal truths, should there be any.

Moreover, theorem (522.2) shows that definition (512) implies that a sit-
uation is a possible world if and only if it is maximal and might have been
actual, where the modality ‘might’ is metaphysical possibility. This is not cap-
tured by saying that that possible worlds are situations that are maximal and
free of contradictions. Finally, the body of theorems derivable from (512) and
its supporting definitions provide evidence of its power and correctness. This
evidence will continue to accumulate as we go.

(524) Definition: Necessary Implication and Necessary Equivalence. We say
that p necessarily implies q, written p⇒ q, just in case necessarily, if p then q:

(.1) p⇒ q ≡df �(p→ q)

We also say that p and q are necessarily equivalent, written p⇔ q, just in case
both p necessarily implies q and q necessarily implies p:

(.2) p⇔ q ≡df (p⇒ q) & (q⇒ p)

Clearly, then, we have extended the notions of necessary implication and neces-
sary equivalence, defined in (442.1) and (442.2), respectively, so that they apply
to propositions as well as properties.
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(525) Theorem: Necessary Equivalence and Necessary Material Equivalence.
It is therefore a simple consequence of the previous definition that p and q are
necessarily equivalent if and only if necessarily, p is materially equivalent to q:

p⇔ q ≡ �(p ≡ q)

(526) Lemmas: Facts About Situations. Let us now use p1, . . . ,pn (which we’ve
heretofore taken to be constants) as variables ranging over propositions. Then
we may establish two helpful lemmas about situations. Where n ≥ 1, a theorem
of the following form holds, namely, (.1) if p1, . . . ,pn are all true in situation s
and the conjunction of p1, . . . ,pn implies q, then if all and only true propositions
are true in s, then q is true in s:

(.1) (s |= p1 & . . . & s |= pn & ((p1 & . . . & pn)→ q))→ (∀p(s |= p ≡ p)→ s |= q)
(n ≥ 1)

Since these are modally strict theorems, the Rule of Necessitation (RN) applies
to each. Hence the necessitation of each n-ary instance of (.1) is a theorem,
n ≥ 1 So by the K axiom and other principles of modality, we can establish
theorems of the form (.2) if necessarily p1-is-true-in-s and . . . and necessarily
pn-is-true-in-s and p1& . . .&pn necessarily implies q, then necessarily, q-is-true-
in-s when all and only truths are true in s:

(.2) (�s |= p1 & . . . & �s |= pn & ((p1 & . . . & pn)⇒ q))→
�(∀p(s |= p ≡ p)→ s |= q) (n ≥ 1)

(527) Definition: n-Modal Closure, i.e., n-ary Closure Under Necessary Impli-
cation. We now say, for any choice of n ≥ 1, that a situation s is n-modally closed
or n-ary-closed under necessary implication if and only if, for any propositions
p1, . . . ,pn and q, if each of p1, . . . ,pn is true in s and q is necessarily implied by
the conjunction p1 & . . . & pn, then q is also true in s:

n-ModallyClosed(s) ≡df

∀p1 . . .∀pn∀q((s |= p1 & . . . & s |= pn & ((p1 & . . . & pn)⇒ q)) → s |= q)

Though one might suggest that it is the notion of truth in a situation that is n-
modally closed when the definiens obtains, this definition does no harm: it is
reasonable to speak as if situations are n-modally closed if the above condition
holds.

(528) Theorem: Possible Worlds are n-Modally Closed. From (526) and (527),
it follows that possible worlds are n-modally closed, for any choice of n:

n-ModallyClosed(w) (n ≥ 1)



552 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

(529) Corollary: Negation Coherence of Truth At A World. We may now estab-
lish that truth-at-a-world is a condition that behaves classically with respect to
negation. (.1) ¬p is true at w if and only if it is not the case that p is true at w,
and (.2) p is true at w if and only if it is not the case that ¬p is true at w:

(.1) w |=¬p ≡ ¬w |=p

(.2) (w |= p) ≡ ¬w |=¬p

These facts show that negation is coherent with respect to truth at a possible
world. Furthermore, we may universally generalize (.1) and (.2) with respect to
p, and since we know ϕ↓ and ψ↓ for any formulas ϕ and ψ (104.2), we obtain
theorem schemata by substituting ϕ for p in (.1) and (.2), keeping in mind the
proviso for typed object theory mentioned in footnote 281.

(530) Remark: Situations, Worlds, Propositions, and Double Negation. Note
that when we consider situations only (and not possible worlds), then s |= q and
s |= ¬¬q are not provably equivalent. To see this, recall that since s is a situa-
tion, s |= q is equivalent, by theorem (471), to s[λy q], and s |= ¬¬q is equivalent
to s[λy ¬¬q]. But since our theory doesn’t imply that [λy ¬¬q] = [λy q], we
cannot infer s[λy q] from s[λy ¬¬q], or vice versa. Clearly, both [λy q] and
[λy ¬¬q] exist and it is provable that each necessarily implies the other, in the
sense of (442.1). But situations aren’t always 2-ary closed under necessary im-
plication: from the facts that sF and �∀x(Fx ≡ Gx), it doesn’t follow that sG.
However, possible worlds are provably n-ary closed under necessary implica-
tion. So w |= q is provably equivalent to w |= ¬¬q.

(531) Theorem: There is a Unique Actual World. We first prove (.1) there
exists a possible world that makes true all and only true propositions. Then
we establish (.2) there is a unique actual world:

(.1) ∃w∀p(w |=p ≡ p)

(.2) ∃!wActual(w)

Since these theorem imply, a fortiori, that there are possible worlds, we know
that the restricted quantifiers ∀w and ∃w behave classically in the sense that
∀wϕ→∃wϕ; cf. Remark (342).

Since both (.1) and (.2) are modally strict, it follow by RN that both are nec-
essary truths. The necessitation of (.1), �∃w∀p(w |=p ≡ p), intuitively asserts,
in terms of semantically primitive possible worlds, that at every semantically
primitive possible world w, there is a object-theoretic possible world w′ that
encodes a proposition p if and only if p is true at w. The necessitation of (.2),
�∃!wActual(w), intuitively asserts, in terms of semantically primitive possible
worlds, that at every semantically primitive possible world w, there is a object-
theoretic possible world w′ that is actual with respect to w, i.e., by definition
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of actual (492), that every proposition w′ encodes is true at w.285 So whereas
theorem (517) is a universal claim that implies each possible world might have
been actual, the proof of (.1) and (.2) actually gives a method for constructing,
in any modal context, the object-theoretic possible world that encodes all and
only the truths of that context.

After a short digression concerning another way in which the present the-
orem has significance, we’ll work our ways towards a definition of a new term
that refers to the unique object that is an actual world.

(532) Remark: On the Uniqueness of the Actual World. On the present theory,
the claim that there is a unique actual world is provable, necessary, and known
a priori. By contrast, on the concretist conception of possible world, the claim
that there is a unique actual world appears to be a contingent fact, known only
a posteriori and hence, not susceptible to proof. It may be that nothing like
the previous theorem is available to one adopting the concretist conception of
possible world.

Moreover, as far as I can tell, philosophers who’ve adopted a traditional
abstractionist theory of possible worlds can offer a proof of the existence of
a unique actual world only if they adopt the requirement that propositions
are identical when necessarily equivalent, i.e., that �(p ≡ q) → p = q. For
if one allows that there are distinct, but necessarily equivalent propositions,
then if possible worlds are identified as maximal and possible propositions
(or states of affairs), one can prove the existence of multiply distinct actual
worlds, at least given the following standard definition: p is a possible world
iff (i) ∀q((p⇒ q)∨ (p⇒¬q)) and (ii) ♦p.286 For suppose (a) p1 is such a possible
world, and (b) p1 is actual, either in the sense that p1 is true or in the sense
that every proposition necessarily implied by p1 is true. Then consider any
proposition p2 that is necessarily equivalent to p1 (in the sense that p1 ⇔ p2)
but distinct from p1. Then it follows that p1 and p2 necessarily imply the same
propositions.287 So since p1 satisfies clause (i), so does p2 (exercise). Moreover,

285Of course, it is also true, and derivable, that at each semantically primitive possible world w,
there is a object-theoretic possible worldw′ that encodes a proposition p just in case it is actually the
case that p. But this is not what these theorems assert. Once we form the description ıwActual(w),
its denotation will the object-theoretic possible world w such that it is actually the case that every
proposition w makes true is true.
286Clause (i) is a maximality condition and clause (ii) guarantees consistency. And one could

simplify the definition by stipulating instead: p is a possible world iff ♦∀q((p ⇒ q) ∨ (p ⇒ ¬q)).
The objection, in what follows, to this conception of possible worlds doesn’t apply to possible
worlds conceived as sets of propositions. But then the conception of worlds as sets is not a theory
of possible worlds but only a model of them, for reasons mentioned previously.
287The proof is a variant of left-to-right direction of (443.3). Assume p1⇔ p2. Then by (525), we

know both:

(ϑ) �(p1→ p2)

(ξ) �(p2→ p1)
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if p1 is actual in the sense of being true, so is p2, and if p1 is actual in the sense
that every proposition necessarily implied by p1 is true, then so is p2. So, there
are two distinct actual worlds on this theory. The abstractionist can either de-
rive the existence of a unique actual world by collapsing necessarily equivalent
propositions or both allow for distinct but necessarily equivalent propositions
and give up the claim that there is a unique actual world. Such a dilemma is
not faced on the present theory. For a fuller discussion, see Zalta 1988 (73–
4), 1993 (393–94), and McNamara 1993. A similar dilemma faces anyone who
takes possible worlds to be properties without requiring the doubtful principle
that �∀x(Fx ≡ Gx)→ F=G.

(533) Theorem: A Significant Description. It follows immediately from (531.2)
that the actual world exists:

ıwActual(w)↓

The proof of this theorem is modally strict because it rests on (176.2), not on
(144.2)?.

(534) Definition: The Actual World. Since we know that the actual world
exists, we can name it:

wα =df ıwActual(w)

Note that the new constant symbol wα is a boldface, italic w decorated by a
Greek α; this highlights the special character of the object denoted as the first
among possible worlds. We do not use a plain italic w, for the resulting symbol
would be conventionally used as a special variable whose value would depend
on the value of w.

(535) Theorems: The True and The Actual World. Recall that we defined The
True (>) in (302.1) as the abstract object that encodes all and only those proper-
ties F of the form [λy p] for some true proposition p. It may come as a surprise
that The True is identical with the actual world:

> = wα

We have therefore derived a fact about The True and the actual world suggested
by Dummett in the following passage (1981, 180):

If we take seriously Frege’s manner of speaking in ‘Uber Sinn und Bedeu-
tung’, the True must contain within itself the referents of the parts of all
true sentences, and will admit a decomposition corresponding to each true

To show ∀q(p1 ⇒ q ≡ p2 ⇒ q), it suffices by GEN to show p1 ⇒ q ≡ p2 ⇒ q. (→) Suppose p1 ⇒ q,
i.e., �(p1 → q). From (ξ) and this last result, it follows that �(p2 → q), i.e., p2 ⇒ q. (←) Suppose
p2⇒ q, i.e., �(p2→ q). then from (ϑ) and this last result, it follows that �(p1→ q), i.e., p1⇒ q.



12.2. POSSIBLE WORLDS 555

sentence. It thus becomes, in effect, an immensely complex structure, as
it were the single all-inclusive Fact, which is how Kluge conceives of it,
making it virtually indistinguishable from the world.

Dummett is referencing Kluge 1980 in this passage.

(536) ?Theorem: Truth and Truth At the Actual World. From (535), (305.1)?,
(308.3), and the definition of ExtensionOf (x,p) (306), it follows that (.1) a propo-
sition p is true if and only if the actual world wα is the extension of p:

(.1) p ≡ wα = ıxExtensionOf(x,p)

This is an important and unheralded principle that relates true propositions,
the actual world, and the extensions of propositions.

It also follows that (.2) a proposition p is true iff p is true at the actual world:

(.2) p ≡wα |= p

The proof shows that an earlier fact about The True (305.3)?, namely p ≡ >Σp,
can be transformed to take on new significance. This theorem is another case
where the non-modal strictness of the conditional results from the fact that the
truth of one side varies from modal context to modal context, while the truth
of the other side does not.

(537) Theorem: The Actual World Is a Possible World and Maximal. While it
is trivial to prove that wα is both a possible world and maximal from (145.2)?
and (521), the claims in fact have modally strict proofs:

(.1) PossibleWorld(wα)

(.2) Maximal(wα)

By contrast, Actual(wα) isn’t a modally strict theorem, although it is easy to
prove it by non-modally strict means. However, we’ll soon establish, by modally
strict means, that wα is actual∗, in the sense defined in Remark (494).

(538) Theorem: True at the Actual World and Actually True. The theorems in
(537) allow us to prove a modally strict counterpart of (536.2)?, namely, that p
is true at the actual world if and only if it is actually the case that p:

wα |=p ≡ Ap

Note that the left-to-right direction of this theorem implies, by GEN, that
∀p(wα |= p → Ap). So given the notion of Actual∗ defined in Remark (494),
it follows that Actual∗(wα) is a modally strict theorem.

(539) ?Theorem: Possible Worlds Other Than wα Aren’t Actual. It follows
immediately that possible worlds other than wα fail to be an actual world:
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w ,wα→¬Actual(w)

Exercise. Develop a modally strict proof of w ,wα→¬Actual∗(w).

(540) ?Theorem: Parts of the Actual World. Actual situations are part of the
actual world:

Actual(s) ≡ sEwα

Cf. Barwise 1989a (261), where actual situations are defined to be the ones that
are part of the actual world.

(541) ?Theorems: Facts About the Actual World. (.1) A proposition p is true at
the actual world iff the actual world exemplifies being such that p. Moreover,
(.2) a proposition p is true iff the proposition the-actual-world-exemplifies-being-
such-that-p is true at the actual world:

(.1) wα |=p ≡ [λy p]wα

(.2) p ≡ wα |= [λy p]wα

(.2) is especially interesting because when p is true, we may derive from (.2) a
statement of the form σ |= ϕ(σ ), where ϕ(σ ) is a formula in which the situation
term σ occurs. In situation theory, statements of this form indicate that situa-
tion σ is nonwellfounded, since σ makes true a fact about itself. Note that when
p is true, then (.2) implies that [λy p]wα is true at wα. And when ¬p is true,
then (.2) implies that [λy¬p]wα is true at wα. So, in either case, wα is nonwell-
founded in the above sense: a fact of the form ϕ(wα) is true at wα . Thus, (.1)
and (.2) decide Choices 8 (266) and 10 (268) in Barwise 1989a: situations can
be constituents of facts and at least some situations are nonwellfounded.

(542) Lemmas: Some Basic Facts About Modality, Situations, Possible Worlds,
and Truth At. (.1) If it is possible that p, then there might be a possible world
at which p is true; (.2) if there might be a possible world at which p is true,
then there is a possible world at which p is true; (.3) if p is true, then for all
situations s, if all and only true propositions are true in s then p is true in s;
(.4) if p is necessarily true, then it is necessary that for all situations s, if all
and only true propositions are true in s, p is true in s; (.5) if necessarily every
situation is such that ϕ, then every situation is necessarily such that ϕ; (.6) if p
is true at every possible world w, then it is necessarily so; and (.7) if the claim
that p is true at every possible world is necessary, then p is necessary:

(.1) ♦p→ ♦∃w(w |= p)

(.2) ♦∃w(w |= p)→∃w(w |= p)

(.3) p→∀s(∀q(s |= q ≡ q)→ s |= p)
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(.4) �p→ �∀s(∀q(s |= q ≡ q)→ s |= p)

(.5) �∀sϕ→∀s�ϕ

(.6) ∀w(w |= p)→ �∀w(w |= p)

(.7) �∀w(w |= p)→ �p

These lemmas are used to simplify the proofs of the fundamental theorems of
possible world theory, to which we now turn. Note that (.5) establishes that the
Converse Barcan Formula (167.2) holds when restricted to situations.

(543) Theorems: Fundamental Theorems of Possible World Theory. The fore-
most principles of possible world theory are that (.1) it is possible that p iff
there is a possible world at which p is true; (.2) it is necessary that p iff p is true
at all possible worlds; (.3) it is not possible that p iff there is no possible world
at which p is true; and (.4) it is not necessary that p iff there is a possible world
at which p fails to be true:

(.1) ♦p ≡ ∃w(w |= p)

(.2) �p ≡ ∀w(w |= p)

(.3) ¬♦p ≡ ¬∃w(w |= p)

(.4) ¬�p ≡ ∃w¬(w |= p)

In the Appendix, there is a proof of (.1) that makes use of (542.1) and (542.2).
In addition, there are two proofs of (.2), one that makes use of (542.4) – (542.7)
and a simpler one that makes use of (.1). The proofs of (.3) and (.4) are left as
simple exercises.

Note that (.1) is a strengthened version of the claim that every way that a
world could possibly be is a way that some world is (Lewis 1986, 2, 71, 86).
When we analyze ways a possible world might be as possibly true propositions,
then Lewis’s principle is the left-to-right direction of (.1). For a fuller discus-
sion, see Menzel & Zalta 2014.

(544) Theorem: Facts about Modality and and the Existence of Possible Worlds:
(.1) p is necessary if and only if there exists a possible world where p is nec-
essary; (.2) p is necessary if and only if at every possible world, p is necessary;
(.3) p is possible if and only if there exists a possible world where p is possible;
and (.2) p is possible if and only if at every possible world, p is possible:

(.1) �p ≡ ∃w(w |= �p)

(.2) �p ≡ ∀w(w |= �p)

(.3) ♦p ≡ ∃w(w |= ♦p)
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(.4) ♦p ≡ ∀w(w |= ♦p)

(545) Theorem: Truth At A World and the Connectives, Quantifiers, and Modal
Operators. Since we already know how truth-at-a-world behaves with respect
to negation (529), we begin by examining how it behaves with respect to the
other connectives. (.1) p&q is true at a possible world w if and only if both p is
true at w and q is true at w; (.2) p→ q is true at a possible world iff if p is true
at that possible world, then q is true at that possible world; (.3) p∨ q is true at
a possible world w if and only if either p is true at w or q is true at w; (.4) p ≡ q
is true at a possible world w if and only if: p is true at w iff q is true at w:

(.1) w |= (p& q) ≡ ((w |= p) & (w |= q))

(.2) w |=(p→ q) ≡ ((w |= p)→ (w |= q))

(.3) w |= (p∨ q) ≡ ((w |= p)∨ (w |= q))

(.4) w |=(p ≡ q) ≡ ((w |= p) ≡ (w |= q))

Clearly, we may universally generalize on the variables p and q in (.1) – (.4).
So since ϕ↓ and ψ↓, for any formulas ϕ and ψ (104.2), the above hold for any
formulas ϕ and ψ that may be uniformly substituted for p and q, respectively,
keeping in mind the proviso for typed object theory mentioned in footnote 281.

Next, we show that the quantifers work similarly, except now it makes sense
to formulate these claims, in the first instance, as schemata. (For the reasons,
see footnote 283.) (.5) it is true at w that every α is such that ϕ if and only if
every α is such that it is true at w that ϕ, and (.6) it is true at w that some α is
such that ϕ if and only if some α is such that it is true at w that ϕ:

(.5) (w |= ∀αϕ) ≡ ∀α(w |= ϕ)

(.6) (w |= ∃αϕ) ≡ ∃α(w |= ϕ)

Now, switching back to propositional variables, it is easy to establish:288

(.7) (w |= �p)→ �w |= p
288If we use recent theorems to simplify the proof of (511.5), we obtain the following proof of (.8).

Since there are contingently true propositions (217.1), let r be such, so that we know by (213.1)
and facts about modality that:

(A) r

(B) ¬�r
By T♦, (A) implies ♦r, and so a fundamental theorem of possible worlds (543.1) implies ∃w(w |= r).
Suppose w1 is such a possible world, so that we know w1 |= r. Then by (519.1), �w1 |= r. So by &I
and ∃I, it remains only to show ¬w1 |= �r. Suppose, for reductio, w1 |= �r. Then ∃w(w |= �r). So
by (544.1), �r, which contradicts (B).
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(.8) ∃w∃p((�w |= p) &¬w |= �p)

(.9) (♦w |= p)→ w |= ♦p

(.10) ∃w∃p((w |= ♦p) &¬♦w |= p)

Exercise: In light of the Exercise at the end of (511), determine whether there
is a proof of the following:

(w |= Ap) ≡ Aw |= p

If there is a proof, indicate whether or not it is modally strict. If you can’t find
a proof of the biconditional, can you find a proof of at least one direction?

(546) Remark: Reconciling Lewis Worlds with Possible Worlds. There is a way
to reconcile, at least to some extent, the present theory of possible worlds with
Lewis’s conception of possible worlds. Note that the present theory of possible
worlds doesn’t tell us which ordinary objects are concrete at which worlds. But
we may define:

x is a physical universe at w if and only if (a) x is concrete at w, (b) every
object y that is concrete at w is a part of x, and (c) x exemplifies exactly
the propositional properties [λy p] such that p is true at w.

If given a part-whole relation v for concrete objects, one could formalize this
definition as follows:289

PhysicalUniverseAt(x,w) =df

w |=E!x & ∀y(w |=E!y→ y v x) & ∀p([λy p]x ≡ w |=p)

Given this definition and the assumption that v obeys a standard mereological
principle, namely, that for any two objects x,y that are concrete at w there is an
object z that is concrete at w of which x and y are a part, one might reasonably
assert that for each possible world w at which there are concrete objects, there
is a universe at w, i.e.,

∀w(w |= ∃xE!x→∃yPhysicalUniverseAt(y,w))

289It is important to understand why the third conjunct is included in the definition of
PhysicalUniverseAt(x,w). Without this clause, a physical universe at w would be defined solely
in terms of the objects that are concrete at w. Consider the case in which there are two possible
worlds w1 and w2 such that (i) exactly the same objects are concrete at w1 and w2 and (ii) different
propositions are true at w1 and w2. Thus, as we know, clause (ii) implies w1 , w2. But without the
third clause in the definition, any physical universe at w1 would be identified with any physical
universe at w2, since they have the same concrete parts. Of course, Lewis doesn’t worry about such
a result, since individuals are all world bound; his view doesn’t allow for different possible worlds
with exactly the same individuals. But it would be a problem for the above reconstruction of Lewis
worlds without the third clause in the definition.



560 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

Furthermore if v obeys the principle that for each w there is at most one con-
crete object at w for which every concrete object at w is a part, then it would
follow that for each possible world w at which there are concrete objects, there
is a unique universe at w, i.e.,

∀w(w |=∃xE!x→∃!yPhysicalUniverseAt(y,w))

Indeed, from these claims, one should be able to prove that if there is a physical
universe for w, there is a unique physical universe for w, i.e.,

∃xPhysicalUniverseAt(x,w)→∃!xPhysicalUniverseAt(x,w)

Now if one were to analyze Lewis’s notion of a possible world as a physical uni-
verse, then principles akin to those that govern his theory of possible worlds
would govern universes. For it would follow, if one assumes the existence of
concrete objects, that there is a universe for the actual world, and that uni-
verses at other possible worlds are no different in kind from the universe of
the actual world – all universes are ordinary objects. Whereas Lewis holds that
there are universes just like our own but which are different mereological sums
of concrete objects, the above analysis yields that there are universes just like
our own but which are different mereological sums of ordinary objects. This
reconciles, at least to some extent, the Lewis conception of possible worlds with
the present one.

(547) Theorems:. Existence of Non-Actual Possible Worlds. The Fundamental
Theorems imply: (.1) if some proposition is contingently true, then there exists
a nonactual possible world; (.2) if some proposition is contingently false, then
there exists a nonactual possible world:

(.1) ∃p(ContingentlyTrue(p))→∃w(¬Actual(w))

(.2) ∃p(ContingentlyFalse(p))→∃w(¬Actual(w))

So the existence of nonactual possible worlds depends upon there being a con-
tingent truth or a contingent falsehood.

From (.1) and (217.1) (“there are contingent truths”), or from (.2) and (217.2)
(“there are contingent falsehoods”), it immediately follows that (.3) there are
nonactual possible worlds, and hence, that (.4) there are at least two possible
worlds:

(.3) ∃w¬Actual(w)

(.4) ∃w∃w′(w , w′)

(548) Remark: Nonactual Possible Worlds. These results show not only that
our theory implies a claim stronger than Alternative 1.2 (“There may be more
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than one world”) in Barwise 1989a (260), but also that those philosophers who
have claimed that there are nonactual possible worlds are provably correct.
Note that axiom (45.4) plays a key role, since the proofs of (547.3) and (547.4)
rest on (217.1), which in turn depends on (45.4). Interestingly, if a Humean
were to reject axiom (45.4), they could nevertheless accept an interesting frag-
ment of the above theory of possible worlds. Without axiom (45.4), one can’t
derive the existence of nonactual possible worlds, though the Fundamental
Theorems (543.1) – (543.4) remain derivable and true (see Menzel & Zalta
2014). Given the many theorems in which (45.4) has proved its worth, the-
ory comparison is in order should one balk at its acceptance.

(549) Theorem: Derivation of the Kaplan Axiom (Contributed by Daniel West).
In a one-page abstract of a talk, Kaplan (1970) identified a number of axioms
for S5 modal logic extended with quantifiers ranging over propositional vari-
ables. One of the axioms stands out, namely, the existence claim: there is a
true proposition that necessarily implies every true proposition. Daniel West
found a proof of this claim and has kindly granted permission to reproduce it
here:

∃p(p&∀q(q→ �(p→ q)))

Hint: The witness that West found is a complex proposition that is not de-
scribable purely in terms of exemplification formulas. But it can be shown, by
modally strict means, that the proposition in question is true and necessarily
implies every truth.

(550) Remark: Iterated Modalities. It is worth spending some time showing
that we can derive the correct possible worlds analysis of iterated modalities
within the language of object theory itself. Let us represent the fact that Obama
might have had a son who might have become president as:

(ϕ) ♦∃x(Sxo&♦P x)

We now proceed to show that object theory yields the following possible worlds
analysis of ϕ, namely:

(ψ) ∃w∃x((w |= Sxo) &∃w′(w′ |= P x))

This asserts that for some possible world w, there is an object x such that (a) x
is a son of Obama at w and (b) at some possible world w′, x is president.

To establish that (ψ) follows from (ϕ), note that by BF♦ (167.3), (ϕ) is equiv-
alent to: there is an object x such that, possibly, both x is Obama’s son and
possibly x is president, i.e.,

∃x♦(Sxo&♦P x)

Suppose b is such an object, so that we know:
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♦(Sbo&♦P b)

This is equivalent, by Fundamental Theorem (543.1), to:

∃w(w |= (Sbo&♦P b))

Suppose w1 is such a world, so that we know:

w1 |= (Sbo&♦P b)

By (545.1), we know that this last fact implies and, indeed, is equivalent to:

(ϑ) (w1 |= Sbo) & (w1 |= ♦P b)

Now it important to recognize that to analyze the modal operator in the right
conjunct of (ϑ) in terms of possible worlds, we may not immediately appeal
to an instance of Fundamental Theorem (543.1) to substitute ∃w(w |= P b) for
♦P b in the right conjunct of (ϑ).290 Instead, we next infer ∃w(w |= ♦P b) from
the second conjunct of (ϑ). Then, by Fundamental Theorem (543.1), it follows
that ♦♦P b, which by (165.8) is equivalent to ♦P b. So, again, by Fundamental
Theorem (543.1), we know that ∃w′(w′ |= P b). So let us put together this last
fact with the first conjunct of (ϑ), to obtain:

(w1 |= Sbo) &∃w′(w′ |= P b)

From this it follows that:

∃x((w1 |= Sxo) &∃w′(w′ |= P x))

And by a second application of ∃I, we obtain:

(ψ) ∃w∃x((w |= Sxo) &∃w′(w′ |= P x))

Thus, in our system, (ϕ) implies its classic, possible-worlds truth conditions.

Of course, before it is fair to call (ψ) truth conditions for (ϕ), we have to
show that (ψ) is equivalent to (ϕ). It remains, therefore, to derive (ϕ) from (ψ).
Here is a sketch of a modally strict proof:

290The reason we cannot use a Rule of Substitution to substitute ∃w(w |= P b) for ♦P b on the basis
of the fact that `� ♦P b ≡ ∃w(w |= P b) is that ♦P b is not a subformula of w1 |= ♦P b. If we expand the
latter by its definition to w1[λy ♦P b], then it becomes clear why ♦P b is not one of its subformulas.
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(1) ∃w∃x((w |= Sxo) &∃w′(w′ |= P x)) (ψ)
(2) (w2 |= Sco) &∃w′(w′ |= P c) Premise for ∃E, w2 and c arbitrary
(3) (w2 |= Sco) &♦P c From (2), by Fund. Thm. (543.1)
(4) �♦P c From 2nd conjunct of (3), by (45.3)
(5) ∀w(w |= ♦P c) From (4), by (543.2)
(6) w2 |= ♦P c From (5), by ∀E
(7) w2 |= (Sco&♦P c) From 1st conjunct (2), (6), by (545.1)
(8) ∃w(w |= (Sco&♦P c)) From (7), by ∃I
(9) ♦(Sco&♦P c) From (8), by (543.1)
(10) ∃x♦(Sxo&♦P x) From (9), by ∃I
(11) (ϕ) From (10), by CBF♦ (167.4)

This example therefore shows us how to use the Fundamental Theorems to
interderive, within object theory, ordinary modal propositions with iterated
modalities and their classical possible-world truth conditions.291 It is not too
far off the mark to suggest that in addition to the Fundamental Theorems, the
keys to the equivalence of (ϕ) and (ψ) are, for the left-to-right direction, the
Barcan Formula (∀α�ϕ → �∀αϕ) and S4♦ (♦♦ϕ → ♦ϕ), and for the right-to-
left direction, the 5 schema (♦ϕ → �♦ϕ) and the Converse Barcan Formula
(�∀αϕ→∀α�ϕ).

(551) Theorem: A Useful Equivalence Concerning Worlds and Objects. The
following will prove to be a useful consequence of our theory of possible worlds
when we investigate Leibniz’s modal metaphysics: a proposition p is true at a

291The example discussed in this Remark was chosen because it has a form that is relevantly
similar to an example that has figured prominently in the literature. In McMichael 1983 (54), we
find:

Consider the sentence:

(5) It is possible that there be a person X who does not exist in the actual world,
and who performs some action Y , but who might not have performed Y .

This sentence is surely true. For example, John F. Kennedy could (logically) have
had a second son who becomes a Senator, although he might have chosen to become
an astronaut instead.

Clearly, we can simplify McMichael’s example to:

John F. Kennedy could have had a second son who becomes a Senator but might not have.

Then where Sxy represents x is a son of y, S′x represents x is a senator, and k represents Kennedy,
we could represent this example as:

♦∃x(Sxk& S′x&♦¬S′x)

The example discussed in our Remark further simplifies McMichael’s example in two ways: (1) we
have eliminated the conjunct S′x, and (2) we’ve made the embedded modal claim into a positive
statement instead of a negative one. Thus, it should be clear that our simplifications of the example
have not changed its essential features. If one represents McMichael’s original example without
the simplifications, the proof that the modal claim and its possible-worlds truth conditions are
equivalent goes basically the same way, though the details do become more complex.
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world w iff the proposition that x exemplifies being such that p is true at w:

w |=p ≡ w |=[λy p]x

This theorem plays a role in the development of the theory of Leibnizian con-
cepts in Chapter 13.

(552) Theorem: Possible Worlds and Ex Contradictione Quodlibet. We now
prove a few theorems about possible worlds that will stand in contrast to theo-
rems in Section 12.4 about impossible worlds. Note that it follows immediately
from (518) by GEN that every possible world is consistent. By applying defi-
nitions and quantification theory to this universal claim, it can be transformed
into the equivalent claim that there is no possible world w and proposition p
such that p and ¬p are both true at w. It also follows that there is no possible
world w and proposition p such that p&¬p is true at w:

(.1) ¬∃w∃p(w |= (p&¬p))

If we recall Remark (499), where we discussed the notion of Consistency∗ and
showed that it is independent of the notion of Consistency, then the above the-
orem can easily be transformed into the claim: every world is consistent∗.

This theorem has interesting consequences related to the traditional logical
law ex contradictione quodlibet, which is almost always formulated in the formal
mode as: every formula ψ is derivable from a contradiction of the form ϕ&¬ϕ,
i.e., ϕ&¬ϕ ` ψ. This formal principle clearly governs our system.292 However,
when we formulate ex contradictione quodlibet in the material mode so that it
applies to propositions, it becomes the easily-established theorem (p&¬p)⇒ q.
Hence by the fact that possible worlds are 2-modally closed and the definition
of n-modal closure, it follows that (.2) if some proposition p is such that p&¬p
is true at possible world w, then every proposition is true at w:

(.2) ∃p(w |= (p&¬p))→∀q(w |= q)

(.2) easily follows from the fact that negation of its antecedent is implied by
(.1). Since every formula signifies a proposition, (.2) immediately yields the
schema w |= (ϕ&¬ϕ))→ w |= ψ.

(553) Theorem: Disjunctive Syllogism Holds at a Possible World. (.1) If p∨q is
true at w and ¬p is true at w, then q is true at w:

(w |= (p∨ q) & (w |= ¬p))→ w |= q

Since every formula is significant, this theorem implies that the following sche-
ma holds: (w |= (ϕ ∨ ψ) & (w |= ¬ϕ)) → w |= ψ. Thus, disjunctive syllogism

292From the premise ϕ&¬ϕ, we may infer both ϕ and ¬ϕ, by &E. From ϕ, we may infer ϕ ∨ ψ,
for any ψ, by ∨I. But from ϕ ∨ψ and ¬ϕ it follows that ψ, by disjunctive syllogism (86.4.b).
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holds both as an object-theoretic claim about propositions and worlds and as a
metatheoretic schema about formulas and worlds.

(554) Remark: Final Observations on the Theory of Possible Worlds. The fore-
going theory of possible worlds requires none of Leibniz’s theological doc-
trines, such as his claims about what goes on in God’s mind or his theodicy
to explain the existence of evil. Indeed, I think Stalnaker’s severe judgment
(1976, 65), which we quoted at the beginning of this section, should be re-
evaluated in light of the foregoing analysis. Leibniz’s structural vision about
the space of worlds is no mere metaphor. It has been reconstructed as a scien-
tifically and mathematically precise theory, and grounds the different analyses
invoking possible worlds which Stalnaker developed in his own work.

As we’ve seen, worlds are objects that can be abstracted from ordinary pred-
ication and possibility, and it doesn’t matter whether we take the locus of pred-
ication and possibility to be the physical world, our minds, or language. One
need only accept that there is in fact a corpus of ordinary predications and
possibilities, that within this corpus there are special patterns of propositions,
and that possible worlds are nothing more than those patterns.

As abstractions, possible worlds have an intrinsic nature, defined by their
encoded properties. As noted previously, the propositions that are true at
world w characterize w. That is, if w |= p, then w is such that p, in the sense
that w encodes [λy p]. Possible worlds, as we’ve defined them, don’t model or
represent anything, despite being abstract; they are not ersatz worlds (Lewis
1986, 136ff). Possible worlds just are abstract logical objects characterized by
the propositions true at them.293

Finally, note that once we extend our system by adding particular contin-
gent truths,294 we do not require any special, further evidence for believing
in the existence of each nonactual possible world implied by (543.1). Epis-
temologically, we don’t have to justify our knowledge of each possible world,
e.g., by identifying some information pathway from each world back to us that
explains and justifies our belief in its existence. Instead, given contingently
true propositions as data, we can cite (543.1) as the principle that guarantees
the existence of the relevant nonactual worlds and thereby justify our belief in

293It appears as though Lewis (1986, Chapter 3) would regard Wittgensteinian possible worlds,
referenced in Wittgenstein 1921 (7, Propositions 1 and 1.1) in such claims as “The world is all
that is the case” and “The world is the totality of facts, not of things”, as ersatz. But I’m not sure
why possible worlds characterized in terms of the propositions true at them should be labeled
representations and thereby ersatz. The possible worlds characerized in the present text are not
ersatz, given the facts just noted in the text. It bears emphasizing that encoding is a mode of
predication, and so when w |= p and being such that p is thereby predicated of w, the property in
question characterizes w. So w is such that p, and doesn’t represent something that is such that p.
294I am referring here to such claims such as: Obama doesn’t have a son but might have, Obama

has two daughters but might not have, there aren’t million carat diamonds but there might have
been, etc.
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them. In turn, the justification of (543.1) rests on the fact that it is derivable
from a very general theory with both inferential and explanatory power. More-
over, the justification also goes in the other direction: the theory itself receives
justification from the fact that the above principles governing possible worlds
are derivable from it.

12.3 World-Indexed Logical Objects and Relations

12.3.1 World-Indexed Truth-Values

In the next numbered item, we revise and enhance definition truth-value of p
(286), in two ways: (1) by relativizing it to possible worlds, and (2) by tak-
ing advantage of the fact that truth-values are situations. We could relativize
definition (286) to possible worlds and accomplish (1) by defining:

TruthValueAtOf (x,w,p) ≡df A!x&∀F(xF ≡ ∃q(w |=(q ≡ p) & F=[λy q]))

This would define a truth-value-at-w of p to be an abstract object x that encodes
all and only the propositional properties F constructed out of propositions q
that are materially equivalent to p at w. However, we can now take advantage
of the fact that truth-values are situations (468) and accomplish (2) by defining
a truth-value-at-w of p in a way that makes use of our simplified comprehen-
sion conditions for situations (486.1). A truth-value-at-w of p can be defined
as a situation s that makes true all and only the propositions equivalent to p at
w. We may formalize this as follows.

(555) Definition: Truth-Value At w Of p. We define: s is a truth-value-at-w of
p if and only if s is a situation that makes true all and only the propositions q
such that, at w, q is materially equivalent to p:

TruthValueAtOf (s,w,p) ≡df ∀q(s |= q ≡ w |=(q ≡ p))

We continue to use the rigid restricted variables s, s′, . . . for situations andw,w′, . . .
for possible worlds.

(556) Theorems: Unique Existence of Truth-Values-at-Worlds of Propositions.
It now follows that: (.1) there is a unique truth-value-at-w of p, and (.2) the
truth-value-at-w of p exists:

(.1) ∃!sTruthValueAtOf (s,w,p)

(.2) ısTruthValueAtOf (s,w,p)↓

Recall that since these theorems involve the free restricted variable w, they are
implicitly conditionals. Though since we’ve proved the existence of possible
worlds, we can derive unconditional existence claims.
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(557) Definition: Notation for The Truth-Value-At-w Of p. Given (556.2) and
our conventions for definitions, we may introduce notation to designate the
truth-value-at-w of p:

◦wp =df ısTruthValueAtOf (s,w,p)

This introduces ◦wp as a binary functional term with free variable p and free
restricted variable w. Hence, given our conventions for definitions and re-
stricted variables (339) an expression of the form ◦κΠ is significant when Π

is any 0-ary term in which s isn’t free and κ is known to be a possible world,
either by proof or by hypothesis.295

(558) Theorems: Strict Canonicity of ◦wp. In the usual way, it follows that ◦wp
is (identical to) a canonical situation, as defined in (486):

(.1) ◦wp = ıs∀q(s |= q ≡ w |=(q ≡ p))

Now if we let ϕ be w |= (q ≡ p), then it follows that ϕ is a rigid condition on
propositions, as this was defined in (260.1), for the following is established by
modally strict means:

(.2) ∀q((w |=(q ≡ p))→ �w |=(q ≡ p))

So ◦wp is strictly canonical, by (260.2), and is subject to theorem (261.2). It is
then easy to establish, as a modally strict theorem, that (.3) ◦wp is a a situation
that makes true exactly the propositions equivalent to p at w:

(.3) ∀q(◦wp |= q ≡ w |=(q ≡ p))

(.4) TruthValueAtOf (◦wp,w,p)

It follows relatively quickly from (.3), the fact that �(p ≡ p), and a fundamental
theorem of world theory that (.5) the truth-value-at-w of p makes p true:

(.5) ◦wp |= p

Finally, the Fregean biconditional, (.6) the truth-value-at-w of p is identical to
the truth-value-at-w of q if and only if it is true at w that p and q are materially
equivalent:

(.6) ◦wp=◦wq ≡ w |= (p ≡ q)

295This is explained by the fact that the above definition abbreviates:

◦yp =df ıx(PossibleWorld(y) & TruthValueAtOf (s,y,p))

So if y is replaced by a term κ that fails to denote a possible world, then PossibleWorld(κ) fails
and so no situation s satisfies the condition PossibleWorld(y) & TruthValueAtOf (s,κ,p). In that case,
the definiens would fail to be significant and, hence, so would the definiendum, by the Rule of
Definition by Identity (73).
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So whereas the Fregean biconditional for truth-values (300)? is not a modally
strict theorem, the analogous principle for world-indexed truth-values is.

(559) Definitions: The-True-at-w and The-False-at-w. We define: (.1) The True-
at-w (>w) to be the situation that makes true exactly the propositions that are
true at w; (.2) The False-at-w (⊥w) to be the situation that makes true exactly
the propositions that are false at w:

(.1) >w =df ıs∀p(s |= p ≡ w |=p)

(.2) ⊥w =df ıs∀p(s |= p ≡ w |=¬p)

Given the free restricted variable w in these definitions, we may regard >κ and
⊥κ as significant only when κ is known to be a possible world, by proof or by
hypothesis.

(560) Theorems: Strict Canonicity of The-True-at-w and The-False-at-w. Clearly,
>w and ⊥w are (identical to) strictly canonical situations, as defined in (486),
since the following modally strict theorems imply (.1) w |=p is a rigid condition
on propositions, and (.2) w |=¬p is rigid condition on propositions:

(.1) ∀p((w |=p)→ �(w |=p))

(.2) ∀p((w |=¬p)→ �(w |=¬p))

So >w and ⊥w are subject to theorem (261.2) and can be instantiated into
their own defining descriptions by modally strict proofs. Thus, we have (.3)
The-True-at-w makes true all and only the truths at w, and (.4) The-False-at-w
makes true all and only the falsehoods at w:

(.3) ∀p(>w |= p ≡ w |= p)

(.4) ∀p(⊥w |= p ≡ w |=¬p)

It follows from (.3) and (474) that The-True-at-w just is w:

(.5) >w = w

(.5) is a more general result than (535), which asserts that > = wα .

(561) Theorems: Truth at w, The Truth-Value-at-w of p, and The True at w.
(.1) p is true at w if and only if the truth-value-at-w of p is The-True-at-w; and
(.2) p is false at w if and only if the truth-value-at-w of p is The-False-at-w.

(.1) w |=p ≡ ◦wp=>w

(.2) w |=¬p ≡ ◦wp=⊥w
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(562) Theorems: World-Indexed Truth-Values and Modalities. It now follows
that: (.1) p is necessary if and only if for every world w, the truth-value-at-w
of p is (identical to) The-True-at-w; (.2) p is necessarily false if and only if for
every world w, the truth-value-at-w of p is The-False-at-w; (.3) p is possible if
and only if for some world w, the truth-value-at-w of p is The-True-at-w; and
(.4) p is possibly false if and only if for some world w, the truth-value-at-w of
p is The-False-at-w:

(.1) �p ≡ ∀w(◦wp =>w)

(.2) �¬p ≡ ∀w(◦wp =⊥w)

(.3) ♦p ≡ ∃w(◦wp =>w)

(.4) ♦¬p ≡ ∃w(◦wp =⊥w)

12.3.2 World-Indexed Extensions

(563) Definitions: An Extension at a World of a Property. We may now rela-
tivize definition (312.1) as follows: x is an extension-at-w of G if and only if x
is abstract, G exists, and x encodes just those properties F such that at w, F is
materially equivalent to G:

ExtensionAtOf(x,w,G) ≡df A!x&G↓&∀F(xF ≡ w |= ∀y(Fy ≡ Gy))

It is important here not to think of an extension at w of G as an extension
of the property G-at-w. We’ll later introduce such world-indexed properties
as G-at-w (Gw) later and it will become clear, if only as an exercise, why the
extension of the property Gw (namely, εGw), which encodes the properties F
that in fact are materially equivalent to Gw is not an extension-at-w of G (εwG),
which encodes the properties F that are materially equivalent to G at w. See
Exercise in Remark (575).

(564) Theorem: The Extension at w of a Property Exists. It now follows that
(.1) there exists a unique extension-at-w ofG, and hence, that (.2) the extension-
at-w of G exists:

(.1) ∃!xExtensionAtOf(x,w,G)

(.2) ıxExtensionAtOf(x,w,G)↓

Since both w and G are free variables in these theorems, it follows by GEN that
the latter hold for all properties and worlds.

(565) Definition: Notation for the Extension-at-w of G. We may therefore in-
troduce notation for the extension-at-w of G as follows:



570 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

εwG =df ıxExtensionAtOf(x,w,G)

Since the existence ofG is built into the definition of ExtensionAtOf(x,w,G) and
this definition uses the restricted variable w, expressions of the form εκΠ are
binary functional terms that are significant only when it is known, by proof or
by hypothesis, that κ is a possible world and Π is a significant unary relation
term.

(566) Theorems: Strict Canonicity of εwG. By now well-established reasoning,
(.1) εwG is (identical to) a canonical object:

(.1) εwG = ıx(A!x&∀F(xF ≡ w |= ∀y(Fy ≡ Gy)))

If we now let ϕ be w |=∀y(Fy ≡ Gy), then it follows that (.2) ϕ is a rigid condi-
tion on properties, as this was defined in (260.1):

(.2) ∀F(w |=∀y(Fy ≡ Gy)→ �w |=∀y(Fy ≡ Gy))

So we know that εwG is strictly canonical, by (260.2). Hence, it is subject to
theorem (261.2). It is therefore easy to establish, by modally strict means, that
(.3) εwG is an abstract object that encodes exactly those properties F such that
at w, F is materially equivalent to G, and (.4) εwG is an extension-at-w of G:

(.3) A!εwG &∀F(εwGF ≡ w |= ∀y(Fy ≡ Gy))

(.4) ExtensionAtOf(εwG,w,G)

Finally, it follows relatively quickly from the second conjunct of (.3) that (.5)
the extension-at-w of G encodes G:

(.5) εwGG

This is an encoding claim in which the individual term is the restricted func-
tional term εwG.

(567) Theorem: World-Indexed Pre-Law V and World-Indexed Law V. It now
follows that (.1) if x is an extension-at-w of G and y is an extension-at-w of H ,
then x= y if and only if at w, G and H are materially equivalent; and (.2) the
extension-at-w of F is identical to the extension-at-w of G if and only if, at w, F
and G are materially equivalent:

(.1) (ExtensionAtOf(x,w,G) & ExtensionAtOf(y,w,H))→
(x=y ≡ w |= ∀z(Gz ≡Hz))

(.2) εwF=εwG ≡ w |=∀z(Fz ≡ Gz)

So though Frege’s Basic Law V (328)? is not modally-strict, its world-indexed
version is.
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(568) Remark: Suggestions for Further Research. Define: x is, at w, a class
of Gs if and only if x is an extension-at-w of G. Then define world-indexed
membership: y is, at w, an element of x iff x is, at w, a class of Gs and, at w, Gy:

y ∈w x ≡df ∃G(ClassOfAt(x,w,G) &w |= Gy)

Though we shall not develop these ideas further, the reader should consider
formulating and proving some interesting claims regarding y ∈w x, as well as
defining further notions (such as the class, at w, of Gs) and proving facts about
them.

12.3.3 World-Indexed Relations

The key results in this section, namely, the proof of the existence of world-
indexed relations and the proof that every relation has a rigidification, are con-
sequences of Kirchner’s Theorem and were first reported by Daniel Kirchner
in personal communications. See footnotes 296 and 299 below.

(569) Theorems: Relations Defined in Terms of Truth at a Possible World. We
begin by establishing that (.1) if being an x such that ϕ exists, then being an x
such that, at w, ϕ is true exists:296

(.1) [λxϕ]↓ → [λxw |= ϕ]↓

[λxw |= ϕ] isn’t yet what we shall call a world-indexed relation. As (.1) shows,
this relation exists only conditionally. We’ll define world-indexed relations in
(570.1) below; these will exist unconditionally for every relation (570.2). Note
that (.1) generalizes to:

(.2) [λx1 . . .xn ϕ]↓ → [λx1 . . .xnw |= ϕ]↓ (n ≥ 0)

In constrast to the relations defined in (.1) and (.2), we now single-out a special
class of relations that exist axiomatically and unconditionally, as instances of
(39.2), namely, being an x1, . . . ,xn such that, at w, x1, . . . ,xn exemplifies F:

(.3) [λx1 . . .xnw |= Fx1 . . .xn]↓ (n ≥ 0)

These are instances of (39.2) because [λx1 . . .xnw |= Fx1 . . .xn] is a core λ-expres-
sion, as this was defined in (9.2): no variable bound by the λ occurs in encoding
position in the matrix w |= Fx1 . . .xn, even when we consider the definientia of
the defined terms in w |= Fx1 . . .xn.297

(570) Definition and Theorem: World-Indexed Relations. We now define the
world-indexed relation Fnw (‘Fn-at-w’) as [λx1 . . .xnw |= Fnx1 . . .xn]:

296I’m indebted to Daniel Kirchner for noting (personal communication: 5 March 2020) this
important consequence of the theorem he contributed, which was reported in (271).
297The matrix w |= Fx1 . . .xn is defined as (470):

Situation(w) &wΣFx1 . . .xn
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(.1) Fnw =df [λx1 . . .xnw |= Fnx1 . . .xn] (n ≥ 0)

Thus, it follows that (.2) for every n-ary relation F and possible world w, being
F at w exists:

(.2) ∀Fn∀w(Fnw↓) (n ≥ 0)

We have therefore proved, in the object language, the existence of world-indexed
relations among individuals, and have no need to stipulate their existence in the
metalanguage. This stands in contrast to Williamson 2013 (237), where world-
indexed relations of every higher type are stipulated to exist. We’ll prove the
existence of world-indexed relations of every higher type in Chapter 15, in
(972.2) and (972.3).

(571) Definition: Rigid and Rigidifying Relations. To formulate and prove an
important group of theorems, let us say that a relation Fn is rigid if and only if
necessarily, for any objects x1, . . . ,xn, if x1 . . .xn exemplify Fn, then necessarily
x1, . . . ,xn exemplify Fn:

(.1) Rigid(Fn) ≡df F
n↓&�∀x1 . . .∀xn(Fnx1 . . .xn→ �Fnx1 . . .xn) (n ≥ 0)

In the 0-ary case, the definition stipulates that Rigid(p) ≡df p↓&�(p→ �p).
Moreover, where n ≥ 0, let us say that Fn rigidifies Gn just in case Fn is rigid

and is exemplified by exactly the same objects as Gn:

(.2) Rigidifies(Fn,Gn) ≡df Rigid(Fn) &∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)

In the 0-ary case, Rigidifies(p,q) just in case Rigid(p) and p is materially equiv-
alent to q.

(572) Remark: Digression on the Notions of Rigidity. Since we’ve now used
the term ‘rigid’ and its cognates in various senses, it might serve well to review
the various notions introduced thus far, to forestall confusion in what follows.
We first describe how we’ve used the most recognizable notion of rigidity:

Expanding the definition of Situation(w) (467), this becomes:

A!w&∀F(wF→ Propositional(F)) &wΣFx1 . . .xn

Expanding the definition of Propositional(F) (275), this becomes:

A!w&∀F(wF→∃p(p=[λy p])) &wΣFx1 . . .xn

Expanding the definition of wΣFx1 . . .xn (295), this becomes:

A!w&∀F(wF→∃p(p=[λy p])) &w↓&w[λz Fx1 . . .xn]

Expanding the definition of w↓ (20.1), this becomes:

A!w&∀F(wF→∃p(p=[λy p])) &∃F(Fw) &w[λz Fx1 . . .xn]

Thus, x1, . . . ,xn do not occur in encoding position of this last formula, and so by the Encoding
Formula Convention (17.3), these variables do not occur in encoding position in the formula w |=
Fx1 . . .xn.
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• Since the definite descriptions of our language are rigid designators, we’ve
called expressions of the form ıxϕ rigid descriptions.

However, it should be clear that every significant term of our language is a
rigid designator, as this notion is generally understood. Semantically speaking,
once an interpretation of the language and an assignment to the variables is
specified, the denotation function is unary - the denotations of the terms are
not relativized to possible worlds. So a significant term denotes the same entity
in every modal context.

In addition to this notion of rigidity, we have introduced both metatheo-
retical notions (about the system) and theoretical notions (within the system)
of rigidity. These notions, reviewed below, have a connection to the notion of
modal collapse, which was discussed in Chapter 9, Section 9.9.3. A modally
collapsed formula ϕ is one that can take any of a number of well-recognizable
forms, such as �(ϕ → ϕ), ♦ϕ ≡ �ϕ, etc. Normally, if one can derive such
formulas by modally strict means, then the modal collapse doesn’t hinge on
any contingency. See the theorems in Section 9.9.3.

In light of this, the metatheoretical notions of rigidity that we’ve introduced
are:

• In (260), we defined ϕ is a rigid condition on α if and only if `� ∀α(ϕ →
�ϕ), i.e., if and only if it is a modally strict theorem that for any entity α,
if ϕ, then necessarily ϕ.

• In (340), we defined ϕ is a rigid restriction condition on α if and only if ϕ
is a restriction condition on α (336) and also a rigid condition on α (260).
Recall that a restriction condition on α was defined in (336) as having the
following characteristics:

– ϕ has one free variable α,

– `� ∃αϕ(α), i.e., it is provable, by modally strict means, that ϕ is
non-empty, and

– `� ϕτα → τ↓, i.e., it is provable, by modally strict means, that ϕ has
existential import.298

• In (340) we introduced rigid restricted variables to range over entities that
satisfied a rigid restriction condition.

In contrast to these metatheoretical notions, we’ve defined a theoretical notion
of rigidity in (571.1):

298By contrast, a weak restriction is condition was defined in (336) as any formula ψ such that (a)
ψ has a single free variable α, (b) it is provable that ψ is non-empty, but not necessarily by modally
strict means, and (c) it is provable that ψ has existential import, but not necessarily by modally
strict means.
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• We say that an n-ary relation R is rigid just in case �∀x1 . . .∀xn(Rx1 . . .xn→
�Rx1 . . .xn).

And in (571.2), we said that:

• A relation Fn rigidifies a relation Gn just in case Fn is rigid and is materi-
ally equivalent to G.

It may be that this summary will help one to cleanly separate the various no-
tions of rigidity.

(573) Theorem: Every Relation Has a Rigidification. We first prove some lem-
mas. (.1) x1, . . .xn exemplify F-at-w if and only if Fnx1 . . .xn is true at w:

(.1) Fnwx1 . . .xn ≡ w |= Fnx1 . . .xn (n ≥ 0)

It then easily follows that (.2) Gnw is rigid:

(.2) Rigid(Gnw) (n ≥ 0)

But an even more interesting theorem is implied, namely, that some relation
rigidifies Gn:299

(.3) ∃Fn(Rigidifies(Fn,Gn)) (n ≥ 0)

Note that (.3) can’t be inferred immediately from (.2)! One can’t use Gnw where
w is a fixed, but arbitrary, possible world to rigidify G. If you suppose Gnw with
w = wα is the witness to (.3), then the proof thatGnwα

is materially equivalent to
G would fail to be modally strict. Nor would one be able to produce a relation
that rigidifies G within an arbitrary modal context. Interestingly, though, the
proof of (.3) does make use of Gnw, but its use has to be set up properly.

By RN and GEN, it follows from (.3) that ∀G�∃FnRigidifies(Fn,Gn). We’ll
show in the discussion of (574.3) below that (.3) is a non-schematic, second-
order version of an axiom formulated by Gallin (1975, 77).

Note that (.3) isn’t derivable from the fact that every relation Gn has an
actualized version [λx1 . . .xn AGnx1 . . .xn] that rigidifies Gn. We can see why if
we consider the fact, noted above, that the present theorem holds necessarily
for any property G. Now if we think semantically for the moment in terms
of primitive possible worlds, this last fact means that for any possible world
w and any relation Gn, there is a relation Fn whose exemplification extension
at every possible world is the exemplification extension of Gn at w. By con-
trast, [λx1 . . .xn AGnx1 . . .xn] is a relation whose exemplification extension at
every possible world is the exemplification extension of Gn at the actual world.

299Credit goes to Daniel Kirchner for noting (personal communication: 5 March 2020) that the
following is a consequence of the Kirchner Theorem, reported in (271). In previous versions of
object theory, this was taken as an axiom.
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(574) Theorems: Equivalent Notions of Rigid Relations. Where n ≥ 0, it is
provable that (.1) the claim, (a) necessarily, for all objects x1, . . . ,xn, if x1, . . . ,xn
exemplify Fn, then necessarily x1, . . . ,xn exemplify Fn, is equivalent to the claim,
(b) for all objects x1, . . . ,xn, if possibly x1, . . . ,xn exemplify Fn then necessar-
ily x1, . . . ,xn exemplify Fn; and (.2) the claim, (a) necessarily, for all objects
x1, . . . ,xn, if x1, . . . ,xn exemplify Fn, then necessarily x1, . . . ,xn exemplify Fn, is
equivalent to the claim, (b) for all objects x1, . . . ,xn, either necessarily x1, . . . ,xn
exemplify Fn or necessarily x1, . . . ,xn fail to exemplify Fn:

(.1) �∀x1 . . .∀xn(Fx1 . . .xn→ �Fx1 . . .xn) ≡ ∀x1 . . .∀xn(♦Fx1 . . .xn→ �Fx1 . . .xn)

(.2) �∀x1 . . .∀xn(Fx1 . . .xn→ �Fx1 . . .xn) ≡ ∀x1 . . .∀xn(�Fx1 . . .xn ∨�¬Fx1 . . .xn)

Thus, it immediately follows from (.2), given definition (571.1), that (.3) Fn is
rigid if and only if for all objects x1, . . . ,xn, either necessarily x1, . . . ,xn exemplify
Fn or necessarily x1, . . . ,xn fail to exemplify Fn:

(.3) Rigid(Fn) ≡ ∀x1 . . .∀xn(�Fx1 . . .xn ∨�¬Fx1 . . .xn)

(.3) is the definition of a rigid relation given in Montague 1974 (132) and in
Gallin 1975 (77). Thus, theorem (573.3) captures, in second order form, the
intuition underlying the typed axiom Extensional Comprehension formulated
by Gallin (1975, 77).300 Cf. Cocchiarella 1988 (54), ehere we find a similar, but
non-modal, statement of what he calls the principle of rigidity.

(575) Remark: An Important Distinction. We are now in a position to con-
sider the difference, if any, between the extension of a world-relativized prop-
erty Gw and the world-relativized extension of G, and between the truth-value
of a world-relativized proposition p and the world-relativized truth-value of
p. Let’s first consider the difference between extensions of world-relativized
properties and world-relativized extensions of properties.

300Though we’ve captured the intuition in second-order form, a version of Gallin’s typed axiom
is derivable in typed object theory; see Chapter 15 of the present monograph for the presentation
of typed object theory. For now, however, we can establish the connection with Gallin’s principle
as follows.

By applying RN and then GEN to (573.3), we obtain:

∀Gn�∃Fn(Rigidifies(Fn,Gn))

So by definition (571.2), this is equivalent to:

(ϑ) ∀Gn�∃Fn(Rigid(Fn) &∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn))

Now in Gallin (1975, 77), the statement of (typed) extensional comprehension is:

�∃fσ [Rn(f)∧∀x0 . . . ∀xn−1[fx0 . . .xn−1↔ A] ],

where σ is the type of an n-ary relation among objects of arbitrary types, all the other expressions
are appropriately typed, and fσ doesn’t occur free in A. Though (ϑ) is not a schema, it is a version
of Gallin’s principle that holds for n-ary relations among individuals. Note, finally, that a second-
order schematic version of Gallix axiom, conditionalized on [λx1 . . .xn ϕ]↓, can be derived using
(569.2).
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Since we’ve now established that G-at-w (Gw) exists (for any property G), it
follows that its extension, εGw, exists. And by (564.1) and (565), we know that
the extension-at-w of G (εwG) exists. So by applying definitions and theorems,
we know:

εGw = ıx(A!x&∀F(xF ≡ ∀z(Fz ≡ Gwz)))

εwG = ıx(A!x&∀F(xF ≡ w |= ∀z(Fz ≡ Gz)))

Intuitively, εGw and εwG are distinct. If a property F is in fact materially equiv-
alent to G-at-w, but not materially equivalent, at w, to G, then εGw encodes F
while εwG does not. And vice versa, if F is, at w, is materially equivalent to
G, but is not in fact materially equivalent to G-at-w, then εwG encodes F while
εGw does not.

Exercise: Prove ∃G∃w(εGw , εwG). [Hint: Use (221.1).]

Now consider truth-values.
Since we’ve now established that p-at-w (pw) exists (for any p), it follows

that its extension, ◦pw, exists. And by (556.2) and (557), we showed that the
truth-value-at-w of p (◦wp) exists. So by applying definitions and theorems, we
know:

◦pw = ıs∀q(s |= q ≡ (q ≡ pw))

◦wp = ıs∀q(s |= q ≡ w |= (q ≡ p))

Intuitively, ◦pw and ◦wp are distinct. If a proposition q is in fact materially
equivalent to p-at-w, but not materially equivalent, atw, to p, then ◦pw encodes
q while ◦wp does not. And vice versa, if q is, at w, materially equivalent to p,
but is not in fact materially equivalent to p-at-w, then ◦wp encodes q while ◦pw
does not.

Exercise: Prove ∃p∃w(◦pw , ◦wp).

12.4 Impossible Worlds

(576) Remark: On Impossible Worlds. From the 1960s through the 1990s, we
start to find, in the literature, discussions of ‘non-normal worlds’ (Kripke 1965,
Cresswell 1967, Rantala 1982, Priest 1992, and Priest & Sylvan 1992), ‘non-
classical worlds’ (Cresswell 1972b), ‘non-standard worlds’ (Rescher & Bran-
dom 1980, Paśniczek 1994) and ‘impossible worlds’ (Morgan 1973, Hintikka
1975, Routley 1980, Yagisawa 1988, Mares 1997, and Restall 1997). For a good
overview of the recent literature on impossible worlds, see Berto 2013.301

301See also Nolan 2013, Krakauer 2013, and Jago 2013, which also focus on impossible worlds.
However, these recent works don’t consider the theory of impossible worlds developed in Zalta
1997a, which we further refine and develop here.
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Though a variety of reasons have been given for postulating such impossi-
ble worlds, not all of those reasons are, from an object-theoretic perspective,
convincing. For example, impossible worlds are often invoked to solve prob-
lems that arise when philosophers represent propositions as functions from
possible worlds to truth-values (or as sets of possible worlds). Such representa-
tions, as is well known, identify propositions that are necessarily equivalent; if
propositions p and q are just functions from worlds to truth-values, then they
can’t be distinguished when they have the same truth-value at every possible
world. As a result, if one represents a belief as a relation between a person and
a proposition so-conceived, then if x believes p, and p is necessarily equivalent
to q, then x believes q. This just follows by the substitution of identicals and
the identity of p and q. Such a result flies in the face of the data.302 To solve this
problem, it has been suggested that we can distinguish necessarily equivalent
propositions if we consider their truth-values at impossible worlds. In effect,
the suggestion is to represent propositions as functions from worlds generally,
i.e., both possible and impossible worlds, to truth-values.

But, from the present perspective, we need not invoke impossible worlds
to distinguish necessarily equivalent propositions. Object theory already has
that capability; our theory of propositions doesn’t collapse necessarily equiv-
alent propositions. Thus, one can use the present theory of propositions to
represent beliefs without incurring the result that one believes everything that
is necessarily equivalent to what one believes.

Philosophers have also invoked impossible worlds to explain both impossi-
bilities in fiction specifically and thoughts about impossible objects generally.
But as the discussion in Section 12.6 will show, we can analyze such fictions
and thoughts without invoking impossible worlds.

From an object-theoretic perspective, the best case for impossible worlds
comes from:

(A) the analysis of counterfactual and subjunctive conditionals with impos-
sible antecedents, and

(B) the study of paraconsistent logic.

As to (A), consider the following sentences, which are clearly true:

• If Frege’s system had been consistent, he would have died a happier man.

• If there were a set of all non-self-membered sets, it would be a member
of itself iff not a member of itself.

302Not only are there numerous examples of believing p without believing propositions neces-
sarily equivalent to q, the problem of logical omniscience arises for this understanding of proposi-
tions. See Hintikka 1975 for a discussion of the problem and the suggestion that impossible worlds
solve the problem.
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The first example is a counterfactual conditional. On the standard analysis,
such conditionals are true just in case the consequent is true at the closest pos-
sible world where the antecedent is true (Stalnaker 1968, Lewis 1973). But the
antecedent of the example is true at no possible world, since one can derive a
contradiction from Frege’s axioms and thereby demonstrate his system’s incon-
sistency. This inconsistency is not contingent; there is no possible world where
the particular axioms of Frege’s system are consistent. Hence, the antecedent
of the above counterfactual conditional describes an impossibility and so the
standard analysis implies that the sentence is false, thereby failing to preserve
its truth-value.303 It has been suggested that this problem might be solved if
we amend the analysis so that counterfactual conditionals are considered true
just in case the consequent is true at the closest world (possible or impossible)
where the antecedent is true.

The second case is a subjunctive conditional, and there are lots of similar
examples, such as, “if four were prime, it would be divisible only by itself and
one”. Again, on the standard analysis of the truth conditions of such subjunc-
tive conditionals, on which the consequent holds in the closest possible world
where the antecedent holds, the sentence turns out to be false, contrary to in-
tuition. But though there is no possible world where something is a set of all
non-self-membered sets or where four is prime, it is claimed that there are im-
possible worlds where these propositions are true. Of course, these claims are
typically just assumed rather than proved to be true. By amending the analysis
so that the truth conditions become “the consequent holds at the closest world
(possible or otherwise) where the antecedent holds”, we seem to get correct
truth conditions for the subjunctive conditional, assuming that the notion of
an impossible world is sufficiently clear.

Concerning (B), the suggestion that paraconsistent logic governs impossible
worlds is persuasive. Paraconsistent logic weakens classical logic so that an
arbitrary proposition can’t be derived from the contradiction p&¬p; thus, the
principle ex contradictione (sequitur) quodlibet fails for such a logic. On the
analysis developed below, we can see why one might think there is a connection
between paraconsistent logic and impossible worlds: from the fact that p&¬p
is true at an impossible world, it doesn’t follow that every proposition is true
at that world.

Of course, once one accepts that impossible worlds help us to understand

303Of course, one could try to ‘paraphrase away’ the description “Frege’s system”, by interpreting
“Frege’s system” as the non-rigid description “the system Frege developed”, so that the sentence
in question implies: if Frege had developed a consistent system, he would have died a happier
man. Here, the antecedent is possibly true; there are possible worlds where Frege developed a
consistent system. But that is not what the original sentence implies. The paraphrase is not an
accurate one; it just misrepresents what the original sentence means. If this is not convincing, just
change the example to: if the system Frege in fact developed had been consistent, he would have
died a happier man.
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the data presented by (A) and (B), the question arises, what are impossible
worlds exactly? Too frequently, the answer is given by switching to model the-
ory and modeling impossible worlds as sets of propositions. But it is important
not to mistake the entities being modeled for the entities doing the model-
ing. A world, whether possible or impossible, is not a set of propositions. The
propositions in a set don’t characterize that set, whereas the propositions true
in a world, possible or impossible, characterize the world.

In what follows, however, we develop a series of definitions and theorems
that show impossible worlds to be abstract objects, indeed situations, charac-
terized by the propositions true at them. Moreover, the most important prin-
ciples governing impossible worlds are derived as theorems, such as the fun-
damental theorem that for every way a world couldn’t possibly be, there is a
non-trivial impossible world that is that way; this is proved in (585) below. I
don’t know of any other theory of impossible worlds that yields similar conse-
quences.304

The reader may wish to consult Zalta 1997a for a more detailed motivation
of impossible worlds than the one just presented. The work below revises,
corrects, and enhances the theorems and proofs first developed there.

(577) Definition and Theorems: Impossible Worlds. In what follows, we con-
tinue to use the variables s, s′, s′′, . . . as rigid restricted variables ranging over
situations (467). Recalling the definition of Maximal(s) (520) and the defini-
tion of Possible(s) (502), we may say that a situation s is an impossible world just
in case s is maximal and not possible:

(.1) ImpossibleWorld(s) ≡df Maximal(s) &¬Possible(s)

i.e., if we eliminate the restricted variable:

ImpossibleWorld(x) ≡df Situation(x) & Maximal(x) &¬Possible(x)

In this definition, maximality is a necessary condition. We take it that only
those situations that are maximal are correctly considered to be worlds. Situa-
tions that are maximal and possible are (provably) possible worlds (522), while
situations that are maximal and impossible are impossible worlds by defini-
tion. A situation that isn’t maximal has no legitimate claim to being called a
‘world’, at least not in the technical sense philosophers attach to this notion in
the attempt to understand modality.

Recall that we defined TrivialSituation(x) as a situation in which every pro-
position is true (487.2). After it was shown that ıxTrivialSituation(x)↓ (488.4)
and sV was defined as ıxTrivialSituation(x) (489.2), we gave a modally strict

304One way to question the arguments in Nolan 2013, Krakauer 2013, and Jago 2013, is to en-
quire whether their preferred theories of impossible worlds can yield the basic principles about
impossible worlds as theorems, in the manner of Zalta 1997a and below.
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proof that TrivialSituation(sV ) (490.4). It follows from these facts that (.2) sV
is an impossible world:

(.2) ImpossibleWorld(sV )

(488.4) and (.2) imply that:

(.3) ∃xImpossibleWorld(x)

and it is also straightfoward to show, for any individual term κ:

(.4) ImpossibleWorld(κ)→ κ↓

Thus, ImpossibleWorld(x) is a restriction condition, as defined in (336). But
before we introduce restricted variables for impossible worlds, we first show
that it is a rigid restriction condition.

(578) Theorems: Modal Collapse of ImpossibleWorld(x) and Rigid Restricted
Variables. It is a modally strict theorem that if x is an impossible world it is
necessarily an impossible world:

(.1) ImpossibleWorld(x)→ �ImpossibleWorld(x)

The following are immediate consequences:

(.2) �(ImpossibleWorld(x)→ �ImpossibleWorld(x))

(.3) ∀x(ImpossibleWorld(x)→ �ImpossibleWorld(x))

So by (.2), ImpossibleWorld(x) is modally collapsed and, by (.3) and metadefini-
tion (340), is a rigid restriction condition. Given the latter, we may introduce
i, i′, i′′, . . . as (singly) restricted variables ranging over them. Moreover, we may
take these new variables as doubly-restricted, i.e., as variables that range over
situations s. Thus, at our convenience, we formulate theorems and reason with
i, i′, . . . as either singly restricted or doubly restricted, as discussed in Remark
(514) for the case of the variables w,w′,w′′, . . . . As a result, notions defined
on situations s may be applied to impossible worlds i without having to be
redefined.

(579) Definition: Truth at an Impossible World. An important example is the
notion of truth in a situation, i.e., s |= p. By interpreting i as a doubly restricted
variable, we may henceforth suppose that i |= p is defined. We shall read i |= p
as ‘p is true at i’. Thus, truth at an impossible world is simply a special case of
the notion truth in a situation.

Note that if x is an impossible world, then it is a situation and so by defi-
nition (470) and theorem (88.8.i), x |=p ≡ xΣp. Moreover, if x is an impossible
world, then the fact that it is a situation implies x is abstract. So by similar
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reasoning, xΣp ≡ x[λy p]. Hence, when x is a situation, x |= p ≡ x[λy p]. So
for impossible worlds, i |=p ≡ i[λy p]. Thus, a proposition p is true at i if and
only if the property [λy p] characterizes i by way of an encoding predication.
So we have a genuine theory of impossible worlds, not an ersatz theory or a
set-theoretic model of them.

(580) Theorem: Identity of Impossible Worlds. Since impossible worlds are a
species of situation, it follows that i= i′ iff all and only the propositions true at
i are true at i′:

i= i′ ≡ ∀p(i |=p ≡ i′ |=p)

(581) Theorem: The False is an Impossible World That Isn’t Trivial. Recall the
definition of The False (⊥) in (302.2). It follows by modally strict reasoning
that The False is a non-trivial impossible world:

ImpossibleWorld(⊥) &¬TrivialSituation(⊥)

So there are non-trivial impossible worlds. Since ⊥ is an impossible world at
which every falsehood is true, we might take the liberty of referring to it as the
worst of all non-trivial impossible worlds! Depending on your view of contradic-
tions, the trivial situation, sV (489.2), may be worse, since every proposition,
as well as its negation, is true there. But then, sV has a saving grace, for though
every false proposition is true there, every true proposition is true there as well.

Exercise: In (559.2) we defined ⊥w as The False at w. Develop a modally strict
proof that, for any possible world w, ⊥w is a non-trivial impossible world.

(582) Theorem: The False is an Impossible World That Is Not 1-Modally Closed.
It is a modally strict theorem that ⊥ is not is not (unary-) closed under neces-
sary implication:305

¬1-ModallyClosed(⊥)

(583) Definition: The p-Extension of Situation s. We define the p-extension of
situation s, written s+p, as the situation that makes true all of the propositions
that s makes true and also makes p true:

s+p =df ıs
′∀q(s′ |= q ≡ (s |=q ∨ q=p))

Note that the expression s+p is a binary functional term that involves two vari-
ables: the situation that s+p denotes depends on the value of s and p. Since
every 0-ary relation term Π0 is significant, we may regard κ+Π0

as significant
whenever κ is an individual term that is known, by hypothesis or by proof, to

305I’m indebted to Daniel West for suggesting that this theorem could be proved by modally strict
means.
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be such that Situation(κ). For example, substituting ⊥ for s and p0 for p (where
p0 is ∀x(E!x → E!x)) produces ⊥+p0 , which is provably a situation in which
every false proposition is true and p0 is true.

(584) Lemmas: The p-Extension of s is Strictly Canonical. Clearly, s+p is a
canonical situation, as this latter notion was reformulated in (486). Where ϕ
is the formula s |=q ∨ q=p, it follows, by modally strict means, that (.1) every
proposition q such that ϕ is necessarily such that ϕ:

(.1) ∀q((s |=q ∨ q=p)→ �(s |=q ∨ q=p))

Hence s+p is also a strictly canonical situation, as this notion was reformulated
in (486), and so it is a modally strict consequence of (583) and (261.2) that (.2)
the p-extension of s makes q true if and only if either s makes q true or q is
identical to p:

(.2) ∀q(s+p |= q ≡ (s |=q ∨ q=p))

Thus, it immediately follows that: (.3) if a proposition is true in s it is true in
the p-extension of s, and (.4) p is true in the p-extension of s:

(.3) s |= q → s+p |= q

(.4) s+p |= p

(585) Theorem: Fundamental Theorem of Impossible Worlds. The most im-
portant fact about impossible worlds is that if it is not possible that p, then
there is a non-trivial impossible world at which p is true:

¬♦p→∃i(¬TrivialSituation(i) & i |= p)

cf. Zalta 1997a, 647. If we borrow a turn of phrase from Lewis (1986, 2), we
might read the above as: every way a world couldn’t possibly be is a way some
non-trivial impossible world is. Indeed, Nolan (1997, 542) suggests that a
‘comprehension’ principle governing impossible worlds should assert: for ev-
ery proposition which cannot be true, there is an impossible world where that
proposition is true. The present theorem clearly validates this principle, but
not by stipulating it.

The proof of the above theorem in the Appendix corrects an error in the
proof of the corresponding theorem in Zalta 1997a.306

306In Zalta 1997a (647–8), we correctly asserted, but incorrectly proved, the theorem that ¬♦p→
∃s(ImpossibleWorld(s) & s, su & s |= p). In that theorem, su is the universal situation (i.e., the trivial
situation we’re now calling sV , in which every proposition is true). The proof developed in 1997a
correctly established that¬♦p implies that there is a situation swhich is maximal, not possible, and
in which p is true. But the proof that s is distinct from su contained an assumption that appeared
correct but that isn’t in fact provable, namely, that the impossible proposition p mentioned in the
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The strategy of the proof in the Appendix is as follows: assume ¬♦p; cite
(531.1), i.e., that some possible world encodes all the truths; consider an arbi-
trary such possible world and then show that its p-extension is a non-trivial
impossible world where p is true.

(586) Theorems: Ex Contradictione Quodlibet Fails for Impossible Worlds. Re-
call that we established, in (552.2), that the law ex contradictione quodlibet
governs possible worlds. Formulated in the material mode, the law asserts:
w |= (p & ¬p) → w |= q. But we can show that this law fails for impossible
worlds, i.e., we can show: (.1) there are impossible worlds i and propositions p
and q such that (p&¬p) is true at i but q fails to be true at i:

(.1) ∃i∃p∃q(i |= (p&¬p) &¬i |= q)

Clearly, then, ex contradictione quodlibet fails for impossible worlds, as it does
for situations generally.

Moreover, we can also reason from the fundamental theorem for impossible
worlds (585) to show that a variant version of ex contradictione quodlibet fails for
impossible worlds, i.e., that (.2) there are impossible worlds i and propositions
p and q such that both p and ¬p are true at i but q fails to be true at i:

(.2) ∃i∃p∃q(i |=p & i |=¬p & ¬i |=q)

This variant of ex contradictione quodlibet thus fails for impossible worlds, as
it does for situations generally. The point, however, is that both (.1) and (.2)
identify worlds that validate paraconsistent logics in which ex contradictione
quodlibet fails.

(587) Theorem: Disjunctive Syllogism Fails for Impossible Worlds. A version
of disjunctive syllogism (86.4.b) governs possible worlds and propositions, for
we established in (553) that: (w |= (p∨ q) & (w |= ¬p))→ w |= q. However, dis-
junctive syllogism fails for impossible worlds; there are impossible worlds i
and propositions p and q such that p ∨ q and ¬p are true at i but q fails to be
true at i:

antecedent is distinct from the proposition p&¬p. The general claim that q , (q&¬q) is certainly
provable whenever q is a necessary, true, or even possible proposition. (For example, suppose
♦q, and assume for reductio that q = (q & ¬q). Then ♦(q & ¬q), which contradicts the fact that
¬♦(q& ¬q).) However, when q is necessarily false, i.e., impossible, we can’t prove the inequality
q , (q & ¬q) from our axioms. Though our system requires that there be at least one impossible
proposition (see (208.2)), it leaves open the question of whether there are multiple ones. Of course,
it is consistent with the theory to assert that q , (q& ¬q) when q is necessarily false. If one does
assert this, one can prove the existence of many new propositions. But when q is necessarily false,
the identity q = (q & ¬q) is also consistent with the theory, and so one can’t assume its negation.
These facts were overlooked in the proof of the theorem in Zalta 1997a. By contrast, the proof of
the present theorem (585) (i.e., in the Appendix) has been amended accordingly. In the corrected
proof, the impossible world where p is true is shown to be non-trivial by identifying a contingently
false proposition that fails to be true in it.
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∃i∃p∃q(i |= (p∨ q) & i |= ¬p & ¬i |= q)

Clearly, not only does disjunctive syllogism fail for impossible worlds but it
also fails generally for situations. In any case, we have now shown that there
are (impossible) worlds that validate logics in which disjunctive syllogism fails.

12.5 Moments of Time and World-States

(588) Remark: How Minimal Tense Logic Leaves Us Short of a Goal of Tempor-
alization.307 The definitions and theorems governing possible worlds that were
developed in Section 12.2 can be adapted in a natural way to systematize mo-
ments of time, world-states, and other temporal abstractions. However, there are
different ways of achieving this goal and they are not all equally satisfactory.

The main question is whether to start with the primitive operators of min-
imal tense logic, namely H (‘it was always the case that’) and G (‘it will always
be the case that’), or start with a primitive omnitemporal operator � (‘it is al-
ways the case that’). Before we consider these options, note that in either case,
it would be helpful to have an intuitive semantic picture by constructing a for-
mal semantics for these operators. Both options require that we extend formal
interpretations I of our language by adding a domain of times T that contains
a distinguished element t0 (= the present moment). Moreover, if we start with
the operators of minimal tense logic, we’ll also need a binary relation, say <
(= occurs before), on T. Then we would need to relativize the ext, enc, and ex
functions to both world-time pairs, so that:

• ext would assign to each n-ary relation (n ≥ 1) an exemplification exten-
sion at each world-time pair,

• enc would assign to each n-ary relation (n ≥ 1) an encoding extension at
each world-time pair, and

• ex would assign each to each 0-ary relation a truth-value at each world-
time pair.

Formally, we would define extw,t(rn), encw,t(rn), and exw,t(r0) as follows:

• extw,t : Rn ×W×T→ ℘(Dn) (n ≥ 1)

• encw,t : Rn ×W×T→ ℘(Dn) (n ≥ 1)

• exw,t : R0 ×W×T→ {T ,F }

307I’m indebted to Daniel West for his work on the question of how to temporalize object theory?
His efforts forced me to think more deeply about the consequences of using minimal tense logic.
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As one might expect, the definition of ϕ is true with respect to interpretation
I and assignment f at world-time pair 〈w,t〉, written w,t |=I ,f ϕ, would have
to be adjusted in a straightforward way, to account for the fact that we are
evaluating truth with respect to world-time pairs.308 The recursive clauses for
the complex formulas ¬ϕ, ϕ→ ψ, and ∀αϕ would be adapted similarly.

Now if we were to decide that the minimal tense logic operators should
be primitive, we would use < to state their truth conditions, relative to an
interpretation I and assignment function f , as follows:

• w,t |=I ,f Hϕ if and only if ∀t′(t′ < t→w,t′ |=I ,f ϕ)

• w,t |=I ,f Gϕ if and only if ∀t′(t < t′→w,t′ |=I ,f ϕ)

If we instead to decide that the omnitemporal operator � should be the sole
primitive, we wouldn’t need < to state truth conditions, since these could be
stated as:

• w,t |=I ,f �ϕ if and only if ∀t′(w,t′ |=I ,f ϕ)

Now there are a number of considerations that bear upon the choice of primi-
tive operators. But before we examine those, there is another choice point that
needs attention first, namely, how to assign truth conditions to the classical
necessity operator � when we move to a tensed version of object theory.

There are two options for understanding the notion of metaphysically neces-
sary (�) semantically. One is to understand it narrowly as a universal quantifier
just over semantically primitive possible worlds (Kaplan 1977 [1989], 545; Fine
1977), while the other is to understand it more broadly as a universal quanti-
fier over semantically primitive world-time pairs (Montague 1973). That is, we
have the following two options:

T8a. If ϕ is a formula of the form �ψ, then w,t |=I ,f ϕ if and only if
∀w′(w′,t |=I ,f ψ)

T8b. If ϕ is a formula of the form �ψ, then w,t |=I ,f ϕ if and only if
∀w′∀t′(w′,t′ |=I ,f ψ)

Clearly on T8b, �ϕ semantically implies that �ϕ, but T8a has no such impli-
cation.
308Specifically:

T1. If ϕ is a formula of the form Πκ1 . . .κn (n ≥ 1), then w,t |=I ,f ϕ if and only if
∃rn∃o1 . . .∃on(r = dI ,f (Π) &o1 = dI ,f (κ1) & . . . &on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ extw,t(r))

T2. If ϕ is a formula of the form κ1 . . .κnΠ
n (n ≥ 1), then w,t |=I ,f ϕ if and only if

∃o1 . . .∃on∃rn(o1 = dI ,f (κ1) & . . . &on = dI ,f (κn) &r = dI ,f (Π) & 〈o1, . . . ,on〉 ∈ encw,t(r))

T3. If ϕ is a 0-ary relation constant or 0-ary relation variable Π, then w,t |=I ,f ϕ if and only if
exw,t(dI ,f (Π)) = T



586 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

Much can be said about these two options, but to immediately see one prac-
tical difference between them, reconsider the definition of a possible world as
a situation x that might be such that all and only true propositions are true in
x (512). Consider the definiens in (512):

Situation(x) &♦∀p(x |=p ≡ p)

On the narrow interpretation of necessity (�) in T8a, as a universal quanti-
fier just over possible worlds, possibility (♦) becomes an existential quantifier
just over possible worlds. So the formula displayed above is appropriate as a
definiens for the definiendum PossibleWorld(x). However, if we take the wider
interpretation of necessity as in T8b, as a universal quantifier over all world-
time pairs, then possibility becomes an existential quantifier over such pairs.
In that case, the definiens displayed above is more appropriate as a definiens
for the definiendum PossibleWorldState(x).

But this is only one issue to keep in mind as one approaches the decision
of how narrowly or widely to interpret �. Though in previous works (1987,
1988) I’ve assumed we should use something like T8a, the work in Dorr &
Goodman 2019 and Daniel West (m.s.) develops a number of good reasons for
preferring T8b. The main consideration discussed in Dorr & Goodman 2019
is how to preserve the intuition that if a propositions is metaphysically necessary,
it is always true (i.e., ∀p(�p → �p)), and they give persuasive arguments that
using T8b to interpret � the better choice philosophically. West (m.s.) prefers
T8b to T8a after specifically examining the relevant considerations that arise
for object theory.

I plan to leave the decision about how to understand metaphysical neces-
sity for others to resolve, since my goal here is to simply identify the important
issues that arise when modifying the present theory to account for tense. In
what follows, we only need to know that object theory would be extended by
the theorem xF → �xF, either because we’ve opted for T8a and taken it as as
axiom or because we’ve opted for T8b and it can be derived from xF → �xF.
(Either way, the more general claim, x1 . . .xnF → �x1 . . .xnF will be derivable.)
Moreover, before we return to the main question, i.e., whether to take the oper-
ators of minimal tense logic (H, G) or the omnitemporal operator (�) as basic, it
should also be mentioned that however we answer this question, it is of inter-
est and importance to additionally introduce the operator it is now the case that
(N ), which is to function tense-theoretically the way the actuality operator (A)
functions modally. That is, the truth conditions for the now operator are that
Nϕ is true just in case ϕ is true at the distinguished time t0. Formally:

w,t |=I ,f Nϕ if and only if w,t0 |=I ,f ϕ

With this in mind, let’s first consider an issue that would arise if we were to
take the operators of minimal tense logic as primitive. In discussing this issue,
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we’ll need to define the duals of the operatorsH and G, namely P (‘it was once
the case that’) and F (‘it will at some point be the case that’), as follows:

Pϕ ≡df ¬H¬ϕ

F ϕ ≡df ¬G¬ϕ

Let’s suppose for the moment that we can successfully axiomatize these notions
using the usual axioms for minimal tense logic for H and G, which are:

H(ϕ→ ψ)→ (Hϕ→Hψ)

G(ϕ→ ψ)→ (Gϕ→Gψ)

ϕ→HF ϕ

ϕ→GPϕ

Let us further assume that axioms for the now operator N are analogues of
the axioms governing the actuality operator A. But let’s put aside, at least
for the moment, the subtleties that any temporalization of object theory will
have to address, such as (a) what axioms govern the interaction of the minimal
tense operators and N with the other operators of the system, and (b) how
to accommodate the temporally fragile axiom for the N operator (Nϕ → ϕ),
and (c) accommodate temporally strict and non-strict derivations and proofs.
These issues can be put aside because we are going to develop a distinctive
problem for temporalizing object theory by taking H and G as primitive.

Before we get to this, however, let us briefly digress to say something more
specific about what one might accomplish with the minimal tense operators.
Note that the increased expressivity of tensed object theory allows one to for-
mally represent the truth conditions and logical consequences of a wider va-
riety of sentences in natural language, namely, those involving tenses. But,
since we’ve thus far focused on the proof-theoretic power of object theory, the
main goal is define philosophically interesting abstractions and prove philo-
sophically interesting truths that are known a priori, as follows. In minimal
tense logic, one may define the omnitemporality operator � (we’ll henceforth
read �ϕ as ‘always ϕ’ instead of the more cumbersome ‘it is always the case
that ϕ’). Moreover, its dual operator � is definable (henceforth we’ll read �ϕ as
‘sometime ϕ’ instead of the more cumbersome ‘it is sometime the case that ϕ’).
The omnitemporal operator can be defined as:

�ϕ ≡df Hϕ&ϕ&Gϕ

and it dual �ϕ can be defined using either of the following equivalent defini-
tions:

�ϕ ≡df ¬�¬ϕ
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�ϕ ≡df Pϕ ∨ϕ ∨F ϕ

We may then use � to say that a situation s is a moment of time just in case
sometime, all and only true propositions are true in s:

MomentOfTime(s) ≡df �∀p(s |= p ≡ p)

And if we use ‘t’ as a restricted variable ranging over moments of time and use
t |= p (which is ultimately defined as t[λy p]) to assert that p is true in t, we can
say that a moment of time t is present if and only if every proposition true in t
is true:

Present(t) ≡df ∀p((t |=p)→ p)

Clearly, these definitions are analogous to the definitions of PossibleWorld(s)
and Actual(s).

If the changes needed to implement the above ideas could be successfully
made to the system, then a good reason to adopt such principles and defi-
nitions would be to derive interesting and important philosophical theorems
that govern times and world-states. For example, one might want to derive the
claims: (.1) every moment of time is maximal; (.2) every moment of time t is
such that sometime, t is present; (.3) there is a unique present moment of time;
(.4) sometime p if and only if p is true at some moment of time; and (.5) always
p if and only if p is true at every moment of time:

(.1) ∀tMaximal(t)

(.2) ∀t�Present(t)

(.3) ∃!tPresent(t)

(.4) �p ≡ ∃t(t |= p)

(.5) �p ≡ ∀t(t |= p)

There are, in addition, many other notions that one might want to derive, for
example, past and future moments of time:

PastMoment(s) ≡df P∀p(s |= p ≡ p)

FutureMoment(s) ≡df F ∀p(s |= p ≡ p)

All of this looks like a promising way to extend object theory into the temporal
domain.

However, there is a distinctive philosophical problem (a mismatch of ex-
pectations) that arises with this approach. To get a proper understanding of
this problem, it helps to reconsider the intuitive semantics introduced earlier,
in which we helped ourselves to some set theory, primitive moments of time,
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and primitive world-time pairs. Note the following fact about minimal tense
logic: the axioms of minimal tense logic don’t require that the semantic rela-
tion < be an ordering of the elements of the semantic domain T of primitive
times. That is, < need not be irreflexive, asymmetric, and transitive. Indeed, <
need not even be a connected (linear) relation – there may distinct times t and
t′ (i.e., t , t′) in the domain T such that neither t < t′ nor t′ < t.309 Using these
facts about minimal tense logic, we can state the problem (though it will take
some reasoning to make it clear): in any interpretation in which the relation <
is not transitive and linear, there are primitive times in the semantic domain T
that aren’t represented by an abstract situation s that satisfies the defined con-
dition MomentOfTime(s). Consider any model (i.e., interpretation in which the
axioms of minimal tense logic are true) based on a temporal frame in which the
domain T consisted of 4 pairwise-distinct times, t0 – t3, the only facts about
which are:

t1

t3

t2 t0

t1 < t2

t2 < t0

t1 < t3

Note that since t0 is the present moment, there are no ‘future’ times in this
temporal frame (i.e., there are no times t such that t0 < t) and there is only one
time, namely t2, in the past of the present moment t0 (since neither t1 < t0 nor
t3 < t0). Moreover, (a) the transitivity of < fails because t1 < t2, t2 < t0, and
¬(t1 < t0), and (b) the connectivity (linearity) of < fails in two different ways:
¬(t1 < t0 ∨ t0 < t1) and ¬(t2 < t3 ∨ t3 < t2).

Now if this temporal frame is used as a basis for a model of object theory,
then we cannot regard the entities in the domain of times T as abstract objects.
Both t1 and t3 are counterexamples. Both are primitive times in the domain
T, but neither can be regarded as an abstract object that satisfies the definition

309Moreover:

• since Hϕ→ ϕ and Gϕ→ ϕ are not axiomatic, the binary relation < need not be reflexive

• since Hϕ → HHϕ and Gϕ → GGϕ are not axiomatic, the binary relation < need not be
transitive

• since HH→Hϕ and GGϕ→Gϕ are not axiomatic, < need not be dense

• and so on, for the other principles that might place conditions on the relation <.
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of MomentOfTime(s) (i.e., �∀p((s |= p) ≡ p)). To see why, evaluate the definition
at t0. To satisfy the definition of moment of time at t0, a situation s has to be
such that “sometime, s makes true all and only the propositions p that are
true (at that time)”. Here, the operator “sometime”, when evaluated at t0, is
witnessed only by those primitive times t in the domain such that either t < t0

or t= t0 or t0 < t. So t1 and t3 are times in the domain that won’t be a witness
to the definition. Thus, we can’t regard them as abstract objects that satisfy the
definition.

Of course, one could add, to minimal tense logic, the axioms that would
guarantee the transitivity and linearity (connectedness) of the relation < on
the domain of times:

Transitivity: Hϕ→HHϕ
Gϕ→GGϕ

Linearity (Connectedness): (PF ϕ ∨F Pϕ)→ �ϕ

But if one shares the intuition that a moment of time should be identifiable
as an abstraction independent of any particular temporal structure, then the
above method of temporalizing object theory doesn’t preserve this intuition.
In the next Remark, we consider an alternative method, one that lets us de-
fine moments of time as abstractions without requiring any conditions on the
structure of time. We’ll see below that there is a way to extend object theory
into the temporal domain without being forced into making choices about the
structure of time.310

(589) Remark: A Hybrid Tense Logic. In light of the foregoing Remark, the
simplest way of extending object theory into the temporal domain is to do the
following:

(A) Add a primitive omnitemporal operator �, with its defined dual �, and
axiomatize them exactly as the � and ♦ are axiomatized in classical quan-
tified S5 modal logic. In other words, we might need, in the first instance
at least, all the closures (including omnitemporal closures, i.e., the result
of prefacing any instance by any string of � operators) of the K, T, and 5
axioms:

• �(ϕ→ ψ)→ (�ϕ→ �ψ)

310Earlier versions of this monograph (prior to 2022) didn’t flag this problem; I discovered it
while reading Daniel West’s (unpublished) attempts to work out some of the details of the ap-
proach. Again, I’m indebted to Daniel for his efforts, since they forced me to think more deeply
about the consequences of using minimal tense logic.

Also, I’ve benefited from reading Prior 1968, Kamp 1971, S. K. Thomason 1972, Fine 1977,
Burgess 1984, R. Thomason 1984, Wölfl 1999, Meyer 2009, Blackburn & Jorgensen m.s., and espe-
cially Goranko &.. Rumberg 2022.
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• �ϕ→ ϕ

• �ϕ→ ��ϕ

This allows us to derive BF and CBF in the usual way, so that ∀α�ϕ ≡
�∀αϕ and �∃αϕ ≡ ∃α�ϕ become theorems. A temporal counterpart for
axiom (45.4) is not needed – it is not an a priori matter whether sometime,
there is a concrete object that is not now concrete. However, an additional
axiom is needed, for the commutativity of the � and �, namely, the clo-
sures of the following:

• ��ϕ ≡ ��ϕ

The system described thus far could be interpreted over a semantic do-
main of times that includes a distinguished present moment t0 but is
otherwise unstructured (i.e., doesn’t satisfy the conditions of any < rela-
tion) much as the � operator, under T8a, would be interpreted over an
unstructured domain of worlds with a distinguished world w0.

(B) Note that we do not want definite descriptions to have denotations that
can vary with the temporal context. We want them to be rigid designa-
tors, both modally and temporally, so that the substitution of identicals
will work in any context. Thus, in order to properly axiomatize definite
descriptions, we would have a use for the ‘Now’ operator N in the lan-
guage and an axiom analogous to (43)? must be added, namelyNϕ→ ϕ.
This becomes a temporally fragile axiom and so one must refrain from as-
serting the omnitemporal closures of Nϕ → ϕ. Moreover, we take all
the presentization closures (i.e., the result of prefacing any instance by any
string ofN operators) of all the other, non-temporally fragile axioms dis-
cussed thus far.

(C) In light of (B), the axiom governing descriptions (47) needs to be revised
so that ıxϕ denotes an object uniquely such that ANϕ. It should read:

x= ıxϕ ≡ ∀z(ANϕzx ≡ z= x), provided z is substitutable for x in ϕ
and doesn’t occur free in ϕ

Thus ıxϕ would have a new significance; the description ıxϕ would be
read as ‘the x (in fact, at present) such that ϕ’. A semantics for this op-
erator is straightforward.311 The axiom for descriptions only needs the

311Formally, if given an interpretation I and assignment f , we may specify the denotationI ,f of
ıxϕ, written dI ,f (ıxϕ), as follows, where o and o′ are arbitrary objects in the domain of individuals
and f [x/o] is the assignment just like f except that it assigns the object o to the variable x:

dI ,f (ıxϕ) =

{
o, if w0,t0 |=I ,f [x/o]ϕ&∀o′(w0,t0 |=I ,f [x/o′]ϕ→ o′ =o)

undefined, otherwise
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placement of theN operator immediately after the A operator. It should
also be an axiom or theorem that the actuality and now operators com-
mute, i.e., that ANϕ ≡ NAϕ. This change may make it impossible to
regard temporal object theory as a simple extension of modal object the-
ory.

(D) The presence of the operator N requires axioms governing its interac-
tions with the other operators of the system, and the natural way to do
this is to recast the necessary axioms of A in (44) as omnitemporal axioms
for N and, depending on whether one adopts T8a or T8b, recast the ax-
ioms for the interaction of A and � in (46) as axioms for the interaction
of N and � operator. 312 It is important to remember that the truth of
Nϕ is always evaluated semantically at t0 and that one should not sup-
pose that this distinguished (semantically primitive) time was a future
time and will be a past time. It is inappropriate to use primitive temporal
locutions like ‘was’ and ‘will be’ to assert intuitions about the semanti-
cally primitive time t0 – the whole point of the semantics is to cache out
primitive temporal locutions like ‘was’ and ‘will be’ in terms of atemporal
entities in the semantics. And if we’ve set up object theory correctly, this
also applies to the unique present moment definable in object theory.313

312For the former, we need:

N¬ϕ ≡ ¬Nϕ

N (ϕ→ ψ) ≡ (Nϕ→Nψ)

N∀αϕ ≡ ∀αNϕ

Nϕ ≡NNϕ

For the latter, we need:

Nϕ→ �Nϕ

�ϕ ≡N�ϕ

313Of course, we may define temporal notions in object theory and apply them to times just as we
have defined modal notions in object theory and applied them to possible worlds. For example, in
(502), we defined Possible(s) as ♦Actual(s), where Actual(s) is defined as ∀p(s |= p→ p) (492). Then
it follows from (517) by GEN that every possible world is possible ∀wPossible(w), and so every
possible world is possibly actual ∀w♦Actual(w). That captures the intuition some philosophers
and logicians have when they say, about semantically primitive possible worlds, that every such
world might have been actual. But whereas such claims are problematic if these philosophers are
using primitive modal notions to assert facts about primitive possible worlds, our claim that every
world is possibly actual uses the defined notion of actuality and so doesn’t make the mistake of
using primitive modal notions to attribute modal properties to semantically primitive possible
worlds.

Similarly, we may define Historical(s) as �Present(s), where Present(s) is defined as ∀p(s |= p→ p).
Then it follows that every moment of time is historical, i.e., ∀tHistorical(t), and so every moment of
time present sometime ∀t�Present(t). This, too, avoids the error of attributing primitive temporal
properties to semantically primitive times.
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Once this system is in place, one could then define, as described in the previous
remark:

MomentOfTime(s) ≡df �∀p(s |= p ≡ p)

This definition would be satisfied by all and only the elements of the primitive
semantic domain of times. Moreover, truth at a time then becomes defined in
the usual way: where t is an abstract object satisfying the definition just given
t |= pwould become defined as tΣp, i.e., as t[λyp]. One can then define a present
moment as any moment t such that ∀p(t |= p→ p) and then prove that there is
a unique present moment, as well as the usual counterparts of the theorems of
world theory, such as the fundamental theorems: (a) sometime p if and only if
there is a time at which p is true, i.e., �p ≡ ∃t(t |= p), and (b) always p if and
only if p is true at every time, i.e., �p ≡ ∀t(t |= p).

Note that by defining moments of time, truth at a time, and introducing
restricted variables to range over them, we have a hybrid logic and can make
use of that to assert whichever the principles that we might want to adopt
about the structure of time. Indeed, we may assert these principles as modally
fragile axioms, so that we allow for possible worlds where time has a different
structure. In particular, one can now extend the language of object theory
by introducing a new object-theoretic relation < on times t (i.e., on abstract
objects that satisfy the definition displayed above) and axiomatize that relation
however we like. One has any number of axioms to choose from, such as the
following, in which ≤ is defined in the usual way (see Goranko and Rumberg
2022, Section 2.1):

• irreflexivity: ∀t¬(t < t)

• transitivity: ∀t∀t′∀t′′(t < t′ & t′ < t′′→ t < t′′)

• asymmetry: ∀t∀t′¬(t < t′ & t′ < t)

• anti-symmetry: ∀t∀t′(t < t′ & t′ < t→ t = t′)

• linearity (trichotomy, connectedness): ∀t∀t′(t < t′ ∨ t′ < t ∨ t= t′)

• density: ∀t∀t′(t < t′→∃t′′(t < t′′ & t′′ < t′))

• forward-linearity: ∀t∀t′∀t′′(t′′ < t& t′′ < t′→ (t = t′ ∨ t < t′ ∨ t′ < t))

• backward-linearity: ∀t∀t′∀t′′(t < t′′ & t′ < t′′→ (t = t′ ∨ t < t′ ∨ t′ < t))

• beginning: ∃t¬∃t′(t′ < t)

• end: ∃t¬∃t′(t < t′)

• no beginning: ∀t∃t′(t′ < t)
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• no end (unboundedness): ∀t∃t′(t < t′)

• forward-discrete:
∀t1∀t2(t1 < t2→∃t3(t1 < t3 & t3 ≤ t2 &¬∃t4(t1 < t4 & t4 < t3)))

• backwards-discrete:
∀t1∀t2(t2 < t1→∃t3(t3 < t1 & t2 ≤ t3 &¬∃t4(t3 < t4 & t4 < t1)))

Clearly, by asserting one or more of the above as modally fragile axioms, we
can preserve such intuitions as: time is linear (dense, etc.) but might not have
been!

Moreover, this method allows one to reconstruct the operators of minimal
tense theory by definition. For example, where t0 has been introduced as a
name of the unique present moment, we may define:

Hϕ ≡df ∀t(t < t0→ t |= ϕ)

Though I’m sure that I haven’t anticipated all of the problems that may arise
and need to be solved, I think this is the most promising course of action for
temporalizing object theory. As far as I can see, it can achieve all the goals of
temporalization while minimizing the costs and maximizing flexibility as to
which principles about the nature of time should be adopted.

12.6 Stories and Fictional Individuals

We now explore the suggestion that stories, like possible worlds and impossible
worlds, are a species of situations and then analyze the notions of character and
fictional character in terms of stories. For the purposes of this section only, we
assume that our language has been extended with individual constants rep-
resenting proper names, historical names, names of stories, and names of fic-
tional characters, and with relation names representing the names of ordinary
properties and relations of the kind that appear in classical fiction. In this
section we omit discussion of the data involving fictional properties (e.g., being
a unicorn, being a hobbit) and fictional relations (e.g., absolute simultaneity). A
discussion and analysis of these entities is reserved for Chapter 15, where we
analyze fictional properties and fictional relations as higher-order abstracta,
namely, abstract properties and abstract relations.

12.6.1 Data and Methodology

(590) Remark: Data To Be Explained. In what follows, we shall assume that
there are at least some truths and valid inferences pertaining to fiction express-
ible in natural language. These ‘data’ fall into four types, where we use σ as a
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metalinguistic variable that ranges over names and descriptions of stories from
natural language:

(A) pre-theoretic truths about stories and characters that would become false-
hoods if prefaced by a locution of the form ‘In the story’ or ‘According to
the story’;314

(B) true claims about the world that are taken to be true when authors use
them in the context of a story;

(C) pre-theoretic truths that have the form ‘In the story σ , . . . ’ or ‘According
to the story σ , . . . ’; and

(D) pre-theoretic judgments about what logically follows from the truths in
(A), (B), and (C).

The important point here is not that, for each type of data, there is some fixed,
easily identifiable group of such truths or judgments, but only that there are
truths and judgments of each kind. There will no doubt be disagreement as
to which sentences constitute data of type (A) – (C), and disagreement about
what exactly follows from these sentences. But our analysis won’t hinge on
there being agreement about this data, but only agreement that there are some
data of the kinds just outlined. Our analysis will then be as precise as it can
be given the disagreement about the data. In other words, our analysis will be
precise but open-ended, in the sense that the specific conclusions that can be
drawn from the analysis depend upon what data is agreed upon and subjected
to the analysis. So there can be agreement about the analysis without there
being agreement about what data is subject to the analysis.

Examples of (A) are:

(.1) (a) The Iliad is a story.
(b) Crime and Punishment is a story.
(c) The Brother Karamazov is a story.
(d) A Study in Scarlet is a story.

(.2) (a) Homer authored The Iliad.
(b) Dostoyevsky authored Crime and Punishment.
(c) Conan Doyle authored A Study in Scarlet.

(.3) Homer authored The Iliad before Dostoyevsky authored Crime and Pun-
ishment.

(.4) (a) Porphyry is an original character of Crime and Punishment.
(b) Sherlock Holmes is an original character of A Study in Scarlet.

314For the purposes of this work, I shall not distinguish ‘In the story’ and ‘According to the story’.
However, see Semeijn 2021, Ch. 7, for a way to draw a distinction between the two.
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(.5) (a) Porphyry is a fictional character.
(b) Sherlock Holmes is a fictional character.

(.6) (a) Porphyry is a fictional detective.
(b) Holmes is a fictional detective.

(.7) (a) London is a character of A Study in Scarlet.
(b) London isn’t an original character of A Study in Scarlet.
(c) London isn’t a fictional character.
(d) The London of A Study in Scarlet is an original character of A Study in

Scarlet.
(e) The London of A Study in Scarlet is a fictional character.
(f) The London of A Study in Scarlet is a fictional city.
(g) London is not identical to the London of A Study in Scarlet.

(.8) Crime and Punishment is a fiction, not a false story.

(.9) Sherlock Holmes is more famous than Porphyry.

Examples of (B) are:

(.10) (a) St. Petersburg is a city.
(b) Baker Street is in London.

Note that (a) remains true when prefaced by ‘In Crime and Punishmment’ but
not when prefaced by ‘In The Iliad’, and that (b) remains true when prefaced
by ‘According to A Study in Scarlet’ but not when prefaced by ‘According to The
Brothers Karamazov’.

Examples of (C) are:

(.11) (a) In The Iliad, Achilles fought Hector.
(b) According to Crime and Punishment, Raskolnikov kills a pawnbroker.
(c) According to A Study in Scarlet, Holmes is a detective.
(d) According to A Study in Scarlet, Holmes might have been a violinist.
(e) According to Crime and Punishment, Porphyry is a detective.
(f) In A Study in Scarlet, London is a city.

Examples of (D) are:

(.12) The Iliad is a story.
Therefore, there are truths according to The Iliad.

(.13) Crime and Punishment is a story.
Therefore, something authored Crime and Punishment.

(.14) In Crime and Punishment, Porphyry is a detective.
Porphyry is an original character of Crime and Punishment.
Therefore, Porphyry is a fictional detective.
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(.15) London is a real city.
Therefore, London is not a fictional city.

(.16) London is a real city.
London is a character of A Study in Scarlet.
A Study in Scarlet is a fiction.
Therefore, some characters of a fiction are real.

(.17) The London of A Study in Scarlet is an original character of A Study in
Scarlet.

In A Study in Scarlet, London is a city.
Therefore, the London of A Study in Scarlet is a fictional city.

(.18) London is a real city.
The London of A Study in Scarlet is a fictional city.
Therefore, London is not (identical to) the London of A Study in Scarlet.

(.19) Augustus Caesar worshipped Jupiter.
Jupiter is a fictional character.
Fictional characters aren’t real.
Therefore, Augustus Caesar worshipped an object that isn’t real.

(.20) Sherlock Holmes inspires some criminologists.
Sherlock Holmes is fictional.
Therefore, a fictional object inspires some criminologists.

(591) Remark: Methodology. Our methodology is to proceed in three stages:

(I) We introduce new theoretical notions (both primitive and defined) into
object theory; these are notions needed for the analysis of the data.

(II) The data in (A), (B), and (C) of (590) are then analyzed by representing
them in object theory using the notions introduced in (I). As part of the
analysis, we index the names of the original characters of a story with the
name of that story. The data, as analyzed in object theory, may then be
used either as (modally fragile) premises and conclusions of arguments
representable in object theory or as axioms of object theory. (For simplic-
ity, we usually take them to be (modally fragile) premises or conclusions
within a derivation, rather than as axioms.)

(III) We then show how the judgments of logical consequence in (D) of (590)
are validated as derivations in object theory, i.e., we show, for each ar-
gument in (D), that the analysis of the conclusion is derivable from the
analyses of the premises.
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As to (I), we shall need three, primitive theoretical notions. We leave a full
analysis of these notions for some other occasion since, for the most part, an ex-
act axiomatization isn’t essential to the analysis presented below. One of theses
notions, temporal precedence, was discussed in the previous section and little
more needs to be said about it. But a few minimal remarks (or assumptions)
about the primitives are in order.

The three primitive theoretical notions required for the treatment of fiction
are:

• a binary authorship relation (‘A’) among individuals
‘Axy’ asserts: x authors y

• an n+ 1-ary relevant entailment operation (‘⇒R’) on propositions (n ≥ 1)
‘(p1, . . . ,pn)⇒R q’ asserts: p1, . . . ,pn relevantly imply q

• a binary temporal precedence operation (‘<’) on propositions
‘p < q’ asserts: p temporally precedes q (or p before q)

For the purposes of this chapter, we may regard formulas of the form Axy,
(p1, . . . ,pn)⇒R q, and p < q as 0-place relation terms. While ‘A’ can clearly be
added to our language as a distinguished binary relation term, we leave it to
the reader to determine how best to extend the language and system of object
theory with the binary operation symbol < and n+1-ary operation symbol⇒R.

The following, minimal understanding of our three new primitives is all
that will be required:315

• Authorship. We rely on the intuition that an individual x may author
a story y by way of a story-telling, where a story-telling can take place
either by oral narration, by writing down sentence-tokens on paper, by
using a keyboard on a computer to configure electonic bits that repre-
sent sentences, etc. Clearly, then, (.1) if y authors x, then y is a concrete
object, and (.2) if something authors x, then there might not have been
something that authors x. We therefore employ the following two mini-
mal axioms for authorship:

(.1) Ayx→ E!y

(.2) ∃yAyx→ ♦¬∃yAyx

(.2) captures the intuition that authored objects might not have been au-
thored.

315The following serves to refine the discussion of these primitives found in Zalta 1983 (Chapter
IV), Zalta 1988 (124–125), and 2000c (Section 4).
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• Relevant Entailment. In what follows, we shall assume that (.3) the prethe-
oretic story operator is closed under relevant entailment, so that when sto-
ries are imported into object theory, the following principle holds, where
s is a story, as defined in (592.1) below:

(.3) (s |= p1 & . . . & s |= pn & (p1, . . . ,pn⇒R q))→ s |= q

In other words, any proposition relevantly implied by propositions true
according to a story s are also true according to s. Moreover, if we define
ϕ ⇔R ψ as (ϕ ⇒R ψ) & (ψ ⇒R ϕ), then we assert that (.4) β-Conversion
holds for relevant entailment:

(.4) [λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]x1 . . .xn⇔R ϕ)

In other words, [λx1 . . .xn ϕ]x1 . . .xn and ϕ relevantly imply each other
whenever [λx1 . . .xn ϕ] exists. Note how (.3) and (.4) may combine. (.4)
yields both Rab⇒R [λx Rxb]a and Rab⇒R [λx Rax]b, since both [λx Rxb]
and [λx Rax] exist. Then if given that “In s, a bears R to b” (s |= Rab),
(.3) implies that “In s, a exemplifies [λxRxb]” (s |= [λxRxb]a) and “In s, b
exemplifies [λx Rax]” (s |= [λx Rax]b).

Intuitively, as we listen to, or read, a narrative, we don’t infer all the
logical consequences of the propositions signified by the sentences ex-
plicitly uttered or contained in the narrative, but instead infer only the
consequences that are, in some sense, ‘relevant’ to forming a common
sense understanding of the story being narrated (Parsons 1980, 175–82).
Which consequences are relevant is highly contextual and depends on a
number of factors, including the context in which the story is narrated by
the author, the context in which the hearer or reader becames acquainted
with the narrative, the cognitive state of the hearer or reader, how well
the hearer or reader can pick up allusions, etc.316 So, strictly speaking,
the truth of fictional claims may depend on a context of utterance. Our
analysis assumes that there are contexts in which fictional claims of the
form “According to σ , ϕ” are true and thereby constitute data.

• Temporal Precedence. Intuitively, p < q simply has to represent the mean-
ing of the adverb ‘before’ in the following ordinary sentences:

Caesar crossed the Rubicon before Washington crossed the Delaware.

316I take the present theory to be consistent with the fact that sometimes, e.g., when we are
listening to an unreliable narrator, we might regard some propositions explicitly asserted in the
story as ones that are not true in the story. And I also take the present theory to allow for the
existence of truths in the story that arise in virtue of some formal aspects of the text or narration,
as described in Kim 2022.
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Homer authored The Iliad before Proust authored Rememberance of
Things Past.

If we ignore the past tense of the verbs and use obvious abbreviations,
then the former would be represented formally as Ccr < Cwd and then
second would be represented formally as Ahi < Apr.317 Formally, the
temporal precedence operator among propositions can be understood in
terms of the notion of temporal precedence among moments of time dis-
cussed in the previous section. Where t <T t′ is a relation on times that
holds whenever time t precedes time t′, then (.5) p before q just in case
there are times t and t′ such that t precedes t′, p occurs at t and at no
earlier time, and q occurs at t′ and at no earlier time:

(.5) p < q ≡ ∃t∃t′(t <T t′ & t |= p&¬∃t′′(t′′ <T t& t′′ |= p) & t′ |= q&
¬∃t′′(t′′ <T t′ & t′′ |= q))

It is important to stress again that there may be no general agreement as to
which propositions are true in a story or the exact logic of relevant entailment.
Such lack of agreement won’t matter, however, since we assume only that (i)
there are at least some true judgments of the form “According to s, . . . ”, (ii) that
there are some true judgments about what is relevantly entailed the truths of
a story, and (iii) the judgments in (i) and (ii) may require us to invoke, and
draw information from, the context in order to develop a precise analysis. If
the reader denies the truth of the particular examples of story truths and en-
tailments that we’ve chosen, they may simply substitute others, possibly by
specifying a context. So when we say that the story operator is closed under
relevant entailment, the reader may substitute any sentences of the form “In
story s, . . . ” they judge to be true and close the resulting story operator under
those relevant entailments they judge to hold.

This understanding of our three, new primitive notions should suffice for a
basic analysis of fiction within object theory.

12.6.2 Principles For Analyzing Fiction

We therefore first implement (I) in (591) by introducing new definitions, ax-
ioms, and theorems of object theory.

(592) Definition and Theorem: Stories. In what follows, we take the variables
x,y,z to be unrestricted. We now say that (.1) x is a story just in case x is a
non-null situation that has an author:
317Though we’ve taken a liberty by ignoring the past tense in the two target sentences, note that

we could represent the natural language sentences as [λ Ccr] < [λ Cwd] and [λ Ahi] < [λ Apr],
respectively. These could be read without the past tense as: that Caesar crosses the Rubicon tempo-
rally precedes that Washington crosses the Delaware, and that Homer authors The Iliad temporally
precedes that Proust authors Remembrance of Things Past.
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(.1) Story(x) ≡df Situation(x) & ¬Null(x) & ∃yAyx

Cf. Zalta 1983, p. 91, and 2000, p. 123. Note that since stories are situations,
we might have expressed (.1) as Story(s) ≡df ¬Null(s) &∃yAys.

Definition (.1) does not require stories to be fictions. For example, someone’s
testimony (whether true or false) in a court of law constitutes a story, as would
a reporter’s news article (again, whether true or false). Any authored narrative
constitutes a story. Later we’ll investigate what it takes for stories to be fictions
and, to simplify matters, our attempt to answer this question will put aside the
intentions of the author, so that we can give an answer based solely on a story’s
content; see (604).

The definition of a story immediately implies that stories have existential
import, since the following is a (modally strict) theorem, for any individual
term κ:

(.2) Story(κ)→ κ↓

This follows from the fact that Story(κ)→ A!κ, by (.1) and the definition of a
situation (467).

(593) ?Axiom: On the Existence of Stories. We shall, for the purposes of this
section, take the claim that there exist stories to be a modally fragile axiom:

∃xStory(x)

The reason for regarding the claim as modally fragile is worth discussing. By
axiom (591.2), anything authored by something might not have been authored
by something. But more importantly, given the additional reasonable assump-
tion that it might not have been the case that there are objects y and x such that
y authors x (♦¬∃y∃xAyx), it follows that ♦¬∃xStory(x).318

318Assume ♦¬∃y∃xAyx. Then by a modally strict theorem of quantification logic (∃y∃xϕ ≡
∃x∃yϕ) and a Rule of Substitution, we know:

(ϑ) ♦¬∃x∃yAyx
Note, independently, that it is a modally strict theorem that if ¬χ→¬(ϕ&ψ&χ). As an instance,
we have:

¬∃yAyx→¬(Situation(x) &¬Null(x) &∃yAyx)

By the Rule of Substitution for Defined Formulas, it follows that:

¬∃yAyx→¬Story(x)

Since this holds for any x (i.e., x isn’t free in any assumption), it follows by GEN that:

∀x(¬∃yAyx→¬Story(x))

So by quantification theory (39.3):

∀x¬∃yAyx→∀x¬Story(x), i.e.,
¬∃x∃yAyx→¬∃xStory(x)

Since this is a modally strict theorem, it follows by RM♦:
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Consequently, the existence of stories isn’t assertible a priori as a necessary
truth. So if we want to add ∃xStory(x) to object theory (not merely as an occa-
sional assumption), then we must flag it as a modally fragile ?-axiom.

(594) Remark: Weak Restricted Variables for Stories. From (592.1), (593)?,
and (592.2), it follows that Story(x) is a weak restriction condition, as defined
in (336) – inspection of (592.1) shows that it has a single free variable; and
(593)? establishes that it is provably (but not strictly provably) non-empty; and
(592.2) establishes that it provably has existential import. So we can introduce
s, s′, s′′, . . . as weak restricted variables ranging over stories.

Since we established above that it is possible that there are no stories, then
Story(x) also fails to be a rigid restriction condition, as defined in (340). For
the claims ∃xStory(x) and ♦¬∃xStory(x) imply ¬∀x(Story(x) → �Story(x)).319

So there are multiple reasons why we can’t regard our restricted variables for
stories as rigid restricted variables. Indeed, from our axiom (591.2), that if
y authors x then possibly y doesn’t author x (i.e., Ayx → ♦¬Ayx), it follows
that ∀x(Story(x)→ ♦¬Story(x)).320 Consequently, it is important to remember
that if we assume Story(κ) holds for some individual term κ, such an assump-
tion has to be marked as modally fragile. The fact that Story(κ) depends on
a contingency, namely, that someone has engaged in behavior that constitutes
authoring κ.

(595) Remark: Truth in a Story. The weak restricted variables that we intro-
duced to range over stories can be interpreted as doubly-restricted, for reasons
analogous to those discussed in (514). This means that notions defined on sit-
uations apply to stories without having to be redefined. So by interpreting s as
doubly restricted, the claim that s |= p is defined. But whereas we read s |= p as
‘p is true in (situation) s’, we shall read ‘s |= p’ as ‘p is true according to (story)
s’ or as ‘in story s, p’. This makes it clear which formulas of object theory serve
to represent some of the data discussed earlier.

It is important to observe a critical difference between s |= p and s |= p,
however. Whereas claims of the form s |= p can be derived by modally strict
means, claims of the form s |= p can not. The existence of situations can be
proved by modally strict means, and whenever s is a situation, the propositions

♦¬∃x∃yAyx→ ♦¬∃xStory(x))

But from this and (ϑ), it follows that ♦¬∃xStory(x). ./
319The proof is similar to the one in footnote 246.
320To see this, apply GEN to (591.2) so that we know ∀x(∃yAyx→ ♦¬∃yAyx). Since x isn’t free

in our assumption, it suffices by GEN to prove Story(x)→ ¬�Story(x). So assume Story(x). Then,
by the definition of a story (592.1), it follows a fortiori that ∃yAyx. So by (591.2), ♦¬∃yAyx, i.e.,
¬�∃yAyx. Now suppose �Story(x), for reductio. Then, by the definition of a story (592.1) and the
Rule of Substitution for Defined Formulas (160.2), it follows that:

�(Situation(x) &¬Null(x) &∃yAyx)

A fortiori, �∃yAyx. Contradiction.
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p true in s can be derived from the canonical description that identifies which
object s is. But the existence of stories cannot be proved by modally strict
means, and neither can claims of the form s |= p. When we represent “σ is a
story” and “According to σ , . . . ” as Story(σ ) and σ |= ϕ (where ϕ represents the
natural language claim filling in the ellipsis), then we have to regard the formal
representations as modally fragile assumptions or modally fragile axioms (and
marked with a ?). Consequently, any conclusion of the form �σ |= p (where σ
has been substituted for s in s |= p) derived from the premise that σ |= p will not
be a modally strict conclusion; even though the derivation is modally strict, the
conclusion �σ |= p depends on a contingency.

(596) Theorem: Truth in a Story is a Rigid Condition on Properties and a Pro-
viso. It is straightforward to establish that for any proposition p, if p is true in
story s, then necessarily, p is true in story s, i.e.,

∀p(s |= p→ �s |= p)

An interesting subtlety about this theorem arises once it is observed that true
ordinary language statements of the form “According to σ , . . . ” are analytic.
When an author introduces the proper name σ to title a story or introduces
a proper name for new, original characters of the story, they are changing the
expressive power of the language.321 It then becomes important to regard claims
of the form “According to σ , . . . ” as analytic truths about the language with
the new expressive power. But, these are not ordinary analytic truths; since
they are modally fragile, they constitute a class of analytic truths who repre-
sentations, σ |= p, are provably necessary but the proof of which depends upon
a contingency; �σ |= p becomes derivable (by the above theorem) from σ |= p,
but since the latter has to be flagged as modally fragile axiom or assumption,
the necessary truth derived from it has to be similarly flagged as a non-modally
strict theorem or conclusion.

In consequence, any attempt to instantiate the variable s in the above claim
to a particular story, say σ , will result in a non-modally strict conclusion!
For as we saw earlier, the assumption or axiom that Story(σ ) is modally frag-
ile. If Story(σ ) is a modally fragile assumption, then although the inference to
Situation(σ ) is a modally strict inference, the conclusion Situation(σ ) still de-
pends on a non-modally strict assumption. And if we instead assert Story(σ ) as
a modally fragile axiom instead of an assumption, then the theorem Situation(σ )
will not be a modally strict theorem. In the instance of the above theorem in
which σ is substituted for s, i.e., ∀p(ϕσs → �ϕσs ), can not be established by
modally strict means.

321For example, when Conan Doyle wrote A Study in Scarlet, this and other facts (e.g., A Study
in Scarlet appeared in book form in 1888, Sherlock Holmes is a fictional character, etc.), became
expressible; they weren’t expressible prior to the storytelling.



604 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

A fuller discussion of this point will be reserved for the discussion of (Leib-
nizian) concepts in Chapter 13; see especially Remark (695) in Section 13.3,
where we discuss a class of necessary truths the proofs of which are not modally
strict because they depend upon a contingency.

(597) Theorem: The Identity of Stories. From our definitions, it follows that a
story s is the situation s′ that makes true just the propositions p such that p is
true in s:

s= ıs′∀p(s′ |= p ≡ s |= p)

Thus, stories can be generally identified as strictly canonical situations, but as
noted in the discussion following the previous theorem, any attempt to instan-
tiate this claim to particular story σ results in a non-modally strict instance,
since the inference will depend on the modally fragile claim that Story(σ ). In-
deed, once we represent natural language data of the form “According to σ ,
. . . ” as modally fragile assumptions of the form σ |= p, any conclusions we
derive about which properties are encoded by σ will similarly be non-modally
strict conclusions.

(598) Definition: Characters of Stories. For the purposes of this section, it
suffices to say that x is a character of s just in case there is some property that x
exemplifies according to s:

CharacterOf (x,s) ≡df x↓&∃F(s |= Fx)

Though this definition will need to be refined to handle a special case (see be-
low), note that it allows real objects to be characters of stories. For suppose
we’re given the claims: (a) in A Study in Scarlet (σ1), Baker Street exempli-
fies the property of being located in London, i.e., σ1 |= [λx Lxl]b, and (b) in A
Study in Scarlet, London exemplifies the property of being the location of Baker
Street, i.e., σ1 |= [λx Lbx]l. Then it follows from (a) that there is a property that
Baker Street exemplifies in A Study in Scarlet, i.e., ∃F(σ1 |= Fb), and it follows
from (b) that there is a property that London exemplifies in A Study in Scarlet,
i.e., ∃F(σ1 |= Fl). Hence, by the above definition, it follows, respectively, that
Baker Street is a character of A Study in Scarlet, i.e., CharacterOf (b,σ1), and that
London is a character of A Study in Scarlet, i.e., CharacterOf (l,σ1).

Of course, if one treats occurrences of ‘London’ and ‘Baker Street’ in A Study
in Scarlet as denoting original, fictional characters, namely ‘The London of A
Study in Scarlet’ and ‘The Baker Street of A Study in Scarlet’, respectively, then
we may not conclude anything about London and Baker Street; they are not
characters of A Study in Scarlet, though of course they exemplify some proper-
ties that the fictional characters encode. We explore the details of this in the
next subsection.
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For most purposes and most cases of classical fiction, the above definition
of CharacterOf suffices. But if one wants to forestall the problem of named
characters that are distinct but indiscernible, the above definition has to be
refined a bit. We leave this to a later chapter.322

(599) Definition: Originate In and Original Characters. (.1) An object x origi-
nates in a story s just in case x is a character of s that is abstract and that is not
a character of any story authored before s was authored; moreover (.2) x is an
original character of s just case x originates in s:

(.1) OriginatesIn(x,s) ≡df CharacterOf (x,s) &A!x&
∀y∀z∀s′((Azs′ < Ays)→¬CharacterOf (x,s′))

(.2) OriginalCharacterOf (x,s) ≡df OriginatesIn(x,s)

(600) Axiom: Identity of Original Characters. We now stipulate that if an
object x is an original character of s, then x encodes exactly those properties
that x exemplifies according to s:

OriginalCharacterOf (x,s)→ x= ıy(A!y &∀F(yF ≡ s |= Fy))

Intuitively, if Raskolnikov is an original character of Crime and Punishment,
then Raskolnikov is the abstract object that encodes just the properties F such
that Raskolnikov exemplifies F according to Crime and Punishment.

(601) Definition: Fictional Characters. We say that an object is a fictional
character just in case it is an original character of some story:

Fictional(x) ≡df ∃sOriginalCharacterOf (x,s)

For example, this definition lets us infer, from the premise that Raskonikov is
an original character of Crime and Punishment, that Raskolnikov is a fictional
character.

(602) Definition: Fictional Gs. We say that x is a fictional G just in case x is an
original character of a story according to which x exemplifies G:

322The issue here is similar to the problem of named indiscernibles in mathematics, e.g., i and
−i in complex number theory. Nodelman & Zalta 2014 (52) forestall the issue by defining ‘x is an
element of the structure T ’ (or ‘x is an object of theory T ’) as: it is true in T that every y that is T -
distinct from x is distinguishable from x by some property. This utilizes a special abstract relation
=T , for each theory T . Similarly, once we have developed typed object theory in Chapter 15, we
may introduce, for each story s, a special abstract relation of identitys (=s). Then we can refine the
above definition to read:

CharacterOf (x,s) ≡df s |= ∀y(y,sx→∃F(Fx&¬Fy))

In other words, x is a character of s just in case it is true in s that for every individual y that is
distincts from x, x is exemplification-distinguishable from y by some property. A fuller discussion
of this definition is left for Chapter 15.



606 CHAPTER 12. SITUATIONS, WORLDS, TIMES, AND STORIES

Fictional-G(x) ≡df ∃s(OriginalCharacterOf (x,s) & s |= Gx)

(603) Theorems: Facts about Fictions. Theorems (222.3), (115.3), and (126.1)
imply that (.1) if x is abstract, x couldn’t be identical with any concrete object.
It then follows that (.2) if x is fictional, then x is not identical with any possibly
concrete object; and (.3) if x is a fictional-G, then x is not identical with any
possibly concrete G:

(.1) A!x→¬∃y(♦E!y & y=x)

(.2) Fictional(x)→¬∃y(♦E!y & y=x)

(.3) Fictional-G(x)→¬∃y
(
♦(E!y &Gy) & y=x

)
Cf. Zalta 2006a, 600-601. Now, if we read ‘♦E!y’ as y is a possible object, then
as an applied instance of (.2), we know: if Sherlock Holmes is fictional then
there is no possible object with which Holmes is identical, and as an applied
instance of (.3), we know: if Sherlock Holmes is a fictional person, then there
is no possible person with which Holmes is identical.

Consider how these applied instances of (.2) and (.3), together with the
assumption that Holmes is fictional (or Holmes is a fictional person), allow
us to derive, in precise terms, a view that Kripke developed in the following
passage in his 1972 [1980]:

I hold similar views about fictional proper names. . . . Similarly, I hold the
metaphysical view that, granted that there is no Sherlock Holmes, one can-
not say of any possible person that he would have been Sherlock Holmes,
had he existed. Several distinct possible people, and even actual ones
such as Darwin or Jack the Ripper, might have performed the exploits of
Holmes, but there is none of whom we can say that he would have been
Holmes had he performed those exploits. For if so, which one?

(1972 [1980, 157–158])

Of course, someone might argue that in the second sentence of the above quote,
when Kripke assumes “there is no Sherlock Holmes”, he meant only to suppose
¬∃x(x = h). Such an assumption implies that the name ‘Sherlock Holmes’ is
empty. But that can’t be what Kripke meant in the above passage, since he goes
on to say that “one cannot say of any possible person that he would have been
Holmes had he existed”. One can’t meaningfully make such a claim if ‘Holmes’
were an empty name, for how could a counterfactual identity statement (“he
would have been Holmes”) be true if one side of the identity statement has an
empty name?

Moreover, there are two additional pieces of evidence for the suggestion
that (.2) helps us to interpret this particular passage in Kripke. The first is the
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fact that in 1973 [2013], he takes at least some uses of fictional names to be
non-empty. He says:

A fictional character, then, is an abstract entity. It exists in virtue of the
more concrete activities of telling stories, writing plays, writing novels,
and so on, under criteria which I won’t try to state precisely, but which
should have their own obvious character. . . . Of course, a fictional person
isn’t a person. (1973 [2013, 73–74])

. . .
Let’s take the statement ‘Hamlet was a fictional character’. But apply-

ing the predicate [‘was a fictional character’] on the level of reality—that
is, so to speak, straight—one should say Hamlet was a fictional character.

(1973 [2013, 74])
. . .

Finally, at any rate, my view gives another sense in which it is true
rather than false that Hamlet exists. At least, one should say ‘There really
is such a fictional character as Hamlet’. Such a fictional character really
exists. . . (1973 [2013, 78])

I think Kripke is here committed to the claim that Holmes is fictional, and
so (.2) captures his view that Holmes isn’t identical with any possible (i.e.,
possibly concrete) object.

The second is the fact that Kripke makes an analogous claim/argument
concerning fictional species such as unicorns, namely, that they can’t be iden-
tified with any possible species. But further discussion of this second piece of
evidence will have to be postponed until Chapter 15, Section 15.5.5, where we
use a type-theoretic framework to show how to capture his analogous claim
regarding fictional species; see (978.14) – (978.16) and the discussion there.

Finally, note Kripke’s ‘aside’ in the above quotation from 1973 [2013], “Of
course, a fictional person isn’t a person”. This, too, can be represented and
derived in the present theory, given (a) the notion of a concreteness-entailing
property, which we defined but didn’t tag in (434), and the assumptions that
(b) being a person (‘P ’) is a concreteness-entailing property, and (c) Holmes is
a fictional person. For if (c), then by (602), Holmes is an original character of
some story. Hence, by (599.2) and (599.1), Holmes is abstract, and so necessar-
ily non-concrete (�¬E!h). But by (a), (b), and the definition of concreteness-
entailing, it is easy to show �∀x(¬E!x→ ¬P x). Hence, ∀x�(¬E!x→ ¬P x). In-
stantiating to Holmes: �(¬E!h→¬P h). By the K axiom, �¬E!h→ �¬P h. Since
we’ve already established the antecedent, it follows that �¬P h, and so by the T
schema, ¬P h. That is, Holmes doesn’t exemplify being a person, despite being a
fictional person, which, I take it, is what Kripke is claiming. But now we have
a derivation from general assumptions, instead of an assertion.
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(604) Definition: Fictions vs. True and False Stories. We now distinguish be-
tween true stories, false stories, and fictions (i.e., fictional stories), based solely
on their content. That is, in the discussion that follows, we shall purposefully
ignore the intentions of the author. No doubt the intentions of an author often
play a role in determining whether a story is true, false, or a fiction, and so the
definitions proposed below should be seen as having a ceteris paribus (‘all other
things being equal’) clause. But an author’s intentions can’t be the sole deter-
miner of whether a story is fictional or not, since in the cases of many myths,
legends, etc., the stories were told, and intended, as fact, yet we want to regard
such myths and legends a fictions.

But our purpose now is to consider whether a story, for which it known
only that it is an authored narrative, is a true story, a false story, or a fiction.
Thus, the technical notions defined here may differ from the ordinary, everyday
concept of fiction if the everyday concept requires that the intentions of an
author play a role in determining whether a story is true, false, or a fiction.
Indeed, the technical notions defined here may differ from the ordinary notions
in other ways, since the everyday concept of a story, in some contexts, classifies
false stories as fictions. Narratives that contains a false proposition (e.g., as
in false testimony) are often labeled as ‘fictions’. But as we shall use the term
here, a fiction is not simply an authored (non-null) situation that encodes a
false proposition; in addition, at least one of its characters must be a fictional
character. By contrast, none of the characters in true and false stories may be
fictional.

We therefore say: (.1) a story s is true just in case every proposition true in s
is true and there are no original characters of s; (.2) a story s is false just in case
some proposition true in s fails to be true and there are no original characters
of s; and (.3) a story s is a fiction just in case something is an original character
of s:

(.1) True(s) ≡df ∀p(s |= p→ p) &¬∃x(OriginalCharacterOf(x,s))

(.2) False(s) ≡df ∃p(s |= p&¬p) &¬∃x(OriginalCharacterOf(x,s))

(.3) Fiction(s) ≡df ∃x(OriginalCharacterOf(x,s))

As noted above, these technical notions may differ from the ordinary, everyday
concepts. That’s because we’re interested primarily in the ontological status of
stories; we’re not as much interested in the context in which the story is told
(e.g., whether it is explicitly being put forward as a ‘fiction’) or the popular use
of the term ‘fiction’ to label a narrative that contains a falsehood.

The present view is based on the idea that one can’t simultaneously assert
that a story s is both false and a fiction. Of course, many stories are popularly
held to be both false and fictions, but here we are drawing a distinction be-
tween a false story, something that is truth-apt, and a fiction, something that
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isn’t. Here is a rule of thumb. Suppose a name κ of a known concrete object y
is used in the storytelling of s to name a character of s. And suppose, further,
that there is some claim p that is true in s but that isn’t true simpliciter, and that
s has no other obvious fictional characters. Then s is a false story if and only if
κ, as used in s, is a name of the concrete object y. Alternatively s is a fiction if
κ, as used in s, is a name of the original character ‘the κ of s’.

For example, consider a story, say s1, in which (a) the term ‘Richard Nixon’
is used in the storytelling of s1 to name the main character of s1, (b) s1 encodes
a false proposition (say, that ‘Nixon was born in Delaware’), and (c) none of the
other characters of s1 is fictional. Then, we should take s1 to be a false story if
and only if we take ‘Richard Nixon’, as used in the storytelling of s1, to denote
the historical person who was the 37th President of the U.S. On the other hand,
we should take s1 to be a fiction if and only if we take ‘Richard Nixon’, as used
in the storytelling of s1, to denote an original (and hence, fictional) character
describable as ‘the Richard Nixon of s1’. But we shouldn’t regard s1 as both a
false story and a fiction.

12.6.3 Analysis of the Data

In this subsection, we implement step (II) of (591), by analyzing the data in
(A), (B), and (C) of (590) in terms of the principles developed in the previous
subsection.

(605) Remark: Analyses of the (A) Examples. In what follows, we analyze the
(A) examples of (591). In cases where there are multiple examples with the
same form, we give only one example and then produce the analysis. When
we introduce a new constant to represent the name of an original character in
story s, we index the constant to the name of s. The new constants used as
abbreviations in what follows should be obvious.

Examples of (A) are:

(.1) (a) The Iliad is a story.
Story(i)

(.2) (a) Homer authored The Iliad.
Ahi

(.3) Homer authored The Iliad before Dostoyevsky authored Crime and Pun-
ishment.

Ahi < Adc

(.4) (a) Porphyry is an original character of Crime and Punishment.
OriginalCharacterOf (pc, c)
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(.5) (a) Porphyry is a fictional character.
Fictional(pc)

(.6) (a) Porphyry is a fictional detective.
Fictional-D(pc)

(.7) (a) London is a character of A Study in Scarlet.
Character(l, s)

(b) London isn’t an original character of A Study in Scarlet.
¬OriginalCharacterOf (l, s)

(c) London isn’t a fictional character.
¬Fictional(l)

(d) The London of A Study in Scarlet is an original character of A Study in
Scarlet.
OriginalCharacterOf (ls, s)

(e) The London of A Study in Scarlet is a fictional character.
Fictional(ls, s)

(f) The London of A Study in Scarlet is a fictional city.
Fictional-C(ls)

(g) London is not identical to the London of A Study in Scarlet.
l , ls

(.8) Crime and Punishment is a fiction, not a false story.
Fiction(c) &¬False(c)

(.9) Sherlock Holmes is more famous than Porphyry.
Mhspc

Example (.9) is interesting when compared to the superficially analogous sen-
tence ‘Sherlock Holmes is smarter than Porphyry’. For an analysis of claims
like the latter, see Zalta 2000c (130–138).

(606) Remark: Analyses of the (B) and (C) Examples. We now follow a similar
procedure for analyzing the (B) and (C) examples of (591).

Examples of (B) are:

(.10) (a) St. Petersburg is a city.
Cs

(b) Baker Street is in London.
Ibl
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Both (a) and (b), as analyzed, are simple truths that remain true when prefaced
by c |= (“According to Crime and Punishment”) and s |= (“According to A Study
in Scarlet”), respectively, as long as the names ‘St. Petersburg’, ‘Baker Street’,
and ‘London’ are used in the storytelling to refer, in the usual way, to the well-
known cities and street in Russia and England.

Examples of (C) are:

(.11) (a) In The Iliad, Achilles fought Hector.
i |= Faihi

(b) According to Crime and Punishment, Raskolnikov kills a pawnbroker.
c |= ∃x(P x&Krcx)

(c) According to A Study in Scarlet, Holmes is a detective.
s |=Dhs

(d) According to A Study in Scarlet, Holmes might have been a violinist.
s |= ♦V hs

(e) According to Crime and Punishment, Porphyry is a detective.
c |=Dpc

(f) In A Study in Scarlet, London is a city.
s |= Cl
s |= Cls

Note that (.11.f) is ambiguous and can therefore be represented in one of two
ways. In the first reading, ‘London’ in the data is interpreted as denoting the
real city, while in the second reading, it is interpreted as denoting the fictional
object: the London of A Study in Scarlet.

The reader may add to the foregoing any of her favorite examples that are
representable in the present language of object theory. With a richer language,
a wider variety of examples becomes representable.

12.6.4 Validating Judgments of Logical Consequence

(607) Derivations: Argument Representations. We now implement stage III of
our methodology, as described in (591). We reproduce the arguments in (D) of
(590) and, in each case, provide the formal representation of the argument as
a valid derivation of object theory. It suffices, in what follows, to represent the
ordinary claim ‘σ is real’ as E!σ :

(.12) The Iliad is a story.
Therefore, there are propositions that are true according to The Iliad.
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Story(i) ` ∃p(i |= p)

(.13) Crime and Punishment is a story.
Therefore, something authored Crime and Punishment.

Story(c) ` ∃xAxc

(.14) In Crime and Punishment, Porphyry is a detective.
Porphyry is an original character of Crime and Punishment.
Therefore, Porphyry is a fictional detective.

c |=Dpc, OriginalCharacterOf (pc, c) ` Fictional-D(pc)

(.15) London is a real city.
Therefore, London is not a fictional city.

[λx E!x&Cx]l ` ¬Fictional(l)

(.16) London is a real city.
London is a character of A Study in Scarlet.
A Study in Scarlet is a fiction.
Therefore, some characters of a fiction are real.

[λx E!x&Cx]l, CharacterOf (l, s1), Fiction(s1) `
∃x∃s(CharacterOf (x,s) & Fiction(s) &E!x)

(.17) The London of A Study in Scarlet is an original character of A Study in
Scarlet.

In A Study in Scarlet, London is a city.
Therefore, the London of A Study in Scarlet is a fictional city.

OriginalCharacterOf (ls, s), s |= Cls ` Fictional-C(ls)

(.18) London is a real city.
The London of A Study in Scarlet is a fictional city.
Therefore, London is not (identical to) the London of A Study in Scarlet.

[λx E!x&Cx]l, Fictional-C(ls) ` l , ls

(.19) Augustus Caesar worshipped Jupiter.
Jupiter is a fictional character.
Fictional characters aren’t real.
Therefore, Augustus Caesar worshipped an object that isn’t real.323

323For this example, we may assume that ‘Jupiter’ is a name derived from a text cataloguing
Roman myths (though they wouldn’t necessarily be thought myths at the time), e.g., Ovid’s Meta-
morphoses. But, in the representation, we suppress the index to ‘m’.
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Wcj, Fictional(j), ∀x(Fictional(x)→¬E!x) ` ∃x(Wcx&¬E!x)

(.20) Sherlock Holmes inspires some criminologists.
Sherlock Holmes is fictional.
Therefore, a fictional object inspires some criminologists.

∃x(Cx& Ihsx), Fictional(hs) ` ∃x∃y(Fictional(x) &Cy & Ixy)

Notice that in (.17), the second premise is disambiguated by interpreting ‘Lon-
don’ as denoting the London of A Study in Scarlet (ls); the representation of this
premise is the second one given in (606.11.f). That’s because the first premise
provides a context that makes it clear we are to read ‘London’ as denoting a
fictional character.

We leave the derivations, in each case, as a simple exercise.

(608) Derivations: Theoretical Consequences of Principles. The foregoing
derivations are all representations of arguments drawn from ordinary lan-
guage. We now examine some derivations in which theoretical conclusions are
drawn from the premises:

(.1) In A Study in Scarlet, Holmes is a detective.
Holmes is an original character of A Study in Scarlet.
Therefore, Holmes encodes being a detective.

s |=Dhs, OriginalCharacterOf (hs, s) ` hsD

A proof is in the Appendix. Recall our assumption that the story operator
is closed under relevant entailment and that this implies β-Conversion holds
within its scope. Then, we may infer from s |= Rab that both s |= [λx Rxb]a and
s |= [λx Rax]b. Then the following derivation is valid, in which the conclusion
is a binary encoding claim of the form xyR:

(.2) In The Iliad, Achilles fought Hector.
Achilles is an original character of The Iliad.
Hector is an original character of The Iliad.
Therefore, Achilles and Hector encode the relation of fighting.

s |= Fhsws, OriginalCharacterOf (hs, s),OriginalCharacterOf (ws, s) ` hswsF

We conclude this subsection by mentioning that binary encoding claims of the
form xyR will also play a role in the analysis of theoretical mathematics and
will be used again in Chapter 15.

12.6.5 Final Issues Concerning Fictional Individuals

The theory of fiction raises a host of thorny philosophical problems. These
problems affect every theory of fiction:
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• How should we identify a fictional character when that fictional charac-
ter reappears in a series of novels?

• How should we identify what seem to be distinct fictional characters that
are indiscernible within a story? (See, for example, the discussion in foot-
note 322.)

• How can we draw comparisons among fictional characters? (E.g., While
the claim ‘Holmes is more famous than Poirot’ was relatively easy to an-
alyze, as in (605.9), it is not as easy to analyze ‘Holmes is taller than
Poirot’. Of course, one might think this last claim is false, but as long
as it is deemed meaningful, one might be interested in how should it be
analyzed.)

• In what sense are fictions created, if abstract objects exist necessarily and
always? How can we say that the fictional object Holmes didn’t exist until
Conan Doyle wrote A Study in Scarlet?

Many philosophers have strong intuitions about these problems and especially
about the facts concerning these cases; they often judge that some theory of
fiction just can’t be correct since it is inconsistent with what their intuitions
tell them are the facts of the case. My guess is that in most of these cases,
our intuitions are insufficient and just not fine-grained enough for us to put
much stock in them. Rather, the way forward is to draw distinctions, formulate
definitions, and test whether the theoretical conclusions we can derive from
them lead us to a more refined understanding of the problem at hand.

Although I will not pursue the bulleted issues here, the following (recom-
mendations, in some cases) should be kept in mind.

• We should always keep in mind that our primary goal is to analyze spe-
cific judgments and inferences. The data comes in the form of specific
judgments and inferences made by individuals. To apply our theory, we
don’t need there to be some fixed body of judgments that are known and
upon which everyone agrees. It suffices to analyze specific judgments
and inferences by specific individuals in terms of the axioms, definitions,
and theorems given above.

• Sometimes (for example, in the case where there is an ongoing series of
novels with common characters and in the interval between the release
of two books in the series, is a person S makes a judgment or inference
about a fictional character), one has to fix the context of utterance for
the judgment being analyzed, fill in the context by enquiring about addi-
tional judgments and inferences S would accept (e.g., would they accept
that some proposition p is relevantly entailed by the story in question,
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etc.), and then use the definitions provided above to analyze the judg-
ment or inference in question.

• As mentioned in footnote 321, authors change the expressive power of
the language when they author a fiction. This has quite a number of
consequences for the analysis of fiction.

• The notion of a fictional character depends on the notion of a fictional
story. While an author is telling or writing down a story for the first
time, they aren’t referring to their characters, but only pretend to re-
fer. Reference doesn’t take place until the initial storytelling is complete.
During the initial storytelling, we can appeal to the Fregean sense of the
names used in the storytelling to understand the content of the author’s
thoughts. But we have to allow for the sense of a fictional name to change
from time to time during a storytelling – this is not to say that the sense
is an object that changes, but rather that at different times, different ab-
stract objects may serve as the sense of a name.

• As implied by (591.2), being authored by something ([λx ∃yAyx]) is a
contingent property of x, and the claim Story(σ ) (where σ is the name of
some story), if assumed as an axiom or hypothesis, has to be regarded as
modally fragile (595).

• The fact that any abstract object satisfies the definition of a story is a
contingent fact and so the fact that Holmes satisfies the definition of a
fictional character is a contingent fact.

• A formal system that allows one to derive suitably flagged necessary
truths that are derived from a contingency is extremely important if to
avoid the charge that contingent entities (e.g., dependent abstracta) have
been misrepresented as necessary entities that have always and will al-
ways exist. (For more discussion of how our proof system for flagging ne-
cessities derived from contingencies helps Leibniz to avoid the charge Ar-
nauld makes against the containment theory of truth, see (695) in Chap-
ter 13.)

So of these points will be obvious from the foregoing; others have been ex-
plored in a limited way in Zalta 2000c, and Bueno & Zalta 2017. But I’m going
to leave these issues and recommendations for solving them for another occa-
sion, since further discussion would draw us too far afield. I suspect that object
theory, at the very least, gives us a precise framework for drawing distinctions,
formulating definitions, and testing theoretical conclusions.

(609) Theorems: Fictional Characters Aren’t Possible Objects.
Theorem: A fictional object is not identical with any possible object:
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Fictional(x)→¬∃y(♦E!y & y=x)

Cf. Kripke 1972 [1980, 158].324 So given that Holmes is fictional, there is a clear
and provable sense in which he couldn’t have been identical to any possible
object.
Thm: Fictional objects are abstract.

Fictional(x)→ A!x

Cf. Kripke 1973 [2013, 73].325

(610) Remark: What It Means To Say that A Character Might Exist. Suppose
fictional character x originates in some story, say s. Then x is abstract and en-
codes the properties attributed to x in s. However, we commonly suppose that
x, considered as a fictional character, might have existed (or might have been
real). For example, there is a sense in which the character, Sherlock Holmes,
might have existed. As might be expected, we can’t regard the English “might
have existed” as saying that the object Holmes might have been a concrete ob-
ject. Holmes can’t be identified as a possibly concrete object since there are too
many of those that are consistent with the stories. The proper name ‘Holmes’
should be given a theoretically-described denotation, but since there are in-
numerable properties that aren’t attributed to Holmes in the novels, we have
no theoretical means of picking out a distinctive possibly concrete object. At
first glance, however, it seems natural to interpret the claim “Holmes might
have existed” as “Possibly, something exemplifies all of the properties Holmes
exemplifies in the stories”. This would imply that, at some possible world w,

324In Kripke 1972 [1980, 158], we find:

Similarly, I hold the metaphysical view that, granted that there is no Sherlock
Holmes, one cannot say of any possible person that he would have been Sherlock
Holmes, had he existed. Several distinct possible people, and even actual ones such
as Darwin or Jack the Ripper, might have performed the exploits of Holmes, but
there is none of whom we can say that he would have been Holmes had he per-
formed these exploits. For if so, which one? (See my ‘Semantical Considerations on
Modal Logic’, . . . .) The quoted assertion gives the erroneous impression that a fic-
tional name such as ’Holmes’ names a particular possible-but-not-actual individual.

325In Kripke 1973 [2013, 73], we find:

A fictional character, then, is in some sense an abstract entity. It exists in virtue of
more concrete activities of telling stories, writing plays, writing novels and so on,
under criteria which I won’t try to state precisely, but which should have their own
obvious intuitive character. It is an abstract entity which exists in virtue of more
concrete activities the same way that a nation is an abstract entity which exists in
virtue of concrete relations between people.

Note that you can’t instantiate the theorems and definitions with examples until there is some
human activity: a storytelling! This accounts for the sense (recall Kripke) in which they exist
in virtue of human activity. Conan Doyle enriched the expressive power of language by using
‘Holmes’, ‘Watson’, ‘Moriarty’ in a storytelling. See Zalta 2006a.
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there is a concrete object y that exemplifies at w the properties attributed to x
in s.

But an issue arises for this interpretation. Consider the fact that in The
Iliad, Achilles fought Hector. So to suppose that Achilles might have existed,
under this interpretation, would be to suppose that, at some possible world w,
an object y exemplifies at w the properties attributed to Achilles in The Iliad.
One of those properties is fighting Hector. But we’ve also identified Hector as
an abstract object (given that he, too, originated in The Iliad). So if Achille
exemplifies fighting Hector at w, it would follow that there is an abstract object
z that is identical to Hector and such that at w, y exemplifies fighting z.

This result seems rather puzzling, since fighting, unlike loves, inspires, wor-
ships, etc., is not an intensional relation. Necessarily, if x fights y, then both
E!x and E!y. What this shows is we can’t rest with this simple analysis of what
it is to say that a character might have existed. Rather, to say the fictional char-
acter x of story s might have existed is to say that all the fictional characters
of s might have jointly existed, in the sense that, for any fictional characters
x1, . . . ,xn of story s, there is a possible world w and objects y1, . . . , yn such that
each of the y1, . . . , yn exemplify atw, respectively, all of the properties attributed
to x1, . . . ,xn.

While this seems to be a step closer to what we want, it still leaves the pre-
vious problem. If to say that Achilles might have existed is to say that all of
the characters of the Iliad might have existed in the sense just indicated, then
a fortiori there has to be a possible world w, and objects y1 and y2 such that y1

exemplifies all of the properties attributed to Achille in the Iliad and y2 exem-
plifies all of the properties attributed to Hector in the Iliad. But, without loss
of generality, note that the property of fighting Hector is attributed to Achille in
the Iliad. Yet we want y1 to exemplify at w the property of fighting y2, not the
property of fighting Hector.

I think the best way of understand the issue here is to suppose that our in-
tuitions about Achille’s possible existence should be analyzed by going through
the language of the fiction. That is, in order to formalize the intuition that a
fictional story s is true at some world w, we have to suppose that for each in-
dividual term κ that designates an original character of s, there is an ordinary
object y such that for any formula ϕ, if ϕ is true in s, then ϕ′ is true at w, where
ϕ′ is the result of substituting y for κ in ϕ. When this metalinguistic fact holds
for s and w, we say that s is true at w. Then we may say that a fictional story s
is possibly true just in case there is some possible world w where s is true at w.
Finally, we may say that an original character x of story s might have existed if
and only if s is possibly true. Thus, facts about language are needed to analyze
the sense in which a fictional character might have existed.

Formally, we can express the foregoing analysis using the following metathe-
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oretical definitions, for any finite number n of individual terms κ occurring in
the story (n ≥ 1):

• A fictional story s is true at w if and only if ∀κ1 . . .∀κn(
(OriginalCharacterOf(κ1, s) & . . . & OriginalCharacterOf(κn, s))→
∃y1 . . .∃yn∀ϕ(s |= ϕ→ w |= ϕ′)

)
,

where ϕ′ is the result of substituting yi for κi in ϕ, provided yi is substi-
tutable for κi (1 ≤ i ≤ n).

• A fictional story s is possibly true if and only if ∃w(s is true at w).

• x might have existed if and only if ∃s(OriginalCharacter(x,s) & s is possibly
true)

Of course, these definitions will have to be adjusted to account for the truth of
fictional stories that involve fictional properties as well as fictional individuals,
so that we can define what it means to say that a fictional property might have
existed. But we can leave this consideration for the section of Chapter 15 where
we analyze fictional properties and fictional relations in typed object theory.



Chapter 13

Concepts

It is not always clear what is meant when philosophers talk about concepts. In
this chapter, we define a notion of concept governed by a variety of interesting
theorems, many of which represent principles that intuitively characterize this
notion. Furthermore, some of the theorems that we derive look very similar
to principles that Leibniz adopted in his work. Though many philosophers
have supposed that Leibnizian concepts, like Plato’s Forms, are to be analyzed
as properties, the theorems below establish that Leibnizian principles about
concepts fall out very naturally when the latter are analyzed as abstract indi-
viduals. Indeed, in (678) and (735) below, we explain difficulties that would
arise if one were to analyze Leibnizian concepts as properties.

Thus, in what follows Leibnizian concepts are to be distinguished from
Fregean concepts, which are taken to be properties in Chapter 14 (see the open-
ing lines of Section 14.2, where this is justified). But whether or not one agrees
that the following theorems constitute a good interpretation of Leibniz, we
take it that they constitute an interesting and compelling philosophical theory
of concepts in their own right.

(611) Remark: Leibnizian Concepts. Over the course of his life, Leibniz devel-
oped three different strands of his theory of concepts:

• a non-modal ‘calculus’ of concepts,

• a concept containment theory of truth, and

• a modal metaphysics of complete, individual concepts.

We discuss these in turn.
To modern eyes, Leibniz’s so-called ‘calculus’ of concepts is really an alge-

bra, though Leibniz probably used ‘calculus’ in the sense of calculus ratiocina-
tor, a general framework for reasoning. He produced fragments of this algebra

619
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throughout his life, but only in his late works (1690a, 1690b) did he explicitly
introduce a primitive operation symbol (which we shall write as ⊕) so that he
could write A⊕B to denote the sum of concepts A and B.326 He also introduced
the notions of concept containment and concept inclusion, so that he could say
that the concept A ⊕ B contains both the concepts A and B, and that both A
and B are included in A⊕B. Some of the key principles that emerge from this
fragment of Leibniz’s work are: that concept addition is idempotent, commu-
tative, and associative; that concept containment and inclusion are reflexive,
anti-symmetric, and transitive; that if concept A is included in concept B, then
there is a concept C such that A⊕C = B; and that if A is included in B, then
A⊕B = B.

Leibniz advocated a concept containment theory of truth throughout his
life, though he often expressed it in terms of concept inclusion. Here is a classic
statement, from his correspondence with Arnauld (June 1686, LA 63, G.ii 56):

. . . in every true affirmative proposition, necessary or contingent, universal
or particular, the concept of the predicate is in a sense included in that of
the subject; the predicate is present in the subject.

Stated in terms of containment, this becomes the claim that in a true subject-
predicate statement, the concept of the subject contains the concept of the
predicate. In what follows, we shall analyze the concept of a predicate in the
material mode, as the concept of a property. Moreover, we shall define the con-
cepts of such subjects as ‘Alexander’ and ‘every person’ as they occur in the
sentences ‘Alexander is rational’ and ‘Every person is rational’. We show that
from the modern analysis of the claim that Alexander is rational, one can de-
rive our analysis of the Leibnizian claim that the concept of Alexander contains
the concept of being rational. Moreover, we then show that from the modern
analysis of the claim that every person is rational, one can derive our analysis
of the Leibnizian claim that the concept every person contains the concept of
being rational.

In middle and late period works (Discourse on Metaphysics (1686), Theodicy
(1709), and The Monadology (1714)), Leibniz developed a modal metaphysics
of individual concepts that he used to analyze modal facts about individuals
in terms of facts about various individual concepts that appear at other possible
worlds. Some fundamental principles underlying Leibniz’s view are:

• If an ordinary individual u is F but might not have been F, then (i) the
individual concept of u contains the concept of F, and (ii) there is an
individual concept that: (a) is a counterpart of the concept of u, (b) fails
to contain the concept of F, and (c) appears at some other possible world.

326Prior to those works, Leibniz indicated concept addition by concatenating the symbols for two
concepts.
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• If an ordinary individual u isn’t F but might have been F, then (i) the in-
dividual concept of u fails to contain the concept of F, and (ii) there is an
individual concept that: (a) is a counterpart of the concept of u, (b) con-
tains the concept of F, and (c) appears at some other possible world.

Although Leibniz never actually states these principles explicitly, they are im-
plicit in the views he expressed. As part of our goal of analyzing and unify-
ing the various components of Leibniz’s theory of concepts, we shall formalize
and prove the above fundamental principles of Leibniz’s modal metaphysics
of concepts. The formalizations and derivations that we construct in analyzing
Leibniz’s theory realize, at least in part, his idea of calculus ratiocinator, though
we won’t argue for this here.

The developments that follow revise and enhance the work in Zalta 2000a
in numerous ways. The discussion and procession of theorems has been re-
vised, and the statement of the theorems and their proofs have been improved.
Though a comparison of our work below with other work in the secondary lit-
erature on Leibniz would be useful, it is not attempted here. Note, however,
that some commentators treat only Leibniz’s nonmodal calculus of concepts
and not the modal metaphysics of individual concepts,327 while others treat
only the modal metaphysics of individual concepts and not the nonmodal cal-
culus.328 Although Lenzen (1990) treats both, his work provides us with a
model of Leibnizian concepts within set theory; it does not provide a theory
of concepts. By contrast, the following reconstruction makes no set-theoretic
assumptions, unlike most of the works in the secondary literature just cited.
As mentioned previously, the work has significant philosophical interest in its
own right, whether or not it constitutes a contribution to the secondary litera-
ture on Leibniz. That’s why ‘Leibnizian’ is sometimes used within parentheses.

(612) Definition: (Leibnizian) Concepts. The key idea underlying our analysis
of (Leibnizian) concepts is that they are abstract individuals. Consequently, we
identify the property being a concept with the property being abstract:

C! =df A!

Thus, all of the previous theorems about abstract individuals become theorems
about (Leibnizian) concepts. Note also that in light of theorem (180.2), C!x→
�C!x. Hence, by GEN, we know `� ∀x(C!x→ �C!x). So C!x is a rigid condition,
in the sense of (260.1). We therefore leave it as an exercise to show that C!x is
a rigid restriction condition in the sense of (340).

327See, for example, Rescher 1954; Kauppi 1960, 1967; Castañeda 1976, 1990; and Swoyer 1994,
1995.
328See Mates 1968, Mondadori 1973, and Fitch 1979.
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(613) Theorems: Immediate Equivalences and Identities. It is now a simple
consequence of the previous definition that x is a concept that encodes exactly
the properties such that ϕ if and only if x is an abstract object that encodes
exactly the properties such that ϕ:

(C!x&∀F(xF ≡ ϕ)) ≡ (A!x&∀F(xF ≡ ϕ))

(614) Theorems: Concept Comprehension and Canonical Concept Descrip-
tions. From the preceding theorems, we can easily prove that (.1) there is a
concept that encodes exactly the properties F such that ϕ; (.2) there is a unique
concept that encodes exactly the properties F such that ϕ; (.3) the individual
that is a concept encoding exactly the properties such that ϕ exists; and (.4) the
concept that encodes exactly the properties such that ϕ is identical to the ab-
stract object that encodes exactly the properties such that ϕ:

(.1) ∃x(C!x&∀F(xF ≡ ϕ)), provided x doesn’t occur free in ϕ

(.2) ∃!x(C!x&∀F(xF ≡ ϕ)), provided x doesn’t occur free in ϕ

(.3) ıx(C!x&∀F(xF ≡ ϕ))↓, provided x doesn’t occur free in ϕ

(.4) ıx(C!x&∀F(xF ≡ ϕ)) = ıx(A!x&∀F(xF ≡ ϕ)),
provided x doesn’t occur free in ϕ

By (.3), any appropriate ϕ can be used to formulate a canonical concept descrip-
tion of the form ıx(C!x & ∀F(xF ≡ ϕ)) and, by (.4), the concept so described
is identical to a canonical abstract object. Henceforth all of the machinery
for, and discussions of, canonical and strictly canonical descriptions, in (253) –
(262), can be repurposed for concepts. These facts come into play on numerous
occasions below.

(615) Remark: Restricted Variables and Canonical Concepts. Since we saw, at
the end of (612), that C!x is a rigid restriction condition, we may introduce the
variables c,d,e, f , . . . as rigid restricted variables ranging over concepts (thus,
we are repurposing c from its use in Chapter 10 as a non-rigid restricted vari-
able ranging over classes). So we assert theorems, and reason, with c,d, . . . as
free restricted variables, and employ our extended Rule RN (341).

We shall also use c1, c2, . . ., d1,d2, . . ., etc., as primitive constants introduced
to pick out an arbitrary concept. Since it is clear that concepts exist, it follows
that ∀cϕ→∃cϕ and we hereafter assume it; cf. Remark (342). Moreover, when
κ is any restricted variable or primitive constant for an arbitrary concept, we
may assume κ↓ is axiomatic (39.2), that κ can be instantiated into any universal
claim, and that κ=κ can be introduced by Rule =I.

With our rigid restricted variables for concepts, we may express (614.1) –
(614.4) as follows, provided c doesn’t occur free in ϕ:
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∃c∀F(cF ≡ ϕ) (614.1)

∃!c∀F(cF ≡ ϕ) (614.2)

ıc∀F(cF ≡ ϕ)↓ (614.3)

ıc∀F(cF ≡ ϕ) = ıx(A!x&∀F(xF ≡ ϕ)) (614.4)

By a modest abuse of language, we may say that the description ıc∀F(cF ≡ ϕ)
describes a canonical concept. Since canonical concepts are canonical abstract
objects, the theorems governing the latter apply to the former. For example, it
is straightforward to show that a version of the Abstraction Principle (256.2)?
applies to concepts, namely, the concept encoding all and only the properties
such that ϕ encodes F if and only if ϕ:

ıc∀F(cF ≡ ϕ))F ≡ ϕ, provided c doesn’t occur free in ϕ

For certain formulas ϕ, we’ll be able to establish that the canonical concept is
strictly canonical and so subject to a modally strict version of the above theo-
rem schema.

(616) Theorems: Identity. In LLP 131–132 (G.vii 236), Propositions 1 and 3,
Leibniz uses the substitution of identicals to derive that the notion of identity,
as it applies to concepts, is symmetrical and transitive. However, ‘=’ is defined
in the present theory. Given theorems (117.1) – (117.3), it immediately follows
that identity is reflexive, symmetrical, and transitive on the concepts. Hence,
using our restricted variables, we have:

(.1) c=c

(.2) c=d→ d=c

(.3) c=d & d=e→ c=e

Note that in Definition 1 of G.vii 236, Leibniz uses ‘∞’ as the identity sym-
bol. In LLP 131, the translation of of G.vii 236 includes the claims “‘A = B’
means that A and B are the same” and that “those terms are ‘the same’ . . . of
which either can be substituted for the other wherever we please without loss
of truth”.

13.1 The Calculus of Concepts

13.1.1 Concept Addition

(617) Definition: Concept Addition (Summation). To define concept addition
or summation, let us say that concept c is a sum of concepts d and e if and only
if c encodes all and only the properties encoded by either d or e:
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SumOf (c,d,e) ≡df ∀F(cF ≡ dF ∨ eF)

To produce an example of our definition using modally strict reasoning, note
that the following are instances of concept comprehension (614.1), where P ,Q,
and R are any arbitrarily chosen properties:

• ∃c∀F(cF ≡ F=P )

• ∃c∀F(cF ≡ F=Q ∨ F=R)

• ∃c∀F(cF ≡ F=P ∨ F=Q ∨ F=R)

Let c1, c2, and c3, respectively, be arbitrary such objects. Since c1 encodes just
the property P , c2 encodes just the properties Q and R, and c3 encodes just the
properties P , Q, and R, it is an easy exercise to show SumOf (c3, c1, c2).

(618) Theorems: The Sum of Concepts d and e Exists. In the usual manner,
it follows that (.1) concepts d and e have a sum; (.2) concepts d and e have a
unique sum; and (.3) the sum of concepts d and e exists:

(.1) ∃cSumOf (c,d,e)

(.2) ∃!cSumOf (c,d,e)

(.3) ıcSumOf (c,d,e)↓

It is worth mentioning that since d and e are restricted variables, these theo-
rems are really shorthand for conditional existence claims. For example, (.1) is
shorthand for (C!x&C!y)→ ∃z(C!z& SumOf (z,x,y)). But since we know that
concepts exist, we can derive unconditional existence claims from them.

(619) Definition: The Sum of Concepts d and e. By our last theorem, we are
entitled to introduce the following notation for the concept that is the sum of
concepts d and e:

d⊕e =df ıcSumOf (c,d,e)

Since there are free restricted variables occurring in the definition, it is impor-
tant to remember the discussion in (339), in which we discuss the inferential
role of definitions that employ free restricted variables. Given that discussion
and the modally strict fact that C!x→ �C!x (mentioned previously in (612)), it
should be clear that an expression of the form κ⊕κ′ is a binary functional term
that is significant only when it is known, either by proof or by hypothesis, that
C!κ and C!κ′. Moreover, since concepts are just abstract individuals, it should
also be clear that d⊕e exists whenever d and e are any abstract objects.

(620) Lemmas: Strict Canonicity of Sums. In the usual way, it is straightfor-
ward to show that d ⊕ e is (identical to) a canonical concept:
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(.1) d ⊕ e = ıc∀F(cF ≡ dF ∨ eF)

If we let ϕ be the formula dF∨ eF, then we may use definition (260.1) to estab-
lish, by modally strict means, the following universal claim, which therefore
tells us (.2) ϕ is a rigid condition on properties:

(.2) ∀F((dF ∨ eF)→ �(dF ∨ eF))

Hence, d⊕e is a strictly canonical concept, by (260.2). By theorem (261.2) and
the definition of C!, it follows that (.3) the sum of d and e is a concept that en-
codes all and only the properties F such that either d encodes F or e encodes F:

(.3) C!d⊕e & ∀F(d⊕eF ≡ dF ∨ eF)

Note that the first conjunct of (.3) is an exemplification formula consisting of a
unary relation term C! and a complex individual term d⊕e. Moreover, it clearly
follows from (.3) by definition (617) that (.4) d⊕e is a sum of d and e:

(.4) SumOf (d⊕e,d,e)

(.1) – (.4) are modally strict theorems used frequently in the proofs of subse-
quent theorems.

(621) Theorems: Concept Addition Forms a Semi-Lattice. It follows straight-
forwardly from the previous lemma that ⊕ is idempotent, commutative, and
associative:

(.1) c⊕c = c

(.2) c⊕d = d⊕c

(.3) (c⊕d)⊕ e = c⊕(d⊕e)

In virtue of the last fact, we may leave off the parentheses in the expressions
(c⊕ d)⊕ e and c⊕ (d ⊕ e).

Thus, concept addition behaves in the manner that Leibniz prescribed. He
took the first two of these theorems as axioms of his calculus, whereas we derive
them as theorems.329 Unfortunately, he omitted associativity from his list of
axioms for ⊕; as Swoyer (1995, 1994) points out, it must be included for the
proofs of certain theorems to go through.

(622) Remark: Concept Addition and Properties. We’ve analyzed concepts as
abstract individuals and concept addition as a functional condition on con-
cepts. Of course, Leibniz’s texts use variables for concepts that suggest that he

329See LLP 132 (G.vii 237), Axioms 2 and 1, respectively. Other idempotency assertions appear
in LLP 40 (G.vii 222), LLP 56 (C 366), LLP 85 (C 396), LLP 90 (C 235), LLP 93 (C 421), and LLP
124 (G.vii 230). Swoyer (1995, footnote 5) also cites C 260 and C 262. Lenzen (1990) cites GI 171
for idempotency. Other commutativity assertions appear in LLP 40 (G.vii 222), LLP 90 (C 235),
and LLP 93 (C 421).
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conceived of concepts as properties. For example, in 1690a and 1690b, he uses
variables A,B, . . . ,L,M,N , etc., and he instantiates these variables with predica-
tive expressions such as ‘triangle’, ‘trilateral’, ‘rational’, ‘animal’, etc. One may
certainly try to reconstruct Leibnizian concepts as properties, but we now dis-
cuss an issue that arises for that analysis. On the property-theoretic analysis,
concept addition is traditionally regarded as property conjunction, so that one
would define:

F +G =df [λx Fx&Gx]

So to derive (621.1) – (621.3) as theorems, one would have to derive:

[λx Fx&Fx] = F

[λx Fx&Gx] = [λxGx&Fx]

[λx [λy Fy&Gy]x&Hx] = [λx Fx& [λy Gy&Hy]x]

If one were to take properties to be identical when materially (i.e., extension-
ally) equivalent, the above would be easy consequences. But such a definition
of property identity is incorrect. Similarly, if one were to take properties to be
identical when necessarily equivalent (i.e., by defining F = G as �∀x(Fx ≡ Gx)),
one would also obtain the above consequences. But, again, this definition is in-
correct and the present theory doesn’t endorse it. We have formulated our
system so that one can consistently assert that there are properties F and G
such that both �∀x(Fx ≡ Gx) and F , G.

Thus, if one allows for distinct properties that are necessarily equivalent
with respect to exemplification, then it is not clear how to derive the above
property identities in absence of further axioms governing property identity.
Our policy has been to eschew such axioms. The present theory offers precise
conditions under which properties exist and precise conditions under which
they are identical. The latter tell us exactly what we are asserting or need to
prove when we assert or prove that properties F and G are either identical or
distinct. But, we leave it as an open question, to be decided as the case may
demand, whether the property identities displayed above are to be endorsed
or not.

By understanding Leibnizian concepts as abstract individuals, one can de-
rive (621.1) – (621.3) as theorems, but if one prefers the analysis of Leibnizian
concepts as properties and takes properties seriously as intensional entities,
then more work has to be done to derive the identities needed to show that
property addition, as defined in this Remark, is idempotent, commutative, and
associative. Moreover, it should also be noted that once concepts of properties
are introduced in Section 13.2, where we define the concept of F (cF), then the
following instances of (621.1) – (621.3) bring us even closer to Leibniz’s texts:
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cF ⊕ cF = cF

cF ⊕ cG = cG ⊕ cF

(cF ⊕ cG)⊕ cH = cF ⊕ (cG ⊕ cH )

These results at least provide an interpretation of the Leibnizian texts in which
he asserts concept addition is idempotent and commutative (and assumes as-
sociativity).

(623) Theorems: Concept Addition and Identity. Leibniz proves two other the-
orems pertaining solely to concept addition and identity in LLP 133–4 (G.vii
238), Propositions 9 and 10:

(.1) c=d → c⊕e=d⊕e

(.2) c=d & e=f → c⊕e=d⊕f

In the notes following Propositions 9 and 10 in LLP 133-134 (G.vii 238), Leib-
niz observes that counterexamples to the converses of these theorems can be
produced. To produce a counterexample to the converse of (.1), first let P , Q,
and R be any three distinct properties. We know there are such by (225.7).
Then:

• let c1 be ıc∀F(cF ≡ F=P ∨F=Q∨F=R)

• let c2 be ıc∀F(cF ≡ F=P ∨F=Q)

• let c3 be ıc∀F(cF ≡ F=R)

Then it is straightforward to show that c1⊕c3 =c2⊕c3 and c1,c2, contrary to the
converse of (.1).

Similarly, to produce a counterexample to the converse of (.2), first let P ,Q,
R, and S be any four distinct properties. We know there are such by (225.7).
Then:

• let c1 be ıc∀F(cF ≡ F=P ∨F=Q)

• let c2 be ıc∀F(cF ≡ F=P )

• let c3 be ıc∀F(cF ≡ F=R∨F=S)

• let c4 be ıc∀F(cF ≡ F=Q∨F=R∨F=S)

It is then easy to show that c1⊕c3 = c2⊕c4 and c1 , c2 (and, indeed, c3 , c4),
contrary to the converse of (.2).
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13.1.2 Concept Inclusion and Containment

(624) Definitions: Inclusion and Containment. It is an algebraic fact that an
idempotent, commutative, and associative operation on a domain induces a
partial ordering on that domain. In the present case, concept addition induces
the partial ordering of concept inclusion (c � d) and a converse ordering of con-
cept containment (d � c). We’ll prove these facts below. Leibniz was aware of
this connection and derives these facts for the case of concept inclusion. In
Definition 3 of LLP 132 (G.vii 237), Leibniz defined both c � d and d � c as
∃e(c ⊕ e = d).330 Moreover, in Propositions 13 and 14 of LLP 135 (G.vii 239),
Leibniz derives both directions of the equivalence c � d ≡ c⊕d = d as theorems.

In object theory, however, a deeper level of analysis of concept inclusion
and concept containment is available. Once that analysis is formulated, it fol-
lows that inclusion and containment partially order the concepts; this is item
(625) below. Moreover, Leibniz’s definition of inclusion in Definition 3 and the
equivalence that he obtains via his Propositions 13 and 14 are both derivable
from that analysis. These are theorems (628) and (629) below.

We begin by defining: c is included in d just in case d encodes every property
c encodes. Formally:

(.1) c � d ≡df ∀F(cF→ dF)

We shall see, in what follows, that this notion of concept inclusion is a gener-
alization of the notion of part-of, which was defined on situations in (475).

Leibniz’s notion of concept containment is now just the converse of inclu-
sion. Let us say that d contains c just in case c is included in d:

(.2) d � c ≡df c � d

Consequently, the theorems below are developed in pairs: one member of the
pair governs concept inclusion and the other concept containment. However,
in the Appendix, we prove the theorem only as it pertains to concept inclusion.

(625) Theorems: Concept Inclusion and Containment Are Partial Orders. It
now follows that concept inclusion and containment are reflexive, anti-sym-
metric, and transitive. To show anti-symmetry, we use c 6� d to abbreviate
¬(c � d), and c 6� d to abbreviate ¬(c � d):

330Strictly speaking, Leibniz didn’t use the existential quantifier in his definition of concept in-
clusion and containment. His definition reads as follows:

Definition 3. That A ‘is in’ L, or, that L ‘contains’ A, is the same as that L is assumed
to be coincident with several terms taken together, among which is A.

This is the translation in LLP 132 of the passage in G.vii 237. It is not entirely clear to me what
‘taken together’ means here, but our representation of this definition may capture at least one
correct way of interpreting this passage.
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(.1) c � c
c � c

(.2) c � d → (c,d→ d 6� c)
c � d → (c,d→ d 6� c)

(.3) c � d & d � e → c � e
c � d & d � e → c � e

See LLP 133 (= G.vii 238), Proposition 7, for Leibniz’s proof of the reflexivity
of inclusion. See LLP 135 (= G.vii 240), Proposition 15, for Leibniz’s proof of
the transitivity of inclusion. See also LLP 33 (= G.vii 218) for the reflexivity of
containment.

(626) Theorems: Inclusion, Containment, and Identity. Leibniz proves in LLP
136 (G.vii 240), Proposition 17, that when concepts c and d are included, or
contained, in each other, they are identical. Hence we have the more general
theorem:

(.1) c=d ≡ c � d & d � c
c=d ≡ c � d & d � c

Two interesting further consequences of concept inclusion and identity are that
(.2) concepts c and d are identical just in case the same concepts are included in
c and d, and (.3) concepts c and d are identical just in case c and d are included
in the same concepts:

(.2) c=d ≡ ∀e(e � c ≡ e � d)
c=d ≡ ∀e(c � e ≡ d � e)

(.3) c=d ≡ ∀e(c � e ≡ d � e)
c=d ≡ ∀e(e � c ≡ e � d)

(627) Theorems: Inclusion and Addition. In LLP 33 (G.vii 218), Leibniz asserts
‘ab is a’ and ‘ab is b’. Here it looks as if ab is to be interpreted as a⊕b and ‘is’ as
containment. (This is an application of Leibniz’s containment theory of truth,
which will be discussed below.) Thus, in our system, these claims become: the
sum of c and d contains c, and the sum of c and d contains d. In each case, we
state the inclusion version first, namely, (.1) c is included in the sum of c and
d, and (.2) d is included in the sum of c and d:

(.1) c � c⊕d
c⊕d � c

(.2) d � c⊕d
c⊕d � d
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Leibniz also notes that if c is included in d, then the sum of e and c is included
in the sum of e and d:

(.3) c � d → e⊕c � e⊕d
c � d → e⊕c � e⊕d

See LLP 134 (G.vii 239), Proposition 12. See also LLP 41 (G.vii 223), for the
version governing containment. Note that there is a counterexample to the
converse of (.3). If we let e1 and c1 both be ıc∀F(cF ≡ F = P ), and let d1 be
ıc∀F(cF ≡ F =Q ∨ F =R), where P ,Q,R are all pairwise distinct, then it is easy
to show that e1⊕c1 � e1⊕d1 and c1 6� d1.

It also follows that c⊕d is included in e if and only if both c and d are
included in e:

(.4) c⊕d � e ≡ c � e& d � e
e � c⊕d ≡ e � c& e � d

Leibniz notes a more economical form of the left-to-right direction of (.4). In
LLP 136 (G.vii 240), Corollary to Proposition 15, he argues that if A⊕N is in B,
then N is in B. However, he proves the right-to-left direction of (.4) at LLP 137
(G.vii 241), Proposition 18.

Finally, we may prove that if c is included in d and e is included in f , then
c⊕e is included in d⊕f :

(.5) c � d & e � f → c⊕e � d⊕f
c � d & e � f → c⊕e � d⊕f

See LLP 137 (= G.vii 241), Proposition 20.

Exercise. Find a counterexample to the converse direction of (.5).

13.1.3 Concept Inclusion, Addition, and Identity

The following theorems establish that our definitions of concept inclusion (con-
tainment), addition, and identity are related in the way required by Leibniz’s
theory of concepts.

(628) Theorem: Leibnizian Definition of Inclusion. Our efforts thus far imply
that c is included in d if and only if, for some concept e, the sum of c and e
identical to d:

c � d ≡ ∃e(c⊕e = d)
c � d ≡ ∃e(c = d⊕e)

If we have correctly understood Leibniz’s Definition 3, in LLP 132 = G.vii 237
(see footnote 330), then the proof of the inclusion version constitutes a deriva-
tion of his definition as a theorem.
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(629) Theorem: Leibniz’s Equivalence. Our work now allows us derive the
principal theorem of Leibniz’s non-modal calculus of concepts; it governs con-
cept identity, concept inclusion, and concept addition and asserts that c is in-
cluded in d if and only if the sum of c and d is identical to d:

c � d ≡ c⊕d = d
c � d ≡ c = c⊕d

See LLP 135 (G.vii 239), Propositions 13 and 14. The notions =, ⊕, and � are
all defined and, other than the substitution of identicals (41), the axioms and
theorems Leibniz used to prove this claim have all been derived as theorems.

(630) Theorem: Leibniz’s Proposition 23. In LLP 140, Proposition 23 is stated
as “Given two disparate terms, A and B, to find a third term, C, different from
them and such that A ⊕ B = A ⊕ C” (cf. G.vii 243). We can capture this as
follows: (.1) If c is not included in d and d is not included in c, then there is a
concept e such that (a) e is distinct from both c and d and (b) the sum of c and
e is identical to the sum of c and d. Formally:

(.1) (c 6� d & d 6� c)→∃e(e , c & e , d & c⊕e = c⊕d)

As the first steps of the proof, assume the antecedent and then show that c⊕ d
is a witness to the existential claim; since c and d each encodes a property the
other doesn’t, c⊕ d will be distinct from both c and d.

Note also the following consequence of our definitions, namely: (.2) c is
included in d and d is not included in c if and only if some concept e not
included in c is such that the sum of c and e is identical to d:

(.2) (c � d & d 6� c) ≡ ∃e(e 6� c& c⊕e = d)

This allows for the degenerate case in which c encodes no properties and d
encodes one or more properties.

13.1.4 The Algebra of Concepts

In this subsection we first investigate the algebraic principles derivable from
our theory of concepts and then consider the extent to which this algebra con-
stitutes a mereology. To anticipate a bit, we prove that concepts are structured
not only as a bounded lattice, but also as a complete Boolean algebra bounded
above (by a universal concept) and below (by a null concept). Then, in the
next subsection, i.e., Section 13.1.5, we examine the extent to which our alge-
bra of concepts obeys the principles of mereology when our notion of concept
inclusion, x � y, is interpreted as: x is a part of y.
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(631) Definition: Concept Multiplication (i.e., Concept Products). Recall that
theorem (621) tells us that addition is idempotent, commutative, and associa-
tive on concepts and so forms a semi-lattice (following standard mathematical
practice). Over the course of the next several items, we show that concepts
form not just a semi-lattice but a lattice. We define concept multiplication by
saying that c is a product of d and e just in case c encodes all and only the
properties that d and e encode in common:

ProductOf (c,d,e) ≡df ∀F(cF ≡ dF& eF)

For example, where P ,Q,R are three, pairwise-distinct properties:

let c1 be ıc∀F(cF ≡ F=P ∨ F=Q)

let c2 be ıc∀F(cF ≡ F=Q ∨ F=R)

let c3 be ıc∀F(cF ≡ F=Q)

Since c1 encodes just the properties P and Q, c2 encodes just the properties
Q and R, and c3 encodes just the property Q, it is an easy exercise to show
ProductOf (c3, c1, c2).

(632) Theorems: Existence of Products. In the usual way, we prove (.1) there
exists a product of concepts d and e; (.2) there exists a unique product of con-
cepts d and e; and (.3) the product of concepts d and e exists:

(.1) ∃cProductOf (c,d,e)

(.2) ∃!cProductOf (c,d,e)

(.3) ıcProductOf (c,d,e)↓

These are, strictly speaking, conditional existence claims, given the free re-
stricted variables, though we know that since concepts exist, unconditional
existence claims can be derived from (.1) – (.3).

(633) Definition: Notation for the Product of Concepts d and e. Given our last
theorem, we introduce notation for the product of concepts d and e, as follows:

d⊗e =df ıcProductOf (c,d,e)

As in the case of ⊕, expressions of the form κ⊗κ′ are significant only when it is
known, either by proof or by hypothesis, that C!κ and C!κ′.

(634) Lemmas: Strict Canonicity of Products. Given the definition of Pro-
ductOf, it is clear that that d ⊗ e is (identical to) a canonical concept, for any
concepts d and e:

(.1) d⊗e = ıc∀F(cF ≡ dF& eF)
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Where ϕ is the formula dF&eF, we can establish the following universal claim
by modally strict means and so it tells us that (.2) ϕ is a rigid condition on
properties:

(.2) ∀F((dF& eF)→ �(dF& eF))

Thus d⊗e is a strictly canonical concept, by (260.2). So we can use (261.2) to
establish the modally strict theorem that (.3) d⊗e is a concept that encodes just
those properties F such that both dF and eF:

(.3) C!d⊗e & ∀F(d⊗eF ≡ dF& eF)

As in the case of ⊕, the first conjunct of (.2) is an exemplification formula con-
sisting of a unary relation term C! and a complex individual term d⊗e. Finally,
it follows that (.4) d⊗e is a product of d and e:

(.4) ProductOf (d⊗e,d,e)

(.1) – (.4) are modally strict theorems used in the proofs of subsequent theo-
rems.

(635) Theorems: Concept Multiplication Forms a Semi-Lattice. It follows im-
mediately from the previous lemma that when we restrict our attention to con-
cepts, ⊗ is (.1) idempotent, (.2) commutative, and (.3) associative:

(.1) c⊗c = c

(.2) c⊗d = d⊗c

(.3) (c⊗d)⊗e = c⊗(d⊗e)

Thus, concept multiplication, like concept addition, behaves like an algebraic
operation.

(636) Theorems: The Laws of Absorption. We may now prove that laws of
absorption hold with respect to ⊕ and ⊗. They are (.1) the sum of c and the
product of c and d is identical to c; and (.2) the product of c and the sum of c
and d is identical to c:

(.1) c⊕ (c⊗ d) = c

(.2) c⊗ (c⊕ d) = c

From theorems (621.1) – (621.3), (635.1) – (635.3), and (.1) – (.2) above, we
have that (a) ⊕ and ⊗ both are idempotent, commutative, and associative, and
(b) the absorption laws hold. Hence, an algebraist would say that concepts and,
hence, abstract objects generally, are structured as a lattice, with ⊕ as the join
and ⊗ as the meet for the lattice.
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(637) Theorems: A Bounded Lattice of Concepts. Indeed, with just a little bit
more work, one can show that concepts, and thus abstract individuals gener-
ally, are structured as a bounded lattice.

First, note that, by the definitions in (263), Null(x) holds whenever x is an
abstract object x that encodes no properties, and Universal(x) holds whenever
x is an abstract object that encodes every property. We showed that there is
exactly one null object and exactly one universal object, and we introduced the
notation a

∅
(265.1) for ıxNull(x) and the notation aV (265.2) for ıxUniversal(x).

Since C! is defined as A!, it follows that there is exactly one null concept and
exactly one universal concept. So we may justifiably call a

∅
the null concept

and call aV the universal concept.
Consequently the facts proved in (266) allow us to show (.1) the sum of a

concept c and the null concept just is c; and (.2) the product of a concept c and
the universal concept just is c:

(.1) c⊕a
∅

= c

(.2) c⊗aV = c

Thus, a
∅

is the identity element for concept addition, and aV is the identity
element for concept multiplication:

Exercise. Show a
∅

constitutes a minimal element and aV constitutes a
maximal element in our lattice of concepts, i.e., show: ∀c(a

∅
� c) and

∀c(c � aV ). [Note: These exercises anticipate some later theorems.]

Consequently, concepts and, hence, abstract objects generally, are structured
as a bounded lattice.

Finally, note that (.3) the sum of c and the universal concept is just the
universal concept, and (.4) the product of c and the null concept is just the null
concept:

(.3) c⊕aV = aV

(.4) c⊗a
∅

= a
∅

Thus, no concept survives addition with aV and no concept survives multipli-
cation with a

∅
.

(638) Remark: A Boolean Algebra. With just a few more definitions and theo-
rems, we can show that (Leibnizian) concepts with concept addition and mul-
tiplication obey the principles of a Boolean algebra. This will occupy our at-
tention over the course of the next few items.

We already know, relative to the domain of concepts, that ⊕ and ⊗ are idem-
potent, commutative, and associative, that the absorption laws for ⊕ and ⊗
hold, that a

∅
is an identity element for ⊕, and that aV is an identity element
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for ⊗. So it remains only to show that: (i) ⊕ distributes over ⊗, (ii) ⊗ distributes
over ⊕, and (iii) concept complementation, −c, can be defined so that the com-
plementation laws, c⊗−c = a

∅
and c⊕−c = aV , both hold. As we shall see, all

of these fundamental axioms of Boolean algebra are theorems.

(639) Theorems: Distribution Laws. Since disjunction distributes over con-
junction (88.6.b) and vice versa (88.6.a), it follows that (.1) ⊕ distributes over
⊗, and (.2) ⊗ distributes over ⊕:

(.1) c⊕ (d ⊗ e) = (c⊕ d)⊗ (c⊕ e)

(.2) c⊗ (d ⊕ e) = (c⊗ d)⊕ (c⊗ e)

(640) Definition: Complements. We say that c is a complement of d whenever
c encodes exactly the properties that d fails to encode::

ComplementOf (c,d) ≡df ∀F(cF ≡ ¬dF)

For example:

let c1 be ıc∀F(cF ≡ F=P )

let c2 be ıc∀F(cF ≡ F,P )

Since c1 encodes just the property P and c2 encodes all and only properties
other than P , it follows that ComplementOf (c2, c1).

Exercise: Show ComplementOf (c,d)→ ComplementOf (d,c), i.e., that com-
plement of is symmetrical.

(641) Theorems: Facts About Complementation. In the usual way, it follows
that (.1) there exists a complement of d; (.2) there exists a unique complement
of d; and (.3) the complement of d exists:

(.1) ∃cComplementOf (c,d)

(.2) ∃!cComplementOf (c,d)

(.3) ıcComplementOf (c,d)↓

These existence claims are conditional on the fact that d is a concept, but since
concepts exists, unconditional existence claims are derivable.

(642) Definition: The Complement of d. Given our last theorem, we are enti-
tled to introduce notation for the concept that is a complement of d:

−d =df ıcComplementOf (c,d)
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Since d is a free restricted variable in this definition, an expression of the form
−κ is significant only when it is known, either by proof or hypothesis, that C!κ.

(643) Lemmas: Strict Canonicity of Complements. It is a fact that (.1) −d is
identical to a canonical concept:

(.1) −d = ıc∀F(cF ≡ ¬dF)

Moreover, since the following universal claim is derivable by modally strict
means, (.2) metatheoretically implies that ¬dF is a rigid condition on proper-
ties:

(.2) ∀F(¬dF→ �¬dF)

Hence, −d is a strictly canonical concept, by (260.2). So by (261.2), we can, by
modally strict means, establish that (.3) −d is a concept that encodes all and
only the properties that d fails to encode:

(.3) C!−d & ∀F(−dF ≡ ¬dF)

Thus, it follows that (.4) −d is a complement of d:

(.4) ComplementOf (−d,d)

(.1) – (.4) are modally strict theorems used in the proofs of subsequent theo-
rems.

(644) Theorems: Complementation Laws. The complementation laws are now
theorems. They are (.1) the sum of c and the complement of c is the universal
concept, and (.2) the product of c and the complement of c is the null concept:

(.1) c⊕−c = aV

(.2) c⊗−c = a
∅

We have now established the commutativity and associativity of ⊕ and ⊗, the
distribution laws for ⊕ over ⊗ and for ⊗ over ⊕, the absorption laws, and the
complementation laws. Thus, concepts and, hence, abstract objects generally,
have the structure of a Boolean algebra.

(645) Theorems: Other Traditional Principles of Boolean Algebra. We close
our discussion of the Boolean algebra of concepts by noting a few final theo-
rems, namely, double complementation and the two De Morgan Laws. These
are (.1) the complement of the complement of c just is c; (.2) the sum of −c
and −d is identical to the complement of the product of c and d; and (.3) the
product of −c and −d is identical to the complement of the sum of c and d:

(.1) −−c = c
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(.2) −c⊕−d = −(c⊗ d)

(.3) −c⊗−d = −(c⊕ d)

Exercises: Show that the following two principles, both of which have been
used to axiomatize Boolean algebra, are derivable:

• −(−x⊕−y)⊕−(−x⊕ y) = x (Huntington 1933a, Postulate 4.6)

• −(−(x⊕ y)⊕−(x⊕−y)) = x (Robbins, reported in McCune 1997)331

(646) Exercises: Concept Difference and Overlap. In 1690a, Leibniz introduces
concept subtraction (Theorems VIII – XII). He remarks, in a footnote, that “in
the case of concepts, subtraction is one thing, negation another” (1690a, LLP
127). In Theorem IX, he introduces the notion of ‘communicating’ concepts, by
which he seems to mean concepts that in some sense overlap. He then proves
the theorem (Theorem X) that if N is the result of subtracting A from L, then
A and N are uncommunicating (i.e., don’t overlap).

Exercise 1. Define:332

(.1) DifferenceOf (c,d,e) ≡df ∀F(cF ≡ dF&¬eF)

(.2) Overlap(c,d) ≡df ∃F(cF& dF)

Prove there is a unique concept that is the difference of d and e, that the differ-
ence concept of d and e exists, and introduce a restricted term, d 	 e, for that
concept:

(.3) ∃!cDifferenceOf (c,d,e)

(.4) ıcDifferenceOf (c,d,e)↓

(.5) d	e =df ıcDifferenceOf (c,d,e)

Show that d	e is strictly canonical and prove, as a modally strict theorem, that
d 	 e is a concept that encodes all and only the properties F such that dF and
not eF:

(.6) C!d	e &∀F(d	eF ≡ dF&¬eF)

Then prove Theorem X in Leibniz 1690a:

(.7) d	e = c→¬Overlap(e,c)

331See also McCune, et al. 2002, who formulate the Robbins axiom slightly differently, namely as
−(−(x⊕ y)⊕−(−x⊕ y)) = y.
332The notion of overlap will play a role in later theorems and it will be officially defined in item

(653.1). But it may prove instructive to get some practice in with this notion now.
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and show that it is equivalent to:

¬Overlap(e,d	e)

Show that the difference of d and e is identical to the product of d and −e, i.e.,
that:

(.8) d	e = d⊗−e

Formulate and prove other theorems governing concept difference and over-
lap, and determine whether other principles in Leibniz 1690a can be repre-
sented and derived. For example, while it is clear how to think about d 	 e
when e � d, what happens when e is not included in d?

Exercise 2. Consider the scenario in which d and e don’t overlap and, in par-
ticular, consider any three, pairwise distinct, properties, say P , Q, and R, and
the following two objects:

d1 = ıc∀F(cF ≡ F=P ∨F=Q)

e1 = ıc∀F(cF ≡ F=R)

Give a systematic answer to the questions, what properties does d1	e1 encode,
and what properties does e1 	 d1 encode?

Exercise 3. Consider the scenario in which d is included in e but not identical
to e and, in particular, consider:

d2 = ıc∀F(cF ≡ F = P )

e2 = ıc∀F(cF ≡ F = P ∨F =Q)

Identify d2 	 e2 and e2 	 d2 in terms of particular concepts we’ve already dis-
cussed.

Exercise 4. Finally, prove:

(.9) d = e ≡ (d 	 e = e	 d)

(.10) Overlap(c,d) ≡ c⊗ d , a
∅

(.11) ¬Overlap(c,d) ≡ c	 d = c

13.1.5 The Mereology of Concepts

(647) Remark: Mereology. Now that we have established that concepts form
a Boolean algebra, we consider the ways in which they constitute a mereol-
ogy, i.e., the ways in which the notions of part and whole can be defined and
applied to concepts. Though some authors take mereology to apply primarily
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to the domain of concrete individuals (e.g., Simons 1987, 4),333 others suggest
that mereology makes no assumptions about the kinds of entities having parts.
Thus, Varzi (2015, §1) writes:

. . . it is worth stressing that mereology assumes no ontological restriction
on the field of ‘part’. In principle, the relata can be as different as material
bodies, events, geometric entities, or spatio-temporal regions, . . . as well
as abstract entities such as properties, propositions, types, or kinds, . . . .
. . . As a formal theory . . . mereology is simply an attempt to lay down the
general principles underlying the relationships between an entity and its
constituent parts, whatever the nature of the entity, just as set theory is an
attempt to lay down the principles underlying the relationships between a
set and its members. Unlike set theory, mereology is not committed to the
existence of abstracta: the whole can be as concrete as the parts. But mere-
ology carries no nominalistic commitment to concreta either: the parts can
be as abstract as the whole.

Moreover, it is often suggested that the entities of a mereological domain are
structured algebraically. Simons notes that “the algebraic structure of a full
classical mereology is that of a complete Boolean algebra with zero deleted”
(1987, 25).334 Consequently, since (a) mereological principles can be under-
stood broadly as applying to abstract objects such as concepts, (b) concepts are
abstract objects, and (c) the previous section shows that the domain of con-
cepts is structured algebraically, it seems reasonable to investigate the extent
to which concepts are provably governed by mereological principles.

Our discussion in the remainder of this section will be organized as follows.
We begin by examining what happens when we interpret the mereological no-
tion part of as the inclusion (�) condition on concepts. That is, we confirm that
core mereological principles are preserved when we both (a) define c is a part
of d just in case d encodes every property c encodes and (b) define proper part
of in the usual mereological way. Then we examine a variety of consequences
of our definitions and consider whether they are acceptable as mereological
principles. Finally, we examine what mereological principles provably apply
to non-null concepts, i.e., concepts that encode at least one property. We dis-
cover that while some questionable mereological principles apply to concepts
generally, they do not apply to non-null concepts.

In what follows, we assume familiarity with the basic notions and prin-
ciples of mereology. Systems of mereology are typically, though not always,
formulated in one of two ways. Some systems take x is a part of y (x � y) as

333However, in 1987 (169–171), Simons does offer a few brief thoughts about mereology and
abstract objects.
334A zero element is defined mereologically as an individual that is a part of every individual. It

is traditional to suppose that there is no such zero element in a domain of concrete individuals.
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a primitive relation or as a relational condition that is, at a minimum, reflex-
ive, anti-symmetric, and transitive. Others start with x is a proper part of y
(x ≺ y) as the primitive relation (or relational condition) that is, at a minimum,
irreflexive, asymmetric, and transitive.335 Little hangs on the choice of formu-
lation since it is a well-known fact that to every non-strict partial order (e.g.,
one based on �) that is reflexive, anti-symmetric and transitive, there corre-
sponds a strict partial order (e.g., one based on ≺) that is provably irreflexive,
asymmetric, and transitive. To obtain ≺when starting with �, one defines x ≺ y
as x � y & x , y. Then the irreflexivity, asymmetry, and transitivity of ≺ follow
from facts about � and ,. Alternatively, to obtain � when starting with ≺, one
defines x � y as x ≺ y ∨ x = y. Then the reflexivity, anti-symmetry and tran-
sitivity of � follow from facts about ≺ and =. We begin by seeing how these
ideas are confirmed in the present theory, under object-theoretic definitions of
the notions involved.

(648) Remark: Part Of. Though mereology often takes part of as a primitive, we
may define it object-theoretically and show that its core features are derivable.
So let us re-introduce definition (624.1) but in such a way that the definiendum,
c � d, is to be read: concept c is a part of concept d. Thus, the following
definition now systematizes a different pretheoretical notion:

c � d ≡df ∀F(cF→ dF) (624.1)

Note that our system does not guarantee that � defines a relation on con-
cepts.336 Nevertheless, c � d is a well-defined binary condition on concepts
and, indeed, on abstract objects generally.

Given the above definition, the theorems in (625) guarantee that part of (�)
is reflexive, anti-symmetric and transitive with respect to the concepts:

(.1) c � c (625.1)
A concept is a part of itself.

(.2) c � d → (c,d→ d 6� c) (625.2)
If a concept c is a part of a distinct concept d, then d is not a part of c.

335There are other ways of formulating a mereology, for example, by taking x overlaps y as a
primitive (Goodman 1951), or by taking x is disjoint from y as a primitive (Leonard and Goodman
1940). But these variations need not distract us in what follows. See Simons 1987, p. 48ff.
336At least, axiom (39.2) doesn’t guarantee that there is such a relation. The definition uses re-

stricted variables, and so is shorthand for:

x � y ≡df C!x&C!y &∀F(xF→ yF)

By the Convention for Encoding Formulas (17.3), the variables x and y occur free in encoding
position in x � y since they occur free in encoding position in the definens. So [λxy x � y] is not
a core λ expression, since the λ binds variables that occur in encoding position in the matrix. So
by our convention for restricted variables, [λcd c � d] also fails to be a core λ-expression. Neither
λ-expression is asserted to be significant by (39.2).
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(.3) c � d & d � e → c � e (625.3)
If c is part of d and d is part of e, then c is part of e.

Thus, it is clear that the above definition of � captures the notion of improper
part of.

Varzi (2015) notes that principles such as these “represent a common start-
ing point of all standard [mereological] theories” (2015, §2.2). However, he
notes later that “[n]ot just any partial ordering qualifies as a part-whole rela-
tion, though, and establishing what further principles should be added . . . is
precisely the question a good mereological theory is meant to answer” (2015,
§3). We shall return to this question below.

(649) Definitions: Proper Part Of. We define proper part of in the usual way,
though relative to the domain of concepts. We say concept c is a proper part of
concept d, written c ≺ d, just in case c is a part of d and c is not equal to d:

c ≺ d ≡df c � d & c , d

Warning! In what follows, we sometimes cite Simons’ classic text of 1987,
which uses < and� for improper and proper parthood, respectively. Thus, our
symbol � for improper parthood corresponds to his symbol <, and our symbol
≺ for proper parthood corresponds to his symbol �. So it is important not
to confuse our symbol for proper parthood (≺) with his symbol for improper
parthood (<).

(650) Theorems: Principles of Proper Parthood. As expected, we can now
derive that proper parthood is a strict partial ordering with respect to concepts.
It immediately follows that (.1) c is not a proper part of itself; (.2) if c is a
proper of d and d is a proper part of e, then c is a proper part of e; and (.3) if c
is a proper part of d, then d is not a proper part of c:

(.1) c 6≺ c (Irreflexivity)

(.2) c≺d & d≺e → c≺e (Transitivity)

(.3) c ≺ d→ d 6≺ c (Asymmetry)

Simons notes that these principles “fall well short of characterizing the [proper]
part-relation; there are many [strict] partial orderings which we should never
call part-whole systems” (1987, 26). In what follows, we examine the extent to
which our theorems conform to the accepted principles of part-whole systems,
by considering the broader picture of how traditional mereological notions fare
in the current setting.

(651) Definitions: Bottom Element, Concepts With a Single Proper Part, and
Atoms. Three of the most basic mereological issues are: (a) whether there



642 CHAPTER 13. CONCEPTS

exists an individual that is a part of every individual (i.e., whether there exists
a ‘bottom’ or ‘zero’ element), (b) whether there are any individuals that have
a single proper part (i.e., exactly one proper part), and (c) whether there exist
any individuals that have no proper parts (i.e., whether there exist any ‘atoms’).

The traditional mereology of concrete individuals eschews the existence
of bottom elements and individuals with exactly one proper part, though the
existence of atoms is permitted. For example, Simons writes (1987, 13):

. . . in normal set theory even two disjoint sets have an intersection, namely
the null set, whereas disjoint individuals precisely lack any common part.
Most mereological theories have no truck with the fiction of a null indi-
vidual which is part of all individuals, although it neatens up the algebra
somewhat.

Clearly, the preference Simons is describing seems reasonable when one sup-
poses, as he does, that mereology is restricted to the study of the part-whole
relation on concrete individuals. But that is not the case in the present context.

Similarly, traditional mereology eschews concrete wholes having a single
proper part. Simons rhetorically asks and then asserts, “How could an indi-
vidual have a single proper part? That goes against what we mean by ‘part’”
(1987, 26). Again, this view seems reasonable when mereology is limited to
the field of concrete objects. But it is worth noting that Varzi (2015, §3.1) com-
piles a list of objects with a single proper part that have been postulated by
philosophers.

By contrast, in our algebra of abstract individuals, it follows that there is
a unique bottom concept and that there are concepts having a single proper
part. Moreover, there are conceptual atoms. To see that these are facts, let us
begin by saying that (.1) c is a bottom concept just in case c is a part of every
concept; and (.2) c is an atom just in case c has no concepts as proper parts:

(.1) Bottom(c) ≡df ∀d(c � d)

(.2) Atom(c) ≡df ¬∃d(d ≺ c)

In these definitions, then, standard mereological notions have been adapted to
the present context (Simons 1987, 16; Varzi 2015, §3.4).

(652) Theorems: Facts About Bottom Concepts, Concepts With a Single Proper
Part, and Atoms. Recall that we relabeled a

∅
as the null concept (637). Since

modally-strict theorem (266.3), i.e., Null(a
∅

), implies that the null concept en-
codes no properties, we can now prove: (.1) the null concept is a bottom con-
cept; (.2) there is a unique bottom concept; (.3) the null concept is a proper
part of the Thin Form of G (aG); and (.4) the thin Form of G has exactly one
proper part; (.5) bottom concepts are atoms; (.6) the null concept is an atom;
and (.7) there is exactly one atom:
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(.1) Bottom(a
∅

)

(.2) ∃!cBottom(c)

(.3) a
∅
≺ aG

(.4) ∃!d(d ≺ aG)

(.5) Bottom(c)→ Atom(c)

(.6) Atom(a
∅

)

(.7) ∃!cAtom(c)

Later, we shall return to the discussion of bottom concepts, concepts with ex-
actly one proper part, and atoms; if we study how part of behaves when re-
stricted to non-null concepts (i.e., concepts that encode at least one property),
then there are related notions of bottoms and atoms that do not yield the above
consequences. To give a hint of what is to come, a

∅
fails to be a non-null bottom

(i.e., a non-null concept that is a part of every non-null concept) since it fails
to be a non-null concept; indeed, there is no non-null bottom element. More-
over, a

∅
fails to be a non-null atom (i.e., a non-null concept that has no proper

parts), though as we shall see, there nevertheless are non-null atoms. But we
shall discuss these ideas in more detail below, starting with item (659).

(653) Definitions: Mereological Overlap. In Exercise 1 of (646), we considered
the following definition: c overlaps d whenever there is a property F that both
c and d encode:

(.1) Overlap(c,d) ≡df ∃F(cF& dF)

Clearly, this is a natural understanding of overlap in our object-theoretic set-
ting. However, readers familiar with texts on mereology will recognize that the
standard definition of mereological overlap is different from (.1). The standard
mereological definition is that individuals x and y overlap whenever they have
a common part (Simons 1987, 11, 28; Varzi 2015, §2.2). Let us formulate this
latter definition in the present context by saying that c overlaps∗ d just in case
there is a concept e that is a part of both concepts c and d:

(.2) Overlap∗(c,d) ≡df ∃e(e � c& e � d)

These two notions of overlap have some interesting consequences.

(654) Theorems: Overlap vs. Overlap∗. We first observe that the notions of
overlap and overlap∗ are not equivalent; (.1) overlap implies overlap∗, but
(.2) overlap∗ doesn’t imply overlap:

(.1) Overlap(c,d)→Overlap∗(c,d)
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(.2) ∃c∃d(Overlap∗(c,d) &¬Overlap(c,d))

Clearly, since the null concept a
∅

encodes no properties, it overlaps with noth-
ing and so doesn’t overlap with itself. Hence it follows that (.3) overlap is not
reflexive:

(.3) ¬∀cOverlap(c,c)

But, trivially, since every concept is a part of itself, (.4) overlap∗ is reflexive:

(.4) Overlap∗(c,c)

By contrast, both overlap and overlap∗ are symmetric:

(.5) Overlap(c,d)→Overlap(d,c)

(.6) Overlap∗(c,d)→Overlap∗(d,c)

More conclusively, though, whereas (.7) not all concepts overlap each other,
(.8) all concepts overlap∗ each other:

(.7) ¬∀c∀dOverlap(c,d)

(.8) ∀c∀dOverlap∗(c,d)

(.8) is a consequence of the definition of overlap∗ and the fact that the null con-
cept, a

∅
, is a bottom element: since a

∅
is a part of every concept, it is a common

part of every two concepts. Given the mereological commitment to the defi-
nition of overlap as having a common part, a consequence such as (.8) makes it
clear why traditional mereologists eschew a bottom element. Varzi thus notes
that “[I]n general . . . mereologists tend to side with traditional wisdom and
steer clear of (P.10) [which asserts the existence of a bottom element] alto-
gether” (2015, §3.4). We shall see, however, that mereological overlap again
becomes a useful condition when we turn our attention to the non-null con-
cepts – mereological overlap doesn’t hold universally on that subdomain.

Let’s return, then, to the object-theoretic definition of overlap, whereby
concepts overlap if they encode a common property. Then note that for ar-
bitrary concepts c and d, (.9) there is a concept e that is a part of d but which
doesn’t overlap with c:

(.9) ∃e(e � d &¬Overlap(e,c))

(The reason for ordering the free variables in this way will become apparent
when we discuss supplementation principles below.) While it is straightfor-
ward to derive (.9) when a

∅
is taken as a witness, the theorem also derivable

when d 	 c is selected as the witness; see the proof in the Appendix. Further-
more, the theorem holds even in the degenerate case where the variables c and
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d take a
∅

as their value; in this case, the witness is still a
∅

(which is then
identical to d	c), since a

∅
is a part of itself and fails to overlap with itself.

Finally, note that the principle which results when we replace � in (.9) with
≺ doesn’t hold for arbitrary concepts c and d. We have:

(.10) ¬∀c∀d∃e(e ≺ d &¬Overlap(e,c))

I.e., ∃c∃d¬∃e(e ≺ d & ¬Overlap(e,c)). To see this, consider any concept c as a
witness to the first existential quantifier and consider a

∅
as a witness to the

second. Then since a
∅

is an atom, it has no proper parts, i.e., ¬∃e(e ≺ a
∅

). A
fortiori, ¬∃e(e ≺ a

∅
&¬Overlap(e,c)).

(655) Theorems: Supplementation Principles. Both weak and strong supple-
mentation principles of mereology trivially follow from (654.9). The weak sup-
plementation principle of mereology is that if an individual x is a proper part of
individual y, then there exists an individual that is both a part of y and fails to
overlap x (Varzi 2015, §3.1, item P.4). The strong supplementation principle is
that if y fails to be a part of x, then there is an individual that is a part of y and
that fails to overlap x (Varzi 2015, §3.2, item P.5; Simons 1987, 29, SA5/SSP).
When we consider the domain of concepts, these become the theorems that
(.1) if c is a proper part of d, then there is a concept e such that e is a part of d
and e fails to overlap c, and (.2) if d fails to be a part of c, then there is a concept
e such that e is a part of d and fails to overlap c:

(.1) c ≺ d→∃e(e � d &¬Overlap(e,c))

(.2) d 6� c→∃e(e � d &¬Overlap(e,c))

Since the consequents of both of these conditionals are just instances of (654.9),
both theorems follow trivially. Given that (.1) and (.2) are theorems indepen-
dent of the truth of their antecedents, a mereologist will no doubt question
whether overlap, as defined in (653.1), is a proper mereological notion. This
is a fair question, though it will become clear that when restricted to the sub-
domain of non-null concepts, this notion of overlap is a proper mereological
notion and, indeed, becomes equivalent to the standard mereological notion.

However, note that the following variant of weak supplementation is a non-
trivial theorem, namely, that (.3) if c is a proper part of d, then there is a con-
cept e that is a proper part of d that fails to overlap with c:

(.3) c ≺ d→∃e(e ≺ d &¬Overlap(e,c))

We saw in (654.10) that the consequent of the above claim doesn’t hold for ar-
bitrary concepts c and d. So (.3) isn’t a theorem merely in virtue of the truth
of the consequent. Note, however, that one can’t take the witness to the conse-
quent to be d 	 c. For in the case where c is the null concept a

∅
, it is not the
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case that d 	 c ≺ d, since d 	 c just is d. So the proof of (.3) requires that the
witness to the consequent be a

∅
. Hence, one can argue that (.3) is not a true

supplementation principle, since it is reasonable to suppose that a
∅

doesn’t
supplement anything. As we shall see, however, when we restrict the variables
in (.3) to non-null concepts, the resulting principle (668.3) does have claim to
being a supplementation principle.

(656) Definition: Underlap and Maximal Concepts. The object-theoretic no-
tion of underlap is that c and d underlap just in case some concept encodes all
the properties c encodes as well as all the properties d encodes. By contrast, in
traditional mereology, two individuals underlap just in case there is an indi-
vidual of which they are both a part. But we won’t formalize and distinguish
both notions of underlap since it turns out they are equivalent; the definiens
of both definitions are theorems.337 Instead, we shall just work with the tra-
ditional, mereological notion of underlap, namely (.1) c and d underlap just in
case there is a concept e such that both c and d are a part of e:

(.1) Underlap(c,d) ≡df ∃e(c � e& d � e)

Moreover, let us define (.2) a maximal concept to be any concept of which every
concept is a part:

(.2) MaxConcept(c) ≡df ∀d(d � c)

(657) Theorem: Maximal Concepts and Underlap. Clearly, it is provable that
(.1) the universal object, aV , is a maximal concept:

(.1) MaxConcept(aV )

It is a well-known fact of mereology that if there exists a universal whole, of
which every individual is a part, then every individual underlaps every indi-
vidual.338 But even without a maximal concept, one can cite the sum c⊕ d as a
witness that verifies that (.2) underlap holds universally among concepts:

337The two definitions may be formalized as follows:

Underlap1(c,d) ≡df ∃e∀F((cF ∨ dF)→ eF) (object-theoretic notion)

Underlap2(c,d) ≡df ∃e(c � e& d � e) (mereological notion)

Then it is easy to show: Underlap1(c,d) ≡Underlap2(c,d). Both the ‘left’ and ‘right’ conditional hold
by virtue of the truth of the consequent. (→) To show Underlap1(c,d)→ Underlap2(c,d), it suffices
to show Underlap2(c,d). For the latter, it suffices to show that c⊕ d is a witness to ∃e(c � e& d � e).
But clearly, by (627.1) and (627.2), respectively, we know both c � c⊕d and d � c⊕d. (←) To show
Underlap2(c,d) → Underlap1(c,d), it suffices to show Underlap1(c,d). For the latter, it suffices to
show that c⊕d is a witness to ∃e∀F((cF∨dF)→ eF). So, by GEN, we need to show (cF∨dF)→ c⊕dF.
But this follows a fortiori from the second conjunct of (620.3), which in the present case implies
c⊕dF ≡ cF ∨ dF.
338Cf. Varzi 2015, §2.2, where it is noted that “Uxy is bound to hold if one assumes the existence

of a ‘universal entity’ of which everything is part.”
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(.2) ∀c∀dUnderlap(c,d)

A proof of this claim appeared in footnote 337, where the equivalence of two
concepts of underlap was discussed.

(658) Remark: Towards an Uncontroversial Mereology. We’ve now seen a va-
riety of new theorems, with � considered as improper parthood. Some of those
theorems, so understood, preserve key mereological principles, while others
may be thought doubtful as such. The main source of doubt arises from (the
consequences of) the facts that the null concept a

∅
is a bottom concept that is

a part of every concept and that the definition of overlap, which is stated in
terms of encoding rather than in terms of the mereological notion of parthood,
yields unexciting supplementation principles.

But as mentioned previously, one can sidestep these concerns by excluding
the null concept from the algebra, so that it is no longer in the domain of the
mereology. There are at least two ways in which this can be done. Varzi sug-
gests (2015, §3.4) that one “treat the null item as a mere algebraic fiction” and
revise the definition of parthood as follows:

Genuine Parthood
GP(x,y) ≡df x � y &∃z¬(x � z)

To understand the suggestion better, note that the second conjunct of the defi-
niens is equivalent to ¬∀z(x � z). Given that Bottom(x,z) is defined as ∀z(x � z),
the above definition becomes: x is a genuine part of y iff x is a part of y and not
a bottom element. Now in the present theory of concepts, we know that there
is a unique bottom concept, namely, a

∅
. So in the context of our theory, Varzi’s

suggestion could be implemented by defining: c is a genuine part of d just in
case c is a part of d other than a

∅
(or just in case c is part of d and c encodes

some property). Varzi then suggests a definition of ‘genuine overlap’ in terms
of genuine parthood; in object theory, his definition would be implemented as
follows: c genuinely overlaps d if and only if there is a concept e that is a genuine
part of both.

While this is a perfectly legitimate course to follow, in the present theory, it
makes better sense to hold the notions of parthood and proper parthood fixed
and consider how they behave on a subdomain, i.e., approach the matter by
investigating how the defined notions of overlap, bottom, atom, etc., behave
when restricted to the concepts that encode at least one property, i.e., with
respect to non-null concepts. We now turn to a development of this idea.

(659) Definition: Non-null Concepts. We may use the definition of a null
object (Null(x)) in (263.1) to stipulate that x is a non-null concept (‘Concept+(x)’),
just in case x is a concept and x is not a null object:

Concept+(x) ≡df C!x&¬Null(x)
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Though we could just as well have said that a non-null concept is any concept
other than the null concept a

∅
, the above definition avoids the additional layer

of complexity that would be contributed by using negation, identity, and a
∅

in
the second conjunct of the definiens.

(660) Theorem: Concept+(x) is a Rigid Restriction Condition. Concept+(x) is
a restriction condition, as defined in (336): it has a single free variable, it is
a theorem that ∃xConcept+(x), and Concept+(κ)→ κ↓. But Concept+(x) is also
a rigid restriction condition, since it is a modally strict theorem that, for any
object x, if Concept+(x) then necessarily Concept+(x):

∀x(Concept+(x)→ �Concept+(x)

Since it is also clear that concepts+ are concepts, we may introduce rigid (dou-
bly) restricted variables c,d,e, . . . to range over concepts+. These are doubly
restricted because we may eliminate the variables in one of two ways, as dis-
cussed in (514). For example, we may regard ∀cϕcx either as ∀x(Concept+(x)→
ϕ) or as ∀c(Concept+(c)→ ϕcx).

(661) Definitions: Non-null Bottoms. Let us say that a non-null concept c is
a non-null bottom, written Bottom+(c), just in case c is a part of every non-null
concept:

Bottom+(c) ≡df ∀d(c � d)

(662) Theorems: Facts About Non-null Bottoms. The foregoing definition has
the following consequences: (.1) The null concept is not a non-null bottom;
and (.2) no non-null concept is a non-null bottom:

(.1) ¬Bottom+(a
∅

)

(.2) ¬∃cBottom+(c)

So the mereologist’s expectation that there be no bottom element is met when
we restrict our attention to non-null concepts (cf. Simons 1987, 13, 25; Varzi
2015, §3.4).

(663) Definition: Non-null Atoms. Let us say that a non-null concept c is
a non-null atom, written Atom+(c), just in case c has no non-null concepts as
proper parts:

Atom+(c) ≡df ¬∃d(d ≺ c)

(664) Theorems: Facts About Non-null Atoms and Proper Parthood for Non-
null Concepts. We now have the following consequences: (.1) the Thin Form
of G is a non-null atom; (.2) no non-null concept is a unique proper part of a
non-null concept; (.3) non-null atoms encode at most one property; and (.4) a
non-null concept is a non-null atom if and only if it is a Thin Form:
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(.1) Atom+(aG)

(.2) ¬∃!d(d ≺ c)

(.3) Atom+(c)→∀F∀G((cF& cG)→ F=G)

(.4) Atom+(c) ≡ ThinForm(c)

Note that (.2) preserves Simon’s (1987, 26) intuition, mentioned earlier, that no
mereological individual has a single proper part.

(665) Theorem: Overlap on Non-null Concepts Is Mereological. By restricting
our attention to non-null concepts, it emerges that non-null concepts c and d
overlap just in case there is a non-null concept e that is a part of both:

Overlap(c,d) ≡ ∃e(e � c& e � d)

Thus, the mereological definition of overlap becomes derivable as a theorem of
the subtheory of non-null concepts. This merits a brief discussion.

(666) Remark: Object-Theoretic and Mereological Overlap on Non-null Con-
cepts. The previous theorem shows that, when we restrict our attention to
non-null concepts, the object-theoretic definition of overlap defined in (653.1)
is equivalent to the traditional mereological definition of overlap defined in
(653.2) as overlap∗. Consequently, as we complete our study of non-null con-
cepts, we may regard object-theoretic overlap as a bona fide mereological no-
tion.

Of course, lots of questions now arise. For example: (i) Which of the ques-
tionable mereological theorems about overlapping concepts can be preserved
as bona fide mereological principles about overlapping non-null concepts? (ii)
What mereological principles of supplementation hold with respect to non-
null concepts? These and other questions will be investigated below.

(667) Theorems: Facts About Overlap and Non-null Concepts. (.1) Some non-
null concepts overlap and some don’t; (.2) overlap is reflexive on the non-null
concepts; (.3) overlap is symmetric on the non-null concepts; (.4) overlap is
not transitive on the non-null concepts; (.5) it is not the case that for any non-
null concepts c and d, there is non-null concept e that is a part of d but which
doesn’t overlap c; and (.6) it is not the case that for any non-null concepts c
and d, there is non-null concept e that is a proper part of d but which doesn’t
overlap c:

(.1) ∃c∃dOverlap(c,d) & ∃c∃d¬Overlap(c,d)

(.2) Overlap(c,c)

(.3) Overlap(c,d)→Overlap(d,c)
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(.4) ∃c∃d∃e(Overlap(c,d) & Overlap(d,e) &¬Overlap(c,e))

(.5) ¬∀c∀d∃e(e � d &¬Overlap(e,c))

(.6) ¬∀c∀d∃e(e ≺ d &¬Overlap(e,c))

Contrast (.1) with (654.7) and (654.8). If we consider concepts generally, then
the object-theoretic overlap doesn’t hold between every pair of concepts (654.7),
while the mereological overlap does (654.8). But since object-theoretic overlap
is equivalent to mereological overlap with respect to non-null concepts (665),
(.1) reminds us that object-theoretic overlap is not trivial with respect to the
non-null concepts.

(.5) is of interest because it contrasts with (654.9). The latter implies that
for any two concepts c and d, there is a concept e that is a part of d but which
doesn’t overlap with c. But (.5) asserts that this fails to hold for non-null con-
cepts; there are non-null concepts c and d such that every non-null part of d
mereologically overlaps with c. Since a principle like (654.9) doesn’t hold for
arbitrary non-null concepts c and d, the way is now clear to prove non-trivial
supplementation principles.

Note that (.6) shows that (654.10) remains a theorem when restricted to
non-null concepts, albeit for a different reason. To see why (.6) holds, consider
its equivalent form: ∃c∃d∀e(e ≺ d → Overlap(e,c)). Then as a witness to the
first existential quantifier, take any non-null concept you please, say c1. And
as a witness to the second existential quantifier, pick an arbitrary property,
say G, and consider the Thin Form of G, i.e., aG, which is clearly a non-null
concept. Then, by GEN, it suffices to show e ≺ aG → Overlap(e,c1). But this is
provable by failure of the antecedent: since aG is a non-null atom (664.1), it
has no non-null concepts as proper parts, i.e., ¬e ≺ aG, by definition (663).

(668) Theorems: Non-trivial Supplementation Principles on Non-null Con-
cepts. The following weak and strong supplementation principles, formulated
so that they apply only to non-null concepts, are not trivial: (.1) if c is a proper
part of d, then some non-null part of d fails to overlap c; (.2) if d fails to be a
part of c, then some non-null part of d fails to overlap c:

(.1) c ≺ d→∃e(e � d & ¬Overlap(e,c)) (Weak Supplementation)

(.2) d 6� c→∃e(e � d & ¬Overlap(e,c)) (Strong Supplementation)

Cf. Varzi 2015, §3.1, P.4, and §3.2, P.5. Finally, note that we obtain the follow-
ing when we restrict (655.3) to non-null concepts:

(.3) c ≺ d→∃e(e ≺ d &¬Overlap(e,c))

This is slightly stronger than (.1). Varzi (2015, §3.1, P.4′) calls (.3) proper sup-
plementation. It is immune to the concern raised about (655.3); it is a true
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supplementation principle; the witness to the quantifier in the consequent is
not the null concept, as in the proof of (655.3).

(669) Exercises: Consider the following questions (ranging from easy to hard),
all of which arise by considering how previous definitions fare when (adjusted
and) applied to non-null concepts:

• Is there a maximal non-null concept, i.e., a c such that ∀d(d � c)?

• Consider the following mereological definition of concept summation
(Simons 1987, 32, cf. SD7; Varzi 2015, §4.2, 393):

Sum+(c,d,e) ≡df ∀f (Overlap(c, f ) ≡ (Overlap(f ,d)∨Overlap(f , e))

How does this mereological notion of concept summation relate to the
object-theoretic notion we defined in (617) when the latter is restricted to
non-null concepts? Are the two notions equivalent? If not, what distinc-
tive theorems do the non-equivalent notions give rise to? For example,
we established that every two concepts have a unique sum (618.2); does
this hold for non-null concepts on the alternative definition of concept
summation?

• What lattice-theoretic and algebraic facts are preserved when we restrict
our attention to non-null concepts? What facts of this kind fail to hold
with respect to non-null concepts? Are the non-null concepts structured
in the way Simons says a ‘full classical mereology’ is structured, namely,
as a “complete Boolean algebra with zero deleted” (1987, 25)?

• Finally, does the following complementation principle hold:

c 6� d→∃e∀f (f � e ≡ (f � c&¬Overlap(f ,d)))

(cf. Varzi 2015, §3.3, P.6)?

We leave the above as open questions for the interested reader to pursue.

13.2 Concepts of Properties and Individuals

In the subsections that follow, we describe: (a) concepts of properties, such as
the concept of being a king, the concept of being red, etc., (b) concepts of ordi-
nary individuals, such as the concept of Adam, the concept of Alexander, etc.,
and (c) generalized concepts, such as the concept of every human, the concept
of something red, etc.
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13.2.1 Concepts of Properties

(670) Definitions: Concepts of Properties. In (442) we defined, G necessarily
implies F, written G⇒ F, just in case �∀x(Gx→ Fx). Let us now say that c is
a concept of G just in case c encodes exactly the properties necessarily implied
by G:

ConceptOf (c,G) ≡df G↓&∀F(cF ≡ G⇒ F)

We assume our conventions for free restricted variables and for definitions by
equivalence.339 The above definition makes it clear that, for any property G,
any concept c such that ConceptOf(c,G) is an individual.

To develop a familiar example, suppose we have extended object theory by
adding both the primitive property being human and some non-logical axioms
that tell us what properties being human necessarily implies. For example,
suppose we’ve added the axiom: being human necessarily implies being con-
crete, i.e., H ⇒ E!. Then the definition tells us that ConceptOf (c,H) just in case
∀F(cF ≡ H ⇒ F), i.e., that c is a concept of being human just in case c encodes
exactly the properties necessarily implied by being human. Thus, we would be
able to derive that ConceptOf (c,H)→ cE!.

(671) Theorems: Existence Conditions for Concepts of Properties. In the usual
way, it follows that (.1) there is a concept of G, (.2) there is a unique concept of
G, and (.3) the concept of G exists:

(.1) ∃cConceptOf (c,G)

(.2) ∃!cConceptOf (c,G)

(.3) ıcConceptOf (c,G)↓

(672) Definition: Notation for The Concept of G. We may now introduce the
notation cG for the concept of G:

cG =df ıcConceptOf (c,G)

Thus, c( ) is a term-forming operator that takes unary relation terms as argu-
ments. The boldface symbol ‘c’ in the expression ‘cG’ is not a variable ranging
over concepts and, hence, not a restricted variable (if it were a variable, there
would be a problem: it would occur free in the definiendum but not free in the
definiens). The only variable in the expression ‘cG’ is the symbol ‘G’, though

339By our conventions for restricted variables, the definition expands to:

ConceptOf (x,G) ≡df C!x&G↓&∀F(xF ≡ G⇒ F)

Thus, for the definiendum to hold, both of the arguments of ConceptOf must be significant. So, by
our conventions for definitions by equivalence, ConceptOf (κ,Π) holds if and only if κ and Π both
exist, κ is a concept, and κ encodes all and only the properties necessarily implied by Π.
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we may regard ‘cG’ itself as a functional term that takes a concept as a value
depending on the value assigned to ‘G’. And since the existence of G is built
into the definition of ConceptOf (c,G), then if Π is any empty unary relation
term, cΠ is empty as well.

(673) Theorem: Identity of The Concept of G and The (Thick) Form of G. It
should come as no surprise to those who have worked through the chapter on
Forms that the concept of G is identical to the (thickly-conceived) Form of G:

cG = ΦG

This establishes an interesting link between the work of Plato and Leibniz. As
an exercise, consider what the resulting theorems say when we substitute cG
for ΦG in the theorems about Forms, and substitute ΦG for cG in the theorems
below about concepts of properties.

(674) Theorem: The Concept of G is (Strictly) Canonical. By now familiar
reasoning, cG is (identical to) a canonical concept:

cG = ıc∀F(cF ≡ G⇒ F)

Moreover, with theorem (448), we established, as a modally strict theorem,
that for any property F, if G necessarily implies F, then it is necessary that
G necessarily implies F, i.e., that ∀F(G⇒ F → �G⇒ F). Thus, where ϕ is
G⇒ F, this shows that ϕ is a rigid condition on properties, by (260.1). So cG is
(identical to) a strictly canonical concept, by (260.2).

(675) Lemmas: Facts About the Concept of G. Since cG is identical to a strictly
canonical concept, we may use (261.2) to establish, by modally strict means,
(.1) for any property F, cG encodes F if and only if G necessarily implies F:

(.1) ∀F(cGF ≡ G⇒ F)

Moreover, since we can establish G ⇒ G by modal predicate logic alone, it
follows from (.1) that:

(.2) cGG

(676) Theorem: Identity of Sums. If we remember the definition of ⊕, then it is
a simple consequence of the foregoing definitions that the sum of the concept
of G and the concept of H is identical to the concept that encodes just the
properties necessarily implied by G or necessarily implied by H :

cG⊕cH = ıc∀F(cF ≡ G⇒ F ∨H ⇒ F)

(677) Metatheorems: Reordering and Inclusion Chains. (.1) It is a theorem that
no matter how one reorders the sum of the concepts cG1

, . . . , cGn , the original
sum and the reordered sum are identical:
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(.1) ` cG1
⊕. . .⊕cGi−1

⊕cGi⊕cGi+1
⊕. . .⊕cGj−1

⊕cGj⊕cGj+1
⊕. . .⊕cGn =

cG1
⊕. . .⊕cGi−1

⊕cGj⊕cGi+1
⊕. . .⊕cGj−1

⊕cGi⊕cGj+1
⊕. . .⊕cGn

for any 1 ≤ i ≤ j ≤ n. Moreover, it is a theorem that for any propertiesG1, . . . ,Gn,
the concept of G1 is included in the sum of the concepts of G1 and G2, which
in turn is included in the sum of the concepts of G1, G2, and G3, . . . , which in
turn is included in the sum of the concepts G1, G2, . . . , Gn; and the reverse is
true for concept containment:

(.2) ` cG1
� cG1

⊕cG2
� . . . � cG1

⊕. . .⊕cGn
` cG1

⊕. . .⊕cGn � . . . � cG1
⊕cG2

� cG1

for any n > 2.

(678) Remark: Concepts and Properties. We have thus far analyzed Leibnizian
concepts as abstract objects. But in Remark (622), we critically considered how
the Leibnizian principles governing concept summation fare when concepts
are instead analyzed as properties. We considered the definition:

F +G =df [λx Fx&Gx]

and found that if F and G are properties (i.e., entities that can be distinct even
though necessarily equivalent), then there is no obvious way to prove that
summation is idempotent, commutative, and associative; see the discussion
in Remark (622) for the details. In this Remark, we consider how the analysis
of Leibnizian concepts as properties would give rise to additional difficulties
when concept containment is brought into the picture and analyzed property-
theoretically. And we examine a potential objection to the view that Leibnizian
concepts are abstract objects.

Before we start our investigation, let’s examine how the present analysis
might be used to interpret Leibnizian texts. Earlier, in (629), we proved Leib-
niz’s Equivalence in a completely general form, without reference to concepts
of properties, for both concept inclusion and concept containment:

c � d ≡ c⊕d = d

c � d ≡ c = c⊕d

But if we instantiate these to concepts of properties, we obtain the following
corollaries, one for concept inclusion and one for concept containment:

cF � cG ≡ cF⊕cG = cG

(ϑ) cF � cG ≡ cF =cF⊕cG

These are of interest because they more closely resemble Leibniz’s texts. In
Leibniz 1690b (LLP 131–132, G.vii 239), we find the following (in which the
variables L and B have been replaced by G and F, respectively):



13.2. CONCEPTS OF PROPERTIES AND INDIVIDUALS 655

Proposition 13:
If G+F = G, then F will be in G

Proposition 14:
If F is in G, then G+F = G

Clearly, if we conjoin these and substitute F +G for G + F (which we can do
since concept addition is commutative), then we obtain:

F is in G if and only if F +G = G

And the containment version is:

(ζ) F contains G if and only if F = F +G

On the present analysis of Leibnizian concepts, we’ve captured (ζ) as (ϑ).
However, if one wanted to suggest that instead of analyzing Leibnizian

concepts as abstract individuals they should be analyzed as properties, then
(ζ) raises another issue. For suppose that one offers the following property-
theoretic analysis of concept containment:

F contains G ≡df F⇒G

Presumably, this definition would allow one to conclude that since being a
brother necessarily implies being male, the property being a brother contains
the property being male. So the definition would provide one with a way of un-
derstanding the Leibnizian claim that the concept brother contains the concept
male.

But consider what happens when the above definition is coupled with the
property-theoretic definition of concept summation discussed in Remark (622).
Then (ζ) would be analyzed as:

(ξ) F⇒G ≡ F=[λx Fx&Gx]

(ξ), however, is inconsistent with reasonable principles about properties that
one might wish to adopt. From the fact that property F necessarily implies
propertyG, it does not follow that F just is identical to the conjunctive property
[λx Fx&Gx]. One may consistently extend our theory with the claim:

∃F∃G(F⇒G & F, [λx Fx&Gx])

For example, one may reasonably claim both (a) that the property being a
brother necessarily implies the property being male yet (b) that being a brother
is not identical to being a brother and male. Or if we let K be the necessary
property [λx Fx ∨¬Fx] (where F is any property), then one might reasonably
argue that, for any property G distinct from K , both G ⇒ K (indeed, this is
provable) and G , [λy Gy &Ky]. Indeed, some philosophers might wish to go
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further and assert that the right condition of (ξ) fails universally, i.e., that no
(distinct) properties F and G are such that F is identical to [λy Fy&Gy]. In any
case, we only need the existence of a single counterexample to show that (ξ) is
unacceptable.

Of course, one could try to reinterpret the identity claim in (ζ) in terms of
some weaker notion. Castañeda (1990, 17) suggests that Leibniz’s relation of
coincidence is indeed a weaker relation than identity on concepts, but Ishiguro
(1990, Chapter 2) argues that this isn’t really consistent with Leibniz’s texts.
Among other things, it conflicts with Leibniz’s reading of the symbol ‘∞’ as
‘the same’ in Definition 1 of LLP 131 (G.vii 236). Of course, we’ve already
ruled out Lenzen’s (1990) interpretation of the variables in terms of sets, since
this offers only a mathematical model of Leibnizian concepts, not a theory of
them.

By contrast, we’ve seen that when the concept F is analyzed as cF , concept
addition as ⊕, and concept containment as �, then (ζ) becomes analyzed as (ϑ).
The latter has the following instance:

cB � cM ≡ cB=cB⊕cM

The concept of being a brother contains the concept of being male if and
only if the concept of being a brother is identical with the sum of the
concepts of being a brother and being male.

Indeed, if one adds to our system the property-theoretic postulate that being a
brother necessarily implies being male (B⇒ M), one may derive either side of
above biconditional.340

We conclude the present remark on concepts and properties by considering
whether the following constitutes counterevidence to our analysis of concepts
as abstract individuals. Some philosophers, including Leibniz, might assert
that the following is true:

(A) The concept brother is identical to the sum of the concept male and the
concept sibling.

Now in certain pre-theoretical, ordinary language contexts, in which concept
talk is just loose talk about properties and concept summation is intuitively un-

340To see this, assume B⇒ M, i.e., �∀x(Bx → Mx). Now to derive the left-side of the bicondi-
tional, i.e., cB � cM , we have to show cM � cB, by definition (624.2). So by definition (624.1), we
have to show ∀F(cMF → cBF). By GEN, it suffices to show cMF → cBF. So assume cMF. Then
by (675.1), M ⇒ F, i.e., �∀x(Mx→ Fx). But it follows from our assumption and this last fact that
�∀x(Bx→ Fx), i.e., B⇒ F. So by (675.1), cBF, completing our conditional proof. Now to derive
the right-side of the biconditional from B ⇒ M, we could just appeal to the derivation we just
completed and the instance of (ϑ) above in the text. Independently, however, we can easily show
cB = cB⊕cM by showing they encode the same properties. (→) Assume cBF. Then cBF ∨ cMF.
Hence cB⊕cMF. (←) Assume cB⊕cMF. Then by (676), (B⇒ F)∨ (M⇒ F). If B⇒ F, then cBF, by
(675.1). If M⇒ F, then given our assumption B⇒M, it follows that B⇒ F. Hence, again, cBF.
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derstood as property conjunction, (A) is no doubt best interpreted as asserting
that the property being a brother (‘B’) is identical to the property [λxMx& Sx],
i.e., the conjunction of being male (‘M’) and being a sibling (‘S’). This would
yield a true interpretation of (A). But we have suggested in this subsection that
Leibniz’s talk of ‘the concept brother’ should be analyzed as a reference to the
concept of being a brother, i.e., cB, and similarly for his talk of ‘the concept male’
and ‘the concept sibling’. Thus one might be tempted to analyze (A) as:

(B) cB = cM⊕cS

But (B) is provably false if given, as minimal facts about these properties, that
being a brother necessarily implies being a male sibling (i.e., B⇒ [λxMx& Sx]),
and that neither M nor S necessarily imply this conjunctive property. For,
given such facts, it follows by definition of cB and cM⊕cS that cB encodes
[λxMx&Sx] and that cM⊕cS does not. Since cB encodes a property that cM⊕cS
fails to encode, they are distinct, contradicting (B).

It may be tempting to conclude that this result shows that the property-
theoretic analysis of the Leibnizian notion of concepts is preferable to the
present analysis, since it avoids attributing to him a provable falsehood. As
noted above, if we take the concepts discussed in (A) to be properties, and take
the sum of the concepts male and sibling to be [λxMx& Sx], then (C) becomes
an analysis of (A):

(C) B = [λxMx& Sx]

(C) is in fact true. The property being a brother is identical to the property being
a male sibling. Moreover, on the basis of (C), it follows that the concept of being
a brother is identical to the concept of the conjunctive property being a male
sibling:

(D) cB = c [λxMx& Sx]

Once (C) is added to our system (say, as part of a theory of brotherhood), then
(D) becomes an easy theorem.

So I think the conclusion to be drawn here is that either (A) is to be in-
terpreted as (C), in which case Leibniz has asserted a property identity in the
guise of concept identities, or (A) is to be interpreted as (D). If one doesn’t rig-
orously distinguish properties and concepts of properties, one might well say
(A) when intending (C) or (D). Leibniz did in fact distinguish between prop-
erties and their concepts, but it doesn’t look like he did so rigorously. There
are passages where he distinguishes an accident and its notion, and passages
where he distinguishes a predicate and its concept. Consider the following
passage from Article 8 in the Discourse on Metaphysics (PW 19, G.iv 433):
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. . . an accident is a being whose notion does not include all that can
be attributed to the subject to which this notion is attributed. Take,
for example, the quality of being a king, . . .

In this passage, I take it, Leibniz is distinguishing the property (i.e., the acci-
dent or the quality) from the concept or notion of that property. And recall the
following passage from his correspondence with Arnauld (June 1686, LA 63,
G.ii 56):

. . . in every true affirmative proposition, necessary or contingent, universal
or particular, the concept of the predicate is in a sense included in that of
the subject; the predicate is present in the subject.

These passages show Leibniz did distinguish properties and their concepts.
But he didn’t regiment the distinction and systematically adhere to it in his
logic of concepts and containment theory of truth. So it shouldn’t be surpris-
ing if sometimes Leibniz asserted concept identities like (A) when he meant to
assert either something like (C) or (D). This conclusion may address the con-
cern that (A) constitutes counterevidence to the present analysis.

Notice also that from (C), we can also derive the property-theoretic postu-
late discussed earlier, namely, (a) B ⇒ M, and so derive that (b) the concept
of being a brother contains the concept of being male, i.e., that cB � cM . For (a),
note that [λxMx & Sx]⇒ M (exercise) and so by (C), it follows that B⇒ M.
Hence, for (b), the reasoning we used in footnote 340 now yields the conclusion
that cB � cM .

In conclusion, on the present theory, there is a subtle and important dif-
ference between properties and concepts, between the sum concept cM ⊕cS
and the conjunctive property [λx Mx & Sx], and hence between cM ⊕cS and
c [λxMx& Sx]. In general, it is important to remember that adding concepts cF
and cG to obtain cF⊕cG is not the same as conjoining properties F and G to
obtain [λx Fx&Gx]. The conjunction [λx Fx&Gx] is a property whose exten-
sion (in the technical sense of Chapter 10, Section 10.3) is the intersection of
the extensions of F and G. The sum of cF and cG is a concept that encodes the
union of the properties implied by F and those implied by G.

13.2.2 Concepts of Ordinary Individuals

(679) Remark: The Focus on Concepts of Ordinary Individuals. The notion of a
concept of an individual immediately suggests the following general definition:

x is a concept of y just in x is a concept and encodes exactly the properties
that y exemplifies, i.e., ConceptOf (x,y) ≡df C!x&∀F(xF ≡ Fy)).
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And given that it would be provable that, for every individual y, there is a
unique such concept, we could then define:

cy (‘the concept of y’) =df ıcConceptOf (c,y)

However, there is a theoretical reason for not pursuing these general defini-
tions. This concerns the fact that the properties that an abstract object exem-
plifies are not guaranteed to distinguish it from other abstract objects. Theo-
rem (269) tells us that there are abstract objects x and y such that x , y and
∀F(Fx ≡ Fy). That is, there are distinct abstract objects (i.e., they encode dif-
ferent properties) that are indiscernible (i.e., exemplify the same properties).
Given (269), it would then be straightforward to prove that there are distinct
objects y and z whose concepts cx and cy are identical:

∃x∃y(x,y & cx=cy)

So the concepts of distinct but indiscernible abstract individuals would prov-
ably collapse.

Of course, this reasoning doesn’t apply either to concepts of ordinary indi-
viduals or to concepts of discernible individuals. Ordinary individuals are dis-
tinguished and identifiable in terms of the properties they exemplify (242.2),
and so are discernible individuals (273.7). Since the concepts of such individ-
uals encode the latter’s exemplified properties, it makes sense to introduce
concepts of ordinary individuals and, more generally, concepts of discernible
individuals. Such a focus would ensure that if a and b are distinct ordinary
individuals or distinct discernible individuals, their concepts ca and cb would
be distinct.

However, there is a theoretical reason and various practical reasons for re-
stricting our definitions, theorems, and proofs to concepts of ordinary objects.
The theoretical reason stems from the fact that when we think about what con-
cepts and abstract objects are, it seems reasonable to conclude that the very
concept of an abstract object is given by the properties it encodes, not by the
properties it exemplifies. So even if an abstract object x is discernible, the con-
cept of x is, in its most fundamental sense, nothing other than x itself, since an
abstract object encodes the properties by which it is conceived or defined. This
constitutes a theoretical reason for not defining concepts of discernible objects:
if the concept of a discernible abstract object x is intuitively just x, why intro-
duce a notion of concept that distinguishes two objects when intuitively there
is just one.

One practical reason for not defining concepts of discernible objects stems
from the fact that our theory doesn’t yet imply the existence of any discernible
abstract objects. Later, in the chapter on natural numbers, we’ll extend the
theory with a new axiom, with the consequence that the extended theory does
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imply the existence of discernible abstract objects. But at present, only or-
dinary individuals are provably discernible; even if we allowed for concepts
of discernibles, we wouldn’t, at present, be able to prove that there are any
concepts of discernible abstracta. So by restricting our attention to concepts
of ordinary objects, we don’t lose anything. Of course, one could argue that
concepts of such discernibles might be of interest once we are in a position to
prove they exist, the fact is that one can simply reconstruct the theorems below
as theorems about discernibles should that prove to be of interest.

Moreover, by focusing on concepts of ordinary individuals, we will have
ready-to-hand examples that Leibniz and others have used in discussing the
metaphysics of individual concepts. When developing his calculus of individ-
ual concepts in the containment theory of truth and in his modal metaphysics,
Leibniz always used concepts like the concept of Adam, the concept of Sextus, and
the concept of Alexander. So a narrower focus on concepts of ordinary individu-
als comes with ready-made applications.

However, those who don’t find the foregoing persuasive and who prefer to
develop the metaphysics of concepts in the most general manner possible can
easily revise the definitions, theorems, and proofs so that they govern concepts
of discernible individuals. The proofs can be adjusted with little additional
work. So it doesn’t matter much which of these we study – there are some
very nice results in the modal metaphysics of concepts in either case. These
results, expressed in terms of concepts of ordinary individuals, are discussed
in Section 13.4 below.

Given these observations, we’ll use u,v as variables ranging over ordinary
individuals in this subsection and for the remainder of this chapter. Since O!x
is a rigid restriction condition in the sense of (340), we may reason with u,v as
free restricted variables and employ our extended Rule RN (341).

(680) Definition: Concepts of Ordinary Individuals. If we employ our theory
of definitions by equivalence and conventions for free restricted variables, we
may say that c is a concept of u just in case c encodes exactly the properties that
u exemplifies:

ConceptOf (c,u) ≡df ∀F(cF ≡ Fu)

To take a simple example, if Socrates (‘s’) is an ordinary object and a concept c
encodes exactly the properties Socrates exemplifies, then ConceptOf (c, s).341

341Note again that by using the free restricted variables c and u, our rules and Convention (338.2)
imply that the definition yields the following as a theorem:

ConceptOf (x,y) ≡ (C!x&O!y &∀F(xF ≡ Fy))

Moreover, c and u are rigid restricted variables, since `� ∀x(C!x→ �C!x) and `� ∀y(O!y→ �O!y).
So we may treat C!c and O!u as necessary axioms. Thus it follows from the preceding equivalence
that:
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(681) Theorems: Existence Conditions for Concepts of Ordinary Individuals.
It follows that (.1) there is a a concept of u; (.2) there is a unique concept of u;
and (.3) the concept of u exists:

(.1) ∃cConceptOf (c,u)

(.2) ∃!cConceptOf (c,u)

(.3) ıcConceptOf (c,u)↓

These are straightforward consequences of the definition (680) and compre-
hension for concepts (614).

Of course, in these theorems, u is a free restricted variable and so, strictly
speaking, all of the above are conditionals. But we can derive unconditional
existence claims from them since it follows from (227.1) and the T schema that
ordinary individuals exist.

(682) Definition: Notation for the Concept of u. We henceforth use the nota-
tion cu to denote the concept of u:

cu =df ıcConceptOf (c,u)

Again, the boldface expression ‘c’ in cu is not a free variable and so not a re-
stricted free variable; rather it is part of the functional expression cu , whose
only free variable is u. So if we extend our language with the constant ‘s’,
to designate a known ordinary object, say Socrates, then cs is the concept of
Socrates.

It is important to recognize that both methods of eliminating the free re-
stricted variable u and bound restricted variable c in the above, by using our
conventions in (337), (338), and (339), yield the same result. On the one hand,
we could start with the above definition as given, eliminate the free restricted
variable u as outlined in (339), so that the definition becomes:

cy =df ıc(O!y & ConceptOf (c,y))

and then eliminate the bound restricted variable in the definiens, as described
in (337), so that cy becomes defined as ıx(C!x & O!y ConceptOf (x,y)). Alter-
natively, we could start by eliminating the two free restricted variables in the
definition of ConceptOf (c,u) (680), as described in (338), so that the definition
becomes:

ConceptOf(x,y) ≡df C!x&O!y &∀F(xF ≡ Fy)

ConceptOf (c,u) ≡ ∀F(cF ≡ Fu)

The derivability of this equivalence justifies the definition given in the text.
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Then we could introduce cy via the definiens ıx(C!x&O!y ConceptOf (x,y)).
In either case, theorem (681.2) ensures that for every ordinary object y,

∃!cConceptOf (c,y) and theorem (681.3) ensures that ıc(ConceptOf (c,y)↓. So cu↓,
for every u.

(683) Theorem: Contingency of Exemplification for Ordinary Objects. With
the help of a previous theorem (205.1), we now prove that there exists an ordi-
nary object u and a property F such that it is possible that (a) u exemplifies F
and (b) possibly u fails to exemplify F:

∃u∃F♦(Fu&♦¬Fu)

By (165.11), this implies that for some ordinary object u and property F, ♦Fu&
♦¬Fu. So there are objects u and properties F such that x possibly exemplifies
F and possibly does not.

Exercise. Is it provable that every ordinary object u is such that for some prop-
erty F, both ♦Fu and ♦¬Fu, i.e., ∀u∃F(♦Fu&♦¬Fu)? Consider the fact that the
claim ∃x�E!x, i.e., there exists an object that is necessarily concrete (e.g., an
object such as Spinoza’s God), seems to be consistent with the theory. But also
consider the fact that for any two possible worlds w and w′, there is at least one
proposition, say p, and thus one property, [λy p], that distinguishes them.

(684) Remark: The Concept of u is Not Strictly Canonical. As noted earlier,
we know that both ıc(ConceptOf (c,u)↓ and cu↓, for every u. So whenever u is a
ordinary object, it follows, by now familiar reasoning, that:

cu = ıx(A!x&∀F(xF ≡ Fu))

So cu is canonical object.
But it is not difficult to see that cu is not a strictly canonical object. Recall

that in (260.2), we stipulated that ıx(A!x & ∀F(xF ≡ ϕ)) is a strictly canonical
object just in case ϕ is a rigid condition on properties, i.e., by (260.1), just in
case `� ∀F(ϕ→ �ϕ). If we let ϕ be the formula Fu, then theorem (683) has the
form ∃u∃F♦(ϕ& ♦¬ϕ). Then by reasoning analogous to that in Remarks (298)
and (326), it follows that ϕ is not a rigid condition on properties, on pain of
system inconsistency. So though cu is (identical to) a canonical object, it is not
(identical to) a strictly canonical object.

This is, of course, as it should be. Our system doesn’t assert, of any par-
ticular ordinary individual u and property F, that ♦Fu & ♦¬Fu. But it does
imply the existence of ordinary individuals. To establish that cuF when F is
a contingent property, we shall need to appeal to the contingent fact that Fu,
and this undermines the modal strictness of the reasoning. Thus, we should
not expect completely general theorems about the properties cu encodes to be
modally strict.
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(685) ?Lemmas: Fact About Concepts of Ordinary Objects. An immediate con-
sequence of the foregoing is that the concept of u encodesG iff u exemplifiesG:

cuG ≡ Gu

This theorem is not modally strict. Exercise: Show that cuG ≡ AGu is a modally
strict theorem.

(686) Lemma: Fact Relating Two Kinds of Concepts. It follows by modally
strict means that the concept of u encodes G iff the concept of u contains the
concept of G:342

cuG ≡ cu � cG

(687) Definition: Completeness of Concepts. Recall that F was defined in
(196.1) to be [λy ¬Fy]. We now say that a concept c is complete just in case for
every property F, either c encodes F or c encodes F:

Complete(c) ≡df ∀F(cF ∨ cF)

(688) Theorem: The Concept of (Ordinary) Individual u Is Complete.

Complete(cu)

This theorem and (685)? capture Leibniz’s suggestion, in Article 8 of the Dis-
course on Metaphysics (PW 18–19, G.iv 433), that:

. . . it is in the nature of an individual substance, or complete being, to
have a notion so complete that it is sufficient to contain and render de-
ducible from itself, all the predicates of the subject to which this notion is
attributed.

Theorem (685)? ensures that all of the properties that u exemplifies are prop-
erties that cu encodes, and the present theorem ensures that cu is provably
complete. But to capture Leibniz’s containment theory of truth, we’ll have to
derive a further fact from (685)? and (686). See theorem (692.1)? and Remark
(693) below, where we show that the true affirmative judgment Fu implies that
the concept of G is contained in the concept of u, and vice versa.

13.2.3 Concepts of Generalizations

In what follows, we introduce concepts of generalizations, such as the concept
everything that exemplifies G and the concept something that exemplifies G. In our
metalanguage, we take the liberty of rendering these expressions more simply

342Thanks to Daniel West for noting that the following is provable by modally strict means.
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as the concept every G and the concept some G, and we introduce and define
notation like c∀G and c∃G, respectively, to represent them. To further simplify
the discussion, these formal expressions will be defined directly in terms of
canonical descriptions.

(689) Definitions: Concepts of Generalizations. Let us say (.1) the concept ev-
erything that exemplifies G (i.e., the concept every G) is the concept that encodes
just the properties F such that everyG exemplifies F; and (.2) the concept some-
thing that exemplifies G (i.e., the concept some G) is the concept that encodes just
the properties F such that some G exemplifies F:

(.1) c∀G =df ıc∀F(cF ≡ ∀x(Gx→ Fx))

(.2) c∃G =df ıc∀F(cF ≡ ∃y(Gy &Fy))

In these definitions, the variables x,y are unrestricted and range over individu-
als generally. Thus, c∀G and c∃G are canonical objects. We leave it as an exercise
to show that c∀G and c∃G are not strictly canonical, i.e., that when ϕ is either
∀x(Gx→ Fx) or ∃x(Gx&Fx), then ϕ is not a rigid condition on properties.

(690) ?Lemmas: Facts About Concepts of Generalizations. It is an immediate
consequence of the foregoing that (.1) the concept every G encodes F iff every G
exemplifies F, and (.2) the concept some G encodes F iff some G exemplifies F:

(.1) c∀GF ≡ ∀x(Gx→ Fx)

(.2) c∃GF ≡ ∃x(Gx&Fx)

(691) Lemmas: Modally Strict Facts About Concepts of Generalizations. By
modally strict means, we may prove that (.1) the concept every G encodes the
property F iff the concept every G contains the concept of F, and (.2) the concept
some G encodes the property F iff the concept some G contains the concept of F:

(.1) c∀GF ≡ c∀G � cF

(.2) c∃GF ≡ c∃G � cF

13.3 The Containment Theory of Truth

(692) ?Theorems: Exemplification and Containment. It is a consequence of the
preceding definitions and lemmas that exemplification predication is equiva-
lent to the Leibnizian analysis of predication, for it follows that (.1) u exem-
plifies G if and only if the concept of u contains the concept of G. Further-
more, the modern and Leibnizian analyses of simple quantified statements are
equivalent, given the following theorems: (.2) everything exemplifying G ex-
emplifies F if and only if the concept everything that exemplifies G contains the
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concept of F; and (.3) something exemplifies both G and F if and only if the
concept something that exemplifies G contains the concept of F:

(.1) Gu ≡ cu � cG

(.2) ∀x(Gx→ Fx) ≡ c∀G � cF

(.3) ∃x(Gx&Fx) ≡ c∃G � cF

These are easy consequences of previous theorems.

(693) Remark: The Containment Theory of Truth. To see how Leibniz’s con-
tainment theory of truth is preserved in these theorems, first recall the passage
quoted at the outset, from the correspondence with Arnauld (June 1686, LA
63, G.ii 56):

. . . in every true affirmative proposition, necessary or contingent, universal
or particular, the concept of the predicate is in a sense included in that of
the subject; the predicate is present in the subject.

Leibniz also produced an early statement of his containment theory of truth in
a work subsequently titled Elements of a Calculus, where he spoke of universal
propositions and wrote (1679, 18–19; source C 51):

. . . every true universal affirmative categorical proposition simply shows
some connection between predicate and subject (a direct connection, which
is what is always meant here). This connection is, that the predicate is said
to be in the subject, or to be contained in the subject; either absolutely and
regarded in itself, or at any rate, in some instance; i.e., that the subject is
said to contain the predicate in a stated fashion. This is to say that the
concept of the subject, either in itself or with some addition, involves the
concept of the predicate. . . .

In Article 8 of the Discourse on Metaphysics (1686, Bennett’s translation of G.iv
433) we find:343

So the [notion of the] subject term must always include [that of] the pred-
icate, so that anyone who understood the subject notion perfectly would
also judge that the predicate belongs to it.

Now to see how these passages are validated by our theorems, let a stand for
Alexander the Great and let us assume Alexander is an ordinary object. Then
the concept of Alexander, ca, is significant, by (682) and (681.3). Moreover, let
K stand for the property being a king. Then the concept of being a king, cK , is
well-formed and logically proper, by (672) and (671.3). Now, given the above
quotations, Leibniz analyzes the ordinary language predication:

343The words in brackets were interpolated by Bennett, so as to clarify Leibniz’s intention.
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(.1) Alexander is a king

in the following terms:

(.2) The concept of Alexander contains the concept of being a king

On our representation of Leibniz’s analysis, this becomes:

(.3) ca � cK

Whereas the modern analysis of (.1) in the predicate calculus is:

(.4) Ka

So by (692.1)?, our representation (.3) of Leibniz’s analysis (.2) of the ordinary
claim (.1) is equivalent to the modern analysis (.4) of (.1).

As a second example, consider the ordinary language predication:

(.5) Every person is rational.

Leibniz’s analysis would be:

(.6) The concept every person contains the concept being rational

We represented the Leibnizian concept every person as the concept everything
that exemplifies being a person, i.e., c∀P , which is defined in (689.1). So our
representation of Leibniz’s analysis (.6) becomes:

(.7) c∀P � cR

Whereas the modern analysis of (.5) in the predicate calculus is:

(.8) ∀x(P x→ Rx)

So by (692.2)?, our representation (.7) of Leibniz’s analysis (.6) of the ordinary
claim (.5) is equivalent to the modern analysis (.8) of (.6). And analogously for
the ordinary language predication ‘Some person is rational’.

(694) Remark: Generalized Quantifiers. Is is intriguing to consider whether
there is a connection between Leibniz’s containment theory of truth and the
idea of a generalized quantifier or Montague’s (1974) subject-predicate analy-
sis of basic sentences of natural language. Montague gave a uniform subject-
predicate analysis of a fundamental class of English sentences by treating such
noun phrases as ‘John’ and ‘every person’ as sets of properties. He supposed
that the proper name ‘John’ denotes the set of properties that John exemplifies
and supposed that the noun phrase ‘every person’ denoted the set of properties
that every person exemplifies. Then, on Montague’s theory, English sentences
such as ‘John is rational’ and ‘Every person is rational’ could be given a uniform
subject-predicate analysis: such sentences are true iff the property denoted by
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the predicate ‘is rational’ is a member of the set of properties denoted by the
subject term. Leibniz’s containment theory of truth, on our analysis, offers a
similar unification of the analysis of singular and general predications. More-
over, one could extend this to other concepts of generalizations, such as the
concepts most things that exemplify F, many things that exemplify F, few things
that exemplify F, etc., once the relevant quantifiers are introduced into our lan-
guage, either as axiomatized primitives or by definition.

(695) Remark: Hypothetical Necessity. Leibniz’s containment theory of truth
gives rise to an interesting objection. Leibniz anticipated the objection in Ar-
ticle 13 of the Discourse on Metaphysics. In that Article, Leibniz reiterates that
“the notion of an individual substance involves, once and for all, everything
that can ever happen to it”, and then says (PW 23, G.iv 436):

But it seems this will destroy the difference between contingent and neces-
sary truths, that human freedom will no longer hold, and that an absolute
fatality will rule over all our actions as well as over the rest of what hap-
pens in the world.

Leibniz’s contemporary, Antoine Arnauld, took this criticism in a theistic di-
rection, suggesting that the view not only implies that everything that hap-
pens to a person happens by necessity but also that it places constraints on
God’s freedom to shape what happens to the history of the human race (letter
to Count Ernst von Hessen-Rheinfels, March 13, 1686, LA 9, G.ii 15).

Let us put aside Arnauld’s theistic turn. Given Leibniz’s phrasing, the ob-
jection charges that the containment theory of truth somehow collapses con-
tingency and necessity and that, at best, the theory represents contingent truths
as necessary truths and, at worst, implies that the actual world exhibits no
contingency. If concept containment is not relative to any circumstance, then
Leibniz has analyzed the contingent statement ‘Alexander is a king’ in terms of
a claim that appears to be a necessary truth, namely, the concept of Alexander
contains the concept of being a king. A similar worry arises about the analysis
of the contingent general claims ‘Every person is rational’ and ‘Some person is
rational’, which if true, would also appear to be rendered as necessary truths
given Leibniz’s analysis. For the purposes of simplying the discussion, we’ll
put these last two examples aside and focus just on the first, since the discus-
sion of the first example will apply to them as well.

Leibniz’s response to the objection is somewhat intriguing. In the next pas-
sage of the Discourse, he continues (PW 23-24, G.iv 437):

To give a satisfactory answer to it, I assert that connexion or sequence is
of two kinds. The one is absolutely necessary, whose contrary implies a
contradiction; this kind of deduction holds in the case of eternal truths,
such as those of geometry. The other is only necessary by hypothesis (ex
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hypothesi), and so to speak by accident; it is contingent in itself, since its
contrary does not imply a contradiction.

So Leibniz defends himself against the objection by appealing to a distinction
between absolute necessity and hypothetical necessity. The question is, what
is hypothetical necessity?

Before we propose an answer to this question, note that Jonathan Bennett
offers a slightly different translation of the passage from the Discourse just
quoted. In his translation, Bennett (a) makes it much clearer that Leibniz is
talking about two kinds of logical consequence, and (b) interpolates some text
that helps us to understand what Leibniz is suggesting. Bennett’s translation
goes as follows, with the added material enclosed between center dots:

To that end, I remark that there are two kinds of connection or following
from. One is absolutely necessary, and its contrary implies a contradiction;
such deduction pertains to eternal truths, such as those of geometry. The
other is necessary ·not absolutely, but· only ex hypothesi, and, so to speak,
accidentally. ·It doesn’t bring us to It is necessary that P, but only to Given Q,
it follows necessarily that P·. Something that is necessary only ex hypothesi
is contingent in itself, and its contrary doesn’t imply a contradiction.

Now I’m not sure why Bennett interpolated the text between the dots in his
translation;344 it doesn’t appear in the original at G.iv 437. But his explanation
of the distinction between absolute and hypothetical necessity seems to be on
point, though it introduces a crucial ambiguity.

This translation leaves it open whether ‘necessarily’ in the phrase ‘GivenQ,
it follows necessarily that P ’ attaches to ‘it follows that’ or to the proposition
P . If the former, then Leibniz is thinking of hypothetical necessities in terms of
a more formal, inferential notion of logical consequence, in which the conclu-
sion follows by logical necessity from accidental (i.e., contingent) truths. But if
the ‘necessarily’ in ‘. . . it follows necessarily that P ’ attaches to the proposition
P , then we would have to find an interpretation on which a necessary truth be-
comes derivable from a contingency. Let’s consider these interpretative options
in turn.

Suppose that the ‘necessarily’ attaches to ‘it follows that’, so that the neces-
sity in question is logical necessity, i.e., a conclusion derived from a contingent
hypothesis is logically required. We can explore this idea by focusing either on
derivations or on theorems. Focusing first on derivations, our system estab-
lishes that Ka ` ca � cK . Theorem (692.1)? asserts Ka ≡ ca � cK , which implies

344In a note at the top of the translation, Bennett writes:

Small ·dots· enclose material that has been added, but can be read as though it were
part of the original text.

This doesn’t say what the origin of the added material is.



13.3. THE CONTAINMENT THEORY OF TRUTH 669

Ka→ ca � cK . Thus, by (63.10), Ka ` ca � cK . So Leibniz’s containment anal-
ysis of ‘Alexander is a king’, is derivable from the contingent premise Ka; it is
a conclusion that is a logically-required consequence of a contingent premise.
This is one way to understand hypothetical necessity.

But if we focus on theorems instead of derivations, then Ka ≡ ca � cK is
a theorem (692.1)? that is a logical consequence of our axioms and rules, i.e.,
those axioms and rules logically require it to be a theorem. We may not con-
clude that it is a necessary truth, since it has been established by non-modally
strict means and ultimately rests on a modally fragile axiom. So this is a second
way to understand hypothetical necessity.

Now, let’s consider the other interpretative option, in which ‘necessarily’ in
the phrase ‘GivenQ, it follows necessarily that P ’ attaches to the proposition P .
Then we may regard such hypothetical necessities as metaphysically necessary
truths derivable from contingent premises. An example is found in the claim
that the concept of Alexander encodes being a king, i.e., �caK . In object theory
it is easy to show Ka ` �caK . To see that this holds, note that Ka ` caK , by
(685)? and (63.10). That is, the premise that Alexander is king implies that the
concept of Alexander encodes being a king. But by axiom (51) and (63.10), we
know can conclude caK ` �caK . Hence, from these two facts about derivations,
it follows by (63.8) that Ka ` �caK . So a necessary truth, �caK , is derivable
from a contingent premise. This is a third way to understand hypothetical
necessity.

On none of these ways of understanding hypothetical necessity does it fol-
low that the Leibnizian containment theory of truth banishes contingency from
the actual world. But one might still wonder whether Leibniz and Arnauld
might have made the objection stronger by recasting it as follows: the equiva-
lence of an analysandum and its analysans should be a necessary equivalence,
but the equivalence of the analysandum ‘Alexander is a king’ (Ka) and the
analysans ca � cK is not necessary. The fact being appealed to in this objection
is correct, for as we know, the equivalence Ka ≡ ca � cK , is an instance of the-
orem (692.1)? and so not a modally strict theorem. So we can’t validly derive
�(Ka ≡ ca � cK ) by applying RN to (692.1)?.

But though it is understandable why one might raise this objection, it can
be met. For it is not clear why an analysans should be necessarily equivalent to
its analysandum in a system in which all terms rigidly designate and abstrac-
tions can be defined on the basis of contingencies. In the present system, ca is
defined on the basis of the properties Alexander in fact exemplifies, some of
which are contingently exemplified. It is therefore inevitable that claims about
the properties ca (rigidly) encodes become provably, but not necessarily, equiv-
alent to claims about the properties Alexander in fact exemplifies. Thus, it may
be that a correct analysis requires only that the equivalence of the analysans
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and analysandum be provable a priori rather than provably necessary.

13.4 The Modal Metaphysics of Concepts

(696) Remark:. Primitive vs. Defined Counterparts. The theorems described
in this section articulate a modal metaphysics of concepts inspired by Leibniz’s
work. We may introduce these theorems by way of an issue in Leibniz schol-
arship. Some Leibniz scholars have suggested that the best way to reconstruct
Leibniz’s modal metaphysics of concepts is to suppose that the counterpart rela-
tion partially systematized in Lewis 1968 should be applied to individual con-
cepts. This general view is adopted here, but instead of taking counterpart to be
a primitive, as in Lewis 1968 and in the work of other Leibniz scholars, we shall
define a notion of individual concept and define the conditions under which one
individual concept is a counterpart of another. Since our system axiomatizes a
fixed domain of individuals and presupposes that every individual exemplifies
properties in every possible world, it turns out that the modal metaphysics will
preserve elements of Leibnizian, Lewisian, and Kripkean metaphysics.

The view adopted by various Leibniz scholars, that one should use counter-
part theory to reconstruct Leibniz’s metaphysics, traces back to work of Mon-
dadori (1973, 1975), who notes that the natural reading of certain passages in
the Leibnizian corpus are suggestive of that theory (cf. Ishiguro 1972, 123–
134). Here is a passage from the Theodicy (T 371, G.vi 363) which Mondadori
cites:

I will now show you some [worlds], wherein shall be found, not absolutely
the same Sextus as you have seen (that is not possible, he carries with him
always that which he shall be) but several Sextuses resembling him, pos-
sessing all that you know already of the true Sextus, but not that is already
in him imperceptibly, nor in consequence all that shall yet happen to him.
You will find in one world a very happy and noble Sextus, in another a
Sextus content with a mediocre state, . . .

Mondadori also cites the letter to Count Ernst von Hessen-Rheinfels of April
12, 1686, where Leibniz talks about the different possible Adams, all of which
differ from each other (PW 51, G.ii 20):

For by the individual notion of Adam I undoubtedly mean a perfect repre-
sentation of a particular Adam, with given individual conditions and dis-
tinguished thereby from an infinity of other possible persons very much
like him, but yet different from him. . . There is one possible Adam whose
posterity is such and such, and an infinity of others whose posterity would
be different; is it not the case that these possible Adams (if I may so speak
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of them) are different from one another, and that God has chosen only one
of them, who is exactly our Adam?

When Mondadori suggests using counterpart theory to model Leibniz’s views,
he notes that whereas for Lewis the counterpart relation is a relation on in-
dividuals, “in Leibniz’s case, it is best regarded as being a relation between
(complete) concepts” (1973, 248). This suggestion is explicitly built into the
Leibnizian system described in Fitch 1979, and has been adopted by other
commentators as well.345

According to this view, in a Leibnizian modal metaphysics, a possible world
is not a locus of compossible individuals but rather a locus of compossible in-
dividual concepts. A reconstruction of such metaphysics would involve def-
initions that, intuitively, (1) induce a partition on the domain of individual
concepts into equivalence classes of compossible individual concepts, (2) in-
duce a one-to-one correspondence between groups of compossible individual
concepts and the possible worlds where they ‘appear’, and (3) induce a sep-
arate partition of the domain of individual concepts into equivalence classes
of counterpart individual concepts, which groups an individual concept at one
possible world with its counterparts at other possible worlds. Such a recon-
struction has to ensure that an ordinary claim such as:

Alexander is a king but might not have been.

becomes equivalent to the following claim:

The concept of Alexander contains the concept of being a king, but there
is an individual concept c such that: (i) c is a counterpart of the concept
of Alexander, (ii) c doesn’t contain the concept of being a king, and (iii) c
appears at some other possible world.

In our reconstruction of these ideas below, this equivalence is preserved as a
fundamental theorem of Leibniz’s modal metaphysics, as item (736.1)?.

Now when Leibniz talks about the ‘many possible Adams’ and ‘several Sex-
tuses’ that are all distinct from one another, the above-mentioned commen-
tators take him to be talking about different concepts of the same individual
rather than different possible individuals. In the modal metaphysics developed
below, this suggestion is preserved, but we do not stipulate that the different
concepts of Adam that appear at the various possible worlds stand in a primi-
tive counterpart relation. Instead, we begin with the Kripkean view that Adam

345See Wilson 1979 and Vailati 1986. Lloyd (1978) also accepts that Leibniz ‘resorts to counter-
parts’ (p. 379), though she discovers some Leibnizian features in a Kripkean semantics of rigid
designators, which assumes that the same individual can appear in other possible worlds. Inter-
estingly, Kripke notes that “Many have pointed out to me that the father of counterpart theory is
probably Leibnitz [sic]” (1980, 45, n. 13).
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himself exemplifies different properties at different possible worlds. We then
examine the different concepts of Adam that these exemplification facts induce
on the domain of abstract objects. On the basis of this structure, we can define
the sense in which the various concepts of Adam constitute counterparts of
one another.

It is also important to remember again that our definitions will be cast
within the context of the simplest quantified modal logic, in which there is
a single, fixed domain of individuals. Thus, not only do the properties that
Adam exemplifies at one possible world differ from the properties he exempli-
fies at other possible worlds, the ordinary individual Adam exemplifies prop-
erties at every possible world. For example, although Adam is concrete at our
world and at certain other possible worlds, there are possible worlds where he
fails to be concrete. In many of the possible worlds where Adam is concrete,
his ‘posterity is different’. At possible worlds where Adam is not concrete, he
has no posterity.

Now although the same ordinary individual Adam exemplifies properties
at every other possible world, a Leibnizian metaphysics of ‘world-bound’ ab-
stract individuals emerges once we consider, for each possible world w, the
concept that encodes exactly the properties that Adam exemplifies at w. At
each possible world, Adam realizes a different concept, since concepts differ
whenever they encode distinct properties. The concept that encodes all and
only the properties Adam exemplifies at one possible world is distinct from
the concept that encodes all and only the properties Adam exemplifies at a
different possible world, though all of the different concepts of Adam will be
counterparts of one another. Of course, we will define only one of these con-
cepts to be the concept of Adam, namely, the concept that encodes just what
Adam exemplifies at the actual world. In other words, once we relativize con-
cepts of Adam to a world w, then the concept of Adam will be identified with
the concept of Adam at wα. When Leibniz talks about ‘possible Adams’, we
may take him to be talking about different Adam-at-w concepts. We’ll explain
this in more detail once the definitions and theorems have been presented.

What is more interesting is the fact that these individual concepts have cer-
tain other Leibnizian features. We shall not just stipulate that compossibility
is an equivalence condition on individual concepts, but rather define compos-
sibility and prove that it is such a condition. Moreover, we shall not define
possible worlds as sets of compossible individual concepts, but rather prove
that there is a one-to-one correspondence between the groups of compossible
concepts and the possible worlds. We shall also show that there is a sense of
mirrors for which it is provable that each member of a group of compossible
individual concepts mirrors its corresponding possible world.

So, although we do not use counterpart-theoretic primitives in our recon-
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struction, we nevertheless recover a modal metaphysics in which complete indi-
vidual concepts are world-bound (in the sense of appearing at a unique world).
These individual concepts will provide an interpretation for much of what
Leibniz says about necessity, contingency, completeness, mirroring, etc. and, in
the process, offer a way to reconcile Kripke’s and Lewis’s modal metaphysics.

13.4.1 Realization, Appearance, Mirroring

In this subsection, we continue to use the variables u,v to range over ordinary
objects, and use w to range over possible worlds, as defined in Chapter 12.

(697) Definition: Realization at a World. Making use of the notion of truth at a
possible world (w |= p), as defined in (515) and (470), let us say that an ordinary
object u realizes a concept c at possible world w just in case for all properties F,
the proposition u-exemplifies-F is true at w if and only if c encodes F:

RealizesAt(u,c,w) ≡df ∀F(w |=Fu ≡ cF)

In other words, u realizes c at w just in case u exemplifies at w exactly the
properties c encodes.

(698) Remark: In what follows, we shall investigate notions definable, and
theorems expressible, in terms of RealizesAt. This will be a completely general
study; we won’t prove any particular claims of the form RealizesAt(u,c,w). In-
deed, we can’t do so, and the reason is that our system hasn’t yet been applied
and so doesn’t identify any particular ordinary objects. We do know, however,
that there are ordinary objects.

To be maximally explicit, note that the following is provable, though by
non-modally strict means:

∃u∃c∃wRealizesAt(u,c,w)

Proof. By (227.1) and the T-schema, ∃xO!x. Let a be such an object, so
that we know O!a. Now consider ca, which clearly exists. We now show
that a, ca, and wα are witnesses to our claim. So by (697), we have to
show ∀F(wα |= Fa ≡ caF) or, by GEN, wα |= Fa ≡ caF. To do this, note
that by (685)?, we know caF ≡ Fa. Moreover, by (536)?, we know Fa ≡
wα |=Fa. Hence, caF ≡wα |=Fa and, by the symmetry of the biconditional,
wα |=Fa ≡ caF.

But though we can prove this claim, we can’t prove, for any particular ordinary
individual, that it realizes a particular concept at a world. Our unapplied the-
ory doesn’t identify or individuate any particular ordinary individual. So, the
reader should recognize that though the theorems in what follows do govern
ordinary objects, concepts, and worlds, they are, in some sense, projective. Of
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course, on occasion, it will be helpful to illustrate these claims with intuitive
examples. But such examples presuppose that the theory has been appropri-
ately extended with new (and sometimes contingent) facts.

(699) Theorem: Facts About Realization. The definition of realization at a
world has the following consequences. (.1) if, for some ordinary object u and
possible world w, u realizes c at w and u realizes d at w, then c and d are
identical; (.2) if, for some concept c and possible world w, u realizes c at w and
v realizes c at w, then u is identical to v; and (.3) if, for some ordinary object u
and concept c, u realizes c at w and u realizes c at w′, then w is identical to w′:

(.1) ∃u∃w(RealizesAt(u,c,w) & RealizesAt(u,d,w))→ c=d

(.2) ∃c∃w(RealizesAt(u,c,w) & RealizesAt(v,c,w))→ u=v

(.3) ∃u∃c(RealizesAt(u,c,w) & RealizesAt(u,c,w′))→ w=w′

(700) Definition: Appearance at a World. We say that a concept c appears at a
possible world w just in case some ordinary object realizes c at w:

AppearsAt(c,w) ≡df ∃uRealizesAt(u,c,w)

(701) Theorem: Fact About Appearance. In light of the foregoing facts about
realization at a world, we also have the following fact about appearance at
a world: if a concept c appears at possible world w, then a unique ordinary
object realizes c at w:

AppearsAt(c,w)→∃!u(RealizesAt(u,c,w))

(702) Theorem: Appearance and Being Ordinary. It proves useful to remember
that if a concept c appears at a world w, then c encodes the property of being
ordinary:

AppearsAt(c,w)→ cO!

(703) Definition: Mirroring. Recall that in (295) we stipulated that x encodes
a proposition p, written xΣp, just in case x exists and encodes [λy p]. Since
concepts are abstract objects (612), cΣp is defined and it follows that cΣp ≡
c[λy p]. So we now say that a concept c mirrors a possible world w just in case
for any proposition p, c encodes p if and only if p is true at w:

Mirrors(c,w) ≡df ∀p(cΣp ≡ w |= p)

Also, as noted in (515), w |= p is equivalent to wΣp. So the above definition
entails the following equivalence:
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Mirrors(c,w) ≡ ∀p(cΣp ≡ wΣp)

This better reveals why the definiens introduces a notion of mirroring: concept
c mirrors a possible world w just in case c and w encode the same propositions.

(704) Theorem: Appearance and Mirroring. It now follows that if a concept
appears at a possible world, it mirrors that world:

AppearsAt(c,w)→Mirrors(c,w)

It is important to understand why the right-to-left direction fails, i.e., why it
is provable that ∃c∃w(Mirrors(c,w) & ¬AppearsAt(c,w)). To find witnesses to
this claim, consider any possible world, say w1 (we know that there are are
at least two, by (547.4)). Since possible worlds are abstract objects, they are
also concepts. So w1 is both a possible world and a concept. Then, clearly,
Mirrors(w1,w1). However, ¬AppearsAt(w1,w1). For suppose AppearsAt(w1,w1),
for reductio. Then, by our useful fact (702), it follows that w1O!. But since w1

is, by hypothesis, a possible world, it is a situation (512). Hence every property
w1 encodes is a propositional property (467). It follows that Propositional(O!).
But this contradicts (279.4.c).

(705) Theorem: New Fact About Appearance. If some concept appears at pos-
sible worlds w and w′, then w=w′:

∃c(AppearsAt(c,w) & AppearsAt(c,w′))→ w=w′

(706) Theorem: Appearance At is Rigid. A concept c appears at a possible
world w if and only if it necessarily does so:

AppearsAt(c,w) ≡ �AppearsAt(c,w)

(707) Theorem: New Fact About Realization. We can now easily prove that if
some concept c is such that u realizes c at w and v realizes c at w′, then both w
is identical to w′ and u is identical to v.

∃c(RealizesAt(u,c,w) & RealizesAt(v,c,w′))→ (w=w′ &u=v)

Intuitively, this theorem tells us that the concept alone fixes the other parame-
ters of the condition RealizesAt(u,c,w).

(708) Lemma: Concepts of Ordinary Individuals, Realization, Appearance,
and Mirroring.346 (.1) u realizes the concept of u at the actual world; (.2) the
concept of u appears at the actual world; (.3) the concept of u mirrors the ac-
tual world:
346I’m indebted to Daniel West for pointing out that these theorems can be proved by modally

strict means.
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(.1) RealizesAt(u,cu ,wα)

(.2) AppearsAt(cu ,wα)

(.3) Mirrors(cu ,wα)

13.4.2 Possible-Individual Concepts

(709) Definition: Possible-Individual Concepts. We’ve previously introduced
(a) the notion of a concept of an ordinary individual, i.e., ConceptOf(c,u) (680,
and (b) the concept of individual u, i.e., cu (682). These are notions that were
defined without reference to possible worlds. We now introduce the notion of a
possible-individual concept as any concept that appears at some possible world:

PossibleIndividualConcept(c) ≡df ∃wAppearsAt(c,w)

It should be clear that by ‘possible-individual’ concept, we mean a concept of
an ordinary individual. One could broaden the notion of a possible-individual
concept by reinterpreting the variable u in this Chapter so that it ranges over
discernibles. But for the reasons given in (679), we’ll operate with the narrower
understanding defined above.

(710) Theorem: Concepts of Ordinary Individuals are Possible-Individual Con-
cepts. It now follows that if c is a concept of some ordinary individual u, then
c is a possible-individual concept:

∃uConceptOf (c,u)→ PossibleIndividualConcept(c)

Note that the converse fails. As an exercise, the reader should prove that there
exists a possible-individual concept c that is not a concept of any individual u,
i.e., prove ∃c(PossibleIndividualConcept(c) &¬∃uConceptOf (c,u)).347

There is an easy, but non-modally strict proof that appeals to theorem
(536)?, i.e., p ≡ wα |= p.348 Yet with some work, this theorem can be proved
by modally strict means.

(711) Theorem: The Concept of u is a Possible-Individual Concept.

347In previous work (Zalta 2000, §8.2), I used ‘IndividualConcept’ instead of ‘PossibleIndividu-
alConcept’ for the notion defined in (709). I’m indebted to Daniel West for pointing out that, if
we had preserved this usage from the 2000 paper, the claim just left as an exercise converse could
plausibly be read as: there is an individual concept that is not the concept of any individual. So
I’ve revised the definiendum in (709) to avoid this reading.
348Assume ∃uConceptOf (c,u), and suppose a be such an ordinary object, so that we know

ConceptOf (c,a). If we can show ∀F(wα |= Fa ≡ cF), then by existentially generalizing on a
and wα and applying definitions (697), (700), and (709), we’re done. But by definition (680),
ConceptOf (c,a) implies ∀F(cF ≡ Fa). Moreover, as an instance of (536)?, we know Fa ≡ wα |=Fa,
which by GEN yields ∀F(Fa ≡ wα |= Fa). So by the laws of quantified biconditionals, ∀F(cF ≡
wα |=Fa), i.e., ∀F(wα |=Fa ≡ cF).
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IndividualConcept(cu)

(712) Theorem: Rigidity of PossibleIndividualConcept and Restricted Variables.
By our conventions for restricted variables, definition (709) abbreviates Pos-
sibleIndividualConcept(x) ≡df C!x & ∃y(PossibleWorld(y) & AppearsAt(x,y)). It
should be clear that IndividualConcept(x) is a restriction condition (336). It also
follows, however, that PossibleIndividualConcept(x) is a rigid restriction condi-
tion (337), since it is a modally strict theorem that every possible-individual
concept is necessarily a possible-individual concept:

∀x(PossibleIndividualConcept(x)→ �PossibleIndividualConcept(x))

We may therefore introduce the circumflexed, lower-case italic letters ĉ, d̂, ê, . . .
as rigid restricted variables ranging over possible-individual concepts. Note
that the present theorem guarantees that the quantifiers ∀ĉ and ∃ĉ behave
classically in the sense that ∀ĉϕ → ∃ĉϕ; cf. Remark (342). Note also that
the remarks about doubly restricted variables in (514) apply to our restricted
variables for individual concepts. For example, we have two options for ex-
panding ∀ĉϕĉx, namely, either as ∀x(PossibleIndividualConcept(x) → ϕ) or as
∀c(PossibleIndividualConcept(c)→ ϕcx).

(713) Theorem: Appearance at a Unique Possible World. If we add paren-
thetical quantifiers to improve readability, we may now establish (.1) (for any
possible-individual concept ĉ), there is a unique possible world at which ĉ ap-
pears; and (.2) (for any possible-individual concept ĉ), there is a unique world
w such that necessarily, ĉ appears at w:

(.1) ∃!wAppearsAt(ĉ,w)

(.2) ∃!w�AppearsAt(ĉ,w)

By applying the Rule of Actualization to (.1) and appealing to theorem (176.2),
it follows that (.3) the world at which ĉ appears exists:

(.3) ıwAppearsAt(ĉ,w)↓

Exercise: Give a proof of (.3) without appealing to the Rule of Actualization or
theorem (176.2), but instead uses theorem (174.3) and recent theorems.

(714) Definition: The Possible World At Which a Possible-Individual Concept
Appears. The previous theorem allows us to introduce the notation wĉ to refer
to the possible world at which possible-individual concept ĉ appears:

wĉ =df ıwAppearsAt(ĉ,w)

(715) Theorem: Modally Strict Facts About wĉ. It is now a modally strict fact
that (.1) a possible-individual concept appears at the world where it appears:
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(.1) AppearsAt(ĉ,wĉ)

This theorem sounds trivial and there is a non-modally strict proof that is triv-
ial, which appeals to (145.2)?. But the modally strict proof involves (713.2),
theorem (153.1), and definition (714).

It thus follows that (.2) a possible-individual concept ĉ mirrors the possible
world where it appears:

(.2) Mirrors(ĉ,wĉ)

Cf. Leibniz 1714, Section 56, where we find (PW 187, G.vi 616):

Now this connexion or adaptation of all created things with each, and of
each with all the rest, means that each simple substance has relations which
express all the others, and that consequently, it is a perpetual living mirror
of the universe.

Here, we have to interpret Leibniz’s talk of simple substances in terms of the
individual concepts of ordinary individuals. Of course, it is not clear what to
make of Leibniz’s suggestion that a simple substance is a living mirror.

In any case, previous theorems and definitions now yield that (.3) a possible-
individual concept ĉ contains the possible world where it appears:

(.3) ĉ �wĉ

Cf. Leibniz 1686, Article 9, where we find (PW 19–20, G.iv 434):

Further, every substance is like an entire world and like a mirror of God,
or of the whole universe, which each one expresses in its own way, very
much as one and the same town is variously represented in accordance
with different positions of the observer. Thus, the universe is in a way
multiplied as many times as there are substances, . . .

So the metaphor of mirroring was used early on in Leibniz’s work. Once we
interpret Leibniz to be talking about the possible-individual concepts of ordi-
nary individuals, we see that the world where a possible-individual concept
appears (wĉ) is indeed ‘multiplied as many times as there are substances’ since
each ĉ that appears at wĉ has wĉ as a part.

(716) Theorem: Possible-Individual Concepts Contain the Concepts of En-
coded Properties. It is also a consequence of the foregoing that ĉ encodes a
property if and only if it contains the concept of that property:

ĉG ≡ ĉ � cG

(717) Theorems: Possible-Individual Concepts and Property Negation. Facts
about property negation become reflected in individual concepts as follows:
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(.1) a possible-individual concept encodes G if and only if it fails to encode the
negation of G; (.2) a possible-individual concept encodes the negation of G if
and only if it fails to encode G; (.3) a possible-individual concept contains the
concept of G if and only if it doesn’t contain the concept of the negation of G;
and (.4) a possible-individual concept doesn’t contain the concept of G if and
only if it contains the concept of the negation of G:

(.1) ĉG ≡ ¬ĉG

(.2) ĉG ≡ ¬ĉG

(.3) ĉ � cG ≡ ĉ 6� cG

(.4) ĉ 6� cG ≡ ĉ � cG

(718) Theorem: Possible-Individual Concepts and Completeness. Recall that
in (687) we defined a sense in which concepts are complete. It straightfor-
wardly follows that a possible-individual concept is complete:

Complete(ĉ)

This provides further confirmation of Article 8 of the Discourse on Metaphysics,
quoted earlier, where Leibniz says that “it is in the nature of an individual
substance, or complete being, to have a notion so complete that it is sufficient
to contain and render deducible from itself, all the predicates of the subject to
which this notion is attributed” (PW 18–19, G.iv 433).

13.4.3 Compossibility

(719) Definition: Compossibility. We say that two possible-individual con-
cepts are compossible just in case they appear at the same possible world:

Compossible(ĉ, ê ) ≡df ∃w(AppearsAt(ĉ,w) & AppearsAt(ê,w))

(720) Lemma: A Common Possible World. It follows from the previous defi-
nition that possible-individual concepts ĉ and ê are compossible if and only if
the possible world where ĉ appears is identical to the one where ê appears:

Compossible(ĉ, ê ) ≡wĉ = wê

(721) Theorems: Compossibility is an Equivalence Condition on Possible-Indi-
vidual Concepts. It follows from the previous lemma that compossibility is a
reflexive, symmetric, and transitive condition with respect to possible-indivi-
dual concepts:

(.1) Compossible(ĉ, ĉ)
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(.2) Compossible(ĉ, ê )→ Compossible(ê, ĉ)

(.3) Compossible(ĉ, d̂ ) & Compossible(d̂, ê)→ Compossible(ĉ, ê)

Since compossibility is an equivalence condition with respect to possible-indi-
vidual concepts, we know that the latter are partitioned. In light of lemma
(720), all of the possible-individual concepts that are compossible with one
another appear at a common possible world.

13.4.4 Counterparts

(722) Definition: Counterpart Of. We say that ê is a counterpart of ĉ just in case
there is an ordinary individual u and there are possible worlds w and w′ such
that u realizes ĉ at w and u realizes ê at w′:

CounterpartOf (ê, ĉ) ≡df ∃u∃w∃w′(RealizesAt(u, ĉ,w) & RealizesAt(u, ê,w′))

For example, if Alexander is an ordinary object that realizes an individual con-
cept ĉ at the actual world and realizes an individual concept ê at some non-
actual possible world, then ê is a counterpart of ĉ.

(723) Theorem: Counterpart Of is an Equivalence Condition on Possible-Indi-
vidual Concepts. We now have (.1) a possible-individual concept is a counter-
part of itself; (.2) if ê is a counterpart of ĉ, then ĉ is a counterpart of ê; and (.3)
if ê is a counterpart of d̂, and d̂ is a counterpart of ĉ, then ê is a counterpart of
ĉ:

(.1) CounterpartOf (ĉ, ĉ)

(.2) CounterpartOf (ê, ĉ)→ CounterpartOf (ĉ, ê)

(.3) CounterpartsOf (ê, d̂) & CounterpartOf (d̂, ĉ)→ CounterpartOf (ê, ĉ)

(724) Theorem: Counterparts and Realization. It follows that if ê is a coun-
terpart of ĉ, then there is a unique ordinary individual that realizes ĉ at some
world w and that realizes ê at some world w′:

CounterpartOf (ê, ĉ) ≡ ∃!u∃w∃w′(RealizesAt(u, ĉ,w) & RealizesAt(u, ê,w′))

13.4.5 World-Relative Concepts of Individuals

(725) Definition: World-Relative Concepts of Ordinary Individuals. Let us say
that c is a concept of u at w just in case c encodes exactly the properties that u
exemplifies at w:

ConceptOfAt(c,u,w) ≡df ∀F(cF ≡ w |=Fu)
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Note that we could have used RealizesAt(u,c,w) as the definiens for the definien-
dum ConceptOfAt(c,u,w), since the definiens of RealizesAt(u,c,w) is equivalent
to the one above; they differ only by commuting the (quantified) biconditional.
Though the linguistic notion of focus doesn’t apply to the formulas in our sys-
tem, it nevertheless has some application to the regimented natural language
we use to read those formulas. When we read the above definiens, the focus
is on the concept c and the properties it encodes, whereas when we read the
definiens of RealizesAt(u,c,w), the focus is on u and the properties it exempli-
fies at w.

(726) Theorems: Existence of World-Relative Concepts of Individuals. It fol-
lows that (.1) there is a concept of u at w; (.2) there is a unique concept of u at
w; and (.3) the concept of u at w exists:

(.1) ∃cConceptOfAt(c,u,w)

(.2) ∃!cConceptOfAt(c,u,w)

(.3) ıcConceptOfAt(c,u,w)↓

Strictly speaking, these are conditional existence claims, given the presence of
the restricted variables u and w. But since we know that ordinary individuals
exist, by (227.1) and the T schema, and that there are at least two possible
worlds (547.4), we can derive unconditional existence claims.

(727) Definition: Notation for the Concept of u at w. We henceforth use the
notation cwu to denote the concept of u at w:

cwu =df ıcConceptOfAt(c,u,w)

This introduces cwu as a binary functional term with the free restricted variables
u and w.

(728) Theorems: cwu is Strictly Canonical. Clearly, it follows that (.1) cwu is
(identical to) a canonical concept:

(.1) cwu = ıc∀F(cF ≡ w |=Fu)

If we let ϕ be the formula w |=Fu, then it follows that ϕ is a rigid condition on
properties, i.e., that (.2) necessarily, every property such that ϕ is necessarily
such that ϕ:

(.2) �∀F(w |=Fu → �w |=Fu)

So cwu is (identical to) a strictly canonical concept, by (260.2). Hence, by (261.2),
it follows that (.3) cwu is a concept that encodes exactly those properties F that
u exemplifies at w:
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(.3) C!cwu &∀F(cwu F ≡ w |=Fu)

(729) Lemma: Basic Facts About World-Relative Concepts of Ordinary Indi-
viduals. (.1) u realizes the-concept-of-u-at-w at w; (.2) the concept of u at w
appears at w; (.3) the concept of u at w is an individual concept; (.4) the con-
cept of u at w mirrors w; and (.5) the concept of u at w is complete:

(.1) RealizesAt(u,cwu ,w)

(.2) AppearsAt(cwu ,w)

(.3) PossibleIndividualConcept(cwu )

(.4) Mirrors(cwu ,w)

(.5) Complete(cwu )

These are all modally strict.

(730) Theorem: Equivalence of Possible-Individual Concepts and World-Rela-
tive Concepts of Individuals. From the definitions of possible-individual con-
cept and world-relative concept of an individual, we may prove that (.1) a con-
cept c is a possible-individual concept iff there is some ordinary object u and
possible world w such that c is a concept of u at w; and (.2) a concept c is a
possible-individual concept iff there is some and ordinary object u and possi-
ble world w such that c is identical to the concept of u at w:

(.1) PossibleIndividualConcept(c) ≡ ∃u∃wConceptOfAt(c,u,w)

(.2) PossibleIndividualConcept(c) ≡ ∃u∃w(c = cwu )

(731) Lemma: The Concept of an Individual at the Actual World. It is a basic
fact about the notions that we’ve defined so far that the concept of u at the
actual world wα is identical to the concept of u:

c
wα
u =cu

While it is easy to give a non-modally strict proof of this theorem, the interest
is in the fact that it is capable of a modally strict proof.

(732) Lemmas: Further Facts About World-Relative Concepts of Individuals.
The following 5 lemmas are also immediately forthcoming: (.1) the concept of
u at w encodes a property G iff it contains cG; (.2) u exemplifies G at w iff the
concept of u at w contains cG; (.3) if the concept of u at w is identical to the
concept of v at w, then u and v are identical; (.4) if the concept of u at w is
identical to the concept of u at w′, then w=w′; and (.5) if the concept of u at w
is identical to the concept of v at w′, then w=w′ and u=v:
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(.1) cwuG ≡ cwu � cG

(.2) w |=Gu ≡ cwu � cG

(.3) cwu = cwv → u=v

(.4) cwu = cw
′

u → w=w′

(.5) cwu = cw
′

v → (w=w′ &u=v)

(733) Theorem: Compossibility, Counterparts, and World-Relative Concepts
of Individuals. Some of the most important facts about world-relative concepts
of individuals are: (.1) the concept of u at w and the concept of v at w are
compossible; (.2) ĉ and ê are compossible if and only if there are an ordinary
individuals u and v and a possible world w such that ĉ is the concept of u at w
and ê is the concept of v at w; (.3) the-concept-of-u-at-w′ is a counterpart of
the-concept-of-u-at-w; and (.4) ê is a counterpart of ĉ if and only if there is an
ordinary individual u and there are worlds w and w′ such that ĉ is the concept
of u at w and ê is the concept of u at w′:

(.1) Compossible(cwu ,c
w
v )

(.2) Compossible(ĉ, ê) ≡ ∃u∃v∃w(ĉ=cwu & ê =cwv )

(.3) CounterpartOf (cw
′

u ,c
w
u )

(.4) CounterpartOf (ê, ĉ) ≡ ∃u∃w∃w′(ĉ=cwu & ê =cw
′

u )

When Leibniz speaks of ‘the several Sextuses’ and ‘the many possible Adams’,
we take him to be referring to the world-relatized concepts of these individ-
uals. The world-relativized concepts of Sextus are counterparts, as are the
world-relativized concepts of Adam. It will soon become apparent that (.3)
plays an important role in a fundamental theorem of Leibnizian modal meta-
physics.

(734) Remark: Compossibility and Leibniz’s Theodicy. Though the theory
of individual concepts and possible worlds articulated thus far is completely
silent about the existence of God, it nevertheless preserves an element of Leib-
niz’s theodicy, namely, his conception of the work that God would have had to
undertake in order to ‘create’ the actual world. Leibniz makes it clear that God
had to first evaluate all the possible worlds to determine which one should be
actualized. But our works shows that to evaluate the possible worlds, all God
had to do was to inspect an arbitrarily chosen possible-individual concept from
each group of compossible such concepts. That one inspection alone reveals all
the facts about the world where that possible-individual concept appears, since
every possible-individual concept of the group mirrors that world.
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Note that our metaphysics identifies the actual world only as the possible
world that encodes, in the sense of (295), all and only the true propositions. So,
having decided that some particular possible world w was the best, God could
‘actualize’ w by making it the case that every proposition encoded in w is true.
This, in effect, creates a physical universe, as defined in (546). Indeed, when
inspecting the possible worlds by examining an arbitrary possible-individual
concept from each group of compossible such concepts, God could have just
‘actualized’ the possible-individual concept ĉ that was chosen for the determi-
nation of whether wĉ was the best. To do so, God would have to make it the
case that there exists an ordinary object which in fact exemplifies all the prop-
erties that ĉ encodes. In doing that, God would as a consequence actualize wĉ,
for when God made it the case that there is an ordinary object that exemplifies
the properties ĉ encodes, God would have also made it the case that all of the
propositions true in wĉ are true, since ĉ mirrors wĉ (715.2).

(735) Remark: Another Reason Why Concepts Are Not Properties. It is worth
mentioning here that another reason not to identify concepts as properties is
that such a view gets the Leibnizian metaphysics of individual concepts wrong.
It is central to Leibniz’s view of individual concepts that for each ordinary
individual u and possible world w, a unique possible-individual concept cor-
responds to u at w. But if concepts are analyzed as properties, and possible-
individual concepts become a special kind of property, then uniqueness will
fail unless the property theorist requires that properties be identical when nec-
essarily equivalent, i.e., that �∀x(Fx ≡ Gx)→ F=G.

To see why, suppose one were to define:

F is a possible-individual concept of u at w if and only if both (a) F nec-
essarily implies all of the properties that u exemplifies at w, and (b) u
uniquely exemplifies F at w.

To see the problem with this definition, consider the concept of Adam. Since
the necessary equivalence of properties doesn’t imply their identity, one can’t
prove that for every world w, there is a unique possible-individual concept of
Adam atw, as defined above. For suppose property P is the possible-individual
concept of Adam at w. Now suppose Q is a property necessarily equivalent to,
but distinct from, P . Then Q is an individual concept of Adam, by the follow-
ing reasoning:

• Q satisfies clause (a) of the definition. Since P and Q are necessarily
equivalent, then they necessarily imply the same properties by (443.3).
So if P necessarily implies all the properties Adam exemplifies at w, then
so does Q.

• Q satisfies clause (b) of the definition. Since Adam uniquely exemplifies
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P at w, and P and Q are necessarily equivalent, then Adam uniquely
exemplifies Q at w (we leave the proof as an exercise).

Since necessary equivalence doesn’t imply identity, and there are properties
like Q that are necessarily equivalent to P , then P isn’t a unique possible-
individual concept of Adam at w. Thus, the property theorist faces a dilemma:
either require that necessarily equivalent properties are identical and derive
the existence of a unique concept of Adam at w or omit the requirement that
necessarily equivalent properties are identical and give up the claim that there
is a unique concept of Adam at w. Such a dilemma is not faced on the present
analysis.

13.4.6 Fundamental Theorems

(736) ?Theorem: A Fundamental Theorem of Leibnizian Modal Metaphysics.
It seems reasonable to suggest that Leibniz’s modal metaphysics is driven by
the following conditionals (even though Leibniz never explicitly formulates
them as such), namely, (.1) if an ordinary individual u exemplifies F but might
not have, then both (a) the concept of u contains the concept of F and (b) there
is a possible-individual concept ĉ such that ĉ is a counterpart of the concept of
u, ĉ doesn’t contain the concept of F, and ĉ appears at a possible world distinct
from the actual world; and (.2) if an ordinary individual u doesn’t exemplify F
but might have, then both (a) the concept of u doesn’t contain the concept of F
and (b) there is a possible-individual concept ĉ such that ĉ is a counterpart of
the concept of u, ĉ does contain the concept of F, and ĉ appears at a possible
world distinct from the actual world:

(.1) Fu&♦¬Fu→
cu�cF & ∃ĉ(CounterpartOf (ĉ,cu) & ĉ 6�cF & ∃w(w,wα & AppearsAt(ĉ,w)))

(.2) ¬Fu&♦Fu→
cu 6�cF & ∃ĉ(CounterpartOf (ĉ,cu) & ĉ�cF & ∃w(w,wα & AppearsAt(ĉ,w)))

If we suppose our theory has been applied, then as an example of (.1), we have:
if Alexander is king but might not have been, then the concept of Alexander
contains the concept of being a king and there is a possible-individual concept
that is a counterpart of the concept of Alexander, that doesn’t contain the con-
cept of being a king, and that appears at some world other than the actual world.
As an example of (.2), we have: if Alexander fails to be a philosopher but might
have been, then the concept of Alexander fails to contain the concept of being
a philosopher and there is a possible-individual concept that is a counterpart of
the concept of Alexander, that does contain the concept of being a philosopher,
and that appears at some world other than the actual world.
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(737) ?Theorems: Biconditional Fundamental Theorems. Though we’ve la-
beled the preceding theorem a fundamental theorem of Leibnizian modal meta-
physics, it is reasonable to suggest that, strictly speaking, a fundamental the-
orem so-called should be a biconditional. Though the converses of the pre-
ceding theorems are indeed derivable, a study of the matter reveals that these
converses have antecedents that are stronger than they need to be. We shall
see, for example, that one can derive Fu& ♦¬Fu from the simpler conjunction
cu �cF & ∃ĉ(CounterpartOf (ĉ,cu) & ĉ 6�cF). This shows how much information
is packed into the notions of concept containment and counterparts.

Consequently, we can formulate biconditional fundamental theorems as
follows: (.1) an ordinary individual u exemplifies F but might not have if and
only if both (a) the concept of u contains the concept of F and (b) there is a
possible-individual concept ĉ such that ĉ is a counterpart of the concept of u
and ĉ doesn’t contain the concept of F; and (.2) an ordinary individual u doesn’t
exemplify F but might have if and only if both (a) the concept of u doesn’t con-
tain the concept of F and (b) there is a possible-individual concept ĉ such that
ĉ is a counterpart of the concept of u and ĉ does contain the concept of F:

(.1) Fu&♦¬Fu ≡ cu�cF & ∃ĉ(CounterpartOf (ĉ,cu) & ĉ 6�cF)

(.2) ¬Fu&♦Fu ≡ cu 6�cF & ∃ĉ(CounterpartOf (ĉ,cu) & ĉ�cF)

These theorems constitute Leibnizian truth conditions, respectively, for the claim
that Fu is contingently true and the claim that Fu is contingently false.

(738) Theorems: Related, Modally Strict Theorems. It is interesting to note
that there are several ways of adjusting the formulation of the fundamental
theorems so as to produce modally strict versions. The most basic of these
ways is to relativize both sides of the conditionals in (736)?, and both sides
of the biconditionals in (737)?, to a possible world. This yields the facts that
(.1) if it is true at possible world w that an ordinary individual u exemplifies
F but might not have, then (a) the concept of u at w contains the concept of
F and (b) there is a possible-individual concept ĉ such that ĉ is a counterpart
of the concept of u-at-w, ĉ doesn’t contain the concept of F, and ĉ appears at a
possible world distinct from w; and (.2) if it is true, at possible world w, that
an ordinary individual u doesn’t exemplify F but might have, then both (a) the
concept of u at w doesn’t contain the concept of F and (b) there is a possible-
individual concept ĉ such that ĉ is a counterpart of the concept of u-at-w, ĉ does
contain the concept of F, and ĉ appears at a possible world distinct from w; (.3)
it is true, at possible world w, that an ordinary individual u exemplifies F but
might not have if and only if (a) the concept of u at w contains the concept of
F and (b) there is a possible-individual concept ĉ such that ĉ is a counterpart
of the concept of u-at-w and ĉ doesn’t contain the concept of F; and (.4) it is
true, at possible world w, that an ordinary individual u doesn’t exemplify F
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but might have if and only if both (a) the concept of u at w doesn’t contain the
concept of F and (b) there is a possible-individual concept ĉ such that ĉ is a
counterpart of the concept of u-at-w and ĉ does contain the concept of F:

(.1) w |= (Fu&♦¬Fu)→
cwu �cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ 6�cF & ∃w′(w′,w & AppearsAt(ĉ,w′)))

(.2) w |= (¬Fu&♦Fu)→
cwu 6�cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ�cF & ∃w′(w′,w & AppearsAt(ĉ,w′)))

(.3) w |= (Fu&♦¬Fu) ≡ cwu �cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ 6�cF)

(.4) w |= (¬Fu&♦Fu) ≡ cwu 6�cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ�cF)

Of course, given our discussion of Leibniz’s notion of hypothetical necessity, it
may be that Leibniz would not have felt the need for modally strict versions of
the fundamental theorems.

Exercises: Show that the following versions of (736.1)? and (736.2)? are modal-
ly strict:

(.1) ♦(Fu&♦¬Fu)→∃w(cwu �cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ 6�cF &
∃w′(w′,w & AppearsAt(ĉ,w′))))

(.2) ♦(¬Fu&♦Fu)→∃w(cwu 6�cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ�cF &
∃w′(w′,w & AppearsAt(ĉ,w′))))

Also, show that the following versions of (736.1)? and (736.2)? are modally
strict:

(.3) A(Fu&♦¬Fu)→ c
wα
u �cF & ∃ĉ(CounterpartOf (ĉ,cwαu ) & ĉ 6�cF &

∃w′(w′,wα & AppearsAt(ĉ,w′)))

(.4) A(¬Fu&♦Fu)→ c
wα
u 6�cF & ∃ĉ(CounterpartOf (ĉ,cwαu ) & ĉ�cF &

∃w′(w′,wα & AppearsAt(ĉ,w′)))

Now show that the following versions of (737.1)? and (737.2)? are modally
strict:

(.5) ♦(Fu&♦¬Fu) ≡ ∃w(cwu �cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ 6�cF))

(.6) ♦(¬Fu&♦Fu) ≡ ∃w(cwu 6�cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ�cF))

Also, show that the following versions of (737.1)? and (737.2)? are modally
strict:

(.7) A(Fu&♦¬Fu) ≡ c
wα
u �cF & ∃ĉ(CounterpartOf (ĉ,cwα

u ) & ĉ 6�cF)

(.8) A(¬Fu&♦Fu) ≡ c
wα
u 6�cF & ∃ĉ(CounterpartOf (ĉ,cwα

u ) & ĉ�cF)
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(739) Remark: Recall the skeptical passage in Stalnaker 1976 (65) quoted in
Remark (510):

According to Leibniz, the universe—the actual world—is one of an infi-
nite number of possible worlds existing in the mind of God. God created
the universe by actualizing one of these possible worlds—the best one. It
is a striking image, this picture of an infinite swarm of total universes,
each by its natural inclination for existence striving for a position that can
be occupied by only one, with God, in his infinite wisdom and benevo-
lence, settling the competition by selecting the most worthy candidate. But
in these enlightened times, we find it difficult to take this metaphysical
myth any more seriously than the other less abstract creation stories told
by our primitive ancestors. Even the more recent expurgated versions of
the story, leaving out God and the notoriously chauvinistic thesis that our
world is better than all the rest, are generally regarded, at best, as fanciful
metaphors for a more sober reality.

By all means, let us leave out God and the chauvinistic thesis that our world
is better than all the rest. I hope the foregoing effort at reconstructing Leib-
niz’s views shows that they were not mere fanciful metaphors. The importance
of the theorems in this final section shouldn’t be understated. An unanalyzed
truth to the effect that an ordinary object exemplifies a property but might not
have (or that an ordinary object doesn’t exemplify a property but might have),
which is represented and regimented in terms of our modern notions of exem-
plification (Fx), negation (¬) and possibility (♦), implies a complex web of facts
in Leibniz’s modal metaphysics, involving the notions of: concepts (C!), con-
cept containment (�), possible worlds (w), identity (=), concepts of individuals
(cu), possible-individual concepts (ĉ), concepts of properties (cF), appearance,
and counterpart of. And this list doesn’t include the notions in terms of which
these notions are defined, such as encoding (xF), abstract objects (A!), situa-
tions, truth in a situation (|=), and propositional properties ([λy p]).

Moreover, these theorems have powerful consequences when the theory is
applied. Once we start extending our theory with familiar, uncontroversial
truths about the properties that ordinary objects exemplify (or fail to exem-
plify) contingently, an elaborate network of truths involving primitive and de-
fined notions emerges and describes an elegant and precise metaphysical pic-
ture that articulates both the structural aspects of Leibniz’s view of the mind
of God (if there be such) as well as some (though not all) of Lewis’s views about
counterparts, even while preserving Kripkean intuitions that ground and an-
chor the structure by means of the properties ordinary individuals exemplify
at each possible world.



Chapter 14

Natural Numbers
with Uri Nodelman

349

14.1 Philosophical Context

What are the natural numbers? Can the natural numbers number absolutely
anything, as Frege assumed, or is it sufficient, for the needs of science, if the
natural numbers can only count the objects that might be in the natural world?
Is there an infinity of natural numbers and, if so, can this be established in
some way other than by stipulation? What primitive notions and axioms do
we need to prove the basic postulates governing natural numbers? Must we
assume primitive mathematical notions and mathematical axioms for the proof
of these postulates, or can we define the notions involved in the postulates non-
mathematically and derive the postulates from more general principles?

We try to answer these questions in the present chapter. We begin by re-
calling Remark (309), in which we distinguished natural from theoretical math-
ematics. In that Remark, it was noted that true ordinary statements of number
(“there are eight planets”, etc.) constitute a body of pretheoretical claims that
are assertible without assuming any explicit mathematical theory of numbers.
These statements of number are therefore part of natural mathematics. They
are to be distinguished from the statements mathematicians make when as-
serting either the axioms or theorems of some mathematical theory, such as
Dedekind/Peano number theory, set theory, group theory, etc. These latter are
part of theoretical mathematics.

In this chapter, we shall analyze the natural numbers as a part of natu-
ral mathematics rather than theoretical mathematics. As we shall see, there
is a tight connection between the natural numbers and true statements about

349Copyright © 2021 by Edward N. Zalta and Uri Nodelman
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number assertible in pre-theoretic, ordinary language. To articulate this con-
nection, we shall adapt some of the techniques that Frege developed to define
the natural numbers and to derive the postulates and principles that govern
them. However, whereas Frege thought that the natural numbers are cardi-
nal numbers that count all the objects that exemplify a property, our analysis
takes them to have a more limited range of application; in the present system,
the natural numbers are natural cardinals that count the discernible objects, as
these were defined in Section 9.11.3. Our view is that a precondition of count-
ing is that the things being counted are discernible.350 We would argue that
this is sufficient for the needs of the natural sciences. On our analysis, the natural
numbers emerge as abstractions from the patterns of properties exemplified
by discernible objects – this is what makes them natural numbers.

Moreover, we shall extend the present theory of abstract objects with an in-
tuitive, logico-metaphysical axiom that uses no mathematical primitives. The
resulting theory is capable of (a) defining the natural numbers as abstract ob-
jects, and (b) deriving the number-theoretic postulates as theorems. In par-
ticular, the central notions of second-order Peano Arithmetic (‘PA2’) will be
defined and the standard postulates of that theory will be derived as theorems,
including a Recursion Theorem that grounds all the (primitive) recursive func-
tions in relation comprehension.

Consequently, this work is to be contrasted with that in Chapter 15, where
we use rather different methods to analyze the language, axioms, and theo-
rems of theoretical mathematics. Theoretical mathematics includes the various
number theories, set theories, algebras and group theories, etc., and so includes
any theory that assumes mathematical primitives and axioms. Thus, PA2 will
make an appearance in the next chapter as well as in this one, though in the
next chapter, its primitive notions will not be analyzed using Frege’s methods,
but rather using techniques that allow us to analyze any system of theoretical
mathematics.

In this chapter, however, we formulate answers to the questions posed at
the outset. Moreover, we show that the existence of an infinite cardinal can
be proved without appealing to any mathematical primitives or mathematical
axioms. Thus, we shall be able to answer what Heck (2011, 152) calls the fun-
damental epistemological question of the philosophy of arithmetic, namely,
“What is the basis of our knowledge of the infinity of the series of natural
numbers?” Our answer will be that such knowledge can be derived from the
logico-metaphysical principles governing abstract objects generally; no math-
ematics has to be assumed.

350As we’ll see later, one can ‘count’, in some sense, indiscernibles by using logically-defined
‘numerical’ quantifiers, but these won’t correspond to statements of number. We’ll discuss this
further in (847) below.
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The views developed in this and the next chapter together bear some sim-
ilarity to the famous quip attributed to Leopold Kronecker by his students,
namely, that “God made the whole numbers; all the others are the work of
men”.351 But instead of appealing to God as the source of the natural numbers,
we find their origins in the principles governing abstract individuals.352

(740) Remark: Second-Order Peano Arithmetic and the Dedekind/Peano Pos-
tulates. As we just mentioned, one of the goals of this chapter is to derive PA2.
To do this, we’ll focus first, and at length, on deriving the Dedekind/Peano
postulates following Frege. Both Dedekind 1888 and Peano 1889 contain state-
ments of these basic postulates. We formulate them below, though the presen-
tation doesn’t exactly match that of either author.353 To assert the postulates
in a logically perspicuous way, three primitives are needed. They are:

• the individual Zero, denoted by the constant 0

• the property being a number, denoted by the unary relation constant N

• the binary relation successor of, denoted by the binary relation constant
S, or the converse relation predecessor of, denoted by the binary relation
constant P

So in what follows, we understand formulas of the form Nx as asserting that x
exemplifies being a number, formulas of the form Sxy as asserting that x is an
an immediate successor of y, and formulas of the form P xy as asserting that x is

351This is reported by H. Weber, who attributes it to Kronecker in Weber 1893 (15). The passage
in Weber attributing the quote to Kronecker is:

Manche von Ihnen werden sich des Ausspruchs erinnern, den er in einem Vortrag
bei der Berliner Naturforscher-Versammlung im Jahre 1886 that [sic] “Die ganzen
Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk”.

As far as we’ve been able to discover, Kronecker never published this particular statement.
352Similarly, we avoid Bishop’s (1967, 2) endorsement of Kronecker’s appeal to God (as well as to

the primitive concepts of a unit and adjunction):

The primary concern of mathematics is number, and this means the positive inte-
gers. . . . The positive integers and their arithmetic are presupposed by the very
nature of our intelligence and, we are tempted to believe, by the very nature of in-
telligence in general. The development of the positive integers from the primitive
concept of the unit, the concept of adjoining a unit, and the process of mathemat-
ical induction carries complete conviction. In the words of Kronecker, the positive
integers were created by God.

353Dedekind 1888 (§71) stipulates what must obtain for a set N to be ‘simply infinite’ or induc-
tive, namely, N must contain an element 1 and be a subset of some set S for which there is a
function ϕ on S such that (a) ϕ maps N into N , (b) N is the minimal closure of the unit set {1} in
S under ϕ, (c) 1 is not the value of ϕ for any member of N , and (d) ϕ is a one-to-one function. See
Reck 2016 (Section 2.2), where he notes “it is not hard to show that these Dedekindian conditions
are a notational variant of Peano’s axioms for the natural numbers.”
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an immediate predecessor of y. Also, for present purposes, we may read Sxy as
x succeeds y and read P xy as x precedes y.

We can state the Dedekind/Peano postulates in terms of the above primi-
tives as follows, wherem,n,k are restricted variables ranging over the assumed
domain of numbers; for each of the axioms below stated in terms of succeeds,
we give an alternative statement using precedes:

1. Zero is a number.
N0

2. Zero doesn’t succeed any number.
¬∃nS0n

No number precedes Zero.
¬∃nP n0

3. If a number k succeeds numbers n and m, then n =m.
∀n∀m∀k(Skn& Skm→ n=m)

If numbers n and m precede a number k, then n =m.
∀n∀m∀k(P nk& Pmk→ n=m)

4. Every number is succeeded by some number.
∀n∃mSmn

Every number precedes some number.
∀n∃mPnm

5. Mathematical Induction: If (a) Zero exemplifies F and (b) Fm implies Fn
whenever n succeeds m, then every number exemplifies F.
F0 & ∀n∀m(Snm→ (Fm→ Fn))→∀nFn

If (a) Zero exemplifies F and (b) Fn implies Fm whenever n precedes m,
then every number exemplifies F.
F0 & ∀n∀m(P nm→ (Fn→ Fm))→∀nFn

In addition, Boolos (1995, 293; 1996, 275), and Heck (2011, 288) include the
following among the Dedekind/Peano postulates:

6. If x succeeds n, x is a number.
∀n∀x(Sxn→Nx)

If n precedes x, x is a number.
∀n∀x(P nx→Nx)



14.1. PHILOSOPHICAL CONTEXT 693

7. If numbers m and k succeed a number n, then m=k.
∀n∀m∀k(Smn& Skn→m=k)

If a number n precedes numbers m and k, then m = k.
∀n∀m∀k(P nm& P nk→m=k)

All seven postulates will be derived as theorems of the natural numbers in
what follows.

As noted previously, our derivation of these postulates will involve some
of the methods that Frege developed. More specifically, we adapt some of
the methods used in the proof of Frege’s Theorem, which is the claim that
the Dedekind/Peano postulates for number theory are derivable from a single
principle (known as Hume’s Principle) in second-order logic. Frege’s Theorem
and Hume’s Principle are discussed further below, but before we turn to that
discussion, it will be useful to have some definitions and a theorem before us.

Once we’ve established the Dedekind/Peano postulates as theorems, we’ll
subsequently explore the theory of numbers that emerges within an object-
theoretic background. This will lead us to a full-scale derivation of PA2. This
latter theory extends the Dedekind/Peano postulates with the recursive prin-
ciples of addition and multiplication, and a general comprehension principle
for asserting the existence of numerical properties for any condition on the
natural numbers:

n+ 0 = n
n+m′ = (n+m)′

n× 0 = 0
n×m′ = n+ (n×m)

∃F∀n(Fn ≡ ϕ), where ϕ is any formula of the language of PA2 in which F
doesn’t occur free.

We’ll derive these principles as theorems of object theory.

(741) Definition: Correlates One-to-One. Let us say that a binary relation R
correlates properties F and G one-to-one, written R | : F 1-1←→ G, just in case (a) R,
F, and G exist, (b) each object exemplifying F (hereafter F-object) is R-related
to a unique G-object, and (c) each G-object is such that a unique F-object is
R-related to it:

R | :F 1-1←−→ G ≡df

R↓&F↓&G↓&∀x(Fx→∃!y(Gy &Rxy)) & ∀y(Gy→∃!x(Fx&Rxy))

Note that the three existence conditions at the beginning of the definiens en-
sure that the definiendum will be true only when terms instancing the defini-
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tion all have denotations, so that the definiendum acts like atomic formula.354

It is important to remember here that when R correlates F and G one-to-
one, the definition: (a) implies nothing about whether R relates F-objects to
any G-objects, (b) implies nothing about whether R relates F-objects to any
G-objects, and (c) implies nothing about whether R relates F-objects to any
G-objects. For all we know, R might relate an F-object to a single G-object
and to several G-objects. Or R might relate an F-object to both a G-object and
to a G-object. None of these circumstances are ruled out when R correlates
F and G one-to-one. It would serve well to give an example of a relation R
that correlates F and G one-to-one even though R relates various F-objects and
G-objects to one another.355

Example 1. Suppose that there are exactly seven individuals a – g,
and that the relevant facts about them are depicted in Figure14.1:
a and b are the only F-objects; c and d are the only G-objects; e
exemplifies F; f and g exemplify G; and Rac, Rag, Rbd, Rec, and
Ref . Then R | :F 1-1←→ G.

(742) Remark: Digression on the Difference with Frege’s Definition in 1884.
One of the leading ideas in 1884 is that concepts F and G are equinumerous
just in case there is a relation R that correlates F and G one-to-one. But stu-
dents of Frege may observe that our definition of R correlates F and G one-to-

354For those who have skipped the discussions of the theory of definitions, the definition that
follows in the text is governed by Convention (17.2). That convention tells us that the following
definition gives rise to well-formed instances when any terms substitutable for the free variables
are so substituted, and when any alphabetic variant of the definiens replaces the definiens. With-
out this Convention, we would, strictly speaking, have to formulate the definition using metavari-
ables. To see how this reduces cognitive load, suppose Π and Π′ are metavariables ranging over
unary relation terms and Π2 is a metavariable ranging over any binary relation term. And suppose
Π2, Π, or Π′ don’t contain free occurrences of the individual variables ν and ν′. Then, without
our Convention,; the definition in the text would have to be formulated as:

Π2 | :Π 1-1←−→Π′ ≡df
Π2↓&Π↓&Π′↓&∀ν(Πx→∃!ν′(Π′ν′ &Π2νν′)) & ∀ν′(Π′y→∃!ν(Πν &Π2νν′))

By casting the definition in the text with object-language variables, the definition becomes much
easier to read and to understand. Moreover, it yields the same identities and truth conditions
whenever it is instanced by denoting terms. See the discussion in Remarks (27) and (28).

Note also that the clause R↓ is required for the case where F and G are instanced by necessarily
false properties. For if F and G are necessarily false, but R is instanced by a non-denoting relation
term, the two main conjuncts of the definiens would be true by failure of the antecedent, and thus
the definiendum would be derivable despite the fact that the term instancing R doesn’t denote.
See the discussion in (36).
355For the purposes of the following illustration (and those that we’ll construct later in the chap-

ter), we assume that F and G do not overlap—i.e., there is no object x such that Fx &Gx. Also,
we focus our attention on a few particular F-objects and a few particular G objects. That is, we do
not concern ourselves with depicting the overlap between F and G. And we do not bother to say
explicitly that e is a G object and that f and g are F objects.
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Figure 14.1: R correlates F and G one-to-one.

one in (741) differs from the one Frege gives in the Grundlagen of 1884. Our
definition is weaker than his. In 1884 (§§71,72), Frege takes R to correlate F
and G one-to-one just in case the following four conditions hold:

(.1) each F-object is R-related to some G-object, i.e., ∀x(Fx→∃y(Gy &Rxy))

(.2) each G-object has an F-object R-related to it, i.e., ∀y(Gy→∃x(Fx&Rxy))

(.3) R is functional, i.e., ∀x∀y∀z(Rxy &Rxz→ y = z)

(.4) R is one-to-one, i.e., ∀x∀y∀z(Rxz&Ryz→ x = y)

This is stronger than the definition of correlates one-to-one that we introduced
in (741). The definition in (741) doesn’t require R to be functional globally
and doesn’t require R to be one-to-one globally. For example, we saw that the
relation R in Figure 14.1 correlates F and G one-to-one in the sense of (741).
But R fails to be functional globally, since it relates e to both c and f and a to
both c and g. And R fails to be one-to-one globally, since it relates both e and a
to c. So, R in Figure 14.1 fails to correlate F and G one-to-one in Frege’s sense,
since it fails the first two clauses of his definition.

Despite this difference, our weaker definition is all that is needed to derive
the Dedekind/Peano postulates — as long as R meets the definition of (741),
there is, intuitively, a one-to-one correspondence between the F-objects and
the G-objects. If we restate the definition while temporarily assuming some
mathematics just for the purpose of illustration, then we could say that our
notion of correlates one-to-one is sufficient to partition the domain of properties
into equivalence classes of equinumerous properties.356 Finally, Frege’s defi-
nition of equinumerosity changes slightly in 1893 (see Heck 1993, 586; 2011,

356Clearly, if R correlates F and G one-to-one in Frege’s sense, then R correlates F and G in our
sense. Moreover, if R correlates F and G one-to-one in our sense, there is an R′ that correlates
F and G in Frege’s sense. Choose R′ to be [λxy Rxy & Fx&Gy], i.e., the restriction of R to those
F-objects in its domain and to those G-objects in its range. So, while our definition of what it takes
for some relation R to correlate F and G one-to-one is weaker, the same Fs and Gs can always be
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47). In what follows, we’ll compare our definition with his 1893 definition in
footnotes rather than in a Remark.

(743) Definitions: Relation R Maps F to G. We now say that (.1) R maps F to G
just in case (a) R, F, and G exist, and (b) each F-object is R-related to a unique
G-object:

(.1) R | :F −→ G ≡df R↓&F↓&G↓&∀x(Fx→∃!y(Gy &Rxy))

Cf. Frege 1893, §38.357

A caution analogous to the one for definition (741) is in order. Though
we’ll define functions, domains, and codomains in Section 14.8.2, note that the
definition of R | : F −→ G doesn’t imply that that R is a function from domain
F to codomain G, for it allows R to additionally relate both F-objects to other
things (including G-objects), and relate F-objects to other things (including G
and G-objects). An example will make it clear why we’ve posted this caution:

Example 2. Suppose that there are exactly seven individuals a – g,
and that the relevant facts about them are depicted in Figure 14.2:
a and b are the only F-objects; c and d are the only G-objects; e
exemplifies F; f and g exemplify G; and Rad, Rag, Rbd, Rec, and
Ref . Then R | :F −→ G.

So it is important to keep in mind that when R | : F −→ G, the definition tells
us only some of what R may do and, indeed, only some of what R may do with
respect to F-objects and with respect to G-objects.

We next say (.2) Rmaps F to G one-to-one, written R | :F 1-1−→ G, just in case R
maps F to G and for any F-objects x and y and any G-object z, if R relates both
x and y to z, then x is identical to y:

(.2) R | :F 1-1−−−→G ≡df R | :F−→G & ∀x∀y∀z((Fx&Fy&Gz)→ (Rxz&Ryz→ x=y))

correlated one-to-one by either definition. In other words, both our definition and Frege’s induce
the same partition on the domain of properties.
357To help the reader make the comparison, note that Frege introduced (1893, §37, Definition Γ

[2013, 55]) a concept named ‘I’ under which single-valued relations fall; i.e., the concept I takes, as
argument, an extension of a relation (i.e., a double value-range) and yields, as value, the True when
the argument is the extension of a functional relation, i.e., the relation never maps its arguments
to two or more values. So Ip is the True when p is an extension of a functional relation. He
then introduced (1893, §38, Definition ∆ [2013, 56]) the operator 〉, which intuitively takes, as
argument, an extension of a relation (again, a double value-range) and yields, as value, a new
relation that relates two extensions just in case the original relation is single-valued and maps each
member of the first extension to a member of the second extension.

So, intuitively, Frege would say that R maps F to G just in case (a) R is functional, as defined
in (742.3) above, and (b) R relates each F-object to some G-object, as in (742.1). But, as noted
in connection with Frege’s 1884 definition, our definition of R maps F to G is weaker since it
doesn’t require R to be a function globally – R only has to be functional with respect to the objects
exemplifying F, i.e., it has to map every such F to a unique G. This will suffice for the same reasons
discussed in the previous footnote.
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Figure 14.2: R maps F to G.
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Figure 14.3: R maps F to G one-to-one.

As a check, the reader should verify that R in Example 2 does not map F to G
one-to-one. But consider:

Example 3. Suppose that there are exactly eight individuals a – h,
and that the relevant facts about them are depicted in Figure 14.3:
a and b are the only F-objects; c, d, and h are the only G-objects; e
exemplifies F; f and g exemplify G; and Rad, Rag, Rbh, Rec, and
Ref . Then R | :F 1-1−→ G.

The reader should verify that in Example 3, Rmaps F to G one-to-one but does
not correlate F and G one-to-one.

Next, we say (.3) R maps F onto G just in case R maps F to G and every
G-object is such that some F-object bears R to it:

(.3) R | :F −−−→
onto

G ≡df R | :F −→ G & ∀y(Gy→∃x(Fx&Rxy))

The reader should verify that R in Example 3 does not map F onto G. But
consider:

Example 4. Suppose that there are exactly eight individuals a – h,
and that the relevant facts about them are depicted in Figure 14.4:
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Figure 14.4: R maps F onto G.

a, b, and h are the only F-objects, c and d are the only G-objects, e
exemplifies F, f and g exemplify G, and Rac, Rag, Rbd, Rec, Ref ,
and Rhd. Then R | :F −→

onto
G.

The reader should also verify that R in Example 4 does not map F to G one-to-
one.

Finally, whenever R both maps F to G one-to-one and maps F onto G, we
write R | :F 1-1−−→

onto
G:

(.4) R | :F 1-1−−−→
onto

G ≡df R| :F
1-1−−→G & R | :F −−−→

onto
G

The reader should verify that R in Example 1 maps F onto G one-to-one.

(744) Theorem: Correlates One-to-One and One-to-One Onto Maps. The fol-
lowing is now derivable from the definitions in (741) and (743), namely, R
correlates F and G one-to-one just in case R maps F onto G one-to-one:

R | :F 1-1←−→ G ≡ R | :F 1-1−−−→
onto

G

(745) Remark: Frege’s Theorem. Frege’s system of 1893, despite being in-
consistent, contained one of the most astonishing intellectual achievements in
logic and philosophy. This is now known as Frege’s Theorem, though Frege him-
self never formulated the result explicitly as a theorem, nor even thought of it
as a result. Nevertheless, the theorem Frege proved is that the Dedekind/Peano
postulates of number theory can be validly derived using only the resources of
second-order logic supplemented by a single principle, namely, Hume’s Prin-
ciple.358

To state Hume’s Principle, two notions are needed. The first is expressed by
the definite description the number of Fs. Frege thought that this description is

358See Wright 1983, Heck 1993, and Zalta 2017, for details.
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significant because he believed that for every property F, there is a unique in-
dividual x that numbers F. The other notion needed for Hume’s Principle is the
equinumerosity of properties F and G. Without a definition of equinumerosity,
Hume’s Principle has an air of triviality to those encountering it for the first
time, for it asserts:

Hume’s Principle
The number of Fs is equal to the number of Gs if and only if F and G are
equinumerous.

But the air of triviality can be dispelled if equinumerosity is defined in purely
logical terms. Let us say that (.1) F and G are equinumerous, written F ≈ G, just
in case there exists a relation R that correlates F and G one-to-one:

(.1) F ≈ G ≡df ∃R(R | :F 1-1←−→ G)

Cf. Frege 1884 (§§71,72) and 1893 (§40 [2013, 57]).359 Then, if we abbreviate
the number of Fs as #F, Hume’s Principle may be formally represented as the
following non-trivial claim:

(.2) Hume’s Principle
#F=#G ≡ F ≈ G

From Hume’s Principle, (.1), and theorem (744), it follows that #F = #G if and
only if there is a relation that maps F onto G one-to-one.

We are now in a position to summarize how Frege derived the Dedekind/-
Peano postulates in second-order logic from Hume’s principle. But before we
do, it is worth digressing briefly to say more about how Frege both attempted
to define #F and derive Hume’s Principle from his theory of extensions. We can
simplify the discussion of how Frege thought this could be done by (a) rep-
resenting Frege’s notion the extension of F as εF and (b) supposing that εF is
axiomatized by Frege’s version of Basic Law V, which for present purposes,
may be written as: εF=εG ≡ ∀x(Fx ≡ Gx). It is well known that if εF is taken
as a primitive and systematized by Basic Law V in second-order logic (with
unrestricted second-order comprehension for properties), the resulting system
is subject to Russell’s paradox. But Frege was initially unaware of the para-
dox and so defined #F as the extension of the property being an extension of a
property equinumerous to F.

359In Remark (742), we discussed the four conditions involved in Frege’s 1884 definition of R
correlates F and G one-to-one. In 1893 (§40), however, he simplifies the definition as follows:
R correlates F and G one-to-one just in case (a) R maps F to G and (b) the converse of R maps
G to F, where R maps F to G is defined in §38 and the converse of R is defined in §39. (Recall
footnote 357 above, where we mentioned that his definition of R maps F to G requires R to be
functional globally.) Though Frege’s 1893 definition of correlates one-to-one is equivalent to his
1884 definition, Heck shows (1993, 586, note 22; 2011, 47) that it has ‘technical advantages’ for
some of the theorems Frege proves in 1893.
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In the present system, we may represent the being an extension of a property
equinumerous to F as:

[λx ∃G(x=εG&G ≈ F)]

But this is not a core λ-expression, as defined in (9.2). The x bound by the λ
occurs in encoding position in the matrix ∃G(x=εG&G ≈ F) — by the Encoding
Formula Convention (17.3) and the definition of identity for objects (23.1), x
occurs free in (the definiens of) x=εG. So axiom (39.2) doesn’t guarantee that
the above expression has a denotation. Consequently, the term ε[λx ∃G(x =
εG&G ≈ F)] isn’t guaranteed to have a denotation either. But if we put these
facts aside temporarily, we could represent Frege’s definition of the number of
Fs as follows:

#F =df ε[λx ∃G(x=εG&G ≈ F)]

Frege’s next step was to derive Hume’s Principle, #F = #G ≡ F ≈ G, from Basic
Law V. Although this derivation of Hume’s Principle loses most of its inter-
est given that Frege’s system is inconsistent, the fact is that once Frege had
‘derived’ Hume’s Principle, he then made no further essential appeal to Basic
Law V when deriving the Dedekind/Peano postulates as theorems; his deriva-
tions of these postulates appealed only to Hume’s Principle and the theorems
of second-order logic (Heck 1993).

It is now known, however, that if one takes #F instead of εF as a primi-
tive and adds Hume’s Principle instead of Basic Law V to second-order logic,
the resulting system is provably consistent.360 Frege’s Theorem proceeds by
constructing the following definitions, in which P stands for predecessor and N
stands for being a natural (or finite) number:

P xy ≡df ∃F∃z(Fz & y=#F & x=#[λz′ Fz′ & z′ , z])

P ∗xy ≡df ∀F[∀z(P xz→ Fz) &∀x′∀y′(P x′y′→ (Fx′→ Fy′))→ Fy]
(The ancestral of P )

P +xy ≡df P
∗xy ∨ x=y (The weak ancestral of P )

0 =df #[λx x , x]

Nx ≡df P
+0x

Thus Frege defined the three primitive notions used in the Dedekind/Peano
postulates (namely, 0, N , and P ), and then derived the postulates as theorems
of second-order logic supplemented by Hume’s Principle.

360See Hodes 1984 (138), Burgess 1984 (639), and Hazen 1985 (252). Geach 1976 (446–7) devel-
ops the model that the others describe, but doesn’t specifically identify it as a model of second-
order logic plus Hume’s Principle.
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Despite this successful derivation, Frege’s Theorem, under this reconstruc-
tion of taking #F as primitive and asserting Hume’s Principle as an axiom,
doesn’t accomplish one of Frege’s main goals, namely, that of defining the num-
bers and deriving fundamental number-theoretic principles without appeal to
mathematical notions and axioms. That’s because Hume’s Principle requires a
primitive mathematical notion, #F, and the principle thereby becomes a math-
ematical axiom. By contrast, in what follows, we derive the Dedekind/Peano
postulates without mathematical primitives and axioms.

Moreover, there are a number of problems surrounding the methodology
of adding principles such as Hume’s Principle to second-order logic, some of
which were raised by Frege himself. There is now a substantial literature on
these problems and it would take us too far afield to delve into the details (see
MacBride 2003 for an overview). But it is worth noting one problem that Frege
raised, namely, the Julius Caesar problem (1884, §55), which we can state as
follows: if the only principle that systematizes #F is Hume’s Principle, i.e., if
Hume’s Principle is the sole axiom governing the number of Fs, then the open
formula #F = x is not defined and the theory of numbers derived from Hume’s
Principle doesn’t provide, for an arbitrary object x, conditions under which
#F = x. In particular, the resulting theory offers no conditions for establishing
whether the number of planets, say, is identical to Julius Caesar.

Though much has been written about this problem, we shall not spend
time working through the literature, since object theory follows a rather differ-
ent methodology, namely, of presenting separate principles for the existence
and identity of theoretical objects.361 Identity formulas of the form x = y and
F = G are defined generally in object theory, and once we identify the #F as
an abstract individual, the general object-theoretic principles of identity yield
well-defined conditions under which #F = x. The Julius Caesar problem just
doesn’t arise.

It is important to recognize, however, that Frege’s methods can be adapted
and applied in object theory by accepting one justifiable limitation, namely,
that the natural numbers can only count discernible objects, as these were de-
fined in (273.2). If objects aren’t discernible, then we see no reason why the
natural numbers should be able to count them. We’ll discuss this justifiable
limitation explicitly in Remarks (746), (790), (798), and (817). As it turns out,
Frege’s goals can be achieved by extending object theory with a single axiom
that asserts the existence of an ordering relation (predecessor) that is definable
in non-mathematical but recognizably Fregean terms. Thus, we plan to show
that #F, Precedes, and 0 can all be defined in object-theoretic terms, and that

361This is the methodology used in set theory, for example. In Zermelo-Fraenkel set theory, for
example, the existence axioms (Null Set, Pair Set, Unions, Power Set, Infinity, Separation, and
Replacement) are distinct from the axiom of the identity of sets (Extensionality).



702 CHAPTER 14. NATURAL NUMBERS

the Dedekind/Peano postulates and, subsequently, PA2, are derivable in object
theory by extending it with the axiom that Precedes is a relation.

After this is done, and the foundations of arithmetic are developed in some
detail with numerous further definitions and theorems (including one ground-
ing recursively-defined arithmetic functions), we conclude with an interesting
result, namely, that, without any mathematical primitives or axioms, there is a
derivation of the existence of both an infinite cardinal (ℵ0) and an infinite set
εN (i.e., the extension of the property natural number).

14.2 Equinumerosity and Discernible Objects

Throughout the remainder of this chapter, we use u and v as rigid restricted
variables ranging over discernible objects. We continue to use x, y, and z as
variables ranging over all individuals. Note also that when we compare the-
orems proved below to theorems found in Frege’s work, we assume that our
notion of a property (i.e., a unary relation) corresponds to Frege’s notion of a
concept. The justification for this comes from Frege himself, who said (1892,
51) that the concepts under which an object falls are its properties. We shall
not, however, adopt Frege’s analysis of concepts as functions from objects to
truth values.

(746) Remark: Classical Equinumerosity Isn’t an Equivalence Condition. One
of the keys to Frege’s theorem that we haven’t discussed is the fact that the
equinumerosity of F and G (F ≈ G), as defined in (745.1), is an equivalence
condition in the classical second-order predicate calculus. We leave it as an
exercise for the reader to show that in classical second-order logic (without
encoding), the condition F ≈ G is reflexive, symmetric, and transitive. Frege
intuitively relied on this fact, which partitions the domain of properties into
equivalence classes of equinumerous properties, to introduce a new object, #F,
to represent the class of all properties equinumerous to F.

However, in the present system, classical equinumerosity, as defined in
(745.1), provably fails to be an equivalence condition on properties, and this
is the first obstacle we must surmount if we are to adapt Frege’s methods to
object theory. To see why the equinumerosity of F and G fails to be an equiv-
alence condition, recall that it was established in (269) that there are distinct
abstract objects that exemplify the same properties:

∃x∃y(A!x&A!y & x,y &∀F(Fx ≡ Fy)) (269)

From this it follows that A! is not equinumerous to any property, i.e.,

(.1) ∀G(A! 6≈ G)
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Proof. Given (269), assume a and b are such objects, so that we know
A!a, A!b, a , b, and ∀F(Fa ≡ Fb). Suppose, for reductio, that ∃G(A! ≈ G).
Let Q be such a property so that we know A! ≈ Q. Then, by definition
of ≈ (745.1), there is a relation, say R, that correlates A! and Q one-to-
one, i.e., R | :A!

1-1←→ Q. So by (744), we know both that R maps A! to Q
one-to-one and that R maps A! onto Q. A fortiori, R maps A! to Q. The
latter fact and our assumption A!a jointly imply that there is a (unique)
object, say c, such that both Qc and Rac. So by Rule

←−
βC (184.2.a) and the

facts that [λz Rzc]↓ and a↓, it follows that [λz Rzc]a. But, since a and b,
by hypothesis, exemplify the same properties, [λz Rzc]b. So by Rule

−→
βC

(184.1.a), Rbc. But this contradicts the fact R maps A! to Q one-to-one,
for we now have A!a, A!b, Qc, Rac and Rbc, which by the second conjunct
of (743.2) implies a = b. Contradiction.

In particular, then, it follows that A! 6≈ A!. This result should come as no sur-
prise; since ≈ is defined in terms of exemplification patterns of properties and
there are abstract objects that are indistinguishable by classical exemplification
patterns (269), one should expect that no relation can correlate A! one-to-one
with itself.

Given that A! 6≈ A!, we have established that equinumerosity is not a reflex-
ive condition:

(.2) ∃F(F 6≈ F)

Since equinumerosity is not reflexive, it is not an equivalence condition. In-
tuitively, then, equinumerosity doesn’t partition the domain of properties into
mutually exclusive and jointly exhaustive cells of equinumerous properties.
Since the existence of such a partition is essential to Frege’s method of abstract-
ing out a distinguished object, #G, that numbers all and only the properties
equinumerous toG, it will not do us much good to define #G as ıx(A!x&∀F(xF ≡
F ≈ G)). Fortunately, however, there is a notion of equinumerosity in the neigh-
borhood which does what Frege’s method requires.

This new development will draw upon the theorems about discernible (D!)
objects (273.2) and the relation =D of identical discernibles (273.17). The defi-
nition of D! ensures that an object x is discernible if x can be identified by the
pattern of its exemplifications—i.e., any object y for which ∀F(Fy ≡ Fx) is such
that y = x. These theorems are presented in (273) and the reader should have
a good grasp of the principles governing discernible objects in what follows.
Morever, since (273.8) (D!x → �D!x) and (340) imply that D!x is a rigid re-
striction condition on objects, we shal use u and v as rigid restricted variables
ranging over discernible objects to state those theorems. Thus, the definiens
of the relation =D in definition (273.17) becomes expressible as [λuv u = v].
And we can more simply express theorem (273.34) as [λx x=u]↓, and express
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theorem (273.35) as u , v → [λz z=u], [λz z= v]. These facts allow to (a) de-
fine a notion of equinumerosity that holds whenever there is a relation that
correlates, one-to-one, the discernible objects that exemplifying F with those
exemplifyingG, and then (b) prove that the resulting notion of equinumerosity
is an equivalence condition on properties.

(747) Theorem and Definitions: Equinumerosity with respect to Discernible
Objects. Using our rigid restricted variables u and v to range over discernible
objects, we first derive the special unique existence quantifier for discernible
objects. It is provable that (.1) there is a unique discernible object such that ϕ if
and only if (a) there is a discernible object such thatϕ, and (b) every discernible
object such that ϕ is identical to it:

(.1) ∃!uϕ ≡ ∃u(ϕ&∀v(ϕvu → v=u))

Thus, only discernible objects can serve as witnesses for this unique existence
quantifier.362

Using this special unique existence quantifier, we say that (.2) binary rela-
tion R correlatesD F and G one-to-one, written R | :F 1-1←→D G, just in case (a) each
discernible F-object is R-related to a unique discernible G-object, and (b) each
discernibleG-object is such that a unique discernible F-object is R-related to it:

(.2) R | :F 1-1←−→D G ≡df

R↓&F↓&G↓&∀u(Fu→∃!v(Gv&Ruv)) & ∀v(Gv→∃!u(Fu&Ruv))

Consider:

Example 5. Suppose that there are exactly ten individuals a – j,
and that the relevant facts about them are depicted in Figure 14.5:
a – e and g are the only discernible objects; a, b, and e are the only
F-objects; c, d, f and g are the only G-objects; h exemplifies F; i
and j exemplify G; and Rac, Rbd, Ref , Reg, Rhi, and Rhj. Then
R | :F 1-1←→D G.

The reader should verify that this is an example of the definition.

362Note that we can abstract out properties from either the definiens or the definiendum. This is
due to theorem (273.13), which we can express as [λuϕ]↓ (for any formula ϕ), and more generally
to theorem (273.13), which we can express as [λu1 . . .un ϕ]↓ (again, for any formula ϕ).

To see how, consider the following example of the right-hand condition of (.1). From:

∃v(Gv&Rav&∀v′(Gv′ &Ra′→ v′ =v))

we can infer:

[λu ∃v(Gv&Ruv&∀v′(Gv′ &Ruv′→ v′ =v))]a

by Rule
←−
βC (184.2), since the λ-expression exists by (273.15).

Similar considerations apply to the definiendum. If u occurs free in ϕ, then [λu ∃!vϕ]↓, again
by (273.13).
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Figure 14.5: R correlatesD F and G one-to-one.

Finally, we say that (.3) properties F and G are equinumerous with respect
to the discernible objects, or equinumerousD , written F ≈D G, just in case some
relation correlatesD F and G one-to-one:

(.3) F ≈D G ≡df ∃R(R | :F 1-1←−→D G)

In the proofs of the theorems that follow, we say that a relation R is a witness to
the equinumerosityD of F and G whenever R | : F 1-1←→D G. So R in Figure 14.5
is a witness to the equinumerosityD of F and G. Also, we sometimes say that F
is equinumerousD to G when F and G are equinumerousD .

(748) Theorems: EquinumerosityD Partitions the Domain of Properties. It fol-
lows that: equinumerosityD is (.1) reflexive; (.2) symmetric; and (.3) transitive:

(.1) F≈D F

(.2) F≈DG→ G≈D F

(.3) (F≈DG&G≈DH)→ F≈DH

It also follows that (.4) if F and G are equinumerousD , then a property is
equinumerousD to F iff it is equinumerousD to G:

(.4) F≈DG ≡ ∀H(H ≈D F ≡H ≈DG)

(.4) is based on Theorem 25 in Frege 1893 (§61, [2013, 83]).

(749) Definitions: RMapsD F to G. We now adapt the notions defined in (743)
as follows: (.1) RmapsD F toG just in case each discernible F-object is R-related
to a unique discernible G-object:

(.1) R | :F −→D G ≡df R↓&F↓&G↓&∀u(Fu→∃!v(Gv&Ruv))

Consider:
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Figure 14.6: R mapsD F to G.

Example 6. Suppose that there are exactly ten individuals a – j, and that
the relevant facts about them are depicted in Figure 14.6: a – d are the
only discernible objects; a, b, and e are the only F-objects; c, d, f and g
are the onlyG-objects; h exemplifies F; i and j exemplifyG; and Rac, Rbc,
Ref , Reg, Rhi, and Rhj. Then R | :F −→D G.

The following exercises may engender a better understanding:

Exercise 1. Since there are discernible objects (273.5), suppose a is one.
Then consider the relation R = [λxyy=a], which exists by (273.34). Show
that for any F, R | :F −→D D!.

Exercise 2. Show that the following definition:

R | :F −→D G ≡df R↓&F↓&G↓&R | : [λxD!x&Fx] −→ [λxD!x&Gx]

is equivalent to (.1). Note that the definiens employs the more general
notion: R maps F to G (743.1). Verify that this alternative definition
applies in Example 6.

Next, we say (.2) R mapsD F to G one-to-one just in case R mapsD F to G and
for any discernible F-objects t and u and discernible G-object v, if t bears R to
v and u bears R to v, then t is identical to u:

(.2) R | :F 1-1−−→DG ≡df

R | :F−→DG&∀t∀u∀v((Ft&Fu&Gv)→ (Rtv&Ruv→ t=u))

Consider:

Example 7. Suppose that there are exactly 11 individuals a – k, and that
the relevant facts about them are depicted in Figure 14.7: a – d and k are
the only discernible objects; a, b, and e are the only F-objects; c, d, f , g,
and k are the only G-objects; h exemplifies F; i and j exemplify G; and
Rac, Rbc, Ref , Reg, Rhi, and Rhj. Then R | :F 1-1−−→DG.
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Figure 14.7: R mapsD F to G one-to-one.

•h •i
•j

F G

D!a
D!b
D!k

D!c
D!d

F

•e
•a
•b
•k

G

•f
•g
•c
•d

R

R

R

R

R

R

Figure 14.8: R mapsD F onto G.

The following may prove useful:

Exercise 3. Show that the following definition is equivalent to (.2):

R | :F 1-1−−→DG ≡df F↓&G↓&R | : [λxD!x&Fx]
1-1−−→ [λxD!x&Gx]

Note that this definiens employs the more general notion: R maps F to
G one-to-one (743.2). Verify that this alternative definition applies in
Example 7.

Next, we say (.3) R mapsD F onto G just in case R mapsD F to G and every
discernible G-object is such that some discernible F-object bears R to it:

(.3) R | :F −−−→
onto D G ≡df R | :F −→D G & ∀v(Gv→∃u(Fu&Ruv))

Consider:

Example 8. Suppose that there are exactly 11 individuals a – k, and that
the relevant facts about them are depicted in Figure 14.8: a – d and k are
the only discernible objects; a, b, e and k are the only F-objects; c, d, f ,
and g are the only G-objects; h exemplifies F, i and j exemplify G; and
Rac, Rbd, Rkd, Ref , Rhi, and Rhj. Then R | :F −−→

onto D
G.
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The following may prove useful:

Exercise 4. Show that the following definition is equivalent to (.3):

R | :F −−−→
onto D G ≡df F↓&G↓ &R | : [λxD!x&Fx] −−−→

onto
[λxD!x&Gx]

Note that the definiens employs the more general notion: R maps F onto
G (743.3). Verify that this alternative definition applies in Example 8.

Finally, we use the following notation whenever F mapsD F onto G one-to-one:

(.4) R | :F 1-1−−−→
onto D G ≡df R | :F

1-1−−→DG & R | :F −−−→
onto D G

(750) Theorem: CorrelatesD One-to-One and One-to-One Onto MapsD . It is
now easy to show that R correlatesD F and G one-to-one if and only if RmapsD
F onto G one-to-one:

R | :F 1-1←−→D G ≡ R | :F
1-1−−−→

onto D G

The reader may find the following useful:

Exercise 5. Using the definitions in the Exercises to (749), show that R
correlatesD F and G one-to-one if and only if F and G both exist and R
correlates [λxD!x&Fx] and [λxD!x&Gx] one-to-one, i.e.,

R | :F 1-1←→D G ≡ F↓&G↓&R | : [λxD!x&Fx]
1-1←→ [λxD!x&Gx].

(751) Theorems: EquinumerosityD and Empty Properties. The following are
modally-strict facts about the equinumerosityD of empty properties: (.1) if
no discernible objects exemplify F and none exemplify H , then F and H are
equinumerous with respect to the discernible objects; and (.2) if some dis-
cernible object exemplifies F and no discernible object exemplifies H , then F
and H aren’t equinumerous with respect to the discernible objects:

(.1) (¬∃uFu&¬∃vHv)→ F ≈DH

(.2) (∃uFu&¬∃vHv)→¬(F ≈DH)

These facts will prove useful later, when we define #G and show that it is not
a strictly canonical object.

(752) Theorem and Definition: Being an F That Is Not Identical to u. Where u
is any discernible object, it is straightforward to establish that (.1) the property
being F but not identical to u exists:

(.1) [λz Fz& z,u]↓
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This holds for any property F and discernible object u. Note that by our con-
ventions in (339.2), the λ-expression in (.1) abbreviates [λzD!y &Fz& z,y].

Thus, we may safely introduce the notation F−u to denote being F but not
identical to u:

(.2) F−u =df [λz Fz& z,u]

Although this definition works as intended in what follows, it is important to
understand (a) the behavior of the property Π−u when Π is an empty property
term, and (b) the behavior of the property F−κ when κ is empty or signifies an
abstract object, and (c) the behavior of the property Π−κ when Π is empty and
κ is empty or signifies an abstract object. Exercise. Explain why, in all three of
these cases, the resulting expression is significant but denotes an unexempli-
fied property.

(753) Lemma: An EquinumerosityD Lemma. If F and G are equinumerousD , u
exemplifies F, and v exemplifies G, then F−u and G−v are equinumerousD :

F≈DG&Fu&Gv → F−u≈DG−v

Compare this theorem with the intermediate result marked ϑ just prior to The-
orem 87 in Frege 1893 (§95, [2013, 125]).363

(754) Lemma: Another EquinumerosityD Lemma. If F−u and G−v are equinu-
merousD , u exemplifies F, and v exemplifies G, then F and G are equinumer-
ousD :

F−u≈DG−v &Fu&Gv → F≈DG

Compare Frege 1893, Theorem 66 [2013, 112].364

(755) Theorem: EquinumerousD Is a Contingent Condition on Some Proper-
ties. Intuitively, the fact that F andG are equinumerousD in one possible world
doesn’t entail that they are equinumerousD in another. For example, even if be-
ing a pencil on my desk and being a pen on my desk are in fact equinumerousD ,
things might have been different. But such examples require us to apply the
theory by introducing some new, primitive properties. So the question is, can

363There are several differences. First, on the basis of Hume’s Principle, Frege uses numeral iden-
tities instead of equinumerosity claims in the antecedent and consequent, and if we substitute
these into the present theorem, we obtain #F = #G & Fu & Gv → #F−u = #G−v . Second, Frege
proves the contrapositive, switches the order of the antecedents, and puts everything into condi-
tional form. Thus, he proves: Fu→ (Gv→ (#F−u ,#G−v → #F ,#G)). Note also that Frege uses c
and b, respectively, where we use u and v, and he uses v and u, respectively, where we use #F and
#G.
364The present theorem differs from Frege’s Theorem 66 only by two applications of Hume’s

Principle: in Frege’s Theorem, #F−u = #G−v is substituted for F−u ≈D G−v in the antecedent, and
#F = #G is substituted for F ≈D G in the consequent.
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we prove that there are properties that are possibly equinumerousD and possi-
bly not, without applying the theory?

In object theory, we can establish this by way of a preliminary proof that
(.1) there are properties F and G such that it is possibly the case that both (a) F
and G are equinumerousD but (b) possibly not:

(.1) ∃F∃G♦(F ≈D G&♦¬F ≈D G)

Clearly, by (165.11) and a Rule of Substitution, this implies ∃F∃G(♦F ≈D G&
♦¬F ≈D G). So, for some values of F and G, the condition F ≈D G is provably a
contingent condition.

It is also important to observe a variation on this contingency. Namely,
(.2) there are properties F and G such that it is possibly the case that both
(a) actually exemplifying F is equinumerousD to G, but (b) possibly not:

(.2) ∃F∃G♦([λzAFz]≈DG & ♦¬[λzAFz] ≈D G)

This analogously implies ∃F∃G(♦[λzAFz]≈D G & ♦¬[λzAFz] ≈D G). The dis-
tinction between (.1) and (.2) plays an important role in what follows.

(756) Definition: Material Equivalence with Respect to Discernible Objects.
We say that properties F and G are materially equivalent with respect to dis-
cernible objects, written F ≡DG, if and only if F and G both exist and are exem-
plified by the same discernible objects:

F ≡DG ≡df F↓&G↓&∀u(Fu ≡ Gu)

(757) Lemmas: EquinumerousD and EquivalentD Properties. The following
consequences concerning equinumerousD , and materially equivalentD , prop-
erties are easily provable: (.1) if F and G are materially equivalentD , then they
are equinumerousD ; and (.2) if F is equinumerousD to G and G is materially
equivalentD to H , then F is equinumerousD to H ; and (.3) if F and G are
equinumerousD , then for any property H , actually exemplifying H is equinu-
merousD to F iff it is equinumerousD to G:

(.1) F≡DG→ F≈DG

(.2) (F≈DG&G≡DH)→ F≈DH

(758) ?Theorems: EquivalenceD , EquinumerosityD , and Actually Being F. The
following theorems prove to be useful. (.1) actually being F is materially equiv-
alent to F w.r.t. discernible objects, and (.2) actually being F is equinumerous to
F w.r.t. discernible objects:

(.1) [λzAFz]≡D F
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(.2) [λzAFz]≈D F

These theorems are not modally strict.

(759) Theorems: Facts About Actually Exemplifying F. (.1) It is actually the
case that F is equinumerousD to actually exemplifying F and (.2) actually exem-
plifying F is a rigid property:

(.1) A(F ≈D [λzAFz])

(.2) Rigid([λzAFz])

The definition of Rigid(F) is in (571).

(760) Theorems: Conditions for Modal Collapse of EquinumerosityD . (.1) If
F is a rigid property (i.e., if it is necessary that every F-thing is necessarily F),
then F is equinumerousD to actually exemplifying F:

(.1) Rigid(F)→ F ≈D [λzAFz]

With (.1), we can more easily prove, as a modally strict theorem, that (.2) F and
G are equinumerousD if and only if for any property F, the actualization of H
is equinumerousD to F iff it is equinumerousD to G:

(.2) F≈DG ≡ ∀H([λzAHz]≈D F ≡ [λzAHz]≈DG)

While it might seem that the above is a trivial consequence of (748.4), there
is an important subtlety. To establish the right-to-left direction, one must
show that there is no danger of the right-hand side being satisfied trivially,
i.e., that no actualization is equinumerousD to F or G. But, as it turns out, for
any property F, there is an actualization that is materially equivalent and thus
equinumerousD to F. We can see this by recalling that the system guarantees
the existence of rigidifications of properties (573.3). The actualization of the
rigidification of F is equivalent to F and so it must be equinumerousD to F.

Finally, (.3) if F and G are rigid properties, then the equinumerosityD of F
and G is a modally collapsed condition:

(.3) (Rigid(F) & Rigid(G))→ �(F ≈D G→ �F ≈D G)

By the definition of rigidity, (.3) implies that if (a) necessarily every F-exempli-
fier necessarily exemplifies F and (b) necessarily every G-exemplifier neces-
sarily exemplifies G, then necessarily, if F and G are equinumerousD , they are
necessarily equinumerousD . (.3) plays an important role when we consider
properties like actually exemplifying F, e.g., [λz AFz], since these are rigid, by
(759.2).
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14.3 Numbering Properties and Natural Cardinals

In this section, we work our way towards a definition of x numbers G and
then define x is a natural cardinal. When we reconstruct Frege’s conception of
these notions within object theory, we introduce some emendations. We’ll see
that Frege’s conception doesn’t anticipate the fact that equivalence classes of
equinumerous properties (in Frege’s case) and equivalence classes of equinu-
merousD properties (in the present theory) vary from world to world. This
would give rise to different numbers at different worlds. If there were, say, 2
discernible G things at one possible world and 2 discernible G things at a dif-
ferent possible world, we should be able to say that the same number numbers
G at both worlds. But since G will be a member of distinct equivalence classes
of equinumerousD properties at distinct worlds, the object that numbers G at
the former world will be distinct from the object that numbers G at the lat-
ter world. This runs contrary to our general understanding of how natural
cardinals work and it shows that Frege’s picture doesn’t generalize in a modal
context (cf. Panza 2018, 99–100, for a related point).365

With a minor adjustment to Frege’s conception, however, we can ensure not
only that there is one group of abstract objects that both number properties
and serve as natural cardinals, but also that these same objects can correctly
number properties across modal contexts. We’ve tried, in the first instance, to
develop number theory using only primitive modalities, without invoking the
notion of possible world defined in Chapter 12. However, it is occasionally help-
ful to develop intuitive remarks in which we appeal to the notion of a possible
world (e.g., in Remark (761) below). This is for exegetical purposes only, to
prepare the ground and to help one better understand the issues involved.366

(761) Remark: How to Adapt Frege’s Conception So That it Works in a Modal
Setting. In 1884 (§68), Frege defines:

• the Number which belongs to the concept F is the extension of the concept
equinumerous to the concept F

In Zalta 1999 (630), this definition was captured in object theory by saying
x numbers G if and only if x is an abstract object that encodes all and only

365Panza (2018) takes as a premise the fact that, for any property G, it is contingent as to which
object is #G given that it is contingent as to which first-order properties exemplify the second-order
property: being a first-order property equinumerous to F. His conclusion is that #G isn’t therefore a
logical object. There are two reasons why we don’t draw the same conclusion. (a) To obtain the
number ofGs, we abstract over the properties F whose (rigid) actualizations are equinumerous toG
(w.r.t. discernible objects). This eliminates one of the contingencies that Panza is concerned about.
Moreover, (b) we see no reason why logico-metaphysical objects can’t be abstracted from contingent
patterns in the natural world.
366See Cook 2016 for an entirely different method that develops Frege’s theory of numbers in a

modal setting.
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the properties F that are equinumerous to G with respect to ordinary objects
(≈E).367 And, in the current reconstruction of Frege’s view, with our focus be-
ing on numbering discernible objects instead of just the ordinary objects, we
shall replace equinumerosity w.r.t. ordinary objects (≈E) by equinumerosity
w.r.t. discernible objects (≈D ) and formally stipulate:

(ϑ) Numbers(x,G) ≡df A!x&∀F(xF ≡ F ≈D G)

Though the definition in Zalta 1999 and (ϑ) are analogous to Frege’s, both of
these definitions give rise to a problem in a modal setting: they imply that
different cardinal numbers emerge in different modal contexts. We can restate
this problem by speaking intuitively in terms of possible worlds: the above
definitions imply that the cardinals at one possible world will be distinct from
the cardinals at other possible worlds.

We’ll frame the problem in terms of discernibles. The issue isn’t that some
object, say x, numbers G at possible world w1 and some different object, say y,
numbers G at possible world w2. That is only to be expected, since G might
be exemplified by two discernible objects in w1 and three discernible objects
in w2. Rather, the problem is that G might be exemplified by two discernible
objects in both w1 and w2, but the object that numbers G in w1 is not identical
to the object that numbers G in w2. To see why, note first that (ϑ) gives rise to
the following necessary equivalence:

�(Numbers(x,G) ≡ (A!x&∀F(xF ≡ F ≈D G))

Intuitively, then, the central material biconditional should hold at every pos-
sible world. But consider the scenario depicted in Figure 1, which shows only
the discernible objects that exemplify P , Q, and R in possible worlds w1 and
w2. Clearly, this scenario illustrates (755.1), since P and Q are equinumerousD
in w1 but not in w2. Now, intuitively, the number of P s at w1 should be identi-
cal to the number of P s at w2, since there are exactly two objects exemplifying
P at both w1 and w2. But suppose x numbers P at w1. Then, by (ϑ), x encodes
all and only the properties equinumerousD to P at w1. Hence, x encodes Q as
well, though not R. Now suppose y numbers P at w2. Intuitively, it should be
the case that y=x. But then, y encodes R, notQ, since R is equinumerousD to P
at w2 and Q isn’t. Since x and y are thus abstract objects that encode different
properties, it follows that y,x. In general, the numbers carved out at w1 by (ϑ)
are different from the numbers carved out at w2.

367Cf. Boolos (1987, 3; 1998, 184), who suggests (a) that Frege implicitly uses a second ‘instantia-
tion relation’, namely F is in x (which Boolos represents as Fηx) and (b) that Frege conceives of the
number x that belongs to a concept G as satisfying the condition: for every concept F, Fηx if and
only if F is equinumerous to G. In the present analysis, we use the more general notion of encod-
ing, xF, instead Boolos’ notion Fηx, since the latter was introduced only to assert that properties
are in objects when some equinumerosity condition obtained.
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Figure 14.9: Emergence of world-bound natural cardinals.

This is not just a consequence of identifying an object that numbers G as an
abstract object that encodes the properties equinumerousD to G. The problem
arises from adopting Frege’s conception of numbers in a modal setting. The
second-level concept being equinumerous to P has different properties falling
under it at w1 and at w2. So the object that is the extension of this second-level
concept at w1 is different from the object that is the extension of the second-
level concept at w2. Thus, the number that belongs to P at w1 would be differ-
ent from the number that belongs to P at w2, i.e., the number 2 abstracted from
w1 would be distinct from the number 2 abstracted from w2. Since equivalence
classes of equinumerous properties may vary from world to world, the Fregean
abstractions on the basis of the simple equivalence condition of equinumeros-
ity (or equinumerousD ) will yield world-bound numbers.

Now the problem just described didn’t have serious consequences for the
work in Zalta 1999. The issue was finessed in two ways: (a) #G was defined
in terms of a rigid definite description, i.e., ıxNumbers(x,G), and (b) the work
didn’t take pains to distinguish which theorems were derivable without any
appeal to contingencies. But the fact remains: Zalta 1999 used (ϑ), and though
it was stated in terms of ≈E instead of ≈D , it too engendered (though it didn’t
reference) different natural cardinals at different possible worlds.

But in the present attempt to refine Zalta 1999, we want to avoid generating
world-bound natural cardinals – our goal is to define a single group of natural
cardinals that can be used to count properties at arbitrary possible worlds. We
claim that the simplest way to extend Frege’s definition to a modal setting un-
problematically is to regard the number ofGs, at any worldw, as an abstraction
over all the properties F for which the discernible objects actually exemplifying
F are in one-to-one correspondence with the discernible objects exemplifying
G at w. This would always use the extensions of properties at the actual world
as the reference basis for abstracting the numbers.

Thus, instead of (ϑ), we shall say that x numbers G if and only if x is an
abstract object that encodes all and only the properties F such that actually
exemplifying F is equinumerous to G with respect to discernible objects:
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Figure 14.10: Emergence of universal natural cardinals.

(ξ) Numbers(x,G) ≡df A!x&∀F(xF ≡ [λzAFz] ≈D G)

Note that if one were to ignore axiom (45.4), which guarantees the existence of
at least two possible worlds, and consider a degenerate modal setting in which
the actual world is the only possible world, then (ξ) reduces to (ϑ).

In the usual manner, (ξ) yields a necessary equivalence:

�(Numbers(x,G) ≡ A!x&∀F(xF ≡ [λzAFz] ≈D G))

But (ξ) and the above equivalence yield universal cardinals. To see this more
clearly, we add the actual world to our picture, as in Figure 14.10. Now, in-
tuitively, as in the previous figure, any object that numbers P at w1 should be
identical to the object that numbers P at w2, since there are exactly two dis-
cernible objects exemplifying P at both w1 and w2. We verify this over the next
two paragraphs by referencing (ξ).

Suppose x numbers P at w1. Then, by (ξ), x encodes all and only the prop-
erties F such that [λz AFz] is equinumerousD to P at w1. Inspection shows
that x therefore encodes both Q and R, since [λz AQz] and [λz ARz] are both
equinumerousD to P at w1, i.e., there is a one-to-one correspondence from the
discernible objects exemplifying [λzAQz] to the discernible objects exemplify-
ing P at w1, and similarly from the discernible objects exemplifying [λzARz].

Now suppose y numbers P at w2. Then, by (ξ), y encodes all and only those
Fs such that [λzAFz] is equinumerousD to P at w2. But inspection shows that
y therefore encodes Q and R, since these are, again, the only such Fs for which
actually being F is equinumerousD to P at w2. If we assume that these are the
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only encoding facts available, then x=y; they are abstract objects that encode
the same properties. Not only is the object that numbers P atw1 identical to the
object that numbers P at w2, but the object that numbers P at w1 is identical to
the object that numbers R at w2. And so on. In this manner, there will emerge
from (ξ) a single group of universal natural cardinals and that is why we shall
stipulate (ξ) in what follows.

One final point. In 1884, Frege also defines:

n is a Number if and only if there exists a concept such that n is the
Number which belongs to it (§72).

Frege’s definition becomes ambiguous in the present context. Once we’ve de-
fined:

#G =df ıxNumbers(x,G)

one can define a natural cardinal in one of two ways:

NaturalCardinal(x) ≡df ∃G(x=#G)

NaturalCardinal(x) ≡df ∃G(Numbers(x,G))

We’ll show that the two definientia ∃G(x = #G) and ∃G(Numbers(x,G)) are in
fact strictly equivalent, though it is important to recognize that the open formu-
las x=#G and Numbers(x,G) are not! The biconditional x=#G ≡Numbers(x,G)
is not a modally strict theorem of object theory; it is a theorem but it rests
on a contingency. To see this, fix G and fix the world of evaluation to be w.
Then no matter how many discernible objects fall under G at w, the abstract
object, say a, that satisfies the left condition (x= #G) will invariably be the ab-
stract object that in fact numbers G at the actual world. But the object, say
b, that satisfies the right condition (Numbers(x,G)) depends on how many dis-
cernible objects fall under G at w and so b may differ from a. Thus the two
conditions are guaranteed to be equivalent only at the actual world; that’s why
x=#G ≡Numbers(x,G) is a theorem but not a modally strict theorem.

By contrast, the biconditional ∃G(x=#G) ≡ ∃G(Numbers(x,G)) is a modally
strict theorem. We’ll return to this fact on occasion as we develop the theory of
natural cardinals and natural numbers.

(762) Definitions: Numbering a Property. Consequently, we officially define:
x numbers (the discernible objects exemplifying) G if and only if x is an ab-
stract object, G exists, and x encodes just the properties F such that actually
exemplifying F is equinumerous to G w.r.t. discernible objects. Formally:

Numbers(x,G) ≡df A!x&G↓&∀F(xF ≡ [λzAFz]≈DG)
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As noted in the previous Remark (761), the use of the actuality operator in the
definition of Numbers(x,G) constitutes a small but important modification to
Frege’s definition. We can render the definition intuitively as: for any world w,
the abstract object that numbers G at w encodes those properties F such that
the discernible objects exemplifying F at the actual world correspond one-to-
one with the discernible objects exemplifying G at w. By our theory of, and
conventions for, definitions, and the Rule ≡S of Biconditional Simplification, it
follows, for any property term Π, that Π↓ → (Numbers(x,Π) ≡ (A!x&∀F(xF ≡
[λzAFz]≈DΠ))).

(763) Theorems: Existence of (Unique) Objects that Number Properties. It
follows immediately from definition (762) and (strengthened) comprehension
for abstract objects that (.1) there exists an object that numbersG; and (.2) there
exists a unique object that numbers G:

(.1) ∃xNumbers(x,G)

(.2) ∃!xNumbers(x,G)

Note here that by RN, (.1) and (.2) are necessarily true. Intuitively, in terms
of possible worlds, these necessary truths tell us that at every possible world,
there is a (unique) x that numbers G there, i.e., that encodes all and only the
properties F such that actually being F is equinumerousD to G there.

(764) Theorem: EquinumerosityD and Numbering. (.1) if G and H are equinu-
merousD , then x numbers G if and only if x numbers H , and (.2) if x numbers
both G and H , then G and H are equinumerousD :

(.1) G≈DH → (Numbers(x,G) ≡Numbers(x,H))

(.2) (Numbers(x,G) & Numbers(x,H))→ G≈DH

(765) Theorem: The Principles Underlying Hume’s Principle. It is a modally
strict consequence of the foregoing that (.1) if x numbers G and y numbers H ,
then x is identical to y if and only if G and H are equinumerous with respect
to the discernible objects; and (.2) there exists a number that numbers both F
and G is and only if F is equinumerousD to G:

(.1) (Numbers(x,G) & Numbers(y,H))→ (x=y ≡ G ≈DH)

(.2) ∃x(Numbers(x,F) & Numbers(x,G)) ≡ F≈DG

(.2) directly asserts that the equinumerosityD of F and G is necessary and suf-
ficient for the existence of an object that numbers both properties, and vice
versa. By RN, this modally strict equivalence holds necessarily.

However, Hume’s Principle actually says a bit more. If we try to express
what Hume’s Principle asserts without using terms like #F (which are defined
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by definite descriptions), then a modally strict version of the principle presents
itself, namely (.3) there are objects x and y such that (a) x uniquely numbers
F, (b) y uniquely numbers G and (c) x is identical to y, if and only if, F is
equinumerousD to G:

(.3) ∃x∃y(Numbers(x,F) &∀z(Numbers(z,F)→ z=x) &
Numbers(y,G) &∀z(Numbers(z,G)→ z=y) & x=y) ≡ F ≈D G

(766) Theorem: Material EquivalenceD and Numbering. It should be clear that
if G is materially equivalent to H with respect to the discernible objects, then
x numbers G if and only if x numbers H :

G ≡DH → (Numbers(x,G) ≡Numbers(x,H))

(767) Remark: Numbered Properties and Material EquivalenceD . Intuitively,
the fact that x numbers both G and H doesn’t imply that G and H are materi-
ally equivalent with respect to the discernible objects. So the following claim
should be demonstrably false:

(Numbers(x,G) & Numbers(x,H))→ G≡DH

Of course, examples are easy to come by: if one and the same abstract object
numbers being a planet and being a human-manufactured artifact on my desk, it
doesn’t follow that all and only the discernible objects that exemplify being a
planet exemplify being a human-manufactured artifact on my desk.

But the question is, can one prove the negation of the claim displayed above
within our system without additional assumptions, i.e., can we prove, for some
object x and properties G and H , that both Numbers(x,G) and Numbers(x,H)
but G is not equivalentD to H :

∃x∃G∃H(Numbers(x,G) & Numbers(x,H) &¬G≡DH)

As it turns out, the proof of this claim holds under the condition that there are
at least two discernible objects, as the next theorem establishes. However, we
won’t be in a position to show that there are at least two discernible objects
until later.

(768) Theorem: Conditional Fact. If there are at least two discernible objects,
then there is an abstract object x and properties G and H such that x numbers
both G and H but G and H are not materially equivalentD :

∃u∃v(u,v)→∃x∃G∃H(Numbers(x,G) & Numbers(x,H) &¬G≡DH)

To anticipate, the antecedent of this claim will be derivable. We already know
that there is at least one discernible object (227.1), since we know that there
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is at least one ordinary object and that ordinary objects are discernible. How-
ever, to establish that there is a second, distinct discernible object, we will
define Zero as an abstract object (782.1), prove that it exists (782.2), show that
it is a natural cardinal (783), and then show that natural cardinals are dis-
cernible (803.3). Then we’ll have established that there are at least two distinct
discernibles, since the first discernible is ordinary and the second (Zero) is ab-
stract and so have to be distinct (222.2). The above theorem then holds in
virtue of their haecceities, which exist given they are discernibles (273.34); it
should be easy to see that there is a single number that numbers both haec-
ceities, even though their haecceities are not materially equivalentD .

(769) Theorem: Numbering a Property and Modal Collapse. Intuitively, there
are properties G and possible worlds w1 and w2 such that G is exemplified by n
discernible objects at w1 but isn’t exemplified by n discernible objects at world
w2. When that happens, the object that numbers G at w1 is distinct from the
object that numbers G at w2. Formally, if we use reasoning analogous to that
used to establish that equinumerosityD is a contingent condition (755.2), it is
relatively straightforward to show that (.1) there is an object x and a property
G such that x numbers G but doesn’t necessarily number G:

(.1) ∃x∃G(Numbers(x,G) &¬�Numbers(x,G))

This theorem takes on significance when we consider it in conjunction with the
necessitation of (763.1). For taken together, they assure us that every property
in any modal context is numbered by some object even though different objects
may number the property in other modal contexts.

However, it follows generally that (.2) if G is any rigid property, then nec-
essarily, anything that numbers G necessarily numbers G:

(.2) Rigid(G)→ �∀x(Numbers(x,G)→ �Numbers(x,G))

Thus, since the property actually exemplifying G, i.e., [λzAGz], is rigid (759.2), it
follows that (.3) necessarily, anything that numbers [λzAGz] necessarily num-
bers [λzAGz]:

(.3) �∀x(Numbers(x, [λzAGz])→ �Numbers(x, [λzAGz]))

Finally, it follows that (.4) it is actually the case that x numbers G if and only if
x numbers actually exemplifying G:

(.4) ANumbers(x,G) ≡Numbers(x, [λzAGz])

(770) Theorem: The Number of Gs Exists. We previously established that nec-
essarily, there exists a unique abstract object that numbers G (763.2). So the
number of Gs exists:
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ıxNumbers(x,G)↓

Of course, the definite description rigidly denotes the object that in fact num-
bers G.

(771) Definition and Theorem: Notation for, and Existence of, the Number
of (Discernible) Gs. We now introduce the notation #G to rigidly refer to the
number of (discernible) Gs:

(.1) #G =df ıxNumbers(x,G)

Note that since the existence of G is required by the condition Numbers(x,G), a
term of the form #Π will be empty if Π is empty. Clearly, it now follows that
the number of Gs exists:

(.2) #G↓

(772) Theorem: The Number of Gs is Canonical. Here are two theorems that
show the number of Gs is (identical to) a canonical object:

(.1) #G = ıx(A!x&∀F(xF ≡ [λzAFz] ≈D G))

(.2) #G = ıx(A!x&∀F(xF ≡ F ≈D G))

(773) Remark: The Number of Gs is Not Strictly Canonical. Recall that in
(260.2), we stipulated that ıx(A!x & ∀F(xF ≡ ϕ)) is a strictly canonical object
just in case ϕ is a rigid condition on properties, i.e., by (260.1), if and only
if `� ∀F(ϕ → �ϕ). However, if we let ϕ be the formula [λz AFz] ≈D G, then
theorem (755.2) has the form ∃F∃G♦(ϕ & ♦¬ϕ). By reasoning analogous to
that in Remarks (298) and (326), it follows that ϕ is not a rigid condition on
properties, on pain of system inconsistency. So though #G is (identical to) a
canonical object, it is not (identical to) a strictly canonical object.

Since #G isn’t strictly canonical, some well-known Fregean theorems about
this object won’t be modally strict. In particular, we’ll see that the most ob-
vious way of formulating Hume’s Principle won’t be modally strict. There is,
however, a way of formulating a modally strict versions of Hume’s Principle.
See the theorems in (775) below.

(774) Lemmas: Facts About The Number of Gs. We now establish that: (.1)
x numbers actually exemplifying G iff x is the number of Gs; (.2) the number
of Gs numbers actually exemplifying G; (.3) the number of Gs is abstract and,
for any property F, encodes F iff being actually F is equinumerousD to actually
exemplifying G; (.4) the number of Gs encodes G; and (.5) if G is rigid, then the
number of Gs numbers G:

(.1) Numbers(x, [λzAGz]) ≡ x=#G
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(.2) Numbers(#G, [λy AGy])

(.3) A!#G &∀F(#GF ≡ [λzAFz]≈D [λzAGz])

(.4) #GG

(.5) Rigid(G)→ (Numbers(#G,G))

In (.3) and (.4), we put the symbol G immediately following the octothorpe in a
slightly smaller font size solely for ease of readability. Thus, A!#G asserts that
#G exemplifies being abstract, while #GF asserts that #G encodes F.

Note here that we’ve done something different in proving the above theo-
rems about #G, namely, that we’ve proved modally strict theorems having the
above forms even though #G is not strictly canonical. In previous chapters,
the analogous theorems (i.e., having the above form) governing objects that
aren’t strictly canonical were not modally strict. Consequently, it is important
to observe the subtle differences in the above theorems which yield the modal
strictness, such as the places where [λzAGz] occurs instead of G. Our goal, re-
member, is to build natural cardinals and natural numbers that are completely
general and that can number properties no matter what the modal context. See
again Remark (761).

(775) Theorem: Modally Strict Version of Hume’s Principle. Whenever F and
G are rigid properties, then the number of Fs is identical to the number of Gs
if and only if F is equinumerousD to G:

(Rigid(F) & Rigid(G))→ (#F=#G ≡ F ≈D G)

The proof is in the Appendix.

(776) ?Theorem: Hume’s Principle and Corollaries. Clearly, Hume’s Principle
fails to be modally strict: the left side of the principle has a truth value that
doesn’t vary from world to world – #F = #G → �(#F = #G) and #F , #G →
�#F , #G. But it is nevertheless derivable. We first note that (.1) the number
of Gs numbers G:

(.1) Numbers(#G,G)

From this we obtain Hume’s Principle, i.e., (.2) the number of Fs is identical to
the number of Gs if and only if F and G are equinumerousD :

(.2) #F=#G ≡ F ≈DG

Cf. Frege 1884 (§63–§72).368 Note that the above version of Hume’s Princi-
ple doesn’t really differ from Frege’s notwithstanding our introduction of the
368Interestingly, in 1893, Frege doesn’t prove Hume’s Principle as a biconditional (Tennant 2004,

108–9). Frege proves each direction as a separate theorem. The right-to-left direction is proved in
§65, Theorem 32 [2013, 86], and the contraposed version of the left-to-right direction is proved in
§69, Theorem 49 [2013, 93]. See May & Wehmeier 2019, for further discussion.
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notion of discernibility into the analysis. Frege presumably thought that cardi-
nal numbers could only count the discernible objects falling under a property,
and our cardinal numbers will likewise count any discernible objects, ordinary
or abstract, falling under a property. But our version of Hume’s Principle is
unlike Frege’s in that #F has been rigidly defined in a modal setting.

If we expand the right side of Hume’s Principle by definition (747.3) and
apply theorem (750), we may conclude that (.3) the number of Fs is identical
to the number of Gs if and only if there is a relation that mapsD F onto G
one-to-one:

(.3) #F=#G ≡ ∃R(R | :F 1-1−−−→
onto D G)

It is also a straightforward consequence of Hume’s Principle and previous the-
orems that (.4) if F and G are materially equivalent with respect to the dis-
cernible objects, then the number of Fs is identical to the number of Gs:

(.4) F ≡DG→ #F=#G

(777) Definition: Natural Cardinals. Intuitively, cardinals are things that an-
swer the question, “How many Fs are there?”. Frege defined a cardinal number
to be a number that belongs to some property. To adapt this suggestion to the
present context, we define the notion of a natural cardinal as something that
answers the question, “How many (discernible) Fs are there?”. We say that x a
natural cardinal if and only if, for some property G, x is identical to the number
of Gs:

NaturalCardinal(x) ≡df ∃G(x=#G)

Cf. Frege’s definition of Anzahl in 1884, §72, and in 1893, §42 [2013, 58].369 We

369In 1884, §72, Frege says:

the expression
“n is a Number”

is to mean the same as the expression
“there exists a concept such that n is the Number which belongs to it”.

Thus the concept of Number receives its definition, apparently, indeed, in terms
of itself, but actually without any fallacy, since “the Number which belongs to the
concept F” has already been defined.

We’ve captured Frege’s definition in the present framework as NaturalCardinal(x) ≡df ∃G(x=#G).
However, in 1893, §42 [2013, 58], Frege says:

u ”u = Γ is the truth-value of: that there is a concept to which the cardinal
number Γ belongs or, as we can also say, that Γ is a cardinal number. Therefore, we
call the function u ”u = ξ the concept cardinal number.

So where we use # to operate on G to form #G (i.e., the number of Gs), Frege uses the symbol ” to
operate on an extension u of a concept to form ”u, i.e., the number of the concept for which u is
the extension.
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now turn to a fact needed to show that that the definiens ∃G(x=#G) used in the
definition above is equivalent, by a modally strict proof, to ∃G(Numbers(x,G).

(778) Theorem: An Alternative Definiens of Natural Cardinal. Note first that
(.1) if x numbers G, then x is a natural cardinal:

(.1) Numbers(x,G)→NaturalCardinal(x)

With this fact, we may derive, by modally strict means, the equivalence of
∃G(x=#G) and ∃G(Numbers(x,G)):

(.2) ∃G(x=#G) ≡ ∃G(Numbers(x,G))

This shows that, in the definition of NaturalCardinal(x) (777), we could have
used the condition ∃G(Numbers(x,G)) as the definiens. By contrast, as noted in
(761), the biconditional x= #G ≡ Numbers(x,G) is a theorem but not a modally
strict one.

(779) Theorem: Natural Cardinals and Modality. By modally strict means,
it follows that (.1) if x is a natural cardinal, then necessarily x is a natural
cardinal; and (.2) if x numbers G, then necessarily x is a natural cardinal:

(.1) NaturalCardinal(x)→ �NaturalCardinal(x)

(.2) Numbers(x,G)→ �NaturalCardinal(x)

Note how (.1) and (.2) contrast with (769.1).

(780) Theorem: Natural Cardinals Encode the Properties They Number. It is
now provable that a natural cardinal x encodes a property F if and only if x
just is the number of Fs:

NaturalCardinal(x)→∀F(xF ≡ x=#F)

Clearly, once we apply the theory, then it follows from (.2) that if x is a natural
cardinal and is equal to the number of planets (i.e., and x=#P ), then x encodes
being a planet.

(781) Lemma: Fact About Non-Identity w.r.t. Discernibles. By (273.13), we
know that being a discernible object that is non-self-identical, i.e., [λxD!x&x,x],
exists. Clearly, nothing whatsoever exemplifies this property:

¬∃y([λxD!x& x,x]y)

(782) Definition and Theorem: Zero. Given that [λx D!x & x , x]↓ and that
nothing exemplifies this property, we may define (.1) Zero to be the number of
this property, i.e.,

(.1) 0 =df #[λxD!x& x,x]



724 CHAPTER 14. NATURAL NUMBERS

Using u as a (rigid) restricted variable ranging over discernible objects, we can
write (.1) as follows:

0 =df #[λu u,u]

Cf. Frege 1884, §74, and 1893, §41, Definition Θ [2013, 58].370 By our theory
of definitions and the fact that [λx D!x & x , x]↓, it follows from the above
definition that (.2) Zero exists:

(.2) 0↓

(783) Theorem: Zero is a Natural Cardinal.

NaturalCardinal(0)

We have taken the trouble to call out this theorem and the previous one, (782.2),
because of their philosophical interest and significance. No mathematical ax-
ioms have been employed to achieve these results and all the mathematical
notions required to derive them (e.g., #F) have been defined in terms of non-
mathematical notions.

(784) Theorem: Zero Numbers Empty Properties. As simple consequences of
the previous theorems and definitions we have (.1) F fails to be exemplified
by discernible objects iff Zero numbers F, and that (.2) F is exemplified by a
discernible object if and only if some object other than Zero numbers it:

(.1) ¬∃uFu ≡Numbers(0,F)

(.2) ∃uFu ≡ ∃x(Numbers(x,F) & x,0)

Notice that since these theorems are modally strict, they hold necessarily. So,
intuitively, at any possible worldw, F is empty atw if and only if Numbers(0,F).
This shows that we’ve defined the natural cardinal Zero in such a way that it
numbers empty properties at every world; there isn’t a different number Zero
at other worlds that number the empty properties there.

We also have the following facts: (.3) no discernible objects are actually F
if and only if the number of Fs is Zero; (.4) if it is necessary that there are no
discernible objects, then the number of Fs is Zero; and (.5) no discernible ob-
jects exemplify F at possible world w if and only if the number of the property
being F at w is Zero:

(.3) ¬∃uAFu ≡ #F=0

370We’ve kept the definition of Zero as close to Frege’s definition as possible. But we could have
used any other property that either actually or necessarily fails to be exemplified by discernible
objects. For example, L (i.e., the negation of L, where L is the property [λxE!x→ E!x]) is a property
that is necessarily unexemplified and so necessarily unexemplified by discernible objects.
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(.4) �¬∃uFu→ #F=0

(.5) (w |= ¬∃uFu) ≡ #(Fw)=0

For the proof of (.5), recall the definition of Fw in (570.1) as [λx w |= Fx],
and recall the fact (570.2) that Fw ↓. Kirchner observed (personal communi-
cation) that (.5) should convince one that the modally rigidified definition of
Numbers(x,G) shows that the numbers arising at the actual world can number
properties at other possible worlds; (.5) makes this explicit in the case of Zero.

(785) ?Theorem: Non-Strict Facts About Natural Cardinals. It is a theorem
that (.1) a natural cardinal encodes all and only the properties it numbers:

(.1) NaturalCardinal(x)→∀F(xF ≡Numbers(x,F))

Moreover, (.2) Zero encodes all and only the properties that no discernible
object exemplifies:

(.2) 0F ≡ ¬∃uFu

Cf. Frege 1884 (§75). Finally, a property F is unexemplified by discernible
objects if and only if the number of Fs is Zero:

(.3) ¬∃uFu ≡ #F=0

Compare the left-to-right direction with Frege 1893, Theorem 97 (2013, 129).

14.4 Ancestrals and Relations on Discernibles

In this section, we look at the ancestrals of binary relations and then focus on
the weak ancestrals of binary relations on discernibles. The definitions and
theorems we study here will prepare us for the study of the predecessor rela-
tion in the next section.

(786) Definition and Theorem: Properties Hereditary w.r.t. a Binary Relation.
Let us say that a property F is hereditary with respect to a binary relation G if
and only if every pair of G-related objects are such that if the first exemplifies
F then so does the second:

(.1) Hereditary(F,G) ≡df F↓&G↓&∀x∀y(Gxy→ (Fx→ Fy))

In what follows, we sometimes say F is G-hereditary instead of F is hereditary
w.r.t. G. We now have the following theorem, in which we assert the existence
of a relation defined in part in terms of (.1):

(.2) [λxy ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)]↓
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This theorem establishes that the definiens of the following definition-by-= is
significant.

(787) Definition: The Strong Ancestral of a Relation G. In 1879 (Part III,
Proposition 76), 1884 (§79), and 1893 (§45, Definition K [2013, 60]), Frege
defined the notion y follows x in the G-series. However later, Whitehead &
Russell express this idea by saying x is an ancestor of y with respect to relation
G (1910–1913, [1925–1927, ∗90, 549]). In the present work, we define the
relation-forming operator being a G-ancestor of, written G∗, as: being an x and y
such that y exemplifies every property F that is both (a) exemplified by all the objects
to which x is G-related and (b) hereditary with respect to G:

G∗ =df [λxy ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)]

In what follows, we sometimes refer to G∗ as the strong ancestral of G. Clearly,
given (786.2), (787), and our theory of definitions, we know G∗↓.

(788) Theorem: Fundamental Fact about G∗. The following fundamental fact
about the strong ancestral of G follows immediately by β-Conversion: x is a
G-ancestor of y if and only if y exemplifies every property F that is both (a)
exemplified by all the objects to which x is G-related and (b) hereditary with
respect to G:

G∗xy ≡ ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)

If we speak mathematically for the moment (i.e., using mathematical notions
we haven’t defined within our system), we can think of any binary relation
G as inducing sequences on its domain. That is, whenever Gab holds, there
is a sense in which a comes immediately before b in a G-induced sequence.
So, for example, if Gab, Gbc, Gcd, and Gbe, then we can say that G induces the
sequence a,b,c,d (along with its subsequences) and it also induces the sequence
a,b,e (along with its subsequences). We can understand the ancestral G∗ as the
relation that holds between the first member of a G-sequence and any later
member of that sequence. Alternatively, one might say that the strong ancestral
of G is the transitive closure of G.

(789) Lemmas: Facts About the Ancestral of G. The following are immediate
consequences of (787) and (788): (.1) if x bears G to y, then x is a G-ancestor
of y; (.2) if (a) x is an G-ancestor of y, (b) F is exemplified by every object to
which x bears G, and (c) F is G-hereditary, then y exemplifies F; (.3) if (a) x
exemplifies F, (b) x is an G-ancestor of y, and (c) F is G-hereditary, then y
exemplifies F; (.4) if (a) x bears G to y and y is an G-ancestor of z, then x is an
G-ancestor of z; (.5) if x is an G-ancestor of y, then something bears G to y; (.6)
if x is an G-ancestor of y and y is a G-ancestor of z, then x is an G-ancestor of
z; and (.8) if x is a G-ancestor of y, then x is a G-domain element:
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(.1) Gxy→ G∗xy

(.2) (G∗xy &∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy

(.3) (Fx&G∗xy & Hereditary(F,G))→ Fy

(.4) (Gxy &G∗yz)→ G∗xz

(.5) G∗xy→∃zGzy

(.6) (G∗xy &G∗yz)→ G∗xz)

(.7) G∗xy→∃zGxz

Compare (.2) with Frege 1893, Theorem 123 [2013, 138] (though beware of
Frege’s use of italic a and Fraktur a in the same formula), (.3) with Theorem
128 [2013, 139], (.4) with Theorem 129 [2013, 140], and (.5) with Theorem 124
[2013, 138]. Frege proved (.6) in 1879, Proposition 98.

(790) Remark: Digression on a Departure From Frege’s Methods and Previous
Methods. Those familiar with Frege’s work would expect, at this point, a def-
inition of the weak ancestral for an arbitrary binary relation G, i.e., expect a
definition by identity for a new relation-term-forming operator G+ (‘the weak
ancestral ofG’) using the expression being an x and y such that either x is a strong
G-ancestor of y or x is identical to y. But if we were to offer such a definition,
we wouldn’t be able to guarantee that the definiens denotes a relation. That
is, the λ-expression used as definiens in the following is not guaranteed to be
significant:

G+ =df [λxy G∗xy ∨ x=y]

Of course, we might instead introduce a definition by equivalence that says: x is
a weak G-ancestor of y (‘G+(x,y)’) if and only ifG∗xy∨x=y and explore theorems
that govern this new formula. This is in fact the method used in Zalta 1999. In
that work, it was asserted, as an axiom, that Precedes(x,y) is a relation, and the
weak ancestral of this relation was defined as the following condition:

Precedes+(x,y) ≡df Precedes∗(x,y)∨ x=y

It was then asserted, as an axiom, that this condition also defined a relation.
These axioms were then used to derive a general principle of induction and its
corollary, the principle of mathematical induction.

But further investigation into the matter shows that the methods used in
Zalta 1999 were stronger than strictly necessary and that we can achieve the
goal of deriving the principle of mathematical induction using weaker meth-
ods. Indeed, the new axioms added in Zalta 1999 to derive the general prin-
ciple of induction were not sufficiently restricted and require weakening, for
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with a little work, we can show that they lead to the McMichael/Boolos para-
dox.371 To see the problem with the earlier work, suppose P is the relation of
predecessor. Notice that if both the strong and weak ancestrals of P are also re-
lations, written P∗ and P+, then one can form the relation [λxyP+xy&¬P∗xy],
i.e., the relation of being an x and y such that x is a weak P-ancestor of y but
not a strong P-ancestor of y. But this relation turns out to be equivalent to a
unrestricted relation of identity given that the definitions of P, P∗, and P+ are
defined generally.372 An unrestricted relation of identity would reintroduce
the McMichael/Boolos paradox, something that the present system currently
avoids; see (192.3) and (192.4). So we have to take greater care when defining
the weak ancestral of a relation G.

Fortunately, the error introduced by overlooking this consequence is not
fatal. To address the problem, we’ll focus on relations on discernibles, i.e., re-
lations F such that �∀x∀y(Fxy → D!x & D!y). This definition will allow us
to introduce rigid restricted variables ranging over such relations, since any
relation that satisfies the definition will necessarily do so. See (340), (341),
and (792) below for further discussion of rigid restricted variables. Moreover,
the strong ancestrals of relations on discernibles exist in virtue of (786.2) and
(787), and the weak ancestrals of such relations can be defined in terms of iden-
tity w.r.t. discernibles, i.e., =D . So, when G is a relation on discernibles, both
its strong ancestral G∗ and weak ancestral G+ will exist and be well-defined.

Consequently, there is a there is a straightforward way to proceed. We first
define and examine some theorems about relations on discernibles. Then we
introduce rigid restricted variables G to range over such relations. We shall
then define, for any relation on discernibles G, its weak ancestral G+ in terms
of its strong ancestral G∗ and =D . This method guarantees that the weak ances-
trals of such relations are themselves relations. So when we eventually intro-
duce the definition of immediate predecessor (P) and show that P is a relation
on discernibles, we’ll then be able to form its weak ancestral P+, define natu-
ral number, and derive the Dedekind/Peano postulates more simply than was
done in Zalta 1999. In particular, we shall no longer need to assert axiomat-
ically that the weak ancestral of P is a relation. Moreover, this new method-

371Though Zalta 1999 included an Aczel model designed to show that the new axioms were con-
sistent, in fact what it actually showed was that, if one gets the axioms right, one can consistently
produce a Frege-style derivation of the natural numbers. This will be explained in some detail
below.
372To see this, we can reason as follows:

[λxy P+xy &¬P∗xy]zw ≡ P
+zw&¬P∗zw by β-Conversion

≡ (P∗zw∨ z=w) &¬P∗zw by definition of P+zw
≡ z=w by propositional logic

Hence the defined relation would hold between any two objects if and only if they are equal. There
can be no such relation in object theory. This result could have been avoided if it had been asserted
that the weak ancestral is a relation only relative to the domain of Precedes.
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ology allows us to eliminate the modal axiom that was justified and added to
object theory in Zalta 1999, when proving that every number has a successor.
So the following investigation does not reprise Zalta 1999, but rather revises,
corrects, and improves on the presentation there.

(791) Definition and Theorem: Relations on Discernibles. When n ≥ 1, we say
that (.1) F is a (n-ary) relation on discernibles just in case F exists and, necessar-
ily, any objects x1, . . . ,xn that exemplify F are all discernible objects:

(.1) OnDiscernibles(F) ≡df F↓ & �∀x1 . . .∀xn(Fx1 . . .xn→ (D!x1 & . . . &D!xn)) (n ≥ 1)

By simple, modally strict reasoning from (.1) and the 4 schema, it follows that
(.2) for any relation F, if F is a relation on discernibles, then necessarily, F is a
relation on discernibles:

(.2) ∀F(OnDiscernibles(F)→ �OnDiscernibles(F))

Hence OnDiscernibles(F) is a rigid condition on relations.

(792) Remark: Rigid Restricted Variables for Relations on Discernibles. Our
goal is now to establish that OnDiscernibles(F) is a rigid restriction condition on
the variable F. We therefore have to show that it meets the conditions defined
in (336) for a restriction condition as well as the additional condition laid down
in (340) for rigid restriction conditions. Since the condition has a single free
variable, we need only show (i) that the condition is strictly non-empty, i.e.,
that ` ∃F(OnDiscernibles(F)), and (ii) that it has existential import, i.e., that
`OnDiscernibles(Π)→Π↓, for any relation term Π.

Clearly, it is provable that there are relations on discernibles. =E and =D are
examples of such. For the purposes of this discussion, we show this only for
=E and leave the latter as an exercise. =E is a relation on discernibles since it is
provable that �∀x∀y(x=E y → O!x&O!y) and since O!z→ D!z, it follows that
�∀x∀y(x=E y → D!x&D!y). Analogous reasoning shows that =D is a relation
on discernibles.

Moreover, it should be clear that OnDiscernibles(F) has existential import,
since that is the first conjunct of the definition (791.1): if a relation term satis-
fies the condition, then that term denotes.

These observations, together with the fact that the universal generalization
of (791.2) is a modally strict theorem, establish that OnDiscernibles(F) is itself
a rigid restriction condition on relations, as defined in (340). We may therefore
introduce the following rigid restricted variables:

F, G, H , . . . range over relations on discernibles

(793) Definition: The Weak Ancestral of Relations on Discernibles. If G is any
relation on discernibles and =D is the relation of identity with respect to the
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discernible objects (273.17), we define the relation being a weak G ancestor of
(written G+) as the relation being x and y such that x is an G ancestor of y or x is
identicalD to y:

G+ =df [λxy G∗xy ∨ x=D y]

Cf. Frege 1879, §29; 1893, §46, Definition Λ [2013, 60]. We leave it as an
exercise to show that the definiens is provably significant. So the identity G+ =
[λxy G∗xy ∨ x=D y] is a theorem and G+ provably exists.

(794) Theorem: Basic Fact About the Weak Ancestral of Relations on Dis-
cernibles. It follows immediately by β-Conversion that x bears the weak ances-
tral of G to y whenever x bears the strong ancestral of G to y or x is identicalD
to y:

G+xy ≡ G∗xy ∨ x=D y

We shall sometimes use Frege’s reading of the left condition as: y is a mem-
ber of the G series beginning with x (1884, §81; 1893, §46 [2013, 60]). Though
Frege’s reading has a slightly increased cognitive load (the variable for the ob-
ject occurring later in the G series occurs earlier in the expression), the effect is
mitigated by the phrase beginning with x. The intuition here is that G induces
sequences on its domain.

(795) Lemmas: Facts About the Weak Ancestral of G. The following are im-
mediate consequences of our definitions: (.1) if x bears G to y, then x is a weak
G-ancestor of y; (.2) if (a) x exemplifies F, (b) x is a weak G-ancestor of y, and
(c) F is G-hereditary, then y exemplifies F; (.3) if x is a weak G-ancestor of y
and y bears G to z, then x is a G-ancestor of z; (.4) if x is a G-ancestor of y and
y bears G to z, then x is a weak G-ancestor of z; (.5) if x bears G to y, and y is a
weak G-ancestor of z, then x is a G-ancestor of z; (.6) if x is a weak G-ancestor
of y and y is a weak G-ancestor of z, then x is a weak G-ancestor of z; and (.7) if
x is a G-ancestor of y, then x is a weak G-ancestor of something that bears G to
y:

(.1) Gxy→ G+xy

(.2) (Fx&G+xy & Hereditary(F,G))→ Fy

(.3) (G+xy &Gyz)→ G∗xz

(.4) (G∗xy &Gyz)→ G+xz

(.5) (Gxy &G+yz)→ G∗xz

(.6) (G+xy &G+yz)→ G+xz

(.7) G∗xy→∃z(G+xz&Gzy)
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Cf. (.2) with Frege 1893, Theorem 144 [2013, 143]; (.3) with Theorem 134
[2013, 142]; (.5) with Theorem 132 [2013, 140]; and (.7) with Theorem 141
[2013, 143].373 Frege proves these principles for weak ancestrals for relations
generally, however all of his relations were in fact relations on discernibles
and so the restriction to relations on discernibles is not an egregious one. We
haven’t discovered a statement or proof of (.6) (i.e., transitivity of the weak
ancestral) in Frege 1879 or 1893.

Note, finally, that G+xy → ∃zGxz is not a theorem. An empty relation is
a relation on discernibles, by failure of antecedents. Consider such an empty
relation, G, and let a be a discernible object. Then since a=D a, it follows from
(794) that G+aa holds. But since G is empty, ¬∃y(Gay).

(796) Definitions and Theorems: One-to-One Relations and One-to-One Re-
lations on Discernibles and Their Ancestrals. We say that (.1) a binary relation
G is one-to-one, written 1-1(G), just in case for any objects x, y, and z, if x bears
G to z and y bears G to z, then x is identical to y:

(.1) 1-1(G) ≡df G↓&∀x∀y∀z(Gxz&Gyz→ x=y)

We then have the following facts about relations on discernibles that are also
one-to-one: (.2) if G is a one-to-one relation on discernibles, then if x bears G
to y and z is a G-ancestor of y, then z is a weak G-ancestor of x; (.3) if G is a
one-to-one relation on discernibles, then if x bears G to y and x fails to be a
G-ancestor of x, then y fails to be a G-ancestor of y; (.4) if G is a one-to-one
relation on discernibles then if x fails to be a G-ancestor of x and x is a weak
G-ancestor of y, then y fails to be a weak G-ancestor of y:

(.2) 1-1(G)→ ((Gxy &G∗zy)→ G+zx)

(.3) 1-1(G)→ ((Gxy &¬G∗xx)→¬G∗yy)

(.4) 1-1(G)→ ((¬G∗xx&G+xy)→¬G∗yy)

Some of these facts are used a bit later, to establish that no natural number is
less than itself or is a predecessor of itself. But we won’t need them to prove
the following, important principle.

(797) Theorem: Generalized Induction. Let G be any relation on discernibles.
Then it is a theorem that if (a) z exemplifies F and (b) any two objects x and y

373The version of this theorem asserted in Zalta 1999 was incorrectly asserted — the ‘proof’
incorrectly referenced an ill-formed λ-expression that contained the non-propositional formula
G+(x,z), which violated the formation rules of Zalta 1999. Fortunately, the version of (.7) as-
serted in Zalta 1999 wasn’t used in that paper to derive any of the Dedekind/Peano postulates as
theorems. Of course, the issue here is overshadowed by the issue discussed in Remark (790). Nev-
ertheless, it is important to point out the error, and to note that in its present formulation, (.7) is
restricted to relations on discernibles and is indeed a theorem that will be used below in the proof
of an important fact, namely (796.2).



732 CHAPTER 14. NATURAL NUMBERS

having z as a weakG ancestor are such that, if x bearsG to y then Fx implies Fy,
then (c) every object of which z is a weak G ancestor exemplifies F. Formally:

Generalized Induction
[Fz&∀x∀y((G+zx&G+zy)→ (Gxy→ (Fx→ Fy)))]→∀x(G+zx→ Fx)

We can state this theorem a bit more intuitively if we informally introduce
a variation on the notion F is hereditary with respect to G. Let us use the
expression:

F is hereditary on the G-series beginning with z

whenever:

∀x∀y((G+zx&G+zy)→ (Gxy→ (Fx→ Fy)))

Then we may state Generalized Induction as follows: if both (i) z exemplifies
F and (ii) F is hereditary on the G-series beginning with z, then every member
of that series beginning with z exemplifies F.

This is a variant of Frege 1893, Theorem 152 [2013, 148]. Those interested
in the differences between the above version and Frege’s may find the following
Remark useful.

(798) Remark: Digression on the Changes to Frege’s Version of Generalized
Induction. If we put aside the fact that we’ve restricted Generalized Induction
to relations on discernibles, then (797) differs from Frege’s Theorem 152 in two
ways: (a) the consequent of the principle is expressed as a universal claim, and
(b) an additional, though strictly unnecessary, conjunct has been added to the
second conjunct of the antecedent. In this Remark, we explain the differences
in more detail and justify both changes. Consider Frege’s Theorem 152:

F(b)
F(a)

d a F(a)
dS(aSq)
aS(dSRq)
F(d)
aS(bSRq)

This can be rewritten in our notation for predication, conditionals, and quan-
tification as follows, where (i) a and b continue to serve, as in the above, as
individual variables, (ii) the Gothic letters d and a are replaced by the vari-
ables x and y, respectively, (iii) q is replaced by G (which for the purposes of
this Remark, can be any relation), and (iv) Rq is replaced by G+:

[G+ab→∀x(Fx→ (G+ax→∀y(Gxy→ Fy)))]→ (Fa→ Fb)
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If we validly swap G+ab (i.e., the antecedent of the antecedent) with Fa (i.e.,
the antecedent of the consequent) and apply Importation (88.7.b) in a couple
of places, this starts to look more familiar:

[Fa&∀x(Fx&G+ax→∀y(Gxy→ Fy))]→ (G+ab→ Fb)

In other words, if a exemplifies F and every F-object in the G-series beginning
with a passes F to everything to which it isG-related, then if b is in theG-series
beginning with a, b exemplifies F.

Now if we rearrange the second conjunct of the antecedent a bit more using
(99.7), symmetry of &, and Exportation (88.7.a), the last claim displayed above
is equivalent to:

[Fa&∀x∀y(G+ax→ (Gxy→ (Fx→ Fy))]→ (G+ab→ Fb)

Since b is being used here as a free variable, GEN tells us if the above is deriv-
able, then it holds for every b. So by classical quantification theory (95.2):

(A) [Fa&∀x∀y(G+ax→ (Gxy→ (Fx→ Fy))]→∀b(G+ab→ Fb)

Now compare (A) with (797): if you replace G by G, a by z, and b by x in
(A), then (A) becomes similar to (797) with the only difference being that (A)
eliminates G+ay from the second conjunct of the antecedent of (797). Frege, of
course, recognized that G+ay isn’t needed in the statement of the theorem, for
it is provable in his system that if x is in the G-series beginning with z and x
bears G to y, then y is in the G-series beginning with z, i.e., it is a theorem that
(G+zx&Gxy)→ G+zy.374 So (797) and (A) are equivalent, modulo the former’s
restriction to relations on discernibles.

But we’ve formulated General Induction as in (797) because once it is in-
stantiated in the manner described in (812) (i.e., by instantiating z to Zero and
G to P), one can rewrite the result using rigid restricted variables over the
natural numbers to obtain the simple, classical statement of the Principle of
Mathematical Induction. See the statement and proof of (812) below.

14.5 Predecessor

(799) Remark: Frege’s Definition. In 1884 (§76) and 1893 (§43, Definition H
[2013, 58]), Frege defined immediately precedes as follows:

Precedes(x,y) ≡df ∃F∃z(Fz & y=#F & x=#F−z) (H)

374In our system, we can prove a version for relations on discernibles. Assume G+zx&Gxy. Then
by (795.3), G∗zy. Hence, by ∨I and definition (794), G+zy.
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For those who have never encountered Frege’s definition before, the insight
can be made clear by way of an intuitive example. Though we haven’t yet de-
fined ‘1’ and ‘2’, we pre-theoretically know that Precedes(1,2). So given Frege’s
definition, the following should hold: ∃F∃z(Fz& 2 = #F & 1 = #F−z). This lat-
ter condition is intuitively true if we let F be the property author of Principia
Mathematica and let r be Bertrand Russell. Then we know Fr, since Russell
is an author of Principia Mathematica. Moreover, we know 2 = #F, since 2 is
the number of the property author of Principia Mathematica — both Russell
and Whitehead coauthored the work. Finally, we know 1 = #F−r , since 1 is the
number of the property author of Principia Mathematica not identical to Russell
— there is only one object, namely, Whitehead, that exemplifies this property.
So, conjoining Fr, 2 = #F, and 1 = #F−r , and then existentially generalizing on
r and F, we have the definiens when (H) is instantiated to 1 and 2, i.e., we have
the definiens of Precedes(1,2).

In the next item (800), we shall modify Frege’s methodology somewhat.
Instead of the definiens for (H), we shall use the formula:

∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u)) (H′)

Note that (H′) is formulable entirely in terms of non-mathematical primitives,
since Numbers(y,F) and Numbers(x,F−u) are eliminable in terms of primitive
notation. Moreover we’ll first assert, as an axiom, that (H′) (which is a condi-
tion on x and y) defines a relation, and then define the mathematical notion of
predecessor, which we’ll symbolize as P, in terms of this relation.

So (H′), and thus our axiom, alters Frege’s definition of predecessor in two
ways. First, since our natural cardinals only count the discernible objects ex-
emplifying a property F, the existential quantifier ∃z in (H) is replaced in (H′)
by the restricted quantifier ∃u (with u replacing z throughout the remainder of
the formula), where u is a rigid restricted variable ranging over discernible ob-
jects. Given this replacement, #F−u is already defined in (752.2) as the number
of the property being an F-object not identical to u.

Second, (H′) also differs from (H) by the substitution of Numbers(y,F) for
y = #F and Numbers(x,F−u) for x = #F−z. Whereas Frege was not concerned
about modal contexts, we want predecessor to operate in any modal context. So
whereas the condition y = #F identifies y as the object that in fact numbers F,
the condition Numbers(y,F) identifies y, no matter what the modal context, as
the object that numbers the Fs in that context. In non-modal contexts, these
two conditions are equivalent, since it follows immediately from (776.1)? that
Numbers(y,F) ≡ y = #F. Moreover, the condition Numbers(y,F) is preferable
because it is several steps closer to primitive notation than the condition y=#F;
it makes no use of definite descriptions and doesn’t involve an identity formula
(which is defined in object theory, unlike in Frege’s theory, where identity is a
primitive).
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(800) Axiom: The Existence of an Ordering Relation. We now assert that the
following exists (as a relation): being an x and y such that, for some property F
and some discernible object u that exemplifies F, y numbers F and x numbers the Fs
other than u:

[λxy ∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u))]↓

It should be emphasized that this relation is a non-mathematical one. No
mathematical primitives are used to express this relation and, as with other
ordering relations, it can be expressed entirely in logical terms. For example, a
partial order is any relationG that is irreflexive, transitive, and anti-symmetric,
where these conditions can be defined in the usual manner, without any math-
ematics. So the above relation simply orders those abstract objects that, intu-
itively, encode equivalence classes of properties whose discernible exemplifiers
can be put in one-to-one correspondence. There is nothing inherently mathe-
matical in this relation, just as there is nothing inherently mathematical about
the relations x is to the left of y, x is on top of y, x is outside of y, x is after y, etc.

(801) Definition and Theorems: Predecessor. We now introduce the new bi-
nary relation constant P for the relation immediate predecessor:

(.1) P =df [λxy ∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u))]

This definition-by-identity now yields, by our theory of definitions, the claim
P = [λxy ∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u))] and hence that the re-
lation immediate predecessor exists:

(.2) P↓

It also follows by β-Conversion that (.3) x immediately precedes y if and only if
there is a property F and a discernible object u such that (a) u exemplifies F,
(b) y numbers F, and (c) x numbers being-F-but-not-identicalD-to-u:

(.3) Pxy ≡ ∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u))

This theorem yields necessary and sufficient conditions for the predecessor
relation.

Since (.3) is a modally strict theorem, a Rule of Substitution (160.2) allows
us to substitute the left and right sides for one another in any formula where
one occurs as a subformula.

(802) Theorem: Predecessor is a Rigid, One-to-One, and Functional Relation.
We’ll later show that predecessor is a relation on discernibles, but for now we
establish that (.1) if x precedes y, it necessarily does; (.2) predecessor is a rigid
relation; (.3) predecessor is a one-to-one relation; and (.4) predecessor is a func-
tional relation:
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(.1) Pxy→ �Pxy

(.2) Rigid(P)

(.3) 1-1(P)

(.4) Pxy &Pxz→ y=z

In connection with (.3), cf. Frege 1884, §78; and 1893, Theorem 89 [2013, 127].
In connection with (.4), cf. Frege 1893, Theorem 71 [2013, 113].

(803) Theorems: Predecessor is a Relation on Discernibles. We now show work
our way to the principle that predecessor is a relation on discernibles. To es-
tablish this, we prove (.1) there are objects x and y such that x precedes y; (.2)
if x is a natural cardinal other than Zero, there is a object that precedes x; (.3)
natural cardinals are discernible; (.4) if x precedes y, both x and y are natural
cardinals; and (.5) if x precedes y, x and y are both discernible:

(.1) ∃x∃yPxy

(.2) NaturalCardinal(x) & x,0→∃yPyx

(.3) NaturalCardinal(x)→D!x

(.4) Pxy→ (NaturalCardinal(x) & NaturalCardinal(y))

(.5) Pxy→ (D!x&D!y)

Finally, it may be useful to know that being an x that numbers F exists:

(.6) [λxNumbers(x,F)]↓

Given that (.5) is a modally strict theorem, it follows by GEN and RN thatP is a
relation on discernibles (791.1). So we can now instantiateP into any universal
claim governing such relations.

(804) Theorems: Strong Ancestral of Predecessor. Since (a) P↓, and (b) the
definition in (787) yields a universal identity claim that is general with respect
to every binary relation G, we can instantiate that universal claim to P to ob-
tain, as a theorem, that (.1) the strong ancestral of predecessor is (identical to)
the relation: being objects x and y such that y exemplifies every F such that is (a)
exemplified by every object that x precedes and (b) hereditary w.r.t. predecessor:

(.1) P∗ = [λxy ∀F((∀z(Pxz→ Fz) & Hereditary(F,P))→ Fy)]

Hence, by (107.2), we know (.2) the strong ancestral of predecessor exists:

(.2) P∗↓
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And it also follows by β-Conversion and the definition of Hereditary(F,G) (786)
that (.3) x bears the strong ancestral of predecessor to y just in case y exempli-
fies every property F that is both (a) exemplified by all the objects of which x
is a predecessor and (b) hereditary with respect to predecessor:

(.3) P∗xy ≡ ∀F((∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy)

It is now worth a moment’s reflection to consider the fact that the theorems in
(789) governing the strong ancestral of a relation now apply when P is substi-
tuted for G. Finally, it helps to prove that (.4) the strong ancestral of predeces-
sor is a rigid relation:

(.4) Rigid(P∗)

This fact plays a role when we reprise, in our modal setting, the Fregean deriva-
tion of the claim that every number has a successor (818). In the Appendix, we
give two proofs of (818); the second one is more similar to Frege’s in that it
appeals to a theorem concerning #F. Thus, (.4) is used in the proof that the
weak ancestral of P is rigid (806.3), which is used in turn in (817.3) and thus
plays a role in the proof of the lemma that n immediately precedes the number
of the property bearing the weak ancestral of predecessor to n (817.7). This last
lemma quickly yields that every number has a successor (818). However, our
first proof of (818) in the Appendix doesn’t require (.4). In that proof, we ap-
peal to the defined notion Numbers(x,F) instead of #F; the proof of (.4) won’t
be needed, for example, in the proof of (817.2) or (817.6).

(805) Lemma: Zero, Predecessor, and its Ancestrals. It is a consequence of our
definitions that nothing is an immediate predecessor of Zero:

(.1) ¬∃xPx0

Cf. Frege 1893, Theorem 108 [2013, 131]. It follows a fortiori that no natural
cardinal is an immediate predecessor of Zero.

Moreover, it also follows that (.2) nothing is a predecessor ancestor of Zero:

(.2) ¬∃xP∗x0

Cf. Frege 1893, Theorem 126 [2013, 138]. Clearly, then, (.3) Zero is not a pre-
decessor ancestor of itself:

(.3) ¬P∗00

(806) Theorems: The Weak Ancestral of Predecessor. Since P exists and is
provbably a relation on discernibles, the weak ancestral of P is defined by an
instance of (793). So we know that (.1) P+ exists:

(.1) P+↓
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It immediately follows by β-Conversion that (.2) x is a weak predecessor-ancestor
of y if and only if either x is a predecessor ancestor of y or x is identicalD to y:

(.2) P+xy ≡ P∗xy ∨ x=D y

With (.2), we’ve reached a position where we can define the remaining primi-
tive notions, and derive the postulates, of Dedekind/Peano number theory. But
it is worth pausing for a moment to reflect on the fact that when P is substi-
tuted for G in the theorems in (795) – (797), we obtain specific new theorems
about P and its ancestrals. It is also worth noting that (.3) the weak ancestral
of predecessor is a rigid relation:

(.3) Rigid(P+)

(.3) will be relevant for the proof of lemma (817.3), which in turn is used in the
key lemma (817.7) needed for the Fregean-style proof of the claim that every
natural number has a successor.

14.6 Deriving the Dedekind/Peano Postulates

(807) Definition and Theorems: Natural Numbers. Since [λx P+0x] clearly
exists, we may now define (.1) being a natural number as being an x such that
Zero bears the the weak ancestral of predecessor to x:

(.1) N =df [λxP+0x]

Thus, to be a natural number is, in Frege’s terminology, to be a member of the
predecessor-series beginning with Zero. Frege calls such numbers finite cardi-
nal numbers (1893, §108 [2013, 137]). It now follows, in the usual way, that
(.2) the property being a natural number exists; and (.3) x is a natural number if
and only if Zero bears the weak ancestral of predecessor to x:

(.2) N↓

(.3) Nx ≡ P+0x

(808) Theorem: Zero is a Natural Number.

N0

In the present system, the proof of this claim is trivial and with it we have
derived the first Dedekind/Peano postulate.

Interestingly, Frege (1893) doesn’t seem to prove this claim as a theorem,
possibly because, in his system, it is a trivial consequence of definitions and
facts about identity. He proves only the general theorem G+xx, i.e., that x is a
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weak G-ancestor of itself (1893, Theorem 140 [2013, 143]), and doesn’t label
the instance P+00 as a separate theorem.

(809) Lemmas: N is a Rigid Property and Nx is a Rigid Restriction Condition.
The following lemmas will prove to be important. (.1) if x is a number, then
necessarily x is a number; (.2) being a number is a rigid property:

(.1) Nx→ �Nx

(.2) Rigid(N)

Clearly, then, the formula Nx is a rigid restriction condition, as this was de-
fined in (340): it has a single free variable; it follows from (808) that it is strictly
non-empty (i.e., there is a modally strict proof that ∃xNx), it has strict ex-
istential import since it is easy to give a modally strict proof for the claim
Nκ→ κ↓, for any individual term κ; and by applying GEN to (.1), we obtain a
modally strict proof of ∀x(Nx→ �Nx). Consequently, we may introduce rigid
restricted variables to range over numbers. We usem, n, k, and if needed, i and
j, as such variables.

(810) Theorem: Zero Is Not the Successor of Any Natural Number. It also
follows that no natural number is an immediate predecessor of Zero.

¬∃nPn0

Cf. Frege, 1893, Theorem 126 [2013, 138]. With this theorem, we have derived
the second Dedekind/Peano postulate.

(811) Theorems: No Two Natural Numbers Have the Same Successor. From
the fact that predecessor is a one-to-one relation generally (802.3), it follows a
fortiori that it is one-to-one with respect to the natural numbers. Hence, no two
natural numbers have the same successor, i.e.,

∀n∀m∀k(Pnk&Pmk→ n=m)

With (811), we have derived the third Dedekind/Peano postulate. Before we
derive the fourth postulate, that every number has a successor, we first derive
the fifth postulate, namely, the principle of mathematical induction.

(812) Theorem: Mathematical Induction. Since P is a relation on discernibles,
the Principle of Mathematical Induction falls out as a corollary to (797). For
every property F, if Zero exemplifies F and Fn implies Fm whenever n and m
are any two successive natural numbers, then every natural number exempli-
fies F:

∀F[F0 & ∀n∀m(Pnm→ (Fn→ Fm))→∀nFn]
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With this theorem, we have derived the fifth Dedekind-Peano postulate. We
now work our way towards a proof of the fourth postulate, that every natural
number has a unique successor (818).

(813) Lemma: Natural Numbers are Natural Cardinals. It is a consequence
of our definitions that (.1) natural numbers are natural cardinals, and (.2) dis-
cernible:

(.1) Nx→NaturalCardinal(x)

(.2) Nx→D!x

These lemmas play a role in the proof that every natural number has a succes-
sor.

(814) Lemma: Successors of Natural Numbers are Natural Numbers. A suc-
cessor of a natural number is a natural number:

(.1) Pnx→Nx

Recall that this principle is listed by some as one of the basic postulates of
number theory; see postulate 6 of Remark (740).

Moreover, it is also a theorem that (.2) if a natural number is a predecessor
ancestor of x, then x is a natural number; and (.3) if a natural number is a weak
predecessor ancestor of x, then x is a natural number:

(.2) P∗nx→Nx

(.3) P+nx→Nx

(815) Lemma: Predecessors of Natural Numbers are Natural Numbers. A pre-
decessor of a natural number is a natural number:

Pxn→Nx

(816) Lemma: Predecessor is a Functional Relation on the Natural Numbers.
Given that predecessor is a functional relation tout court, it is a functional re-
lation when restricted to the natural numbers:

Pnm&Pnk→m=k

Recall that this theorem is counted, by some, as one of the basic postulates of
number theory; see postulate 7 of Remark (740).

(817) Lemmas: Key Facts About the Ancestrals of Predecessor and Natural
Numbers. We now prove four lemmas that are used in the proof that every
number has a successor, namely, (.1) no natural number is a predecessor an-
cestor of itself; (.2) if an object y immediately precedes a natural number x,
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then an object z numbers being a weak-predecessor ancestor of y if and only if z
numbers being a weak-predecessor ancestor of x other than x; (.3) if an object y
immediately precedes a natural number x, then the number of being a weak-
predecessor ancestor of y is identical to the number of being a weak-predecessor
ancestor of x other than x; (.4) being an object x that immediately precedes some-
thing that numbers being a weak predecessor-ancestor of x exists; (.5) being an
object x that precedes the number of the concept: being a weak predecessor-ancestor
of x exists; (.6) every natural number n immediately precedes an object that
numbers being a weak predecessor-ancestor of n; (.7) every natural number n im-
mediately precedes the number of being a weak predecessor-ancestor of n:

(.1) ∀x(Nx→¬P∗xx)

(.2) (Nx&Pyx)→ (Numbers(z, [λzP+zy]) ≡Numbers(z, [λzP+zx]−x))

(.3) (Nx&Pyx)→ #[λzP+zy] = #[λzP+zx]−x

(.4) [λx ∃y(Numbers(y, [λzP+zx]) &Pxy)]↓

(.5) [λxPx#[λzP+zx] ]↓

(.6) ∀n∃y(Numbers(y, [λzP+zn]) &Pny)

(.7) ∀nPn#[λzP+zn]

Lemma (.3) corresponds to Frege’s Theorem 149 (1893 [2013, 147]). In the
Appendix, we give two proofs of (.7). The first derives it as an easy conse-
quence of (.6). But, as an alternative, we give the ‘Fregean’ proof of (.7), by
induction. In that induction, the base case corresponds to Frege’s Theorem 154
(1893 [2013, 147]), while the inductive case corresponds to Frege’s Theorem
155 (1893 [2013, 149]).

(818) Theorem: Every Natural Number Has a Unique Natural Number Succes-
sor. We can now prove that every natural number n, there is a unique natural
number m that n precedes:

∀n∃!mPnm

With this theorem, we have derived the last of the 5 main Dedekind-Peano
postulates. Later in this chapter, we complete the derivation of second-order
Peano Arithmetic (PA2) by (a) introducing the recursive definitions for addi-
tion and multiplication, and (b) showing that such definitions are justified by
proving the Recursion Theorem.

(819) Remark: Digression on Frege’s Theorem. Frege’s Theorem is that the
Dedekind/Peano axioms for number theory are derivable in second-order logic
extended solely by Hume’s Principle. We’ve reconstructed this theorem in the
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following form: the Dedekind/Peano axioms for number theory are derivable
in object theory extended solely with axiom (800), which asserts that a certain
logically-defined relation (i.e., a relation defined without appeal to mathemat-
ical primitives) exists. Moreover, we’ve derived the Dedekind/Peano axioms in
such a way that adapts Frege’s methods to a modal context but which never-
theless yields a unique number series that can be used to count objects at any
possible world.

The principal way in which we’ve departed from Frege’s method is that in
Frege’s system, there are no indiscernible objects and so every object whatso-
ever could be counted. When one reconstructs Frege’s theorem in standard
(non-modal) second-order logic extended by Hume’s Principle, the natural
numbers he defines can count everything in the domain. Frege no doubt as-
sumed that everything in the domain was discernible. But Frege didn’t dis-
tinguish or axiomatize abstract objects, and in a general axiomatization that
implies the existence of indiscernible abstracta, the entities that correspond to
the Frege numbers count discernible objects. Thus, the fact that Frege’s The-
orem has been reconstructed relative to the discernible objects does not strike
us as much of a limitation.

(820) Remark: A Potential But Unfounded Worry. In light of the theorems in
(268), the new axiom asserted in (800) and definition of P stipulated in (801.1)
have a consequence that raises some questions, though fortunately ones that
can be put to rest. Recall that (268.1) and (268.2) assert:

∀G∃x∃y(A!x&A!y & x,y & [λzGzx]=[λzGzy]) (268.1)

∀G∃x∃y(A!x&A!y & x,y & [λzGxz]=[λzGyz]) (268.2)

These imply, respectively, that:

∃x∃y(A!x&A!y & x,y & [λzPzx]=[λzPzy])

∃x∃y(A!x&A!y & x,y & [λzPxz]=[λzPyz])

Let a and b be witnesses to the first existential claim, and c and d be witnesses
to the second. That is suppose:

(ϑ) A!a&A!b& a,b& [λzPza]=[λzPzb]

(ζ) A!c&A!d & c,d & [λzPcz]=[λzPdz]

These consequences give rise to the following questions: (a) is anything a pre-
decessor of either a or b, and (b) are c or d predecessors of anything? If the
answer to the first is yes, then we could derive a contradiction from (ϑ) and the
fact P is functional, i.e., ∀x∀y∀z(Pxy &Pxz→ y=z) (802.4):
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Suppose ∃yPya. Let e be such an object, so that Pea. Then by β-Conver-
sion, [λzPza]e. So by (ϑ), [λzPzb]e. By β-Conversion, Peb. But since (ϑ)
also implies a , b, we now we have Pea, Peb and a , b. This contradicts
the functionality of P.

Similarly, if c or d are predecessors of anything, then then we could derive a
contradiction from (ζ) and the fact (802.3) that P is one-to-one (exercise).

But these derivations are simply reductio arguments to the conclusions that
nothing is an immediate predecessor of a and b (i.e., that [λzPza] and [λzPzb]
are unexemplified), and that c and d aren’t immediate predecessors of anything
(i.e., that [λz Pcz] and [λz Pdz] are unexemplified). More generally, we can
conclude that none of a, b, c, and d can be natural numbers.

14.7 Number Theory

(821) Definition: Notation for Successors. By theorem (818) we know that ev-
ery natural number has a unique successor among the natural numbers. Hence,
we may introduce the notation n′ to abbreviate the definite description the nat-
ural number of which n is a predecessor:

n′ =df ımPnm

We henceforth refer to n′ as the successor of n.

Note: Since we are now using the prime symbol as a term-forming
operator on terms that denote natural numbers, we must henceforth
refrain from using prime symbols on our restricted variables n, m, and k
to form new variables. However, we may continue to use prime notation
on other variables — x and x′ may be used as distinct general variables,
and u and u′ as distinct variables for discernible objects.

(822) Theorem: Fact About Successors. If n is identical tom, then the successor
of n is identical to the successor of m:

n=m → n′ =m′

(823) Theorem: Fact Underlying Induction Using Successor Notation. It is
common mathematical practice to inductively define a sequence of numerically-
indexed notions. In these definitions, two clauses are used: in the first clause,
the notion is defined for the index Zero, and in the second clause, the notion
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is defined for the index n′ in terms of the notion for index n. Though the Prin-
ciple of Mathematical Induction ultimately grounds this practice, the use of
successor notation often simplifies the formulation of the notions being de-
fined inductively. The theorem that grounds this practice of using successor
notation can now be stated very simply, namely, a natural number is either
identical to Zero or identical to n′, for some natural number n:

m=0∨∃n(m=n′)

Study of the proof of this theorem shows that in addition to the definitions of
N, P, P∗, P+, =D , and ′, the result depends on a fact about the weak ancestral of
predecessor (795.7), and the one-to-one and functional character of predecessor,
(802.3) and (802.4), respectively.

(824) Theorem: Natural Numbers Are Predecessors of Their Successors. By
(153.2), it is a consequence of definition (821) that a natural number n is a
predecessor of its successor:

Pnn′

(825) Definitions: Introduction of the Numerals. Since every natural number
has a unique successor, we may introduce the (base 10) numerals ‘1’, ‘2’, ‘3’,
. . . , as abbreviations, respectively, for the descriptions the successor of 0, the
successor of 1, the successor of 2, etc.

(.1) 1 =df 0′

(.2) 2 =df 1′

(.3) 3 =df 2′

...

The ellipsis is to be continued by a sequence of definitions with analogous
definienda and definientia, ordered according to the base 10 representation of
the natural numbers. Note that the definientia of the terms being introduced
here are all significant. In English, the new definienda may be read, respec-
tively: One, Two, Three, etc.

(826) Theorems: Numerical Order. The predecessor ordering of the natural
numbers now follows directly from (825) and (824):

(.1) P01

(.2) P12

(.3) P23
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...

(827) Theorems: Number-Theoretic Facts. The objects defined in (825) are
natural numbers: (.1) One is a natural number; (.2) Two is a natural number;
(.3) Three is a natural number; . . .

(.1) N1

(.2) N2

(.3) N3

...

(828) Definition: Restricting Relations. We define (.1) the restriction of binary
relation G to property F, written G�F , to be the property being an F-object that
bears G to y:

(.1) G�F =df [λxy Fx&Gxy]

So, for example, =D�E! is the relation [λxy E!x& x=D y], i.e., the identityD rela-
tion restricted to the concrete objects.

More generally, (.2) the restriction of n′-ary relation G to n-ary relation Sn,
written G�Sn , is the n′-ary relation being objects x1, . . . ,xn, y such that x1, . . . ,xn
both exemplify Sn and bear G to y:

(.2) G�Sn =df [λx1 . . .xny S
nx1 . . .xn &Gx1 . . .xny]

In the case where n = 0, the definition yields that (.3) the restriction of property
G to proposition p is the property being such that p is true and y exemplifies G:

(.3) G�p =df [λy p&Gy]

(829) Theorem: Fact About Restrictions of Rigid Relations. It is an interesting
(and useful) fact that if an n′-ary relation G is rigid, then its restriction to a
rigid n-ary relation S is rigid:

Rigid(G) & Rigid(Sn)→ Rigid(G�Sn ) (n ≥ 0)

(830) Definitions: Some Number-Theoretic Relations. We now want to intro-
duce the relations less than and less than or equal to. We could define them,
respectively, as [λxyNx&Ny&P∗xy] and [λxyNx&Ny&P+xy]. However, we
can define them more simply as restricted binary relations (828.1) if we take
advantage of the facts that P∗ny → Ny (814.2) and P

+ny → Ny (814.3). For
then we may define (.1) less than is the restriction of the ancestral of predecessor to
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being a natural number; and (.2) less than or equal to is the restriction of the weak
ancestral of predecessor to being a natural number. In both cases, the definiens
is significant. We may therefore introduce the standard mathematical symbols
for these number-theoretic relations:

(.1) < =df P
∗
�N

(.2) ≤ =df P
+
�N

Note that we restrict < and ≤ to relate only natural numbers. Later, we will see
that there are natural cardinals that are not natural numbers. Such cardinals
could be related by P but will not fall under < or ≤.

Given these definitions, we define (.3) greater than is the converse of less
than, and (.4) greater than or equal to is the converse of less than or equal to.
We introduce the standard mathematical symbols for these number-theoretic
relations:

(.3) > =df [λxy y < x]

(.4) ≥ =df [λxy y ≤ x]

In the usual manner, we use infix notation for all of these new symbols.

(831) Theorems: Basic Facts About Less Than and Less Than Or Equal To. The
following are easy consequences of the previous definitions and prior theo-
rems. (.1) x is less than y if and only if x and y are both natural numbers and x
is a predecessor-ancestor of y; and (.2) x is less than or equal to y if and only if
x and y are both natural numbers and x is a weak predecessor-ancestor of y:

(.1) x < y ≡Nx&Ny &P
∗xy

(.2) x ≤ y ≡Nx&Ny &P
+xy

(832) Theorems: Numerical Facts About Inequalities. If we now focus on the
natural numbers, then the preceding theorems immediately yield, for natural
numbers n and m, that (.1) n is less than m iff n is a predecessor ancestor of m;
(.2) n is less than or equal to m iff n is a weak predecessor ancestor of m; (.3) n
is greater than m iff m is less than n; and (.4) n is greater than or equal to m iff
m is less than or equal to n:

(.1) n < m ≡ P∗nm

(.2) n ≤m ≡ P+nm

(.3) n > m ≡m < n

(.4) n ≥m ≡m ≤ n
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In light of these results, we restrict our attention below primarily to the basic
theorems about < and ≤.

(833) Theorem: Some Facts About Less Than (or Equal To). (.1) If n is a prede-
cessor of m, then n is less than m; (.2) n is less than or equal to n; (.3) if n is less
than m, then n is less than or equal to m; (.4) if n is less than or equal to m and
n is not equal to m, then n is less than m; (.5) if n is less than m and m is less
than k, then n is less than k; and (.6) if n is less than or equal to m and m is less
than or equal to k, then n is less than or equal to k; (.7) if n is less than m and
m is less than or equal to k, then n is less than k; (.8) if n is less than or equal to
m and m is less than k, then n is less than k:

(.1) Pnm→ n < m

(.2) n ≤ n

(.3) n < m→ n ≤m

(.4) n ≤m&n,m→ n < m

(.5) n < m&m < k→ n < k

(.6) n ≤m&m ≤ k→ n ≤ k

(.7) n < m&m ≤ k→ n < k

(.8) n ≤m&m < k→ n < k

(834) Theorems: Some Additional Facts About Less Than (or Equal To). (.1) n
is less than n′; and (.2) n is less than or equal to n′; (.3) if One is less than or
equal to n, then Zero is less than n; (.4) If n is less than m′, then m is less than
n; and (.5) n′ is greater than Zero:

(.1) n < n′

(.2) n ≤ n′

(.3) 1 ≤ n→ 0 < n

(.4) m′ ≤ n→m < n

(.5) n′ > 0

(835) Theorem: Numbering and Less Than or Equal To. Intuitively, if all dis-
cernible F things are G things, then the number of discernible F things should
be less than or equal to the number of discernible G things. More precisely, if
n numbers F, m numbers G, and every discernible F is a discernible G, then n
is less than or equal to m:
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(
Numbers(n,F) & Numbers(m,G) &∀u(Fu→ Gu)

)
→ n ≤m

This fact is important when we prove that there is an infinite cardinal.

(836) Theorems: Numerical Facts About Less Than. Clearly, from (834.1) and
the definitions of the numerals in (825), the following claims become modally
strict theorems:

(.1) 0 < 1

(.2) 1 < 2

(.3) 2 < 3

...

The following may prove useful:

Exercise 6. Note that if we can derive the following claims:

0′ ≤ 1, 0′ ≤ 2, . . .
1′ ≤ 2, 1′ ≤ 3, . . .
2′ ≤ 3, 2′ ≤ 4, . . .
...

then by (834.4), the following claims become modally strict theorems:

0 < 1, 0 < 2, . . .
1 < 2, 1 < 3, . . .
2 < 3, 2 < 4, . . .
...

So as an exercise, derive the first two of the former group, i.e., that 0′ ≤ 1
and 0′ ≤ 2.

(837) Remark: Necessity and the Number of Planets. In a system such as
ours, where all the terms are rigid designators, it is easy to see why one of the
Quinean arguments that cast suspicion on modal contexts can be easily under-
mined. Quine (1953 [1961], 143) noted that the following argument, stated in
ordinary natural language, is invalid (soundness is not in question, since the
second premise is no longer thought to be true):

Necessarily, nine is greater than seven.
Nine is (identical to) the number of planets.
∴ Necessarily, the number of planets is greater than seven.
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Clearly, if the identity claim in the second premise has a rigid term (‘nine’) on
one side of the identity claim and a non-rigid term (‘the number of planets’)
on the other side, one can’t expect to validly use the substitution of identicals
to substitute one term for the other in the modal context provided by the first
premise.

But if we represent the argument by using the rigidly designating definite
descriptions of applied object theory, we have the following valid argument:

�9 > 7
9 = ıxNumbers(x,P )
∴ �ıxNumbers(x,P ) > 7.

We can see why this is valid if we reason intuitively in the formal mode with
primitive possible worlds: from the facts that (a) in every possible world, Nine
is greater than Seven and (b) Nine is identical to the object that (at the actual
world) numbers the planets, it follows that in every possible world, the object
that (at the actual world) numbers the planets is greater than Seven.

So, as far as applied object theory goes, Quine’s argument does nothing
to undermine the logical rigor of modal contexts. Of course, if one wants to
give a reading of the natural language argument that shows why it is invalid,
one has several options: (1) eliminate, in the manner of Russell’s theory, the
description from the second premise and also eliminate it from the conclusion
but with narrow scope with respect to the �,375 or (2) introduce a new kind of
definite description, namely, a non-rigid one and restrict the principle of the
substitution of identicals so that identicals can’t be substituted within modal
contexts.376

375That is, one could suggest that the following is a reading of the argument on which it is invalid:

�9 > 7
∃!x(Numbers(x,P ) & 9=x)
∴ �∃!x(Numbers(x,P ) & x > 7)

This is invalid, as can be seen if we reason intuitively in the formal mode with primitive possible
worlds: from the facts that (a) in every possible world Nine is greater than Seven and (b) there is
a unique object that, at the actual world, numbers the planets and is identical to Nine, it doesn’t
follow that in every possible world, there is a unique object that numbers the planets and is greater
than Seven.
376That is, one could suggest that the following is a reading of the argument on which it is invalid,

where we use the Greek ι instead of the symbol ı to form non-rigid descriptions of the form ιxϕ
(these are subject to restrictions on substitution, which are violated in the following argument):

�9 > 7
9 = ιxNumbers(x,P )
∴ �ιxNumbers(x,P ) > 7.

We can see why this is invalid if we reason intuitively in the formal mode with primitive possible
worlds: from the facts that (a) in every possible world, Nine is greater than Seven and (b) Nine is
identical to the object that happens to number the planets, it doesn’t follow that in every possible
world w, the object that numbers the planets at w is greater than Seven.
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(838) Theorems: Further Facts About Natural Numbers. It is a consequence
of our work thus far that (.1) a natural number is not less than itself; (.2) a
natural number doesn’t immediately precede itself; and (.3) a natural number
is not identical to its own successor:

(.1) n 6< n

(.2) ¬Pnn

(.3) n,n′

(839) Definition and Theorem: Number-Identity. We now define a relation
on the natural numbers and show it is a genuine, though restricted, notion of
identity. To define the relation in question, recall the definition of the restric-
tion of a relation G to property F in (828.1). Since =D is a relation, we may
write its restriction to the property being a natural number (N) as =D�N. We
therefore define being number-identical, written =̇, as the relation being identi-
calD restricted to the property being a natural number:

(.1) =̇ =df =D�N

We henceforth use =̇ as infix notation. It follows immediately from this defini-
tion and the previous lemma that (.2) x is number-identical to y if and only if
x and y are identical natural numbers:

(.2) x =̇y ≡Nx&Ny & x=y

We now show that =̇ is a genuine, though restricted, notion of identity.

(840) Theorem: Number-Identity and Identity. It is now provable that (.1) if x
is number-identical to y, then x is identical to y; (.2) if either x or y is a natural
number, then x and y are number-identical if and only if they are identical; (.3)
number-identity is reflexive; (.4) symmetric; (.5) transitive; and (.6) rigid; and
(.7) n is less than or equal to m iff either n is less than m or n is identical to m:

(.1) x =̇y→ x=y

(.2) (Nx∨Ny)→ (x =̇y ≡ x=y)

(.3) n =̇n

(.4) n =̇m→m =̇n

(.5) (n =̇m&m =̇k)→ n =̇k

(.6) Rigid(=̇)

(.7) n ≤m ≡ n < m∨n=m
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So (.2) implies that natural numbers n and m are number-identical precisely
when identical, and (.3) – (.5) tell us that number-identity is provably an equiv-
alence relation on natural numbers. Notice that (.6) tells us that the necessity
of identity applies to number-identity. (.7) shows that the traditional definition
of less than or equal to is a theorem.

(841) Definition and Theorem: Positive Integers. We leave it as an exercise to
show that the expression [λx x > 0)] is significant. Hence, we may define (.1)
being a positive integer, written N+, as being an x greater than Zero:

(.1) N+ =df [λx x > 0]

It immediately follows that:

(.2) N+x ≡ x > 0

(842) Theorems: One is a Positive Integer and Similar Facts. It now follows
that (.1) One is a positive integer. More generally, (.2) if One is less than or
equal to n, then n is a positive interger:

(.1) N+1

(.2) 1 ≤ n→N+n

(843) Theorem: Every Positive Integer Succeeds a Unique Natural Number. If
x is a positive integer, there is a unique natural number that precedes it:

N+x→∃!nPnx

Cf. Frege 1884 (§78, Proposition 6) where he asserts that every Number except
Zero follows in the series of natural numbers directly after a number.

(844) Lemmas: Facts About Numbering Successors. (.1) If discernible object u
exemplifies F and n numbers the F-objects not identicalD to u, then n′ numbers
F; and (.2) If n′ numbers F, then for some discernible object u exemplifying F,
n numbers the F-objects not identicalD to u:

(.1) Fu& Numbers(n,F−u)→Numbers(n′,F)

(.2) Numbers(n′,F)→∃u(Fu& Numbers(n,F−u))

(845) Definition and Theorems: The Exact Numerical Quantifiers for Dis-
cernible Objects. We can now define the exact numerical quantifiers, or cardi-
nality quantifiers, for discernible objects in simple terms. For any number n,
there are exactly n discernible objects that exemplify F, written ∃!nuFu, if and
only if n numbers F:
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(.1) ∃!nuFu ≡df Numbers(n,F)

Note that the definition of ∃!nuFu is a condition with the variables n and F free.
Note also how the numerical subscript in (.1) compare with the numerical sub-
scripts used to distinguish the variables and constants of the system. The latter
are primitive metalinguistic expressions (as providing a convenient supply of
distinct symbols); they are not numerals ranging over objects falling under the
concept of number). But now we are justified in introducing numerical sub-
scripts, on expressions and in definitions and theorems, as referencing num-
bers. Thus, (.1) makes use of our theoretically defined numbers. The quantifier
is indexed by variable ranging over natural numbers, and that variable can be
bound by a quantifier. For example, we can now state ∀n∃F∃!nuFu. As we’ll
see, this is theorem (846.3). So the numerical expressions being used here do in
fact range over the natural numbers that we’ve defined in the system. That is,
we are now making use of the natural numbers to (exactly) count the discernible
objects that fall under a property no matter what the modal context.

It follows from this definition that (.2) there are exactly 0 discernible objects
exemplifying F if and only if there are no discernible objects exemplifying F,
and (.3) there are exactly n′ discernible objects exemplifying F if and only if
there is a discernible object u such that u exemplifies F and such that there are
n discernible objects that exemplify being an F-object other than u:

(.2) ∃!0uFu ≡ ¬∃uFu)

(.3) ∃!n′uFu ≡ ∃u(Fu&∃!nvF
−uv)

Thus, we’ve derived the classic inductive definition of the numerical quanti-
fiers (cf. Mendelson 1964 [1997, p. 101, Exercise 2.71]). So, clearly, ∃!nuFu
does in fact mean that there are exactly n distinct discernible F-exemplifiers.

(846) Theorems: Natural Numbers and Numerical Quantifiers Over Discern-
ible Objects. It is also provable that (.1) n is the abstract object that encodes just
the properties F such that there are exactly n discernible objects exemplifying
F; and (.2) for every number n, there is a property F such that there are exactly
n Fs:

(.1) n = ıx(A!x&∀F(xF ≡ ∃!nuFu))

(.2) ∀n∃F∃!nuFu

Note how (.1) validates an idea put forward by Hodes in papers from 1984
and 1990. He summarizes his 1984 view, ‘coding fictionalism’, as the idea
that “numbers are, loosely speaking, fictions created to encode cardinality-
quantifiers, thereby clothing a certain higher-order logic in the attractive gar-
ments of lower-order logic” (1990, 350).377 We validate this idea by taking his

377He goes on to say:
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‘fictions’ to be ‘reified logical patterns’, i.e., abstract objects. Each equinumero-
sityD condition on properties in our logic could be represented in third-order
logic as a property of properties. Thus, each natural number n encodes those
properties F that fall under the following property of properties: being a prop-
erty F such that there are exactly n discernible objects that exemplify F. One
might note that Hodes’s view holds, by contrast, for the numerical quantifiers
over any objects, but this doesn’t confer greater generality for his conception
since we doubt his domains included indiscernible objects. In any case, he ap-
peals to far richer assumptions to state his view, namely, the assumptions of
third-order logic, model theory, applied set theory, etc. By contrast, object the-
ory can express and derive a version of the view in a second-order logic that is
interpretable under general Henkin models.

(847) Remark: General Numerical Quantifiers, or How to Count Abstracta. We
can now make use of the natural numbers to inductively define exact numer-
ical quantifiers for any objects, any relations, and for any condition ϕ. These
quantifiers will be unlike the numerical quantifiers for discernible objects: we
won’t be able to transform assertions involving them into facts about the num-
ber indexing the quantifier. Nevertheless, the following definitions are precise
and allow us to assert there are exactly n entities (individuals or relations, as the
case may be) such that ϕ:

∃!0αϕ ≡df ¬∃αϕ
∃!n′αϕ ≡df ∃α(ϕ&∃!nβ(ϕβα & β,α))

More precisely: arithmetic singular terms that appear to do the semantic job of des-
ignating numbers really do the different job of encoding cardinality-quantifiers;
quantifier-phrases that appear to quantify over numbers really encode higher-
order quantification over cardinality-quantifiers; predicate-phrases, whose logico-
syntactic behavior make them of level one, really do the semantic work of expres-
sions of higher levels.

His position was laid out earlier in 1984 where we find, on p. 143:

In making what appears to be a statement about numbers one is really making a
statement primarily about cardinality object-quantifiers; what appears to be a first-
order theory about objects of a distinctive sort really is an encoding of a fragment of
third-order logic.

And on p. 144:

The mathematical-object picture may be described in two equivalent ways. . . . or we
may see it as a pretense of positing objects that intrinsically represent type 2 entities.
This second description makes mathematical discourse, when carried on within the
mathematical-object picture, a special sort of fictional discourse: numbers are fic-
tions “created” with a special purpose, to encode numerical object-quantifiers and
thereby enable us to “pull down” a fragment of third-order logic, dressing it in first-
order clothing.

By ‘higher-order logic’, Hodes means third-order logic. In our system, the Comprehension Princi-
ple for Abstract Objects grounds the way we abstract the numbers from these higher-order facts.
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As the simplest (non-vacuous) case of this definition, let α be the individual
variable x and ϕ be Fx, so that we have:

∃!0xFx ≡df ¬∃xFx
∃!n′xFx ≡df ∃x(Fx&∃!ny(Fy & y,x))

Similarly, let α be the m-ary relation variable Fm (for some m, m ≥ 0) and let ϕ
be any formula. Then our definition yields:

∃!0F
mϕ ≡df ¬∃Fmϕ

∃!n′F
mϕ ≡df ∃Fm(ϕ&∃!nG

m(ϕG
m

Fm &Gm,Fm))

Though ∃!nxFx is not equivalent to Numbers(n,F), it can be used to answer the
question “How many abstract individuals are such that ϕ?” by showing, for
some n, that ∃!nx(A!x&ϕ), and we can answer the question “How many Fs are
such that ϕ?” by showing, for some n, ∃!nFϕ. The answers make use of numer-
als as informative indices, and though these numerals can now be grounded in
our theory of natural numbers, the answers to the questions just posed make
no reference to the natural numbers once the defined terms expanded into
primitive notation.

14.8 Functions and Recursive Definitions

It is now time to discuss functions in greater generality. Up to this point, we
have defined what it is for a binary relation R to map F to G (743.1), and what
it is for a relation R to mapD F to G (749.1). But our goal in this section is
to introduce and justify the usual recursive definitions of the arithmetic func-
tions such as addition, multiplication, etc. To do this, we need to (a) define
n-ary functions generally and understand how they behave, (b) define maps
and mappings generally, i.e., say what it is for an n′-ary relation to be an n-
ary mapping from relation Sn to property G and what it is for a relation to
be a restricted function from Sn to G, (c) introduce and justify the definition
of new relations by induction and new functions by recursion, and then (d)
combine our investigations so that we can justifiably use recursive definitions
to introduce the classical, recursive, number-theoretic functions used in Peano
Arithmetic.

14.8.1 Total Functions

In what follows, we use R,S, . . . as variables ranging over relations. If we need
arbitrary constants for relations, we’ll numerically index the variables.

(848) Definitions: n-ary Total Functions. Let us say that (.1) binary relation R
is a unary total function, written Function1(R), if and only if for every object x,
there is a unique object y such that x and y exemplify R:
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(.1) Function1(R) ≡df ∀x∃!yRxy

For convenience, we have dropped the superscript on R in Function1(R), since
the arity of R can be inferred.

More generally, we say that (.2) an n′-ary relation R is an n-ary total function,
written Functionn(R), if and only if for any objects x1, . . . ,xn there is a unique
object y such that x1, . . . ,xn, y exemplify R:

(.2) Functionn(R) ≡df ∀x1 . . .∀xn∃!yRx1 . . .xny (n ≥ 0)

Again, we have dropped the superscript on R in Functionn(Rn
′
), since the arity

of R must be n′ when R is an n-ary total function. Thus, a binary total function
is a tertiary relation R such that ∀x∀y∃!zRxyz. And so on.

Our definition applies even when n = 0 so that (.3) a nullary total function
is any unary relation R that is uniquely exemplified:

(.3) Function0(R) ≡df ∃!yRy

So any property exemplified by exactly one object is a nullary total function.
Cf. Leinster (2014, 405), who stipulates that elements are a special case of func-
tions.

(849) Definitions: A Distinguished Group of Necessary Relations. In the re-
mainder of this chapter, we shall need to appeal to relations that are necessarily
exemplified by every x1, . . . ,xn. Of course, we’ve already introduced a necessary
property, namely L, which was defined in (203) as [λx E!x → E!x] (being con-
crete if concrete). However, instead of generalizing this definition to relations of
higher arity, it is simpler to introduce necessary n-ary relations for each arity
n as follows. Recall that in (208), we let p0 be the proposition ∀x(E!x→ E!x).
Then let us define the n-ary relation U n to be the relation being x1, . . . ,xn such
that p0:

U n =df [λx1 . . .xn p0]

When n = 1, this definition yields that U 1 (henceforth U ) is the property [λxp0],
and when n = 0, the definition yields that U 0 is the proposition [λ p0], which
we know by (111.1) is just p0.

(850) Theorems: Facts About U n. Clearly, it follows from β-Conversion and the
fact that p0 is a theorem that (.1) individuals x1, . . . ,xn exemplify being x1, . . . ,xn
such that p0. Hence (.2) individuals x1, . . . ,xn exemplify U n. So by GEN, (.3) any
individuals x1, . . . ,xn exemplify U n, and, by RN, (.4) necessarily, any individuals
x1, . . . ,xn exemplify U n:

(.1) [λx1 . . .xn p0]x1 . . .xn

(.2) U nx1 . . .xn



756 CHAPTER 14. NATURAL NUMBERS

(.3) ∀x1 . . .∀xnU nx1 . . .xn

(.4) �∀x1 . . .∀xnU nx1 . . .xn

So by (200.1), U n is a necessary relation. When n = 0, (.1) asserts that p0 is true;
(.2) and (.3) assert U 0 is true; and (.4) asserts necessarily, U 0 is true. Finally,
note that in these theorems, we may regard n as a free variable, so that, by
GEN, each becomes a universally generalized theorem beginning for every n.
Though we’ve previously regarded superscript numerals as mere decorations
that indicate arity (given that the notion natural number is not a primitive of
our language and isn’t expressed in the primitive formulas of our language),
we are now entitled, given that the notion natural number has been properly
defined and introduced, to regard these superscript indices as more than mere
decorations. Cf. the similar observation made about subscripts in the remarks
just after definition (845.1).

(851) Theorems: Total Functions of Every Arity Exist. It is a theorem that:
(.1) being an x and y such that x exemplifies U and y is number-identical to Zero
is a unary total function; and (.2) being an x1, . . . ,xn and y such that x1, . . . ,xn
exemplify U n and y is number-identical to Zero is an n-ary total function:

(.1) Function1([λxy Ux& y =̇0])

(.2) Functionn([λx1 . . .xny U nx1 . . .xn & y =̇0])

Four observations may be of interest. First, in (.1), we may substitute any pos-
itive integer for Zero and the result remains a theorem. The same applies to
(.2). Second, in (.2), we may regard n as a free variable, so that by GEN, it fol-
lows that the theorem holds for every n. Third, the theorem holds even when
n = 0. In that case, the theorem asserts:

(.3) Function0([λy y =̇0])

Fourth, these theorems depend on axiom (800) and the definition of P (801.1).
We can, however, prove that total functions of every arity exist without appeal-
ing to that axiom. See the next item.

(852) Theorems: Non-Numerical Total Functions of Every Arity Exist. With-
out relying on the axiom that predecessor is a relation, we can show that: (.1)
some binary relations are unary total functions, and more generally, (.2) some
n′-ary relations are n-ary total functions:

(.1) ∃R(Function1(R))

(.2) ∃R(Functionn(R))
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Again, in (.2), we may regard n as a free variable and so the theorem holds even
when n = 0.

It might be instructive to discuss the proof strategy that establishes the
existence of non-numerical total functions. The strategy starts from the fact
that there are discernible objects (∃xD!x), which follows a fortiori from (227.1),
the T schema, and (273.4). Let a be such an object, i.e., assume D!a. Then, the
binary relation, being an x and y such that x exemplifies U and y is identicalD to
a, i.e., [λxy Ux& y =D a], is a unary total function. Since this establishes that
(.1) follows from D!a, it follows by ∃E that (.1) follows from ∃xD!x. But since
the latter is a theorem, (.1) is a theorem. And by a similar argument, one could
have reached this conclusion by considering the binary relation [λxy y=D a].

Now for (.2), a similar proof strategy suffices, except in this case, the follow-
ing n′-ary relation bears witness to (.2): being an x1, . . . ,xn, y such that x1, . . . ,xn
exemplify U n and y is identicalD to a, i.e.,

[λx1 . . .xny U nx1 . . .xn & y=D a]

By reasoning similar to that described in the previous paragraph, (.2) is a the-
orem. And by a similar argument, the relation being an x1, . . . ,xn, y such that y
is identicalD to a, i.e., [λx1 . . .xny y=D a], could also have served as a witness and
played a role in the proof of (.2).

(853) Theorems: Relations That are Necessarily Total Functions. It immedi-
ately follows by RN from (851.1) and (851.2), respectively, that (.1) it is neces-
sarily the case that being an x and y such that x exemplifies U and y is number-
identical to Zero is a unary total function; and (.2) it is necessarily the case that
being an x1, . . . ,xn and y such that x1, . . . ,xn exemplify U and y is number identical
to Zero is an n-ary total function:

(.1) �Function1([λxy Ux& y =̇0])

(.2) �Functionn([λx1 . . .xny U nx1 . . .xn & y =̇0])

Note that these theorems make an appeal to axiom (800), since =̇ is defined
in (839.1) as =D�N, which in turn depends on a definition (801.1) of P, the
significance of which depends on axiom (800). But we need not have appealed
to this axiom. The existence of non-numerical relations that are necessarily
total functions is independent of this axiom.

To see this, recall the reasoning described above, after the statement of the-
orems (852.1) and (852.2). From the fact that there are discernible objects, we
picked an arbitrary discernible object a and considered the relation [λxy Ux&
y =D a]. Analogous reasoning helps to establish the following fact, which is
derivable without any number-theoretic axioms or theorems: (.3) some binary
relations are necessarily unary total functions:
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(.3) ∃R�Function1(R)

Similarly, the relation we identified as a witness to (852.2) is also a witness to
the fact that (.4) some n′-ary relations are necessarily n-ary total functions:

(.4) ∃R�Functionn(R)

(854) Theorems: Total Functions and Contingency. It is important to under-
stand that our system implies: (.1) some relations are total functions but pos-
sibly fail to be total functions, and (.2) some relations fail to be total functions
but possibly are total functions:

(.1) ∃R(Functionn(R) &♦¬Functionn(R))

(.2) ∃R(¬Functionn(R) &♦Functionn(R))

Clearly, the unary total function [λxy Ux& y =̇0] that we discussed in (851.1)
is not a witness to the n = 1 case of (.1) or (.2). As we saw, [λxy Ux& y =̇0] is
necessarily a total function, and so isn’t a witness to (.1), and since it is in fact
a total function, it isn’t a witness to (.2).

Instead, the proof of (.1), for n = 1, starts from the fact that, by (217.1), there
are contingently true propositions, i.e., that there are propositions p such that
p & ♦¬p. Then we reason with respect to an arbitrary such contingent truth,
say p1, and show that the relation [λxy p1 &Ux&y =̇0] is in fact a total function
but possibly fails to be one. Call this relation f1. The the argument that f1 is
a total function is a variant of the reasoning used in the proof of (852.1). The
theorem is modally-strict because the hypothesis that p1 is contingently true is
discharged. Moreover, the argument that f1 possibly fails to be a total function
also starts from the fact that p1 is contingently true.378 So there are relations
that are total functions only contingently.

Analogously, the proof of (.2) starts from the fact that there are contingently
false propositions (217.2). But this proof is left as an exercise.

(855) Remark: Restricted Variables for Total Functions. To introduce restricted
variables for total functions, we have to show, by (336), that Functionn(R) is
a restriction condition. Since it has a single free variable R, we only have to
show that it is strictly non-empty and that it has strict existential import. To
show that it is strictly non-empty, we have to show that ∃R(Functionn(R)) is a
modally strict theorem, for any choice of n. But this follows from the theorems
in (851). Finally, to show that it has strict existential import, we have to show
that Functionn(Π)→Π↓, for every n-ary relation term Π, and for every choice

378Intuitively, since p1 is contingently true, there is a possible world, say w, where p1 is false. At
w, no objects x and y exemplify f1 since at w, no x and y are such that p1. Hence, at w, it is not the
case that for every x there is a unique y such that f1xy. So f1 is not a total function at w. Hence, it
is possible that f1 is not a total function.
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of n. But this follows from the definitions in (848); for any n, if Functionn(Π)
holds, then Π is significant (otherwise the definiens fails to be true).

Although we’ve just established that Functionn(R) is therefore a restriction
condition, the theorems in (854) establish that Functionn(R) is not a rigid re-
striction condition, as defined in (340). So though we may introduce restricted
variables for total functions, we may not regard these variables as rigid re-
stricted variables. So it is important to take care when reasoning with these
variables in modal contexts, for the reasons mentioned in (340).

In what follows, then we use the following decorated, lower-case italic let-
ters as restricted variables ranging over total functions:

f̂ , ĝ , ĥ, . . .

The arity of the total function will be clear from the number of arguments.
Consequently, expressions of the form f̂ x1 . . .xny are simply n′-ary exemplifica-
tion formulas, with the n-ary total function variable f̂ being an n′-ary relation
term. We turn next to some modal facts about total functions.

(856) Definition: Function Application. Given any total function f̂ , it fol-
lows by definition (848.2) that for any x1, . . . ,xn, there is a unique y such that
f̂ x1 . . .xny. Hence the description ıyf̂x1 . . .xny is significant. We may therefore
define the value of the n-ary total function f̂ for x1, . . . ,xn, written f̂ (x1, . . . ,xn),
to be the object y such that f̂ x1 . . .xny:

f̂ (x1, . . . ,xn) =df ıyf̂x1 . . .xny

Thus, even f̂ ( ) is well-defined: where n= 0, f̂ is a nullary total function and
f̂ ( ) is defined as ıyf̂ y.

In general, when f̂ is an n-ary total function and κ1, . . . ,κn are any indi-
vidual terms, the parentheses and any comma separators in the new term
f̂ (κ1, . . . ,κn) jointly constitute an individual term-forming operator. Note that
we can use our new terms to construct binary exemplification formulas such
as Ryf̂ (x1, . . . ,xn). Moreover, defined identity formulas such as f̂ (x1, . . . ,xn) = y
are also well-formed. Whenever such an identity formula is true and n ≥ 1,
we say that f̂ maps arguments x1, . . . ,xn to the value y. We therefore tolerate the
ambiguity between saying f̂ maps x to y and saying Rmaps F toG, as the latter
was defined in (743.1), since the variables always make it clear which notion
is being invoked. When n = 0 and f̂ ( ) =y, we simply say that the value of the
nullary total function f̂ is y.

Our definitions establish that the notion of function application is reducible
to the notion of exemplification and the description operator the, the latter be-
ing governed by the classical theorems involving uniqueness (i.e., existence
and identity) claims. Cf. Whitehead & Russell 1910–1913 [1925–1927], ∗30 ·01
and ∗30 · 02. Thus, our system stands in complete contrast to Frege’s system of
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1893/1903a, since there he took functions and function application as primi-
tive, and identities of the form f̂ (x1, . . . ,xn)=y as primitive atomic formulas.

(857) ?Theorem: Relations and Function Values. It is an immediate conse-
quence of the preceding definition and the theory of descriptions that f̂ maps
the arguments x1, . . . ,xn to the value y if and only if x1, . . . ,xn, y exemplify f̂ :

f̂ (x1, . . . ,xn)=y ≡ f̂ x1 . . .xny

It is important to understand why this theorem is not modally strict. Inspec-
tion of the proof makes it clear that ?-theorems (about definite descriptions)
play a role in both directions of the biconditional. Intuitively, however, the sit-
uation is a familiar one. The theorem is a biconditional in which (a) the truth of
the one condition (in this case, the right-hand condition) may vary from world
to world, while (b) the truth of the other condition is rigidly tied to the identity
of the object that in fact is the value of f̂ for the arguments x1, . . . ,xn. So the
equivalence is guaranteed to hold in fact but not necessarily.

(858) ?Theorem: Fact about Total Functions That Are Materially Equivalent
Relations. It is a consequence of our definitions and theorems that if f̂ and
ĥ are materially equivalent relations, then necessarily, for all objects x1, . . . ,xn,
the value of f̂ for x1, . . . ,xn is identical to the value of ĥ for x1, . . . ,xn:

∀x1 . . .∀xn∀y(f̂ x1 . . .xny ≡ ĥx1 . . .xny)→ �∀x1 . . .∀xn(f̂ (x1, . . . ,xn)= ĥ(x1, . . . ,xn))

Although the necessity of identity (125) plays a role in the proof, the reasoning
nevertheless appeals to (857)? and so fails to be modally strict.

(859) Remark: Total Functions Needn’t Be Extensional Entities. In classical
mathematics, functions f̂ and ĝ that map the same arguments to the same
values are considered identical, i.e., the very same function. That is, classical
mathematical functions obey the following principle of extensionality:

∀x1 . . .∀xn(f̂ (x1, . . . ,xn) = ĝ(x1, . . . ,xn))→ f̂ = ĝ

This principle is not derivable in our system and we should not add it as an
axiom, for it implies the identity of any relations that are materially equivalent
total functions, i.e., it implies:

∀x1 . . .∀xn∀y(f̂ x1 . . .xny ≡ ĝx1 . . .xny)→ f̂ = ĝ

The proof is relatively straightforward.379 Put aside for now the fact that the
reasoning in the derivation appeals to (857)? and so fails to be modally strict;

379Without loss of generality, we prove the unary case. Assume the principle of extensionality:

(E) ∀x(f̂ (x)= ĝ(x))→ f̂ = ĝ

To show that this implies that f̂ and ĝ are identical when materially equivalent, assume that f̂ and
ĝ are materially equivalent, i.e., further assume:



14.8. FUNCTIONS AND RECURSIVE DEFINITIONS 761

we’ll discuss this in Remark (860). Since object theory (a) analyzes total func-
tions as relations and (b) allows us to consistently assert the distinctness of
materially equivalent relations if the case demands it, we may assert the dis-
tinctness of materially equivalent total functions when the need arises. But
the principle of extensionality for total functions would undermine that ability
and should therefore be excluded as a general principle. So total functions are
not extensional entities in the classical sense of mathematical functions. Nev-
ertheless, they do have well-defined identity conditions, namely, those given
in (23.2) and (116.2). Interestingly, these identity conditions offer a new sense
in which extensionally equivalent total functions are identical.380

(860) Remark: Observations. It is important to point out how the previous
two theorems about total functions takes advantage of the definition of f̂ (x) as
the object y in fact such that f̂ xy. This definition actually helps one to avoid
errors. It would be a mistake to assume (a) that total functions are necessarily
total functions, or (b) that necessarily equivalent relations that happen to be
total functions are total functions necessarily. To see (a), note that we wouldn’t
want to define f̂ (x) non-rigidly for relations that are only contingently total
functions, since then f̂ (x) might fail to be defined when it appears in a modal
context. So even if a relation f̂ is a total function only contingently, f̂ (x) is

∀x∀y(f̂ xy ≡ ĝxy)

Now by two applications of ∀E, this second assumption implies:

(ϑ) f̂ xy ≡ ĝxy
So we can show f̂ (x)=y ≡ ĝ(x)=y as follows:

f̂ (x)=y ≡ f̂ xy by (857)?
≡ ĝxy by (ϑ)
≡ ĝ(x)=y by (857)?

Since x and y aren’t free in our second assumption, we may apply GEN twice to the last result to
conclude:

(ζ) ∀x∀y(f̂ (x)=y ≡ ĝ(x)=y)

Now, independently, by the commutativity of the biconditional, it follows from modally strict
theorem (117.4) that ∀y(x = y ≡ z = y) ≡ x = z. Since this holds by GEN for any x and z, if we
instantiate x in this result to f̂ (x) and z to ĝ(x), then we obtain as a modally strict fact:

∀y(f̂ (x)=y ≡ ĝ(x)=y) ≡ f̂ (x)= ĝ(x)

Hence, by a Rule of Substitution, we may substitute f̂ (x) = ĝ(x) for ∀y(f̂ (x) =y ≡ ĝ(x) =y) in (ζ) to
obtain ∀x(f̂ (x)= ĝ(x)). But, then, by the principle of extensionality assumed at the outset, f̂ = ĝ.
380To see this, consider unary total functions f̂ and ĝ. Since they’re both binary relations, (116.2)

says that f̂ and ĝ are identical whenever, for any object x, [λyf̂xy]=[λyĝxy] and [λyf̂yx]=[λyĝyx].
By (189), this requires both (a) that [λy f̂xy] and [λy ĝxy] are encoded by the same objects, and (b)
that [λy f̂yx] and [λy ĝyx] are encoded by the same objects. Given a formal semantics in which
the truth conditions of ‘xF’ are that the object denoted by ‘x’ is in the encoding extension of the
property denoted by ‘F’, (116.1) guarantees that f̂ and ĝ are identical whenever the relational
properties that f̂ and ĝ give rise to have the same encoding extension. So if we allow that having
the same encoding extension is a way of being extensionally equivalent, then total functions f̂ and
ĝ that are extensionally equivalent are identical.
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defined no matter what the context. To see (b), recall the relation we labeled f̂1
that served as the witness to (854.1):

f̂1: [λxy p1 &Ux& y =̇0]

Compare f̂1 with:

ĥ1: [λxy p1 & y =̇0]

It is easy to show that �∀x∀y(f̂1xy ≡ ĥ1xy). But we shouldn’t conclude that
either f̂1 or ĥ1 is a total function necessarily. So we should define f̂1(x) and
ĥ1(x) rigidly, since those values would be undefined in certain modal contexts.
Intuitively, in worlds where f̂1 and ĥ1 fail to be total functions, their values
there are undefined.

Thus, the fact that important theorems governing function application fail
to be modally strict is completely in line with expectations. Theorems (857)?,
(858)?, and the reasoning in Remark (859) are precisely what we should expect
given how function application has been defined.

14.8.2 Functions From Domains to Codomains

(861) Remark: Our Strategy. We now work our way towards a definition of
the conditions under which a relation R is a function from F to G, and more
generally, a function from Sn to G. In this Remark we motivate the elements of
the definition by discussing only the simpler, less general case.

Intuitively, a relation R is a function from F to G when it satisfies three
conditions:

1. R maps F to G, i.e., by (743.1), R relates each F-object to a unique G-
object;

2. R relates F-objects only to G-objects; and

3. R doesn’t relate any F objects to anything.

As we noted in (743.1), the first of the above conditions, i.e., R maps F to
G (written R | : F −→ G), doesn’t exclude either the possibility that R relates
something (e.g., an F-object) to G-objects or the possibility that R relates F-
objects to other objects. Indeed, as we saw in Figure 14.2, R maps F to G even
if, additionally, it (a) relates F-objects to G objects, (b) relates F-objects to G
objects and (c) relates F-objects to G-objects.

But it is traditional to suppose that when R is a function from F to G, R
doesn’t relate anything to a non-G object and R doesn’t relate a non-F thing to
anything, since R has F as a domain and has G as a codomain. Consequently,
in what follows, we work up to a definition of R is a function from F to G in
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stages. First, we generalize the notion R maps F to G to define the notion R
maps relation Sn to G. Then, after working with this notion a bit, we’ll say that
R is functional from F to G just in case R maps F to G and R relates F-objects
only to G-objects. (We’ll note in passing that this implies that R is functional on
F, i.e., implies that if an F-object x bears R to both y and z, then y is identical
to z.) We’ll then generalize the definition of functional from to a definition of
R is functional from Sn to G. Finally, after working with these notions, we’ll
define R is a function from F to G just in case R is functional from F to G and R
has F as a domain (and so doesn’t relate F-objects to anything). This definition
will have captured the three conditions stated at the beginning of this Remark.
Again, we’ll generalize this to a definition of R is a function from Sn to G.

(862) Definitions: Maps From Relations to Properties. In (743.1), we defined
R maps property F to property G:

R | :F −→ G ≡df ∀x(Fx→∃!y(Gy &Rxy)) (743.1)

We now generalize this to relations that map n-ary relations to properties.
Where R is an n′-ary relation, we say that Rmaps n-ary relation S to propertyG,
written R| :Sn −→ G, just in case, whenever objects x1, . . . ,xn exemplify Sn, there
exists a unique y such that both y exemplifies G and x1, . . . ,xn, y exemplify R:

(.1) R | : Sn −→ G ≡df ∀x1 . . .∀xn(Snx1 . . .xn→∃!y(Gy &Rx1 . . .xny))

Where n = 0, this definition becomes (.2) R maps proposition p to property G
just in case p implies that there exists a unique y such that y both exemplifies
G and R:

(.2) R | : p −→ G ≡df p→∃!y(Gy &Ry)

Thus, if p is a false proposition, then every relation Rmaps p to every property
G, by failure of the antecedent. And if there is a unique object that is both G
and R, then R maps every proposition (true or false) to G.

It is important to remember the caution posted in (743). If R | : Sn −→ G,
for any n, we can’t infer R is a function with domain Sn and codomain G. The
above definition tells us nothing about whetherR relates objects that exemplify
Sn to anything, or whether R relates anything to G-objects. A fortiori, we can’t
infer that R is a total function in the sense of (848.2).

(863) Theorem: Examples of Maps. It follows that (.1) the tertiary relation
being an x, y, and z such that x exemplifies U and y is identicalD to z maps the
relation being an x and y such that x exemplifies U and y is a discernible object to
the property being discernible; (.2) number identity maps being a natural number
to being a natural number; and (.3) being an x and y such that x exemplifies U and
y is number-identical to Zero maps the property U to the property N:
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(.1) [λxyzUx& y=D z] | : [λxy Ux&D!y] −→D!

(.2) =̇ | :N −→N

(.3) [λxy Ux& y =̇0] | :U −→N

(864) Theorem: Predecessor is a Map. We also have the following distinguished
case of a map, namely, predecessor maps being a number to being a number:

P | :N −→N

Some readers may find the following useful:

Exercise 9. Show that ¬(< | :N −→ N) and ¬(≤ | :N −→ N), i.e., show
that less than and less than or equal to do not map being a number to being
a number. As part of the proof, use previous theorems to first show, for
some n, m, and o, that n < m, n < o, and m , o (and similarly for ≤).

(865) Lemmas: Fact About Restrictions on Relations. We note as a useful
lemma that (.1) if R maps F to G, then the restriction of R to F maps F to G:

(.1) R | :F −→ G→ R�F | :F −→ G

More generally, (.2) if R maps Sn to G, then the restriction of R to Sn maps Sn

to G:

(.2) R | : Sn −→ G→ R�Sn | : Sn −→ G

When n = 0, our theorem becomes (.3) if R maps p to G, then R restricted to p
maps p to G:

(.3) R | : p −→ G→ R�p | : p −→ G

(866) Definitions: Functional From. Let R be a binary relation. Then we say:
(.1) R is functional from F to G, written R .∼. F −→ G, if and only if R maps F to
G and for any objects x and y, if x exemplifies F and R relates x to y, then y
exemplifies G:

(.1) R .∼. F −→ G ≡df R | :F −→ G & ∀x∀y(Fx&Rxy→ Gy)

Note that when R is functional from F to G, R does not relate F-objects to
G-objects, though R may still relate F-objects to other things.

Example 9. Suppose that there are exactly seven individuals a – g,
and that the relevant facts about them are depicted in Figure 14.11:
a and b are the only F-objects; c and d are the only G-objects; e
exemplifies F; f and g exemplify G; and Rad, Rbd, Rec, and Ref .
Then R .∼. F −→ G.
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Figure 14.11: R is functional from F to G.

The following may be useful:

Exercise 10. Compare Figure 14.11 with Figures 14.2 – 14.4, in which
the Rs aren’t functional from F to G. Say what minimal change could be
made to all three earlier figures so that the Rs become functional from F
to G.

With the example and exercises in mind, we say more generally (.2) R is func-
tional from Sn to G, written R .∼. Sn −→ G, if and only if R maps Sn to G and for
any objects x1, . . . ,xn and y, if x1, . . . ,xn exemplify Sn and R relates x1, . . . ,xn to
y, then y exemplifies G:

(.2) R .∼. Sn −→ G ≡df R| :Sn −→ G & ∀x1 . . .∀xn∀y(Snx1 . . .xn&Rx1 . . .xny→ Gy)

Note that when n = 0, (.2) asserts:

(.3) R .∼. p −→ G ≡df R | : p −→ G & ∀y(p&Ry→ Gy)

That is, R is functional from proposition p to property G whenever R maps p
to G and for every y, if p is true and y exemplifies R, then y exemplifies G.

(867) Theorems: A Relation That Is Functional From N To N. The following
relation is functional from N to N, namely, being an x and y that are number-
identical if natural numbers:

[λxy (Nx&NNy)→ x =̇y] .∼. N −→N

Intuitively, this relation relates natural numbers to themselves and relates ev-
erything else to everything else. So although this relation is functional from N

to N, it is not yet a function from the natural numbers to the natural numbers
given that objects which fail to be natural numbers are in the domain of R.

(868) Theorems: A Distinguished Relation That Is Functional From N To N.
It is also provable that predecessor is functional from N to N:
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P
.∼. N −→N

(869) Definitions: Functional On. Let us say (.1) R is functional on F, written
FunctionalOn(R,F), just in case if an F-object bears R to any objects y and z, y
and z are identical:

(.1) FunctionalOn(R,F) ≡df ∀x(Fx→∀y∀z(Rxy &Rxz→ y=z))

More generally, we say (.2) R is functional on Sn, written FunctionalOn(R,Sn),
just in case any objects x1, . . . ,xn that exemplify Sn are such that any objects y
and z that R relates x1, . . . ,xn to are identical:

(.2) FunctionalOn(R,Sn) ≡df

∀x1 . . .∀xn(Snx1 . . .xn→∀y∀z(Rx1 . . .xny &Rx1 . . .xnz→ y=z))

Finally, when n = 0, our definition becomes (.3) R is functional on p, written
FunctionalOn(R,p), just in case p implies at most one thing exemplifies R:

(.3) FunctionalOn(R,p) ≡df p→∀y∀z(Ry &Rz→ y=z))

Note that every relation is functional on every false proposition.

(870) Theorems: Functional From Implies Functional On. It now follows that
(.1) if R is functional from F to G, then R is functional on F:

(.1) R .∼. F −→ G→ FunctionalOn(R,F)

More generally, (.2) if R is functional from Sn to G, then R is functional on Sn:

(.2) R .∼. Sn −→ G→ FunctionalOn(R,Sn)

Finally, for n = 0, we have (.3) if R is functional from p toG, then R is functional
on p:

(.3) R .∼. p −→ G→ FunctionalOn(R,p)

These results help to justify our use of the term functional from for the definien-
da in (866).

(871) Remark: Domains, Ranges, and Codomains. Our next goal is to define
the conditions under which a relation R is a function from F to G, and more
generally, when R is a function from Sn to G. Given the strategy outlined in
Remark (861), R is a function from F to G whenever R is functional from F
to G and R doesn’t map any F-objects to anything. This last condition can
be captured by saying that R has F as a domain, where this means that F is
exemplified by all and only the objects that R relates to something.

When we introduce the notion R has F as a domain, it is also natural to intro-
duce the notion R has H as a range. Intuitively, R has H as a range whenever H
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is exemplified by all and only the objects to which R relates something. Thus,
these notions, of having a property as a domain or as a range, apply to every
binary relation whatsoever — including those relations that aren’t functional
from F to G and that aren’t maps from F to G. However, once we define R is
a function from F to G by stipulating that R is functional from F to G and has
F as a domain, we’ll also stipulate that R has G as a codomain. The fact that R
is a function from F to G doesn’t require that every G-object has some F-object
R related to it. So a codomain of R is not necessarily a range of R. Thus, our
definitions will ensure that when R is a function from F to G, (a) R has F as a
domain by definition, (b) R has G as codomain by definition, and (c) R has H
as a range whenever H is exemplified by all and only the objects to which R
relates something.

(872) Definitions: Domains and Ranges. Where R is a binary relation and F
is a property, we say that (.1) R has F as a domain just in case F is exemplified
by all and only the objects that bear R to something, and (.2) R has H as a range
just in case H is exemplified by all and only the objects that something bears
R to:

(.1) HasDomain(R,F) ≡df ∀x(Fx ≡ ∃yRxy)

(.2) HasRange(R,H) ≡df ∀y(Hy ≡ ∃xRxy)

As noted previously, these notions apply to any binary relation whatsoever —
R need not be a total function nor a map from F to G.

More generally, where R is an n′-ary relation and Sn is an n-ary relation, we
say that (.3) R has Sn as a domain just in case Sn is exemplified by all and only
those objects x1, . . . ,xn that bear R to something and (.4) R has H as a range just
in case H is exemplified by all and only those objects to which R relates some
objects x1, . . . ,xn:

(.3) HasDomain(R,Sn) ≡df ∀x1 . . .∀xn(Snx1 . . .xn ≡ ∃yRx1 . . .xny)

(.4) HasRange(R,H) ≡df ∀y(Hy ≡ ∃x1 . . .∃xnRx1 . . .xny)

Analogously, these notions apply to any n′-ary R, even if R fails to be functional
from Sn toG and fails to map Sn toG. Note also that when n = 0, our definitions
assert (.5) R has p as a domain if and only if p is materially equivalent to the
claim something exemplifies R, and (.6) R has H as a range just in case H is
materially equivalent to R:

(.5) HasDomain(R,p) ≡df p ≡ ∃yRy

(.6) HasRange(R,H) ≡df ∀y(Hy ≡ Ry)
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Notice here that if nothing exemplifies R, then R has every false proposition
as a domain and has every unexemplified property as a range. These facts will
become important later.

(873) Remark: Domains and Ranges Aren’t Unique. Note that relations need
not have unique domains or ranges. To see why, we need only consider, without
loss of generality, a binary relation R that has Q, say, as a domain. (Analogous
considerations apply both to n-ary relations generally and to any range that R
has.) Then by (872.1), Q is exemplified by all and only those objects that bear
R to something, i.e.,

∀x(Qx ≡ ∃yRxy)

Now consider the property [λx Qx& p0], where p0 is ∀x(E!x→ E!x). Call this
property K . Though Q and K are materially, and indeed necessarily, equiva-
lent, our theory doesn’t require them to be identical. But it is straightforward
to show that R also has K as a domain.381 So if Q and K are distinct, R fails to
have a unique domain.

Exercise 11. Show (a) that R need not have a unique range, and (b) that if
R is an empty binary relation, i.e., ¬∃x∃yRxy, then R has F as a domain
if and only if ¬∃xFx.

(874) Definitions: Functions From Domains to Codomains. We now say that
(.1) R is a function from property F to property G if and only if R is functional
from F to G and R has F as a domain:

(.1) R : F −→ G ≡df R
.∼. F −→ G & HasDomain(R,F)

When R : F −→ G, we say that R hasG as a codomain. Thus, when R is a function
from F to G, R doesn’t relate F-objects to anything, and doesn’t relate anything
to G objects.

Example 10. Suppose that there are exactly 9 individuals a – i, and
that the relevant facts about them are depicted in Figure 14.12: a,
b, and c are the only F-objects; d, e, and f are the only G-objects;
g exemplifies F; h and i exemplify G; and Rae, Rbe, and Rcf . Then
R : F −→ G.

The following may prove useful:
381To see that R has K as a domain in this scenario, we start with the assumption that R has Q as

a domain, i.e.,

(ϑ) ∀x(Qx ≡ ∃yRxy)

Note independently that by β-Conversion and definition of K , it is a modally strict fact that Kx ≡
(Qx & p0). And by propositional logic, it is a modally strict fact that (Qx & p0) ≡ Qx. Hence
by modally strict reasoning, Kx ≡ Qx, which by the commutativity of the biconditional, yields
Qx ≡ Kx. So by a Rule of Substitution, it follows from (ϑ) that ∀x(Kx ≡ ∃yRxy). But then by
definition, R has K as a domain.
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Figure 14.12: R is a function from F to G.

Exercise 12. Say exactly why R in Figure 14.12 would fail to be a function
from F to G if either (a) R were to relate g to i, (b) R were to relate a to h,
or (c) R were to relate a to d in addition to relating a to e.382

With this in mind, we may generalize (.1) by saying (.2) an n′-ary relation R is
a function from relation Sn to property G, written R : Sn −→ G, just in case R is
functional from Sn to G and R has Sn as a domain:

(.2) R : Sn −→ G ≡df R
.∼. Sn −→ G & HasDomain(R,Sn)

Similarly, when R : Sn −→ G, we say that R has G as a codomain. As with the
case of binary functions, when R is a function from Sn to G, R doesn’t relate
Sn-objects to anything, and doesn’t relate anything to G objects.

When n = 0, our definition becomes (.3) R is a function from p to G just in
case R is functional from p to G and R has p as a domain:

(.3) R : p −→ G ≡df R
.∼. p −→ G & HasDomain(R,p)

This definition yields an interesting consequence of the relational analysis of
functions, namely, that there exist nullary functions from p to G that have ev-
ery false proposition as a domain and every unexemplified property as a range.
We’ll prove this below, though some readers may wish to consider the matter
for themselves beforehand. This consequence requires us to take precautions
when we extend the definition of functional application to functions R from p
to G, since when R is a nullary function with an empty range, it is a ‘valueless’
function.

382Solution: In case (a), R would fail to have F as a domain, and so would fail to be a function
from F to G. In case (b), R would fail to relate F-objects only to G-objects, and hence would fail to
be a function from F to G because it would fail the second clause of the definition of F is functional
from F to G. In case (c), R would fail to be a function because it would fail to be a map from F to
G — R would relate a to distinct G-objects d and e.
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(875) Theorems: Summary Facts About Functions From Sn toG. Recall the dis-
cussion in Remark (861), where we outlined the three conditions under which
R is a function from F to G. These conditions are now captured by the fol-
lowing summarizing facts: (.1) R is a unary function from F to G just in case
(a) R relates each F-object to a unique G-object, (b) R relates F-objects only to
G-objects, and (c) R relates x to something if and only if x exemplifies F; and
more generally, (.2) R is an n-ary function from Sn to G just in case (a) R re-
lates any n objects exemplifying Sn to a unique G-object, (b) R relates objects
exemplifying Sn only to G-objects, and (c) R relates n objects to something if
and only if those objects exemplify Sn:

(.1) R : F −→ G ≡
∀x(Fx→∃!y(Gy &Rxy)) &
∀x∀y(Fx&Rxy→ Gy) &
∀x(Fx ≡ ∃yRxy)

(.2) R : Sn −→ G ≡
∀x1 . . .∀xn(Snx1 . . .xn→∃!y(Gy &Rx1 . . .xny)) &
∀x1 . . .∀xn∀y(Snx1 . . .xn &Rx1 . . .xny→ Gy) &
∀x1 . . .∀xn(Snx1 . . .xn ≡ ∃yRx1 . . .xny)

When n = 0, our theorem becomes (.3) R is a nullary function from p to G just
in case (a) p implies there is a unique object that exemplifies both G and R, (b)
each object y such that p is true and Ry is such that Gy, and (c) p is true if and
only if R is exemplified by something:

(.3) R : p −→ G ≡
p→∃!y(Gy &Ry) &
∀y(p&Ry→ Gy) &
p ≡ ∃yRy

Moreover, we have (.4) if R is functional from F to G, then R restricted to F is
a function from F to G; (.5) if R is functional from Sn to G, then R restricted
to Sn is a function from Sn to G; and (.6) if R is functional from p to G, then R
restricted to p is a function from p to G:

(.4) R .∼. F −→ G→ R�F : F −→ G

(.5) R .∼. Sn −→ G→ R�Sn : Sn −→ G

(.6) R .∼. p −→ G→ R�p : p −→ G

The following may prove useful to those of a mathematical bent, given how
entrenched the notion of a function on a domain is in mathematics:
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Exercise 13. Let us define: R is a function on (domain) F just in case
∃G(R : F −→ G). Then, recall the definition of FunctionalOn(R,F) (869)
and prove that R is a function on F if and only if both FunctionalOn(R,F)
and HasDomain(R,F). Show that this fact generalizes when we generalize
the definition of function on to domains of arity n ≥ 2 and arity n=0.

Though the left-to-right direction of this exercise is straightforward, the right-
to-left direction requires that one identify the witness to the existential claim.
A proof is in the Appendix.

(876) Theorems: Examples of Functions From Domains to Codomains. It fol-
lows that (.1) the tertiary relation being an x, y, and z such that x exemplifies
U and y is identicalD to z is a function from the relation being an x and y such
that x exemplifies U and y is a discernible object to the property being discernible;
(.2) number-identity is a function from the property of being a natural number to
being a natural number; (.3) the property being a natural number that is number-
identical to One is a function from the proposition D0 to the property being a
natural number that Zero immediately precedes:

(.1) [λxyzUx& y=D z] : [λxy Ux&D!y] −→D!

(.2) =̇ :N −→N

(.3) [λnn =̇1] : U 0 −→ [λnP0n]

(877) Theorem: Facts About Domains. (.1) If R is a function from F to G and
∀x(Fx ≡Hx), then R is a function from H to G:

(.1) (R : F −→ G & ∀x(Fx ≡Hx))→ R :H −→ G

More generally, (.2) if R is a function from Sn to G and ∀x1 . . .∀xn(Snx1 . . .xn ≡
T nx1 . . .xn), then R is a function from T n to G:

(.2) (R : Sn −→ G & ∀x1 . . .∀xn(Snx1 . . .xn ≡ T nx1 . . .xn))→ R : T n −→ G

When n = 0, our theorem becomes (.3) if R is a function from p to G and p ≡ q,
then R is a function from q to G:

(.3) (R : p −→ G & p ≡ q)→ R : q −→ G

(878) Theorem: Facts About Codomains. (.1) If R is a function from F to G
(i.e., with domain F and codomain G) and G materially implies H , then R is a
function from F to H (and so has H as codomain as well as G):

(.1) (R : F −→ G & ∀x(Gx→Hx))→ R : F −→H

Clearly, this theorem holds even when ¬∀x(Hx→ Gx). Consider the following:
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Figure 14.13: R is a function from F to G and from F to H , with distinct
codomains G and H .

Example 11. Suppose that there are exactly 7 individuals a – g, and
that the relevant facts about them are depicted in Figure 14.13: a, b,
and c are the only F-objects; d, e, and f are the only G-objects; d, e,
f , and g are the only H-objects; and Rae, Rbe, and Rcf . Then R is a
function from F to G, a function from F to H , and R has codomains
G and H that aren’t equivalent and, hence, not identical.

We noted earlier that when R is a function from F to G, R doesn’t relate any-
thing to G objects. So when (a) R is a function from F to G and (b) R is also
a function from F to H because ∀x(Gx→ Hx), then the only H-objects that R
relates F-objects to are G-objects. This is also illustrated in Figure 14.13.

Our theorem generalizes for n ≥ 1 and n = 0. (.2) If R is a function from Sn

to G, and G materially implies H , then R is a function from Sn to H ; and (.3)
if R is a function from p to G, and G materially implies H , then R is a function
from p to H :

(.2) (R : Sn −→ G & ∀x(Gx→Hx))→ R : Sn −→H

(.3) (R : p −→ G & ∀x(Gx→Hx))→ R : p −→H

(879) Theorem and Definition: A Distinguished Function with Distinct Codo-
main and Range. We now have as a theorem that predecessor restricted to the
natural numbers is a unary function from N to N but has range being a positive
integer:

(.1) P�N :N −→N& HasRange(P�N,N+)

So predecessor restricted to the natural numbers is a function that has N as a
domain, N as a codomain, and N+ as a range. But what function is it? As a
relation, we read Pnm as n is the predecessor of m. But when we read Pnm as a
function, we have something that maps n to m, that is, it maps the predecessor
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of a number to the number that comes after. In other words, though this may
be counterintuitive, we have here the successor function!

Though we already have a function symbol for successor, namely ′, it will be
useful in what follows to have a separate relation symbol that corresponds to
the successor function. This will be especially helpful when we consider gen-
eral composition of relations. Since it would be confusing (though accurate) to
use the relation symbol P�N for successor, we define:

(.2) s =df P�N

(880) Theorems: Facts About Total Functions. Recall both the definition of a
total function in (848) and the definition of the property U 1 (i.e., U ) in (849).
It follows that (.1) R is a unary total function if and only if R is a function from
U to U :

(.1) Function1(R) ≡ R : U −→U

Now recall the definition of the relation U n in (849. Then we have (.2) R is an
n-ary total function if and only if R is a function from U n to U :

(.2) Functionn(R) ≡ R : U n −→ U

Finally if we recall the definition of U 0 and let n = 0, then (.2) asserts that (.3)
R is a nullary total function if and only if R is a function from U 0 to U :

(.3) Function0(R) ≡ R : U 0 −→ U

Thus, for every n, each n-ary total function R has relation U n as domain and
property U as codomain, and we can always regard R as a function from U n to
U . Note also that (.3) has the interesting consequence that (.4) if R is a nullary
total function, then for any proposition p, R has p as a domain if and only if p
is true:

(.4) Function0(R)→∀p(HasDomain(R,p) ≡ p)

(881) Definitions: One-to-One and Onto Functions From Sn to G. Recall that
in (743.2) and (743.3), we defined, respectively, R maps F to G one-to-one and
R maps F onto G. We could generalize those definitions to define R maps Sn to
G one-to-one and R maps Sn onto G. And, similarly, we could generalize the
definitions in (866) to define R is functional from Sn to G one-to-one, and R is
functional from Sn onto G. But since our primary interest in what follows is in
relations that are functions, and not just maps, we proceed directly to define
one-to-one and onto functions from Sn to G.

Thus, we say (.1) R is a one-to-one function from F to G whenever R is a
function from F to G and for any objects x, y, and z if x bears R to z and y bears
R to z, then x = y:



774 CHAPTER 14. NATURAL NUMBERS

(.1) R : F
1-1−−→G ≡df R : F −→ G & ∀x∀y∀z(Rxz&Ryz→ x=y)

Compare this with the definition of R | : F 1-1−→ G in (743.2). When we know R is
a function from F to G, we can simplify the second conjunct of the definiens.
We don’t need to require ∀x∀y∀z((Fx&Fy&Gz)→ (Rxz& Ryz)→ x=y) because
the antecedent Fx& Fy &Gz is implied when Rxz and Ryz. The definition of
R : F −→ G requires that R have F as a domain, and so it follows a fortiori from
the definition of HasDomain in (872.1) that Rxz and Ryz imply, respectively,
that Fx and Fy. And since R has to be functional from F to G to be a function
from F to G, Fx and Rxz imply Gz.

More generally, (.2) R is a one-to-one function from Sn to G whenever R is a
function from Sn to G and for any objects x1, . . . ,xn, y1, . . . , yn, z, if Rx1 . . .xnz and
Ry1 . . . ynz, then x1 = y1 and . . . and xn = yn:

(.2) R : Sn
1-1−−−→G ≡df R : Sn −→ G &

∀x1 . . .∀xn∀y1 . . .∀yn∀z(Rx1 . . .xnz&Ry1 . . . ynz→ (x1 =y1 & . . . & xn=yn))

When n = 0, (.2) reduces to:

(.3) R : p
1-1−−→G ≡df R : p −→ G & ∀y∀z(Ry &Rz→ y=z)

Now let us say (.4) R is a function from F onto G just in case R is a function
from F to G and every G-object is an object to which R relates something:

(.4) R : F −−−→
onto

G ≡df R : F −→ G & ∀y(Gy→∃xRxy)

Compare this with the definition of R | : F −→
onto
G in (743.3). When we know R is

a function from F to G, we can simplify the second conjunct of the definiens.
We don’t need to require ∀y(Gy → ∃x(Fx&Rxy)) because Fx is implied when
Rxy. Since we know by the definition of R : F −→ G that R has F as a domain, it
follows a fortiori from the definition of HasDomain in (872.1) that Rxy implies
Fx.

More generally, (.5) R is a function from Sn ontoG just in case R is a function
from Sn to G and every G-object is an object to which R relates some things
x1, . . .xn:

(.5) R : Sn −−−−→
onto

G ≡df R : Sn −→ G & ∀y(Gy→∃x1 . . .∃xnRx1 . . .xny)

When n = 0, we have:

(.6) R : p −−−→
onto

G ≡df R : p −→ G & ∀y(Gy→ Ry)

The following may prove useful:

Exercise 14. Construct some specific examples of (.1) – (.6) above.
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Note, finally, that since R is an n-ary total function iff R is a function from U n
to U (880.2), we may suppose that the case of n-ary one-to-one and onto total
functions are covered by the above definitions. As a further exercise:

Exercise 15. Prove that if R is a unary one-to-one function from U to
U according to (.1) above, then R is a one-to-one relation according to

definition (796.1), i.e., prove R : U 1-1−−→U → 1-1(R)

(882) Theorems: Onto Functions From Sn to G and Ranges. It is a consequence
of our definitions that (.1) a unary function from F onto G has G as a range;
(.2) an n-ary function from Sn onto G has G as a range; and (.3) a nullary func-
tion from p onto G has G as a range:

(.1) R : F −−−→
onto

G→HasRange(R,G)

(.2) R : Sn −−−→
onto

G→HasRange(R,G)

(.3) R : p −−−→
onto

G→HasRange(R,G)

(883) Definition: Reconstructing nth Cartesian Products. Mathematicians of-
ten work with n-ary functions (n ≥ 1) that have the nth Cartesian product
(A1 × · · · ×An) of the sets A1, . . . ,An as a domain and that have some set B as the
range. Here, we reconstruct nth Cartesian products as relations. For n ≥ 1, we
say that (.1) the nth Cartesian product of properties F1, . . . ,Fn, written F1×· · ·×Fn,
is the relation being objects x1, . . . ,xn such that x1 exemplifies F1 and . . . and xn ex-
emplifies Fn :

(.1) F1 × · · · ×Fn =df [λx1 . . .xn F1x1 & . . . &Fnxn]

As an example, we have: U ×D! = [λxy Ux&D!y]. Note that, given the above
definition, R : (F1 × · · · × Fn) −→ G becomes a special case of R : Sn −→ G. As
a special case, for n ≥ 1, we say (.2) the nth Cartesian product of a property F,
written F×n, is being objects x1, . . . ,xn such that x1 exemplifies F and . . . and xn
exemplifies F :

(.2) F×n =df [λx1 . . .xn Fx1 & . . . &Fxn] (n ≥ 1)

It will also be helpful to define the edge or degenerate case, namely, the 0th

Cartesian product of a property F. Recall that we defined U 0 in (849) as [λp0],
where p0 is the necessary truth ∀x(E!x → E!x). So U 0 is a true proposition.
Hence we define (.3) the 0th Cartesian product of a property F to be just U 0:

(.3) F×0 =df U 0
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To understand this definition, it may be helpful to point out that we shall want
to use Cartesian products as domains for functions. So F×0 needs to be the
domain for a nullary function. Now if some relation R is a nullary function,
then by (848.3), ∃!yRy. Every such R has U 0 (indeed, any true proposition) as
a domain, by (880.4).

14.8.3 Restricted Functions and Functions Generally

(884) Definitions: Restricted Functions. Let us say R is a unary restricted func-
tion, written �-function1(R), just in case there is a property F and a property G
such that R is a function from F to G but R is not a total function:

(.1) �-function1(R) ≡df ∃F∃G(R : F −→ G&¬Function1(R))

In the usual manner, we have dropped the superscript on R since the arity of
R can be inferred. More generally, we say (.2) R is an n-ary restricted function,
written �-functionn(R), just in case there is a relation Sn and a property G such
that R is a function from Sn to G but R is not a total function:

(.2) �-functionn(R) ≡df ∃Sn∃G(R : Sn −→ G&¬Functionn(R))

And when n = 0, our definition becomes (.3) R is an nullary restricted function,
written �-function0(R), just in case there is a proposition p and a property G
such that R is a function from p to G but R is not a total function:

(.3) �-function0(R) ≡df ∃p∃G(R : p −→ G&¬Function0(R))

(885) Theorems: Facts About Restricted Functions. It now follows from pre-
vious definitions and theorems that (.1) R is a unary restricted function if and
only if for some F and G, R is a function from F to G and F is not equivalent to
the property U :

(.1) �-function1(R) ≡ ∃F∃G(R : F −→ G&¬∀x(Fx ≡ Ux))

More generally, (.2) R is an n-ary restricted function if and only if for some Sn

and G, R is a function from Sn to G and Sn is not equivalent to the relation U n:

(.2) �-functionn(R) ≡ ∃Sn∃G(R : Sn −→ G & ¬∀x1 . . .∀xn(Snx1 . . .xn ≡ U nx1 . . .xn))

And when n = 0, our theorem becomes (.3) R is a nullary restricted function if
and only if for some proposition p and property G, R is a function from p to G
and p is not equivalent to U 0:

(.3) �-function0(R) ≡ ∃p∃G(R : p −→ G& p . U 0)
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If we recall that by (849), (111.1), and a convention introduced in (208), U 0 =
[λp0] = p0 = ∀x(E!x→ E!x), then the above tells us that R is a nullary restricted
function iff for some proposition p and property G, R is a function from p to G
and p isn’t equivalent to ∀x(E!x→ E!x) (i.e., and p is false).

Finally, one other striking fact emerges, namely, (.4) R is a nullary restricted
function if and only if R is an unexemplified property:

(.4) �-function0(R) ≡ ¬∃yRy

(886) Theorem: Restricted Functions of Every Arity Exist. It now follows that
(.1) unary restricted functions exist:

(.1) ∃R(�-function1(R))

More generally, (.2) restricted functions of arity n ≥ 1 exist:

(.2) ∃R(�-functionn(R))

When n = 0, our theorem becomes (.3) nullary restricted functions exist:

(.3) ∃R(�-function0(R))

(887) Theorems: Specific Restricted Functions. (.1) being an x, y, and z such
that y is identicalD to z is a binary restricted function; (.2) identityD is a unary re-
stricted function; (.3) predecessor is a unary restricted function; and (.4) number-
identity is a unary restricted function:

(.1) �-function2([λxyz y=D z])

(.2) �-function1(=D )

(.3) �-function1(P)

(.4) �-function1(=̇)

(888) Theorem: Facts About Nullary Restricted Functions. It is a consequence
of our definitions and theorems that (.1) if R is a nullary restricted function,
then R has a proposition as a domain iff that proposition is false, and (.2) if R
is a nullary restricted function, then R a property as a range iff that property is
unexemplified:

(.1) �-function0(R)→∀p(HasDomain(R,p) ≡ ¬p)

(.2) �-function0(R)→∀H(HasRange(R,H) ≡ ¬∃xHx)



778 CHAPTER 14. NATURAL NUMBERS

Contrast (.1) with an earlier fact (880.4) about total functions: nullary total
functions have all and only true propositions as domains, whereas nullary re-
stricted functions have all and only false propositions as domains.

(889) Definitions: Functions in Complete Generality. In what follows, we shall
say, for n ≥ 0, that a relation R is an n-ary function, written functionn(R), just in
case there is a relation Sn and a property G such that R is a function from Sn

to G:

functionn(R) ≡df ∃Sn∃G(R : Sn −→ G) (n ≥ 0)

(890) Theorem: Facts About Functions Generally. R is a function if and only if
R is a total function or R is a restricted function:

functionn(R) ≡ Functionn(R)∨ �-functionn(R)

Thus, when we talk about functions generally, we are talking about both total
functions and restricted functions. As an exercise to test understanding, the
following may prove useful:

Exercise 16. Show that all nullary functions are one-to-one, i.e., that
function0(R)→∀y∀z(Ry & Rz→ y=z).

(891) Remark: Restricted Variables for Functions Generally. We leave it as
an exercise to show that functionn(R) is a restriction condition on R but not a
rigid restriction condition, as these notions were defined in (336) and (340).
We therefore use the variables f ,g,h, . . . to range over functions generally, of
whatever arity is needed.

(892) Theorem: Another Fact About Functions Generally. If there is an object
y such that function f relates x1, . . . ,xn to y, there is a unique object y such that
f relates x1, . . . ,xn to y:

∃yfx1 . . .xny→∃!yfx1 . . .xny

This holds for all n and all functions, total or restricted. It holds by failure of
the antecedent for nullary restricted functions because they are unexemplified
(885.4) and so the antecedent of the above theorem is false.

(893) Definitions: Extended Function Application. Given the previous theo-
rem, we may extend the notion of functional application defined in (856) so that
it applies to any function provided that it does in fact have a value. Where f
is any n-ary function such that ∃yfx1 . . .xny, we say the value of f for x1, . . . ,xn,
written f (x1, . . . ,xn), is the object y such that fx1 . . .xny:

f (x1, . . . ,xn) =df ıyfx1 . . .xny
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This definition holds only when f in fact has a value for its arguments, since
it takes advantage of the primitive Rule of Definition by Identity (73). This
rule guarantees that if the definiens (when applied to any arguments) provably
fails to be significant, then the definiendum (when applied to those arguments)
provably fails to be significant.

As noted previously, when f is a nullary restricted function, ¬∃yfy (that
is, nothing exemplifies f ). Hence, ¬∃!yfy and so both ıxfx and f ( ) are not
significant. However, we also noted earlier in (856) that f̂ ( ) is well-defined
when f̂ is a nullary total function. When we focus on total functions, then, f̂ ( )
is ıyf̂ y.

In general, then when f is any n-ary function, and κ1, . . . ,κn are any indi-
vidual terms (n ≥ 0) exemplifying a relation that f has as a domain (872.3), the
parentheses and any comma separators in the term f (κ1, . . . ,κn) jointly consti-
tute an individual term-forming operator. In the remainder of this chapter, we
shall primarily be discussing restricted numerical functions f that have domain
N
×n and codomain N.

14.8.4 Numerical Operations

(894) Definition and Theorem: n-ary Numerical Operations on the Natural
Numbers. When n ≥ 0, we say that (.1) n′-ary relation R is an n-ary numerical
operation, written Opn(R), if and only if R is rigid and a function from N

×n

to N:

(.1) Opn(R) ≡df Rigid(R) & R :N×n −→N (n ≥ 0)

Observe that when n= 0, a nullary operation is defined as a rigid relation that
maps N×0 (= U 0) to N.

Clearly, if Opn(R), then if we detach the second conjunct of its definiens,
apply ∃I twice and appeal to definition (889), then it follows that R is a func-
tion:

(.2) Opn(R)→ functionn(R)

So in the case when n = 0, a 0-ary numerical operation is a nullary function
(whose unique value is a natural number).

(895) Theorems: Rigidity of Numerical Operations. The result of applying
a numerical operation should be completely and necessarily determined by
the given operands. Out definitions preserve this, since it is a modally strict
theorem that for any n′-ary relation R, if R is a n-ary numerical operation, then
it is so necessarily:

∀R(Opn(R)→ �Opn(R))
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Since this theorem is modally strict, RN yields �∀R(Opn(R)→ �Opn(R)).

(896) Lemma: The Successor Function is a Numerical Operation. Recall that
in (879), we defined the successor function s as the predecessor relation re-
stricted to the natural numbers P�N. We now prove that s is a unary numerical
operation:

Op1(s)

As part of the proof of this theorem, one has to prove the rigidity of s, when
considered as a relation. This follows from the facts that P is rigid (802.2),
N is rigid (809.2), and the restriction of a rigid n′-ary relation to a rigid n-ary
relation is rigid (829).

(897) Definitions and Theorems: Constant Relations. For any natural num-
bers n,m ≥ 0, we define the constant n′-ary relation Cn′m as being an x1, . . . ,xn and
y such that x1, . . . ,xn are natural numbers and y is number-identical to m:

(.1) Cn′m =df [λx1 . . .xnyNx1 & . . . &Nxn & y=̇m] (n,m ≥ 0)

Note that C1
m is simply [λy y=̇m]. It now follows that Cn′m is an n-ary numerical

operation:

(.2) Opn(Cn′m )

Note that we have no particular need for a Zero constant function, as we have
already defined the natural number Zero. But, if needed, we have ‘Zero func-
tions’ of every arity n ≥ 0, since C1

0 , C2
0 , etc., are all instances of (.1).

(898) Definitions and Theorem: Projection Relations. It is customary to in-
troduce, for each i ≥ 1, some i-ary projection functions onto the kth argument.
In the present case, we will define these as i′-ary relations (i ≥ 1) indexed by
k (1 ≤ k < i′) that hold among i′ numbers whenever the kth argument matches
the final argument. That is, these projection relations can be seen as selecting
the kth argument. Hence, there is no unary projection relation (i.e., nullary
projection function), since there is no argument to project. So in the simplest
case (.1), π2

1 is simply the binary relation of number-identity (=̇), which relates
any two numbers n and m whenever its final (i.e, second) argument m matches
its first argument n. In the next case, (.2) π3

1 and π3
2 are tertiary projection rela-

tions such that π3
1 relates any three numbers n1, n2, and m whenever m equals

n1; and π3
2 relates any three numbers n1, n2, and m whenever m equals n2. If

we proceed in this manner, we end up defining (.3) a group of i′-ary projection
relations πi

′

k , whereby πi
′

k relates a string of i′ arguments whenever the final
argument matches the kth argument in the string, for 1 ≤ k < i′:

(.1) π2
1 =df =̇
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(.2) π3
1 =df [λn1n2mm=̇n1]
π3

2 =df [λn1n2mm=̇n2]

(.3) πi
′

1 =df [λn1 . . .nimm=̇n1]
...

πi
′

k =df [λn1 . . .nimm=̇nk] (1 ≤ k ≤ i)
...

πi
′

i =df [λn1 . . .nimm=̇ni]

It is now provable that πi
′

k is a numerical i-ary operation (i ≥ 2):

(.4) Opi(πi
′

k ) (1 ≤ k ≤ i)

(899) Lemma: Numerical Operations Relate Natural Numbers. (.1) If R is an n-
ary numerical operation, then for any x1, . . . ,xn and y, if R relates x1, . . . ,xn to y,
all of x1, . . . ,xn, y are natural numbers; (.2) if R is an n-ary numerical operation,
then for any objects x1, . . . ,xn, and y, R relates x1, . . . ,xn to y if and only if y
is identical to the object to which R relates x1, . . . ,xn; and (.3) if R is an n-ary
numerical operation, then for any natural numbers m1, . . . ,mn, then R relates
m1, . . . ,mn to a unique natural number:

(.1) Opn(R)→∀x1 . . .∀xn∀y(Rx1 . . .xny→Nx1 & . . . &Nxn &Ny) (n ≥ 0)

(.2) Opn(R)→∀x1 . . .∀xn∀y(Rx1 . . .xny ≡ y= ıyRx1 . . .xny) (n ≥ 0)

(.3) Opn(R)→∀m1 . . .∀mn∃!kRm1 . . .mnk (n ≥ 0)

(900) Definitions: Composed Relations. Suppose G and H are both binary
relations. Then we define (.1) G composed with H, written G ◦H or, when de-
limiters are needed, [G◦H], as the binary relation being an x and y such that for
some z, x bears H to z and z bears G to y:

(.1) G ◦H =df [λxy ∃z(Hxz&Gzy)]

Now let G be an m′-ary relation (m ≥ 1) and H1, . . . ,Hm be n′-ary relations (n ≥
0). Then we define (.2) G composed with H1, . . . ,Hm, written G ◦ (H1, . . . ,Hm)
or, when delimiters are needed, [G ◦ (H1, . . . ,Hm)], as the n′-ary relation being
x1, . . . ,xn and y such that for some z1, . . . , zm, x1, . . . ,xn bear H1 to z1 and . . . and
x1, . . . ,xn bear Hm to zm and z1, . . . , zm bear G to y:

(.2) G ◦ (H1, . . . ,Hm) =df

[λx1 . . .xny ∃z1 . . .∃zm(H1x1 . . .xnz1 & . . . &Hmx1 . . .xnzm &Gz1 . . . zmy)]
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Whenm = n = 1, then (.2) reduces to (.1). Clearly, the definientia in (.1) and (.2)
are core λ-expressions and so by axiom (39.2), the definientia are significant.
So G ◦H↓ and G ◦ (H1, . . . ,Hm)↓, by the theory of definitions and identity.

(901) Theorems: Operations Defined by Composition. We now establish that
(.1) if H and G are unary operations, then G ◦H is a unary operation such that
for any x, [G◦H](x) = G(H(x)); and (.2) ifH1, . . . ,Hm are n-ary operations (n ≥ 0)
and G is an m-ary operation (m ≥ 1), then G composed with H1, . . . ,Hm, when
applied to x1, . . . ,xn is identical to the result of applying G to the arguments
H1(x1, . . . ,xn), . . . ,Hm(x1, . . . ,xn):

(.1) Op1(H) & Op1(G)→ (Op1(G ◦H) &∀x([G ◦H](x) = G(H(x))))

(.2) (Opn(H1) & . . . & Opn(Hm) & Opm(G))→ (Opn(G ◦ (H1, . . . ,Hm)) &
∀x1 . . .∀xn([G◦(H1, . . . ,Hm)](x1, . . . ,xn) = G(H1(x1, . . . ,xn), . . . ,Hm(x1, . . . ,xn))))

(902) Remark: Rigid Restricted Variables for Numerical Operations. Note that
Opn(R) is a condition with a single free variable, that it is strictly non-empty
(i.e., `� ∃R(Opn(R)), for every n, n ≥ 0), and has strict existential import (i.e.,
`� Opn(Π) → Π↓, for any n, n ≥ 0). So Opn(R) is a restriction condition on
relations, as defined in (336). Moreover, since (895) is a modally strict theo-
rem, Opn(R) is a rigid restriction condition, as defined in (340). Consequently,
in what follows, we use the undecorated variables f ,g,h, . . . as rigid restricted
variables ranging over numerical operations. We first make use of these re-
stricted variables in (907). But when we do, it is important to remember that
f ,g,h, . . . can be used either as function symbols, as in f (x1, . . . ,xn), or as relation
symbols, as in f x1 . . .xny.

14.8.5 Recursively-Defined Relations and Functions

(903) Remark: How to Justify Recursive Definitions. Recursive definitions
of new numerical operations are distinctive in that the symbol being defined
occurs on both sides of the recursive clause of the definition. For example,
the standard recursive definition of addition on the natural numbers is given as
follows:

(.1) n+ 0 = n
n+m′ = (n+m)′

In this definition, the new symbol + occurs in both the definiendum and defini-
ens of the recursive clause.383

383For some readers, it may be helpful to point out that recursive definitions are somewhat anal-
ogous to differential equations, which defines constraints that any function serving as the solution
to the equation must satisfy.
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The theory of definitions developed thus far makes no allowance for such
definitions. So, if we want to introduce a definition by recursion like the above,
we have to show that (a) the definition isn’t circular, (b) the new symbol intro-
duced is significant (i.e., denotes a relation), and (c) the relation signified by
the new symbol is an operation on the natural numbers. All three of these
goals can be accomplished by a Recursion Theorem, for such a theorem would
guarantee that given any recursive definition, there is a relation which is a nu-
merical operation that satisfies both clauses of the definition.

But it isn’t immediately obvious how to prove such a Recursion Theorem,
since there are only a few ways to show that relations exist, namely, appeal to
either the safe extension axiom (49), the comprehension principle for relations
(191), or the Kirchner Theorem (271). None of these ways make it obvious why
the definition of a new symbol by recursion is justified.

In most logic and mathematics texts, a background of set theory is pre-
supposed, so that the Recursion Theorem can be proved in a standard way.
But in the present work, functions are defined as relations (not sets), and so
a binary function symbol like +, introduced by the above recursive definition,
must denote a tertiary relation. So if +, as given in (.1), is to be parsed as a new
relation term, then there should be a proof that there is a relation R such that
necessarily, R is exemplified by all and only numbers n,m,o such n+m = o.

To see the issue more clearly, let’s make the relational character of (.1) ex-
plicit, by replacing the binary function symbol + with a tertiary relation sym-
bol for addition, written A. Let us temporarily assume that Op2(A), i.e., that
addition is a binary numerical operation. (This will be proved later.) Then, if we
use relational notation for A instead of the infix notation for +, the relational
character of (.1) is made explicit by expressing it as the following two-clause
stipulation:

(.2) An0n
Anm′(ıkAnmk)′

In other words, (.2) stipulates that the binary numerical operation of addition
relates n and Zero to n and relates n and m′ to the successor of the number
that results by adding n and m. Note that (.2) is not a definition of A, it merely
gives a pair of constraints that A must satisfy in order to correspond to +.

Now by (899.2) and (893), we can rewrite the first clause of (.2) as A(n,0) =
n, and if we then also make use of the operation of successor (896), we can
rewrite the second clause of (.2) as A(n,m′) = s(A(n,m)). So to justify recursive
addition, we have to show that A exists and is a numerical operation such that:

(.3) A(n,0) = n
A(n,m′) = s(A(n,m))
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Our plan for justifying the recursive definition of addition is to construct a
new relation and prove that it is a numerical operation satisfying (.3). We will
then follow the same strategy when we consider recursive definitions for n-ary
functions where n ≥ 2.

(904) Remark: Digression on Alternatives. We might try to avoid the task of
proving a Recursion Theorem by regarding recursive definitions of new func-
tions as mere metalinguistic abbreviations of complex terms of the language.
For example, consider (903.1). Both the base clause and the recursive clause
might be given a metalinguistic interpretation so as to avoid interpreting ‘+’ as
a term. The base clause would tell us metalinguistically that we can regard the
expression n + 0 as an abbreviation of the expression n. The recursive clause
of the definition would tell us, metalinguistically, that the expression n +m′

abbreviates the expression (n +m)′. If m is not a symbol denoting Zero, then
we could reapply this understanding: since every positive integer is the suc-
cessor of a natural number (843), then the expression m could be regarded as
the abbreviation of some expression, say k′, where the expression k denotes
the predecessor of the number denoted by m. So (n +m)′ would become an
abbreviation of (n + k′)′, which then becomes an abbreviation of (n + k)′′. As
long as the expression k doesn’t denote Zero, we could continue this procedure
until we reach the expression (n + 0)′...′, for some finite sequence of primes.
At this point, the base clause of the recursive definition allows us to regard
the expression n+ 0 as an abbreviation of the expression n and start reducing
(and eventually eliminating) the sequence of primes using the definition of the
numerals (825).

But this procedure abandons the analysis of recursive functions as relations
and, hence, the analysis of + as an operation. If we want to regard recur-
sive definitions like (903.1) as introducing relations, we must show how such
definitions yield proofs of the existence of the relations in question by one
of the theorems asserting relation existence. Without forging this connection
between recursive definitions and an existence theorem, recursive definitions
at best introduce functional conditions rather than functional relations. More-
over, the recursion theorem we prove here is to be contrasted with those proved
in Dedekind 1888 (Theorem 126), Frege 1903a (Theorem 256), Enderton 1972
[2001, 39], etc., since these all take functions as primitive and assume that
functions are extensional entities (and so identical when they map the same
arguments to the same values).

There is a second alternative to proving a Recursion Theorem. We could
regard (903.1) as asserting two new axioms. When mathematicians formu-
late Peano Arithmetic, they often assert the recursive definition of addition
as axioms. Some, for example, take Zero (0), being a number (N ), the successor
function ( ′ ), along with the operations + and ×, as primitive notions and then
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assert the Dedekind/Peano postulates along with the recursive definitions of
+ and × as axioms (they also assume a comprehension scheme for properties
of numbers). The axioms for + and × have the same form as the recursive
definitions for + and × but have a different status within Peano Arithmetic;
they aren’t eliminable in the way that definitions are. Indeed, with these addi-
tional axioms, Peano Arithmetic becomes a non-conservative extension of the
Dedekind/Peano axioms for number theory.

The advantange of proving a Recursion Theorem in the way outlined in
Remark (903) now becomes clear. The Recursion Theorem would show that
recursive definitions are simply conservative extensions of object theory. Such
definitions don’t allow us to prove any new theorems not already provable in
the language of the theory without those definitions.

(905) Theorems and Definitions: The Relation of Addition. Before we prove
the Recursion Theorem for defining n-ary recursive functions, we show, as an
example, how to inductively define a relation of addition that (a) exists by com-
prehension, (b) is a numerical operation, and (c) satisfies the recursive defini-
tion in (903.1). To do this, we define by induction a tertiary relation of addition
that clearly exists by comprehension. In this and the next item, our goal is to
develop the technique we’ll use to prove the recursion theorem for n-ary func-
tions. Later, once we have proved the recursion theorem for n-ary functions,
we will be able to re-prove the existence of the operation of addition in object
theory using the traditional recursive definition. But for now it is of interest
to see that there exists by comprehension a relation that accomplishes (a), (b),
and (c) – these will be established, respectively, in (.4), (.5), and (.6.a), (.6.b)
below.

However, in order to define the relation of addition, we must first define
an inductive sequence of relations and show that they are operations. We first
define (.1.a) A0, i.e., addition-by-0. Then we prove (.1.b) that it is a unary oper-
ation. Then we show (.2.a) that if Am is an operation then a certain composition
is also an operation. Then (.2.b) we use the latter to define Am′ , i.e, addition-by-
m′. This yields a sequence of tertiary relations addition-by-m (.3) all of which
are unary operations.

We therefore begin by defining A0 as the unary projection function that
maps every argument to itself and prove that it is a unary numerical operation:

(.1) Base Definition of Addition-by-0 and Theorem:

(.a) A0 =df π
2
1

(.b) Op1(A0)

We then establish that the composition of the successor function and Am, for
any number m, is a numerical operation if Am exists, and then define Am′ to be
this composed function:
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(.2) Inductive Theorem and Definition of Addition-by-m′:

(.a) Op1(Am)→Op1(s ◦Am)

(.b) Am′ =df s ◦Am

It now follows that for every natural number m, addition-by-m is a unary nu-
merical operation:

(.3) ∀mOp1(Am)

We now define the relation of addition as the relation being natural numbers n,
m, and j such that (the value of) addition-by-m, when applied to (the argument) n,
is number-identical to j:

(.4) A =df [λnmjAm(n)=̇j]

We now have the following:

(.5) Op2(A)

Finally, to see that A satisfies the form of the recursive definition of addition
(903.3), we show that A relates n and Zero to n; and A relates n and the suc-
cessor of m to the the successor of the A of n and m:

(.6) Addition Satisfies the Recursive Definition

(.a) A(n,0) = n

(.b) A(n,m′) = s(A(n,m))

Note that the successor of A(n,m), i.e., s(A(n,m)) = [s ◦A](n,m).

(906) Remark: The Traditional Recursive Definition of Addition. To see that
addition as defined above satisfies the form of the recursive definition of ad-
dition (903.1), note that we are justified, by (905.5), in rewriting (905.6.a) and
(905.6.b) in infix and prime notation, where + replaces A and n′ replaces s(n):

(ξ) n+ 0 = n
(ζ) n+m′ = (n+m)′

Note that using this alternative notation, we can prove:

n+ 1 = n′

For as an instance of (ζ), we know:

n+ 0′ = (n+ 0)′

So, using (ξ) to substitute n for n+ 0 in the above it follows that:
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(ϑ) n+ 0′ = n′

But by (825), 1 = 0′. From this and (ϑ) it follows that n+ 1 = n′.

(907) Definitions: N -ary Numerical Recursive Definitions. To justify recursive
definitions of numerical operations (i.e., to show that such definitions intro-
duce new relations), we first have to describe their form in more general terms.
In a recursive definition, a new operation f is defined in terms of some known
operation and f itself.

In the case of a unary numerical operation f , the base clause stipulates that
the value of f for the argument Zero is some given natural number, say i, and
the recursive clause stipulates that the value of f for the argument m′ is the
value of a binary numerical operation g for the arguments m and f (m), i.e.,

(.1) f (0) = i
f (m′) = g(m,f (m))

In what follows, we plan to show how this definition is preserved in our sys-
tem, where numerical functions are defined as relations. So, our plan will be
to show that we can recursively define a binary relation F if given a ternary
relation G such that both F and G are numerical operations. We do this by
appealing to the composition of G with π2

1 (i.e., the number-identity projection
function or =̇) and F, as defined in (900.2), and recasting the above in func-
tional notation defined in terms of relation-argument structure. Thus, while
the form of such a recursive definition will be:

(.2) F(0) = i
F(m′) = [G ◦ (π2

1,F)](m)

this definition will tell us that the recursively defined relation F relates Zero
to i and relates m′ to the result of applying the composition of G with number-
identity and F to m. The definition of function application will guarantee that
(.2) can be rewritten as (.1).

In the case of a binary numerical operation f , the traditional base clause
stipulates that the value of f for the arguments n and Zero is to be the value of
some unary numerical operation h for the argument n, and the recursive clause
stipulates that the value of f for the arguments n and m′ is the value of some
ternary numerical operation g for the arguments n, m, and f (n,m), i.e.,384

(.3) f (n,0) = h(n)
f (n,m′) = g(n,m,f (n,m))

384Consider the binary numerical operation of addition. If we let H(x) = x and G(x,y,z) = s(z),
then we have F(n,0) = H(n) = n. And F(n,m′) = G(n,m,F(n,m)) = s(F(n,m)). Or, in more familiar
notation n+ 0 = n and n+m′ = (n+m)′.
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In relational terms, we recursively define a ternary relation F if given a binary
relation H and a quarternary relation G both of which are numerical opera-
tions. In the recursive clause, we appeal to the composition of G with three
functions: π3

1, π3
2, and F. Such compositions were defined in (900.2). Thus, the

above definition in functional notation is implemented in terms of relation-
argument structure. The base clause of the recursive definition of F stipulates
that F relates n and Zero to the natural number to which H relates n. The re-
cursive clause states F relates n and m′ to the following number: the value of
the composed function G ◦ (π3

1,π
3
2,F) for the arguments n and m:

(.4) F(n,0) =H(n)
F(n,m′) = [G ◦ (π3

1,π
3
2,F)](n,m)

When G◦(π3
1,π

3
2,F) is applied to n andm, there are two steps to the evaluation.

In the first step, π3
1 takes both arguments and yields n, π3

2 takes both arguments
and yields m, and F takes both arguments and yields F(n,m). In the second
step, the values output in the first step are the three arguments to G so that
F(n,m′) ends up being G(n,m,F(n,m)). The definition of function application
will guarantee that (.3) can be rewritten as (.4).

Finally, in the case of an i′-ary numerical operation f , the base clause stip-
ulates that the value of f for the arguments n1, . . . ,ni and Zero is the value of
an n-ary numerical operation h for the arguments n1, . . . ,ni , and the recursive
clause stipulates that the value of f , for the arguments n1, . . . ,ni , and m′, is the
value of the i′′-ary numerical operation g for the arguments n1, . . . ,ni ,m, and
f (n1, . . . ,ni ,m), i.e.,

(.5) f (n1, . . . ,ni ,0) = h(n1, . . . ,ni)
f (n1, . . . ,ni ,m

′) = g(n1, . . . ,ni ,m,f (n1, . . . ,ni ,m))

To state this in relational terms, we recursively define F as an i + 2-ary relation
if given an i1-ary relation H and an i + 3-ary relation G both of which are
numerical operations. In the recursive clause, we appeal to the composition of
G with i + 2 functions: πi

′′

1 , . . . ,π
i′′
i ,π

i′′
i′ and F. Such compositions were defined

in (900.2). Again, this implements the definition given in functional notation
in terms of relation-argument structure. The recursive clause states F relates
n1, . . . ,ni and m′ to the following number: the value of the composed function
G ◦ (πi

′′

1 , . . . ,π
i′′
i ,π

i′′
i′ ,F) for the arguments n1, . . . ,ni and m:

(.6) F(n1, . . . ,ni ,0) =H(n1, . . . ,ni)
F(n1, . . . ,ni ,m

′) = [G ◦ (πi
′′

1 ,π
i′′
2 , . . . ,π

i′′
i ,π

i′′
i′ ,F)](n1, . . . ,ni ,m)

When G ◦ (πi
′′

1 ,π
i′′
2 , . . . ,π

i′′
i ,π

i′′
i′ ,F) is applied to n1, . . . ,ni and m, there are two

steps in the evaluation. In the first step, πi
′′

1 takes the arguments n1, . . . ,ni ,m
and yields the value n1, . . . , πi

′′

i′ takes the arguments n1, . . . ,ni ,m and yields
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the value m, while F takes the arguments n1, . . . ,ni ,m and yields the value
F(n1, . . . ,ni ,m). In the second step, the values output by the first step are the
arguments to G so that F(n1, . . . ,ni ,m

′) becomes G(n1, . . . ,ni ,m,F(n1, . . . ,ni ,m)).
So the definition of function application guarantees that (.5) can be rewritten
as (.6).

In what follows, we focus first on (.3) and (.4) and then turn to (.5) and (.6).

(908) Theorems and Definitions: Lemmas for the Recursion Theorem. Our
strategy is to construct a binary numerical operation F as follows:

• start with a given unary numerical operation H and a ternary numerical
operation G,

• define an inductive sequence of binary relations Fm relative to H and G,

• show, by induction, that each Fm is a unary numerical operation,

• define the tertiary relation F , relative to H and G, in terms of the se-
quence of relations Fm,

• show that F is a binary numerical operation, and

• show that F satisfies the conditions of a numerical operation recursively
defined in terms of H and G.

In the definitions that follows, we suppress, for readability, the indices that
relativize the relations Fm and the relation F toH and G. But we introduce the
indices later, since they are needed to state the Recursion Theorem.

We first define (.1.a) F0 to be H . So clearly (.1.b) F0 is a unary numerical
operation given that H is. We then show (.2.a) that given any m, if Fm is a
unary numerical operation, then the composition of G with three unary nu-
merical operations, namely the projection function π2

1, the constant function
C2
m, and Fm, is also a unary numerical operation. Then we define Fm′ as that

composition.

(.1) Base Definition of F0 and Theorem:

(.a) F0 =df H

(.b) Op1(F0)

(.2) Theorem For, and Definition of, the Recursive Numerical Operation Fm′ :

(.a) Op1(Fm)→Op1(G ◦ (π2
1,C2

m,Fm))

(.b) Fm′ =df G ◦ (π2
1,C2

m,Fm)
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At this point it should be clear that Fm has been defined relative to H and G,
and that strictly speaking, should be indexed to these initial relations.

It now follows that (.3) for every natural number m, the F -operation-by-m
is a unary numerical operation:

(.3) ∀mOp1(Fm)

We next define (.4) F as the relation being natural numbers n, m, and j such that
(the value of ) the F -operation-by-m, when applied to (the argument) n, is j:

(.4) F =df [λnmj Fm(n) =̇ j]

Strictly speaking, F has been defined relative to H and G, but for now, we are
suppressing the indices.

It now follows that (.5) F is a binary numerical operation:

(.5) Op2(F )

Finally, note that F satisfies the conditions of a binary numerical operation
recursively defined in terms of H and G:

(.6) F Satisfies the Recursive Definition Conditions:

(.a) F (n,0) =H(n)

(.b) F (n,m′) = G(n,m,F (n,m))

Note that G(n,m,F (n,m)) = [G ◦ (π3
1,π

3
2,F )](n,m).

(909) Theorem: The Recursion Theorem for Recursive Binary Numerical Op-
erations. Let H now be a (rigid) restricted variable ranging over unary numer-
ical operations, and let G be a (rigid) restricted variable ranging over ternary
numerical operations. These are rigid restricted variables because anything
that is a numerical operation is necessarily so. Since the relation F defined in
(908.4) was, strictly speaking, defined in terms of a given H and G, we shall
henceforth write F as FH,G. Then the recursion theorem asserts that FH,G is a
binary numerical operation that satisfies the conditions of recursion:

Op2(FH,G) &FH,G(n,0) =H(n) &FH,G(n,m′) = G(n,m,FH,G(n,m))

(910) Theorems and Definitions: Lemmas for the N -ary Recursion Theorem.
We now construct an i′-ary numerical operation F using the following se-
quence of steps:

• start with an i-ary numerical operation H and an i′′-ary numerical oper-
ation G (i ≥ 0),

• define an inductive sequence of i+1-ary relations Fm relative to H and G,
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• show, by induction, that each Fm is an i-ary operation,

• define the i+2-ary relation F , relative to H and G, in terms of the se-
quence of relations,

• show that F is an i′-ary operation, and

• show that F satisfies the conditions of an operation recursively defined
in terms of H and G.

Again, in the definitions that follows, we suppress, for readability, the indices
that relativize the relations Fm and the relation F toH andG. But we introduce
the indices later, since they are needed to state the Recursion Theorem.

We first define (.1.a) F0 to be H . So clearly (.1.b) F0 is an i-ary numerical
operation given thatH is. We then show (.2.a) that given anym, if Fm is an i-ary
numerical operation, then the composition of G with i′′ numerical operations
each of which is i-ary, namely the projection functions πi

′

1 , . . . ,π
i′
i , the constant

function Ci′m, and Fm, is also a i-ary operation. Then we define Fm′ as that
composition.

(.1) Base Definition of F0 and Theorem:

(.a) F0 =df H

(.b) Opi(F0)

(.2) Theorem For, and Definition of, the Recursive Operation Fm′ :

(.a) Opi(Fm)→Opi(G ◦ (πi
′

1 , . . . ,π
i′
i ,Ci

′

m,Fm))

(.b) Fm′ =df G ◦ (πi
′

1 , . . . ,π
i′
i ,Ci

′

m,Fm)

At this point it should be clear that Fm has been defined relative to H and G,
and that strictly speaking, should be indexed to these initial relations. Note
also that when i = 0, there are no projection functions and so, for the composi-
tion, G just takes the nullary functions C1

m and Fm as its two arguments.
It now follows that (.3) for every natural number m, the F -operation-by-m

is an i-ary numerical operation:

(.3) ∀mOpi(Fm)

We now define (.4) F as the relation being natural numbers n1, . . . ,ni ,m, and
j such that (the value of ) the F -operation-by-m, when applied to (the argument)
n1, . . . ,ni , is j:

(.4) F =df [λn1 . . .nimj Fm(n1, . . . ,ni) =̇ j]
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Strictly speaking, F has been defined relative to H and G, but for now, we are
suppressing the indices. Note also that when i = 0, the F -operation-by-m is
nullary and there are no arguments n1, . . . ,ni .

It now follows that F is a i′-ary numerical operation:

(.5) Opi
′
(F )

Finally, F satisfies the conditions of a binary numerical operation recursively
defined in terms of H and G:

(.6) F Satisfies the Recursive Definition Conditions:

(.a) F (n1, . . . ,ni ,0) =H(n1, . . . ,ni)

(.b) F (n1, . . . ,ni ,m
′) = G(n1, . . . ,ni ,m,F (n1, . . . ,ni ,m))

Note that G(n1, . . . ,ni ,m,F (n1, . . . ,ni ,m)) = [G ◦ (πi
′′

1 , . . . ,π
i′′
i+1,F )](n1, . . . ,ni ,m).

(911) Theorem: The Recursion Theorem for N -ary Recursive Numerical Op-
erations. Let H now be a restricted variable ranging over i-ary numerical op-
erations, and let G be a restricted variable ranging over i′′-ary numerical op-
erations. Again, these are rigid restricted variables since anything that is a
numerical operation is necessarily so. Since the relation F defined in (910.4)
was, strictly speaking, defined in terms of a given H and G, we shall hence-
forth write F as FH,G. Then the recursion theorem asserts that FH,G is an i′-ary
numerical operation that satisfies the conditions of recursion:

Opi
′
(FH,G) &FH,G(n1, . . . ,ni ,0) =H(n1, . . . ,ni) &
FH,G(n1, . . . ,ni ,m

′) = G(n1, . . . ,ni ,m,FH,G(n1, . . . ,ni ,m))

(912) Definitions and Theorems: Traditional Recursive Definitions and The-
orems. With our justification for recursive definitions of numerical operations
firmly in hand, we may now officially employ the traditional recursive defi-
nitions to introduce other numerical operations such as addition (which we
reintroduce!), multiplication, exponentiation, and factorialization on the nat-
ural numbers.

•We define Addition (A) as the following binary numerical operation:

(.1.a) A =df Fπ2
1 ,s◦π4

3

That is, addition is the tertiary relation obtained by the Recursion Theorem
(911) when H is the projection function π2

1 and G is the composition of the
successor function with the projection function π4

3. Note that π2
1 just is the

relation =̇, so the base case of the definition is the same is in (905.1.a). The
recursive clause now makes use of our apparatus for defining n-ary recursive
functions (911).
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To recast H and G in more familiar notation, where we use x, y, and z as
rigid, restricted variables ranging over the natural numbers (to avoid clash of
variables below), we have H(x) = π2

1(x) = x and G(x,y,z) = [s ◦ π4
3](x,y,z) =

s(z) = z′. It now follows that:

(.1.b) A(n,0) = n
A(n,m′) = (A(n,m))′

The proof is in the Appendix. Note how this captures the traditional recursive
definition of addition; using + in infix notation instead of A in prefix notation,
these become:

n+ 0 = n
n+m′ = (n+m)′

Henceforth, we write A when composing functions with the addition function
but write + in infix notation when we’re adding numbers.

•We define Multiplication (M ) as the following binary numerical operation:

(.2.a) M =df FC2
0 ,A◦(π4

1 ,π
4
3)

That is, multiplication is the tertiary relation obtained by the Recursion The-
orem (911) when H is the constant function C2

0 and G is the composition of
the addition function with the two projection functions π4

1 and π4
3. Intuitively,

H(x) = C2
0(x) = 0 and G(x,y,z) = [A ◦ (π4

1,π
4
3)](x,y,z) = A(x,z) = x + z. It now

follows that:

(.2.b) M (n,0) = 0
M (n,m′) = n+M (n,m)

The proof is in the Appendix. Note how this captures the traditional recursive
definition of multiplication; using × in infix notation instead of M in prefix
notation, these becomes:

n× 0 = 0
n×m′ = n+ (n×m)

Henceforth, we write M when composing functions with the multiplication
function but write × in infix notation when we’re multiplying numbers.

•We define Exponentiation (E) as the following binary numerical operation:

(.3.a) E =df FC2
1 ,M◦(π4

1 ,π
4
3)

That is, exponentiaion is the tertiary relation obtained by the Recursion The-
orem (911) when H is the constant function C2

1 and G is the composition of
the multiplication function with the two projection functions π4

1 and π4
3. Intu-

itively, H(x) = C2
1 = 1 and G(x,y,z) = [M ◦ (π4

1,π
4
3)](x,y,z) = M (x,z) = x × z. It

now follows that:
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(.3.b) E(n,0) = 1
E(n,m′) = n×E(n,m)

Note how this captures the traditional recursive definition of exponentiation;
using the standard notation ()( ) instead of E in prefix notation, these becomes:

n0 = 1
nm

′
= n×nm

Henceforth, we write E when composing functions with the exponentiation
function but use the standard notation ()( ) when we’re raising a number to an
exponent.

•We define Factorialization (Π) as the following unary numerical operation:

(.4.a) Π =df FC1
1 ,M◦(π3

2 ,s◦π3
1)

That is, factorialization is the binary relation obtained by the Recursion Theo-
rem (911) when H is the constant function C1

1 and G is the composition of the
multiplication function with the projection function π3

2 and the composition
of the successor function with the projection function π3

1., i.e., M ◦ (π3
2,s◦π3

1).
Intuitively, H = C1

1 = 1 and G(y,z) = [M ◦ (π3
2,s ◦π3

1)](y,z) = M (z,y′) = z × y′. It
now follows that:

(.4.b) Π(0) = 1
Π(n′) = Π(n)×n′

Note how this captures the traditional recursive definition of factorialization;
using ! in postfix notation instead of Π in prefix notation, these become:

0! = 1
n′! = n!×n′

Henceforth, we write Π when composing functions with the factorialization
function but write ! in postfix notation when referring to a number’s factorial-
ization.

We leave the definition of many other primitive recursive functions to the
reader; they can be found in classic texts, or in reference works such as Dean
2020.

(913) Remark: Primitive Recursive vs. Recursive Functions. Since we’ve now
(a) defined the basic or initial functions, namely, the successor function (s), the
constant functions (Cn′m ), and the projection functions (πi

′

k ), and (b) shown that
we can derive new functions by composition (G ◦ (H1, . . . ,Hm)) and recursion
(FH,G), we have reconstructed the entire class of primitive recursive functions.
In order to reconstruct the class of general recursive functions, we need only
show that the minimization operator can be defined in our system.
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(914) Definition: The Minimization Function. Where f is any j+1 numerical
operation (j ≥ 0), we define the (restricted) variable-binding µ operator as fol-
lows. The least natural number n such that f maps m1, . . . ,mj ,n to Zero is the
natural number n such that f maps m1, . . . ,mj ,n to Zero and for any number i
less than n, f (m1, . . . ,mj , i) is defined and equal to a value other than Zero:

µn(f (m1, . . . ,mj ,n)=0) =df

ın(f (m1, . . . ,mj ,n)=0 & ∀i(i < n→∃k(f (m1, . . . ,mj , i)=k& k,0))

Note that if there is no minimal n such that f (m1, . . . ,mj ,n) = 0, or if there is
some i such that i < n and ¬f (m1, . . . ,mj , i)↓, then the description will not be
satisfiable in which case µnf (m1, . . . ,mj ,n) will not be significant, i.e., our logic
will guarantee that ¬µnf (m1, . . . ,mj ,n)↓.

14.9 Deriving 2nd-Order Peano Arithmetic

(915) Remark: Interpreting the Language of Second-order Peano Arithmetic
(PA2). We now show that the system of PA2 is derivable in object theory. To
do this, we show that there is a translation of the language of PA2 into the
present language for which the axioms of PA2 become derivable as theorems.
We use as our basis for the language of PA2 the system described in Simpson
1999 [2009]. In Simpson 1999 [2009] (2–3), we find the the language of PA2 is
described in stages. His presentation may be re-parsed as follows:

• Simple terms:

– Number constants: 0 and 1

– Number variables: i, j,k,m,n, . . .

– Set variables: X,Y ,Z, . . . (intended to range over all subsets of ω).

• Complex number terms: whenever τ1 and τ2 are any number terms, the
following are also number terms:

– τ1 + τ2

– τ1 · τ2

Here + and · are binary numerical operation symbols intended to denote
addition and multiplication of natural numbers and the numerical terms
are intended to denote natural numbers.

• Atomic formulas: Where τ1 and τ2 are any number terms and X is any
set variable, the following are formulas:

– τ1 =τ2



796 CHAPTER 14. NATURAL NUMBERS

– τ1 < τ2

– τ1 ∈ X

The intended meanings of these respective atomic formulas are that τ1

equals τ2, τ1 is less than τ2, and τ is an element of X.

• Complex Formulas: whenever ϕ and ψ are formulas, n is a number vari-
able and X is a set variable, then ϕ ∧ψ, ϕ ∨ψ, ¬ϕ, ϕ→ ψ, ϕ↔ ψ, ∀nϕ,
∃nϕ, ∀Xϕ, ∃Xϕ are formulas.

Now we may translate the terms and formulas of PA2 into object theory as
follows.

• Simple Terms

– Number constants: The symbols 0 and 1 of PA2 are to be translated
as the symbols 0 and 1, as defined in (782.1) and (825.1).

– Number variables are to be translated as the rigid, restricted vari-
ables ranging over numbers, as the latter are defined in (807).

– Set variables are to be translated as the property variables F,G,H, . . . .

If we use the decorated metavariables τ∗1 and τ∗2 to designate the individual
terms of object theory that serve as the translation of the PA2 number terms τ1

and τ2, respectively, and use ϕ∗ and ψ∗, respectively, to designate the transla-
tions of PA2 formulas ϕ and ψ, then we complete the translation as follows:

• Complex Number Terms:

– The term τ1 + τ2 is to be translated as τ∗1 + τ∗2, as defined in (912.1)

– the term τ1 · τ2 is to be translated as τ∗1 × τ∗2, as defined in (912.2)

• Atomic formulas:

– τ1 =τ2 is to be translated as τ∗1=̇τ∗2, as defined in (839.1)

– τ1 < τ2 is to be translated as τ∗1 < τ
∗
2, as defined in (830.1)

– τ1 ∈ X is to be translated as Fτ∗1, where F is the translation of X and
Fτ∗1 is an exemplification formula as defined in (3.3.a).

• Complex Formulas:

– The formulas ¬ϕ and ϕ→ ψ are to be translated using the primitive
connectives ¬ and → (2.1) and (2.2), respectively, and so are to be
translated as the formulas ¬ϕ∗ and ϕ∗→ ψ∗.
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– The formulas ϕ ∧ψ, ϕ ∨ψ, and ϕ↔ ψ are to be translated into the
formulas ϕ∗ &ψ∗, ϕ∗ ∨ψ∗, and ϕ∗ ≡ ψ∗, as defined in (18.1), (18.2)
and (18.3), respectively.

– The formulas ∀nϕ and ∃nϕ are to be translated using both (a) the
primitive quantifier ∀ (2.3) and the defined quantifier ∃ (18.4), re-
spectively, and (b) the rigid, restricted variables ranging over num-
bers, so that ∀nϕ and ∃nϕ become translated as ∀nϕ∗ and ∃nϕ∗,
respectively. (Note that we can expand these, by eliminating the re-
stricted variables, to ∀x(Nx→ ϕ∗xn) and ∃x(Nx&ϕ∗xn), respectively.)

– The formulas ∀Xϕ and ∃Xϕ are to be translated similarly but with
the variable F replacing X (so that the quantifiers bind the property
variable F), with the result that ∀Xϕ and ∃Xϕ become translated as
∀Fϕ∗ and ∃Fϕ∗.

Finally, Simpson states the axioms of PA2 as follows (modified only to change
the order in which the variables occur in the statement, so that the statements
match our convention of using n as the primary variable, then m, etc.):

(i) basic axioms:

n+ 1 , 0
n+ 1 =m+ 1→ n=m
n+ 0 = n
n+ (m+ 1) = (n+m) + 1
n · 0 = 0
n · (m+ 1) = n+ (n ·m)
¬(n < 0)
n < m+ 1↔ (n < m∨n=m)

(ii) Induction Axiom:

(0 ∈ X ∧∀n(n ∈ X→ n+ 1 ∈ X))→∀n(n ∈ X)

(iii) Comprehension Scheme:

∃X∀n(n ∈ X↔ ϕ), where ϕ is any formula of the language of PA2 in
which X doesn’t occur free.

When the translation scheme introduced above is expanded to include the
translation of of n+1 as n′, as this latter was defined in (821), the above axioms
of PA2 become translated as:

(i) basic axioms:
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n′ , 0
n′ =m′→ n=m
n+ 0 = n
n+m′ = (n+m)′

n× 0 = 0
n×m′ = n+ (n×m)
¬(n < 0)
n < m′ ≡ (n < m∨n=m)

(ii) Induction Axiom:

(F0 &∀n(Fn→ Fn′))→∀nFn)

(iii) Comprehension Scheme:

∃F∀n(Fn ≡ ϕ∗), where ϕ∗ is the translation of ϕ and F doesn’t occur
free in ϕ∗.

In light of the foregoing, we now have the following theorem.

(916) Theorem: The Axioms of PA2 Are Theorems. A proof is in the Ap-
pendix. So a significant fragment of mathematics is derivable in object theory.
Cf. Hilbert & Bernays 1934–1939 and Simpson 1999 [2009].

14.10 Infinity

(917) Definition: Finite and Infinite Cardinals. We defined natural cardi-
nals in (777) and established that NaturalCardinal(x) → �NaturalCardinal(x)
(779.1). So we may introduce κ as a rigid restricted variable ranging over nat-
ural cardinals. We now say (.1) κ is finite if and only if κ is a natural number,
and (.2) κ is infinite if and only if κ is not finite:

(.1) Finite(κ) ≡df Nκ

(.2) Infinite(κ) ≡df ¬Finite(κ)

These definitions follow Frege’s conception of an infinite number and we ex-
amine the connections later in Remark (921).

(918) Theorem: There Exists an Infinite Cardinal. It is a straightforward con-
sequence of previous definitions and theorems that (.1) any object that bears
the weak ancestral of predecessor to a natural number is itself a natural number;
(.2) no natural number numbers the natural numbers; (.3) the number of the
property being a natural number is infinite; (.4) the number of N is a natural
cardinal; and (.5) there is an infinite cardinal:
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(.1) ∀x(P+xm→Nx)

(.2) ¬∃nNumbers(n,N)

(.3) Infinite(#N)

(.4) NaturalCardinal(#N)

(.5) ∃κInfinite(κ)

We have formulated (.1) as a universal claim instead of asserting the open for-
mula P+xm→Nx because the proof is by induction on m: we want the induc-
tive hypothesis to be a universal claim and not a claim about an arbitrary, but
fixed, object x.

The proof of (.5) establishes that the existence of an infinite cardinal has
been derived in a system with no mathematical primitives! We’ve not used any
primitive notions, or asserted any axioms, from number theory or set theory to
define and prove there is an infinite number.

(919) Definition: Aleph0. Since we’ve shown that #N is infinite and a natural
cardinal, we may introduce a name for it appropriate to its being an infinite
natural cardinal. We define ℵ0 to be the number of being a natural number:

ℵ0 =df #N

(920) Theorems: Facts about ℵ0. The preceding definition yields the following
immediate consequences. (.1) ℵ0 is a natural cardinal; (.2) ℵ0 is infinite; (.3) ℵ0

is not finite; (.4) ℵ0 is not a natural number; (.5) ℵ0 isn’t a member of the
predecessor series beginning wth Zero; (.6) no natural number immediately
precedes ℵ0; and (.7) ℵ0 immediately precedes itself:

(.1) NaturalCardinal(ℵ0)

(.2) Infinite(ℵ0)

(.3) ¬Finite(ℵ0)

(.4) ¬Nℵ0

(.5) ¬P+0ℵ0

(.6) ¬∃nPnℵ0

(.7) Pℵ0ℵ0

Note that (.7) demonstrates why we didn’t define < as P∗ (and ≤ as P+), for
since Pxy implies P∗xy (789.1), (.7) would have then implied the unintuitive
claim ℵ0 < ℵ0 under such a definition.
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It is also worth observing that (.5) corresponds to Frege’s Theorem 167
(1893, §125 [2013, 154]), which asserts 0S(iSRs ). We discuss this point
further in the following Remark.

(921) Remark: On Frege’s Definition of Finite and Infinite Cardinals. By the-
orem (807.3) we know Nx ≡ P+0x. But in a number of places, Frege indicated
that P+0x is the definiens for the notion x is a finite cardinal number.

In Frege 1884, §83 is titled ‘Definition of Finite Number’ and in this section,
Frege writes:

. . . I define as follows: the proposition “n is a member of the series of nat-
ural numbers beginning with 0” is to mean the same as “n is a finite num-
ber.”

In 1893, §46 [2013, 60], Frege writes:385

Accordingly, ∆S(ΘSRΥ ) is the truth-value of: that Θ belongs to the Υ -
series starting with ∆. Thus, 0S(ΘSRs ) is the truth-value of: that Θ belongs
to the cardinal number series starting with 0, for which I can also say Θ is
a finite cardinal number.

If we substitute 0 for 0, x for Θ, and P
+ for Rs, then the statement 0S(ΘSRs)

would be written in our notation as P+0x, which in effect is the definiens for
Nx in (807).

Furthermore, in 1893, the formula to be proved in Section Zeta (Z) [2013,
137] is:

bS(bSMs )
0S(bSRs )

Frege then writes:

The proposition mentioned in the main heading states that no object be-
longing to the cardinal number series starting with Zero follows after itself
in the cardinal number series. Instead, we could also say: “No finite cardi-
nal number follows after itself in the cardinal number series”.

The formula in question becomes proved as Theorem 145 (2013, 144). In our
notation, substituting appropriately, Frege’s formula would be written as:

P
+0x→¬P∗xx

385In the following quote, we’ve corrected a known one-character transcription error in the first
edition of the Ebert and Rossberg 2013 translation, p. 60. In the second sentence of the following
quotation, the character s has been substituted for Υ in the formula. This correction is based on the
original (1893, p. 60) and is included in the revised, paperback edition of the translation (2016).
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and in (838.1), we proved this in the form n ≮ n.
Moreover, in Frege 1893, the formula to be proved in Section Iota (I) [2013,

150] is:

0S(iSRs )

To explain this claim, Frege writes (1893, §122 [2013, 150]):

There are cardinal numbers that do not belong to the cardinal numbers
series beginning with 0, or, as we shall also say, that are not finite, that
are infinite. One such cardinal number is that of the concept finite cardinal
number; I propose to call it Endlos and designate it with ‘i’. I define it
thus:

”(0SURs ) = i (M

For 0SURs is the extension of the concept finite cardinal number. The
proposition mentioned in the heading says that the cardinal number End-
los is not a finite cardinal number.

So the formula to be proved in Section Iota asserts that Zero doesn’t bear the
weak ancestral of the predecessor relation to Endlos. This is established as
Theorem 167 (2013, 154). Similarly, in object theory, there is a distinguished
abstract object that numbers the natural (finite) numbers, namely #N, and it
is provably an infinite cardinal, by (918.4) and (918.5). The traditional name
that we’ve introduced in (919) for the number of natural numbers, ℵ0, clearly
corresponds to Frege’s name i. Thus, the claim in the main heading of Frege’s
Section Iota becomes, in our notation, ¬P+0ℵ0.

Finally, in 1893, the formula to be proved in Section Kappa (K) [2013, 201]
is:

0S(”uSRs )
A q u = A yq

Frege then explicates this by writing:

For finite cardinal numbers we can prove a proposition similar to the last,
namely that the cardinal number of a concept is finite if the objects falling
under it can be ordered into a simple (non-branching, non-looping back
into itself) series starting with a certain object and ending with a certain
object.

The formula to be proved ultimately becomes Theorem 327 (2013, 224). It is
a conditional and in the consequent of this conditional, Frege continues to use
0S(”uSRs ), i.e., ”u is a member of the predecessor series starting with 0, to
express that the number of u (”u) is finite.
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Given these examples, it is clear that Frege regards a cardinal number κ as
finite just in case Zero bears the weak ancestral of predecessor to κ, i.e., just in
case κ is a natural number. And just as clearly, he suggests that a cardinal is
infinite just in case it fails to be finite. So our definitions in (917) conform with
Frege’s usage.

(922) Definition: Infinite Classes. Using the definition of ClassOf(x,G) (312.1),
we now stipulate that (.1) x is an infinite class of Gs if and only if x is a class of
Gs that is numbered by an infinite cardinal, and that (.2) x is an infinite class if
and only if for some property G, x is an infinite class of Gs:

(.1) InfiniteClassOf (x,G) ≡df G↓& ClassOf(x,G) &∃κ(Infinite(κ) & Numbers(κ,G))

(.2) InfiniteClass (x) ≡df ∃G(InfiniteClassOf (x,G))

(923) Theorem: Existence of An Infinite Class. We can now prove that there
exists an infinite class:

∃xInfiniteClass(x)

So, we’ve established the existence of an infinite class without appealing to any
mathematical primitives or asserting any mathematical axioms. The proof can
be given by modally strict means because, intuitively, at every world w, the
extension-at-w of N (i.e., εwN), as defined in (565), is infinite.

Of course, we could have identified εN as an infinite class, and although it
provably is one, the proof is not modally strict.386 The claim InfiniteClass(εN)
is a theorem but not modally strict because εN is not necessarily a class; this
is a consequence of (320.5), which tells us no class is necessarily a class! Of
course, if you use the notion of an actual extension (i.e., an actual class), as
described in (335), one could show that the actual extension of N is an infinite
class, by modally strict means.

386By definition (922.2), we have to show ∃G(InfiniteClassOf (εN,G)). But clearly, our witness is
N, so it suffices to show InfiniteClassOf (εN,N), i.e., by (922.1) that:

N↓& ClassOf(εN,N) &∃κ(Infinite(κ) & Numbers(κ,N))

Clearly, N↓. By (327)? and definition (312.1), ClassOf(εN,N). Since we know #N is a natural
cardinal (918.5), it remains to show #N is our witness to ∃κ(Infinite(κ) & Numbers(κ,N)). But
Infinite(#N), by (918.4). And we have Numbers(#N,N) by (774.5) and the rigidity of N (809.2).



Chapter 15

Typed Object Theory and
its Applications

In this chapter, we develop the type-theoretic version of object theory and ap-
ply it in various ways. Many of these applications consist of object-theoretic
analyses of contexts and constructions in natural language. The most no-
table application of typed object theory is the analysis of theoretical mathe-
matical language, for it constitutes an object-theoretic reduction of theoretical
mathematical objects and theoretical mathematical relations.387 We shall not
only identify mathematical objects such as the real numbers and the Zermelo-
Fraenkel (ZF) sets as abstract individuals, but also identify such mathematical
relations as the successor relation in Peano Arithmetic, the greater than relation
in real number theory, and the membership relation of ZF, as abstract relations
(i.e., relations that encode properties of relations). To do this, we need a theory
of abstract relations that can encode properties of relations. Such a theory can
be obtained by reformulating the language, logic, and proper axioms of the
present system within relational type theory.

Using typed object theory, we shall analyze a mathematical theory as a cer-
tain kind of situation. As such, mathematical theories become identified as
abstract objects that encode only propositional properties. We shall then de-
fine truth in a mathematical theory T in the same way that we defined truth in a
situation, truth at a world, and truth in a story, namely, a proposition p is true
in theory T just in case T encodes the propositional property [λxp]. Our analy-
sis will preserve the pretheoretic constraint on mathematical theories, namely,
that propositions logically implied by propositions true in the theory are also
true in the theory. Given this analysis, we shall then go on to analyze the ob-

387See Chapter 10, item (309), where we distinguished theoretical mathematical objects from
natural mathematical objects.

803



804 CHAPTER 15. TYPED OBJECT THEORY AND ITS APPLICATIONS

jects and relations of arbitrary, mathematical theories.
To make all this possible, we work our way to the formulation of the fol-

lowing comprehension principle for abstract objects, which is expressible in a
language built with respect to the simple theory of relational types t:

∃xt(A!〈t〉x&∀F〈t〉(xF ≡ ϕ)), where t is any type and ϕ is any formula hav-
ing no free occurrences of the variable x of type t.

Then we shall not only identify (theoretical) mathematical objects as individ-
uals of type i, but also identify (theoretical) unary and binary mathematical
relations as abstract objects of type 〈i〉 and type 〈i, i〉, respectively. For exam-
ple, the number π of real number theory will be identified as that abstract
individual that encodes just the properties exemplified by π in real number
theory. Similarly, the relation ∈ of Zermelo-Fraenkel set theory will be iden-
tified as that abstract relation that encodes just the properties of relations ex-
emplified by the relation ∈ in ZF. Those readers familiar with relational type
theory may want to glance at the notation used here for relational types and
then skip ahead to Section (15.6), where we begin the exposition of our analysis
of mathematical theories, objects, and relations.

15.1 The Language and Its Interpretation

(924) Metadefinition: Types. We begin with a definition of the types. These
categorize both the terms of our language and the entities that such terms may
denote.388

Let i be the sole underived or primitive type for individuals, where indi-
viduals are intuitively understood to be non-predicable entities. Then, using
t, t1, t2, . . . as variables ranging over types, we may define type as follows:389

388We are here categorizing the types of simple relational type theory. Though Russell developed
ramified type theory in 1906 and 1908, Church (1974, 21) credits the development of simple type
theory to Chwistek 1921 and 1922, Ramsey 1926, and Carnap 1929. However, the notation for
simple type theory seems to have stabilized in Orey 1959 (73), though the ‘derived’ (i.e., complex)
types are defined only for n ≥ 1. Church 1974 (25) and Gallin 1975 (68) use notation similar to
Orey 1959, but let n = 0 to obtain the derived type for propositions. This notation was used in Zalta
1988 (Appendix). The relational types formulated in Zalta 1983 (Chapter VI) were essentially the
same as those in Zalta 1988, but the primitive type p used in 1983 was abandoned in 1988 when I
realized it could be defined as the empty derived type.

It may also be worth noting in Orey 1959 (73), Church 1974 (26), Gallin 1975 (72), and Muskens
1989a, the entities in the domains of the relational types were taken to be sets of n-tuples or
functions. However, in Zalta 1983, 1988, and 2020, they were taken to be primitive, intensional
relations. See Zalta 2020 for a fuller discussion of the history of interpretations of relational type
theory.
389These types were used in Zalta 1988, Chapters 9, 12, and the Appendix. That work was a

simpler variant of the type theory used in Zalta 1983, Chapter V. See also the derived types for the
system MLp in Gallin 1975, 68.
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(.1) ‘i’ is a type.

(.2) If t1, . . . , tn are any types (n ≥ 0), p〈t1, . . . , tn〉q is a type.

The derived or complex types of the form 〈t1, . . . , tn〉 in (.2) are the types of n-
place relations among objects of type t1, . . . , tn, in that order. A derived type of
the form 〈t〉 is the type for properties of objects of type t. The empty, derived
type 〈 〉 is the type for propositions or states of affairs.

For most of this chapter, we shall be focusing on ordinary and abstract
objects of the following types:

i individuals
〈〉 propositions = states of affairs
〈i〉 properties of individuals
〈i, i〉 binary relations among individuals
〈i,〈〉〉 binary relations between individuals and propositions
〈i, i, i〉 tertiary relations among individuals
〈〈i〉〉 properties of properties of individuals
〈〈i, i〉〉 properties of binary relations among individuals

Thus, the type of propositional attitude verbs such as belief already appear
in the list; these are relations of type 〈i,〈〉〉, i.e., a binary relation between an
individual and a proposition or state of affairs. But other natural language
expressions can be typed using the above scheme. For example, a sentential
adverb might be assigned type 〈〈〉,〈〉〉, i.e., as a binary relation between propo-
sitions, while a predicate adverb might be assigned the type 〈〈i〉,〈i〉〉, i.e., a
binary relation between properties of individuals.

It should be noted that for most of this chapter, we shall not distinguish
propositions and states of affairs. For most purposes, it makes no difference
whether we call 0-ary relations ‘propositions’ or ‘states of affairs’. However,
when it comes time to analyze propositional attitudes and propositional attitude
reports, it may prove useful to regard 0-ary relations of type 〈〉 in one of two
ways, depending on whether we are discussing de re or de dicto interpretations
of attitude reports. When discussing de re reports and our interest lies in the
truth of a belief or the satisfaction of a desire, it is useful to call the 0-ary relation
upon which truth or satisfaction depends a ‘state of affairs’. When discussing
de dicto reports and our interest lies in the mental representation of a state of
affairs, it useful to call the 0-ary relation that serves to represent the state of
affairs believed or desired a ‘proposition’. In both cases, we’re still referencing
0-ary relations, but this usage will tie propositions more closely to the content
of mental state representations and tie states of affairs more closely to the state
of the world being represented.
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(925) Metadefinition: Simple Terms of Type t. We shall assume that for every
type t, there are two kinds of simple terms of that type, namely, constants and
variables:

Constants of type t: at1, a
t
2, . . .

Variables of type t: xt1,x
t
2, . . .

Consequently, there is a denumerable list of constants and variables, with each
symbol indexed both by type and its place in the enumeration. The resulting
language, however, becomes difficult to read, and so we shall almost always
avail ourselves of other symbols to facilitate understanding. In particular, we
shall continue to write the relation symbol in a predication in upper case. And,
we frequently indicate, in the text, the type of the symbols used in a formula
about to be displayed, so that we may display the formula without the distrac-
tion of the type superscripts.

Note that in the second-order fragment studied in Chapters 7 – 14, the
language included terms for individuals and terms for n-ary relations among
individuals (n ≥ 0). However, it included no terms for higher-order relations.
Thus, all of the relations studied in those chapters were of type 〈i, . . . , i〉, in
which there are n occurrences of i, for some n ≥ 0.

(926) Metadefinitions: Syncategorematic Expressions for Typed Object The-
ory. A syncategorematic expression is an expression that is neither a term
(i.e., assigned a denotation) nor a formula (i.e., assigned truth conditions), but
which nevertheless represents a primitive notion. We use following syncat-
egorematic expressions in both the type-theoretic language and the second-
order fragment, where αt ranges over variables of type t:

(.1) Unary Formula-Forming Operators:
¬ (‘it is not the case that’ or ‘it is false that’)
� (‘necessarily’ or ‘it is necessary that’)
A (‘actually’ or ‘it is actually the case that’)

(.2) Binary Formula-Forming Operator:
→ (‘if . . . , then . . . ’)

(.3) Variable-Binding Formula-Forming Operator:
∀αt (‘every αt is such that’)

for every variable αt of any type t

(.4) Variable-Binding Individual-Term-Forming Operator:
ıαt (‘the αt such that’)

for every variable αt of any type t
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(.5) Variable-Binding n-ary Relation-Term-Forming Operators (n ≥ 0):
λαt1 . . .αtn (‘being αt1 . . .αtn such that’, or when n = 0, ‘that’)

for any distinct variables αt1 , . . . ,αtn with types t1, . . . , tn, respectively

These primitive, syncategorematic expressions are referenced in the definition
of the syntax of our language and are used to define complex formulas and
complex terms. In what follows, we sometimes call ¬ the negation operator,
A the actuality operator, � the necessity operator,→ the conditional; ∀αt a uni-
versal quantifier, ıαt the definite description operator; and λαt1 . . .αtn the relation
abstraction operator. By convention, in any conditional formula of the form
ϕ→ ψ, we say ϕ is the antecedent, and ψ the consequent, of the conditional.

(927) Definition: The Language of Typed Object Theory. In addition using αt

as a metavariable ranging over variables of type t, we use the following Greek
metavariables:

• τ t ranges over terms of type t, where t is any type

• ϕ ranges over formulas

• Π〈t1,...,tn〉 is sometimes used as a more easily readable substitute for τ〈t1,...,tn〉

(n ≥ 0)

We then define, by simultaneous recursion, the terms of type t and formulas of
our type-theoretic language as follows:

Base Clauses:

• Terms: Simple terms (i.e., constants and variables) of type t are terms of
type t, for every type t.

• Terms: E!t is a distinguished unary relation constant, for every type t , i.

• Formulas: Where Π is a constant, a variable, or a description of type 〈〉,
Π is a formula.

• Formulas: Where Π〈t1,...,tn〉 is a term of type 〈t1, . . . , tn〉, and τ t1 , . . . , τ tn are
terms of types t1, . . . , tn, respectively, for n ≥ 1, then an expression of the
form Πτ t1 . . . τ tn is an exemplification formula.

• Formulas: Where τ t1 , . . . , τ tn are terms of types t1, . . . , tn, respectively, and
Π〈t1,...,tn〉 is a term of type 〈t1, . . . , tn〉, for n ≥ 1, then an expression of the
form τ t1 . . . τ tnΠ is an encoding formula.

Recursive Clauses:

• Formulas: If ϕ and ψ are any formulas, and αt is any variable of type t,
then [λϕ], ¬ϕ, ϕ→ ψ, ∀αtϕ, �ϕ, and Aϕ are formulas.
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• Terms: Where ϕ is any formula and αt is any variable of type t, then ıαtϕ
is a term of type t.

• Terms: Where ϕ is any formula and αt1 , . . . ,αtn (n ≥ 1) are any distinct
variables having types t1, . . . , tn, respectively, then:

(a) [λαt1 . . .αtn ϕ] is a term of type 〈t1, . . . , tn〉, and

(b) ϕ itself is a term of type 〈〉.

We say that an expression is a term just in case it is a term of type t, for some
type t.

As noted previously, we will make it easier to read formulas of the language
by using informal notation. In particular, we use the upper case, italic letters
P ,Q, . . . and F,G, . . . to abbreviate constants and variables, respectively, of some
antecedently-specified relational type of the form 〈t1, . . . , tn〉, for n ≥ 1. We use
the italic letters p,q, . . . as variables ranging over propositions (i.e., instead of
the variables x〈〉1 ,x

〈〉
2 , . . .).

So, for example, if we suppose that F is a variable having a type of the form
〈t1, t2〉, and suppose that a is a constant of type t1 and x is a constant of type
t2, then Fax is a well-formed exemplification formula and axF is a well-formed
encoding formula. Similarly, if B is a constant of type 〈i,〈〉〉 that represents
the binary relation of belief, a is a constant of type i, and p is a variable for a
proposition, then Bap asserts that a believes p (or a believes the proposition p),
and Ba[λp] asserts that a believes that p.

(928) Metadefinition: A BNF for the Type-Theoretic Language. In order to
present a BNF definition for the language of typed object theory, we make use
of the following metavariables:

δt primitive constants of type t
αt variables of type t
τ t terms of type t
ϕ formulas

If we now temporarily let these Greek metavariables serve as names of the
syntactic categories of the expressions over which they range, then we may
succinctly state the context-free grammar of our type-theoretic language using
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Backus-Naur Form (BNF), as follows:

δt ::= at1, a
t
2, . . . (E!〈t〉 a distinguished constant, for every t)

αt ::= xt1,x
t
2, . . .

Baset ::= δt | αt | ıαtϕ
τ i ::= Basei

(n ≥ 1) τ〈t1,...,tn〉 ::= Base〈t1,...,tn〉 | [λαt1 . . .αtn ϕ] (αt1 . . .αtn pairwise distinct)
ϕ ::= Base〈 〉 | τ〈t1,...,tn〉τ t1 . . . τ tn (n ≥ 1) | τ t1 . . . τ tnτ〈t1,...,tn〉 (n ≥ 1) |

[λϕ] | (¬ϕ) | (ϕ→ ϕ) | ∀αtϕ | (�ϕ) | (Aϕ)
τ〈〉 ::= ϕ

It is insightful to recognize that one could, in the above BNF, replace ϕ every-
where by τ〈〉, except on the last line, which would then be reversed to read
ϕ ::= τ〈〉. This alternative BNF would first introduce the terms of every type
and then define the formulas as terms of type 〈〉. However, it is a considered
choice, based on ease of readability and understanding, to write the BNF as the
above.

Given this BNF, we may again say that a term τ is any expression of type
τ t, for some type t. As mentioned previously, we often use Π instead of τ
as a metavariable ranging over terms of type t when t , i. Such terms are
said to be of relational type, where these are to be distinguished from terms for
individuals having type i.

It may not be immediately apparent that the language defined in (4) is a
special case of the above language. To see this how the above reduces to (4) as
a special case, restrict the definition of types to the type i for individuals and
the types of the form 〈i, . . . , i〉 for n-ary relations among individuals, for any
n-long string of is (n ≥ 0). So we may eliminate from the above BNF every con-
stant, variable, and complex term of every other type, though we can make the
constants and variables for individuals and relations among individuals intro-
duced in (4) explicit. Then it can be seen that (a) the constants and variables of
(4) are restricted to those of types i and 〈i, . . . , i〉, (b) the only definite descrip-
tions in (4) are those of type i (in which the ı-operator binds a single variable of
type i), and (c) the only λ-expressions in (4) are those of type 〈i, . . . , i〉 (in which
the λ-operator binds pairwise distinct variables of types i). Thus, the lines for
formulas ϕ and 0-ary relation terms τ〈〉 in the above BNF reduce to the lines
for ϕ and Π0, respectively, in (4).

(929) Remark: A Semantic Interpretation. Though the language of object the-
ory was designed to be transparent, it would serve well to specify, in complete
generality, the denotations of the terms and the truth conditions of the formu-
las. Again, we assume as a metalanguage, the first-order language of set theory
with urelements, supplemented by a metalinguistic ε̄ operator of the kind de-
scribed in the opening paragraph of Section 5.2.1 and in footnote 37. This
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metalanguage allows us to describe a general structure and define a formal se-
mantic interpretation of the language, including general semantic definitions
of truth, validity, and logical consequence. This will give the reader an inde-
pendent picture that provides a representation or model of what the axioms
assert (assuming them to be true) from the standpoint of set theory + urele-
ments; it does not constitute a model that demonstrates that the axioms are
jointly true (we leave the construction of a model to some other occasion – see
for example, the initial efforts in Leitgeb, Nodelman, and Zalta m.s.). Rather
one should think of the axioms as placing constraints that any structure of the
kind described below must satisfy.

Consider the following structure:

I = 〈D,W,T ,F ,extw,encw,exw,V,C〉,

where:

• D is the general union of non-empty domains Dt, for every type t; i.e., D
=
⋃
t Dt. We often use ot as a variable ranging over the elements of Dt;

use r as a variable ranging over the elements of D〈t1,...,tn〉, where t1, . . . , tn
are any types and n ≥ 1; and use p as a variable ranging over the elements
of D〈〉,

• W is a non-empty set of possible worlds with a distinguished element w0;
we use w as a variable ranging over the elements of W,

• T is the truth-value The True,

• F is the truth-value The False,

• extw is a binary exemplification extension function indexed to its second
argument; extw maps each relation r in D〈t1,...,tn〉 (n ≥ 1) and world w to
a set of n-tuples whose elements have types t1, . . . , tn, respectively, so that
extw(r) serves as the exemplification extension of r at w,390

• encw is a binary encoding extension function indexed to its second argu-
ment; encw maps each relation r in D〈t1,...,tn〉 (n ≥ 1) and world w to a
set of n-tuples whose elements have types t1, . . . , tn, respectively, so that
encw(r) serves as the encoding extension of r at w,

• exw is a binary extension function indexed to its second argument; exw

maps each proposition p in D〈〉 and world w to one of the truth-values
(T or F ) so that exw(p) serves as the extension of p at w,

390By convention, extw maps each relation unary relation r in D〈t〉 (n ≥ 1) and world w to a
subset of Dt .
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• V is an interpretation function that assigns each the primitive constant
of type t to an element of the domain Dt, and

• C is a choice function that takes, as argument, any semantic formula A

having a single free variable that ranges over some domain Dt, for t , i,
and returns an arbitrary but determinate value in Dt that satisfies A if
there is one, and is undefined otherwise. Then where ε̄rnA is any seman-
tic ε̄-term in which rn is a semantic variable that ranges over the n-ary
relations (n ≥ 0) in the domain D〈t1,...,tn〉, the object C(A) is an arbitrar-
ily chosen entity of type 〈t1, . . . , tn〉 that satisfies A, if there is one, which
serves as the value of the term. For example, if A has r free and r ranges
over relations in D〈i,i〉 (i.e., ranges over binary relations among individ-
uals), then the semantic term ε̄rnA denotes C(A), where the latter is an
arbitrary but determinate relation in D〈i,i〉 that satisfies A, if there is one.
Similarly, if A has p free, where p ranges over D〈〉, then ε̄pA denotes
C(A), where the latter is an arbitrary but determinate proposition in D〈〉
that satisfies A, if there is one.

Given such a structure I , let w range over the primitive possible worlds in W,
and let f be a assignment function relative to I that assigns to each variable
αt an element of the domain Dt. (For ease of readability, we always omit the
index on f that relativizes it to I .) Then we shall assign denotations to the
terms and truth conditions to the formulas by defining the following notions
simultaneously:

dI ,f (τ), i.e., the denotation of τ relative to I and f

w |=I ,f ϕ, i.e., under I and f , ϕ is true at w

The definitions are given in full below but note that, in what follows, we are
re-purposing the symbol |= for the semantics. When we use |= in a semantic
context in what follows, it is to be understood as representing a semantic no-
tion, and not the object-theoretic notion p is true in s (s |= p) defined in (470).

Intuitively, dI ,f is a partial denotation function which, relative to an in-
terpretation I and variable assignment f , assigns to every term τ of type t
an element of the domain Dt if τ is significant, and nothing otherwise. And,
w |=I ,f ϕ states the truth conditions of ϕ at world w, relative to I and f . Now
let:

• I be any interpretation and f be any assignment function,

• V be the interpretation function of I ,
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• f [αt/ot] be the variable assignment just like f except that it assigns the
entity ot to the variable αt,391 and

• f [αti /oti ]ni=1 be the variable assignment just like f but which assigns the
entities ot1 , . . . ,otn , respectively, to the variables αt1 , . . . ,αtn , for 1 ≤ i ≤ n

And let us adopt the convention of omitting the type index on a symbol after
its first use in a semantic formula whenever it can be done without ambigu-
ity. Then the simultaneous definition of denotation and world-relative truth,
relative to I and f , proceeds as follows:

Base Clauses

D1. If τ is a constant of type t, then dI ,f (τ) = V(τ)

D2. If τ is a variable of type t, then dI ,f (τ) = f (τ)

T1. If ϕ is a formula in Base〈〉, i.e., if ϕ is a constant, variable, or description
of type 〈〉, then w |=I ,f ϕ if and only if ∃p〈〉(p=dI ,f (ϕ) & exw(p)=T )

T2. If ϕ is a formula of the form Π〈t1,...,tn〉τ t1 . . . τ tn (n ≥ 1), then w |=I ,f ϕ if
and only if ∃r〈t1,...,tn〉∃ot1 . . .∃otn(r = dI ,f (Π) & ot1 = dI ,f (τ t1 ) & . . . & otn =
dI ,f (τ tn ) & 〈ot1 , . . . ,otn〉 ∈ extw(r))

T3. If ϕ is a formula of the form τ t1 . . . τ tnΠ〈t1,...,tn〉 (n ≥ 1), then w |=I ,f ϕ if
and only if ∃ot1 . . .∃otn∃r〈t1,...,tn〉(ot1 = dI ,f (τ t1 ) & . . . & otn = dI ,f (τ tn ) & r =
dI ,f (Π) & 〈ot1 , . . . ,otn〉 ∈ encw(r))

Recursive Clauses

T4. If ϕ is a formula of the form [λψ], then w |=I ,f ϕ if and only if w |=I ,f ψ

T5. If ϕ is a formula of the form ¬ψ, then w |=I ,f ϕ if and only if it is not the
case that w |=I ,f ψ, i.e., iff w 6|=I ,f ψ

T6. If ϕ is a formula of the form ψ→ χ, then w |=I ,f ϕ if and only if either it
is not the case that w |=I ,f ψ or it is the case that w |=I ,f χ, i.e., iff either
w 6|=I ,f ψ or w |=I ,f χ

391This can be defined formally in one of two ways, suppressing the type index. If an assignment
function f is represented as a set of ordered pairs, then where α is a variable and o is an entity
from the domain over which α ranges:

f [α/o] = (f ∼ 〈α,f (α)〉)∪ {〈α,o〉}

I.e., f [α/o] is the result of removing the pair 〈α,f (α)〉 from f and replacing it with the pair 〈α,o〉.
Alternatively, we can define f [α/o] functionally, where β is a variable ranging over the same

domain as α, as:

f [α/o](β) =

{
f (β), ifβ , α

o, ifβ = α
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T7. If ϕ is a formula of the form ∀αtψ, then w |=I ,f ϕ if and only if
∀ot(w |=I ,f [α/o] ψ)

T8. If ϕ is a formula of the form �ψ, then w |=I ,f ϕ if and only if
∀w′(w′ |=I ,f ψ)

T9. If ϕ is a formula of the form Aψ, then w |=I ,f ϕ if and only if w0 |=I ,f ψ.

D3. If τ is a description of the form ıαtϕ, then

dI ,f (τ) =

{
ot , if w0 |=I ,f [α/o]ϕ&∀o′(w0 |=I ,f [α/o′]ϕ→ o′ =o)

undefined, otherwise

where o′ also ranges over the entities in Dt

D4. If τ is an n-ary λ-expression (n ≥ 1) of the form [λαt1 . . .αtn ϕ], then

dI ,f (τ) =


ε̄r〈t1,...,tn〉∀w∀ot1 . . .∀otn(〈ot1 , . . . ,otn〉 ∈ extw(r) ≡ w |=I ,f [αti /oti ]ni=1

ϕ),

if there is one

undefined, otherwise

where ε̄rA = C(A) and C is the choice function of the interpretation.

D5. If τ is an 0-ary λ-expression of the form [λϕ], then

dI ,f (τ) = ε̄p〈〉∀w(exw(p) = T ≡ w |=I ,f ϕ)

where ε̄pA = C(A) and C is the choice function of the interpretation.

D6. If τ is a term of type 〈〉, i.e., if τ is a formula ϕ, then:

• if ϕ is a formula in Base〈〉, then dI ,f (τ) is given by D1 – D3

• if ϕ is a formula of the form [λϕ], then dI ,f (τ) is given by D5

• if ϕ is a formula of any other form, then dI ,f (τ) = dI ,f ([λϕ])

Now where I and f are given and w0 is the distinguished actual world of the
domain of possible worlds W in I , we say that ϕ is true under I and f (‘trueI ,f ’)
if and only if under I and f , ϕ is true at w0. That is, using the formal notation
|=I ,f ϕ for the definiendum, we have:

|=I ,f ϕ if and only if w0 |=I ,f ϕ

And we now say that ϕ is true under I just in case for every f , ϕ is true under
I and f :

|=I ϕ =df ∀f (|=I ,f ϕ)
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Thus, if ϕ is not true under I , then some assignment f is such that w0 6|=I ,f ϕ
and we write 6|=I ϕ. We say that a formula ϕ is false under I if and only if no
assignment function f is such that |=I ,f ϕ, i.e., iff no assignment function f is
such that w0 |=I ,f ϕ. So open formulas may be neither true under I nor false
under I , whereas a sentence (i.e., a closed formula) will be either true under I
or false under I .

In the usual manner, we say that ϕ is valid or logically true if and only if ϕ
is true under every interpretation I , i.e.,

|=ϕ =df ∀I (|=I ϕ)

Clearly, given our previous definitions, it follows that:

|=ϕ if and only if for every I and f , |=I ,f ϕ, i.e.,

|=ϕ if and only if for every I and f , w0 |=I ,f ϕ

In what follows, when we say that a schema is valid, we mean that all of its
instances are valid. Clearly, if a formula ϕ is not valid, then for some interpre-
tation I and assignment f , w0 6|=I ,f ϕ.

Finally, we conclude the definitions for a general interpretation with several
more traditional definitions:

• ϕ is satisfiable if and only if there is some interpretation I and assignment
f such that ϕ is trueI ,f , i.e., iff ∃I ∃f (|=I ,f ϕ).

• ϕ logically implies ψ (or ψ is a logical consequence of ϕ) just in case, for
every interpretation I and assignment f , if ϕ is trueI ,f , then ψ is trueI ,f :

ϕ |=ψ =df ∀I∀f (|=I ,f ϕ→ |=I ,f ψ)

• ϕ and ψ are logically equivalent just in case both ϕ |= ψ and ψ |= ϕ:

ϕ |=|= ψ =df ϕ |= ψ&ψ |= ϕ

• ϕ is a logical consequence of a set of formulas Γ just in case, for every
interpretation I and assignment f , if every member of Γ is trueI ,f , then
ϕ is trueI ,f :

Γ |= ϕ =df ∀I∀f [∀ψ(ψ ∈ Γ → |=I ,f ψ)→ |=I ,f ϕ]

(930) Metadefinitions: Abstract Syntax. In what follows, we use the nota-
tional conventions developed in (5), suitably adapted to the type-theoretic
context. Moreover, the metatheoretic notions of abstract syntax that were de-
fined with respect to second-order object theory can all be straightforwardly
adapted to the more general type-theoretic framework. We leave this as an ex-
ercise, though on occasion we may note where these notions have to be adjusted
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slightly if they are to be used in the more general type-theoretic language. In
what follows, therefore, we make use of the following notions of abstract syn-
tax:

• subformula (6)

• subterms and primary terms (7)

• operator scope and free/bound occurrences of variables (8)

• encoding position (9.1)

• core λ-expressions (9.2)

• open/closed formulas/terms (10)

• closures (11)

We’ll henceforth reference these metadefinitions in what follows by both the
present and original item number. So, for example, the definition of subfor-
mula will be referenced as (930) [6].

Observation: Consider how one would adapt the definition of a
core λ expression:

If t1, . . . , tn are any types, and α1, . . . ,αn are any variables with
types t1, . . . tn, respectively, then [λα1 . . .αnϕ] is a core λ-expres-
sion if and only if no variable bound by the λ occurs in encod-
ing position in ϕ.

Of interest here is the fact that in typed object theory, the λ can bind
variables of any type, whereas in second-order object theory, the λ
may bind only individual variables. This adapted definition of a
core λ-expression therefore gives rise to new cases of λ-expressions
that fail to be core λ-expressions, as well as new cases that satisfy
the definition. For example, let x be a variable of some type t and F
be a variable of type 〈t〉. Then not only does [λxxF] fail to be a core
λ-expression, but so does [λF xF]. In each case, the λ binds a vari-
able that occurs in encoding position in the matrix. Note, however,
that when O! has type 〈t〉 and x and F have the same type as in the
previous example, then both [λF x[λz Fz] ] and [λF O!F & x[λz Fz] ]
are core λ-expressions. The variable F, in each case, doesn’t occur
in encoding position in the matrix. Our derivation system will not
allow one to substitute F for [λz Fz] unless it is known that O!F,
since η-Conversion will assert the identity [λz Fz] = F only under
the condition that F is an ordinary relation; see the statement of η-
Conversion in (935.27). So we won’t be able to derive the identity
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[λF x[λz Fz] ] = [λF xF]. The term on the left of this identity isn’t a
core λ-expression and won’t denote, whereas the term on the right
of this identity is a core λ-expression and will denote. But we will
be able to derive the identity [λF O!F & x[λz Fz] ] = [λF O!F & xF] ].
Though the term on the right side of this identity isn’t a core λ-
expression, it nevertheless provably has a denotation; see (965.6).

Clearly, the metadefinition of terms of the same type (12) has to be modified.
We’ll say:

• τ and σ are terms of the same type iff for some type t, τ and σ are both
terms of type t. (12)

We’ll refer to this definition as (930) [12].
Again, we use the identity symbol = in both object language and meta-

language, with the expectation that, for any given occurrence, the context
will make it clear whether object-theoretic identity or primitive metalinguistic
identity is intended.

Finally, the following definitions can all be suitably adapted to the type-
theoretic context:

• ϕτα and σ τα (14)

• substitutable at an occurrence and substitutable for (15)

• alphabetic variant (16)

We’ll use the same convention for referring to the type-theoretic versions of
these definitions.

(931) Remark: Desiderata for the Definitions and Axioms of Typed Object The-
ory. Before we begin to develop definitions, state axioms, formulate a deduc-
tive system, and derive theorems for the language just defined, it is important
to lay out the reasons why we may not axiomatize typed object theory simply
by typing all of the axioms of the second-order theory. The language of typed
object theory has far greater expressive power than that of second-order object
theory. While some axioms of second-order object theory generalize to every
appropriate type, others have to be restricted when typed, so as not to apply
to all the new expressions in typed object theory. That is, certain axioms have
to be adapted and limited so that they don’t apply to expressions they weren’t
designed to govern.

To see specific examples of this, we begin with four key observations that
must be kept in mind when formulating the type-theoretic versions of the ax-
ioms of second-order object theory:
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(.1) Definite descriptions of type 〈〉 are both terms and formulas, and al-
though all such descriptions have truth conditions (given that they are
formulas), some fail to denote (i.e., fail to be significant), e.g., ıp(p&¬p)
(‘the proposition p such that both p and ¬p are true’).

(.2) A typed comprehension schema (which in second-order object theory as-
serted only the existence of abstract individuals) will now also assert, for
each relational type t (i.e., for each type t where t , i), the existence of
abstract relations of type t. An abstract relation of type t may both exem-
plify and encode properties of type 〈t〉. And an abstract relation of type
t, together with n− 1 objects (n ≥ 2) having types t1, . . . , tn−1, respectively,
may exemplify and encode relations having one of the following types:
〈t, t1, . . . , tn−1〉, 〈t1, t, . . . , tn−1〉, . . . , 〈t1, . . . , t, tn−1〉, and 〈t1, . . . , tn−1, t〉. But the
question arises, are any abstract relations themselves exemplified? Since
there is no data suggesting that there are, and since the theoretical pur-
pose of abstract entities of any type t is to encode and exemplify prop-
erties and relations of higher types, we shall stipulate that abstract rela-
tions are unexemplified and, when t is the type 〈〉 for propositions, that
abstract propositions are not true.

(.3) Significant λ-expressions denote ordinary relations. From the point of
view of typed object theory, the properties, relations, and propositions of
second-order object theory are all ordinary relations. Thus, the purpose
of λ-notation is to formulate complex expressions that would signify or-
dinary relations were they to have a significance. So, to preserve this in-
tuition, it will be axiomatic that if a λ-expression is significant, it denotes
an ordinary relation. We note here that when we analyze mathematics,
we shall need to introduce a special group of indexed λ-expressions that
are defined in terms of definite descriptions (of relational type) that sig-
nify abstract relations. While these will function as λ-expressions within
the context of (truth in) a mathematical theory, outside those contexts
they will be governed by the principles that govern their definientia and
so function as definite descriptions (of relational type).

(.4) Formulas that aren’t primitive constants, variables, or descriptions (i.e.,
formulas not in Base〈〉) denote ordinary propositions.

Each of these observations has consequences that we must bear in mind when
formulating the axioms of typed object theory. We offer an extended discussion
of each point in turn.

(.1) Let p be a variable ranging over the domain of propositions, i.e., ranging
over the objects of type 〈〉. Note that the description ıp(p&¬p) is not just a term
of type 〈〉, but also a formula (928). When this description appears as a term, as
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in the claimsO!ıp(p&¬p) and q= ıp(p&¬p) (both of which are false, as we shall
see), we read ıp(p&¬p) as: the proposition that is both true and false. Note that
this description does not make an assertion when used as a term. Moreover,
it provably denotes nothing. But when this description is used as a formula,
such as when it stands alone or in the formula ıp(p& ¬p) ≡ ∃p(p& ¬p), then
we read the formula as asserting: the proposition that is both true and false
is true. So when in formula position, the expression ıp(p&¬p) is an assertion
with truth conditions, despite the fact that it does not denote a proposition.392

These facts lead to the (not necessarily independent) observations (.a) – (.f).

(.a) Consider the claim ıp(p&¬p)↓, in which ıp(p&¬p) figures as a term. This
claim asserts that the proposition that is both true and false exists. No
matter how existence is defined in type theory (see below), the claim ıp(p&
¬p)↓ should imply ∃p(p&¬p). Since the latter is provably false (any wit-
ness would be a contradiction), it should be provable that ¬(ıp(p&¬p)↓).
Given these facts, it follows immediately that: typed-versions of theo-
rems (104.1) and (104.2) of second-order object theory cannot be theo-
rems of typed-object theory. Theorem (104.1) asserts Π0↓, for every 0-
ary relation term. Theorem (104.2) asserts ϕ↓, for every formula ϕ. The
corresponding claims of typed object theory are, respectively:

Π〈 〉↓, where Π〈〉 is any term of type 〈〉
ϕ↓, for every formula ϕ

Neither of these can be theorems in typed object theory, for then it would
be a theorem that ıp(p&¬p)↓. Thus, we have to weaken at least one of

392It might help to see that ıp(p & ¬p) has well-defined truth conditions but doesn’t denote a
proposition if we think semantically for the moment. In the BNF (928), the line that stipulates
which expressions are formulas tells us that descriptions are among the formulas in the Base ex-
pressions of type 〈〉 (which include the constants, variables, and descriptions of type 〈〉). Consider
how our simultaneous definitions of denotation and truth in (929) imply that ıp(p&¬p) has well-
defined truth conditions but doesn’t denote a proposition. In clause T1 of (929), the definition of
w |=I ,f ϕ states:

T1. Where ϕ ∈ Base〈〉, then w |=I ,f ϕ if and only if ∃p(dI ,f (ϕ)=p & exw(p) = T ).

So a definite description ıp(p&¬p) is trueI ,f at w if and only if it denotesI ,f some proposition,
say p, and the exemplification extensionw of p is The True. But clause D3 governs the conditions
under which ıp(p & ¬p) has a denotationI ,f , namely, whenever there is a proposition uniquely
satisfies the condition p&¬p. Since there can be no such proposition, the denotations conditions
of ıp(p & ¬p) imply that it doesn’t denote a proposition. Nevertheless, ıp(p & ¬p) still has well-
defined truth conditions; these conditions just never obtain at any possible world, under any I
and f , i.e., for any interpretation I , assignment f , and world w, it is not the case that ıp(p&¬p) is
trueI ,f at w. It is a logical falsehood.

The non-base formulas that are listed in the BNF (i.e., exemplification formulas, encoding
formulas, [λϕ], ϕ→ ψ, ∀αϕ, �ϕ, and Aϕ) each have a separate clause in the definition of truthI ,f
at w. Each clause therefore yields well-defined truth conditions even if ϕ is the non-denoting
logical falsehood ıp(p&¬p).



15.1. THE LANGUAGE AND ITS INTERPRETATION 819

the axioms or definitions from which Π0↓ and ϕ↓ are derived.

In this case, the solution is to weaken a definition. Reconsider the proofs of
(104.1) and (104.2). They both relied on the definition of proposition existence
(20.3):

p↓ ≡df [λx p]↓ (20.3)

Clearly, this definition of proposition existence rests on the definition of prop-
erty existence. But this dependency needn’t be preserved in typed object the-
ory, nor should it be. For the variable p functions as a metavariable in the above
definition, and so the above definition would have the following instance:

ıp(p&¬p)↓ ≡df [λx ıp(p&¬p)]↓

Note that in the above instance, the definiens is true. By the type-theoretic
version of axiom (39.2), the definiens is a core λ-expression: no variable bound
by the λ occurs in encoding position in the matrix. So [λxıp(p&¬p)] signifies a
property, and in particular, a (necessarily) empty property — no x can satisfy
the matrix ıp(p&¬p). But if [λx ıp(p&¬p)] signifies a property, then the above
instance of the definition of proposition identity would incorrectly imply that
ıp(p&¬p)↓.

So although definition (20.3) can’t be preserved, a definition suitable to our
type-theoretic framework is at hand. Where F has type 〈〈〉〉, we may define:

p↓ ≡df ∃FFp

This yields the instance:

ıp(p&¬p)↓ =df ∃F(Fıp(p&¬p))

This definition lets us derive ¬(ıp(p & ¬p)↓).393 And similarly, from the as-
sumption that ¬ıp(p&¬p)↓, it would follow that ¬Fıp(p&¬p), by an instance
of typed axiom (39.5.a) (see below). So ∀F¬Fıp(p&¬p), i.e., ¬∃F(Fıp(p&¬p)).

In general, the revised definition ensures that an arbitrary term Π of type
〈〉 (and, thus, an arbitrary formula ϕ) is significant if and only if some property
of propositions can be truly predicated of it by an exemplification predication.

393By Russell’s theory of descriptions, Fıp(p&¬p) is equivalent to:

∃p((p&¬p) & ∀q((q&¬q)→ q=p) & Fp)

But the negation of this claim is provable, since any witness would yield a contradiction. So
¬Fıp(p&¬p), where F is arbitrary. Hence ∀F¬Fıp(p&¬p), i.e., ¬∃F(Fıp(p&¬p)). So by the defini-
tion of proposition identity just given in the text, ¬(ıp(p&¬p)↓).

A similar result will be obtained for analogous terms, such as ıp(p&¬p&Fx) – we should be able
to prove that ∀F∀x¬(ıp(p&¬p&Fx)↓).
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(.b) Moreover, now that we’ve seen both that the formula ıp(p&¬p) is false and
that ¬(ıp(p&¬p)↓) is derivable, it should be a theorem that ¬ıp(p&¬p).
In general, any formula that fails to denote implies its own falsehood
(‘nonexistence implies falsehood’). These consequences are derivable
from the typed version of (39.5.a) which, in the 0-ary case, will assert:
τ〈〉 → τ〈〉↓, where τ〈〉 is any term of type 〈〉. Since formulas are terms
of type 〈〉 (928), the claim ϕ → ϕ↓ is an instance (asserting ‘truth im-
plies existence’) and so ¬ϕ↓ → ¬ϕ (‘nonexistence implies falsehood’) is
just the contrapositive. Moreover, by RN, it follows that �(ϕ→ ϕ↓) and
�(¬ϕ↓ → ¬ϕ). Thus, in the case where ϕ is ıp(p& ¬p), since it is prov-
able that �¬ϕ↓, it follows that �¬ϕ. Hence, it should be provable that
ıp(p&¬p) is a necessary falsehood and equivalent to every other neces-
sary falsehood.394

(.c) Theorem (111.1) of second-order object theory, which asserts [λϕ] = ϕ,
whereϕ is any formula, cannot be a theorem of typed-object theory, since
when ϕ is ıp(p&¬p), the instance [λ ıp(p&¬p)] = ıp(p&¬p) would be a
theorem. Typed object theory preserves the general principle that true
identity statements imply that the terms flanking the identity sign have
a denotation, i.e., typed versions of (107.1) and (107.2) should be theo-
rems. So it would follow from [λ ıp(p&¬p)] = ıp(p&¬p) and (107.2) that
ıp(p & ¬p)↓. Moreover, if τ is a significant proposition term of type 〈〉
but denotes an abstract proposition, then [λ τ] = τ will also fail – by hy-
pothesis, the right side denotes something abstract, but by (.3), [λ τ] will
denote an ordinary proposition, since it will be significant.

Thus, to prove a weakened version of (111.1), we have to weaken one of
the axioms on which the theorem [λϕ] = ϕ depends. Indeed, the axiom
that needs to be weakened is η-Conversion, which holds only for ordi-
nary relations. See (935.27) below. Consequently, the relevant theorem
of typed object theory will be: [λ ϕ] = ϕ, provided ϕ is not a basic for-
mula, i.e., not a formula in Base〈〉. This is proved in (940.3a) below.

(.d) While the term ıp(p&¬p) fails to be significant, the term [λ ıp(p&¬p)]
(“that the proposition that is both true and false is true”) is nevertheless
significant – we’ll see later that it denotes an ordinary, but false, propo-
sition. That is, it should be a theorem that:

(.i) [λ ıp(p&¬p)]↓

Indeed, this is axiomatic, since it will be an instance of the type-theoretic
version of (39.2) – no variable bound by the λ occurs in encoding position
in the matrix.

394For example, it should be derivable that �(ıp(p&¬p) ≡ ∀p(p&¬p)).
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Intuitively, the λ in a λ-expression is a constructor for logically possible exem-
plification patterns, i.e., exemplification patterns that don’t lead to contradic-
tion, even if defined in terms of encoding formulas. So a λ-expression in which
the λ binds no variables is a constructor for logically possible truth/falsehood
patterns. The expression [λϕ] can be read intuitively as that ϕ is true and thus
signifies a proposition, namely, the 0-ary exemplification of ϕ. As such, [λϕ]↓
is true even when ¬(ϕ↓). Thus, by adding λ to ıp(p & ¬p) to form the term
[λıp(p&¬p)], we’re constructing an expression that asserts a (necessarily) false
proposition, namely, that the true and false proposition is true.

The general conclusions to draw from this are:

(.ii) since every formula ϕ is true or false, the claim [λϕ]↓ is axiomatic,
and

(.iii) [λϕ]↓ ≡ ϕ↓ is not a theorem, since the empty description ıp(p&¬p)
causes this biconditional to fail.395

By contrast, the 0-ary case of β-Conversion, namely [λϕ] ≡ ϕ can be preserved.
For example, [λ ıp(p&¬p)] ≡ ıp(p&¬p) is true because both sides are false.

(.e) The following should hold:

(.i) [λϕ]↓ → ϕ↓, provided that ϕ is not a description

either because the following is axiomatic:

(.ii) ϕ↓, provided that ϕ is not a description

in which case (.i) would follow from (.ii), or because (.i) itself is axiomatic.
In (.3.g) below, we consider an axiom that implies (.ii).

Note that (.e.ii) allows for cases of descriptions of type 〈〉 of the form ıpϕ that
are provably significant under the new definition of proposition existence dis-
cussed in (.a) above. For example, we should be able to prove q = ıp(p = q)
and thus that ıp(p = q)↓. Moreover, where A! is the property of being abstract
having type 〈〈〉〉 and F is a variable of type 〈〈〉〉, we should be able to prove
ıp(A!p& ∀F(pF ≡ ϕ))↓, for any ϕ in which p doesn’t occur free. See below for
further discussion of the conditions under which we should be able to prove
ϕ↓.

(.f) Theorem (111.4) of second-order object theory, i.e., ϕ = ϕ′ for any al-
phabetic variants ϕ and ϕ′, cannot be a theorem of typed object the-
ory, for when ϕ is ıp(p & ¬p) and ϕ′ is ıq(q & ¬q), it would be a theo-
rem that ıp(p& ¬p) = ıq(q& ¬q). We cannot accept such a consequence

395In second-order object theory, [λϕ]↓ ≡ ϕ↓ follows immediately from the fact that [λϕ]↓ is an
axiom (39.2), and ϕ↓ is a theorem (104.2). But in typed object theory, [λϕ]↓ ≡ ϕ↓ holds only when
ϕ↓. So when ϕ is a canonical description of an abstract proposition, of the form ıp(A!p&∀F(pF ≡
ϕ)), then the biconditional holds, since both sides are true.
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while retaining the general principle that true identity statements imply
that the terms flanking the identity sign have a denotation, i.e., (107.1)
and (107.2). Thus, we have to weaken at least one of the axioms upon
which the theorem ϕ = ϕ′ depends. But we should be able to derive
ϕ↓ → (ϕ = ϕ′) and, when ϕ is not a description, that ϕ = ϕ′.

(.2) Intuitively, any relation whose existence is asserted by an instance of the
typed comprehension principle for abstract relations is to be conceived solely
as a reified encoding pattern. For such relations, we stipulate that they are
unexemplified. Here is a more exact description of this stipulation.

(.a) Abstract binary relations among individuals are unexemplified by any
individuals, ordinary or abstract. For example, where x is a variable of
type 〈i, i〉 that doesn’t occur free in ϕ, A! is a defined term of type 〈〈i, i〉〉,
and F is a variable of type 〈〈i, i〉〉, the abstract binary relations among
individuals asserted by instances of the comprehension axiom ∃x(A!x&
∀F(xF ≡ ϕ)) are not exemplified. Abstract, binary relations reify patterns
of properties of binary relations among individuals and there is no pre-
theoretic reason to suppose that such abstract relations are exemplified.
Thus, when we identify the membership relation of ZF (∈ZF) as an abstract
relation, it will only encode the properties of relations exemplified by ∈ in
ZF and it will exemplify properties and stand in relations as well. But it
will not be exemplified by any individuals.

In general, where 〈t1, . . . , tn〉 is any relational type, F is a variable of that type,
A! is a term of type 〈〈t1, . . . , tn〉〉 (so that A!F asserts that F is abstract), and
x1, . . . ,xn are variables having types t1, . . . , tn, respectively, then we shall want,
as an axiom, that:

A!F→¬∃x1 . . .∃xnFx1 . . .xn (n ≥ 0)

(.b) Similarly, since the 0-ary case of predication is truth, abstract proposi-
tions are always false. Abstract propositions reify patterns of properties
of propositions and there is no pre-theoretic reason to suppose that such
abstract propositions are true. So where p is a variable of type 〈〉, A! is a
term of type 〈〈〉〉 (so that A!p asserts that p is abstract), we have, as the
0-ary case of the axiom in (.2.a), that: A!p→¬p.

(.3) To ensure that λ-expressions denote ordinary relations when they are sig-
nificant, consider the following axiom schema:

(.a) Let x1, . . . ,xn (n ≥ 0) be variables having type t1, . . . , tn respectively,O! have
type 〈〈t1, . . . , tn〉〉, and [λx1 . . .xnϕ] have type 〈t1, . . . , tn〉, so that the formula
O![λx1 . . .xn ϕ] asserts that [λx1 . . .xn ϕ] is an ordinary relation. Then the
closures of the following are axioms:
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[λx1 . . .xn ϕ]↓ →O![λx1 . . .xn ϕ] (n ≥ 0)

This holds only for λ-expressions and does not apply to formulas; ϕ↓ → O!ϕ
is not an instance of this schema. Canonical descriptions of abstract proposi-
tions of the form ıp(A!p&∀F(pF ≡ ϕ)) are provably significant but provably do
not denote ordinary propositions. Such descriptions would be examples of a
formula ϕ such that ϕ↓ and ¬O!ϕ. (More on this below.)

Now β-Conversion can be formulated in the usual way, as restricted to sig-
nificant λ-expressions. However, in contrast to second-order object theory, we
specify that n ≥ 0 in the statement of β-Conversion (in second-order object the-
ory, the 0-ary case of β-Conversion is derived), so that β-Conversion becomes:

(.b) Where x1, . . . ,xn (n ≥ 0) are distinct variables having types t1, . . . , tn, re-
spectively, then the closures of the following are axioms:

[λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ) (n ≥ 0)

Note that this holds even in the 0-ary cases where ϕ is ıp(p&¬p) and where ϕ
is a canonical description of an abstract proposition. For when n = 0 and ϕ is
ıp(p&¬p), we have:

[λ ıp(p&¬p)]↓ → ([λ ıp(p&¬p)] ≡ ıp(p&¬p))

Since the antecedent holds, the consequent is true. But the consequent is true
because both sides are (necessarily) false. Similarly, consider ıp(A!p&∀F(pF ≡
ϕ)) (i.e., any canonical description of an abstract proposition). Then:

[λ ıp(A!p&∀F(pF ≡ ϕ))]↓ →
([λ ıp(A!p&∀F(pF ≡ ϕ))] ≡ ıp(A!p&∀F(pF ≡ ϕ)))

Again, the antecedent is true, and the consequent is true because both sides of
the biconditonal are (necessarily) false. The difference between this case and
the last is that the description ıp(p& ¬p) is (necessarily) false because it fails
to denote a proposition, but the description ıp(A!p&∀F(pF ≡ ϕ)) is (necessar-
ily) false because it denotes an abstract proposition – abstract relations aren’t
exemplified and, in the 0-ary case, abstract propositions aren’t true.

Note that the converse of (.a), i.e., O![λx1 . . .xn ϕ]→ [λx1 . . .xn ϕ]↓, is also ax-
iomatic; by the typed version of (39.5.a), true exemplification formulas imply
that the primary terms in the formula are significant. So we can derive the
following biconditional:

(.c) [λx1 . . .xn ϕ]↓ ≡O![λx1 . . .xn ϕ] (n ≥ 0)

Hence, by the type-theoretic version of β-Conversion formulated in (.b), we
can say that every ordinary relation, of whatever type, can be β-converted.
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Let’s consider an interesting case of (.a), where ϕ is the propositional vari-
able p, x is of any type t, [λx p] therefore has type 〈t〉, and O! has type 〈〈t〉〉.
The following is a universal closure of a unary case of (.a) and so is axiomatic:

(.d) ∀p([λx p]↓ →O![λx p])

Consider again ıp(A!p&∀F(pF ≡ ϕ)), but where x doesn’t occur free in ϕ. Since
descriptions of this form have type 〈〉 and are guaranteed to be significant by
comprehension and identity principles, we may instantiate them into (.d) to
obtain:

[λx ıp(A!p&∀F(pF ≡ ϕ))]↓ →O![λx ıp(A!p&∀F(pF ≡ ϕ))].

Note that the antecedent is derivable, for [λx p]↓ is axiomatic and since this
holds for all p, it holds for ıp(A!p&∀F(pF ≡ ϕ)) given that x doesn’t occur free
in ϕ. Since the antecedent is derivable, it follows that:

O![λx ıp(A!p&∀F(pF ≡ ϕ))]

Thus, we have two reasons to suppose [λx ıp(A!p&∀F(pF ≡ ϕ))]↓— one reason
is that the fact displayed immediately above implies it (by way of (.c) or by
way of the fact that a true exemplification formula implies that its primary
terms are significant), and the second reason is that no variable bound by the
λ occurs in encoding position in the matrix (recall that we’re considering the
case where x doesn’t occur free in ϕ).

Hence, by β-Conversion:

[λx ıp(A!p&∀F(pF ≡ ϕ))]x ≡ ıp(A!p&∀F(pF ≡ ϕ))

Since ıp(A!p&∀F(pF ≡ ϕ)) is an abstract proposition, it is always false, by (.2.b)
above. So the right side of the above equivalence is false and, hence, so is the
left side, for any x. Thus, although [λx ıp(A!p&∀F(pF ≡ ϕ))] provably exists, it
is provably unexemplified!

Note further that in the 0-ary case of (.a), we have:

(.e) [λϕ]↓ →O![λϕ]

Since the type-theoretic version of axiom (39.2) will stipulate that [λϕ]↓ (this
is a core λ expression), it follows that O![λϕ].

Next, we turn to η-Conversion, which holds for elementary λ-expressions
in which the ‘head’ relation is ordinary:

(.f) Where F is a variable of 〈t1, . . . , tn〉, O! has type 〈〈t1, . . . , tn〉〉 (so that O!F
asserts that F is ordinary), and x1, . . . ,xn are variables of type t1, . . . , tn,
respectively, η-Conversion becomes:

O!F→ ([λx1 . . .xn Fx1 . . .xn] = F)
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In other words, if F is an ordinary relation, then being x1, . . . ,xn such that Fx1 . . .xn
is identical to F. In the 0-ary case, this becomes:

O!p→ ([λp] = p)

In other words, whenever p is an ordinary proposition, that-p is identical to p.
Since ¬ıp(p&¬p)↓, we can’t instantiate ıp(p&¬p) for p in the above, and we
can’t derive the known falsehood [λ ıp(p & ¬p)] = ıp(p & ¬p). However, since
[λ ıp(p&¬p)]↓, we can instantiate it in the above to obtain:

O![λ ıp(p&¬p)]→ ([λ [λ ıp(p&¬p)]] = [λ ıp(p&¬p))]

Note that none of the above implies either of:

ϕ↓ →O!ϕ

∀p(p↓ →O!p)

These are subject to counterexample; as we noted above, let ϕ be a canonical
description of an abstract proposition whose existence is guaranteed by com-
prehension and identity principles. To take a particular example, consider the
abstract proposition that encodes exactly one property, namely, the property
of being a proposition q that is true iff not true:

ıp(A!p&∀F(pF ≡ F=[λq (q ≡ ¬q)]))

This is a formula and a term that denotes a proposition. So it can be used to
form an instance of ϕ ↓ → O!ϕ and can be instantiated into ∀p(p↓ → O!p).
Both the instance and the result of the instantiation would be false, since the
description is significant but, by the theory of descriptions, denotes an abstract
(i.e., not ordinary) proposition.

Note also that none of the above implies the result:

[λıp(A!p&∀F(pF ≡ F=[λq (q ≡ ¬q)]))] = ıp(A!p&∀F(pF ≡ F=[λq (q ≡ ¬q)]))

This identity will be provably false. The left side of the identity denotes an
ordinary proposition, while the right side denotes an abstract proposition. To
see why the left side denotes an ordinary proposition, recall that (i) λ-expres-
sions in which the λ doesn’t bind a variable are significant and (ii) significant
λ-expressions, by (.3.a) and (.3.e) above, denote ordinary propositions. Clearly,
the example displayed immediately above shows that, for arbitrary formulasϕ,
the following should not be theorems:

[λϕ]↓ → ([λϕ] = ϕ)

ϕ↓ → ([λϕ] = ϕ)

(.4) In general, we shall need, as an axiom:
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O!ϕ, provided ϕ is not a constant of type 〈〉, a variable of type 〈〉, or a
description of type 〈〉

We exclude the expressions in Base〈〉 for the following reasons. Constants and
variables of type 〈〉 are excluded because some denote abstract propositions or
take abstract propositions as a value. Empty descriptions are excluded because
they don’t denote anything and so don’t denote something that is ordinary.
And there are canonical descriptions of the form ıp(A!p & ∀F(pF ≡ ϕ)) that
denote abstract propositions and so denote something that isn’t ordinary.

By constrast, formulas not in Base〈〉 denote ordinary propositions. So the
axiom described as (.4) above is related to the desideratum described in (.1.e.ii),
namely, that it should be a theorem that ϕ↓, provided ϕ is not a description.
(.4) implies (.1.e.ii), as follows: if ϕ is a constant or variable of type 〈〉, then ϕ↓
by the type-theoretic version of (39.2); and if ϕ is neither a constant, a variable
nor a description, then by (.4), O!ϕ, and so by the type-theoretic version of
(39.5.a), ϕ↓.396

(932) Remark: On Definitions in Typed Object Theory. The theory of defi-
nitions developed in second-order object theory works well for typed object
theory. But a few observations are in order.

Often we don’t need to worry about non-denoting formulas in a definitions-
by-≡. For example, consider:

ϕ&ψ ≡df ¬(ϕ→¬ψ)

If we let ϕ be the non-denoting formula ıp(p&¬p), we would have:

ıp(p&¬p) &ψ ≡df ¬(ıp(p&¬p)→¬ψ)

This doesn’t create any special problems. It will be provable that:

¬(ıp(p&¬p) &ψ)

on the grounds that ¬ıp(p&¬p). Even though ıp(p&¬p) doesn’t denote, it is a
formula that has truth conditions that are always false.

Indeed, we can use a description like ıp(p&¬p) in both definitions-by-≡ and
definitions-by-=, such as in the following:

(ϑ) q1 ≡df ıp(p&¬p)

(ξ) q1 =df ıp(p&¬p)

396If we were to try to prove (.4) instead of taking it as an axiom, we would have to traverse the
BNF for ϕ by skipping the Base formulas (constants, variables, and descriptions). But it is not clear
how we could even establish the base cases, i.e., show that exemplification and encoding formulas
denote ordinary propositions, no matter whether true or false. So (.4) will be an axiom.
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By our theory of definitions-by-equivalence, the inferential role of (ϑ) is to
introduce�(q1 ≡ ıp(p&¬p)) as an axiom. So the new expression q1 is introduced
as necessarily equivalent to a necessary falsehood and so is necessarily false.
We can prove that ¬q1 from the theorem that ¬ıp(p&¬p). By constrast, in the
theory of definitions-by-identity, the inferential role of (ξ) is to introduce the
axiom:

(ıp(p&¬p)↓ → (q1 = ıp(p&¬p))) & (¬(ıp(p&¬p)↓) →¬(q1↓))

Since ¬ıp(p & ¬p)↓ will be provable, (ξ) therefore implies ¬(q1↓). One must
therefore deploy (ϑ) instead of (ξ) if it is important to be able to substitute
q1 for ıp(p & ¬p) is some context in which one or the other is a subformula.
Of course, to simplify a proof, one might introduce q1 as a mere notational
abbreviation of the formula ıp(p & ¬p) and substitute one for the other in a
proof.

However, in other cases, we have to take precautions against formulas that
fail to denote. For example consider what happens if we instantiate ıp(p&¬p)
into a definition such as:

Rigid(ϕ) ≡df ϕ→ �ϕ

This would yield the instance:

Rigid(ıp(p&¬p)) ≡df ıp(p&¬p)→ �ıp(p&¬p)

Since we know ¬ıp(p&¬p) (given that non-existence implies falsehood) then
the antecedent of the definiens fails, making the definiens true. Thus we would
have a proof of Rigid(ıp(p&¬p)), contrary to the garbage-in, garbage-out prin-
ciple. So we either have to reformulate the definition as:

Rigid(ϕ) ≡df ϕ↓& (ϕ→ �ϕ)

or as:

Rigid(p) ≡df p↓& (p→ �p)

where we use the standard convention for definitions whereby object language
variables function as metavariables.

Note, finally, that the observations in Remark (109) do not apply to typed
object theory. In Remark (109), we observed there (a) that since ϕ↓ is a theo-
rem, every definiens is significant and (b) that since identities between formu-
las yield equivalences (108), any definition-by-equivalence could be recast as
a definition-by-identity. But we also explained why we didn’t exercise the op-
tion of eliminating definitions-by-equivalence in second-order object theory,
since the move would eliminate the hyperintensionality built into the system.
But, as noted in footnote 146, not every formula is significant in typed object
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theory. A definition by equivalence yields an identity only if the definiens is
significant. So, in typed object theory, we don’t have a viable option of elimi-
nating definitions by equivalence in favor of definitions by identity, even if we
had wanted to ignore the demands of hyperintensionality.

15.2 Definitions

(933) Definitions: Definitions for Typed Object Theory. We now introduce
some defined notions into our typed language. First, we import all the def-
initions, from (18), of the classical connectives (&, ∨, and ≡), the existential
quantifier (∃), and the possibility operator (♦). So let (.1) – (.5) be the defini-
tions of these five notions, exactly as stated in (18.1) – (18.5):

(.1) ϕ&ψ ≡df ¬(ϕ→¬ψ)

(.2) ϕ ∨ψ ≡df ¬ϕ→ ψ

(.3) ϕ ≡ ψ ≡df (ϕ→ ψ) & (ψ→ ϕ)

(.4) ∃αϕ ≡df ¬∀α¬ϕ

(.5) ♦ϕ ≡df ¬�¬ϕ

We next define existence. We first define existence for the lowest types i and
〈〉, and then define it for relational types 〈t1, . . . , tn〉 (n ≥ 1). Let x be a variable
of type i, and F be a variable of type 〈i〉, and suppose x and F function as
metavariables. Then we say that (.6.a) x exists just in case x exemplifies some
property:

(.6.a) x↓ ≡df ∃FFx

Now let p be a variable of type 〈〉 and F be a variable of type 〈〈〉〉, and suppose
p and F function as metavariables. Then we say (.6.b) p exists just in case p
exemplifies some property:

(.6.b) p↓ ≡df ∃FFp

Thus, the definitions for existence of the lowest type entities, i and 〈〉, are anal-
ogous.

Now for any types t1, . . . , tn, let F be a variable of type 〈t1, . . . , tn〉 (n ≥ 1),
and x1, . . . ,xn be variables of types t1, . . . , tn, respectively, and let the variables
function as metavariables. We then say (.6.c) F exists just in case there are
objects x1, . . . ,xn that encode F:

(.6.c) F↓ ≡df ∃x1 . . .∃xn(x1 . . .xnF) (n ≥ 1)
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To introduce the definitions for identity, we first define, for any type t, the
properties of being ordinary and being abstract having the type 〈t〉, so that both
may be predicated of objects of type t. For this definition, let E! be the dis-
tinguished constant of type 〈t〉 that denotes the primitive property of being
concrete that can be predicated of objects of type t, and let x be a variable of
type t. Then (.7) being ordinary is, by definition, being an x such that x is possibly
concrete, and (.8) being abstract is, by definition, being an x such that x couldn’t
possibly be concrete:

(.7) O! =df [λx ♦E!x]

(.8) A! =df [λx¬♦E!x]

Next we define formulas of the form αt = βt, where t is any type. The definition
can be given in complete generality by providing definientia for the following
cases:

• x = y, where x and y have type i

• F = G, where F and G have type 〈t〉, where t is any type

• F = G, where F and G have type 〈t1, . . . , tn〉 (n ≥ 2) and t1, . . . , tn are any
types

• p = q, where p and q have type 〈〉

For the first case, let x and y be variables of type i, O! and A! have type 〈i〉, and
F be a variable of type 〈i〉. Then we define:

(.9) x=y ≡df (O!x&O!y &�∀F(Fx ≡ Fy)) ∨ (A!x&A!y &�∀F(xF ≡ yF))

I.e., individuals x and y are identical if and only if either (a) they are both
ordinary individuals and necessarily exemplify the same properties of type
〈i〉, or (b) they are both abstract individuals and necessarily encode the same
properties of type 〈i〉.

For the next case, let t be any type, F and G be variables of type 〈t〉, O! and
A! have type 〈〈t〉〉, x be a variable of type t, and H be a variable of type 〈〈t〉〉.
Then we define identity for properties having type 〈t〉 as follows:

(.10) F=G ≡df (O!F &O!G &�∀x(xF ≡ xG))∨ (A!F &A!G &�∀H(FH≡ GH))

I.e., F and G are identical if and only if either (a) F and G are both ordinary
properties that are necessarily encoded by the same objects of type t, or (b) F
and G are both abstract properties that necessarily encode the same properties
having type 〈〈t〉〉.

For the next case, let t1, . . . , tn be any types (n ≥ 2), F and G be variables of
type 〈t1, . . . , tn〉, O! and A! have type 〈〈t1, . . . , tn〉〉, x1, . . . ,xn be variables of type
t1, . . . , tn, respectively, and H be a variable of type 〈〈t1, . . . , tn〉〉. Then we define
identity for relations having type 〈t1, . . . tn〉 as follows:
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(.11) F=G ≡df

O!F &O!G &∀x2 . . .∀xn([λx1 Fx1 . . .xn]=[λx1 Gx1 . . .xn]) &
∀x1∀x3 . . .∀xn([λx2 Fx1 . . .xn]=[λx2 Gx1 . . .xn]) & . . .&
∀x1 . . .∀xn−1([λxn Fx1 . . .xn]=[λxn Gx1 . . .xn]) ∨
A!F &A!G &�∀H(FH≡ GH)

I.e., F and G are identical just in case either (a) F and G are both ordinary
relations and such that every way of projecting F and G onto any n− 1 objects
of the right type yields identical properties, or (b) F and G are both abstract
relations that necessarily encode the same properties with type 〈〈t1, . . . , tn〉〉.

For the final case, let p and q be variables of type 〈〉, O! and A! have type
〈〈〉〉, x be a variable of type i, and H be a variable of type 〈〈〉〉. Then we define
identity for propositions as follows:

(.12) p=q ≡df (O!p&O!q& [λx p]=[λx q])∨ (A!p&A!q&�∀H(pH≡ qH))

I.e., p and q are identical just in case either (a) p and q are both ordinary propo-
sitions for which being an individual such that p is identical to being an individual
such that q, or (b) p and q are both abstract propositions that necessarily encode
the same properties with type 〈〈〉〉.

(934) Remark: Observations on Identity in Typed Object Theory. The above
definitions of identity differ somewhat from those of earlier publications on
object theory. In Zalta 1982 (301–2), 2000b (228), and 2020 (71), we used
the following definition, where x and y are variables of type t, O! and A! are
constants of type 〈t〉, and F is a variable of type 〈t〉, for any type t:

(A) x=y ≡df (O!x&O!y &�∀F(Fx ≡ Fy))∨ (A!x&A!y &�∀F(xF ≡ yF))

Notice that here we defined the identity of ordinary entities of any type t in
terms of the 〈t〉-properties they exemplify. Though (A) works just fine (see
below), it implies that ordinary objects of relational type t , i are identical
if they necessarily exemplify the same properties that have type 〈t〉. But (A)
isn’t a generalization of the second-order definition of relation identity, for the
relations of second-order object theory are, from the point of view of typed
object theory, ordinary relations. To see why the first disjunct of (A) isn’t a
generalization of the second-order definition, consider the case of properties
of type 〈i〉. In second-order object theory, properties F and G are identical
just in case, necessarily, they are encoded by the same individuals. But (A)
stipulates that if F and G are ordinary properties of type 〈i〉, they are identical
just in case they exemplify the same properties that have type 〈〈i〉〉. Thus, (A)
fails to preserve the insight that properties F and G are predicable entities; by
contrast, their identity conditions in second-order object theory are defined in
terms of their role as predicable entities.
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Nevertheless, it will be provable that all and only the ordinary properties
that are necessarily encoded by the same objects are ordinary properties that
exemplify the same properties of properties. See (967.2) below for a proof of:

(O!F &O!G &�∀x(xF ≡ yG)) ≡ (O!F &O!G &�∀H(HF ≡HG))

Thus, the definition of identity given in Zalta 1982 (301–2), 2000b (228), and
2020 (71) aren’t incorrect – they at least imply the insights on which the current
definition is based, since they imply that ordinary properties that necessarily
exemplify the same properties are necessarily encoded by the same objects.

It should also be mentioned that in Zalta 1983 (121, 124) and 1988 (241–2),
we defined identity for higher-order abstracta in terms that didn’t sufficiently
distinguish the ordinary and abstract objects of types t , i. That is, in these
works, we assumed that if F and G are any higher-order properties of type
〈t〉, for some type t, then they are identical if and only if they are necessarily
encoded by the same objects of type t, i.e., we stipulated that:

(B) F=G ≡df �∀xt(xF ≡ xG)

Relation identity was then defined in terms of (B). But these definitions of iden-
tity for properties of type 〈t〉 don’t sufficiently distinguish the identity condi-
tions for ordinary properties of type 〈t〉 (namely, when they are necessarily
encoded by the same objects of type t) from the identity conditions for abstract
properties of type 〈t〉 (namely, when they necessarily encode the same proper-
ties of type 〈〈t〉〉). So the definitions from these two works should no longer be
used.

In conclusion, the present formulation of the definition of identity in (933.9)
is based on the idea that at each relational type, the ordinary properties and re-
lations of that type have identity conditions defined in terms of the objects that
encode them, whereas the abstract properties and relations of that type have
identity conditions defined in terms of the higher-type properties that they
encode. Thus, the identity conditions for ordinary properties, relations, and
propositions are specified in terms that recognize their fundamental charac-
ter as predicable entities, while the identity conditions for abstract properties,
relations, and propositions are specified in terms that recognize their funda-
mental character as encoders.

15.3 Axioms

If we keep the issues raised in Remark (931) in mind, then most of the ax-
ioms can be typed in the usual way, with only a few to address the increased
expressive power.
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(935) Axioms: Typing the Axioms. In what follows, when we assert the clo-
sures of a schema as an axiom, we thereby assert the closures of all the in-
stances of the schema as axioms.

Negations and Conditionals. The axioms for negation and conditionals are
the same as those of second-order object theory. Where ϕ, ψ, and χ are any
formulas, the closures of following are all necessary axioms:

(.1) ϕ→ (ψ→ ϕ)

(.2) (ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(.3) (¬ϕ→¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

Quantification and Logical Existence. The axioms governing quantification
and logical existence are typed versions of the axioms used in the second-order
case. Let t, t1, . . . , tn be any types, and let τ,τ1, . . . , τn be any terms respectively
having these types. Then where α is any variable of type t and Π is any term
with type 〈t1, . . . , tn〉 (n ≥ 0), we assert the closures of the following as axioms:

(.4) ∀αϕ→ (τ↓ → ϕτα), provided τ is substitutable for α in ϕ

(.5) τ ↓, whenever τ is either a primitive constant, a variable, or a core λ-
expression

(.6) ∀α(ϕ→ ψ)→ (∀αϕ→∀αψ)

(.7) ϕ→∀αϕ, provided α doesn’t occur free in ϕ

(.8) (a) Πτ1 . . . τn→ (Π↓& τ1↓& . . . & τn↓) (n ≥ 0)
(b) τ1 . . . τnΠ→ (Π↓& τ1↓& . . . & τn↓) (n ≥ 1)

Note that (.8.a) is the counterpart of (39.5.a) and reduces to Π〈〉→Π〈〉↓ when
n= 0. Since terms of type 〈〉 are formulas, we may restate this case of theorem
as ϕ→ ϕ↓, i.e., truth implies existence.

Substitution of Identicals. To state the axiom for the substitution of identi-
cals, let t be any type and let α and β be any variables of type t. Then the
closures of the following are axioms:

(.9) α=β→ (ϕ→ ϕ′), whenever β is substitutable for α in ϕ, and ϕ′ is the re-
sult of replacing zero or more free occurrences of α in ϕ with occurrences
of β.

?Actuality (Fragile). We state the modally fragile axiom for the logic of actu-
ality as before. We take only the universal closures of the following as axioms:

(.10) Aϕ→ ϕ
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In what follows, we refer to this axiom as (935.10)?, using our convention of
marking modally fragile axioms with a ?. But all the other axioms of typed
object theory will be referenced as (935.x), where x , 10.

Actuality (Necessary). We take all the closures of the following as axioms:

(.11) A¬ϕ ≡ ¬Aϕ

(.12) A(ϕ→ ψ) ≡ (Aϕ→ Aψ)

(.13) A∀αϕ ≡ ∀αAϕ

(.14) Aϕ ≡ AAϕ

Necessity. The axioms for the necessity operator are also unchanged, with the
exception of the last, which is restricted to the type for individuals. We take
the closures of the following as axioms:

(.15) �(ϕ→ ψ)→ (�ϕ→ �ψ) (K)

(.16) �ϕ→ ϕ (T)

(.17) ♦ϕ→ �♦ϕ (5)

(.18) ♦∃x(E!x&¬AE!x),
where x is a variable of type i and E! is a constant of type 〈i〉

Necessity and Actuality. The axioms for necessity and actuality are also as
before; we take the closures of the following as axioms:

(.19) Aϕ→ �Aϕ

(.20) �ϕ ≡ A�ϕ

Descriptions. The axiom for definite descriptions governs descriptions of any
type. Where t is any type and α and β are variables of type t, we assert the
closures of the following as axioms:

(.21) α = ıαϕ ≡ ∀β(Aϕβα ≡ β =α), provided β is substitutable for α in ϕ and
doesn’t occur free in ϕ

Relations. To state the axioms governing relations, let t1, . . . , tn be any types,
α1, . . . ,αn be distinct variables of types t1, . . . , tn, respectively. Then we assert:

(.22) Where O! has type 〈〈t1, . . . , tn〉〉, the closures of the following are axioms:

[λα1 . . .αn ϕ]↓ →O![λα1 . . .αn ϕ] (n ≥ 1)

Note: when n=0, [λϕ]↓ →O![λϕ] will be derivable from the next axiom.
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(.23) Where O! has type 〈〈 〉〉, the closures of the following are axioms:

O!ϕ, provided ϕ is not in Base〈〉, i.e., provided ϕ is not a constant of
type 〈〉, a variable of type 〈〉, or a description of type 〈〉

(.24) Where A! has type 〈〈t1, . . . , tn〉〉 and F a variable with type 〈t1, . . . , tn〉, the
closures of the following are axioms:

A!F→¬∃α1 . . .∃αnFα1 . . .αn (n ≥ 0)

(.25) α-Conversion. Where α1, . . . ,αn are any distinct variables and [λα1 . . .αnϕ]′

is any alphabetic variant of [λα1 . . .αnϕ], the closures of the following are
axioms:

[λα1 . . .αn ϕ]↓ → [λα1 . . .αn ϕ] = [λα1 . . .αn ϕ]′ (n ≥ 0)

(.26) β-Conversion. The closures of the following are axioms:

[λα1 . . .αn ϕ]↓ → ([λα1 . . .αn ϕ]α1 . . .αn ≡ ϕ) (n ≥ 0)

(.27) η-Conversion: Where F is any variable of type 〈t1, . . . , tn〉 and O! has type
〈〈t1, . . . , tn〉〉, the closures of the following are axioms governing elemen-
tary λ-expressions:

O!F→ ([λα1 . . .αn Fα1 . . .αn] = F) (n ≥ 0)

So when n = 0, p is a variable of type 〈〉 and O! has type 〈〈〉〉, the closures
O!p→ ([λp] = p) are axioms.

(.28) ([λα1 . . .αn ϕ]↓& �∀α1 . . .∀αn(ϕ ≡ ψ)) → [λα1 . . .αn ψ]↓ (n ≥ 1)

A careful reading of Remark (931) should help one to understand the foregoing
statements of axioms (.22) – (.28). But a few remarks may still prove useful,
before we turn to the axioms of encoding.

(.22) asserts that significant n-ary λ-expressions (n ≥ 1) denote ordinary re-
lations. We’ll later establish that O![λϕ], where O! has type 〈〈〉〉, is a theorem,
and this explains why the 0-ary case of (.22), i.e., [λϕ]↓ →O![λϕ], is derivable.
(.23) asserts that a formula not among the basic expressions of type 〈〉 (i.e., not
in Base〈〉) denotes an ordinary relation. (.24) asserts that abstract relations fail
to be exemplified. (.25) and (.26), i.e., α- and β-Conversion, respectively, may
be read exactly as (48.1) and (48.2), respectively, but have wider, type-theoretic
significance — though β-Conversion (.26) now asserts instances when n ≥ 0.397

397This differs from the second-order counterpart (48.2) in which n ≥ 1. In second-order object
theory, we were able to prove that [λϕ] ≡ ϕ, for any formula ϕ, as a theorem (111.2), and so the
0-ary case of β-Conversion, i.e., [λ ϕ]↓ → ([λ ϕ] ≡ ϕ) was derivable. But the proof of [λ ϕ] ≡ ϕ
rested on the proof of [λ ϕ] = ϕ, for any formula ϕ (111.2). But this latter schema, for reasons
explained in Remark (931.1.c), can’t be a theorem of typed-object theory. Since there is no longer
an obvious means of deriving the 0-ary case of β-Conversion, it has to be included as an axiom.
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(.27) asserts that η-Conversion holds only when the ‘head’ relation of an ele-
mentary λ-expression is ordinary.398 Finally, (.28) may be read exactly as (49),
but now has wider, type-theoretic significance.

Encoding. Let t1, . . . , tn be any types, α1, . . . ,αn and β1, . . . ,βn be any variables
having types t1, . . . , tn, respectively, G be a variable of type 〈t1, . . . , tn〉, and O! is
of type 〈〈t1, . . . , tn〉〉. Then we assert the closures of following as axioms:

(.29) α1 . . .αnG ≡
α1[λβ1Gβ1α2 . . .αn] & α2[λβ2Gα1β2α3 . . .αn] & . . . & αn[λβnGα1 . . .αn−1βn]

(n ≥ 2)

Furthermore, let t be any type, α be any variable of type t, F be a variable
of type 〈t〉, and A! have type 〈t〉. Then we assert the closures of following as
axioms:

(.30) αF→ �αF

(.31) O!α→¬∃FαF

(.32) ∃α(A!α&∀F(αF ≡ ϕ)), where ϕ has no free αs

No intuitive reading of these axioms is needed, as they are all type-theoretic
counterparts of axioms in second-order object theory.

(936) Remark: How Typed Object Theory Generalizes Second-Order Object
Theory. There are two ways in which the axioms of typed object theory gen-
eralize those of second-order object theory: (i) they reduce to those of second-
order object theory under certain conditions, and (ii) when the theorems of
second-order object theory are translated into typed object theory in a way
that preserves exactly what they express in their original setting, they remain
theorems. To see (i), consider the following conditions that would limit the
language and axioms of typed object theory:

• restrict the types to i and to those having the form 〈 i, . . . , i 〉, where n ≥ 0,
n times

• eliminate from the language any expression that is, or contains, an ex-
pression whose type is not among the remaining types,

• eliminate from the language definite descriptions of relational type, i.e.,
descriptions of the form ıαtϕ, where t , i,

398The antecedentO!F is a crucial condition, for without it, we could easily derive a contradiction.
Suppose, for reductio, that (.27) asserted only [λα1 . . .αn Fα1 . . .αn] = F. Then consider the case in
which F is (assigned) some abstract relation (as value). Then since the λ-expression satisfies the
conditions of (.5), i.e., it is a core λ-expression because no variable bound by the λ is in encoding
position in ϕ, the λ-expression would be significant. So by (.22), it would denote an ordinary
relation. But then (.27.) would equate an ordinary relation with an abstract one. Contradiction.



836 CHAPTER 15. TYPED OBJECT THEORY AND ITS APPLICATIONS

• revert the definition of proposition existence (933.6.a) to its second-order
counterpart (20.3), and

• eliminate all the unnecessary clauses from the definitions of identity for
properties, relations, and propositions (933.9) – (933.12), that definitions
become equivalent to their counterparts in second-order object theory.

Then, under these restrictions, it can be seen by inspection that:

• axioms (935.1) – (935.21) have only formulas of second-order object the-
ory as instances,

• axioms (935.22) – (935.24) are inexpressible and so disappear, since there
are no higher-order terms A! and O! having type 〈t〉 for t , i,

• axioms (935.25) and (935.26) reduce to their second-order counterparts
(48.1) and (48.2) respectively, though the 0-ary case of (935.26) can be
derived in second-order object theory and so isn’t axiomatic in that sys-
tem,

• the antecedent of (935.27) is inexpressible and eliminable, so that the
axiom reduces to of (48.3),

• axiom (935.28) has only formulas of second-order object theory as in-
stances, and

• (935.29) – (935.33) have only the formulas of second-order object theory
as instances – all the higher-order instances become inexpressible.

It is also straightforward to see that (ii): when the theorems of second-order
object theory are translated into typed object theory in a way that preserves
exactly what they express in their original setting, they remain theorems. Here
are two examples:

• The definition of proposition existence (20.3) is p↓ =df [λx p]↓. This defi-
nition implies the theorem p↓ ≡ [λx p]↓. When we translate this theorem
into typed object theory, we have to remember that the propositions of
second-order object theory are all ordinary. So, when p ↓ ≡ [λx p]↓ is
translated into type-object theory in a way that preserves exactly what it
expresses in second-order object theory, it becomes O!p→ (p↓ ≡ [λxp]↓),
where O! has type 〈〈〉〉, p has type 〈〉, and x has type i. Then, to see that
this latter is a theorem, assumeO!p, to show p↓ ≡ [λxp]↓. (→) Assume p↓.
Now ∀q([λxq]↓) is a closure of [λxq]↓ and so an axiom, by (935.5). Hence
[λx p]↓. (←) Assume [λx p]↓. But we know O!p by assumption. Hence
∃FFp, where F is a variable with type 〈〈〉〉. So by definition (933.6.b), it
follows that p↓.
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• The axiom of encoding (51) xF→ �xF. When translated into typed object
theory, this becomes O!F→ (xF → �xF), where O! has type 〈〈i〉〉, F has
type 〈i〉, and x has type i. To see that this latter is a theorem, assume O!F.
But then xF → �xF is an instance of (935.30), when α is the variable x
and has type i, and F has type 〈i〉.

We leave it as an exercise to prove that when the theorems of second-order
object theory are translated in an exact way, so as to express in the typed setting
precisely what they express in the second-order setting, the resulting typed
versions remain theorems.

15.4 The Deductive System and Basic Theorems

15.4.1 The System, Negations, Conditionals, Quantification

Many of the metadefinitions for the system typed PLM are just analogous, if
not identical, to their counterparts in second-order object theory.

(937) Metadefinitions and Metarules: The System of Typed PLM. The follow-
ing metadefinitions and justifications (metatheorems) can be imported from
second-order PLM by (a) referencing the axioms of typed PLM instead of the
axioms of second-order PLM, (b) revising the metadefinitions and justifications
of each second-order notion or metarule by substituting the new type-theoretic
notions for second-order ones, and (c) decorating the terms in formulas with
appropriate types if necessary:

(.1) Primitive Rule: Modus Ponens (58)

(.2) Derivations, Proofs, and Theoremhood (59)

(.3) Modally Strict: Derivations, Proofs, and Theoremhood (60)

(.4) Fundamental Properties of ` and `� (63)

(.5) Dependence (65)

(.6) Metarule GEN (66)

(.7) Metarule RN (68)

(.8) Primitive Metarule: Rule of Definition by Equivalence (72)

(.9) Primitive Metarule: Rule of Definition by Identity (73)

In what follows, we’ll refer to these, respectively, as (937.1) [58], (937.2) [59],
etc. The proofs of (937.4) [63], (937.6) [66], and (937.7) [68] are left as exer-
cises.
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Note that in the statement of (.9), the general form of definitions by equiv-
alence should cite the appropriate types, so that in a definition of the gen-
eral form τ(α1, . . . ,αn) =df σ (α1, . . . ,αn), the variables α1, . . . ,αn may have any
types t1, . . . , tn, respectively, and in any instance of the definition of the form
τ(τ1, . . . , τn)=df σ (τ1, . . . , τn), the terms τ1, . . . , τn should be substitutable for α1, . . . ,
αn, respectively, in σ (α1, . . . ,αn) (which ensures that τ1, . . . , τn have types t1, . . . , tn,
respectively).

Finally, we henceforth use the Conventions Regarding Metarules as stated
in (67) but with the reference to axiom (43)? in that statement replaced by
its type-theoretic counterpart axiom (935.10)?. These conventions allow us to
state only metarules for `, without having to repeat a version of the rule for
`�, unless the conditions of the metarule specifically require the existence of
a modally strict derivation or proof (i.e., unless the conditions of the metarule
specifically appeal to some claim of the for Γ `� ϕ or `� ϕ). Moreover, we
continue to disallow metarules whose justification or conditions of application
depend on (935.10)? or any other modally fragile axiom.

(938) Theorems and Metarules/Derived Rules: Propositional Logic.

The theorem schemata and metarules governing negations and condi-
tionals apply in complete generality to the language of typed PLM.

(74) – (91)

We’ll reference these schemata and rules in what follows by both the present
and original item number. So, for example, the theoremϕ→ ϕ (74) will hence-
forth be referenced as (938) [74].

(939) Theorems and Metarules/Derived Rules: Quantificational Logic.

The theorem schemata and metarules governing the quantifiers apply in
complete generality to the language of typed PLM, provided the terms in
each schema or metarule are appropriately typed.

(93) – (103)

To take a simple example, consider the first form of Rule ∀E, which we’ll hence-
forth reference as (939) [93.1]. The rule states: If Γ1 ` ∀αϕ and Γ2 ` τ↓, then
Γ1,Γ2 ` ϕτα , provided τ is substitutable for α in ϕ. This is now applies only
when both τ and α both have type t, where t is any type. For only then will τ
be substitutable for α.

15.4.2 Logical Existence, Identity, and Uniqueness

We now examine some of the main theorems and metatheorems articulated
in Section 9.7 and indicate how they are to be formulated given the increased
expressive power of typed object theory. The first change in the procession of
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theorems concerns the fact that (104.1) and (104.2) no longer hold for every
formula ϕ. We start our discussion there.

(940) Theorems: Existence and Identity. It is axiomatic, by (935.5), that [λϕ]↓,
for any formula ϕ. But for the reasons given in Remark (931.1.a), (104.1)
and (104.2) can’t be theorems of typed object theory. We’ve now undermined
these theorems by redefining proposition existence. Using the new definition
of proposition existence (933.6.b), our first theorem becomes:

(.1) ϕ↓, where ϕ is any formula other than a description of type 〈〉

Though this theorem doesn’t assert that descriptions of type 〈〉 are significant,
there is one group of descriptions of this type that are provably significant,
though we’re not yet in a position to show this. Since the definition of a canon-
ical description (253) extends in type theory to allow for canonical descriptions
of every type, we’ll later extend (.1) to include canonical descriptions of type
〈〉, which are formulas by the BNF. Indeed, the comprehension and identity
principles for abstract objects, along with our axiom for descriptions, will guar-
antee that canonical descriptions of every type t are significant. So canonical
descriptions of type 〈〉 will be significant.

Note that the BNF also tells us that the formulas constitute all the terms of
type 〈〉. So where Π is any term of type 〈〉, it follows from (.1) that (.2) Π exists,
provided Π is not a description:

(.2) Π↓, where Π is any term of type 〈〉 other than a description

Again, this will be extended later, since canonical descriptions of type 〈〉 will
also be provably significant.

Note also that (.1) is the type-theoretic version of (104.2), while (.2) is the
type-theoretic version of (104.1). The difference in the order of presentation
isn’t portentous, but rather reflects only the fact that the change in the defi-
nition of proposition existence alters the way in which the typed versions are
proved. In typed object theory, (.1) is proved by cases and each of the two cases
holds axiomatically. Then (.2) follows from (.1).

(941) Remark: Fact About Dependencies and Generality in the Move from
Second-Order to Typed Object Theory. Since the theorems in (104) do not
transfer to typed object theory in completely general form, it becomes impor-
tant to consider whether the theorems that depend on (104) also fail to transfer
to typed object theory in general form. It should be observed, however, that
from the fact that:

• a second-order theorem χ doesn’t transfer to typed object theory in com-
plete generality,

it doesn’t follow that:
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• the type-theoretic version of every second-order theorem θ that depends
on χ fails to be provable in typed object theory in complete generality.

It may be that θ can be proved in complete generality by other means. We’ll
some nice examples of this in what follows:

• The second-order theorem (107.1), i.e., τ =σ → τ↓ (for any terms τ and
σ of the same type), was derived from theorem (104.1), namely that Π↓
holds for any 0-ary relation term Π0. But though the type-theoretic ver-
sion of (104.1), namely (940.2), doesn’t hold in complete generality, the
type-theoretic version of (107.1) does hold in complete generality. In
(943.1) below, we prove that τ = σ → τ↓ holds for any terms τ and σ of
type t, for any t.

• The second-order theorem (111.5), i.e., that ϕ ≡ ϕ′ (for any alphabet-
ically variant formulas ϕ and ϕ′), was derived from theorem (111.4),
namely, that ϕ = ϕ′ for any alphabetic variants ϕ and ϕ′. But the type-
theoretic versions of (111.4) are restricted – one can prove only thatϕ↓→
(ϕ = ϕ′) (950.5) and that ϕ = ϕ′ whenever ϕ is any formula other than
a description of type 〈〉 (950.6). Nevertheless, it is provable in complete
generality that ϕ ≡ ϕ′, for any alphabetically variant formulas ϕ and ϕ′

(950.7).

(942) Theorems: Logical Existence is Necessary. Observe next that existence
statements are necessary if true, so that (106) holds in complete generality for
typed object theory, i.e.,

τ↓ → �τ↓

The proof is analogous to that of (106).

(943) Theorems: Identity Implies Existence. True identity statements imply
the significance of the terms flanking the identity sign, so that (107.1) and
(107.2) also hold in complete generality. But the proofs of the type-theoretic
versions differ somewhat from those of the second-order versions:

(.1) τ=σ → τ↓

(.2) τ=σ → σ↓

(944) Theorems: Identical Relations are Necessarily Equivalent. Type-theoretic
versions of (108.1) and (108.2) now easily follow. (.1) If an identity holds be-
tween Π and Π′, then the relations they signify are necessarily equivalent:

(.1) Π = Π′ → �∀x1 . . .∀xn(Πx1 . . .xn ≡ Π′x1 . . .xn), provided Π and Π′ are
terms of type 〈t1, . . . , tn〉 (n ≥ 0) and x1, . . . ,xn are variables of type t1, . . . , tn,
respectively, that don’t occur free in Π and Π′.
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The converse, however, does not hold.
When n=0 and Π and Π′ are terms of type 〈〉 and so formulas, an instance

of the above asserts that (.2) if ϕ is identical to ψ, then necessarily, ϕ if and
only ψ:

(.2) ϕ=ψ→ �(ϕ ≡ ψ)

(945) Metarules/Derived Rules: Substitution of Identicals. The foregoing
facts ensure that the Rule for the Substitution of Identicals (110), in its type-
theoretic guise, is still justified:

Rule =E
Let t be any type, τ and σ be any terms of type t, and α be any variable
of type t. Then if Γ1 ` ϕτα and Γ2 ` τ = σ , then Γ1,Γ2 ` ϕ′, whenever τ and
σ are any terms substitutable for α in ϕ, and ϕ′ is the result of replacing
zero or more occurrences of τ in ϕτα with occurrences of σ .

[Variant: ϕτα , τ=σ ` ϕ′]

In the usual way, the Variant is a derived rule.

(946) Theorems: Objects are Ordinary or Abstract. We now show that (.1)
being ordinary〈t〉 exists, for any type t; (.2) being abstract〈t〉 exists, for any type t;
and (.3) every object of type t is either ordinary or abstract:

(.1) O!↓, where O! has type 〈t〉, for any type t

(.2) A!↓, where A! has type 〈t〉, for any type t

(.3) O!x∨A!x, where x is a variable of type t, and O! and A! have type 〈t〉

(947) Theorems: Identity is an Equivalence Condition. Where t is any type,
and x, y, and z are variables of type t, we have (.1) x is identical to x, (.2) if x
is identical to y, then y is identical to x, and (.3) if x is identical to y and y is
identical to z, then x is identical to z:

(.1) x=x

(.2) x=y→ y=x

(.3) x=y & y=z→ x=z

It also follows that (.4) if x is identical to y, then for any z, x is identical to z if
and only if y is identical to z:

(.4) x=y ≡ ∀z(x=z ≡ y=z)

(948) Metarules/Derived Rules: Rule of Identity Introduction. Rule =I (118)
holds in typed object theory:
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(.1) Rule =I
Where τ is any term of any type:

If Γ ` τ↓, then Γ ` τ=τ [Variant: τ↓ ` τ=τ]

(.2) Rule =I (Special Case)
` τ = τ , provided τ is a primitive constant, a variable of any type, or a
core λ-expression.

(949) Metarules/Derived Rules: Identity by Definition, =df E, and =df I. Let
σ (τ1, . . . , τn) and τ(τ1, . . . , τn) abbreviate σ τ1,...,τn

α1,...,αn and ττ1,...,τn
α1,...,αn , respectively (1 ≤

i ≤ n). Then it is straightforward to justify the following:

(.1) Rule of Identity by Definition
Let t1, . . . , tn be any types (n ≥ 0) and let τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) be
a definition-by-= in which the variables α1, . . . ,αn (n ≥ 0) occur free and
have types t1, . . . , tn, respectively. Let τ1, . . . , τn be terms of types t1, . . . , tn,
respectively, that are substitutable, respectively, for α1, . . . ,αn in both the
definiens and definiendum. Then:

if Γ ` σ (τ1, . . . , τn)↓, then Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

We immediately obtain the classical introduction and elimination rules for the
definiendum:

(.2.a) Rule of Definiendum Elimination: (Rule =df E)
Let t1, . . . , tn be any types (n ≥ 0) and let τ(α1, . . . ,αn) =df σ (α1, . . . ,αn)
be a definition-by-= in which the variables α1, . . . ,αn (n ≥ 0) occur free
and have types t1, . . . , tn, respectively. Let τ1, . . . , τn be terms of types
t1, . . . , tn, respectively, and substitutable for α1, . . . ,αn, respectively, in both
the definiens and definiendum. Furthermore, let ϕ be any formula that
contains one or more occurrences of τ(τ1, . . . , τn) and let ϕ′ be the result
of replacing zero or more occurrences of τ(τ1, . . . , τn) in ϕ by σ (τ1, . . . , τn).
Then if Γ ` σ (τ1, . . . , τn)↓ and Γ ` ϕ, then Γ ` ϕ′.

[Variant: σ (τ1, . . . , τn)↓,ϕ ` ϕ′]

(.2.b) Rule of Definiendum Introduction: (Rule =df I)
Let t1, . . . , tn be any types (n ≥ 0) and let τ(α1, . . . ,αn) =df σ (α1, . . . ,αn)
be a definition-by-= in which the variables α1, . . . ,αn (n ≥ 0) occur free
and have types t1, . . . , tn, respectively. Let τ1, . . . , τn be terms of types
t1, . . . , tn, respectively, and substitutable for α1, . . . ,αn, respectively, in both
the definiens and definiendum. Furthermore, let ϕ be any formula that
contains one or more occurrences of σ (τ1, . . . , τn) and let ϕ′ be the result
of replacing zero or more occurrences of σ (τ1, . . . , τn) in ϕ by τ(τ1, . . . , τn).
Then if Γ ` σ (τ1, . . . , τn)↓ and Γ ` ϕ, then Γ ` ϕ′.

[Variant: σ (τ1, . . . , τn)↓,ϕ ` ϕ′]
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(950) Theorems: Identity and Alphabetic Variants of Formulas and Proposi-
tion Terms. We next come to another departure from the theorems in Chap-
ter 9, concerning (111.1). As we saw in (931.1.c), [λ ϕ] = ϕ, for arbitrary ϕ,
cannot be a theorem. But the following are theorems:

(.1) O!ϕ→ ([λϕ]=ϕ), where ϕ is any formula

(.2) [λϕ] =ϕ, where ϕ is any non-basic formula, i.e., any formula that is not
in Base〈〉

Our next theorem is an equivalence. Recall that in second-order object theory,
the axiom β-Conversion (48.2) was stated only for n ≥ 1. We didn’t need to as-
sert the 0-ary case, i.e., [λϕ]↓ → ([λϕ] ≡ ϕ), as an axiom because [λϕ] ≡ ϕ was
derivable as a theorem (111.2) and so the 0-ary case of β-Conversion followed
trivially (by the truth of its consequent). But we used theorem (111.1), i.e.,
[λϕ] = ϕ, to derive (111.2). Although [λϕ] = ϕ doesn’t hold in full generality
in typed object theory, we can still prove [λϕ] ≡ ϕ because the type-theoretic
version of the axiom β-Conversion (935.26) has been strengthened so that it
holds for n=0. Thus, [λϕ]↓ → ([λϕ] ≡ ϕ) is axiomatic and so it is an immedi-
ate consequence of this axiom and axiom (935.5) that:

(.3) [λϕ] ≡ ϕ

The theory of truth therefore remains intact in typed object theory, since the
above asserts: that-ϕ is true if and only if ϕ. It should be remembered, though,
that [λ ϕ]↓ ≡ ϕ ↓ is not a theorem. As we saw in (931.1.d.iii), the formula
[λ ıp(p&¬p)]↓ ≡ ıp(p&¬p)↓ is provably false; the left condition is axiomatically
true (935.5), but the right condition provably fails to be true.

Now (111.3), i.e., the claim [λϕ] = [λϕ]′, for alphabetic variants [λϕ] and
[λϕ]′, remains a theorem of object theory, in complete generality:

(.4) [λϕ] = [λϕ]′, where [λϕ] and [λϕ]′ are alphabetic variants

We turn next to alphabetic variants of formulas other that those of the form
[λψ]. In general, it follows that (.5) if ϕ is a significant formula, then an iden-
tity holds between ϕ and any of its alphabetic variants ϕ′:

(.5) ϕ↓ → (ϕ = ϕ′), where ϕ′ is any alphabetic variant of ϕ

Note that this immediately implies O!ϕ→ ϕ = ϕ′, since O!ϕ implies ϕ↓. It is
also an immediate consequence of (.5) and (940.1) that:

(.6) ϕ = ϕ′, where ϕ is any formula other than a description of type 〈〉 and ϕ′

is any alphabetic variable of ϕ
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Clearly, (.6) must exclude descriptions generally, since ıp(p&¬p) = ıq(q&¬q)
should not be a theorem (true identity statements imply the significance of
the terms flanking the identity sign and the descriptions flanking the identity
sign here fail to be significant, on pain of contradiction). But, later, once we
establish that canonical descriptions of every type t are significant, it will fol-
low that canonical descriptions of type 〈〉 are significant and since the latter are
formulas, it will follow from (.6) that an identity holds between alphabetically-
variant canonical descriptions. More generally, an identity holds between any
significant description and any of its alphabetic variants, i.e., it will be a the-
orem that ıαtϕ↓ → (ıαtϕ = (ıαtϕ)′), where (ıαtϕ)′ is any alphabetic variant of
ıαtϕ, for any type t (957) [154].

If we now consider equivalences instead of identities, then it is a theorem
that the equivalence of alphabetically-variant formulas holds unconditionally:

(.7) ϕ ≡ ϕ′

Clearly, this holds even for formulas that aren’t significant. For example, the
biconditional ıp(p&¬p) ≡ ıq(q&¬q) holds because both sides are (necessarily)
false. Finally, we have:

(.8) (ϕ ≡ ψ) ≡ ([λϕ] ≡ [λψ])

(951) Metarule/Derived Rule: Rule of Alphabetic Variants. The classical Rule
of Alphabetic Variants holds in typed object theory:

Rule of Alphabetic Variants
Γ ` ϕ if and only if Γ ` ϕ′, where ϕ′ is any alphabetic variant of ϕ

[Variant ϕ `̀ ϕ′]

As a special case, when Γ =∅, our rule asserts that a formula is a theorem if
and only if all of its alphabetic variants are theorems.

Now that we’ve established that alphabetically variant formulas are equiv-
alent and the associated Rule of Alphabetic Variants, we can start expressing
quantified claims by using object language variables ∀xϕ, ∃yψ, etc. (where x
and y are of any type), instead of as ∀αϕ, ∃βψ, etc. (where α and β are of any
type). Heretofore, we had used the metavariables α, β, etc., to assert axioms
and theorems to be assured that the claims hold for any appropriate variables
of the same type, to be assured that the claims hold for all alphabetic variants.
But with the Rule of Alphabetic Variants, we can revert to using more readable
object language variables.

(952) Theorems: Negative Free Logic. The axioms of negative free logic, suit-
ably typed, are now derivable:

(.1) τ ↓ ≡ ∃x(x = τ), provided that x is a variable having the same type as τ
and x doesn’t occur free in τ
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(.2) ∀xϕ → (∃y(y = τ)→ ϕτx ), provided that (a) x and y are variables having
the same type as τ , (b) τ is substitutable for x in ϕ, and (c) y doesn’t occur
free in τ

(.3) ∃x(x = τ), provided (a) τ is either a primitive constant, a variable, or a
core λ-expression, and (b) x is a variable of the same type as τ that doesn’t
occur free in τ

(.4) (Πnκ1 . . .κn∨κ1 . . .κnΠ
n)→∃β(β = τ), where τ is any of Πn, κ1, . . . , or κn,

and β is a variable of the same type as τ that doesn’t occur free in τ .

The proofs follow the corresponding theorems of second-order object theory.

(953) Theorems: Necessarily Everything of Type t Necessarily Exists. It is suf-
ficient to reprise just one pair of theorems from (123) in type-theoretic form.
Where t is any type and x and y are distinct variables of type t, it is a conse-
quence of our axioms and rules that:

(.1) �∀x�x↓

(.2) �∀x�∃y(y=x)

(954) Theorems: Identity and Necessity. It is a consequence of the foregoing
that for any type t, (.1) necessarily everything of type t is self-identical; (.2)
everything of type t is necessarily self-identical; and (.3) things of type t are
identical if and only if they are necessarily identical:

(.1) �∀x(x=x), for any variable x of any type t

(.2) ∀x�(x=x), for any variable x of any type t

(.3) τ=σ ≡ �τ=σ , where τ and σ are any terms of type t, for any type t

(955) Theorems and Definitions: Quantification, Identity, Uniqueness, and
Necessity. The type-theoretic versions of the theorems and definitions in items
(126) – (129) are now all derivable.

• Theorems of Quantification and Identity (126):

(.1) ϕ ≡ ∃y(y=x & ϕ
y
x ), provided y is substitutable for x in ϕ and doesn’t

occur free in ϕ, for any variables x and y of any type t

(.2) τ↓→ (ϕτx ≡ ∃x(x=τ & ϕ)), provided τ is substitutable for x in ϕ, for
any variable x and term τ of type t, for any type t

(.3) (ϕ&∀y(ϕyx → y=x)) ≡ ∀y(ϕyx ≡ y=x),
provided x and y are distinct variables of type t, for any type t, and
y is substitutable for x in ϕ and doesn’t occur free in ϕ
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(.4) (ϕyx &∀x(ϕ→ x=y)) ≡ ∀x(ϕ ≡ x=y),
provided x and y are distinct variables of any type t, and y is substi-
tutable for x in ϕ and doesn’t occur free in ϕ.

• Alternative Definitions of Uniqueness in (127)

(.5) ∃!xϕ ≡df ∃x(ϕ & ∀y(ϕyx → x=y)),
provided y doesn’t occur free, and is substitutable for x, in ϕ, for
any variables x and y of any type t

(.6) ∃!xϕ ≡df ∃x∀y(ϕyx ≡ y=x),
provided y doesn’t occur free, and is substitutable for x, in ϕ, for
any variables x and y of any type t

• Uniqueness Implies At Most One (128):

(.7) ∃!xϕ→∀y∀z((ϕyx &ϕzx)→ y=z),
provided y and z don’t occur free, and are substitutable for x, in ϕ,
for any variables x, y, and z of any type t

• Uniqueness and Necessity (129):

(.8) ∀x(ϕ→ �ϕ)→ (∃!xϕ→∃!x�ϕ), for any variable x of any type t

15.4.3 The Theory of Actuality and Descriptions

(956) Theorems: Basic Theorems of Actuality Preserved. The theorems and
metarules for the actuality operator are preserved intact from second-order
object theory:

(.1) The type-theoretic versions of theorems (131) – (134.4) are all straightfor-
ward and derivable; we henceforth refer to them as (956.1) [131] – (956.1)
[134.4], respectively. Note that (956.1) [134.2] and (956.1) [134.3] can be
written as follows, respectively:

• ∀xA(Aϕ→ ϕ), where x is a variable of any type

• A∀x(Aϕ→ ϕ), where x is a variable of any type

and that (956.1) [134.4] can be written as:

• A∀x1 . . .∀xn(Aϕ→ ϕ) where x1, . . . ,xn are variables of any types.

(.2) The type-theoretic version of the Rule of Actualization (135) is justified;
we henceforth refer to it as Rule RA (956.2) [135].

(.3) The type-theoretic versions of the theorems governing actuality and nega-
tion, (138.1)? and (138.2)?, are derivable; we henceforth refer to them as
(956.3) [138.1]? and (956.3) [138.2]?, respectively.
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(.4) The type-theoretic versions of the modally strict theorems of actuality
(139.1) – (139.11) are derivable; we henceforth refer to them as (956.4)
[139.1] – (956.4) [139.11], respectively. Note that (956.4) [139.10] and
(956.4) [139.11] can be written, respectively, as follows:

• A∃xϕ ≡ ∃xAϕ, where x is a variable of any type

• A∀x(ϕ ≡ ψ) ≡ ∀x(Aϕ ≡ Aψ), where x is a variable of any type

(.5) The non-modally strict equivalence of the conditions ‘x is uniquely an
actual ϕ’ and ‘x is uniquely ϕ’ (140)? holds in type theory:

• ∀y(Aϕyx ≡ y=x) ≡ ∀y(ϕyx ≡ y=x), provided x and y are both variables
of type t, for some type t, and y is substitutable for x inϕ and doesn’t
occur free in ϕ

We henceforth refer to this as (956.5) [140]?.

(957) Theorems: Typed Description Theory. Theorems (141)? – (154) govern-
ing definite descriptions, suitably typed in the obvious way, all hold in com-
plete generality in typed object theory. We henceforth reference these as (957)
[141?] – (957) [154].

(958) Theorems: Some Facts About (Some Empty) Descriptions of the Empty
Type. The following theorems are about a particular description of type 〈〉 that
is empty. Consequently, F in (.1) has type 〈〈〉〉, and ↓ is defined for propositions
as in (933.6.b):

(.1) ¬∃F(Fıp(p&¬p))

(.2) ¬(ıp(p&¬p)↓)

(.3) ¬ıp(p&¬p)

(.4) ıpϕ ≡ ∃p(Aϕ&∀q(Aϕqp→ q=p) & p)

In case there is any doubt, (.3) asserts: it is not the case that the proposition
that is both true and not true is true. And (.4) asserts: The proposition p such
that ϕ is true if and only if there is a proposition p such that (a) p is actually
such that ϕ, and (b) any proposition q that is actually such that ϕ is identical
to p. Note that ıp(p&¬p) is not a counterexample to (.4) – both sides are false
with respect to this description. Results analogous to (.1) – (.4) hold for any
other description of type 〈〉 that is provably empty.
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15.4.4 The Theory of Necessity

(959) Theorems and Metarules: Quantified S5 Modal Logic Governs Typed
Object Theory. The metarules and theorems derivable from the first princi-
ples governing quantified S5 modal logic, suitable typed, all hold in complete
generality in typed object theory:

(.1) The metarules (157.1) – (157.4), i.e., RM, RM♦, RE, and RE♦, are all jus-
tifiable in typed object theory. We henceforth refer to these as (959.1)
[157.1] – (959.1) [157.4], respectively.

(.2) The basic theorems of K in (158.1) – (158.16) all hold in typed object
theory. We henceforth refer to them as (959.2) [158.1] – (959.2) [158.16],
respectively.

(.3) Suitably typed, the metarules of Necessary Equivalence (159.1) – (159.4),
and the Rules of Substitution (160.1) – (160.3), all hold in complete gen-
erality in typed object theory. We henceforth refer to them as (959.3)
[159.1] – (959.3)[159.4], and (959.3) [160.1] – (959.3) [160.3], respec-
tively.

(.4) The following modal theorems:

• (162.1) – (162.7) Additional K Theorems

• (163.1) – (163.2) T♦, 5♦ Schemata

• (164.1) – (164.5) Actuality, Negation, and Possibility

• (165.1) – (165.13) Basic S5 Theorems

all hold in complete generality in typed object theory. We henceforth
refer to these, respectively, as:

• (959.4) [162.1] – (959.4) [162.7]

• (959.4) [163.1] – (959.4) [163.2]

• (959.4) [164.1] – (959.4) [164.5]

• (959.4) [165.1] – (959.4) [165.13]

(.5) The metarules resulting from the B and B♦ schemata, (166.1) – (166.2) all
hold in complete generality in typed object theory. We henceforth refer
to these as (959.5) [166.1] – (959.5) [166.2].

(.6) Suitably typed, the laws of quantified S5 modal logic, (167.1) – (167.4)
and (168.1) – (168.6), all hold in complete generality in typed object the-
ory. We henceforth refer to these, respectively, as (959.6) [167.1] – (959.6)
[167.4] and (959.6) [168.1] – (959.6) [168.6]
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(.7) The laws of modal collapse (169) – (180), suitably typed, all hold in typed
object theory. We henceforth refer to these, respectively, as (959.7) [169]
– (959.7) [180].

15.4.5 The Typed Theory of Relations

(960) Theorems and Definitions: Principles Governing Relation Terms Hold
in Typed Object Theory.

(.1) The type-theoretic versions of Strengthened β-Conversion (181), its corol-

laries (183.1) – (183.2), and the Rules
−→
βC (184.1) and

←−
βC (184.2), all

hold. We refer to these henceforth as (960.1) [183.1] – (960.1) [183.2],
(960.1) [184.1], and (960.1) [184.2], respectively.

(.2) When ρ and Πn are relation terms, each having some type t , i, the defi-
nitions:

(a) ρ is elementary (185.1)

(b) ρ is an η-expansion of Πn (185.2)

(c) ρ is an η-contraction of Πn (185.3)

(d) ρ′ is an immediate η-variant of ρ with respect to Πn (185.4)

(e) ρ′ is an η-variant of ρ (185.5)

are all straightforwardly reformulable in typed object theory.

(.3) The η-Conversion lemmas (186.1) and (186.2), and the Rule ηC of η-
Conversion (187) hold in typed object theory. We henceforth refer to
these as (960.3) [186.1], (960.3) [186.2], and (960.3) [187], respectively.

(.4) The theorems that govern relation terms that differ by co-denoting de-
scriptions, (188.1) and (188.2), both hold in typed object theory. We refer
to these as (960.4) [188.1] and (960.4) [188.2], respectively.

Let’s take as an example one of the principles in (.1). The type-theoretic version
of Strengthened β-Conversion would be formulated as:

Where t1, . . . , tn are any types and α1, . . . ,αn and β1, . . . ,βn are, respectively,
any variables of types t1, . . . , tn, then it is a theorem that:

[λα1 . . .αn ϕ]↓ → ([λα1 . . .αnϕ]β1 . . .βn ≡ ϕ
β1,...,βn
α1,...,αn ),

provided β1, . . . ,βn are substitutable for α1, . . . ,αn, respectively, in ϕ
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And analogous type-theoretic formulations hold for other theorems noted in
(.1), (.3) and (.4).

(961) Theorems: Facts About Relations. Our theory of identity for relations
implies, for any type t: (.1) properties having type 〈t〉 that are encoded by the
same objects of type t are necessarily encoded by the same objects of type t; (.2)
ordinary properties having type 〈t〉 are identical whenever they are encoded by
the same objects of type t; (.3) abstract properties having type 〈t〉 that encode
the same properties having type 〈〈t〉〉, necessarily encode those properties; and
(.4) abstract properties having type 〈t〉 are identical whenever they encode the
same properties having type 〈〈t〉〉. We may represent these as follows, where t
is any type, x is a variable of type t, O! and A! are defined constants of type 〈t〉,
F and G are variables of type 〈t〉, and H is a variable of type 〈〈t〉〉:

(.1) ∀x(xF ≡ xG)→ �∀x(xF ≡ xG)

(.2) (O!F &O!G)→ (∀x(xF ≡ xG)→ F=G)

(.3) ∀H(FH≡ GH)→ �∀H(FH≡ GH)

(.4) (A!F &A!G)→ (∀H(FH≡ GH)→ F=G)

Note that (.2) and (.4) offer an extensional theory of properties and relations
despite their hyperintensional character with respect to exemplification. (.2)
easily yields (O!F &O!G)→ (F=G ≡ ∀x(xF ≡ xG)). This intuitively tells us that
ordinary properties are identical precisely when they have the same encoding
extension. And (.4) easily yields (A!F &A!G)→ (F =G ≡ ∀H(FH ≡ GH)). This
intuitively tells us that abstract properties are identical precisely when they
are in the encoding extensions of the same properties of properties.

(.5) The Comprehension Principle for Ordinary n-ary Relations (n ≥ 1) is a
theorem schema asserting the existence of ordinary relations of higher
type. Where t1, . . . , tn are any types (n ≥ 1), F is a variable of type 〈t1, . . . , tn〉,
O! is a property having type 〈〈t1, . . . , tn〉〉, x1, . . . ,xn are variables having
types t1, . . . , tn, respectively, and ϕ is any formula such that (a) F doesn’t
occur free in ϕ and (b) x1, . . . ,xn don’t occur free in encoding position in
ϕ, it is a theorem that:

∃F(O!F &�∀x1 . . .∀xn(Fx1 . . .xn ≡ ϕ))

When n = 1, this becomes the Comprehension Principle for Ordinary
Properties.

(.6) Paradoxical λ-expressions aren’t significant. Suitably typed versions of
the theorems in (192) and (193)? are theorems of typed object theory. We
henceforth refer to these respectively as (961.6) [192.1] – (961.6) [192.5]
and (961.6) [193.1]? – (961.6) [193.2]?.
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(.7) The Comprehension Principle for Propositions is a theorem schema gov-
erning ordinary propositions. Where p is a variable of type 〈〉, O! is a
property having type 〈〈〉〉, and ϕ is any formula in which p doesn’t occur
free, it is a theorem that:

∃p(O!p&�(p ≡ ϕ))

(.8) The conditions implying distinctness of relations in (195) all hold, when
appropriately typed, no matter whether F and G are (i) both ordinary
relations, (ii) both abstract relations, or (iii) one is ordinary while the
other is abstract. In what follows, we refer to these as (961.8) [195.1] –
(961.8) [195.4].

Note that when F and G are abstract relations of some type 〈t1, . . . , tn〉, then by
(935.24), we know that ∀x1 . . .xn¬Fx1 . . .xn and ∀x1 . . .xn¬Gx1 . . .xn are modally
strict theorems. Hence �∀x1 . . .xn(Fx1 . . .xn ≡ Gx1 . . .xn). A fortiori, F = G →
�∀x1 . . .xn(Fx1 . . .xn ≡ Gx1 . . .xn). So, by the contrapositive and modal negation,
♦¬∀x1 . . .xn(Fx1 . . .xn ≡ Gx1 . . .xn)→ F,G. Such facts prove useful in the proofs
of the theorems in (.6).

The remainder of the definitions, theorems, and remarks in Section 9.10.2,
i.e., items (196) – (226), will not be reviewed here. Most of these will not play
a role in the applications of typed object theory. If any of these type-theoretic
versions are needed in what follows, we’ll state and prove them (possibly in a
footnote) at the appropriate time.

Nevertheless, it may be of interest to determine which theorems of second-
order object theory hold in complete generality in typed object theory. One
will find cases where the proof of the second-order version appeals to a theo-
rem that doesn’t transfer to type theory in complete generality. For example,
the proof of (199.7), i.e., p = ¬p, appeals to (111.1), i.e., [λϕ] = ϕ. But the latter
doesn’t hold unconditionally in typed object theory. Instead, we have theorem
(950.2), i.e., that [λϕ] = ϕ provided ϕ is a non-basic formula. But, as it turns
out, this is sufficient to prove p = ¬p.399 The reader should therefore check to
see, when reformulating second-order theorems in type theory, whether alter-
native proofs are available in those cases where the second-order proofs rely
on theorems that aren’t completely general.

15.4.6 The Typed Theory of Objects

In typed object theory, We start with the theory of abstract objects, since we
shall need the fact that there are distinct, but indiscernible higher-order ab-
stract objects of each type t when we discuss the ordinary objects of type t.
399To see the proof, assume that definition of relation negation (196) has been restated type-

theoretically. Then we know p = [λ¬p]. Moreover, by (950.2), we know [λ¬p] = ¬p, since ¬p is
non-basic formula. So by the transitivity of identity (117.3), p = ¬p.
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Abstract Objects of Every Type

(962) Theorems: Some Identity and Existence Principles Governing Abstracta.
The following theorems are typed versions of the theorems in (245) – (247). But
(.1) and (.2) below also generalize theorems (961.3) and (961.4) to any type. Let
t be any type, x and y be variables of type t, A! be our defined constant of type
〈t〉, and F be a variable of type 〈t〉. Then we have (.1) if x and y encode the same
properties, then necessarily they encode the same properties; and (.2) abstract
objects x and y that encode the same properties are identical:

(.1) ∀F(xF ≡ yF)→ �∀F(xF ≡ yF)

(.2) (A!x&A!y)→ (∀F(xF ≡ yF)→ x=y)

It is also provable that (.3) whenever an object x of any type encodes a property
that object y of the same type fails to encode, or vice versa, x and y are distinct:

(.3) (∃F(xF&¬yF)∨∃F(yF&¬xF))→ x,y)

From axiom (935.31) it follows that (.3) if x encodes a property, then x is ab-
stract:

(.4) ∃FxF→ A!x

The converse fails because there exists an abstract null object that encodes no
properties. We introduce this object below.

Moreover, (.5) every property (ordinary or abstract) is encoded by some
object; and, where G is a variable of type 〈t1, . . . , tn〉, for any types t1, . . . , tn, (.6)
every relation (ordinary or abstract) is encoded By some objects.

(.5) ∀F∃xxF

(.6) ∀G∃x1 . . .∃xn(x1 . . .xnG) (n ≥ 2)

In addition, given any relation term Π of type t,〈〉, it follows that Π is encoded
by some objects just in case there is a relation that is identical to Π:

(.7) ∃xxΠ ≡ ∃F(F = Π), where Π is any unary relation term of type 〈t〉 in
which x and H don’t occur free

(.8) ∃x1 . . .∃xn(x1 . . .xnΠ) ≡ ∃G(G=Π), where Π is any n-ary relation term (a)
having type 〈t1, . . . , tn〉 (n ≥ 2), and (b) in which x1, . . . ,xn andG don’t occur
free

We may refer to the above by type-theoretic numbers alone; we need not addi-
tionally cite their corresponding theorems in (245) – (247).
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(963) Theorems and Metadefinition: Strengthened Comprehension for Ab-
stracta and Significant Canonical Descriptions. Where t is any type, x is a vari-
able of type t, A! has type 〈t〉, F a variable having type 〈t〉, and ϕ is any formula
in which x doesn’t occur free, then the comprehension and identity principles
for abstract object imply that (.1) there exists a unique abstract object x that
encodes exactly the properties F such ϕ:

(.1) ∃!x(A!x&∀F(xF ≡ ϕ))

Now where t, x, A!, F, and ϕ are as described above, we say:

(.2) A description is canonical if and only if it has form ıx(A!x&∀F(xF ≡ ϕ))

It then follows that canonical descriptions are significant:

(.3) ıx(A!x&∀F(xF ≡ ϕ))↓

This holds for canonical descriptions of every type, i.e., canonical descriptions
in which x has any type t. Now where y is also a variable of type t, then by
reasoning analogous to the proof of theorem (255), it also follows that (.4) if y
is the abstract object that encodes just the properties such that ϕ, y exemplifies
being abstract:

(.4) y= ıx(A!x&∀F(xF ≡ ϕ))→ A!y

Next, we note that:

(.5) The definitions, discussion, and theorems governing canonical and strictly
canonical abstract objects in (256) – (262) all carry over into typed object
theory, appropriately typed. If and when these are needed, we:

• refer to the typed versions of the theorems in (256) as (963.5) [256.1]?
and (963.5) [256.2]?, respectively,

• refer to typed version of theorem (258) as (963.5) [258],

• refer to the typed versions of the theorems in (259) as (963.5) [259.1]
and as (963.5) [259.2], respectively,

• refer to the definition of rigid condition on the variable α (260.1) and
strictly canonical description (260.2) as (963.5) [260.1] and as (963.5)
[260.2], respectively, and

• refer to the typed versions of the theorems in (261) as (963.5) [261.1]
– (963.5) [261.3], respectively.

Exercise: The Null and Universal Objects. Define the null and universal ob-
jects of type t by typing the definitions in (263). Then (a) prove typed versions
of the theorems in (264), (b) define the null object at

∅
for type t, and universal

object atV for type t, and (c) prove typed version of the theorems in (266).



854 CHAPTER 15. TYPED OBJECT THEORY AND ITS APPLICATIONS

(964) Theorems: Descriptions of Type 〈〉. By (963.3) and (940.1), it follows that
every formula other than a non-canonical description of type 〈 〉 is significant:

(.1) ϕ↓, for any formula ϕ other than non-canonical description of type 〈〉

It also follows, where p is any variable of type 〈 〉, that (.2) the existence of the
proposition that ϕ does not imply the truth of the proposition that ϕ:

(.2) ¬(ıpϕ↓ → ıpϕ)

(965) Theorems: Distinct Higher-order Abstracta that are Indistinguishable
and Higher-Order Kirchner Theorems. The theorems about the granularity of
relations and non-Leibnizian character of abstract objects hold in type theory:

(.1) Typed versions of the theorems in (268) are derivable. We refer to these
as (965.1) [268.1] – (965.1) [268.3].

A typed version of (269) is also derivable. Where t be any type, x and y be
variables of type t, A! have type 〈t〉, and F be a variable of type 〈t〉, we have:

(.2) ∃x∃y(A!x&A!y & x,y &∀F(Fx ≡ Fy))

Moreover, the typed version of the Kirchner Theorem (271) and its Corollary
(272) are theorems. We recast only the general version (271.2) and its Corollary
(272.2) in typed form. Where t1, . . . , tn are any types, x1, . . . ,xn and y1, . . . , yn are,
respectively, variables of types t1, . . . , tn, respectively, and F is a variable of type
〈t1, . . . tn〉, we have:

(.3) [λx1 . . .xn ϕ]↓ ≡
�∀x1 . . .∀xn∀y1 . . .∀yn(∀F(Fx1 . . .xn ≡ Fy1 . . . yn)→ (ϕ ≡ ϕy1,...,yn

x1,...,xn )),
provided y1, . . . , yn don’t occur free in ϕ. (n ≥ 1)

(.4) [λx1 . . .xn ϕ]↓ →
∀x1 . . .∀xn∀y1 . . .∀yn(∀F(Fx1 . . .xn ≡ Fy1 . . . yn)→ �(ϕ ≡ ϕy1,...,yn

x1,...,xn )),
provided y1, . . . , yn don’t occur free in ϕ (n ≥ 1)

And the consequences of the Corollary to the Kirchner Theorem, (272.3) –
(272.5) hold in typed form. We prove here only the typed version of the gen-
eral corollary (272.5). Where x,y are variables of type t, z is a variable of type
t′, and F is a variable of type 〈t〉, we have:

(.5) [λz ϕ]↓ → (∀F(Fx ≡ Fy) → [λz ϕ] = [λz ϕyx ]), provided none of the free
occurrences of x in ϕ are in encoding position.

The proof of (.5) is given in the Appendix; as far as I can tell, no special mea-
sures are needed when adapting proofs of the second-order versions of (.1) –
(.4) to typed object theory.

Finally, we prove a new theorem that arises only in typed object theory.
Where t is any type, x is a variable of type t and F is a variable of type 〈t〉, that:
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(.6) ¬∀x([λF xF]↓)

Since F in xF occurs in encoding position (9.1), the λ in [λFxF] binds a variable
in encoding position in the matrix. This theorem explains why (935.5) doesn’t
assert [λF xF]↓.

Ordinary Objects of Every Type

We first work our way through some theorems that will justify our introduc-
tion of identity with respect to ordinary objects as a defined relation, by cases,
for every type t. As we shall see, one of the key cases of the definition of =E
in (967.3). In that definition, the definiens is not a core λ-expression and so
isn’t guaranteed to denote by axiom (935.5). But we establish that it has a de-
notation by other means. We do this in (967.2), which requires the preliminary
lemmas proved in (966).

(966) Theorems: Facts About Ordinary Properties. Where t is any type, x is a
variable of type t, F is a variable of type 〈t〉, and O! is a constant of type 〈〈t〉〉,
it follows that (.1) being an ordinary property that x encodes exists:

(.1) [λFO!F & xF]↓

If we also use G as a variable of type 〈t〉 and H as a variable of type 〈〈t〉〉,
then it follows that (.2) ordinary properties F and G are necessarily encoded by
the same objects if and only if they necessarily exemplify the same properties
of properties, and that (.3) ordinary properties that necessarily exemplify the
same properties of properties are identical:

(.2) (O!F &O!G)→ (�∀x(xF ≡ xG) ≡ �∀H(HF ≡HG))

(.3) (O!F &O!G)→ (�∀H(HF ≡HG)→ F=G)

(.1) proves useful when we turn to the theory of identity with respect to ordi-
nary objects, whereas (.2) offers an insight about the identity of ordinary prop-
erties, as defined in (933.10) – it makes no difference whether we define F=G
for ordinary properties in terms of being necessarily encoded by the same ob-
jects or in terms of necessarily exemplifying the same properties of properties.
(.3) tells us that higher-order ordinary properties are obey the Leibniz law of
the identity of indiscernibles.

(967) Definitions and Theorems: The Relation of IdentityE on the Ordinary
Objects of Any Type. Our goal is now to define identity for ordinary objects
of type t, i.e., define =E as relation of type 〈t, t〉, for any type t. We do this by
cases, where the four cases of the definition occur in (967.1), (967.3), (967.5),
and (967.7).
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It is easy to define =E as a relation among individuals, i.e., having type 〈i, i〉.
Where x and y are variables of type i,O! has type 〈i〉, and F is a variable of type
〈i〉:

(.1) =E =df [λxy O!x&O!y &�∀F(Fx ≡ Fy)]

Clearly, the definiens is a core λ-expression and hence significant. So we know
that the relation =E among individuals exists.

Moreover, we can now also define =E as a relation for every other type t , i.
First, we define =E as a relation with respect to any higher-order properties of
the same type, i.e., as a relation with type 〈〈t〉,〈t〉〉, where t is any type. To do
this, let t be any type, let x range over objects of type t, let F and G be variables
ranging over properties having type 〈t〉, and let O! have type 〈〈t〉〉. Then it fol-
lows from theorem (966.2) and axiom (935.28) that (.2) being ordinary properties
F and G that are necessarily encoded by the same objects exists:

(.2) [λFGO!F &O!G &�∀x(xF ≡ xG)]↓

Given (.2), we may define identityE as a relation between higher-order proper-
ties. Where t is any type, and F and G are variables of type 〈t〉, we define:

(.3) =E =df [λFGO!F &O!G &�∀x(xF ≡ xG)]

In this definition, =E is a relation having type 〈〈t〉,〈t〉〉, for any type t.
We can now use the relation =E among entities with a property type of

the form 〈t〉 to define =E as a relation among entities having an n-ary rela-
tion type 〈t1, . . . , tn〉, for n ≥ 2. That is, we now define =E as a relation of type
〈〈t1, . . . , tn〉,〈t1, . . . , tn〉〉 (n ≥ 2), and we do this in terms of the various relations
=E having types of the form 〈〈t〉,〈t〉〉, as these were defined in (.3). Let:

• x1, . . . ,xn be variables of type t1, . . . , tn, respectively,

• F and G be variables of type 〈t1, . . . , tn〉, and

• O! be a constant of type 〈〈t1, . . . , tn〉〉

Then where the first occurrrence of =E has type 〈〈t1〉,〈t1〉〉, the second occur-
rrence of =E has type 〈〈t2〉,〈t2〉〉, and . . ., and the nth occurrence of =E has type
〈〈tn〉,〈tn〉〉, the following claim is an instance of axiom (935.5) that asserts the
significance of a core λ-expression:

(.4) [λFGO!F &O!G &∀x2 . . .∀xn([λx1 Fx1 . . .xn]=E [λx1 Gx1 . . .xn]) &
∀x1∀x3 . . .∀xn([λx2 Fx1 . . .xn]=E [λx2 Gx1 . . .xn]) & . . .&
∀x1 . . .∀xn−1([λxn Fx1 . . .xn]=E [λxn Gx1 . . .xn])]↓

Thus, using the same typing scheme, we may define =E with respect to rela-
tions as a binary relation with type 〈〈t1, . . . , tn〉,〈t1, . . . , tn〉〉, for any types t1, . . . , tn
(n ≥ 2), as follows:
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(.5) =E =df [λFGO!F &O!G &∀x2 . . .∀xn([λx1 Fx1 . . .xn]=E [λx1 Gx1 . . .xn]) &
∀x1∀x3 . . .∀xn([λx2 Fx1 . . .xn]=E [λx2 Gx1 . . .xn]) & . . .&
∀x1 . . .∀xn−1([λxn Fx1 . . .xn]=E [λxn Gx1 . . .xn])])

Finally, we want to define =E with respect to propositions, i.e., as a relation of
type 〈〈 〉,〈 〉〉. Let x be a variable of type i, p and q be variables of type 〈 〉, and
letO! have type 〈〈〉〉. Then the following is an instance of axiom (935.5), where
=E is a relation with type 〈〈i〉,〈i〉〉:

(.6) [λpqO!p&O!q& [λx p]=E [λx q] ]↓

So we may define =E as a relation with type 〈〈 〉,〈 〉〉, i.e., as a relation among
propositions, as follows:

(.7) =E =df [λpqO!p&O!q& [λx p]=E [λx q] ]

Thus, we have defined =E as a relation of type 〈t, t〉, for every type t, since it
has been defined when t is the type i, when t is a type of the form 〈t′〉, when t
is a type of the form 〈t′1, . . . , t′n〉, and when t is the type 〈 〉. Thus, we have:

(.8) =E↓, where =E has type 〈t, t〉, for any type t

(968) Theorems: IdentityE is an Equivalence Relation on Ordinary Objects of
Type t. Where x,y,z are objects of any type t, it now follows that =E is (.1)
reflexive with respect to the ordinary objects of type t, (.2), symmetric, and (.3)
transitive:

(.1) O!x→ x=E x

(.2) x=E y→ y=E x

(.3) (x=E y & y=E z)→ x=E z

15.4.7 Discernible Objects Of Every Type

(969) It is straightforward to type all the definitions and theorems in (273) of
Section 9.11.3. The λ-expression that is asserted to be significant in (273.1):

[λx�∀y(y,x→∃F¬(Fy ≡ Fx))]

is provably significant whenever we let x and y be of any type t and F be of
type 〈t〉. So the unary relation term D! introduced in in (273.2) as a term of
type 〈t〉, for any type t. Typed versions of theorems (273.3) – (273.12) are eas-
ily established by analogous reasoning. Principles (273.13) – (273.16), which
establish (or help establish) the significant of:

[λxD!x&ϕ]
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[λx1 . . .xnD!x1 & . . . &D!xn &ϕ]

[λxy D!x&D!y & x=y]

all hold when the variables bound by the λ have arbitrary types. For ex-
ample, when x1, . . . ,xn have types t1, . . . , tn, and the first occurrence of D! has
type 〈t1〉, . . . , and the n-th occurrence of D! has type 〈tn〉, the λ-expression
[λx1 . . .xnD!x1 & . . . &D!xn&ϕ] is provably significant. Of course, x and y must
have the same type if [λxy D!x&D!y & x=y] is to be significant, or even well-
formed.

Moreover, the binary relation =D can be defined as a relation having type
〈t, t〉, for any type t, since its definiens [λxy D!x &D!y & x = y], is significant
when x and y both are of any type t. This means that the typed negation of
this relation, i.e., =D , which we may write as ,D , is similarly well-defined as a
relation of type 〈t, t,〉, for any type t. Thus, principles (273.18) – (273.33) all
hold in their typed versions, as do the final two theorems (273.34) and (273.35).

In what follows, we therefore reference the typed versions of these princi-
ples as (969) [273.1] – (969) [273.35].

15.4.8 Propositional Properties

(970) Remark: Propositional Properties in Typed Object Theory. A proposi-
tional property was defined in second-order object theory as any property F
such that for some state of affairs p, F is identical to the property [λx p] (275).
After proving a number of theorems about these properties in Section 9.12, we
then investigated a number of abstract individuals that encode only proposi-
tional properties. These include truth-values (286), situations (467), possible
worlds (512), world-indexed truth-values (555), impossible worlds (577), mo-
ments of time (588), and stories (592). From the point of view of type theory,
these abstract entities are individuals that encode propositions by way of en-
coding propositional properties. They are individuals because they are not
predicable entities. Insofar as we wish to study these entities in typed object
theory, we no longer need to limit ourselves to the propositions that are ex-
pressible in second-order object theory. Instead, we can consider propositions
(i.e., states of affairs) that are expressible in typed object theory, including any
state of affairs expressible in terms of properties and relations of higher type.

The net effect, however, is that the propositional properties built from pro-
positions expressible in terms of properties and relations of higher type, can
remain properties of type 〈i〉. That is, we may define, where x is a variable of
type i (i.e., ranging over individuals) and F is a variable of type 〈i〉 (ranging
over properties of individuals), the following definition takes on new signifi-
cance:



15.5. SOME HIGHER-ORDER ABSTRACTA 859

Propositional(F) ≡df ∃p(F=[λx p])

The new significance arises from the fact that the variable p now ranges over
a domain of propositions that include propositions about entities of higher
type than those found in second-order object theory. Nevertheless, the the-
orems governing propositional properties studied in Section 9.12 can all be
transferred unproblematically to typed object theory. We henceforth reference
those as (970) [275] – (970) [281].

So, in so far as we are interested in theorizing about non-predicable abstract
individuals in a typed context, we need only the above subtheory, which takes
propositional properties to have type 〈i〉. Of course, one could build proposi-
tional properties of higher type, but for the purposes of this monograph, we
shall not do so. We leave it to others to determine whether there is any interest
in defining higher-order abstract objects that encode propositional properties
of a type higher than 〈i〉.

15.5 Some Higher-Order Abstracta

As noted previously, in second-order object theory:

• the variables x,y,z, . . . range over entities having type i,

• the variables F,G,H, . . ., range over entities having types 〈t1, . . . , tn〉 such
that n ≥ 1 and ∀tj(1 ≤ j ≤ n→ tj = i), and

• the variables p,q, r, . . . range over entities having type 〈 〉.

Though Chapters 9 – 14 included various definitions and theorems about re-
lations, properties, and propositions (i.e., about objects having types 〈i, . . . , i〉,
〈i〉, and 〈〉, respectively), these chapters were primarily devoted to the study of
abstract individuals, i.e., abstract objects having type i.400 Intuitively, an entity
is an individual if and only if it is not a predicable entity (i.e., if and only if it
is not a relation, property, or proposition). So all of the abstract objects studied
in Chapters 9 – 14 are abstract individuals.

The type-theoretic setting, however, gives rise to two questions: (1) How do
the principles (definitions and theorems) governing the abstract individuals in
second-order object theory change in the context of type theory? (2) Which
of these principles for abstract individuals should be generalized to become
principles for higher-order abstracta?

400These included: truth-values, extensions of propositions, extensions of properties (= natural
classes = logical sets), directions, shapes, abstractions over equivalence conditions on properties
and propositions, abstractions over equivalence relations on individuals, Forms, situations, pos-
sible worlds, world-indexed truth-values and extensions, impossible worlds, moments of time,
fictional individuals, concepts, and natural numbers.
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Question (1) is relatively straightforward. The definitions of the abstract
individuals described in Chapters 9 – 14 effectively remain the same though,
as one might expect (and as we shall see), the definitions take on greater signif-
icance. Moreover, the theorems governing these individuals can be preserved,
though some theorem schemas must be limited to those formulas ϕ such that
ϕ↓, given that in typed object theory, there are formulas ϕ such that ¬ϕ↓. But
that said, the individuals we studied in these previous chapters remain, for the
most part, governed by the principles discussed their respective chapters.

Question (2) is a more complex philosophical question. That’s because in
many cases, the entities we investigated are, given their nature, best conceived
as individuals (i.e., non-predicable entities, i.e., having type i), while in other
cases, the entities we investigated have natural higher-order versions when ob-
ject theory is typed. That is, it is natural to generalize and investigate the
higher-order versions of some, but all, of the objects studied in Chapters 9 –
14. So the discussion in what follows will be divided into two basic parts.

First, we discuss those objects which, given their nature, are (best con-
ceived as) non-predicable individuals. These include truth-values, situations,
possible worlds, world-relativized truth-values, impossible worlds, times, sto-
ries, fictional individuals, concepts, and natural numbers. As far as I can tell,
there is no significant philosophical data that would motive one to investigate
higher-order, predicable versions of these objects. Only Question (1) applies
to them, and the considerations raised above in answer to this question will be
discussed only in a general way in Section 15.5.1 below.

Second, we discuss those objects which have natural higher-order versions.
For example, typed object theory now gives us the means to:

• identify the extensions of higher-order properties of type 〈〈t〉〉 as abstract
properties of type 〈〈t〉〉, for any type t,

• identify higher-order abstractions over equivalence conditions and equiv-
alence relations on higher-order properties of type 〈〈t〉〉,

• identify, for each higher-order property F having type 〈〈t〉〉, the Form of
F as an abstract property having type 〈t〉, and

• identify fictional properties and relations of type 〈i, . . . , i〉 as abstract prop-
erties and abstract relations of the type in question.

We’ll discuss these objects in Sections 15.5.2 – 15.5.5, respectively. Along the
way, in (972), we’ll discuss the existence of world-indexed relations of every
higher type
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15.5.1 Abstractions Naturally Conceived as Individuals

In this section, we examine how some of the definitions and theorems govern-
ing a prototypical abstract individual fare in the type-theoretic setting. Our
case study will focus on situations.

(971) Definitions, Theorems, and Remark: About Situations in Type Theory.
We begin by typing definition (295) in the expected way, so that we may talk
about an individual x encoding a proposition p. Where x is a variable of type
i and p is a variable of type 〈 〉, we say that x encodes p (‘xΣp’) just in case x
encodes being such that p:

(.1) xΣp ≡df x[λy p]

Then Where x is still a variable of type i and F a variable of type 〈i〉, the defi-
nition of a situation looks no different than the one given in (467.1):

(.2) Situation(x) ≡df A!x & ∀F(xF→ Propositional(F))

And where x is a variable of type i, p is a variable of type 〈 〉, and xΣp is de-
fined as in (.1), the notion of truth in a situation has a natural type-theoretic
counterpart:

(.3) x |= p ≡df Situation(x) & xΣp

Moreover, where s is a variable ranging over situations (and so a variable of
type i), the simplified definition of a truth-value described in (486) can be for-
mulated as:401

(.4) TruthValueOf (s,p) ≡df ∀q(s |= q ≡ (q ≡ p))

These definitions take on a new significance in typed object theory, because
the variables p and q now range over a wider domain of propositions, namely,
propositions constructed from the relations and properties having types higher
than those in second-order object theory, i.e., having types 〈t1, . . . , tn〉 such that
n ≥ 1 and ∃tj(t1 ≤ tj ≤ tn & tj , i). This implies the existence of situations
about higher-order objects. So for example, if s is a situation that encodes
all and only the truths (i.e., ∀p(s |= p ≡ p)), then where q is a proposition not
expressible in second-order object theory, e.g., the proposition that the relation
=E (of type 〈i, i〉) exemplifies being reflexive on the ordinary individuals (i.e., q =
[λF∀x(O!x→ Fxx)] =E), then s encodes q. One can’t formulate such a situation
in second-order object theory.

401The original definition a truth-value in (286) is still formulable, of course. Let x and y be
variables of type i, p and q be variables of type 〈 〉, and let A! and F have type 〈i〉. Then the
following is well-formed:

TruthValueOf (x,p) ≡df A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q]))

But this is not as elegant as the simplified definition given in the text.
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Thus, the unrestricted comprehension schema for situations expressed in
(486.1) has a greater significance in typed object theory, for the quantifier ∀p in
the following principle ranges over propositions about objects of higher types:

(.5) ∃s∀p(s |= p ≡ ϕ), provided s doesn’t occur free in ϕ

This is a theorem schema of typed object theory. Moreover, the theorem gov-
erning situation identity (474) can be typed as follows, in which the type of the
variables are now the familiar ones:

(.6) s = s′ ≡ ∀p(s |= p ≡ s′ |= p)

(.2), (.3), (.5), and (.6), and the theorems they imply, offer a precise theory of
situations expressible in higher-order metaphysics. These, then, are just a few
examples of how to import the definitions and theorems governing the abstract
individuals of second-order object theory that are best conceived as individuals
in typed object theory.

With only one proviso, one may follow the examples (.1) – (.6) to complete
the move to typed object theory. The proviso is that the theorems and theo-
rem schemata transfer to typed object theory as long as they don’t depend on
theorem (104.2). This theorem asserts that ϕ↓, for any formula ϕ. As we’ve
seen, this claim doesn’t transfer to typed object theory without restriction; the
type-theoretic version is (940.1), which asserts that ϕ↓ only when ϕ isn’t a def-
inite description of type 〈 〉. As noted in the discussion of (931.1) and (950.1)
– (950.3), the type-theoretic version of a second-order principle that depends
on (104.2) isn’t automatically disqualified as a theorem. But, the second-order
theorem schemata that (a) govern the individuals we’re now discussing, and
(b) depend on (104.2), will often have type-theoretic versions that are condi-
tionalized on formulas ϕ that are significant.402

To make the discussion more explicit, let’s consider some examples of of
second-order principles governing situations and possible worlds that require
such a proviso. Theorem (511.3) has to be restricted in typed object theory.
This theorem asserts ∀p(s |= p ≡ p)→ ((s |= ∀αϕ) ≡ ∀α(s |= ϕ)), i.e., if a situation
s encodes all and only the truths, then the universal claim every α is such that
ϕ is true in s if and only if, for every α, ϕ is true in s. The proof depends on
the fact that ϕ↓ and (∀αϕ)↓, for every ϕ.403 So, unless some other proof can be

402Thus, in cases where one can prove that a formula ϕ of the form ıpψ has a denotation, it can
be instantiated into the theorem schema in question and the antecedent of the conditional can be
discharged. See below for examples.
403To see why the proof won’t transfer to typed object theory, assume the antecedent, i.e.,

(ϑ) ∀p(s |= p ≡ p)

Now for the (→) direction, assume s |= ∀αϕ. By GEN, it suffices to show s |= ϕ. Now by (940.1),
we know (∀αϕ)↓. So we can instantiate (ϑ) to obtain (s |= ∀αϕ) ≡ ∀αϕ. Hence ∀αϕ, from which
it follows that ϕ. But we can’t now infer from this and (ϑ) that s |= ϕ because ϕ might be a non-
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found, one cannot import (511.3) into typed object theory. It can be imported,
however, if one conditionalizes the theorem on formulas ϕ such that ϕ↓. Thus,
in typed object theory, (511.3) becomes:

(.7) ϕ↓ →
(
∀p(s |= p ≡ p)→ ((s |= ∀αϕ) ≡ ∀α(s |= ϕ))

)
By contrast, (511.2) can be typed as is, despite the fact that its proof also
appeals to (104.2). The formula for which (104.2) was used as justification,
namely (¬(q→ r))↓, is provably a theorem of typed object theory, by (940.1).

Moreover, second-order theorems that depend, in turn, on (511.3), have
to be checked carefully when we transfer them to type theory. Consider, for
example, some theorems of world theory that depend on (511.3). The type-
theoretic definition of a possible world recapitulates (512), though with some-
what greater significance given the expanded range of the quantifier ∀p:

(.8) PossibleWorld(x) ≡df Situation(x) &♦∀p(x |=p ≡ p)

Now most of the main theorems governing possible worlds (543.1) and (543.2)
transfer to type theory as theorems without restriction but with expanded sig-
nificance. For example, where w is a variable of type i ranging over possible
worlds defined type-theoretically, here are three such principles that will prove
useful in what follows:

(.9) w |=¬p ≡ ¬w |= p

(.10) ♦p ≡ ∃w(w |= p)

(.11) �p ≡ ∀w(w |= p)

Note, however, that the second-order theorems (545.5) and (545.6) that govern
the definition of possible world both rest on (511.3). They assert, respectively,
that the universal claim ∀αϕ is true at a possible world w iff for every α, ϕ is
true at w, and that the existential claim ∃αϕ is true at a possible world w iff
for some α, ϕ is true at w. We have to conditionalize these claims when we
formulate their type-theoretic counterparts as follows, where the variable w
again has type i and the variable x is a variable of any type:

(.12) ϕ↓ →
(
(w |= ∀xϕ) ≡ ∀x(w |= ϕ)

)
denoting description of type 〈 〉. That is, we can’t instantiate (ϑ) to obtain (s |= ϕ) ≡ ϕ and, without
that, we can’t infer s |= ϕ from ϕ.

The (←) direction similarly fails. Assume ∀α(s |= ϕ). Then s |= ϕ. Now if we could infer (s |= ϕ) ≡
ϕ from (ϑ), we could conclude ϕ, which by GEN yields ∀αϕ (α is not free in any assumption).
Since (∀αϕ)↓ (see the previous paragraph), we would then be able to instantiate it for ∀p in (ϑ);
from the resulting biconditional, (s |= ∀αϕ) ≡ ∀αϕ, we could then conclude s |= ∀αϕ. But, alas, we
may not invoke this chain of reasoning because we may not infer (s |= ϕ) ≡ ϕ from (ϑ). The chain
of reasoning is valid only if ϕ↓, and understandably so.
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(.13) ϕ↓ →
(
(w |= ∃xϕ) ≡ ∃x(w |= ϕ)

)
We leave it to the reader to find other examples where the principles govern-
ing the abstract individuals of second-order object theory, when imported into
typed object theory, have to be constrained so as not to apply to non-denoting
formulas.

(972) Theorems: The Existence of World-Indexed Relations of Higher Type.
Though the present section has focused on abstracta naturally conceived as
individuals, it is worth remarking on the fact that world-indexed relations of
every higher type provably exist. This stands in contrast to Williamson 2013
(237), in which such relations are stipulated to exist in the semantics of his
system of intensional modal logic. In the metalanguage of his higher-order
metaphysics, Williamson (a) introduces an additional basic type, namely, a
primitive type w for possible worlds, and (b) constructs higher-order types
〈t1, . . . , tn,w〉 for world-indexed relations among objects of type 〈t1, . . . , tn〉. But
in higher-order object theory, both possible worlds and world-indexed rela-
tions of higher type are defined, and their existence derived, solely using the
resources of the object language and the axioms of the system.

We establish the existence of world-indexed relations of every higher type
in the following sequence of principles, in which t1, . . . , tn are any types; the
variables x1, . . . ,xn have types t1, . . . , tn, respectively; w has type i; and F has
type 〈t1, . . . , tn〉. It follows that (.1) being objects x1, . . . ,xn such that, at w, x1, . . . ,xn
exemplify F exists. Then we say (.2) the property being F at w (‘Fw’) is, by defi-
nition, the property being objects x1, . . . ,xn such that, at w, x1, . . . ,xn exemplify F.
It then follows that (.3) for every relation F and possible world w, being F at w
exists:

(.1) [λx1 . . .xnw |= Fnx1 . . .xn]↓ (n ≥ 0)

(.2) Fw =df [λx1 . . .xnw |= Fnx1 . . .xn] (n ≥ 0)

(.3) ∀F∀w(Fw↓) (n ≥ 0)

Clearly, Fw is a property of type 〈t1, . . . , tn〉, and since the theorem holds for any
types t1, . . . , tn, we’ve established the existence of world-indexed relations of
every higher type. Note that we can instantiate (.3) to any n-ary relation of type
〈t1, . . . tn〉, including abstract ones. In the case where G is an abstract relation,
Gw is an ordinary relation, given axiom (935.22). Moreover, by appealing to the
typed facts that possible worlds are coherent and that �p ≡ ∀w(w |= p), we may
prove (.4) if G is abstract, then Gw is necessarily unexemplified, i.e., where A!
has type 〈〈t1, . . . , tn〉〉:

(.4) A!G → �¬∃x1 . . .∃xnGwx1 . . .xn
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We turn next to those second-order definitions of abstract individuals that can
be naturally generalized to higher-order definitions of abstract objects of every
type.

15.5.2 Extensions of Higher-Order Properties

The first example concerns the extensions of higher-order properties. In (312),
we said that an individual x is an extension of a property G just in case x is
abstract, G exists, and x encodes all and only the properties materially equiva-
lent to G. This can be generalized as follows. For any type t, we may say that
an extension of a higher-type property G having type 〈t〉 is an abstract object
of type t that encodes just the properties having type 〈t〉 that are materially
equivalent to G.

(973) Definitions and Theorems: The Extensions of (Higher-Order) Proper-
ties. Let t be any type; x,z be variables of type t; F,G be variables of type 〈t〉;
and A! be a defined constant of type 〈t〉. Then consider the result of importing
definition (312) into typed object theory by typing it as follows:

(.1)
ExtensionOf (x,G)

ClassOf (x,G)

}
≡df A!x&G↓&∀F(xF ≡ ∀z(Fz ≡ Gz))

So, for example, suppose t is 〈i〉. If G is a higher-order property having type
〈〈i〉〉, then an abstract property x having type 〈i〉 is an extension ofG just in case
x encodes exactly the type 〈〈i〉〉 properties materially equivalent to G (w.r.t.
exemplification).

But now consider the general case again, where t is arbitrary. Though we
are considering here just the extensions of properties having type 〈t〉, we can
now consider the extensions of both ordinary and abstract properties of this
type. Consider this fact in connection with the following two cases:

• G is an exemplified property of type 〈t〉

• G is an unexemplified property of type 〈t〉

In the first case, we have: (.2) any object x that is an extension of an exemplified
property G having type 〈t〉 encodes only ordinary properties having type 〈t〉.
I.e., where O! is our defined constant of type 〈〈t〉〉:

(.2)
(
∃zGz& ExtensionOf (x,G)

)
→∀F(xF→O!F)

Clearly, if G is an exemplified property having type 〈t〉, and axiom (935.24)
guarantees that abstract properties of every type are unexemplified, the only
properties having type 〈t〉 that are materially equivalent to G are ordinary
properties.
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In the second case, we have: (.3) if x is an extension of an unexemplified
property of type 〈t〉, then x of G encodes every abstract property of type 〈t〉;
and (.4) if x is an extension of an unexemplified ordinary property of type 〈t〉
and y is an extension of any abstract property of that type, then x is identical
to y. I.e., where H is another variable of type 〈t〉:

(.3)
(
¬∃zGz& ExtensionOf (x,G)

)
→∀F(A!F→ xF)

(.4)
(
O!G &¬∃zGz& ExtensionOf (x,G) &A!H & ExtensionOf (y,H)

)
→ x=y

Moreover, since abstract properties are unexemplified (again, by axiom (935.24)),
we have that p(.5) an extension x of an abstract property G of type 〈t〉 encodes
every abstract property of type 〈t〉:

(.5)
(
A!G & ExtensionOf (x,G)

)
→∀F(A!F→ xF)

(974) Theorems and Definitions: Unique Extensions for (Higher-Order) Prop-
erties. Let t be any type, x and y be variables of type t, and G be a variable of
type 〈t〉. Then it follows that: (.1) there is a unique extension of G of type t;
and (.2) the extension of G exists:

(.1) ∃!xExtensionOf (x,G)

(.2) ıxExtensionOf (x,G)↓

Moreover, we may define, (.3) εG is defined as the extension of G, and, where
y is an object of type t, (.4) y is an element of x holds by definition whenever y
exemplifies some property G of which x is an extension:

(.3) εG =df ıxExtensionOf (x,G)

(.4) y ∈ x ≡df ∃G(ExtensionOf (x,G) &Gy)

15.5.3 Abstractions over Higher-Order Equivalences

(975) Metadefinition, Definitions, and Theorems: Abstraction on Higher-
Order Equivalence Conditions and Equivalence Relations. Let t1, . . . , tn be any
types and let ϕ be any formula in which there are free of occurrences of the two
distinct relation variables having type 〈t1, . . . , tn〈 (for some n). Suppose we’ve
distinguished these free variables from any other free variables that may occur
in ϕ, and that we may refer to one of these distinguised variables as ‘the first’
if it has the first free occurrence in ϕ (and refer to the other as ‘the second’).
Then where α and β are any two n-ary relation variables of type 〈t1, . . . , tn〈, let
us write ϕ(α,β) for the result of simultaneously substituting α for all the free
occurrences of the first distinguished free variable in ϕ and substituting β for
all the free occurrences of the second distinguished free variable in ϕ. Thus, if
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ϕ happens to have α and β as the two distinguished free variables, then ϕ(α,β)
just is ϕ. Given this notational convention, we say:

(.1) Equivalence Condition: A formula ϕ with two distinct n-place relation
variables is an equivalence condition on n-ary relations whenever the fol-
lowing are all provable:

ϕ(α,α) (Reflexivity)

ϕ(α,β)→ ϕ(β,α) (Symmetry)

ϕ(α,β)→ (ϕ(β,γ)→ ϕ(α,γ)) (Transitivity)

Whenever ϕ is an equivalence condition on relations of any type, and ϕ(α,β)
holds, we say that α and β are ϕ-equivalent.

Now since the definition of ϕ-AbstractionOf (x,p) in (385.1) remains the
same when p is a variable of type 〈 〉, we need only examine definition (385.2)
and consider the case where t is any type other than 〈 〉, x is a variable of type
t, F,G are variables of type 〈t〉, and A! is the defined constant of type 〈t〉. That
is, where ψ is any equivalence condition on properties having type 〈t〉, we may
type definition (385.2) so that it stipulates that x is the ψ-abstraction of G if
and only if x is abstract, G exists, and x encodes just the properties F that are
ψ-equivalent to G:

(.2) ψ-AbstractionOf (x,G) ≡df A!x&G↓&∀F(xF ≡ ψ(F,G))

Then following this typing scheme, we have the following sequence of theo-
rems and definitions, with H a variable as the same type as G:

(.3) ∃!x(ψ-AbstractionOf (x,G))

(.4) ıx(ψ-AbstractionOf (x,G))↓

(.5) (ψ-AbstractionOf (x,G) &ψ-AbstractionOf (y,H))→ (x=y ≡ ψ(G,H))

(.6) Ĝψ =df ıx(ψ-AbstractionOf (x,G))

We may also derive, as a non-modally strict theorem, a Fregean biconditional
that corresponds to (389)?, namely, F̂ψ = Ĝψ ≡ ψ(F,G).

We next turn to abstractions over higher-order equivalence relations. Let
t be any type, and let F be a binary relation variable having type 〈t, t〉. Then
we say that F is an equivalence relation on objects of type t if and only if F is
reflexive, symmetric, and transitive, i.e., where x, y, and z are variables of type
t:

(.7) Equivalencet(F) ≡df

∀xFxx & ∀x∀y(Fxy→ Fyx) & ∀x∀y∀z(Fxy &Fyz→ Fxz)
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Clearly, where t is any type, x and y are variables of type t and F is a variable
of type 〈t〉, we can establish that [λxy ∀F(Fx ≡ Fy) exists and is an equivalence
relationt, and that any relation term that satisfies the definition has is signif-
icant. So Equivalencet(F) is a restriction condition on relations, we may again
henceforth use R̃ as a restricted variable ranging over equivalence relations
having type 〈t, t〉.

Exercise: Show that the theorems and definitions in (413) – (419) are gener-
alizable, i.e., that (413) – (419), when typed using the above typing scheme,
remain principles of typed object theory.

15.5.4 Forms

Exercise: Let t be any type; x,y,z, . . . be objects of type t; F,G,H, . . . be proper-
ties of type 〈t〉; and A! be the defined property of being abstract having type 〈t〉.
Then where F⇒ G is defined in the usual way as �∀x(Fx→ Gx), consider the
following, typed versions of definitions (421) and (444):

ThinFormOf (x,G) ≡df A!x&G↓&∀F(xF ≡ F=G)

FormOf (x,G) ≡df A!x&G↓&∀F(xF ≡ G⇒F)

Now show that the work in Chapter 11 generalizes to type theory, i.e., that
the definitions and theorems of Chapter 11 remain principles that govern the
thin and thick Forms for properties of any type, i.e., govern the thin and thick
Forms for any object having a type of the form 〈t〉.

Exercise: Since all abstract properties are unexemplified and necessarily so,
what generalization can one draw about the properties encoded by the thick
Form x of an abstract property G?

(976) Remark: Thin Forms as (First-Order) Representatives of Higher-Order
Extensions. To prepare an example that shows how a thin Form of an ab-
stract property of individuals can represent a class of higher-order properties
of properties of individuals, let G be a variable of type 〈i〉, and let K be a prop-
erty of properties of individuals, i.e., having type 〈〈i〉〉. Then we know, by an
appropriate instance of (974.1):

∃!G(ExtensionOf (G,K))

Suppose P is the unique such property, so that we know ExtensionOf (P,K).
Then where H is a variable of type 〈i〉 and F is a variable of type 〈〈i〉〉, and A!
has type 〈〈i〉〉, it follows a fortiori from definition (973) and the existence of K
that:

A!P &∀F (PF ≡ ∀H(F H ≡ KH))
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And by definition (974.4) and the fact that ExtensionOf (P,K), we know that
H ∈ P ≡ KH.

But now note that we can represent P by an abstract individual, namely, the
Thin Form of P , i.e., aP , where this is defined via the typed version of (423).
Furthermore, we can extend the notion of membership so as to define a sense
in which the thin Form of G (aG) has, as members, higher-order properties of
properties of individuals. That is, we may say that F is an element of aG if and
only if G is an extension of some higher-order property and encodes F :

F ∈ aG ≡df ∃K(ExtensionOf (G,K) & GF )

This gives us a mechanism by which an abstract individual such as aP may
represent a class of higher-order properties such as P .

15.5.5 Fictional Properties and Fictional Relations

In Chapter 12, Section 12.6, we analyzed stories and fictional individuals as
abstract individuals. We are now in a position to analyze fictional properties,
like being a unicorn, being a hobbit, and fictional relations, like absolute simul-
taneity, etc. We’ll focus primarily on fictional properties and so, for the most
part, leave the generalization to fictional relations as an exercise (the excep-
tion being a fictional relation of identitys for those stories s that explicitly or
implicitly assume a relation of identity).

(977) Remark: The Data. In Chapter 12, Section 12.6, we divided the data into
four categories:

(A) pre-theoretic truths about stories and characters that would become false-
hoods if prefaced by a locution of the form ‘In the story’ or ‘According to
the story’;

(B) true claims about the world that are taken to be true when authors use
them in the context of a story;

(C) pre-theoretic truths that have the form ‘In the story σ , . . . ’ or ‘According
to the story σ , . . . ’; and

(D) pre-theoretic judgments about what logically follows from the truths in
(A), (B), and (C).

Now that we have the expressive power to talk about the properties of proper-
ties and the properties of relations, we can expand these categories to include a
greater variety of examples. Thus, we have the following new data to analyze.

In (A):

(.1) Being a hobbit originates in the The Hobbit novels.
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(.2) Being a hobbit is a fictional property.

(.3) Acromantula is a fictional species of arachnid.

In (B):

(.4) Humans are mortal.

(.5) Gold is a precious metal.

Note that (.4) remains true when prefaced by the story operator “In The Lord of
the Rings”, and (.5) remains true when prefaced by the story operator “In the
Harry Potter novels”.

In (C):

(.6) According to The Lord of the Rings, hobbits are a species whose individuals
are of short stature.

(.7) According to The Lord of the Rings, mithril is a kind of metal pieces of
which are lightweight and strong.

In (D):

(.8) In The Hobbit, Bilbo is a hobbit.
Being a hobbit originates in The Hobbit.
Therefore, being a hobbit is a fictional property.

(.9) Peter Jackson made a movie about being a hobbit.
Hobbits are a fictional species.
Fictional species aren’t real.
Therefore, Peter Jackson made a movie about a species that isn’t real.

In light of the vast science fiction and fantasy literature, these examples suffice
to demonstrate that that there is a wide range of data about fictional properties.

(978) Assumptions, Definitions, Theorems: Typing the Principles for Analyz-
ing Fiction. We approach the analysis of the data by first typing the assump-
tions we introduced for analyzing fiction. The authorship relation (‘A’) (591) is
a relation between ordinary individuals and abstract individuals (stories) and
so has type 〈i, i〉. Thus, where x and y are variables of type i, we may reassert
the two minimal principles for A (591.1) and (591.2) in their type-theoretic
guise:

(.1) Ayx→ E!y (Assumption)

(.2) ∃yAyx→ ♦¬∃yAyx (Assumption)
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Moreover, where s is a restricted variable ranging over stories (i.e., individuals
defined below), p is a variable of type 〈 〉 ranging over propositions, s |= p is
defined in the usual way as sΣp, i.e., s[λy p], and x1, . . . ,xn are distinct variables
having types t1, . . . , tn, respectively, we may reassert the two minimal princi-
ples for relevant entailment (⇒R) in (591.3) and (591.4) in their type-theoretic
guise:

(.3) (s |= p1 & . . . & s |= pn & (p1, . . . ,pn⇒R q))→ s |= q (Assumption)

(.4) [λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]x1 . . .xn⇔R ϕ) (Assumption)

To minimize the clash of variables (the variable t was introduced in a previous
chapter to range over times but is used in this chapter to range over types), we
omit the formal statement of the principle that governs before (591.5), asserting
only its typed version as follows:

(.5) p temporally precedes q just in case there are times t and t′ such that t
precedes t′, p occurs at t but at no earlier time, and q occurs at t′ but at
no earlier time. (Definition)

Given assumptions (.1) – (.5), we may type all of the principles (definitions,
theorems, axioms?, axioms, etc.) in Section 12.6.2, namely, (592) – (593), and
(596) – (597). This is mostly routine (see below) and so we shall henceforth
refer to the type-theoretic versions of these principles, respectively, as (978)
[592] – (978) [593], and (978) [596] – (978) [597]. Thus, we may use (978)
[592] to refer to the typed definition of a story as any non-null situation that is
authored.

However, the principles (598) – 604 require a liberalization. Since our goal
is to develop a theory of fictional properties and relations, it is important to
type these principles so as to allow for higher-type entities to be characters of
stories. We do this as follows.

The definition of x is a character of s, has to be typed so that the x can be of
higher type. So, where x is a variable of any type t, and F is a variable of type
〈t〉, the typed version of definition (598) becomes:

(.6) CharacterOf (x,s) ≡df x↓&∃F(s |= Fx)

This has greater significance than (598), since it allows relations to be char-
acters of stories. For example, we might use this to assert that being a hobbit,
where this is a property having type 〈i〉, is a character of Tolkien’s The Hobbit.
Note that for stories that have indiscernible characters, (.6) should be revised
in favor of (.19), which appears at the end of this discussion.

Similarly, where x is an object of some type t, we have (.7) x originates in
story s just in case x is a character of s that is abstract and that is not a character
of any story authored before s. To formalize this, let x be a variable of any type
t and A! be a defined constant of type 〈t〉, we have:
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(.7) OriginatesIn(x,s) ≡df CharacterOf (x,s) &A!x&
∀y∀z∀s′((Azs′ < Ays)→¬CharacterOf (x,s′))

For example, we may use this to assert thatbeing a hobbit originates in The Hob-
bit. Thus, (.8) x is an original character of s just in case x originates in s:

(.8) OriginalCharacterOf (x,s) ≡df OriginatesIn(x,s)

It is straightforward, then, to type axiom (600) for identifying original charac-
ters as follows. Where x and y are variables of type t, A! is a defined constant
of type 〈t〉, and F is a variable of type 〈t〉, we assert, as an axiom, the following
type-theoretic incarnation of (600), namely (.9) if object x is an original char-
acter of s, then x encodes exactly those properties that x exemplifies according
to s:

(.9) OriginalCharacterOf (x,s)→ x= ıy(A!y &∀F(yF ≡ s |= Fy)) (Axiom)

If we let x be a variable of type 〈i〈, and suppose being a hobbit has that type,
and the story The Hobbit (h) has type i, then as an applied instance of (.9),
we have: if being a hobbit (H) is an original character of The Hobbit, then H
is the abstract property that encodes just the properties of properties that H
exemplifies according to The Hobbit, i.e.,

• OriginalCharacterOf (H,h)→ H= ıy(A!y &∀F(yF ≡ h |= Fy))

Thus, properties may be original characters of stories. Where x is a variable
of any type t, we may assert the following typed counterpart of (601), namely,
(.10) x is a fictional character just in case it is an original character of some
story:

(.10) Fictional(x) ≡df ∃sOriginalCharacterOf (x,s)

For example, this definition lets us infer, from the premise that Raskolnikov is
an original character of Crime and Punishment, the conclusion that Raskolnikov
is a fictional character.

Next, where x is an object of type t and G is a property of type 〈t〉, we say
that (.11), x is a fictional G just in case x is an original character of a story
according to which x exemplifies G:

(.11) Fictional-G(x) ≡df ∃s(OriginalCharacterOf (x,s) & s |= Gx)

Consider an instance of this definition when x has type 〈i〉, and G has type
〈〈i〉〉. For example, let x be the property being a unicorn (U) and let G be the
higher-order property of properties being a species (S). Then as an instance of
(.11), we have:

• Fictional-S(U) ≡df ∃s(OriginalCharacterOf (U, s) & s |= SU)
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Being a unicorn is a fictional species if and only if there exists a story s
such that being a unicorn is an original character of s and in the story,
being a unicorn is a species.

In light of the foregoing definitions, some interesting theorems follow. First,
note that (.12) fictional objects are abstract, and (.13) fictional Gs are abstract.
We may represent these type-theoretically if we let x be a variable of type t, F
be a variable of type 〈t〉, and A! have type 〈t〉:

(.12) Fictional(x)→ A!x

(.13) Fictional-F(x)→ A!x

So when x has type 〈i〉 and we instantiate it to the property being a hobbit (H),
and F in (.13) is a variable of type 〈〈i〉〉 and we instantiate it to the property
being a species (S), we may instantiate (.12) and (.13), respectively, to derive:

• Fictional(H)→ A!H, i.e.,

If being a hobbit is (a) fictional (property), it is (an) abstract (property).

• Fictional-S(H)→ A!H

If being a hobbit is a fictional species, it is abstract.

Moreover, we may type theorem (603.1) so as to derive, where x has any type t:

(.14) A!x→¬∃y(♦E!y & y=x)

Now suppose that when some philosophers talk about possible objects, they
are referring to possibly concrete objects, and when they talk about possible
properties, they are referring to possibly concrete properties. Then from the
foregoing we obtain type-theoretic counterparts of (603.2) and (603.3); it fol-
lows immediately that, for an type, (.15) a fictional object is not identical with
any possible object, and (.16) a fictional F is not identical with any possible F:

(.15) Fictional(x)→¬∃y(♦E!y & y=x)

(.16) Fictional-F(x)→¬∃y
(
♦(E!y &Fy) & y=x

)
So, as higher order examples, suppose x is again a variable of type 〈i〉 and
instantiate it to the property being a hobbit (H), and instantiate F to the higher-
order property being a species (S), which has type 〈〈i〉〉. There where E! has
type 〈〈i〉〉, we have, as applied instances of (.15) and (.16), the following as
theorems:

• Fictional(H)→¬∃G(♦E!G & G=H)
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If being a hobbit is fictional, then it is not identical with any possibly
concrete property.

• Fictional-S(H)→¬∃G
(
♦(E!G &SG) & G=H

)
If being a hobbit is a fictional species, then it is not identical with any
possibly concrete species.

Now let’s suppose that when Kripke talks about ‘possible species’ in 1972
[1980], he means to refer to possibly concrete species. Then, if we instead
substitute the property of being a unicorn for x in (.16), we can derive of a key
claim in Kripke 1972 [1980] from his assumption that unicorns are a mythi-
cal species. He concludes from this that we can’t identify unicorns with any
possible species:

As to the metaphysical thesis, the argument basically is the following.
Just as tigers are an actual species, so the unicorns are a mythical species.
. . . there is no actual species of unicorns, and regarding the several dis-
tinct hypothetical species, with different internal structures (some reptilic,
some mammalian, some amphibious), which would have the external ap-
pearances postulated to hold of unicorns in the myth of the unicorn, one
cannot say which of these distinct mythical species would have been the
unicorns. If we suppose, as I do, that the unicorns of the myth were sup-
posed to be a particular species, but that the myth provides insufficient
information about their internal structure to determine a unique species,
then there is no actual or possible species of which we can say that it would
have been the species of unicorns. Kripke 1972 [1980, 156–7])

In the present theory, the claim that being a unicorn is not identical with any
possible species, i.e., ¬∃G

(
♦(E!G & SG) & G = U

)
, follows from the claim that

unicorns are a mythical species, i.e., Fictional-S(U), by (.16).
Moreover, an even more general claim in Kripke 1972 [1980] can be de-

rived from the assumption that unicorns are a mythical species, namely, that
there couldn’t have been unicorns. We may analyze this claim as Fictional-S(U)→
¬♦∃xUx. This is an instance of the following, more general theorem, in which
x is a variable of type i, F is a variable of type 〈i〉, and R is a variable of type
〈〈i〉〉, namely (.17) if F is a fictional R, then it is not possible that there is an
individual x that exemplifies F:

(.17) Fictional-R(F)→¬♦∃xFx

So if we instantiate F in (.17) to the (abstract) property being a unicorn (U), and
instantiate R to the higher-order property being a species (S), we have derived
the following strong, modal conclusion in Kripke 1972 [1980, 24]:
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. . . it is said that though we have all found out that there are no unicorns, of
course there might have been unicorns. Under certain circumstances there
would have been unicorns. And this is an example of something I think is
not the case.

This strong, modal conclusion, that it is not the case that there might have been
unicorns (i.e., there couldn’t have been unicorns), is put forward in a context
in which Kripke is talking about the fact that some properties are contingently
empty. But unlike the contingently empty property giraffe in the Arctic Cir-
cle, Kripke is anticipating the view he develops later (and that we represented
above), namely, that unicorns are a mythical species and thus can’t be identi-
fied with any possible species. Thus, being a unicorn is not just contingently
empty, but necessarily empty. This is a consequence of our definitions and
theorems, if given the assumption that being a unicorn is fictional.

The final issue to discuss, when considering how to type the principles that
apply to fiction, concerns story identity. Philosophers are rightyly fond of sto-
ries that play around with the notion of identity. In many such cases, it may be
that a fictional relation of identity is involved. Thus, when we import and ana-
lyze the identity claims that are made in some story s, we may have to index
the symbol ‘=’ to s and regard the relation in question as an original character
of the story.

Our system makes sense of this technique. If the notion of identity in ques-
tion is one that relates individuals, then we may regard =s as a symbol of type
〈i, i〉. But more generally, for every story s in which identity plays a role among
the objects at some type level t (e.g., the story attributes certain, possibly odd,
properties to this relation, or either says or relevantly implies that certain char-
acters of type t are so related), we may:

• take =s to be a relation having type 〈t, t〉,

• assert OriginalCharacter(=s, s),

• take s to be attributing certain (odd) higher-order properties to this rela-
tion, and

• take s to be relating certain the characters of type t as via =s.

It would then be straightforward to apply (.9) and identify =s as the abstract
relation of type 〈t, t〉 that encodes exactly the properties of such relations that
hold of =s in s; i.e., where x has type 〈t, t〉, and both A! and F have type 〈〈t, t〉〉,
assert:

(.18) OriginalCharacter(=s, s)→
(

=s = ıx(A!x&∀F(xF ≡ s |= F=s))
)
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With such a relation we may refine the notion of a character of a story given
in (.6) above, so that the definition becomes x is a character of s just in case it
is true in s that for every type-t-object y that is distincts from x, x exemplifies
some property that that y fails to exemplify:

(.19) CharacterOf (x,s) ≡df s |= ∀y(y,sx→∃F(Fx&¬Fy))

The foregoing definitions may be useful if there are stories where there are
distinct, original characters that are indiscernible from the point of view of the
story.404

15.6 Analysis of Theoretical Mathematics

We turn now to theoretical mathematics, as distinguished from natural math-
ematics. In earlier chapters, we’ve analyzed a variety of natural mathematical
objects, such as natural classes (logical sets), directions, shapes, and numbers.
Indeed, we’ve derived, from just the primitive notions and axioms of object
theory, some important parts of mathematics, namely, a number of definitions
and principles of set theory, the axioms for a Boolean algebra (of concepts), and
all of second-order Peano Arithmetic, including the existence of ℵ0.

But now we analyze of the language of theoretical mathematics, i.e., math-
ematical theories formulated with primitive mathematical notions.405 For ex-
ample, (2nd-order) Zermelo-Fraenkel (ZF) set theory will be among our tar-
gets, and to formulate that theory, one needs only the primitive ∈ (member-
ship) as the sole non-logical 2-place relation constant. Indeed, notwithstand-
ing the work in the previous chapter, (2nd-order) Peano Arithmetic (PA) can
also serve as a target, by treating it as a theory that axiomatizes the following

404It is not clear to me that we need this more sophisticated definition of character of to handle
the Frackworld case in Everett 2005. Everett says “I think it is pretty clear that in this story,
it is left indeterminate as to whether Frick is Frack” (2005, 629). He uses a principle (P2) to
infer from this that it is indeterminate as to whether the character Frick is the same object as the
character Frack. This is allegedly problematic because of an argument by Evans (1978) in which
the expression “being indeterminately identical to x” plays a key role, as if it were established
that this expression definitively named a property. It isn’t clear to me what theory of properties
grounds such a claim. But even if the expression denotes a well-defined property, I don’t think one
can draw any conclusions from the fact that neither s |= Frick=s Frack nor s |= Frick,s Frack. Stories
are incomplete, and to analyze the particular Frackworld story, one may simply suppose that the
story relevantly implies that Frick exemplifies the properties [λx ♦x=s Frack] and [λx ♦x,s Frack],
but not [λx ♦x ,s Frick]. β-Conversion may be a principal of the relevant entailment and so hold
within the scope of the story operator, but it isn’t clear that the necessity of identitys is also such a
principle.
405I’m greatly indebted to Hannes Leitgeb and Uri Nodelman for our weekly discussions dur-

ing which we composed Leitgeb, Nodelman, & Zalta m.s. I learned a tremendous amount from
working with them and our joint research has had a profound impact on the exposition in this
chapter.
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mathematical primitives: the individual constant ‘0’ (Zero), a 1-place relation
constant ‘N ’ (being a number), and the 2-place relation constant ‘S’ (succes-
sor). We’ll then take PA to be the body of theorems derivable from Dedekind-
Peano axioms, the axioms for recursive addition and multiplication, the princi-
ple of mathematical induction, and the comprehension principle for properties
of numbers. The purpose of treating PA separately as part of theoretical math-
ematics is simply to give a simple example of well-known number theory that
can be analyzed using the techniques introduced below.

15.6.1 Mathematical Theories

(979) Remark: The Normalization Methods for Formulating Mathematical The-
ories. We start with some simplifying assumptions about mathematical theo-
ries. These assumptions jointly constitute methods for normalizing and con-
sistently formulating mathematical theories. Let T be a variable of our met-
alanguage that ranges over objects that we intuitively judge, on the basis of
mathematical practice, to be mathematical theories. In our analysis of mathe-
matics, we shall make use of the following assumptions, some of which will be
discussed in more detail below:

(.1) each mathematical theory T is distinguished by a body of closed theorems
formulable in terms of at least one distinguished, primitive mathemati-
cal term (i.e., at least one distinguished relation constant, and zero or
more distinguished individual constants); we write `T ϕ whenever ϕ is a
theorem of T (and Γ `T ϕ whenever ϕ is derivable from Γ in T );

(.2) the theorems of T consist of the mathematical axioms of T and their de-
ductive consequences, though we allow for theories that are not formu-
lated axiomatically;

(.3) each mathematical theory T has been formulated in the higher-order
logic expressible in the language of relational type theory, without iden-
tity but with closed higher-order n-ary λ-expressions (n ≥ 1) that are gov-
erned by higher-order principles of α-, β-, and η-Conversion (see the ob-
servation below for explanation);

(.4) each n-ary function term τ of T has been replaced by an appropriate n+1-
ary relation term Π, and the axioms governing τ have been reformulated
as equivalent axioms governing Π,406 and (c) any formulas containing

406See, for example, treatments of function terms within the predicate calculus with equality in
Mendelson 1964 [1997] and Enderton 1972 [2001]. In Chapter 2, Section 9 of Mendelson 1964
[1997, 103ff], we find:

In mathematics, once we have proved, for any y1, . . . , yn, the existence of a unique
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definite descriptions have been replaced by equivalent formulas that as-
sert existence and uniqueness claims;

(.5) the language and theorems of T may include non-primitive (i.e., defined)
terms τ as long as τ is both closed and uniquely- or well-defined in T ; i.e.,
we may assume that T includes theorems with the defined term τ as long
as τ has been added to language of T and axiomatized by taking the
definition of τ as an additional axiom or principle;

(.6) mathematical theories T and T ′ that are notational variants may be iden-
tified;

(.7) axiomatic theories T and T ′ may be identified whenever T ′ has a redun-
dant axiom, since T and T ′ have the same theorems;

(.8) whenever T is formulated with an expression of some type t other than
〈 〉,407 then for each such type t, the theory T includes identityt (‘=t’)
as a distinguished relation symbol having type 〈t, t〉 governed by classi-
cal axioms and rules, unless =t is specially systematized otherwise by T
(henceforth, we suppress the superscript t in =t since this can be inferred
from the types of the terms flanking the = symbol); and

object u that has the property B(u,y1, . . . , yn), we often introduce a new function letter
f (y1, . . . , yn) such that B(f (y1, . . . , yn), y1, . . . , yn) holds for all y1, . . . , yn. In cases where
we have proved the existence of a unique object u that satisfies a wf B(u) and B(u)
contains u as its only free variable, then we introduce a new individual constant b such
thatB(b) holds. It is generally acknowledged that such definitions, though convenient,
add nothing really new to the theory.

Mendelson then makes this claim precise with Proposition 2.29, where we find a proof that any
theory T with well-defined function terms can be reformulated in terms of a theory T ′ without
such terms, via a mapping # for which it can be shown that if `T ϕ, then `T ′ ϕ#. And he sets an
exercise (Exercise 2.83) asking the reader to transform formulas with function terms to formulas
without.

Enderton 1972 [2001] (§2.7) establishes both model-theoretic and proof-theoretic results under-
lying this phenomenon. His remarks have a direct bearing on the examples we construct below.
See, for example, 1972 [2001, 165], where he considers extending a theory T without function
symbols to a theory with the unary function symbol f by introducing f in to the language with the
definition:

(δ) ∀x∀y(f (x)=y ≡ ϕ)

He then shows (1972 [2001, Theorem 27A]) that ∀x∃!yϕ is a theorem of T if and only if, for any
sentence ψ in the language without f , if ψ is valid in any model of T+(δ), then ψ is valid in T . Just
as importantly for our purposes, the discussion (1972 [2001, 169–172]) gives a translation proce-
dure for eliminating the function terms generally, i.e., for mapping formulas with n-ary function
terms to formulas in which n+1-ary relation terms replace the function terms. We’ll see exam-
ples like this below. Enderton establishes (1972 [2001, Theorems 27B–27D]) that the procedure
achieves the goal of eliminating the function terms without loss.
407I.e., whenever T is formulated with an expression for an individual (of type t= i) or an expres-

sion for an non-zero n-place relation having type t = 〈t1, . . . , tn〉 for some types t1, . . . , tn (n,0)
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(.9) the axioms and rules of the logic L assumed by a mathematical theory T
have been included among the axioms and rules of T , so that `T ϕ is to be
strictly regarded as shorthand for `TL ϕ; when T is formulated in classical
(higher-order) logic, we may use the simpler notation `T ϕ to indicate
theoremhood in T , but if T is formulated within a non-classical (higher-
order) logic L, then it becomes informative to reference the theorems of
this theory by writing `TL ϕ.

We take these assumptions to be relatively uncontroversial and consistent with
mathematical practice. One could attempt to give a deeper level of analysis of
mathematical theories within object theory by starting with pre-theoretic judg-
ments about which propositions are mathematical, but we shall not officially
make the attempt here.408

However, some discussion of assumptions (.3), (.5), (.8), and (.9) may prove
to be helpful. In connection with (.3), we first discuss an example and then
provide some justification. As an example, suppose a theory T includes, as
theorem, the simple relational statement Rab, where a and b are constants of
type i and R a constant of type 〈i, i〉. Given assumption (.3), the language of T
includes the closed terms [λx Rxb], [λx Rax], and [λF Fab] (the types of which
are obvious), and T itself includes the following instances of β-Conversion as
theorems (indeed, if T is formulated axiomatically, the following would be
axioms, since typically, mathematical theories don’t assume free logic):

• [λx Rxb]a ≡ Rab

• [λx Rax]b ≡ Rab

• [λF Fab]R ≡ Rab

The last asserts that R exemplifies the higher-order property being a binary
relation F that a and b exemplify if and only if a and b exemplify R.

408Unofficially, we might take Mathematical(p) as primitive and then define a mathematical situa-
tion to be any situation s such that every proposition true in s is a mathematical proposition, i.e.,
where s is a variable ranging over situations:

MathSituation(s) ≡df ∀p((s |= p)→Mathematical(p))

Then, using the notion of authorship from the theory of fiction, one could define a mathematical
theory as a mathematical situation that some concrete object authored:

MathTheory(x) ≡df MathSituation(x) &∃y(E!y &Ayx)

Were such a definition available in the present theory, we could introduce the variable T in the
object language, to range over the defined notion of a mathematical theory. This defined notion
could help to explain how mathematical practice changes the expressive power of language in
contingent ways (e.g., by the introduction of new expressions into the language). This may be
important when we consider mathematics and modality. Note, however, that one could define a
possible mathematical theory as a mathematical situation such that it is possible that some concrete
authored it.
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Since Rab is a theorem, it follows that the theorems of T include: [λxRxb]a,
[λxRax]b, and [λFFab]R, [λxyRxy]ab, and [λFxyFxy]Rab. Of course, the pres-
ence of other closed, higher-order λ-expressions also yields additional facts
about T , but these will be analyzed along the same lines as the analysis of
the ones just discussed.409 These facts play a key role when we identify the
mathematical relation R as an abstract relation that encodes the properties of
relations that are attributed to R in T .

We may justify the formulation of mathematical theories with closed higher-
order λ-expressions by examining a more complex example. Let T1 be the
classical theory of dense, linear orderings without endpoints, axiomatized as
follows, in which < and = are the only primitive relation terms:

∀x∀y∀z(x < y & y < z→ x < z) (Transitivity)
∀x¬(x < x) (Irreflexivity)
∀x∀y(x,y→ (x < y ∨ y < x)) (Connectedness)
∀x∀y∃z(x < z < y) (Dense)
∀x∃y∃z(z < x < y) (No Endpoints)

Clearly, it is consistent with and, indeed, a part of, mathematical practice to
talk about the relation < axiomatized by T1. For example, one may talk about
the properties < has in T1, for the topic “properties of relations” is a well-
known topic. We may say, for example, that < has the property of being ir-
reflexive and transitive. Our closed λ-expressions allow us to formally express
this understanding by noting that the following are implied by, and so among
the theorems of, T1, by way of higher-order β-Conversion:

[λF ∀x∀y∀z(Fxy &Fyz→ Fxz)]<
i.e., < exemplifies being a transitive binary relation

[λF ∀x(¬Fxx)]<
i.e., < exemplifies being an irreflexive binary relation

409So, for example, the language of T also includes the closed terms [λxy Rxy] and [λFxy Fxy],
and so T also has the following instances of β-Conversion as theorems:

• [λxy Rxy]ab ≡ Rab

• [λFxy Fxy]Rab ≡ Rab

Thus, T also includes the theorems [λxy Rxy]ab and [λFxy Fxy]Rab. The λ-expressions in these
theorems will be represented using terms that denote abstract relations of T .

Moreover, T also includes the following instance of η-Conversion (935.27.a) as a theorem:
[λxyRxy] = R. In these cases, we will identify the relation [λxyRxy] of T using the same methodol-
ogy we develop below for assigning a denotation to the properties [λxRxb], [λxRax], and [λFFab].

Finally, since [λG [λF Fab]G] is a closed λ-expression in the language, T will have the following
instance of η-Conversion as a theorem: [λG [λF Fab]G] = [λF Fab]. Again, our methodology will
identify the abstract relations denoted by both λ-expressions flanking the identity sign.



15.6. ANALYSIS OF THEORETICAL MATHEMATICS 881

Again, these facts play a key role when we identify the distinguished relation
< of T1 as the abstract relation that encodes the properties of relations that are
attributed to < in T .

Before we move on to the next assumption in need of discussion, it is worth
saying why we have not allowed the language of T to be extended with open
λ-expressions. To see why, we have to set up a simple example. Take PA as a
primitive theory and consider the closed theorem ∀x(x+2 = 2+x). Since we’re
assuming that PA has been formulated without function terms, such a theo-
rem would be expressed with a ternary relation symbol, say R, instead of the
binary function symbol +, where Rxyz asserts: x added to y yields z. Moreover,
R would appropriately axiomatized so as to capture the recursive axioms for
addition.410 Thus, the theorem ∀x(x+2 = 2+x) could be expressed relationally
as ∀x∀z(Rx2z ≡ R2xz). Now suppose we had allowed PA to be formulated with
open λ-expressions. Then, by β-Conversion and the fact that ∀z(Rx2z ≡ R2xz)
is equivalent to [λy ∀z(Rxyz ≡ Ryxz)]2, we would be able to use the Rule of
Substitution to derive the following as a theorem of PA:

∀x([λy ∀z(Rxyz ≡ Ryxz)]2)

(This is easier to see with function terms: the strict equivalence of x+2 = 2+x
and [λy x+y = y+x]2 would make ∀x([λy ∀x(x+y = y+x)]2) a consequence of
∀x(x+2 = 2+x).) But such a theorem might lead one to ask the question, “What
is the denotation of the (open) expression [λy ∀z(Rxyz ≡ Ryxz)] as it occurs in
the language of PA?” In what follows, we shall not accept this as a valid ques-
tion, for this open λ-expression has a different denotation for each value of x.
Asking such question is analogous to asking the question “What is the denota-
tion of the free variable x in the language of PA?”. Free variables, and complex

410In other words, we can restate the axioms for recursive addition without the function terms
by applying Enderton’s algorithm (1972 [2001, 169]) as follows. We start with a ternary relation
term R for which it is stipulated that two conditions hold. To formulate these two conditions, we
first turn the axioms for recursive +, which are stated with the help of the successor function term
x′, into axioms that replace the binary function + by R. So we turn:

∀x(x+ 0 = x)

∀x∀y(x+ y′ = (x+ y)′)

into the following relational axioms:

∀x(Rx0x)

∀x∀y∀z(Rxyz→ Rxy′z′)

Then, we eliminate the function terms y′ and z′ by using the primitive predecessor relation P , for
which ∀y∃!xP yx holds, by introducing the definition ∀y∀x(y′ =x ≡ P yx) (à la Enderton 1972 [2001,
165]), so that the second axiom above becomes via Enderton’s algorithm:

∀x∀y∀z∀u∀v(Rxyz→ (P yu→ (P zv→ Rxuv)))

This asserts the universal generalization of: if x added to y yields z, y precedes u, and z precedes
v, then x added to u yields v. Note that by defining R in this way, it becomes provable that R is
functional, i.e., that ∀x∀y∃!zRxyz.
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mathematical terms containing free variables (i.e., ‘complex variables’), do not
have denotations simpliciter, and so don’t induce the same kind of ontological
question as “What is the denotation of the term 0 in PA?” or “What is the deno-
tation of the term ∅ in ZF?” (Or, rather, we might say: answers to the ontologi-
cal questions about the denotation of closed terms have to be in hand if we are
to advance from the semantic analysis of variables as expressions that can take
different values to the ontological question of what those values are.) Thus, the
questions about the denotation of the expressions [λy ∀z(Rxyz ≡ Ryxz)] and x
are analogously ill-conceived since both are variables: x is a simple variable
and the λ-expression is a complex variable.

By constrast, we shall answer questions of the form “What is the deno-
tation of [λy ∀x∀z(Rxyz ≡ Ryxz)], where this is a closed λ-expression. That
is, from the theorem ∀x∀z(Rx2z ≡ R2xz) with which we started, we will also
take [λy ∀x∀z(Rxyz ≡ Ryxz)]2 to be a theorem of PA. And it will be a theorem
that [λF ∀x∀z(Fx2z ≡ F2xz)]R. The λ-expressions involved in these theorems
pose ontological questions and we shall, in what follows, interpret the first
λ-expression as having type 〈i〉 and as denoting an abstract property of indi-
viduals, and the second as having type 〈〈i, i, i〉〉 and as denoting an abstract
property of ternary relations among individuals.

Now consider (.5). Though we’ve assumed in (.4) that mathematical theo-
ries are formulated without function terms, (.5) relaxes this assumption some-
what, since it allows us to consider examples of mathematical theorems ex-
pressed in defined notation rather than primitive notation, provided those the-
orems are expressed with defined constants and closed function terms. Even a
simple theorem of ZF such as ∅ ∈ {∅} involves the defined constant ∅ and the
defined, closed function term {∅}. To bring these theorems into the analytic
fold of object theory, we may regard the language of ZF as extended with the
primitive symbol ∅ and the primitive term {∅}, where these primitive terms
are governed by axioms that simply reformulate their usual definitions. Thus,
for ∅, we may suppose that ZF is extended with the closures of the axiom:

(ϑ) ∅=x ≡ ∀z(z ∈ x ≡ z,z)

This guarantees that ∅ is a well-defined term, since it is a theorem of ZF that
there is a unique x that has as members anything that fails to be non-self-
identical, i.e., ∃!x∀z(z ∈ x ≡ z,z). So a unique set satisfies the left condition of
(ϑ).

And for {∅}, we may suppose ZF is extended with the closures of the axiom:

(ξ) {∅}=x ≡ ∀z(z ∈ x ≡ z=∅)

This ensures that {∅} is a well-defined term, since it is a theorem of ZF that
there is a unique x such that x has y and only ∅ as a member, i.e., ∃!x∀z(z ∈
x ≡ z=∅). So a unique set satisfies the left condition of (ξ). Together, (ϑ), (ξ),
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(a), and (b) ensure that any theorem in ZF about ∅ and {∅} (e.g., ∅ ∈ {∅}) is
equivalent to a theorem expressed entirely in primitive notation without these
symbols, just as if they had been introduced by definition.

As another example from set theory, consider that where a is some named
set, then ∪a (‘the union of a’) may be defined by:

∪a = x ≡df ∀y(y ∈ x ≡ ∃z(z ∈ a& y ∈ z))

∪a is well-defined because the Extensionality and Union axioms of ZF combine
to imply, for any well-defined set a:

∃!x∀y(y ∈ x ≡ ∃z(z ∈ a& y ∈ z))

Thus, we may, in what follows, consider theorems of ZF containing the term
∪κ, for any well-defined, closed term κ in ZF. As an example, consider∪{∅, {∅}}.

More generally, we may consider data from theoretical mathematics ex-
pressed with well-defined, closed terms such as 4!, 28,

√
2, Σ5

n=1n+3, π, ω, etc.,
provided we import their definitions. We need not recast theorems containing
such closed function terms as theorems without such terms. However, for the
same reasons discussed in connection with open λ-expressions in (.3) above,
we won’t consider data with open function terms.

Thus, for convenience, (a) we shall not suppose that PA includes open func-
tion terms such as n!, x2, 2x,

√
y, etc., or that ZF includes the open function

terms such as x∩ y, {x}, etc., and (b) we shall not consider such facts as:

(ζ) `PA ∃x(x2 = 4)

(ξ) `ZF ∃x(∅ ∈ {x})

If were to treat (ζ) and (ξ) as data, then the question ‘What do the terms de-
note?’ applies only to the symbols = and 4 in (ζ) and to the symbols ∅ and ∈
in (ξ). We shall not accept the question “What is denoted by the open terms
x2 and {x}?” This question is ill-conceived because x2 and {x} are complex vari-
ables and take on a different denotation for each value of x. Consequently, just
like simple variables, they doesn’t pose an ontological problem, or rather, a se-
mantics of the simple variables of a theory T assumes we have already solved
the ontological problem of what those variables range over. An ontological
problem only arises for closed terms like 22 and {∅}.411

411As described in footnotes 406 and 410, the loss of function terms with free variables is not
onerous. Consider the case of the unit set of x, i.e., {x}. In mathematical practice, one might
introduce this term via the definition:

{x}=y =df ∀z(z ∈ y ≡ z=x)

or by adding primitive expressions of the form {x} for any variable x, governed by the axiom:

∀({x}=y ≡ ∀z(z ∈ y ≡ z=x))
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In connection with (.8) above, it should be observed that mathematical the-
ories are traditionally formulated only in terms of expressions for individuals
and (possibly higher-order) n-place relations (n , 0); they are not formulated
with primitive constants or terms for 0-place relation. Mathematical practice
doesn’t give any evidence that mathematicians are interested in propositions
per se, or in the identity of propositions. In other words, mathematics ap-
pears to be the study of abstract individuals and abstract n-place relations, for
n , 0, and the propositions of mathematics are ordinary propositions whose
constituents are abstract.

Finally, in connection with (.9), consider Heyting Arithmetic (HA), which
uses the same language and non-logical axioms as PA but asserts the latter
in the context of intuitionistic predicate logic (IQC). Though we can regard
HA as a single deductive system comprising the logical axioms and rules of
IQC and the non-logical axioms of PA, it is informative to regard the proof-
theoretic claim `HA ϕ as having the form `TL ϕ, where T = PA and L = IQC
So the claim `HA ϕ becomes a claim of the form `TL ϕ. But either way, we can
use the methods outlined above to target (the theorems of) HA for the analysis
described below.

(980) Axiom, Definition, and Theorems: Extending Object Theory to Analyze
Truth In, and Identity, for Mathematical Theories. Since we’ve taken mathemat-
ical theories to be distinguished by their theorems, we shall analyze them as
situations, i.e., objects that encode only propositions (and in particular, those
propositions that are their theorems). To state this analysis, we extend the
language of object theory with new constants that (intuitively) name mathe-
matical theories, such as ZF, PA, R (real number theory), C (complex number
theory), < D (dense linear orderings without endpoints), etc. Where κ is any
new constant introduced as a name of a mathematical theory, we assert, as an
axiom, that:

(.1) Situation(κ) (Axiom)

Moreover, we engage in a harmless abuse of notation: the expression ‘T ’ has,
up to now, been used intuitively as a variable of our metalanguage ranging
over what we pretheoretically judge to be mathematical theories. However we

But we may logically ‘rehabilitate’ this nicety of mathematical practice by instead extending the
language of ZF with a binary relation constant, say R, governed by the principle:

∀x∀y(Rxy ≡ x ∈ y &∀z(z ∈ y→ z=x))

I.e., x and y exemplify R just in case x is a unique member of y. Since ZF, in a higher-order
setting, implies that there is such a relation and that it is functional (i.e., ∀x∃!yRxy), we can apply
the the standard procedures for identifying a theorem that expresses what (ξ) expresses, namely,
∃x∀y(Rxy→ ∅ ∈ y). In this latter theorem, we only have to find denotations for the constants ‘R’,
‘∅’, and ‘∈’, and give truth conditions to the theorem as a whole.
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shall now use ‘T ’ technically as a variable of type i ranging over those situ-
ations introduced as mathematical theories. For a justification of this abuse
of notation and a way to eliminate the abuse, see the suggestions described
in footnote 408. However, if one is uncomfortable introducing the variable T
in this way, simply restate the principles below that use the variable T as a
schema in which the metavariable κ (which ranges over those new constants
introduced to name mathematical theories) replaces the variable T .

Now given the type-theoretic definition of a situation in (971.2), we may
then appeal to the defined notion p is true in situation s (971.3) to say what it is
for a proposition p to be true in T :

(.2) p is true in T =df T |= p

Hence, by (971.3) and (971.1), p is true in T just in case T[λy p], where y is a
variable of type i bound vacuously in [λy p].

Since a mathematical theory T is a situation, it now follows that (.3) T is
identical to the abstract individual that encodes a property of individuals F iff
F is a propositional property of the form [λy p] for some proposition true in T :

(.3) T = ıx(A!x&∀F(xF ≡ ∃p(T |= p&F=[λy p]))) (Theorem)

We may simplify the statement of this theorem by appealing to canonical sit-
uation descriptions, i.e., T is the situation s that makes true all and only the
propositions true in T :

(.4) T = ıs∀p((s |= p) ≡ (T |= p)) (Theorem)

It is to be emphasized that this is not a definition of T , but rather a principle by
which we can theoretically identify T in terms of data of the form T |= p. For
example, we may theoretically identify ZF as follows:

• ZF = ıs∀p((s |= p) ≡ (ZF |= p))

Thus, ZF is the situation (i.e., the abstract individual) that makes true exactly
the propositions true in ZF.

Of course, for these principles to be informative, we have to have data,
expressible in object theory, of the form ZF |= ϕ and, more generally, of the
form T |= ϕ. We accomplish this with the Importation Principle, formulated in
(981.3) below. But first notice that this understanding of mathematical theories
allows us to distinguish a theory from its axiomatization. The same theory
(i.e., the same body of theorems) can be axiomatized in different ways, but
we identify the theory with the (abstract object that encodes all and only the)
theorems, rather than with some particular axiomatization of it.

(981) Definitions, New Terms, Meta-axioms and Metarules: The Importation
Principle and Rule of Closure. We now work our way to the statement of a
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principle that will introduce axioms that are analytic truths. Whenever ϕ is a
theorem of T , the principle asserts that a notational variant of ϕ, labeled ϕ∗, is
true in T . Thus, the principle asserts axioms of the form T |= ϕ∗ for each math-
ematical theory T . To state this principle, we we must first (a) define a met-
alinguistic, syntactic notion needed to state this principle, and (b) extend our
language with some new expressions that are used in the notational variant ϕ∗.

The notion we need to define is that of a primary term of ϕ. This notion has
already been defined for exemplification and encoding formulas, in (930) [7].
But we now extend the notion so that we may designate the primary terms of
an arbitrary formula ϕ. We define this metalinguistic notion by recursion as
follows:

(.1) τ is a primary term of ϕ if and only if either

• ϕ is an exemplification formula Πτ1 . . . τn (n ≥ 1) and τ is one of Π,
τ1, . . . , τn, or

• ϕ is an encoding formula τ1 . . . τnΠ (n ≥ 1) and τ is one of Π, τ1, . . . , τn,
or

• ϕ is any other formula and τ is a primary term in a proper subfor-
mula of ϕ.

Note the following consequences of this definition:

• No formula is a primary term of itself or of any other formula.

• If ϕ is a formula in virtue of being a constant, a variable, or a description
of type 〈 〉, then ϕ has no primary terms, since such a ϕ is neither an
exemplification formula, nor an encoding formula, nor has any proper
subformulas. Moreover, such formulas contribute no primary terms to
any formula of which they may be a subformula.

• If a λ-expression [λα1 . . .αn ψ] or a description ıαψ occur in a formula
ϕ, then none of the terms of ψ are primary terms of ϕ, since ψ doesn’t
qualify as a subformula of ϕ.

Some examples of the foregoing are:

• The constant p1 and variable p, both of type 〈 〉, have no primary terms,
and neither does any description of the form ıpϕ.

• The primary terms of Fx→ p and Fx→ ıp(p&¬p) are just F and x.

• The primary terms of the formula [λx¬Fx&P b]a are a and [λx¬Fx&P b];
the primary terms of the formulas ¬Fx, Fx, P b, and ¬Fx & P b (i.e., the
primary terms of the subformulas of the matrix ¬Fx&P b) are not primary
terms of [λx¬Fx& P b]a.
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• The primary terms of of the formula P ıxRxb are just P and ıxRxb; the
primary terms of the matrix of the description are not primary terms of
P ıxRxb.

Moreover, if we consider mathematical theories formulated in accordance with
(979.1) – (979.9), then we have the following examples:

• If PA is extended with the constants ‘2’ and ‘4’, and the closed function
term ‘22’, then the primary terms of the theorem 22 = 4 are just ‘22’, ‘=’,
and ‘4’. The numeral ‘2’ is not one of the primary terms of 22 = 4, though
it will occur as a primary term of other theorems of PA.

• If ZF is extended with the constant ‘∅’ and the closed function term ‘{∅}’,
then the primary terms of the theorem {∅} ∈ {{∅}} are ‘{∅}’, ‘∈’, and ‘{{∅}}’.
The symbol ‘∅’ is not one of the primary terms of {∅} ∈ {{∅}}, though it
will occur as a primary term of other theorems of ZF.

Now we may extend our language with new terms that have been relativized
to a mathematical theory, as follows.

Let T be any mathematical theory formulated in accordance with (979.1)
– (979.9). Then for any formula ϕ such that `T ϕ, the closed, primary terms
of ϕ are the primary terms of ϕ other than a variable. (Since we’ve already
eliminated the open complex terms of T , such as open λ-expressions and open
function terms, the only remaining open terms of T are the variables; so even
if a variable α appears as a primary term of ϕ, α is not a closed primary term
of ϕ.) We then extend our language by stipulating:

(.2) Whenever `T ϕ, and τ is a closed primary term of ϕ, the expression τT
shall be a new (closed) term having the same type as τ .

Thus, depending on the formulation of T , we may introduce new terms of
the form τT , where τ is either (a) a constant of type i or of type 〈t1, . . . , tn〉
(n ≥ 1), (b) a closed n-ary function term of the form f (τ1, . . . , τn) (n ≥ 1), where
τ1, . . . , τn have types t1, . . . , tn, respectively, or (c) a closed λ-expression of the
form [λα1 . . .αn ϕ] (n ≥ 1), where α1, . . . ,αn have types t1, . . . , tn, respectively.
We shall not be adding any of the following: indexed variables, indexed open
function terms, indexed open λ-expressions, or indexed formulas.

With these stipulations we may now formulate and assert the Importation
Principle as a meta-axiom, i.e., a principle that describes conditions under
which new axioms of a certain form are to be added to our system:

(.3) Importation Principle. Whenever `T ϕ and ϕ∗ is the formula of object
theory that results by substituting τT for each closed primary term τ in
ϕ, then T |= ϕ∗ is an (analytically true) axiom.
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Given that we’ve extended our language with terms of the form τT , the formula
T |= ϕ∗ is an expression in the language of our system. Where ‘S’ (‘being a set’)
is a ZF relation constant of type 〈i〉 and the other symbols (and their types)
are obvious, here are some examples of importation pairs `T ϕ and T |= ϕ∗, in
which the second member of each pair may be regarded as axiomatic:

(.4) Examples of Importation:

(.a) `ZF ∅ ∈ {∅} (.b) `ZF {∅} ∈ {{∅}}
ZF |= ∅ZF ∈ZF {∅}ZF ZF |= {∅}ZF ∈ZF {{∅}}ZF

(.c) `ZF [λx x ∈ {∅}]∅ (.d) `ZF [λx∅ ∈ x]{∅}
ZF |= [λx x ∈ {∅}]ZF∅ZF ZF |= [λx∅ ∈ x]ZF{∅}ZF

(.e) `ZF [λF ∅F{∅}]∈ (.f) `ZF ∃x(x ∈ {∅})
ZF |= [λF ∅F{∅}]ZF∈ZF ZF |= ∃x(x ∈ZF {∅}ZF)

(.g) `ZF ¬∃x(Sx& x ∈ ∅) (.h) `ZF [λy ¬∃x(Sx& x ∈ y)]∅
ZF |= ¬∃x(SZFx& x ∈ZF ∅ZF) ZF |= [λy ¬∃x(Sx& x ∈ y)]ZF∅ZF

(.i) `ZF [λF ¬∃x(Fx& x ∈ ∅)]S (.j) `ZF [λF ¬∃x(Sx&Fx∅)]∈
ZF |= [λF ¬∃x(Fx& x ∈ ∅)]ZFSZF ZF |= [λF ¬∃x(Sx&Fx∅)]ZF∈ZF

(.k) `PA ∃x(2×2 = x) (.l) `PA [λF ∃x(2×2Fx)]= [F infix]
PA |= ∃x((2×2)PA =PA x) PA |= [λF ∃x(2×2Fx)]PA=PA

(.m) `
R
∀x(x > 4→ x > π) (.n) `

R
[λy ∀x(x > 4→ x > y)]π

R |= ∀x(x >
R

4
R
→ x >

R
π
R
) R |= [λy ∀x(x > 4→ x > y)]

R
π
R

(.o) `
R

[λyz ∀x(x > y→ x > z)]4π (.p) `
R

[λF ∀x(Fx4→ Fxπ)]>
R |= [λyz ∀x(x > y→ x > z]

R
4
R
π
R

R |= [λF ∀x(Fx4→ Fxπ)]
R
>
R

Now, as a consequence of our assumptions (979.2) and (979.9), we may derive
two metarules. Using the ϕ∗ notation introduced earlier, the first states that
(.5) if ϕ is not a theorem of theory T , then it is not a theorem of our theory that
T |= ϕ∗:

(.5) Metarule: If /̀ T ϕ, then /̀ T |= ϕ∗

The proof in the Appendix appeals to a metalemma contributed by Uri Nodel-
man.

The second metarule, the Rule of Closure for Truth in a Theory, intuitively
states that (.6) if ψ is a deductive consequence, in T , of formulas ϕ1, . . . ,ϕn, and
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if ϕ∗1, . . . ,ϕ
∗
n are all true in T , then ψ∗ is true in T :

(.6) Rule of Closure for Truth in a Theory
If ϕ1, . . . ,ϕn `T ψ and ` T |= ϕ∗1, and . . . and ` T |= ϕ∗n, then ` T |= ψ∗

It is important to remember that in this metarule, the claim ϕ1, . . . ,ϕn `T ψ is
a claim about derivability among formulas in T . So the metarule tells us if a
proof-theoretic fact about T and certain relevant deductive facts about T hold
in object theory, then another deductive fact about T holds in object theory.

Thus, we may reason normally, in object theory, among the formulas ϕ such
that T |= ϕ, though note that we are limited to reasoning only among those formu-
las that result from importing theorems expressible in the language of T .412

Now that we’ve extended our system by adding the second member of each
pair as an axiom, our next goal is to identify the abstract objects denoted by
the indexed terms of the form τT .

(982) Remark: Digression: Are the Imported Axioms Modally Fragile? I shall
leave it as an open question as to whether the axioms introduced by the Im-
portation Principle are modally fragile analytic truths. This is a deep ques-
tion about which I am of two minds. One reason for supposing that axioms
are modally fragile is that to instantiate our definitions and prove facts about
mathematics, we have to be given data that arises in the course of mathematical
practice. Mathematical practice involves contingent acts, utterances, and be-
haviors. Indeed, it is arguable that when mathematicians put forward a theory,
they are changing the expressive power of the the language of mathematics.
Putting forward a mathematical theory involves a special use of language. It
is not a situation in which terms with an antecedently fixed meaning are used
to make assertions, since the meanings of terms for abstract objects are not in-
dependent of our theory of those objects. Rather it is a situation in which the
meanings of the terms are being introduced implicitly, by asserting axioms or
a body of ‘definitive’ truths. There is an element of contingency to this, and to
the extent that there is, it may be best to mark the analytic truths resulting from
the Importation Principle as modally fragile. They will still be provably nec-
essary, but (a) the proof depend on the necessity of encoding (935.30), rather
than the derived Rule of Necessitation, and (b) the necessary truth that is es-
tablished will accordingly be marked as having been derived from a modally
fragile axiom.

On the other hand, it may be reasonable to ignore such contingencies in
the present context. After all, we’re analyzing mathematical language as it is

412Thus, from the fact Socrates is wise or it is not the case that Socrates is wise (Ws ∨ ¬Ws) and
the fact that ZF |= ∅ZF ∈ZF {∅}ZF, the Rule of Closure for Truth in a Theory does not imply that
ZF |= (Ws∨¬Ws), even though Ws∨¬Ws is deductively implied by ∅ZF ∈ZF {∅}ZF. For it is not the
case that ∅ ∈ {∅} `ZF (Ws∨¬Ws). Ws∨¬Ws is not expressible in T .
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now used and the history of that usage may not be relevant to the nature of
the objects postulated by the theory. It might be argued that the imported an-
alytic truths are necessarily (and always) true and that the proof of their neces-
sity (and omnitemporality) stems solely from the fact that they are encoding
claims and not from any modal fragility attaching to a contingent change in
the expressive power of the language.

In any case, this is not a matter to be resolved here. Our system is prepared,
whether or not we mark these imported analytic truths as modally fragile (and
whether or not we tag any theorem derived from them with a ?).

15.6.2 Identifying Mathematical Individuals and Relations

(983) Axiom: The Reduction Axiom for Mathematical Individuals and Rela-
tions. The mathematical individuals and relations of a given theory may now
be identified theoretically as follows. Where T is any mathematical theory, τT
is any closed, well-defined term of type t added to the present theory in accor-
dance with (981.2), A! is a constant of type 〈t〉, and F is a variable to type 〈t〉,
then it is axiomatic that τT is the abstract object of type t that encodes just the
properties F such that, in theory T , τT exemplifies F:

(.1) Reduction Axiom: τT = ıx(A!x&∀F(xF ≡ T |= FτT ))

Here are instances of (.1) that identify mathematical individuals; they derive
from the examples in (981.4), where the types on the expressions are obvious:

• ∅ZF = ıx(A!x&∀F(xF ≡ ZF |= F∅ZF))

• {∅}ZF = ıx(A!x&∀F(xF ≡ ZF |= F{∅}ZF))

• 4PA = ıx(A!x&∀F(xF ≡ PA |= F4PA))

• (2×2)PA = ıx(A!x&∀F(xF ≡ PA |= F(2×2)PA))

• π
R

= ıx(A!x&∀F(xF ≡ R |= Fπ
R
))

Here are some instances of (.1) that identify some of the primitive mathemati-
cal relations of type 〈i, i〉 and 〈i〉 involved in the examples in (981.4):

• ∈ZF = ıx(A!x&∀F(xF ≡ ZF |= F∈ZF))

• SZF = ıx(A!x&∀F(xF ≡ ZF |= FSZF))

• =PA = ıx(A!x&∀F(xF ≡ PA |= F=PA))

• >
R

= ıx(A!x&∀F(xF ≡ R |= F>
R
))
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It should be clear that (a) the 1st, 3rd, and 4th relations identified above have
type 〈i, i〉, (b) the 2nd has type 〈i〉, and (c) the types of all the other expressions
can be inferred from these.

Finally, we produce instances of (.1) that identify some of the (complex)
mathematical relations involved in the examples of (981.4):

• [λx x ∈ {∅}]ZF = ıx(A!x&∀F(xF ≡ ZF |= F[λx x ∈ {∅}]ZF)) type: 〈i〉

• [λF ∅F{∅}]ZF = ıx(A!x&∀G(xG ≡ ZF |= G[λF F∅{∅}]ZF)) type: 〈〈i, i〉〉

• [λyz ∀x(x > y→ x > z]
R

=
ıx(A!x&∀F(xF ≡ R |= F[λyz ∀x(x > y→ x > z]

R
)) type: 〈i, i〉

It is important to recognize that these are not definitions of the objects in ques-
tion but rather theoretical descriptions! The descriptions are well-defined be-
cause we’ve established that for each condition ϕ on properties with no free xs,
there is a unique abstract object x that encodes just the properties satisfying ϕ.
So the identity of the mathematical object in each case is ultimately secured by
our ordinary mathematical judgements of the form T |= Fx, which themselves
are grounded from facts of the form `T Fx.413

15.6.3 Theorems Governing Mathematical Entities

We now examine some consequences of (a) the new axioms that result from the
Importation Principle (981), (b) the instances of the Reduction Axiom (983).
We use these to derive general and particular facts about mathematical entities.

(984) Theorems: The Equivalence Principle and its Consequences. For any
mathematical theory T and closed term τT of T of any type t, we may derive,
as a general principle, that (.1) τT F if and only if (the proposition that) FτT is
true in T :

(.1) Equivalence Principle: τT F ≡ T |= FτT

Clearly, the variable F in this principle will depend on the type of τT , and
so will have type 〈t〉 whenever τT is a term of type t. It should be observed
that since T |= FτT is an encoding claim, it is a necessary truth when true. So
although this theorem is derivable by modally strict means, if it should turn
out that the data imported in (981.4) are best understood as modally fragile

413The above identifications corrects the procedure in Zalta 2000b (Á4–6) and 2006b (676–7).
In Zalta 2000b, we failed to index the λ-expressions; it wasn’t yet clear that these should be inter-
preted as abstract properties and relations and so needed to be indexed to their respective theories.
In Zalta 2006b, we mistakenly used the indexed terms {∅ZF} instead of {∅}ZF. And on 677, we used
the term [λx x ∈ {∅ZF}] where we should have just used the term [λx x ∈ {∅}]. However, in 2006b,
we weren’t discussing the identity of mathematical relations, since the paper was focused on the
notions of essence and modality as they applied to mathematical objects.
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axioms, then any consequence of (.1) derived from such axioms will itself have
to be flagged as a ?-theorem. For the remainder of this section, however, we
may leave that question open, since the system is prepared for this eventuality.

The following encoding formulas are immediate consequences of (.1) and
the data, i.e., the new axioms in (981); each formula is followed by a reading
in natural language with ambiguous predication, which may be regarded as true
when the copula ‘has’ is interpreted to mean ‘encodes’ rather than ‘exempli-
fies’.

(.2) ∅ZF[λx x ∈ {∅}]ZF [by (.1) and (981.4.c)]
The ZF emptyset has the ZF property: being an element of the unit set of
the empty set.

(.3) {∅}ZF[λx∅ ∈ x]ZF [by (.1) and (981.4.d)]
The ZF unit set of the empty set has the ZF property: having the empty
set as a member.

(.4) ∈ZF[λF ∅F{∅}]ZF [by (.1) and (981.4.e)]
The ZF membership relation has the ZF property: being a relation that
relates the empty set to the unit set of the empty set.

(.5) ∅ZF[λy ¬∃x(Sx& x ∈ y)]ZF [by (.1) and (981.4.h)]
The ZF empty set has the ZF property: having no set as a member.

(.6) SZF[λF ¬∃x(Fx& x ∈ ∅)]ZF [by (.1) and (981.4.i)]
The ZF property of being a set has the ZF property: being a property
such that nothing exemplifying it is an element of the empty set.

(.7) ∈ZF[λG¬∃x(Sx&Gx∅)]ZF [by (.1) and (981.4.j)]
The ZF membership relation has the ZF property: being a relation that
no set bears to the emptyset.

(.8) =PA[λF ∃x(2×2Fx)]PA [F infix] [by (.1) and (981.4.l)]
The PA identity relation has the PA property: being a relation that relates
2× 2 to something.

(.9) π
R
[λy ∀x(x > 4→ x > y)]

R
[by (.1) and (981.4.n)]

The R number π has the R property: being an object than which every-
thing greater than 4 is greater.

(.10) >
R
[λF ∀x(xF4→ Fxπ)]

R
[by (.1) and (981.4.p)]

TheR greater-than relation has theR property: being a relation such that
everything that bears it to 4 bears it to π.

And if we suppose that the sentence has, in each case, been uttered in a context
that in which named mathematical theory is being discussed, then we can drop
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the theory-relative indices. Thus, (.2) becomes: the empty set has the property
being an element of the unit set of the empty set; and (.3) becomes: the unit set
of the empty set has the property having the empty set as a member; and so on.
I take it that this shows that the theory preserves the data, while at the same
time, makes it clear both as to what is denoted by the mathematical terms and
as to the conditions under which the claim is true.

(985) Remark: How Math Objects Encode Math Relations. It seems reasonable
to extend our systematization of n-ary encoding formulas so that we can state
conditions under which mathematical objects encode mathematical relations.
Axiom (935.29) asserts that an n-ary encoding formula x1 . . .xnF is true if and
only and each of the xi encodes [λy Fx1 . . .xi−1yxi+1 . . .xn], for 1 ≤ i ≤ n. Note
that when we imported (981.4.c) and (981.4.d), the following became provable:

∅ZF[λx x ∈ {∅}]ZF (984.2)

{∅}ZF[λx∅ ∈ x]ZF (984.3)

The conjunction of these two claims implies, by axiom (935.29), that ∅ZF and
{∅}ZF encode the relation ∈ZF, i.e., the following binary encoding formula of the
form xyF is now a theorem:

∅ZF{∅}ZF∈ZF

But notice also that we also imported (981.4.e), from which we proved:

∈ZF[λF ∅F{∅}]ZF (984.4)

Then the conjunction of (984.2) – (984.4) implies, by axiom (935.29), the fol-
lowing ternary encoding formula of the form xyzF:

∅ZF{∅}ZF∈ZF[λxyF Fxy]ZF

A similar move can be for more complex formulas, as follows.
When we imported (981.4.h) – (9814.j) and obtained (984.5) – (984.7), re-

spectively, we then know the conjunction:

∅ZF[λy¬∃x(Sx&x ∈ y)]ZF & SZF[λF¬∃x(Fx&x ∈ ∅)]ZF & ∈ZF[λG¬∃x(Sx&Gx∅)]ZF

But then by axiom (935.29), it follows that:

∅ZFSZF∈ZF[λyFG¬∃x(Fx&Gxy]T

In general, when `T ϕ and τ1, . . . , τn are the well-defined, closed terms occur-
ring in ϕ, we can prove, where the z1, . . . , zn are variables of the same type as
τ1T , . . . , τnT , respectively:

τ1T [λz1 ϕ
z1
τ1T ]T & . . . & τnT [λzn ϕ

zn
τnT ]T
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From this it follows by (935.29) that:

τ1T . . . τnT [λz1 . . . zn ϕ
z1 , ... , zn
τ1T ,...,τnT ]T

Thus, we have a proof that abstract mathematical objects encode abstract math-
ematical relations.

(986) Definition: What Is It To Be an Object of a Mathematical Theory? Since
we have taken a proof-theoretic approach to the analysis of mathematical lan-
guage, we do not take the view that the objects of a theory T are those elements
in the domain of the quantifiers of T . Rather, where x is a variable of any type
t such that t, 〈 〉, we can rest with the following definition: x is an object of T
just in case it is true in T that x has a property. Formally, where we also use F
as a variable of type 〈t〉:

(.1) ObjectOf (x,T ) ≡df ∃F(T |= Fx)

When x has type i, we may call x an individual object of T , and when x has
type t , i, i.e., when t is a type of the form 〈t1, . . . , tn〉 (n ≥ 1), we may call x a
relational object of T .

To see that (.1) yields the right results, consider the examples of the Impor-
tation Principle (981.4.c) and (981.4.e):

ZF |= [λx x ∈ {∅}]ZF∅ZF

ZF |= [λF ∅F{∅}]ZF∈ZF

From these, it follows, respectively, that:

∃F(ZF |= F∅ZF)

∃F(ZF |= F∈ZF)

From these last two axioms and (.1), we may infer both that ObjectOf (∅ZF,ZF)
and that ObjectOf (∈ZF,ZF), i.e., that ∅ZF is an individual object of ZF and that
∈ZF is a relational object of ZF.

Moreover, (.1) correctly implies that two relations and no individuals are
objects of the theory of dense, linear orderings without endpoints, which we
discussed in (979) above. Let’s call that theory D and import D into object
theory, so that the theorems of D become axioms of the present theory. Then
we know, for example:

D |= ∀x∀y∀z(x <D y & y <D z→ x <D z) (Transitivity)
D |= ∀x¬(x <D x) (Irreflexivity)
D |= ∀x∀y(¬(x=D y)→ (x <D y ∨ y <D x)) (Connectedness)
D |= ∀x∀y∃z(x <D z <D y) (Dense)
D |= ∀x∃y∃z(z <D x <D y) (No Endpoints)
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And we know that reflexivity and unrestricted substitution govern =D , i.e.,

D |= ∀x∀y(x=D y)
D |= ∀x∀y(x=D y→ (ϕ→ ϕ′)), where ϕ′ is the result of substituting zero
or more occurrences of y for x in ϕ

So the only two well-defined, closed terms of D are the two primitive notions
<D and =D , both of type 〈i, i〉. It should also be clear that since both < and =
are transitive in the theory D, the following are also the result of importing D:

D |= [λF ∀x∀y∀z(xFy & yFz→ xFz)]D<D

D |= [λF ∀x∀y∀z(xFy & yFz→ xFz)]D=D

Further, since the higher-order claims ∃F(F<) and ∃F(F=) are also theorems of
D, we know:

D |= ∃F(F<D )

D |= ∃F(F=D )

So (.1) correctly predicts that ObjectOf (<D ,D) and ObjectOf (=D ,D). And since
there are no closed and well-defined individual terms of D, we may conclude,
by inspection, that there is no individual term τ for which we may conclude
that ObjectOf (τ,D).

Though (.1) correctly represents the above facts, one should take care not
to mistakenly conclude that non-unique witnesses to existential claims of T
are objects of T . Nodelman & Zalta 2014 refined (.1) as follows, where x,y are
variables of any type t (t , 〈 〉) and F a variable of type 〈t〉:414

(.2) ObjectOf (x,T ) ≡df T |= ∀y(y,T x→∃F¬(Fx ≡ ¬Fy))

This identifies the individual and relational objects of a theory as those which
are are discernible in T . In that paper, we were concerned that someone might
mistakenly attempt to argue that, given (.1), our analysis of complex number
theory (C) would imply i

C
= −i

C
. The mistaken argument would begin by

observing that i and −i are indiscernible in complex analysis, by a known au-
tomorphism of the complex plane. Thus, any open, i-free formula ϕ(x) in C

holds of i if and only if it holds of −i. So it would appear that the following
accurately describes C:

414The definition that follows uses a different definiendum than the one used in Nodelman &
Zalta 2014. In that work, we identified a mathematical theory T with the structure T , since T
encodes all and only the (quantified) propositions that indicate which objects stand in which re-
lations. And so, instead of talking about the objects of the theory T , we talked instead about the
elements of the structure T . But the idea is the same and so we reproduce here the definition of the
elements of the structure T used in that paper, but now cast as a definition of the objects of the
theory T .
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(A) `
C
∀F(Fi ≡ F−i)

If so, then by the Importation Principle (981.3), it is a theorem of the present
theory that:

(B) C |= ∀F(Fi
C
≡ F−i

C
)

But is one were to assume that i
C

and −i
C

are objects of C and that this enti-
tles one to identify them as abstract objects, one might then use the Reduction
Axiom (983.1) and its consequence, the Equivalence Principle (984.1), to con-
clude:

(C) i
C
F ≡C |= Fi

C

(D) −i
C
F =C |= F−i

C

But (B), (C), and (D) would imply, in object theory, i
C

=−i
C

.415 But, this seems
to be in tension with the fact that C |= i

C
,
C
−i

C
, which follows from the fact

that `
C
i,−i by the Importation Principle (981.3).

The response in Nodelman & Zalta 2014 involved two steps, the first of
which turns out to be unnecessary given the second. The first step was to (.2)
instead of (.1) as the definition of the objects of a theory, so that for x to be
an object of T , then for any other distinct object y of T , some property distin-
guishes x and y. The second step was to challenge (B) as a logically perspicuous
(and ontologically relevant) theorem of C, on the grounds that the expressions
‘i’ and ‘−i’ in C aren’t well-defined. We wrote:

Indeed, we suggest that the correct procedure for interpreting the language
of C is as follows: before importation, eliminate the logically non-well-
defined term ‘i’ by replacing every theorem of the form ϕ(. . . i . . .) by a the-
orem of the form: ∃x(x2 + 1 = 0 &ϕ(. . .x . . .)); then import the result. We
suggest that this is the right procedure because mathematical practice here
really involves two steps: (1) add the axiom that asserts ∃x(x2 + 1 = 0),
and (2) eliminate the quantifier and introduce an arbitrary name for the
existentially quantified variable. Though a structuralist should be happy
enough with step (1), the use of arbitrary, non-well-defined names in step

415Consider an arbitrary property Q and assume i
C
Q. Then by (C):

(ϑ) C |=Qi
C

Now if we consider only derivability in C itself, then:

(ξ) ∀F(Fi ≡ F−i), Qi `
C
Q−i

It follows from (ϑ), (ξ) and (B) by the Rule of Closure (981.6) that C |= Q−i
C

. So by (D), −i
C
Q.

Hence i
C
Q → −i

C
Q. And by analogous reasoning, −i

C
Q → i

C
Q. So i

C
Q ≡ −i

C
Q. Since Q was

arbitrary, ∀G(i
C
G ≡ −i

C
G). But since by hypothesis i

C
and −i

C
are abstract objects (this is a

consequence of the Reduction Axiom), it would follow by the definition of abstract object identity
that i

C
= −i

C
.
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(2) is not justified ontologically. Though we are quite happy to allow math-
ematical practice to carry on in the usual way, our view is that a philoso-
pher may not appeal to that practice of using arbitrary names to generate
ontological problems. Nodelman & Zalta 2014, 70–71

This procedure for handling i and −i has now been subsumed by the normal-
ization methods for formulating mathematical theories described in (979.5).
These methods require us to replace axioms and theorems involving i or −i in
C with existentially quantified conjunctions of the kind described in the pas-
sage quoted above. Consequently, we don’t add iC and −iC to object theory as
uniquely definable terms subject to the Reduction Axiom, though we may rea-
son with them as long as they are considered arbitrary names to be discharged
by some use of Existential Elimination (939) [102].

So given the methods in (979.5), we are not forced to replace definition (.1)
with (.2). Our methods already ensure that i and −i don’t qualify as objects
of C. These methods don’t yield the axioms C |= i

C
,
C
−i

C
or C |= ∀F(Fi

C
≡

F−i
C

). We’ve eliminated the uses of ‘i’ and ‘−i
C

’ that might lead one to suppose
these terms pose and ontological problem. So we can rest with (.1). We can’t
instantiate (.1) with the expressions ‘i

C
’ or ‘−i

C
’ to conclude that ObjectOf (i

C
,C)

and ObjectOf (−i
C
,C), since we don’t have `

C
∃F(Fi) and `

C
∃F(F−i).

(987) Remark: A Note About Logical Completeness. Consider the Continuum
Hypothesis (CH), where this is the claim 2ℵ0 = ℵ1. Since it is logically true that
CH∨¬CH, we know:

`ZF (CH∨¬CH)

This implies, by the Importation Principle, that OT is extended with the fol-
lowing analytic truth:

ZF |=
(
(2ℵ0

ZF =ZF ℵ1ZF)∨¬(2ℵ0
ZF =ZF ℵ1ZF)

)
which we may abbreviate, for simplicity, as:

ZF |= (CHZF ∨¬CHZF)

However, derivability in ZF is not logically complete in the following sense:
`ZF (ϕ ∨ ψ) doesn’t imply the disjunction: either `ZF ϕ or `ZF ψ. CH is a case
in point. Even though `ZF (CH∨¬CH), the fact that CH is independent of the
axioms of ZF just means that /̀ ZF CH and /̀ ZF ¬CH. So it follows by metarule
(981.5) that both ¬ZF |= CHZF and ¬ZF |= ¬CHZF are theorems of our theory.
Thus, object theory has the following as a theorem:

ZF |= (CHZF ∨¬CHZF) &¬(ZF |= CHZF) &¬(ZF |= ¬CHZF)

And generally, incomplete theories yield theorems of the form:



898 CHAPTER 15. TYPED OBJECT THEORY AND ITS APPLICATIONS

ZF |= (ϕ ∨ψ) &¬(ZF |= ϕ) &¬(ZF |= ψ)

The fact that a disjunction is true-in-T doesn’t imply that one of the disjuncts
is true-in-T. Finally, it should be apparent that the theorem ¬ZF |= CHZF doesn’t
imply ZF |= ¬CHZF. This also offers a sense in which truth-in-T , is not logically
complete.

(988) Remark: Two Remarks. (1) Why are we indexing only the primary terms
when we import theorems of T into object theory? The reasons:

• If we index a term to T and then remove the index, then the result should
be something in the language of T and not something in object theory.
I.e., we should only index expressions that are expressions of T . Indexed
terms are part of the language of object theory, not part of the language
of T and if those indexed terms were to be subterms .

• Similarly, we don’t want to index λ-expressions of object theory. If we
indexed λ-expressions that contained indexed subterms, we would be
indexing an expression of object theory, not of the target mathematical
theory.

• We don’t want to apply β-Conversion to any indexed λ-expression, since
indexed λ-expression denote abstract relations. So this method removes
the temptation to think β-Conversion applies to indexed λ-expressions.

• It is also easier to read and understand.

(2) Why aren’t we analyzing ‘data’ containing open terms (e.g., open function
terms or open descriptions, and open λ-expressions)? The answer: we may
now consider it as legitimate, but with the understanding that no open term
is to be indexed and analyzed. We can consider `PA ∃z(z2 = 4) as data, import
this as PA |= ∃z(z2 =PA 4PA). But we shall not attempt to give an ‘open-ended’
analysis such as:

z2 = ıx(A!x&∀F(xF ≡ PA |= Fz2))

There is no data of the form PA |= Fz2.
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Appendix: Proofs of
Theorems and Metarules

NOTE: The items below numbered as (n), (n.m), or (n.m.a) refer to numbered
items in Part II. So, for example, references to item (9.1) do not refer to Chap-
ter 9.1, but rather to item (9.1), which occurs in Part II, Chapter 7.

(62.1) (Exercise)

(62.2) (Exercise)

(63.1) We establish the rule only for `. If ϕ is an element of Λ, then the one
element sequence ϕ is a proof of ϕ, by (59.2). ./

(63.2) We establish the rule only for `. If ϕ is an element of Γ , then the one
element sequence ϕ is a derivation of ϕ from Γ , by (59.1). ./

(63.3) We establish the rule only for `. If ` ϕ, then by definition (59.2), there
is a sequence of formulas every element of which is either a member of Λ or
a direct consequence of some of the preceding members of the sequence by
virtue of MP. Since Λ ⊆ Λ∪ Γ , there is a sequence of formulas every element
of which is either a member of Λ ∪ Γ or a direct consequence from some of
the preceding members of the sequence by virtue of MP. Hence, by definition
(59.1), Γ ` ϕ. ./

(63.4) (Exercise)

(63.5) We establish the rule only for `. Assume Γ1 ` ϕ and Γ2 ` (ϕ→ ψ). Then
there is a sequence χ1, . . . ,χn−1,ϕ (= S1) that is a derivation of ϕ from Γ1 and
there is a sequence θ1, . . . ,θm−1,ϕ→ ψ (= S2) that is a derivation of ϕ→ ψ from
Γ2. So the consider the sequence:

χ1, . . . ,χn−1,ϕ,θ1, . . . ,θm−1,ϕ→ ψ,ψ (S3)

Since every element of S1 and S2 is either an element of Λ∪ Γ1 ∪ Γ2 or follows
from preceding members by MP, the same holds for every member of the initial

1008
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segment of S3 up to and including ϕ→ ψ. Since the last member of S3 follows
from previous members by MP, we know that every element of S3 is either an
element of Λ∪ Γ1 ∪ Γ2 or follows from preceding members by MP. Hence, S3 is
a derivation of ψ from Γ1 ∪ Γ 2. This is a witness to Γ1,Γ2 ` ψ. ./

(63.6) (Exercise)

(63.7) We establish the rule only for `. Assume Γ ` ϕ and that Γ ⊆ ∆. Then
by the former, there is a sequence S ending in ϕ such that every member of
the sequence is either in Λ∪ Γ or follows from previous members by MP. But
since Γ ⊆ ∆, it follows that every member of S is either in Λ∪∆ or follows from
previous members by MP, i.e., ∆ ` ϕ. ./

(63.8) We establish the rule only for `. Assume Γ ` ϕ and ϕ ` ψ. By the former,
there is a sequence S1 = χ1, . . . ,χn−1,ϕ such that every member of the sequence
is either in Λ∪ Γ or follows from previous members by MP. By the latter, there
is a sequence S2 = θ1, . . . ,θm−1,ψ such that every member of the sequence is
either in Λ∪ {ϕ} or follows from previous members by MP. So consider, then,
the following sequence:

χ1, . . . ,χn−1,θ1, . . . ,θm−1,ψ (S3)

This sequence is the concatenation of the first n − 1 members of S1 with the
entire sequence S2. Since S1 and S2 are derivations, we know that all the χi
(1 ≤ i ≤ n − 1) and θj (1 ≤ j ≤ m − 1) are either elements of Λ ∪ Γ or follow
from two of the preceding members of the sequence by MP. The only potential
exceptions are possible occurrences ofϕ among the θjs. But note thatϕ follows
by MP from two members of χ1, . . . ,χn−1. Thus S3 is a derivation of ψ from Γ

and, hence, Γ ` ψ. ./

(63.9) We establish the rule only for `. Suppose Γ ` ϕ. Since the instances
of (38.1) are axioms, we know by (63.1) that ` ϕ → (ψ → ϕ), where ψ is any
formula. So by (63.3), we have Γ ` ϕ → (ψ → ϕ). From our initial hypothesis
and this last result, it follows by an instance of (63.5) (i.e., an instance in which
we (a) set both Γ1 and Γ2 in (63.5) to Γ and (b) set ψ in (63.5) to ψ → ϕ) that
Γ ` (ψ→ ϕ), where ψ is any formula. ./

(63.10) We establish the rule only for `. Suppose Γ ` (ϕ→ ψ). Since Γ ⊆ Γ ∪{ϕ},
it follows from (63.7) that:

(ϑ) Γ ∪ {ϕ} ` ϕ→ ψ

But since ϕ ∈ Γ ∪ {ϕ}, it follows by (63.2) that:

(ξ) Γ ∪ {ϕ} ` ϕ
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So from (ϑ) and (ξ), it follows by (63.5) (setting both Γ1 and Γ2 in (63.5) to Γ )
that Γ ∪ {ϕ} ` ψ, i.e., Γ ,ϕ ` ψ. ./

(63.11) (Exercise)

(66) Suppose (a) Γ ` ϕ, and (b) α doesn’t occur free in any formula in Γ . We
show by induction on the length of the derivation of ϕ from Γ that Γ ` ∀αϕ.

Base case. The derivation of ϕ from Γ is a one-element sequence, in which case
the sequence must be ϕ itself since a derivation of ϕ from Γ must end with ϕ.
Then by the definition of derivation from, (59.1), ϕ ∈ Λ ∪ Γ . So we have two
cases: (A) ϕ is an element of Λ, i.e., ϕ is one of the axioms asserted in Chapter
8, or (B) ϕ is an element of Γ .

Case A. ϕ ∈ Λ. Then ∀αϕ ∈ Λ, since we took the universal closures of
all our axioms as axioms, i.e., the conditional, if ϕ ∈ Λ, then ∀αϕ ∈ Λ,
governed our statement of the axioms. So, ∀αϕ ∈Λ∪ Γ , and so by (63.4),
it follows that Γ ` ∀αϕ.

Case B. ϕ ∈ Γ . Then, by hypothesis, α doesn’t occur free in ϕ. Con-
sequently, ϕ → ∀αϕ is an instance of axiom (39.4) meeting the condi-
tion that α doesn’t occur free in ϕ. So by (59.1), the sequence ϕ,ϕ →
∀αϕ,∀αϕ is a witness to Γ ` ∀αϕ, since every member of the sequence
is either a member of Λ ∪ Γ or is a direct consequence of two previous
members by MP.

Inductive Case. Suppose that the derivation ofϕ from Γ is a sequence of length
n, where n > 1. Then either ϕ ∈Λ∪ Γ or ϕ follows from two previous members
of the sequence, namely, ψ→ ϕ and ψ, by MP. If ϕ ∈Λ∪Γ , then using the same
reasoning as in the base case, Γ ` ∀αϕ. If ϕ follows from previous members
ψ → ϕ and ψ by MP, then by the definition of a derivation, we know that
Γ ` ψ → ϕ and Γ ` ψ, where these are derivations of length less than n. Since
our IH is that the theorem holds for all derivations of formulas from Γ of length
less than n, it follows that Γ ` ∀α(ψ→ ϕ) and Γ ` ∀αψ. So there is a sequence
S1 = χ1, . . . ,χi , where χi = ∀α(ψ → ϕ), that is a witness to the former and a
sequence S2 = θ1, . . . ,θj , where θj = ∀αψ, that is a witness to the latter. Now by
using an instance of axiom (39.3), we may construct the following sequence:

χ1, . . . ,χi ,θ1, . . . ,θj ,∀α(ψ→ ϕ)→ (∀αψ→∀αϕ),∀αψ→∀αϕ,∀αϕ (S3)

The antepenultimate member of S3 is an instance of axiom (39.3), and so an
element of Λ and hence of Λ∪ Γ . The penultimate member of S3 follows from
previous members (namely, the antepenultimate member and χi) by MP, and
the last member of S3 follows from previous members (namely, the penulti-
mate member and θj ) by MP. Hence, every element of S3 is either in Λ∪ Γ or
follows from previous members by MP. So Γ ` ∀αϕ. ./
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(68) Suppose Γ `� ϕ, i.e., that there is a modally-strict derivation of ϕ from Γ .
We show by induction on the length of the derivation that �Γ `� �ϕ, i.e., that
there is a modally strict derivation of �ϕ from �Γ .

Base Case. If n = 1, then the modally-strict derivation of ϕ from Γ consists of
a single formula, namely, ϕ itself. So by the definition of Γ `� ϕ (60), ϕ must
be in Λ� ∪ Γ . So we have two cases: (A) ϕ is in Λ� or (B) ϕ is in Γ .

Case A:ϕ ∈Λ�. Thenϕmust be a necessary axiom and so its necessitation
�ϕ is an axiom. So `� �ϕ by (63.1) and �Γ `� �ϕ by (63.3).426

Case B: ϕ ∈ Γ . Then �ϕ is in �Γ , by the definition of �Γ (68). Hence, by
(63.2), it follows that �Γ `� �ϕ.

Inductive Case. Suppose that the modally-strict derivation of ϕ from Γ is a
sequence S of length n, where n > 1. Then either ϕ ∈ Λ� ∪ Γ or ϕ follows
by MP from two previous members of the sequence, namely, ψ→ ϕ and ψ. If
ϕ ∈Λ�∪Γ , then using the reasoning in the base case, it follows that�Γ `� �ϕ. If
ϕ follows from previous members ψ→ ϕ and ψ by MP, then by the definition
of a modally-strict derivation, we know both that Γ `� ψ → ϕ and Γ `� ψ.
Consequently, since our IH is that the theorem holds for all such derivations of
length less than n, it implies:

(a) �Γ `� �(ψ→ ϕ)

(b) �Γ `� �ψ

Now since instances of the K schema (45.1) are necessary axioms (i.e., members
of Λ�), we know by (63.1):

`� �(ψ→ ϕ)→ (�ψ→ �ϕ)

So by (63.3), it follows that:

�Γ `� �(ψ→ ϕ)→ (�ψ→ �ϕ)

So by (63.5) (setting both Γ1 and Γ2 in (63.5) to Γ ), it follows from this and (a)
that:

�Γ `� �ψ→ �ϕ

And again by (63.5), it follows from this and (b) that:

�Γ `� �ϕ ./

(74) Axiom (38.2) asserts:

426Note that (63.3) says that if `� ϕ, then Γ `� ϕ, for any Γ . So, in this case, we’ve substituted �Γ
for Γ in (63.3). The clash of variables is not an egregious one.
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ϕ→ (ψ→ χ)→ ((ϕ→ ψ)→ (ϕ→ χ))

If we let ϕ in the above be ϕ, let ψ in the above be (ϕ → ϕ), and let χ in the
above be ϕ, then we obtain the following instance of (38.2):

(ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ))

But the following is an instance of (38.1):

ϕ→ ((ϕ→ ϕ)→ ϕ)

Since this latter is the antecedent of the former, we may apply MP to obtain:

(ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)

But now the following is also an instance of (38.1):

ϕ→ (ϕ→ ϕ)

By applying MP to our last two results we obtain:

ϕ→ ϕ ./

(75) Suppose Γ ,ϕ ` ψ. We show by induction on the length of a derivation of
ψ from Γ ∪ {ϕ} that Γ ` (ϕ→ ψ).

Base case. The derivation of ψ from Γ ∪ {ϕ} is a one-element sequence,
namely, ψ itself. Then by the definition of derivation from, (59.1), ψ ∈Λ∪Γ∪{ϕ}.
So we have two cases: (A) ψ is an element of Λ∪ Γ , i.e., ψ is one of the axioms
asserted in Chapter 8 or an element of Γ , or (B) ψ = ϕ.

Case A. ψ ∈ Λ ∪ Γ . Then by (59.1), Γ ` ψ. Since the instances of (38.1)
are axioms governing conditionals, we know ` (ψ → (ϕ → ψ)), by (63.1). So,
by (63.3), it follows that Γ ` (ψ → (ϕ → ψ)). Hence by (63.5), it follows that
Γ ` (ϕ→ ψ).

Case B. ψ = ϕ. Then by (74), we know ` (ψ→ ψ). So, ` (ϕ→ ψ), and hence,
by (63.3), it follows that Γ ` (ϕ→ ψ).

Inductive Case. The derivation of ψ from Γ ∪ {ϕ} is a sequence of length
n, where n > 1. Then either ψ ∈ Λ ∪ Γ ∪ {ϕ} or ψ follows from two previous
members of the sequence, namely, χ→ ψ and χ, by MP. If ψ ∈Λ∪ Γ ∪{ϕ}, then
using the same reasoning as in the base case, Γ ` (ϕ → ψ). If ψ follows from
previous members χ→ ψ and χ by MP, then since our IH is that the theorem
holds for all derivations of formulas from Γ of length less than n, it implies
both:

(a) Γ ` (ϕ→ χ)

(b) Γ ` (ϕ→ (χ→ ψ))
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Now since the instances of (38.2) are axioms governing conditionals, we know,
by (63.1):

` (ϕ→ (χ→ ψ))→ ((ϕ→ χ)→ (ϕ→ ψ))

So, by (63.3), it follows that:

Γ ` (ϕ→ (χ→ ψ))→ ((ϕ→ χ)→ (ϕ→ ψ))

From this and (b), it follows by (63.5) that:

Γ ` (ϕ→ χ)→ (ϕ→ ψ)

And from this last conclusion and (a), it follows that:

Γ ` (ϕ→ ψ) ./

(76.1) Assume:

(a) Γ1 ` ϕ→ ψ

(b) Γ2 ` ψ→ χ

So, by definition (59.1), there is a sequence, say S1, that is a witness to (a) and
a sequence, say S2, that is a witness to (b). Then consider the sequence S3

consisting of the members of S1, followed by the members of S2, followed by
ϕ → ψ, ψ → χ, ϕ, ψ, and ending in χ. It is not hard to show that this is a
witness to:

(ϑ) Γ1,Γ2,ϕ→ ψ,ψ→ χ,ϕ ` χ

since every element of S3 either: (a) is an element of Γ1, or (b) is an element of
Γ2, or (c) is just the formula ϕ→ ψ, ψ→ χ, or ϕ, or (d) follows from previous
members of the sequence by MP. By an application of the Deduction Theorem
to (ϑ), it follows that:

Γ1,Γ2,ϕ→ ψ,ψ→ χ ` ϕ→ χ

By an application of the Deduction Theorem to the above, and another appli-
cation to the result, we obtain:

(ξ) Γ1,Γ2,` (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ))

But from (a) and (b), respectively, it follows by (63.7) that:

(c) Γ1,Γ2 ` ϕ→ ψ

(d) Γ1,Γ2 ` ψ→ χ

So from (ξ) and (c) it follows by (63.5) that:
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(ζ) Γ1,Γ2,` (ψ→ χ)→ (ϕ→ χ)

And from (ζ) and (d) it again follows by (63.5) that Γ1,Γ2 ` ϕ→ χ. ./

(76.2) (Exercise)

(76.3) Consider the premise set Γ = {ϕ → ψ, ψ → χ, ϕ }. From the first and
third members of Γ , we obtain ψ by MP. From ψ and the second member of
Γ , we obtain χ by MP. Hence, the sequence consisting of the members of Γ

followed by ψ and χ constitute a witness to ϕ → ψ, ψ → χ, ϕ ` χ. So by the
Deduction Theorem (75), ϕ→ ψ, ψ→ χ ` ϕ→ χ. ./

(76.4) Consider the premise set Γ = {ϕ→ (ψ→ χ), ψ, ϕ }. Then from the first
and third members of Γ , we obtain ψ→ χ by MP, and from this and the second
member of Γ we obtain χ by MP. Hence the sequence consisting of the members
of Γ followed by ψ → χ and χ constitute a witness to ϕ → (ψ → χ), ψ, ϕ ` χ.
So by the Deduction Theorem (75), it follows that ϕ→ (ψ→ χ), ψ ` ϕ→ χ. ./

(77.1) As an instance of (38.3), we have: (¬ϕ → ¬¬ϕ) → ((¬ϕ → ¬ϕ) → ϕ).
Moreover, by (74), we have ¬ϕ → ¬ϕ. Then by (76.4), it follows that (¬ϕ →
¬¬ϕ)→ ϕ. But (¬¬ϕ → (¬ϕ → ¬¬ϕ)) is an instance of (38.1). So it follows
that ¬¬ϕ→ ϕ, by (76.1). ./

(77.2) As an instance of (38.3), we have: (¬¬¬ϕ → ¬ϕ) → ((¬¬¬ϕ → ϕ) →
¬¬ϕ). Moreover, as an instance of (77.1), we know: ¬¬¬ϕ → ¬ϕ. So by MP,
it follows that (¬¬¬ϕ → ϕ) → ¬¬ϕ. But as an instance of (38.1), we know:
ϕ→ (¬¬¬ϕ→ ϕ). So by (76.1), it follows that ϕ→¬¬ϕ. ./

(77.3) Assume ¬ϕ for conditional proof. Now assumeϕ for a conditional proof
nested within our conditional proof. Then since ϕ→ (¬ψ→ ϕ) is an instance
of axiom (38.1), it follows from this and our second assumption that:

(a) ¬ψ→ ϕ

Moroever, since ¬ϕ → (¬ψ → ¬ϕ) is an instance of axiom (38.1), it follows
from this and our first assumption that:

(b) ¬ψ→¬ϕ

But as an instance of axiom (38.3), we know:

(c) (¬ψ→¬ϕ)→ ((¬ψ→ ϕ)→ ψ)

From (b) and (c), it follows that (¬ψ → ϕ) → ψ. And from this and (a), it
follows that ψ. So, discharging the premise of our nested conditional proof, it
follows thatϕ→ ψ. Hence, discharging the premise of our original conditional
proof, it follows that ¬ϕ→ (ϕ→ ψ). ./
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(77.4) We establish (¬ψ → ¬ϕ) → (ϕ → ψ) by conditional proof. Assume
¬ψ → ¬ϕ. Then as an instance of (38.3), we know: (¬ψ → ¬ϕ) → ((¬ψ →
ϕ) → ψ). So it follows that (¬ψ → ϕ) → ψ. But as an instance of (38.1), we
know: ϕ→ (¬ψ→ ϕ). So by hypothetical syllogism (76.1) from from our last
two results, it follows that ϕ→ ψ. So, by conditional proof (CP), it follows that
(¬ψ→¬ϕ)→ (ϕ→ ψ). ./

(77.5) We establish (ϕ→ ψ)→ (¬ψ→¬ϕ) by conditional proof. Assume ϕ→
ψ. We know by (77.1) that ¬¬ϕ → ϕ. So it follows by hypothetical syllogism
(76.3) that:

(a) ¬¬ϕ→ ψ

But by (77.2), we know:

(b) ψ→¬¬ψ

So it follows from (a) and (b) by hypothetical syllogism (76.3) that ¬¬ϕ →
¬¬ψ. But as an instance of (77.4), we know: (¬¬ϕ → ¬¬ψ) → (¬ψ → ¬ϕ).
Hence it follows that ¬ψ → ¬ϕ. So, by conditional proof (CP), it follows that
(ϕ→ ψ)→ (¬ψ→¬ϕ). ./

(77.6) Assume ϕ→¬ψ, to show ψ→¬ϕ by conditional proof. Now assume ψ
for a conditional proof nested within our conditional proof. From ψ it follows
by (77.1) that ¬¬ψ. Then from ϕ→¬ψ and ¬¬ψ, it follows by Modus Tollens
that ¬ϕ. So discharging the premise of our nested conditional proof, we have
ψ → ¬ϕ. And discharging the premise of our original conditional proof, it
follows that (ϕ→¬ψ)→ (ψ→¬ϕ). ./

(77.7) (Exercise)

(77.8) – (77.9) Follow the proofs in Mendelson 1964 [1997, 39–40, Lemma
1.11(f) – (g)]. ./

(77.10) (Exercise)

(78.1) – (78.2) (Exercises)

(79.1) Assume Γ1 ` (ϕ→ ψ) and Γ2 ` ¬ψ. Since Γ1 ⊆ Γ1 ∪ Γ2, it follows from the
first assumption by (63.7) that:

(a) Γ1,Γ2 ` (ϕ→ ψ)

Since Γ2 ⊆ Γ1 ∪ Γ2, it follows from the second assumption by (63.7) that:

(b) Γ1,Γ2 ` ¬ψ

Now as an instance of (77.5), we know:

` (ϕ→ ψ)→ (¬ψ→¬ϕ)
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and hence by (63.3) that:

Γ1,Γ2 ` (ϕ→ ψ)→ (¬ψ→¬ϕ)

So by applying (63.5) to this last result and (a), we have: Γ1,Γ2 ` ¬ψ→¬ϕ. And
by applying (63.5) to this result and (b), we have Γ1,Γ2 ` ¬ϕ. ./

(79.2) (Exercise)

(80.1) (→) Assume:

(ϑ) Γ ` ϕ→ ψ

But given (77.5), we know:

` (ϕ→ ψ)→ (¬ψ→¬ϕ)

and hence by (63.3) that:

Γ ` (ϕ→ ψ)→ (¬ψ→¬ϕ)

Hence by applying (63.5) to this last result and (ϑ), we obtain Γ ` (¬ψ→¬ϕ).
(←) By symmetric reasoning, but using (77.4). ./

(80.2) (→) Assume:

(ϑ) Γ ` ϕ→¬ψ

But given (77.6), we know:

` (ϕ→¬ψ)→ (ψ→¬ϕ)

and hence by (63.3) that:

Γ ` (ϕ→¬ψ)→ (ψ→¬ϕ)

Hence by applying (63.5) to this last result and (ϑ), we obtain Γ ` (ψ → ¬ϕ).
(←) By symmetric reasoning, but using (77.7) ./

(81.1) Assume Γ1,¬ϕ ` ¬ψ and Γ2,¬ϕ ` ψ. By analogy with the first step of the
reasoning in (79.1), it follows by (63.7) that both:

(a) Γ1,Γ2,¬ϕ ` ¬ψ

(b) Γ1,Γ2,¬ϕ ` ψ

Now, by the Deduction Theorem (75), it follows from (a) and (b), respectively,
that:

(ϑ) Γ1,Γ2 ` (¬ϕ→¬ψ)

(ζ) Γ1,Γ2 ` (¬ϕ→ ψ)
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But the instances of (38.3) are axioms and hence theorems, by (63.1). So we
know:

` (¬ϕ→¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

From this result it follows by (63.3) that:

(ξ) Γ1,Γ2 ` (¬ϕ→¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

But by apply (63.5) to (ϑ) and (ξ); to the result and (ζ), apply (63.5) again. It
follows that Γ1,Γ2 ` ϕ. ./

(81.2) (Exercise)

(83) As an instance of (74), we know ¬ϕ → ¬ϕ. But by the definition of ∨
(18.2) and the Rule of Definition by Equivalence (72), we also know that the
following is a theorem:

(¬ϕ→¬ϕ)→ (ϕ ∨¬ϕ)

Hence, by Modus Ponens, ϕ ∨¬ϕ. ./

(84) By the definition of & (18.1) and the Rule of Definition by Equivalence
(72), we know that the following is a theorem:

(ϕ&¬ϕ)→¬(ϕ→¬¬ϕ) ./

If we label ϕ&¬ϕ as A, and label ϕ→¬¬ϕ as B, then the theorem displayed
above has the form A → ¬B. Now if we can show A → B, then by a form
of Reductio Ad Absurdum, namely, the Variant of (81.2), it follows that ¬A,
which is what we want to prove. But we already know B, by theorem (77.2),
which asserts ϕ → ¬¬ϕ. And axiom (38.1) tells us if something is already
established, then any claim whatsoever implies it. Hence A→ B. ./

(85.1) For conditional proof, assume ϕ & ψ, to show ϕ. Now by definition
of & (18.1) and the Rule of Definition by Equivalence (72), we know that
(ϕ & ψ) → ¬(ϕ → ¬ψ) is a theorem. From this and our assumption, it fol-
lows that ¬(ϕ→ ¬ψ). Hence, by axiom (38.1), everything implies ¬(ϕ→ ¬ψ)
and so, in particular, we may conclude:

(ϑ) ¬ϕ→¬(ϕ→¬ψ)

Independently, assume ¬ϕ, for a nested conditional proof. Then by (77.3), it
follows that ϕ implies any formula, and so ϕ → ¬ψ. Hence, by our nested
conditional proof:

(ξ) ¬ϕ→ (ϕ→¬ψ)
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From (ϑ) and (ξ) we may infer ϕ, by a form of Reductio Ad Absurdum, namely,
the Variant of (81.1). So, by conditional proof, (ϕ&ψ)→ ϕ. ./

(85.2) For conditional proof, assume ϕ & ψ, to show ψ. Now by definition
of & (18.1) and the Rule of Definition by Equivalence (72), we know that
(ϕ & ψ) → ¬(ϕ → ¬ψ) is a theorem. From this and our assumption, it fol-
lows that ¬(ϕ→ ¬ψ). Hence, by axiom (38.1), everything implies ¬(ϕ→ ¬ψ)
and so, in particular, we may conclude:

(ϑ) ¬ψ→¬(ϕ→¬ψ)

Independently, assume ¬ψ, for a nested conditional proof. Then by axiom
(38.1), it follows that ϕ→¬ψ. Hence, by our nested conditional proof:

(ξ) ¬ψ→ (ϕ→¬ψ)

From (ϑ) and (ξ) we may infer ψ, by a form of Reductio Ad Absurdum, namely,
the Variant of (81.1). So, by conditional proof, (ϕ&ψ)→ ψ. ./

(85.3) By (77.2), we know:

(A) ϕ→¬¬ϕ

Independently, by (77.3), we know:

(B) ¬¬ϕ→ (¬ϕ→ ψ)

So by hypothetical syllogism (76.3) from (A) and (B), it follows that:

(C) ϕ→ (¬ϕ→ ψ)

Independently, by definition of ∨ (18.2) and the Rule of Definition by Equiva-
lence (72), we also know the following is a theorem:

(D) (¬ϕ→ ψ)→ (ϕ ∨ψ)

So by hypothetical syllogism from (C) and (D) it follows that ϕ→ (ϕ ∨ψ). ./

(85.4) (Exercise)

(85.5) Assume ϕ, for conditional proof, to show ψ → (ϕ &ψ). Assume ψ, for
conditional proof, to show ϕ&ψ. By definition of & (18.1) and the Rule of Def-
inition by Equivalence (72), we know that ¬(ϕ→¬ψ)→ (ϕ&ψ) is a theorem.
So, to show ϕ&ψ, it suffices by Modus Ponens to show ¬(ϕ→¬ψ). We prove
the latter by appealing to the Variant version of Reductio Ad Absurdum (81.2)
and, in particular, by showing both:

(ϑ) (ϕ→¬ψ)→¬ψ

(ξ) (ϕ→¬ψ)→ ψ
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We establish (ϑ) by conditional proof. Suppose ϕ→¬ψ. Then from this and ϕ
(our first assumption), it follows that ¬ψ. We establish (ξ) immediately from
our second assumption, ψ, by axiom (38.1). Hence, by reductio, ¬(ϕ → ¬ψ),
which sufficed to show ϕ&ψ. And so by conditional proof, ψ→ (ϕ&ψ), and
by conditional proof, ϕ→ (ψ→ (ϕ&ψ)). ./

(85.6) Let A be (ϕ&ϕ) and B be ϕ. Then since we want to prove A ≡ B, we may
use the following proof strategy:

1. Prove A→ B

2. Prove B→ A

3. Independently, we know that theorem (85.5) has an instance of the form:

(A→ B)→ ((B→ A)→ ((A→ B) & (B→ A)))

4. From steps 1, 2 and 3, it follows that:

(A→ B) & (B→ A)

5. By definition of ≡ (18.3) and the Rule of Definition by Equivalence (72),
we know the following is a theorem:

((A→ B) & (B→ A))→ (A ≡ B)

6. From steps 4 and 5 it follows that A ≡ B

Given this strategy, it remains only to show steps 1 and 2. Step 1 is easy, since
(ϕ&ϕ)→ ϕ is an instance of (85.1). We prove step 2 by conditional proof. So
assume ϕ. Then as an instance of (85.5), we know ϕ→ (ϕ→ (ϕ&ϕ)). But then
by two applications of Modus Ponens, it follows that ϕ&ϕ. ./

(85.7) Let A be (ϕ ∨ϕ) and B be ϕ. Then since we want to prove A ≡ B, we
may use the proof strategy we used in (85.6). So it remains only to show steps
1 and 2.

We prove step 1 by conditional proof. So assume ϕ ∨ϕ. Now by definition of
∨ (18.2) and the Rule of Definition by Equivalence (72), we know (ϕ ∨ϕ)→
(¬ϕ → ϕ) is a theorem. Hence ¬ϕ → ϕ. But independently we know, as an
instance of theorem (74), that ¬ϕ→¬ϕ. So it follows from our last two results
that ϕ, by Reductio Ad Absurdum (81.1).

Step 2 is easy, since it is an instance of (85.3). ./

(86.1) Assume Γ1 ` ϕ and Γ2 ` ψ. Note independently, by theorem (85.5), that
ϕ→ (ψ→ (ϕ&ψ)). Hence, Γ1 ` ϕ→ (ψ→ (ϕ&ψ)), by (63.3). So from our first
assumption and this last result, it follows by (63.5) that Γ1 ` ψ→ (ϕ&ψ). But
from this and our second assumption, it follows that Γ1,Γ2 ` ϕ &ψ, by (63.5).
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./ [NOTE: In the usual manner, the justification of the `� form of the rule is
analogous.]

(86.2.a) – (86.3.b) (Exercises)

(86.3.c) Assume:

(A) Γ1 ` ϕ ∨ψ

(B) Γ2 ` ϕ→ χ

(C) Γ3 ` ψ→ θ

We want to show Γ1,Γ2,Γ3 ` χ ∨ θ. Note that by definition of ∨ (18.2) and the
Rule of Definition by Equivalence (72), we know ` (ϕ ∨ ψ) → (¬ϕ → ψ) is a
theorem. Hence by (63.3):

(D) Γ1 ` (ϕ ∨ψ)→ (¬ϕ→ ψ)

So from (A) and (D) it follows by (63.5) that:

(E) Γ1 ` ¬ϕ→ ψ

Now independently, it follows from (B) by a rule of contraposition (80.1) that:

(F) Γ2 ` ¬χ→¬ϕ

But then from (F) and (E) it follows by a corollary to the Deduction Theorem,
namely (76.1), that:

(G) Γ2,Γ1 ` ¬χ→ ψ

But from (G) and (C) it follows by the same corollary that:

(H) Γ2,Γ1,Γ3 ` ¬χ→ θ

But we know, by definition of ∨ (18.2) and the Rule of Definition by Equiva-
lence (72), that ` (¬χ→ θ)→ (χ∨θ) is a theorem. So by (63.3):

(I) Γ2,Γ1,Γ3 ` (¬χ→ θ)→ (χ∨θ)

So from (H) and (I) it follows by (63.5) that Γ2,Γ1,Γ3 ` χ∨θ. But given (63.11),
the order in which premise sets are listed makes no difference, and so Γ1,Γ2,Γ3 `
χ∨θ. ./

(86.4.a) Assume Γ1 ` ϕ ∨ ψ, Γ2 ` ϕ → χ, and Γ3 ` ψ → χ. We want to show
Γ1,Γ2,Γ3 ` χ. Note that if we let θ in (86.3.c) be χ, then we know:

If Γ1 ` ϕ ∨ψ, Γ2 ` ϕ→ χ, and Γ3 ` ψ→ χ, then Γ1,Γ2,Γ3 ` χ∨χ.

Hence it follows that:
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(ϑ) Γ1,Γ2,Γ3 ` χ∨χ

Independently, by the idempotency of ∨ (85.7), it is a theorem that (χ∨χ) ≡ χ.
By definition of ≡ (18.3) and the Rule of Definition by Equivalence (72), this
implies ((χ ∨ χ) → χ) & (χ → (χ ∨ χ)). So by Rule &E (86.2), it follows that
(χ∨χ)→ χ. Since this is a theorem, we know ` (χ∨χ)→ χ, and so by (63.3),
it follows that:

(ξ) Γ1,Γ2,Γ3 ` (χ∨χ)→ χ

So, from (ξ) and (ϑ), it follows that Γ1,Γ2,Γ3 ` χ, by (63.5). ./

(86.4.b) – (86.4.c) (Exercises)

(87.1) Assume Γ ,¬ϕ ` ψ &¬ψ. But ¬(ψ &¬ψ) is a theorem, i.e., ` ¬(ψ &¬ψ),
by (84). Hence, by (63.3), ¬(ψ & ¬ψ) follows from any premise set. So, in
particular: Γ ,¬ϕ ` ¬(ψ &¬ψ). But then, by our original form of Reductio Ad
Absurdum (81.1), it follows that Γ ` ϕ. ./

(87.2) – (87.6) (Exercises)

(88.1) – (88.2.f) (Exercises)

(88.3.a) By the definition of ≡ (18.3) and the Rule of Definition by Equivalence
(72), it suffices to show: (ϕ→ ϕ) & (ϕ→ ϕ). But ϕ→ ϕ is a theorem (74), and
so by the idempotence of & (85.6), it follows that (ϕ→ ϕ) & (ϕ→ ϕ). ./

(88.3.b) (Exercise)

(88.3.c) We use reductio (87.2) to prove ¬(ϕ ≡ ¬ϕ), by assuming ϕ ≡ ¬ϕ and
deriving a contradiction of the form χ&¬χ. It follows from our assumption,
by the definition of ≡ (18.3) and the Rule of Definition by Equivalence (72),
that:

(ϕ→¬ϕ) & (¬ϕ→ ϕ)

So by &E, we know both:

(ϑ) ϕ→¬ϕ

(ξ) ¬ϕ→ ϕ

Note that (ϕ → ¬ϕ) → ((ϕ → ϕ) → ¬ϕ) is an instance of (77.10). From this
instance and (ϑ), it follows that (ϕ→ ϕ)→ ¬ϕ. But ϕ→ ϕ is a theorem (74).
Hence ¬ϕ. But from this last result and (ξ) it follows that ϕ. By Rule &I, we
may conclude ¬ϕ&ϕ and, by the commutativity of & (88.2.a), concludeϕ&¬ϕ,
which is a contradiction. ./

(88.4.a) – (88.8.h) (Exercises)
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(88.8.i) Assume ϕ ≡ (ψ & χ), for conditional proof, to show ψ → (ϕ ≡ χ). By
definition of ≡ and the Rule of Definition by Equivalence (72), our assumption
implies:

(ϕ→ (ψ&χ)) & ((ψ&χ)→ ϕ)

So by Rules &E (86.2.a) and (86.2.b), this last result implies:

(ϑ) ϕ→ (ψ&χ)

(ξ) (ψ&χ)→ ϕ

We want to show ψ→ (ϕ ≡ χ). So assume ψ, to show ϕ ≡ χ. By definition of ≡
and our Rule of Definition by Equivalence, it suffices to show (ϕ→ χ) & (χ→
ϕ). By Rule &I (86.1), it suffices to show each conjunct.

For the first conjunct, assume ϕ, for conditional proof. Then from ϕ and
(ϑ), it follows that ψ&χ. Hence, by Rule &E (86.2.b), χ.

For the second conjunct, assume χ, for conditional proof. From our as-
sumption ψ and our assumption χ, it follows by Rule &I that ψ&χ. Hence, by
(ξ), it follows that ϕ. ./

(89.1) – (89.3.f) (Exercises)

(90.1) [Note: As usual, we justify only the ` form of the rule; the proof of the
`� form is analogous.] Suppose ϕ ≡df ψ is an instance of a definition-by-≡.
Then by the Rule of Definition by Equivalence (72), we know both ` ϕ → ψ
and ` ψ → ϕ. So by (63.3), Γ ` ϕ → ψ and Γ ` ψ → ϕ. But then, by Rule &I
(86.1), it follows that:

(ϑ) Γ ` (ϕ→ ψ) & (ψ→ ϕ)

Independently, by the definition of ≡ and the Rule of Definition by Equiva-
lence, we know that ` ((ϕ→ ψ) & (ψ→ ϕ))→ (ϕ ≡ ψ). Hence, by (63.3):

(ξ) Γ ` ((ϕ→ ψ) & (ψ→ ϕ))→ (ϕ ≡ ψ)

Hence, from (ϑ) and (ξ), it follows by (63.5) that Γ ` ϕ ≡ ψ. ./

(90.2) Let ϕ ≡df ψ be an instance of a definition-by-≡. Then by the Rule of
Equivalence by Definition (90.1) we know Γ ` ϕ ≡ ψ. Now assume Γ ` ϕ.
Hence by biconditional syllogism, i.e., Rule ≡E (89.3.a), it follows that Γ ` ψ. ./

(90.3) (Exercise)

(91.1) Assume Γ ` ϕ ≡ (ψ&χ) and Γ ` ψ, to show Γ ` ϕ ≡ χ. Then by Rule &I
(86.1), it follows that:

(ϑ) Γ ` (ϕ ≡ (ψ&χ)) &ψ
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Independently, it follows from (88.8.i) and the relevant instance of (88.7.b)
that:

((ϕ ≡ (ψ&χ)) &ψ)→ (ϕ ≡ χ)

From this it follows by (63.3) that:

(ξ) Γ ` ((ϕ ≡ (ψ&χ)) &ψ)→ (ϕ ≡ χ)

From (ϑ) and (ξ) it follows that Γ ` ϕ ≡ χ. ./

(91.2) (Exercise)

(93.1) Assume Γ1 ` ∀αϕ and Γ2 ` τ↓. Assume further that τ is substitutable for
α in ϕ. By (63.7), it follows both that:

(a) Γ1,Γ2 ` ∀αϕ

(b) Γ1,Γ2 ` τ↓

Independently, since we’ve taken instances of (39.1) as axioms, we know by
(63.1) that:

` ∀αϕ→ (τ↓→ ϕτα)

Hence by (63.3), we know:

Γ1,Γ2 ` ∀αϕ→ (τ↓→ ϕτα)

From this, (a) and (63.5), it follows that:

Γ1,Γ2 ` τ↓→ ϕτα

But from this, (b) and (63.5), it follows that Γ1,Γ2 ` ϕτα. ./

(93.1) [Proof of the Variant form of the rule.] Assume ∀αϕ and τ↓, where τ is
substitutable for α in ϕ. Then by (86.1), it follows that:

∀αϕ& τ↓

However, by applying an appropriate instance of Exportation (88.7.b) to our
first quantifier axiom (39.1), we know that:

(∀αϕ& τ↓)→ ϕτα

So by MP, ϕτα . Thus, we’ve established ∀αϕ, τ↓ ` ϕτα. ./

(93.2) Assume that Γ ` ∀αϕ, that τ is substitutable for α in ϕ, and that τ is
either a primitive constant, a variable, or a core λ-expression. Then τ↓ is an
axiom, by (39.2). So by (63.1), ` τ↓, and hence, Γ ` τ↓ by (63.3). So by (93.1)
(with Γ = Γ1 = Γ2), it follows that Γ ` ϕτα . ./



1024

(93.2) [Proof of the Variant form of the rule.] Assume ∀αϕ and suppose both
that τ is substitutable for α in ϕ and that τ is a primitive constant, a variable,
or a core λ-expression. Then, by (39.2), we know τ↓. Once we conjoin ∀αϕ and
τ↓ by &I, it follows by reasoning used in the proof of the preceding theorem
that ϕτα . Hence we’ve established that ∀αϕ ` ϕτα. ./

(95.1) Assume ∀αϕ, that τ is substitutable for α in ϕ, and that τ is either a
primitive constant, a variable, or a core λ-expression. Then by Rule ∀E (93.2),
it follows that ϕτα . So by conditional proof (CP), ∀αϕ→ ϕτα. ./

(95.2) Assume ∀α(ϕ→ ψ), where α is not free inϕ. Now assumeϕ for a nested
conditional proof. Since α isn’t free in ϕ, it follows from ϕ by axiom (39.4) that
∀αϕ. So from our initial assumption ∀α(ϕ→ ψ) and this last result, it follows
by axiom (39.3) that ∀αψ. Hence we may discharge the premise of our nested
conditional proof to conclude ϕ→∀αψ, and then discharge the premise of our
initial conditional proof to conclude that: ∀α(ϕ→ ψ)→ (ϕ→∀αψ).427 ./

(95.3) (Exercise)

(96) Follow the proof of Theorem 24F in Enderton 1972 [2001, 123–124]. All
of the results needed to complete the proof are in place. [Warning: Note that
in the proof of this theorem, Enderton uses ϕcy to be the result of replacing
every occurrence of the constant c in ϕ with an occurrence of the variable y.
By contrast, we use ϕατ to be the result of replacing every occurrence of the
constant τ in ϕ with an occurrence of the variable α.] ./

(97.1) We need not prove this lemma by induction; the recursive definitions of
ϕτα and substitutable for carry the following reasoning through all the inductive
cases. Assume β is substitutable for α in ϕ and β doesn’t occur free in ϕ.
There are two cases. In the case where ϕ has no free occurrences of α, then
by the definition of substitutable for, β is trivially substitutable for α in ϕ. In
that case, however, ϕβα just is ϕ and so (ϕβα)

α
β = ϕαβ . Moreover by hypothesis, β

doesn’t occur free in ϕ. So by an analogous fact, ϕαβ = ϕ. Hence (ϕβα)
α
β = ϕ.

In the case where α has at least one free occurrence in ϕ, then without loss
of generality, consider any free occurrence of α in ϕ. Since β is substitutable
for α in ϕ (by hypothesis), we know that β will not be bound when substituted
for α at this occurrence. Thus, β will be free at this occurrence in ϕ

β
α. And

since ϕ has no free occurrences of β (by hypothesis), we know that every free
occurrence of β in ϕβα replaced a free occurrence of α in ϕ. Thus no free occur-
rence of β in ϕβα falls under the scope of a variable binding operator that binds
α. Hence, α is substitutable for β in ϕβα .

Now we must show that (ϕβα)
α
β = ϕ. Suppose, for reductio, that (ϕβα)

α
β , ϕ.

Since substitution only changes the substituted variables, then there must be

427I’m indebted to Wes Anderson for noticing an error in a previous version of this proof.
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some occurrence of α in (ϕβα)
α
β that is not in ϕ or some occurrence of α in ϕ

that is not in (ϕβα)
α
β . But both cases lead to contradiction:

Case 1. Suppose there is an occurrence of α in (ϕβα)
α
β that is not inϕ. Then

there was an occurrence of β in ϕ that remained an occurrence of β in ϕβα
but was replaced by an occurrence of α in (ϕβα)

α
β . But if an occurrence of β

in ϕβα was replaced by an occurrence of α in (ϕβα)
α
β , then that occurrence

of β in ϕ
β
α had to be a free occurrence. But that occurrence of β must

have been a free occurrence in ϕ (had it been a bound occurrence, it
would have remained a bound occurrence in ϕβα). And this contradicts
the hypothesis that β doesn’t occur free in ϕ.

Case 2. Suppose there is an occurrence of α inϕ that is not in (ϕβα)
α
β . Then

there was an occurrence of α in ϕ that was replaced by an occurrence of
β in ϕβα which, in turn, remained an occurrence of β in (ϕβα)

α
β . But if that

occurrence of β remained an occurrence of β in the re-replacement, then
it must be bound by a variable-binding operator binding β in ϕ

β
α. But

this contradicts the hypothesis that β is substitutable for α in ϕ, which
requires that β must remain free at every occurrence of α in ϕ that it
replaces in ϕβα. ./

(97.2) Assume τ is a constant symbol that doesn’t occur in ϕ. If α has no free
occurrences in ϕ, then τ is trivially substitutable for α in ϕ and ϕτα = ϕ. In that
case, both (ϕτα)βτ = ϕ, and ϕβα = ϕ. Hence (ϕτα)βτ = ϕβα . So we consider only the
case where α has at least one free occurrence in ϕ.

Suppose, for reductio, that (ϕτα)βτ , ϕ
β
α. Then there must be some occurrence

of β in (ϕτα)βτ that is not in ϕβα or some occurrence of β in ϕβα that is not in (ϕτα)βτ .
But both cases lead to contradiction:

Case 1. Suppose there is an occurrence of β in (ϕτα)βτ that is not in ϕ
β
α.

Since by hypothesis, there are no occurrences of τ in ϕ, then there must
be an occurrence of α in ϕ that remained an occurrence of α in ϕτα but
became an occurrence of β in (ϕτα)βτ . But if an occurrence of α in ϕτα
became an occurrence of β in (ϕτα)βτ , then that occurrence of α inϕτα had to
be a free occurrence. But that contradicts the fact thatϕτα is, by definition,
the result of replacing every free occurrence of α by τ in ϕ.

Case 2. Suppose there is an occurrence of β in ϕ
β
α that is not in (ϕτα)βτ .

Then there must be an occurrence of α in ϕ that became an occurrence
of τ in ϕτα which remained an occurrence of τ in (ϕτα)βτ . But that contra-
dicts the definition of ψβτ , which signifies the result of replacing every
occurrence of τ in ψ by an occurrence of β. ./

(97.3) (Exercise)
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(99.1) (→) Assume ∀α∀βϕ, for conditional proof (to show ∀β∀αϕ). Then by
the special case [Variant] of Rule ∀E (93.3), it follows that ∀βϕ. By a second
application of this same rule it follows that ϕ. Since α is not free in our hy-
pothesis ∀α∀βϕ, we may infer ∀αϕ from ϕ, by GEN. Since β is not free in our
hypothesis, we may infer ∀β∀αϕ from ∀αϕ, by GEN. Hence, by conditional
proof, ∀α∀βϕ→∀β∀αϕ. (←) By symmetric reasoning. ./

(99.2) (Exercise)

(99.3) Assume ∀α(ϕ ≡ ψ) and apply the special case [Variant] of Rule ∀E (93.3)
to obtain ϕ ≡ ψ. By ≡I (89.2), it suffices to establish both directions of ∀αϕ ≡
∀αψ. (→) Assume ∀αϕ. So by the special case [Variant] of Rule ∀E (93.3),
we have ϕ. By a biconditional syllogism (89.3.a), it follows that ψ. Since α is
not free in either of our premises, it follows that ∀αψ, by GEN. Discharging
our second assumption, we’ve established ∀αϕ → ∀αψ. (←) Assume ∀αψ.
The conclusion is then reached by analogous reasoning, but by biconditional
syllogism (89.3.b). ./

(99.4) (→) Assume, for conditional proof, that ∀α(ϕ&ψ). Then by the special
case [Variant] of Rule ∀E (93.3), we have ϕ&ψ. From this we have both ϕ and
ψ, by (86.2.a) and (86.2.b), respectively. Since α isn’t free in our assumption,
we may apply GEN to both conclusions to obtain ∀αϕ and ∀αψ. Hence by
(86.1), it follows that ∀αϕ&∀αψ. [We here omit the last step of assembling the
conditional to be proved, since it is now obvious.] (←) Assume ∀αϕ&∀αψ, for
conditional proof. It follows by (86.2.a) and (86.2.b) that ∀αϕ and ∀αψ. Hence,
by applying the special case [Variant] of Rule ∀E (93.3) to both, we obtain both
ϕ and ψ. So by &I, we have ϕ&ψ. Since α isn’t free in our assumption, we may
apply GEN to obtain ∀α(ϕ&ψ). ./

(99.5) Assume, for conditional proof, that ∀α1 . . .∀αnϕ. By the special case
[Variant] of Rule ∀E (93.3), it follows that ∀α2 . . .∀αnϕ. By analogous reason-
ing, we can strip off the quantifier ∀α2. Once we have legitimately stripped off
the outermost quantifier in this way a total of n times, it follows that ϕ. ./

(99.6) (→) This direction is an instance of theorem (95.3). (←) Assume ∀αϕ.
Then since α isn’t free in our assumption, we may apply GEN to obtain ∀α∀αϕ.
So by conditional proof, ∀αϕ→∀α∀αϕ. ./

(99.7) By hypothesis, α isn’t free in ϕ. By ≡I (89.2), it suffices to prove both
directions of the biconditional. (→) Assume ϕ → ∀αψ. Now for a secondary
conditional proof, assume ϕ. Then by MP, it follows that ∀αψ and by the spe-
cial [Variant] case of Rule ∀E (93.3), it follows that ψ. Discharging the premise
of our secondary conditional proof, it follows that ϕ → ψ. Since α isn’t free
in ϕ, it isn’t free in our remaining (original) assumption. So the conditions of
GEN are met and we may conclude that ∀α(ϕ→ ψ). (←) By (95.2). ./
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(99.8) (Exercise)

(99.9) (Exercise)

(99.10) Assume ∀α(ϕ ≡ ψ) & ∀α(ψ ≡ χ). By &E, this yields ∀α(ϕ ≡ ψ) and
∀α(ψ ≡ χ). By the special case [Variant] of Rule ∀E (93.3), it follows, respec-
tively, that ϕ ≡ ψ and ψ ≡ χ. By a biconditional syllogism (89.3.e), it follows
that ϕ ≡ χ. Since α isn’t free in our assumption, we may apply GEN to con-
clude ∀α(ϕ ≡ χ). ./

(99.11) (Exercise)

(99.12) (Exercise)

(99.13) Suppose β is substitutable for α in ϕ and doesn’t occur free in ϕ. Note
that β could still be α, since (a) α is trivially substitutable for α in any ϕ, and
(b) α may not occur free in ϕ. So we have two cases:

Case 1. β just is the variable α. Then our theorem becomes: ∀αϕ ≡ ∀αϕαα . But
ϕαα just is ϕ, by definition. So our theorem becomes ∀αϕ ≡ ∀αϕ, which is an
instance of a tautology.

Case 2. β is distinct from α. (→) Assume ∀αϕ. Since β is a variable and sub-
stitutable for α in ϕ, it follows by Rule ∀E (93.2) that ϕβα . Furthermore, since
β doesn’t occur free in ϕ, β doesn’t occur free in our assumption ∀αϕ. So we
may apply GEN to obtain ∀β(ϕβα). (←) Assume ∀β(ϕβα). Since β is substitutable
for α in ϕ and doesn’t occur free in ϕ, it follows, by the re-replacement lemma
(97.1), both (a) that α is substitutable for β in ϕβα and (b) that (ϕβα)

α
β = ϕ. From

(a) and the fact that α is a variable, it follows from our assumption that (ϕβα)
α
β ,

by Rule ∀E (93.2). But by (b), this is just ϕ, and since α isn’t free in our as-
sumption, it follows by GEN that ∀αϕ. ./

(99.14) Let α1, . . . ,αn be any distinct variables, for n ≥ 2. As an instance of
axiom (39.3), we know:

∀αn(ϕ→ ψ)→ (∀αnϕ→∀αnψ)

Since this is a theorem, it follows by GEN that:

∀αn−1(∀αn(ϕ→ ψ)→ (∀αnϕ→∀αnψ))

By axiom (39.3), we may distribute ∀αn−1 over the conditional to conclude:

(ϑ) ∀αn−1∀αn(ϕ→ ψ)→∀αn−1(∀αnϕ→∀αnψ)

But as an instance of (39.3), we know:

(ξ) ∀αn−1(∀αnϕ→∀αnψ)→ (∀αn−1∀αnϕ→∀αn−1∀αnψ)

So by biconditional syllogism from (ϑ) and (ξ), it follows that:
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∀αn−1∀αn(ϕ→ ψ)→ (∀αn−1∀αnϕ→∀αn−1∀αnψ)

If n = 2, we’re done; otherwise if we apply this same series of reasoning steps
to the variables αn−2, . . . ,α1, we obtain:

∀α1 . . .∀αn(ϕ→ ψ)→ (∀α1 . . .∀αnϕ→∀α1 . . .∀αnψ) ./

(99.15) (Exercise)

(100) Assume Γ ` ϕτα , where τ is a primitive constant (i.e., isn’t introduced by a
definition) of the same type as α that doesn’t occur in Γ , Λ, or ϕ. Then by Rule
∀I (96), it follows that:

Γ ` ∀β(ϕτα)βτ

where β is a variable (of the same type as α and τ) that doesn’t occur in ϕτα .
Since τ , by hypothesis, doesn’t occur in Γ or ϕ, we know by the Re-replacement
Lemma (97.2) that:

(ϕτα)βτ = ϕβα

Thus, from our last two displayed results, it follows that:

Γ ` ∀βϕβα

But independently, it follows from the right-to-left direction of (99.13) that:

∀βϕβα ` ∀αϕ

by (63.10). Hence, from our last two displayed results, it follows that:

Γ ` ∀αϕ ./

(101.1) For simplicity, we justify the Variant version of the rule. By hypothesis,
τ is substitutable for α in ϕ. Our proof strategy is:

(A) Show (ϕτα & τ↓)→∃αϕ

(B) Conclude ϕτα→ (τ↓ → ∃αϕ) by Exportation (88.7.a)

(C) Apply (63.10) twice to (B) to conclude: ϕτα , τ↓ ` ∃αϕ

So it remains to show (A). Assume both ϕτα and τ↓. Note that the following is
an instance of axiom (39.1):

∀α¬ϕ→ (τ↓ → ¬ϕτα)

We leave it as an exercise to show that this is equivalent to:

τ↓ → (∀α¬ϕ→¬ϕτα)
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It follows from this theorem and our second assumption that ∀α¬ϕ → ¬ϕτα .
Hence, by contraposition (80.2), ϕτα → ¬∀α¬ϕ. From this and our first as-
sumption, it follows that ¬∀α¬ϕ. But then by the Rule of Definiendum Intro-
duction, i.e., Rule ≡df I (90.3), it follows from this last conclusion and definition
(18.4) that ∃αϕ. ./

(101.2) (Exercise)

(102) Assume Γ ,ϕτα ` ψ, where τ is a primitive constant that does not occur in
ϕ, ψ, Γ , or Λ. Then we leave it as an exercise to show the ‘contrapositive’, i.e.,
that:

Γ ,¬ψ ` ¬ϕτα

where ¬ϕτα is short for ¬(ϕτα). Since ¬(ϕτα) = (¬ϕ)τα by metadefinition (14), we
henceforth ignore the distinct ways of describing the same formula. Now since
τ is, by hypothesis, a primitive constant that does not occur in ϕ, ψ, Γ , or Λ,
we know independently by the Variant of the Corollary to Rule ∀I (100), that:

¬ϕτα ` ∀α¬ϕ

So by (63.8), it follows from our two displayed results that Γ ,¬ψ ` ∀α¬ϕ. So
by the Deduction Theorem (75):

Γ ` ¬ψ→∀α¬ϕ

It follows, by the Rule of Contraposition (80):

Γ ` ¬∀α¬ϕ→¬¬ψ

Now given theorem (77.1), i.e., ¬¬ψ→ ψ, and (63.3), we independently know:

Γ ` ¬¬ψ→ ψ

So by Hypothetical Syllogism (76.1), our last two displayed results imply:

Γ ` ¬∀α¬ϕ→ ψ

Now, independently, by definition of ∃ (18.4) and our Rule of Definition by
Equivalence (72), we know:

Γ ` ∃αϕ→¬∀α¬ϕ

So by Hypothetical Syllogism, our last two displayed results imply:

Γ ` ∃αϕ→ ψ
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Hence, by (63.10), Γ ,∃αϕ ` ψ. ./

(103.1) Assume ∀αϕ. Then by the special case [Variant] of Rule ∀E (93.3), it
follows that ϕ. Since ϕ has the form ϕαα and α is both a variable and substi-
tutable for itself in ϕ, the conditions of Rule ∃I (101.2) are satisfied and we
may infer ∃αϕ. ./

(103.2) By ≡I (89.2), it suffices to prove both directions of the biconditional.
(→) Assume ¬∀αϕ. We want to show ∃α¬ϕ. So by the definition of ∃ (18.4)
and our Rule of Definiendum Introduction (90.3), we have to show: ¬∀α¬¬ϕ.
For reductio, assume ∀α¬¬ϕ. Then it follows that ¬¬ϕ, by the special case
[Variant] of Rule ∀E (93.3). Hence, by double negation elimination (78.2), we
may infer ϕ. Since α isn’t free in any of our assumptions, it follows by GEN
that ∀αϕ. Since we’ve reached a contradiction, we may discharge our reductio
assumption and conclude, by a version of RAA (87.4), that ¬∀α¬¬ϕ, which is
all that remained to show. (←) [For this direction of the proof, we shall appeal
to Rule ∃E (102) in the form in which it is stated in the text. However, in
subsequent proofs, we shall often use Rule ∃E in the manner described in the
paragraph immediately following the introduction of the rule.] Assume, where
τ is arbitrary (i.e., some fresh, primitive constant) that ¬ϕτα. Now assume, for
reductio, that ∀αϕ. Since τ is a primitive constant, it is substitutable for α in
ϕ. So by Rule ∀E (93.2), we have ϕτα . Contradiction. So by RAA (87.4), ¬∀αϕ.
We’ve thus shown ¬ϕτα ` ¬∀αϕ. Since τ doesn’t appear in ϕ or ¬∀αϕ or in any
of our axioms, we may apply Rule ∃E (102) to conclude ∃α¬ϕ ` ¬∀αϕ. ./

(103.3) By ≡I (89.2), it suffices to prove both directions of the biconditional.
[Henceforth, we omit mention of this proof strategy for biconditionals.] (→)
Assume ∀αϕ. We want to show ¬∃α¬ϕ. For reductio, assume ∃α¬ϕ. From
this and (103.2), it follows that ¬∀αϕ, by a biconditional syllogism (89.3.b).
Contradiction. So by RAA (87.3), ¬∃α¬ϕ. (←) Assume ¬∃α¬ϕ, for condi-
tional proof. Assume, for reductio, that ¬∀αϕ. From this and (103.2), it fol-
lows that ∃α¬ϕ, by a biconditional syllogism (89.3.a). Contradiction. So by
RAA (87.4), ∀αϕ. ./

(103.4) (Exercise)

(103.5) (Exercise)

(103.6) (Exercise)

(103.7) (Exercise)

(103.8) (Exercise)

(103.9) Assume ¬∃αϕ&¬∃αψ. From the first conjunct and (103.4) it follows
that ∀α¬ϕ, and from the second conjunct and the same theorem it follows that
∀α¬ψ. Hence, by respective applications of the special case [Variant] of Rule
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∀E (93.3), it follows that ¬ϕ and ¬ψ, which by &I gives us ¬ϕ & ¬ψ. By ∨I
(86.3.b), we may infer (ϕ & ψ) ∨ (¬ϕ & ¬ψ). So by (88.4.g), we know ϕ ≡ ψ.
Since α isn’t free in our assumption, it follows by GEN that ∀α(ϕ ≡ ψ). ./

(103.10) (Exercise)

(103.11) (Exercise)

(104.1) The definition of proposition existence (20.3) is:

p↓ ≡df [λx p]↓

By Conventions (17.2.a) and (17.2.b), all the variables in this definition func-
tion as metavariables. So the definition could be rewritten as:

Π0↓ ≡df [λνΠ0]↓, provided ν isn’t free in Π0

So let Π0 be any 0-ary relation term, and choose ν to be some individual vari-
able not free in Π0. Then, by the Rule of Equivalence by Definition (90), it
follows from the above definition that:

Π0↓ ≡ [λνΠ0]↓

But since ν isn’t free in Π0, [λνΠ0] is a core λ-expression and so axiom (39.2)
asserts [λνΠ0]↓. Hence, Π0↓. ./

(104.2) By the previous theorem (104.1), Π0↓, for any relation term Π0. But by
the BNF definition in (4), all and only formulas ϕ are 0-ary relation terms (4).
So ϕ↓. ./

(106) By (39.2), the modal closures of α↓ are axioms, where α is any variable.
We therefore know �α↓ is an axiom. Hence, by GEN, ∀α�α↓. Now let ϕ be
�α↓. Then as an instance of axiom (39.1), we know:

∀α�α↓→ (τ↓ → �τ↓), where τ is any term substitutable for α in �α↓

But every term τ of the same type as α is substitutable for α in �α ↓. So it
follows by Rule MP that τ↓→ �τ↓. ./

(107.1) Assume τ=σ . Then we prove τ↓ by cases:

(A) τ is an individual term.

(B) τ is an unary relation term.

(C) τ is an n-ary relation term (n ≥ 2).

(D) τ is a 0-ary relation term.
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Case A. τ is an individual term. Then τ and σ are both individual terms, say κ
and κ′, respectively, so that our assumption is κ=κ′. It then follows from this
assumption, the definition of = (23.1), our conventions for definitions (17.2),
and the Rule of Equivalence by Definition (90), that:

(O!κ&O!κ′ &∀F(Fκ ≡ Fκ′)) ∨ (A!κ&A!κ′ &�∀F(κF ≡ κ′F)),
where F doesn’t occur free in κ or κ′

So we reason by cases from the disjuncts. If O!κ&O!κ′ & ∀F(Fκ ≡ Fκ′), then
O!κ, and so by axiom (39.5.a), κ↓, i.e., τ↓. If A!κ&A!κ′ &�∀F(κF ≡ κ′F), then
A!κ and, by axiom (39.5.a), κ↓, i.e., τ↓.

Case B. τ is a unary relation term. Then τ and σ are both property terms, say
Π and Π′, so that our assumption is Π=Π′. Given (a) our conventions (17.2)
for understanding the definition of property identity (23.2) and (b) Rule ≡df E
of Definiendum Elimination (90.2), it follows that:

Π↓&Π′↓&�∀x(xΠ ≡ xΠ′),
where x is any individual variable that doesn’t occur free in Π or Π′.

Hence Π↓, i.e., τ↓.

Case C. By reasoning analogous to Case B but with an appeal to the definition
of relation identity (23.3).

Case D. Then τ↓ by (104.1). ./

(107.2) By reasoning analogous to (107.1). ./

(108.1) Let Π and Π′ be any n-ary relation terms (n ≥ 0) in which x1, . . . ,xn don’t
occur free. Assume Π = Π′. Then by (107.1), it follows that Π↓, and by (107.2),
it follows that Π′↓. Note independently that the following is axiomatic, since
it is a closure of the axiom for the substitution of identicals (41):

∀F∀G(F=G→
(�∀x1 . . .∀xn(Fx1 . . .xn ≡ Fx1 . . .xn)→ �∀x1 . . .∀xn(Fx1 . . .xn ≡ Gxx . . .xn)))

Since x1, . . . ,xn don’t occur free in Π and Π′, the latter are substitutable, respec-
tively, for F and G in the matrix of the above universal claim. So it follows by
Rule ∀E that:

Π=Π′→
(�∀x1 . . .∀xn(Πx1 . . .xn ≡Πx1 . . .xn)→ �∀x1 . . .∀xn(Πx1 . . .xn ≡Π′xx . . .xn))

And since Π=Π′ by assumption, it follows that:

�∀x1 . . .∀xn(Πx1 . . .xn ≡Πx1 . . .xn)→ �∀x1 . . .∀xn(Πx1 . . .xn ≡Π′xx . . .xn)
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But the antecedent is clearly a theorem, by n applications of GEN and an ap-
plication of RN to the instance Πx1 . . .xn ≡ Πx1 . . .xn of the tautology ϕ ≡ ϕ.
Hence �∀x1 . . .∀xn(Πx1 . . .xn ≡Π′xx . . .xn). ./

(108.2) (Exercise)

(110) Assume Γ1 ` ϕτα and Γ2 ` τ =σ , where τ and σ are substitutable for α in
ϕ. Now if we set ∆ in (63.7) to Γ1 ∪ Γ2, then we know:

(ξ) Γ1,Γ2 ` ϕτα

(ϑ) Γ1,Γ2 ` τ=σ

We have to show Γ1,Γ2 ` ϕ′, where ϕ′ is the result of replacing zero or more
occurrences of τ inϕτα with occurrences of σ . We begin by noting that theorems
(107.1) and (107.2) respectively imply the following, by (63.10):

(a) τ=σ ` τ↓

(b) τ=σ ` σ↓

Hence by applying (63.8) first to the pair (ϑ) and (a) and then to the pair (ϑ)
and (b), we obtain, respectively:

(c) Γ1,Γ2 ` τ↓

(d) Γ1,Γ2 ` σ↓

Since universal generalizations of the axiom schema for the substitution of
identicals (41) are also axioms, we know by (63.1) that:

` ∀α∀β(α = β → (ϕ → ϕ′′)), whenever β is substitutable for α in ϕ and
ϕ′′ is the result of replacing zero or more free occurrences of α in ϕ with
occurrences of β.

It follows from this last result by (63.3) that:

(e) Γ1,Γ2 ` ∀α∀β(α = β → (ϕ → ϕ′′)), whenever β is substitutable for α in ϕ
and ϕ′′ is the result of replacing zero or more free occurrences of α in ϕ
with occurrences of β.

Now let ψ be ∀β(α=β→ (ϕ→ ϕ′′)) so that we may abbreviate (e) as:

(e) Γ1,Γ2 ` ∀αψ

Since τ is substitutable for α in ϕ, it is substitutable for α in ψ. So it follows
from (e) and (c) by Rule ∀E (93.1) that Γ1,Γ2 ` ψτα , i.e.,

(f) Γ1,Γ2 ` ∀β(τ =β → (ϕτα → ϕ′′′)), where ϕ′′′ is the result of replacing zero
or more occurrences of τ in ϕτα by occurrences of β.
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Now abbreviate the proper scope of ∀β in (f) as χ, so that we may abbreviate
(f) as:

(f) Γ1,Γ2 ` ∀βχ

Note that σ is substitutable for β in τ =β, and is also substitutable for β in ϕ′′′

(exercise). So σ is substitutable for β in χ. Hence, it follows from (f) and (d) by
Rule ∀E (93.1) that Γ1,Γ2 ` χσβ , i.e.,

(τ=β→ (ϕτα→ ϕ′′′))σβ

i.e.,

τ=σ → (ϕτα→ (ϕ′′′)σβ )

Note that (ϕ′′′)σβ is also the result of replacing zero or more occurrences of τ in
ϕτα with occurrences of σ . That is, (ϕ′′′)σβ is ϕ′ and so we therefore know:

(g) Γ1,Γ2 ` τ=σ → (ϕτα→ ϕ′)

Hence, from (g) and (ϑ), it follows by familiar reasoning that Γ1,Γ2 ` ϕτα → ϕ′.
From this last result and (ξ), it follows that Γ1,Γ2 ` ϕ′. ./

(111.1) The 0-ary instance of the axiom η-Conversion (48.3) asserts [λ p] = p,
where p is a 0-ary relation variable. Since the closures of this principle are
axioms, the following is therefore an axiom:

(ϑ) ∀p([λp] = p)

Now by (104.2), we know ϕ↓, for every formula ϕ. Moreover, since since λ
binds no variables in [λ p], every 0-ary relation term, and thus (4), every for-
mula is substitutable for p in the matrix [λp] = p of (ϑ). So we may apply Rule
∀E (93.1) to instantiate ϕ for the quantifier ∀p in (ϑ) to conclude [λϕ] = ϕ. ./

(111.2) [λϕ] ≡ [λϕ] is an instance of the tautologyψ ≡ ψ. Moreover, by (111.1),
we know [λϕ] = ϕ. So by Rule =E (110) it follows that [λϕ] ≡ ϕ. ./

(111.3) By axiom (39.2), [λϕ] exists, i.e., [λϕ]↓. From this and the 0-ary case of
α-Conversion (48.1), it follows that [λϕ] = [λϕ]′, where [λϕ]′ is any alphabetic
variant of [λϕ]. ./

(111.4) We know:

[λϕ] = [λϕ]′ (111.3)

[λϕ] = ϕ (111.1)
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So by Rule =E (110), it follows that ϕ = [λ ϕ]′. Independently, by the defini-
tion of alphabetic variants (16), we know [λϕ]′ = [λϕ′]. So by metalinguistic
substitution of identicals, ϕ = [λ ϕ′]. But as an instance of (111.1), we know
[λϕ′] = ϕ′. Hence, again, by Rule =E, ϕ = ϕ′. ./

(111.5) (Exercise)

(111.6) (→) Assume ϕ ≡ ψ. By (111.2), we know [λϕ] ≡ ϕ. Hence, by bicon-
ditional syllogism, [λ ϕ] ≡ ψ. But also by (111.2) and the commutativity of
the biconditional, we know ψ ≡ [λψ]. Hence again by biconditional syllogism,
[λ ϕ] ≡ [λ ψ]. (←) Reverse the reasoning, starting with the assumption that
[λϕ] ≡ [λψ]. ./

(114) By (111.5), we know ` (ϕ ≡ ϕ′), where ϕ′ is any alphabetic variant of
ϕ. Hence, by (63.3), Γ ` (ϕ ≡ ϕ′). By definition of ≡ (18.3) and Rule ≡df E of
Definiendum Elimination (90.2), it follows that Γ ` ((ϕ → ϕ′) & (ϕ′ → ϕ)). So
by Rule &E, it follows that:

(A) Γ ` (ϕ→ ϕ′)

(B) Γ ` (ϕ′→ ϕ)

Now to justify the left-to-right direction of the Rule of Alphabetic Variants,
assume Γ ` ϕ. Then from this and (A), it follows by (63.5) that Γ ` ϕ′. By
analogous reasoning from (B), if Γ ` ϕ′, then Γ ` ϕ. ./

(115.1) By definition (22.1), i.e., O! =df [λx ♦E!x], the Rule of Definition by
Identity (73) tells us that:

([λx ♦E!x]↓ → (O!=[λx ♦E!x])) & (¬[λx ♦E!x]↓ → ¬O!↓)

So by &E, it follows that:

[λx ♦E!x]↓ → (O!=[λx ♦E!x])

But since [λx ♦E!x] is a core λ-expression, as this notion was defined in (9.2),
axiom (39.2) asserts [λx ♦E!x]↓. Hence, O!=[λx ♦E!x]. So by (107.1), O!↓. ./

(115.2) (Exercise)

(115.3) Since we haven’t yet established the symmetry of identity, we reason
as follows.428 By β-Conversion and the fact that [λx ♦E!x]↓ (39.2), we know:

(ϑ) [λx ♦E!x]x ≡ ♦E!x

428Without the symmetry of identity, we can’t yet use the fact that O! = [λx ♦E!x], which we
established as part of the proof of (115.1), to infer [λx♦E!x]=O!. If we could establish the latter, we
could then inferO!x ≡ ♦E!x by Rule =E by from an instance of β-Conversion (namely, [λx♦E!x]↓→
([λx ♦E!x]x ≡ ♦E!x)) and the fact that [λx ♦E!x]↓ is axiomatic (39.2). So, a less direct proof has to
be found.
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Independently, as an instance of (88.3.a), we know:

(ζ) O!x ≡O!x

But in the proof of (115.1), we established that O!=[λx♦E!x]. By applying this
last fact and Rule =E to (ζ), we obtain:

(ξ) O!x ≡ [λx ♦E!x]x

Then by biconditional syllogism (89.3.e), (ξ) and (ϑ) imply O!x ≡ ♦E!x. ./

(115.4) (Exercise)

(115.5) By (83), ♦E!x ∨¬♦E!x. But by the commutativity of the biconditional
(88.2.e), theorems (115.3) and (115.4) imply, respectively:

♦E!x ≡O!x

¬♦E!x ≡ A!x

So by disjunctive syllogism (89.1), it follows that O!x∨A!x. ./

(116.1) By definition of property identity (23.2) and Rule of Equivalence by
Definition (90.1), we know:

F=G ≡ (F↓&G↓&�∀x(xF ≡ xG))

But by axiom (39.2), we know both F↓ and G↓. Hence by the general form of
the Rule ≡S of Biconditional Simplification (91), it follows that:

F=G ≡ �∀x(xF ≡ xG) ./

(116.2) – (116.3) (Exercises)

(117.1) We prove this by cases, using the four cases of definition of identity
(23) as our guide.429 The four cases we have to show are:

429In a personal communication (19 January 2021), Daniel Kirchner notes that his implemen-
tation of object theory in Isabelle/HOL produced the following simpler proof, where the last 3
cases are collapsed into a single case. His system showed that F=F, where F is any n-ary relation
variable (n ≥ 0), as follows. Fix n. By the axiom for η-Conversion (48.3), we know:

(ϑ) [λx1...xn Fx1...xn] = F

Now the following is an instance of axiom (39.2):

[λx1...xn Fx1...xn]↓
and since [λx1...xn Fx1...xn] is an alphabetic variant of itself, the following is an instance of the
axiom for α-Conversion (48.1):

[λx1...xn Fx1...xn]↓ → [λx1...xn Fx1...xn] = [λx1...xn Fx1...xn]

Our last two results therefore imply:

(ξ) [λx1...xn Fx1...xn] = [λx1...xn Fx1...xn]
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• x=x

• F=F, where F is a unary relation variable

• F=F, where F is an n-ary relation variable, n ≥ 2

• p=p, where p is a 0-ary relation variable

Case 1. By definition (23.1), we have to show:

(ϑ) (O!x&O!x&�∀F(Fx ≡ Fx))∨ (A!x&A!x&�∀F(xF ≡ xF))

To establish (ϑ), our proof strategy is to reason by disjunctive syllogism (86.3.c)
as follows:

From:

(a) O!x∨A!x

(b) O!x→ (O!x&O!x&�∀F(Fx ≡ Fx))

(c) A!x→ (A!x&A!x&�∀F(xF ≡ xF))

conclude (ϑ).

So if we can establish (a), (b), and (c), we’re done. But (a) is just theorem
(115.5). So it remains to show (b) and (c):430

(b) Assume O!x. By the idempotency of & (85.6), it follows that O!x&O!x.
Note, independently that as an instance of (88.3.a), we have Fx ≡ Fx.
Since this is a theorem, we may apply GEN (66) to obtain ∀F(Fx ≡ Fx).
Since this is a �-theorem, it follows by RN (68) that �∀F(Fx ≡ Fx). If we
conjoin this last result by &I (86.1) with what we have established so far,
we have O!x&O!x&�∀F(Fx ≡ Fx).

(c) Assume A!x. By the idempotency of & (85.6), it follows that A!x&A!x.
Note, independently that as an instance of (88.3.a), we have xF ≡ xF.
Since this is a theorem, we may apply GEN to obtain ∀F(xF ≡ xF). Since
this is a �-theorem, it follows by RN that �∀F(xF ≡ xF). If we conjoin
this last result by &I (86.1) with what we have established so far, we have
A!x&A!x&�∀F(xF ≡ xF).

But the Variant of Rule =E (110) tells us that ϕτα , τ = σ ` ϕ′, where ϕ′ is the result of replacing
zero or more occurrences of τ in ϕτα with occurrences of σ . So if we let ϕ be α = α, let τ be
[λx1...xn Fx1...xn], and let σ be F, the following is an instance:

[λx1...xn Fx1...xn]=[λx1...xn Fx1...xn], [λx1...xn Fx1...xn]=F ` F=F (Rule =E)

So from (ϑ) and (ξ) it follows by this instance of Rule =E that F=F. ./
430Thanks go to Wes Anderson, who correctly reported that in an earlier draft, the proof univer-

sally generalized, incorrectly, on the variable x instead of the variable F, in (b) and (c).
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Case 2. Note that if we apply GEN once to theorem (116.1), we obtain:

∀G(F=G ≡ �∀x(xF ≡ xG))

But since F↓ and F is substitutable for G in the matrix of the above, we may
instantiate the above result to F, by (93.2), to obtain:

F=F ≡ �∀x(xF ≡ xF)

Hence, to prove F =F, it suffices to show �∀x(xF ≡ xF). But, as an instance of
(88.3.a), we know xF ≡ xF. Since this is a theorem, we may apply GEN (66)
to obtain ∀x(xF ≡ xF). Since this is a �-theorem, it follows by RN (68) that
�∀x(xF ≡ xF).

Case 3. If we apply GEN once to theorem (116.2), then we know:

∀G(Fn=Gn ≡
∀y1 . . . ∀yn−1([λx Fnxy1 . . . yn−1]=[λx Gnxy1 . . . yn−1] &

[λx Fny1xy2 . . . yn−1]=[λx Gny1xy2 . . . yn−1] & . . .&
[λx Fny1 . . . yn−1x]=[λx Gny1 . . . yn−1x]))

Since F↓ and F is a variable and substitutable for G in the matrix of the above,
we may instantiate the above result to F, by (93.2), to obtain:

Fn=Fn ≡
∀y1 . . . ∀yn−1([λx Fnxy1 . . . yn−1]=[λx Fnxy1 . . . yn−1] &

[λx Fny1xy2 . . . yn−1]=[λx Fny1xy2 . . . yn−1] & . . .&
[λx Fny1 . . . yn−1x]=[λx Fny1 . . . yn−1x])

So to prove Fn=Fn, it suffices to show:

∀y1 . . . ∀yn−1([λx Fnxy1 . . . yn−1]=[λx Fnxy1 . . . yn−1] &
[λx Fny1xy2 . . . yn−1]=[λx Fny1xy2 . . . yn−1] & . . .&
[λx Fny1 . . . yn−1x]=[λx Fny1 . . . yn−1x])

By n− 1 applications of GEN, it suffices to show:

[λx Fnxy1 . . . yn−1]=[λx Fnxy1 . . . yn−1] &
[λx Fny1xy2 . . . yn−1]=[λx Fny1xy2 . . . yn−1] & . . .&
[λx Fny1 . . . yn−1x]=[λx Fny1 . . . yn−1x]

But note that all of the λ-expressions in the above are core λ-expressions.
Hence, by (39.2), we know:

[λx Fnxy1 . . . yn−1]↓
[λx Fny1xy2 . . . yn−1]↓

...
[λx Fny1 . . . yn−1x]↓
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So we may instantiate, one-by-one, each of the above terms into the universal
generalization of Case 2 and we obtain each of the conjuncts of what we had to
show.

Case 4. By applying GEN to Case 2 above, it follows that ∀F(F=F), where F is
a property variable. Note that [λx p]↓ (39.2) and [λx p] is substitutable for F in
the matrix F = F. So we may use Rule ∀E (93.2) to infer [λx p] = [λx p]. Now
by a single application of GEN to theorem (116.3), we know ∀q(p=q ≡ [λx p]=
[λx q]). Since p is substitutable for q in the matrix of this universal claim and
p is a variable, it follows, by Rule ∀E (93.2), that p= p ≡ [λx p] = [λx p]. Since
we’ve established [λx p] = [λx p], it follows by biconditional syllogism (89.3.b)
that p = p. ./

(117.2) By (117.1), we know α=α. For conditional proof, assume α=β. Hence
by the Variant version of Rule =E (110), it follows that β=α.431 ./

(117.3) Assume the antecedent, so that by &E we know both α =β and β =γ .
Then by Rule =E (110) it follows that α=γ . ./

(117.4) (→) Note that for any distinct variable γ of the same type as α, it is
an easy exercise to show ∀γ(α =γ ≡ α =γ). So for conditional proof, assume
α=β. Then by Rule =E (110), ∀γ(α=γ ≡ β=γ). (←) Assume ∀γ(α=γ ≡ β=γ).
Then since α↓ and is substitutable for γ in the matrix of this universal claim, it
follows by by Rule ∀E (93.2) that α=α ≡ β=α. But α=α, by (117.1). So β=α,
by biconditional syllogism (89.3.a), and thus α=β, by (117.2). ./

(118.1) Assume:

(ϑ) Γ ` τ↓

Now let us independently establish that:

(ξ) ` τ↓ → τ=τ

Proof. To see that there is a proof of τ↓ → τ = τ , assume for conditional
proof that τ↓. Independently, by (117.1), it is a theorem that α =α. So
this theorem yields ∀α(α = α) by GEN. Now since α occurs free in α=α
and doesn’t occur within the scope of any variable-binding operators, τ
is substitutable for α in α =α. Hence, by Rule ∀E (93.1) it follows that
τ=τ .

Then from (ϑ) and (ξ) it follows that Γ ` τ=τ , by (63.5). ./

431To obtain the relevant instance of the rule we just used, set the metavariables in Rule =E to the
following values: let τ be α, σ be β, α be γ , ϕ be γ =γ (so that ϕτα is α=α), and ϕ′ be β=α (thus,
ϕ′ is the result of replacing one occurrence of α in ϕτα by β). Given these assignments, the rule
asserts: α=α, α=β ` β=α.
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(118.2) Assume τ is a primitive constant, a variable, or a core λ-expression.
Then by (39.2), τ ↓ is an axiom and, hence, a theorem. Since this establishes
` τ↓, it follows by Rule =I (118.1) that ` τ=τ . ./

(120.1) By hypothesis:

(A) τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which the variables
α1, . . . ,αn occur free (n ≥ 0),

(B) τ1, . . . , τn are substitutable, respectively, for α1, . . . ,αn in both definiens
and definiendum, and

(C) Γ ` σ (τ1, . . . , τn)↓.

From (A), (B), and the Rule of Definition by Identity (73), we know:

` (σ (τ1, . . . , τn)↓ → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)) & (¬σ (τ1, . . . , τn)↓ → ¬τ(τ1, . . . , τn)↓)

By (63.3), the above holds for any premise set Γ :

(D) Γ ` (σ (τ1, . . . , τn)↓ → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)) & (¬σ (τ1, . . . , τn)↓ → ¬τ(τ1, . . . , τn)↓)

By Rule &E (86.2.a), it follows from (D) that:

(E) Γ ` σ (τ1, . . . , τn)↓) → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

Hence, from (E) and (C) it follows by (63.5) that:

Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn) ./

(120.2.a) By hypothesis:

(A) τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which α1, . . . ,αn occur
free (n ≥ 0),

(B) τ1, . . . , τn are substitutable for α1, . . . ,αn, respectively, in both definiens
and definiendum,

(C) ϕ contains one or more occurrences of τ(τ1, . . . , τn), and

(D) ϕ′ is the result of replacing zero or more occurrences of τ(τ1, . . . , τn) in ϕ
by σ (τ1, . . . , τn)

Now assume:

(E) Γ ` σ (τ1, . . . , τn)↓

(F) Γ ` ϕ

(A), (B), and (E) imply, by the Rule of Identity by Definition (120.1), that:
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(G) Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

Then by (C), (D), and Rule =E (110), it follows from (G) and (F) that Γ ` ϕ′. ./

(120.2.b) By hypothesis:

(A) τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which α1, . . . ,αn occur
free (n ≥ 0),

(B) τ1, . . . , τn are substitutable for α1, . . . ,αn, respectively, in both definiens
and definiendum,

(C) ϕ contains one or more occurrences of σ (τ1, . . . , τn), and

(D) ϕ′ is the result of replacing zero or more occurrences of σ (τ1, . . . , τn) in ϕ
by τ(τ1, . . . , τn)

Now assume:

(E) Γ ` σ (τ1, . . . , τn)↓

(F) Γ ` ϕ

(A), (B), and (E) imply, by the Rule of Identity by Definition (120.1), that:

(G) Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

Now note independently that since (107.1) is a theorem, we know:

` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)→ τ(τ1, . . . , τn)↓

It follows from this last fact by (63.10) that:

(H) τ(τ1, . . . , τn)=σ (τ1, . . . , τn) ` τ(τ1, . . . , τn)↓

Hence, from (G), and (H), it follows by (63.8) that the significance of the defini-
endum is derivable from Γ , i.e., that:

(I) Γ ` τ(τ1, . . . , τn)↓

But note independently that it is a theorem that identity is symmetric (117.2),
i.e., that ` α=β→ β=α. So two applications of GEN:

(J) ` ∀α∀β(α=β→ β=α)

From (J), it follows by (63.3) that:

(K) Γ ` ∀α∀β(α=β→ β=α)

But by (E) and (I), we know that the significance of the terms τ(τ1, . . . , τn) and
σ (τ1, . . . , τn) is derivable from Γ . So by two applications of Rule ∀E (93.1), it
follows from (K) that:
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(L) Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)→ σ (τ1, . . . , τn)=τ(τ1, . . . , τn)

So from (L) and (G), it follows by (63.5) that:

(M) Γ ` σ (τ1, . . . , τn)=τ(τ1, . . . , τn)

Then by Rule =E (110), it follows from (F) and (M) that:

Γ ` ϕ′ ./

(121.1) Consider any term τ in which β doesn’t occur free. (→) Assume τ ↓.
Then by Rule =I (118.1), τ=τ . Now let ϕ be β=τ . Note that since β doesn’t oc-
cur free in τ , ϕ has just one free occurrence of β, namely, the initial occurrence.
So τ=τ has the form ϕτβ . Note also that τ is substitutable for β in β=τ , that is,
τ is substitutable for β in ϕ. And since τ↓, all the conditions for applying Rule
∃I (101.1) are met. So we can infer ∃βϕ from ϕτβ , i.e., infer ∃β(β=τ) from τ=τ .

(←) Assume ∃β(β = τ). Now suppose σ is an arbitrary such entity, so that we
know σ =τ ; formally, σ is a fresh, primitive constant of the same type as β that
hasn’t previously appeared in β = τ , or τ ↓, or in any axioms in Λ.432 Then
by (107.2), it follows that τ ↓. Since we have reached τ ↓ from σ = τ and the
conditions of Rule ∃E (102) are met, we may use Rule ∃E to conclude that we
have derived τ↓ from our assumption ∃β(β=τ). ./

(121.2) By hypothesis, τ is substitutable for α in ϕ and β doesn’t occur free
in τ . Now, for conditional proof, assume ∀αϕ to show ∃β(β = τ)→ ϕτα. And
for a nested conditional proof, assume ∃β(β=τ), to show ϕτα. From our second
assumption (given our hypothesis that β doesn’t occur free in τ), it follows
from the right-to-left direction of the previous theorem (121.1) that τ↓. Hence,
from our first assumption and this last result (given our hypothesis that τ is
substitutable for α in ϕ), it follows by axiom (39.1) that ϕτα . ./

(121.3) From (121.1) and axiom (39.2). ./

(121.4) From (121.1) and axioms (39.5.a) and (39.5.b). ./

(123.1.a) Since α is a variable, α↓ is an instance of axiom (39.2) and, hence, a
theorem. By GEN, ∀αα↓. ./

(123.1.b) [There are several different ways to prove this theorem. Here is one.]
Let α and β be distinct variables of the same type. Since α is a variable, α↓ is
an instance of axiom (39.2). Since β doesn’t occur free in α, it follows by the

432Without the proviso that β doesn’t occur free in τ , the assumption that σ is an arbitrary witness
to ∃β(β=τ) yields only the knowledge that σ =τσβ . And this fact doesn’t allow us to conclude τ↓;
it only yields τσβ ↓. But with the proviso that β doesn’t occur free in τ , the term τσβ is just τ itself.

So σ =τσβ is the same expression as σ =τ . This explains why the proviso that β doesn’t occur free
in τ is essential to the right-to-left direction of this theorem.
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left-to-right direction of (121.1) that ∃β(β =α). Hence, by GEN, ∀α∃β(β =α).
./

(123.2.a) Since α is a variable, α↓ is an instance of (39.2). So, by RN (68), �α↓.
./

(123.2.b) From (123.1.b), it follows that ∃β(β = α), by Rule ∀E (93.3). Since
the derivation was modally strict, it follows by RN (68) that �∃β(β = α). ./

(123.3.a) Since (123.1.a) is a�-theorem, we may apply RN (68) to obtain�∀αα↓.
./

(123.3.b) Since (123.1.b) is a �-theorem, we may apply RN (68) to obtain
�∀α∃β(β=α). ./

(123.4.a) From (123.2.a), by GEN. ./

(123.4.b) From (123.2.b), by GEN. ./

(123.5.a) From the �-theorem (123.4.a), by RN (68). ./

(123.5.b) From the �-theorem (123.4.b), by RN (68). ./

(124.1) Apply GEN to theorem (117.1). Since the result is a �-theorem, apply
RN. ./

(124.2) Since (117.1) is a �-theorem, we may apply RN to obtain �(α = α) as a
theorem. Hence, by GEN, we have: ∀α�(α = α). ./

(125.1) Assume α=β, for conditional proof. Since α=α (117.1) is a �-theorem,
we know by RN (68) that �α=α. Then by Rule =E (110), it follows that �α=β.
./

(125.2) Assume τ = σ , for conditional proof. Then by (107.1) and (107.2),
we know both τ ↓ and σ ↓. Now since (125.1) is a theorem, it follows by two
applications of GEN that:

∀α∀β(α=β→ �α=β)

Hence, by two applications of Rule ∀E (93.1), it follows that τ=σ → �τ=σ . ./

(126.1) Suppose β is substitutable for α in ϕ and doesn’t occur free in ϕ. Then
there are two cases.

Case 1. β just is α. Then our theorem states ϕ ≡ ∃α(α=α & ϕαα ). By hypothesis,
β, i.e., α, doesn’t occur free in ϕ and so ϕαα = ϕ. So our theorem states ϕ ≡
∃α(α=α & ϕ). We leave the remainder of the proof as an exercise.

Case 2. β and α are distinct variables of the same type. (→) Assume ϕ, for
conditional proof. By definition of substitutions, the formula ϕ is identical to
the formula ϕαα . Since it is a theorem (117.1) that α = α, we have, by &I, that
α = α & ϕαα . Hence, by ∃I, it follows that ∃β(β = α & ϕ

β
α). (←) Assume, for

conditional proof:
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(ϑ) ∃β(β=α&ϕβα),

Assume τ is an arbitrary such entity; formally, the metavariable τ stands for
some new, primitive constant that doesn’t appear in (ϑ) or ϕ, that has the same
type as the variable that β takes as value, and that is therefore substitutable for
β in the matrix of (ζ). So we know:

(ζ) τ=α & (ϕβα)
τ
β

We may detach the two conjuncts of (ζ) by &E. Since β is substitutable for
α in ϕ and doesn’t occur free in ϕ, and τ is substitutable for α in ϕ, the Re-
replacement theorem (97.3) tells us that (ϕβα)

τ
β = ϕτα . So it follows from the right

conjunct of (ζ) that ϕτα . But from this latter conclusion and the left conjunct of
(ζ), it follows by Rule =E (110) that we may substitute α for every occurrence
of τ in ϕτα, to obtain (ϕτα)ατ . But, by Re-replacement lemma (97.2), since τ is a
primitive constant that doesn’t appear in ϕ, this is just ϕαα , i.e., ϕ. By ∃E (102),
we can discharge (ζ) and conclude ϕ. ./

(126.2) Assume τ↓, where τ is, by hypothesis, substitutable for α in ϕ. Now
choose any variable of the same type as α, say β, that is substitutable for α in
ϕ and that doesn’t occur free in ϕ. Then by applying GEN to (126.1), we know
the following applies to ϕ:

(ϑ) ∀α(ϕ ≡ ∃β(β=α & ϕ
β
α))

Since τ is substitutable for α in ϕ, it is substitutable for α in the matrix of (ϑ).
So since τ↓, we may instantiate τ into ∀α in (ϑ) by ∀E, to obtain:

ϕτα ≡ ∃β(β=τ & ϕ
β
α))

But given our choice of β, we know that by commuting an appropriate instance
of (103.7), the following applies to ϕ:

∃β(β=τ & ϕ
β
α) ≡ ∃α(α=τ & ϕ)

By biconditional syllogism (89.3.e), it follows that:

ϕτα ≡ ∃α(α=τ & ϕ) ./

(126.3) Suppose α,β are distinct variables and consider any formulaϕ in which
β is substitutable for α and doesn’t occur free. (→) Assume:

(ζ) ϕ&∀β(ϕβα→ β=α)

By theorem (99.2), it suffices to show ∀β(ϕβα → β=α) &∀β(β=α→ ϕ
β
α). Since

the 1st conjunct is the 2nd conjunct of (ζ), it remains only to show ∀β(β=α→
ϕ
β
α). By hypothesis, β doesn’t occur free in ϕ and, hence, doesn’t occur free in
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our assumption (ζ). So by GEN, it remains to show β = α → ϕ
β
α. So assume

β = α, which by the symmetry of identity (117.2), yields α = β. Now (ζ) also
implies ϕ. Since β is, by hypothesis, substitutable for α in ϕ, it follows by Rule
=E (110) that ϕβα. (←) Assume:

(ϑ) ∀β(ϕβα ≡ β=α)

for conditional proof. By &I, it suffices to show:

(a) ϕ

(b) ∀β(ϕβα→ β=α)

(a) Since, by hypothesis, β is substitutable for α in ϕ and isn’t free in ϕ, it
follows by the Re-replacement lemma (97.1) that α is substitutable for β in ϕβα .
Hence α is substitutable for β in ϕ

β
α ≡ β = α. So we may, by Rule ∀E (93.2),

instantiate ∀β in (ϑ) to α, and thereby obtain:

(ϕβα ≡ β=α)αβ

By the definition of ψαβ (14) extended to include defined formulas of the form
ψ ≡ χ, this becomes:

(ξ) (ϕβα)
α
β ≡ (β=α)αβ

Since the Re-replacement lemma is operative, the left condition of (ξ) is just
ϕ. By definition of substitutions, the right condition of (ξ) is α = α (this is
obvious, but we leave the strict proof, by way of the cases in the definition of
=, as an exercise). Hence, (ξ) resolves to:

ϕ ≡ α=α

But since we know α = α by (117.1), it follows that ϕ, by biconditional syllo-
gism. (b) By (99.2), it follows from (ϑ) that:

∀β(ϕβα→ β=α) & ∀β(β=α→ ϕ
β
α)

So ∀β(ϕβα→ β=α) follows by &E. ./

(126.4) Suppose α,β are distinct variables of the same type and consider any
formula ϕ in which β is substitutable for α in ϕ and doesn’t occur free in ϕ.
We show both directions of the biconditional.

(→) Assume:

(ζ) ϕβα &∀α(ϕ→ α=β)
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Since α doesn’t occur free in (ζ), it suffices by GEN to show ϕ ≡ α = β. (→)
Assume ϕ. Note that from the second conjunct of (ζ), it follows by the special
case of Rule ∀E (93.3) that ϕ → α =β. Hence α =β. (←) Assume α =β. From
this and the first conjunct of (ζ) it follows by the Rule =E (110) that (ϕβα)′,
where (ϕβα)′ is the result of replacing zero or more occurrences of β in ϕβα by α.
Since this includes the special case where we replace all the occurrences of β in
ϕ
β
α by α, i.e., (ϕβα)

α
β . But by hypothesis, β is substitutable for α in ϕ and doesn’t

occur free in ϕ. So the Re-replacement Lemma (97.1) applies and (ϕβα)
α
β just is

ϕ.

(←) Assume ∀α(ϕ ≡ α = β). Then since β is substitutable for α in ϕ, we can
instantiate β into the universal claim to obtain ϕ

β
α ≡ β = β. Since β = β is a

theorem, it follows that ϕβα. So it remains to show ∀α(ϕ→ α=β), which is left
as an exercise. ./

(127.2) (Exercise)

(128) Assume ∃!αϕ, where (by hypothesis) β and γ are variables that don’t
occur free, and are substitutable for α, in ϕ. Then by a fact about uniqueness
quantifier (127.2) and Rule≡df E of Definiendum Elimination (90.2), ∃α∀β(ϕβα ≡
β=α). Suppose τ is such an α, i.e., let τ be an arbitrarily chosen, primitive con-
stant of the same type as α and assume:

(ϑ) ∀β(ϕβα ≡ β=τ)

By hypothesis, γ also doesn’t occur free, and is substitutable for α, in ϕ. So we
want to show:

∀β∀γ((ϕβα &ϕγα )→ β=γ)

Since neither β nor γ occur free in any assumption, it suffices, by two applica-
tions of GEN, to show:

(ϕβα &ϕγα )→ β=γ

So assume both ϕ
β
α and ϕ

γ
α . From these assumptions, it follows from (ϑ) by

(93.3) and (93.2), respectively, that β = τ and γ = τ . We know β↓ and γ ↓ by
(39.2), and we also know τ ↓ by hypothesis and (39.2), since τ is an arbitrar-
ily chosen, primitive constant and thus not introduced by a definition. (The
significance of these terms is also implied by the identities just established, by
(107.1) and (107.2).) So, by the symmetry of identity, γ = τ implies τ =γ and,
by the transitivity of identity, it follows that β=γ . ./

(129) Assume:

(a) ∀α(ϕ→ �ϕ)

(b) ∃!αϕ
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Now pick β to be a variable that doesn’t occur free, and is substitutable for α, in
ϕ. Then from (b), it follows by definition (127.1) of the uniqueness quantifier
and our Rule ≡df E of Definiendum Elimination (90.2) that:

(ϑ) ∃α(ϕ&∀β(ϕβα→ β=α))

So suppose τ is an arbitrary such entity, i.e., suppose:

(ξ) ϕτα &∀β(ϕβα→ β=τ),

where τ is an arbitrarily chosen constant of the same type as α and β. Now to
show ∃!α�ϕ, we have to show, by definition (127.1) and Rule ≡df I of Definien-

dum Introduction (90.3), that ∃α(�ϕ& ∀β(�ϕβα → β =α)). By ∃I, it suffices to
show that τ is a witness to this claim, i.e., show �ϕτα & ∀β(�ϕβα → β = τ). To
show the first conjunct, note that since τ is a constant, we know both that τ↓
and that τ is substitutable for α in the matrix of (a). Hence, by Rule ∀E and MP,
�ϕτα is jointly implied by (a) and the first conjunct of (ξ). To show the second
conjunct, it suffices by GEN to show �ϕβα → β = τ . So assume �ϕβα . Then, by
the T schema (45.2), we have ϕβα . But from this and the second conjunct of (ξ),
it follows that β = τ . Thus, we have established ∃α(�ϕ & ∀β(�ϕβα → β = α)).
This conclusion remains once we discharge (ξ) by ∃E. ./

(130.1)? For conditional proof, assume ϕ. Now, for reductio, assume ¬Aϕ.
Then by the right-to-left direction of the axiom governing negation and actu-
ality, (44.1), A¬ϕ. Since it is axiomatic that Aψ→ ψ (43)?, it follows that ¬ϕ.
Contradiction. So Aϕ, by reductio, and ϕ→ Aϕ, by conditional proof. ./

(130.2)? Exercise.

(131) Assume, for conditional proof, A(ϕ→ ψ). From this and axiom (44.2), it
follows that Aϕ→ Aψ, by biconditional syllogism. ./

(132) The T schema �ϕ→ ϕ (45.2) is an axiom, and so are its closures. Hence,
A(�ϕ→ ϕ) is an axiom. So by the previous theorem (131), A�ϕ→ Aϕ. How-
ever, as an instance of axiom (46.2), we know �ϕ ≡ A�ϕ, from which it follows,
by the definition of ≡ (18.3) and &E (86.2.a), that �ϕ→ A�ϕ. So by hypothet-
ical syllogism, �ϕ→ Aϕ. ./

(133.1) By applying the definition of ≡ (18.3) to axiom (44.4) and then detach-
ing the second conjunct by &E (86.2.b), we know:

(ζ) AAϕ→ Aϕ

Independently, by analogous reasoning, we may infer from axiom (44.2) that
its right-to-left direction holds, but let us express this direction with different
Greek metavariables so as to avoid clash of variables later:
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(Aχ→ Aθ)→ A(χ→ θ)

Now consider the instance of the above schema in which we let χ be the for-
mula Aϕ and let θ be the formula ϕ:

(ξ) (AAϕ→ Aϕ)→ A(Aϕ→ ϕ)

It then follows from (ζ) and (ξ) that A(Aϕ→ ϕ). ./

(133.2) By applying the definition of ≡ (18.3) to axiom (44.4) and then detach-
ing the first conjunct by &E (86.2.a), we know:

(ζ) Aϕ→ AAϕ

As in the previous theorem, we independently know the right-to-left direction
of axiom (44.2) holds and we again express this with different Greek metavari-
ables, to avoid clash of variables later:

(Aχ→ Aθ)→ A(χ→ θ)

Now consider the following instance of the above schema, in which we let χ be
the formula ϕ and let θ be the formula Aϕ:

(ξ) (Aϕ→ AAϕ)→ A(ϕ→ Aϕ)

It then follows from (ζ) and (ξ) that A(ϕ→ Aϕ). ./

(133.3) The principle of Adjunction (85.5) is ϕ→ (ψ→ (ϕ&ψ)). Since this is
a �-theorem, we may apply RN to obtain:

(c) �(ϕ→ (ψ→ (ϕ&ψ)))

Now theorem (132) is that �χ→ Aχ, so it follows from (c) that:

(d) A(ϕ→ (ψ→ (ϕ&ψ)))

Then by theorem (131), (d) implies:

(e) Aϕ→ A(ψ→ (ϕ&ψ))

Now if we consider only the consequent of (e), then we know, independently
and by the same distribution law, that it obeys the principle:

(f) A(ψ→ (ϕ&ψ))→ (Aψ→ A(ϕ&ψ))

It now follows from (e) and (f) by hypothetical syllogism that:

(g) Aϕ→ (Aψ→ A(ϕ&ψ))

From (g), it follows by Importation (88.7.b) that (Aϕ&Aψ)→ A(ϕ&ψ). ./

(133.4) To avoid clash of variables, we may rewrite (133.3) as:
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(Aχ&Aθ)→ A(χ&θ)

Now consider the following instance of the above schema, in which we’ve set
χ equal to Aϕ→ ϕ and set θ equal to ϕ→ Aϕ:

(ϑ) (A(Aϕ→ ϕ) &A(ϕ→ Aϕ))→ A((Aϕ→ ϕ) & (ϕ→ Aϕ))

But by &I, we may conjoin theorems (133.1) and (133.2) to produce:

(ξ) A(Aϕ→ ϕ) &A(ϕ→ Aϕ)

Hence it follows from (ϑ) and (ξ) that:

(ζ) A((Aϕ→ ϕ) & (ϕ→ Aϕ))

Note that we can’t, at present, conclude that A(Aϕ ≡ ϕ) from this last result by
definition, since our rules for reasoning with definitions-by-≡ don’t yet allow us
to substitute the defined formula Aϕ ≡ ϕ for its definiens (Aϕ→ ϕ)&(ϕ→ Aϕ)
when the latter occurs within a formula as a proper subformula.433 But we can
reason as follows. We know, as an instance of definition (18.3), that:

(Aϕ ≡ ϕ) ≡df ((Aϕ→ ϕ) & (ϕ→ Aϕ))

So by the Rule of Definition by Equivalence (72), we know that any closure of
the following is a necessary axiom:

((Aϕ→ ϕ) & (ϕ→ Aϕ))→ (Aϕ ≡ ϕ)

So the following closure is a necessary axiom and hence a theorem:

A(((Aϕ→ ϕ) & (ϕ→ Aϕ))→ (Aϕ ≡ ϕ))

So by theorem (131), we may distribute A over the conditional to obtain:

A((Aϕ→ ϕ) & (ϕ→ Aϕ))→ A(Aϕ ≡ ϕ)

But from (ζ) and this last result, it follows that:

A(Aϕ ≡ ϕ) ./

(134.1) Theorem (133.1) is:

(ϑ) A(Aϕ→ ϕ)

But as an instance of the left-to-right direction of axiom (44.4), we know:

433In particular, the Rules of Definiendum Elimination (90.2) and Definiendum Introduction
(90.3) don’t permit the intersubstitution of definiens and definiendum when one or the other oc-
curs as a proper subformula. Once we prove the special case (160.3) of the Rule of Substitution,
however, we will be able to substitute definendum and definiens for one another whenever one
occurs as a proper subformula within some formula.
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(ξ) A(Aϕ→ ϕ)→ AA(Aϕ→ ϕ)

So from (ϑ) and (ξ), it follows that:

(ζ) AA(Aϕ→ ϕ)

If A . . .A(Aϕ→ ϕ) is simply AA(Aϕ→ ϕ), then we’re done. Otherwise, repeat
the above of reasoning starting with (ζ) to conclude:

AAA(Aϕ→ ϕ)

And so on, as many times as needed to obtain the finite initial string of actual-
ity operators in A . . .A(Aϕ ≡ ϕ). ./

(134.2) – (134.4) (Exercises) [Note: The proofs are outlined in the text.]

(135) Suppose Γ ` ϕ, i.e., that there is a derivation of ϕ from Γ . We show by
induction on the length of any such derivation that AΓ ` Aϕ, i.e., that there is
a derivation of Aϕ from AΓ .

Base Case. If n = 1, then the derivation ofϕ from Γ consists of a single formula,
namely, ϕ itself. So, by the definition of Γ ` ϕ, ϕ must be in Λ∪ Γ . So we have
two cases: (A) ϕ is in Λ or (B) ϕ is in Γ .

Case A: ϕ ∈Λ. Then ϕ is an axiom. So either (i) ϕ is a necessary axiom or
(ii) ϕ is an instance of (43)?.434 If (i), then the actualization of ϕ, i.e., Aϕ,
is an axiom, since all of the closures of necessary axioms are axioms. So
` Aϕ by (63.1) and AΓ ` Aϕ by (63.3). If (ii), then as stipulated in (43)?,
ϕ is either (a) Aψ→ ψ, for some formula ψ, or (b) a universal closure of
Aψ → ψ. (a) If ϕ is Aψ → ψ, then by (133.1), A(Aψ → ψ) is a theorem,
i.e., ` Aϕ. So AΓ ` Aϕ by (63.3). (b) If ϕ is a universal closure of Aψ→ ψ,
i.e., if ϕ is a formula of the form ∀α1 . . .∀αn(Aψ → ψ), then by theorem
(134.4), Aϕ is a theorem. So again, by (63.3), AΓ ` Aϕ.

Case B: ϕ ∈ Γ . Then Aϕ is in AΓ , by the definition of AΓ . Hence by (63.2),
it follows that AΓ ` Aϕ.

Inductive Case. Suppose that the derivation of ϕ from Γ is a sequence S of
length n, where n > 1. Then either ϕ ∈ Λ ∪ Γ or ϕ follows by MP from two
previous members of the sequence, namely, ψ → ϕ and ψ. If ϕ ∈ Λ∪ Γ , then
using the reasoning in the base case, it follows that AΓ ` Aϕ. If ϕ follows from
previous members ψ→ ϕ and ψ by MP, then by the definition of a derivation,
we know both that Γ ` ψ → ϕ and Γ ` ψ, where these are sequences of length
less than n. Since our IH is that the theorem holds for all such derivations of
length less than n, it follows that:

434Note that case (ii), which would apply to any other modally fragile axiom that may have been
added to the system, should be omitted when the present proof is converted to a proof of the `�
form of Rule RA, which asserts that if Γ `� ϕ, then AΓ `� Aϕ.
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(a) AΓ ` A(ψ→ ϕ)

(b) AΓ ` Aψ

Now since (44.2) is an axiom, we know:

` A(ψ→ ϕ) ≡ (Aψ→ Aϕ)

By definition (18.3), this is just:

` (A(ψ→ ϕ)→ (Aψ→ Aϕ)) & ((Aψ→ Aϕ)→ A(ψ→ ϕ))

So by &E (86.2.a), it follows that:

` A(ψ→ ϕ)→ (Aψ→ Aϕ)

It follows from this by (63.3) that:

AΓ ` A(ψ→ ϕ)→ (Aψ→ Aϕ)

So by (63.5), it follows from this and (a) that:

AΓ ` Aψ→ Aϕ

And again by (63.5), it follows from this and (b) that:

AΓ ` Aϕ ./

(137) Consider the set of axioms Λ, which was defined in (59) as containing
just the axioms asserted in Chapter 8. Then we prove:

Fact: If ` ϕ, then `� Aϕ

Assume ` ϕ. We show, by induction on the length of any proof of ϕ that `� Aϕ,
i.e., that there is a modally strict proof of Aϕ.

Base Case. n = 1. Then the proof of ϕ consists of a single formula, namely, ϕ
itself. So by the definition of ` ϕ, ϕ must be an axiom in Λ. So we have two
cases: (A) ϕ is a necessary axiom (i.e., ϕ ∈Λ�), or (B) ϕ is an instance of axiom
(43)? or a universal closure of such an instance.

Case A: ϕ ∈Λ�. Then by (63.1), it follows that `� ϕ. So by the `� version
of RA (135), which we didn’t explicitly formulate given the convention
in (67), it follows that `� Aϕ.435

435Alternatively, from `� ϕ, it follows by (the official form of) RN (68) that `� �ϕ, which then
implies `� Aϕ, by the fact that (132), i.e., �ϕ→ Aϕ, is a modally strict theorem.
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Case B:ϕ is an instance of (43)? or a universal closure of such an instance.
If ϕ is an instance of (43)?, then ϕ has the form Aψ → ψ, for some for-
mula ψ. Then by theorem (133.1), we know that A(Aψ→ ψ) is a modally
strict theorem, i.e., that `� A(Aψ→ ψ), i.e., that `� Aϕ. If ϕ is a univer-
sal closure of an instance of (43)?, then by (134.4), we again know that
`� Aϕ.

Inductive case. If the proof of ϕ is a sequence of length n, where n > 1, then
either ϕ ∈Λ or ϕ follows from two previous members of the sequence, namely,
ψ and ψ → ϕ, by MP. If ϕ ∈ Λ, then using the same reasoning as in the base
case, `� Aϕ. If ϕ follows from previous members ψ → ϕ and ψ, then by the
definition of a proof, we know both ` ψ and ` ψ → ϕ. Then our Inductive
Hypothesis implies:

(IH1) If ` ψ, then `� Aψ

(IH2) If ` ψ→ ϕ, then `� A(ψ→ ϕ)

Since we’ve established the antecedents of both IH1 and IH2, we know, respec-
tively, that:

(ϑ) `� Aψ

(ξ) `� A(ψ→ ϕ)

But since (131) is a theorem, we know:

(ζ) `� A(ψ→ ϕ)→ (Aψ→ Aϕ)

So it follows from (ξ) and (ζ) by (63.5) that `� Aψ → Aϕ. And from this last
fact and (ϑ), it follows by (63.5) that `� Aϕ. ./

(138.1)? Theorem (130.2)? is Aϕ ≡ ϕ. So it follows by a tautology for bicondi-
tionals (88.4.b) that ¬Aϕ ≡ ¬ϕ. ./

(138.2)? If we substitute ¬ϕ for ϕ on both sides of (138.1)?, we obtain the fol-
lowing instance: ¬A¬ϕ ≡ ¬¬ϕ. But it is a tautology that ¬¬ϕ ≡ ϕ, by (88.3.b)
and (88.2.e). So by a biconditional syllogism (89.3.e), it follows that ¬A¬ϕ ≡ ϕ.
./

(139.1) As an instance of the tautology (83), we know Aϕ∨¬Aϕ. So we reason
by cases (86.4.a) from the two disjuncts. If Aϕ, then by ∨I (86.3.a), Aϕ ∨A¬ϕ.
If ¬Aϕ, then by axiom (44.1), it follows that A¬ϕ. So by ∨I (86.3.b), Aϕ∨A¬ϕ.
Hence, Aϕ ∨A¬ϕ. ./

(139.2) By theorem (133.3), &I and the definition of ≡, it suffices to show just
the left-to-right direction. (→) A tautology of conjunction simplification (85.1)
is (ϕ&ψ)→ ϕ. By the Rule of Actualization (135), it follows that A((ϕ&ψ)→
ϕ). So by theorem (131), we may infer:
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(a) A(ϕ&ψ)→ Aϕ

By analogous reasoning from the other tautology of conjunction simplification
(85.2), i.e., (ϕ&ψ)→ ψ, we may similarly infer:

(b) A(ϕ&ψ)→ Aψ

Now for conditional proof, assume A(ϕ & ψ). Then from (a) and (b), respec-
tively, we may conclude both Aϕ and Aψ. So by &I, Aϕ&Aψ. ./

(139.3) As an instance of (139.2), we have:

(ϑ) A((ϕ→ ψ) & (ψ→ ϕ)) ≡ (A(ϕ→ ψ) &A(ψ→ ϕ))

Note that we can’t immediately infer the desired conclusion that A(ϕ ≡ ψ) ≡
(A(ϕ→ ψ)&A(ψ→ ϕ)), since we can’t substitute a definiendum for a definiens
when the latter occurs as a subformula. But we can reason as follows. Given
definition (18.3) and the Rule of Definition by Equivalence (72), we know the
following are theorems :

(ϕ ≡ ψ)→ ((ϕ→ ψ) & (ψ→ ϕ))

((ϕ→ ψ) & (ψ→ ϕ))→ (ϕ ≡ ψ)

Hence by applying the Rule of Actualization to these theorems:

A((ϕ ≡ ψ)→ ((ϕ→ ψ) & (ψ→ ϕ)))

A(((ϕ→ ψ) & (ψ→ ϕ))→ (ϕ ≡ ψ))

So by (131), we may infer from these two theorems, respectively:

A(ϕ ≡ ψ)→ A((ϕ→ ψ) & (ψ→ ϕ))

A((ϕ→ ψ) & (ψ→ ϕ))→ A(ϕ ≡ ψ)

By combining these two results by &I and applying the definition of ≡, it fol-
lows that:

A(ϕ ≡ ψ) ≡ A((ϕ→ ψ) & (ψ→ ϕ))

From this last result and (ϑ), it follows by biconditional syllogism that:

A(ϕ ≡ ψ) ≡ (A(ϕ→ ψ) &A(ψ→ ϕ)) ./

(139.4) (→) By theorem (131), we know:

(a) A(ϕ→ ψ)→ (Aϕ→ Aψ)

(b) A(ψ→ ϕ)→ (Aψ→ Aϕ)
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So by Double Composition (88.8.d), we may conjoin the antecedents of (a) and
(b) into a single conjunctive antecedent and conjoin the consequents of (a) and
(b) into a single conjunctive consequent, to obtain:

(ϑ) (A(ϕ→ ψ) &A(ψ→ ϕ))→ ((Aϕ→ Aψ) & (Aψ→ Aϕ))

By definition of ≡, we independently know:

(ξ) ((Aϕ→ Aψ) & (Aψ→ Aϕ))→ (Aϕ ≡ Aψ)

So by hypothetical syllogism from (ϑ) and (ξ), it follows that:

(A(ϕ→ ψ) &A(ψ→ ϕ))→ (Aϕ ≡ Aψ)

(←) Assume Aϕ ≡ Aψ, for conditional proof. Then, by definition of ≡ and &E,
it follows that Aϕ → Aψ and Aψ → Aϕ. But by the right-to-left direction of
axiom (44.2), the first implies A(ϕ→ ψ) and the second implies A(ψ→ ϕ). So
by &I, we are done. ./

(139.5) (→) By biconditional syllogism (89.3.e) from theorems (139.3) and
(139.4). ./

(139.6) (→) This direction is just axiom (46.1). (←) This direction is an instance
of the T schema. ./

(139.7) Assume A�ϕ. Then by the right-to-left direction of axiom (46.2), it
follows that �ϕ. So by (132), it follows that Aϕ. But then by (46.1), it follows
that �Aϕ. ./

(139.8) Assume �ϕ. From this and axiom (46.2), it follows by biconditional
syllogism that A�ϕ. From this latter and theorem (139.7), it follows that �Aϕ.
./

(139.9) (→) Assume A(ϕ ∨ ψ), for conditional proof. But now assume, for
reductio, ¬(Aϕ ∨ Aψ). Then by a De Morgan’s Law (88.5.d), it follows that
¬Aϕ &¬Aψ. By &E, we have both ¬Aϕ and ¬Aψ. These imply, respectively,
by axiom (44.1), that A¬ϕ and A¬ψ. We may conjoin these by &I to pro-
duce A¬ϕ&A¬ψ, and by an appropriate instance of theorem (139.2), namely,
A(¬ϕ&¬ψ) ≡ A¬ϕ&A¬ψ, it follows by biconditional syllogism that:

(a) A(¬ϕ&¬ψ)

Now, independently, by the commutativity of ≡ (88.2.e), we may transform
an instance of De Morgan’s law (88.5.d) to obtain (¬ϕ & ¬ψ) ≡ ¬(ϕ ∨ ψ) as a
theorem. So we may apply the Rule of Actualization to this instance to obtain:

(b) A((¬ϕ&¬ψ) ≡ ¬(ϕ ∨ψ))

Hence, from (b) it follows by an appropriate instance of (139.5) that:
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(c) A(¬ϕ&¬ψ) ≡ A¬(ϕ ∨ψ))

From (a) and (c), it follows by biconditional syllogism that A¬(ϕ ∨ψ). But by
axiom (44.1), it follows that ¬A(ϕ ∨ψ), which contradicts our initial assump-
tion. Hence, we may conclude by reductio (RAA) version (87.3) that Aϕ ∨Aψ.
(←) Exercise. ./

(139.10) We first prove some preliminary lemmas:

(ϑ) ¬A∀α¬ϕ ≡ ¬∀αA¬ϕ

Proof. As an instance of axiom (44.3), we know A∀α¬ϕ ≡ ∀αA¬ϕ.
So by the tautology (88.4.b), ¬A∀α¬ϕ ≡ ¬∀αA¬ϕ.

(ξ) ¬∀αA¬ϕ ≡ ¬∀α¬Aϕ

Proof. We know ∀α(A¬ϕ ≡ ¬Aϕ), since it is a closure of axiom
(44.1). So by a theorem of quantification theory (99.3), it follows
that ∀αA¬ϕ ≡ ∀α¬Aϕ. Hence by our tautology (88.4.b), ¬∀αA¬ϕ ≡
¬∀α¬Aϕ.

With these two lemmas, we may reason as follows. By Rule ≡Df (90.1), the
biconditional derived from definition (18.3) is a theorem. So by Rule RA, it
follows that A(∃αϕ ≡ ¬∀α¬ϕ). By theorem (139.5), it follows that A∃αϕ ≡
A¬∀α¬ϕ. We may therefore reason from this result by biconditional chaining
as follows:

A∃αϕ ≡ A¬∀α¬ϕ
≡ ¬A∀α¬ϕ by axiom (44.1)
≡ ¬∀αA¬ϕ by (ϑ)
≡ ¬∀α¬Aϕ by (ξ)
≡ ∃αAϕ by definition of ∃ ./

(139.11) (→) Assume A∀α(ϕ ≡ ψ). Then by axiom (44.3), it follows that ∀αA(ϕ ≡
ψ). So by Rule ∀E (93.3), A(ϕ ≡ ψ). By the left-to-right direction of (139.5), we
may infer Aϕ ≡ Aψ. But since we’ve reached this result from an assumption
in which α doesn’t occur free, we may apply GEN and conclude ∀α(Aϕ ≡ Aψ).
(←) Assume ∀α(Aϕ ≡ Aψ). Then by Rule ∀E (93.3), Aϕ ≡ Aψ. By the right-
to-left direction of (139.5), A(ϕ ≡ ψ). But since we’ve reached this result from
an assumption in which α doesn’t occur free, we may apply GEN and conclude
∀αA(ϕ ≡ ψ). Hence by axiom (44.3), A∀α(ϕ ≡ ψ). ./

(140)? Let ϕ be any formula in which β is substitutable for α and doesn’t
occur free in ϕ. We prove both directions of the biconditional. (→) Assume
∀β(Aϕβα ≡ β=α). Now independently apply GEN to theorem (130.2)? to obtain
∀α(Aϕ ≡ ϕ), which by (99.11), implies ∀α(ϕ ≡ Aϕ). Since β is substitutable for
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α in ϕ and doesn’t occur free in ϕ, it follows by (99.13), that ∀β(ϕ ≡ Aϕ)βα , i.e.,
∀β(ϕβα ≡ Aϕβα). And from this result and our assumption it follows by (99.10)
that ∀β(ϕβα ≡ β=α). (←) By analogous reasoning. ./

(141)? Consider any ϕ in which z is substitutable for x and doesn’t occur free.
By axiom (47), we know x= ıxϕ ≡ ∀z(Aϕzx ≡ z=x). But by our previous theorem
(140)?, we know that ∀z(Aϕzx ≡ z=x) ≡ ∀z(ϕzx ≡ z=x). Hence, by biconditional
syllogism, it follows that x= ıxϕ ≡ ∀z(ϕzx ≡ z=x). ./

(142)? Consider any ϕ in which z is substitutable for x and doesn’t occur free.
Then by the fundamental theorem (141)? for descriptions, we know:

(ϑ) x= ıxϕ ≡ ∀z(ϕzx ≡ z=x)

But, given our hypothesis that z is substitutable for x in ϕ and doesn’t occur
free in ϕ, we have as an instance of (126.3) that:

(ϕ&∀z(ϕzx→ z=x)) ≡ ∀z(ϕzx ≡ z=x)

From this last claim, it follows by the commutativity of ≡ (88.2.e) that:

(ξ) ∀z(ϕzx ≡ z=x) ≡ (ϕ&∀z(ϕzx→ z=x))

So by biconditional syllogism (89.3.e) from (ϑ) and (ξ) it follows that:

x= ıxϕ ≡ (ϕ&∀z(ϕzx→ z=x)) ./

(143)? By hypothesis, (i) ψ is either an exemplification formula Πnκ1 . . .κn (n ≥
1) or an encoding formula κ1 . . .κnΠ

n, (ii) x occurs in ψ and only as one or more
of the κi (1 ≤ i ≤ n), and (iii) z is substitutable for x in ϕ and doesn’t occur free
in ϕ. We want to show:

(a) ψıxϕx ≡ ∃x(ϕ & ∀z(ϕzx→ z=x) & ψ)

Our strategy will be to use Hintikka’s schema (142)?. Since z is substitutable
for x in ϕ and doesn’t occur free in ϕ, we know that Hintikka’s schema applies
to ϕ, so that we have:

x= ıxϕ ≡ (ϕ&∀z(ϕzx→ z=x))

By GEN, it follows that:

(b) ∀x(x = ıxϕ ≡ (ϕ&∀z(ϕzx→ z=x)))

(b) will be used in proving both directions of (a).

(→) Assume:

(c) ψıxϕx
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for conditional proof. Since ψ is, by hypothesis, an exemplification or encoding
formula, it follows from (c) by axiom (39.5.a) and (39.5.b) that ıxϕ↓. So, where
y is some variable that doesn’t occur free in ıxϕ, it follows by (121.1) that:

(d) ∃y(y = ıxϕ)

Assume that a is an arbitrary such object, so that we know a = ıxϕ. If we
instantiate (b) to a by Rule ∀E (93.2), we obtain:

a= ıxϕ ≡ ϕax &∀z(ϕzx→ z = a)

So by biconditional syllogism, it follows that:

(e) ϕax &∀z(ϕzx→ z = a)

Note independently that we’ve established the symmetry of identity for objects
(117.2), so that by GEN, we know ∀x∀y(x = y→ y = x). In this universal claim,
we may instantiate ∀x to a and, given that we already know ıxϕ↓, instantiate ∀y
to ıxϕ, thereby inferring from the assumption that a = ıxϕ that ıxϕ = a. From
this and (c) it follows by Rule =E (110) that ψax (i.e., the result of substituting a
for all the occurrences of ıxϕ in ψıxϕx ). Conjoining this last result with (e) by &I
we obtain:

ϕax &∀z(ϕzx→ z = a) &ψax

Hence, by ∃I, our desired conclusion follows:

∃x(ϕ & ∀z(ϕzx→ z=x) & ψ)

Since we’ve inferred this conclusion from the assumption that a = ıxϕ, where
a is arbitrary, we may discharge the assumption to reach our conclusion from
(d), by ∃E (102).

(←) Assume, for conditional proof:

(f) ∃x(ϕ & ∀z(ϕzx→ z=x) & ψ)

Assume b is an arbitrary such object, so that we know:

(g) ϕbx & ∀z(ϕzx→ z=b) & ψbx

By instantiating b into (b), we have:

(h) b = ıxϕ ≡ ϕbx &∀z(ϕzx→ z = b)

If we now detach the first two conjuncts of (g) from the third conjunct by one
application of &E, we have both:

(i) ϕbx & ∀z(ϕzx→ z=b)
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(j) ψbx

From (i) and (h) it follows by biconditional syllogism that:

(k) b = ıxϕ

From (k) and (j), it follows by Rule =E (110) that ψıxϕx . Thus, we may discharge
(g) to reach this same conclusion from (f) by ∃E (102). ./

(144.1)? (→) Assume ıxϕ ↓. Then by the left-to-right direction of (121.1),
∃y(y = ıxϕ), where y is some variable that doesn’t occur free in ϕ. Suppose
a is such an object, so that we know a= ıxϕ. Now, independently, if we apply
GEN to Hintikka’s schema (142)? and instantiate the resulting universal claim
to the constant a, we know, by Rule ∀E (93.2), that a = ıxϕ ≡ ϕax&∀z(ϕzx→ z=a),
where z is some variable that is substitutable for x in ϕ and that doesn’t occur
free in ϕ. So it follows by biconditional syllogism that ϕax & ∀z(ϕzx → z = a).
Hence, by ∃I, it follows that ∃x(ϕ & ∀z(ϕzx → z= x)). Given our choice of z, it
follows by definition of the uniqueness quantifier (127.1) that ∃!xϕ. This last
conclusion remains once we discharge our assumption about a by ∃E. (←) Use
analogous reasoning in the reverse direction. ./

(144.2)? (Exercise)

(145.1)? Assume x = ıxϕ. Now pick a variable, say z, that is substitutable for
x in ϕ. Then by Hintikka’s schema (142)?, it follows that ϕ & ∀z(ϕzx → z = x).
A fortiori, ϕ. ./

(145.2)? By hypothesis, z is substitutable for x in ϕ. If we apply GEN to the
previous theorem (145.1)?, it is a theorem that:

(ϑ) ∀x(x= ıxϕ→ ϕ)

Since z is substitutable for x in ϕ, it follows from the definition of substitutable
for (15) that z is substitutable for x in the formula x = ıxϕ → ϕ. Since z is
a variable and substitutable for x in the matrix of (ϑ), we may instantiate it
into (ϑ), by Rule ∀E (93.2), to infer (x = ıxϕ → ϕ)zx. It then follows from the
definition of ψzx (14) that (x= ıxϕ→ ϕ)zx just is z= ıxϕ→ ϕzx (exercise).436 ./

(145.3)? By hypothesis, ıxϕ is substitutable for x in ϕ. Assume, for condi-
tional proof, ıxϕ↓. (Recall our convention, mentioned at the end of (20), that
ıxϕ↓ abbreviates (ıxϕ)↓. We henceforth omit mention of this convention in
subsequent proofs.) Now we saw, in the proof of the previous theorem, that
the following is a ?-theorem:

(ϑ) ∀x(x= ıxϕ→ ϕ)

436Note that (ıxϕ)zx is just ıxϕ, since any free occurrences of x in ϕ become bound in ıxϕ.
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Since ıxϕ is, by hypothesis, substitutable for x in ϕ, it must be substitutable for
x in x= ıxϕ → ϕ.437 Hence the conditions for applying Rule ∀E (93.1) obtain
and we may conclude from (ϑ) that (x = ıxϕ → ϕ)ıxϕx , i.e., ıxϕ = ıxϕ → ϕ

ıxϕ
x .

But our assumption ıxϕ↓ also implies, by Rule =I (118), that ıxϕ= ıxϕ. Hence,
ϕ
ıxϕ
x . ./

(145.4)? (Exercise)

(146) Let ϕ be any formula in which β is substitutable for α and doesn’t occur
free. Axiom (44.3) is Aϕ ≡ AAϕ and by the commutativity of ≡, AAϕ ≡ Aϕ is a
theorem. By GEN, it follows, respectively, that ∀α(Aϕ ≡ AAϕ) and ∀α(AAϕ ≡
Aϕ) are also theorems. Given our hypothesis about β, the following alphabetic
variants of our last two theorems are also theorems, respectively, by (99.13):
∀β[(Aϕ ≡ AAϕ)βα] and ∀β[(AAϕ ≡ Aϕ)βα]. By the definition of substitution (14),
it follows from these last two theorems, respectively, that:

(ξ) ∀β(Aϕβα ≡ AAϕβα)

(ζ) ∀β(AAϕβα ≡ Aϕβα)

Using these two facts, we now prove both directions of our biconditional.
(→) Assume ∀β(Aϕβα ≡ β = α). From (ζ) and this assumption, it follows that
∀β(AAϕβα ≡ β =α), by (99.10). (←) Assume ∀β(AAϕβα ≡ β =α). From (ξ) and
this assumption, it follows that ∀β(Aϕβα ≡ β=α), also by (99.10). ./

(147.1) We may reason as follows, where z is chosen to be some variable sub-
stitutable for x in ϕ:

x= ıxϕ ≡ ∀z(Aϕzx ≡ z = x) by axiom (47)
≡ ∀z(AAϕzx ≡ z = x) by theorem (146)
≡ x= ıxAϕ by axiom (47) ./

(147.2) Assume ıxϕ↓. Note independently that it follows from the previous
theorem (147.1) by GEN that ∀x(x= ıxϕ ≡ x= ıxAϕ). Note also (exercise) that
ıxϕ is substitutable for x in the matrix of this last universal claim. Hence, by
Rule ∀E (93.1), we may infer ıxϕ = ıxϕ ≡ ıxϕ = ıxAϕ. Moreover, given our
assumption, it follows by Rule =I (118) that ıxϕ= ıxϕ. Hence ıxϕ = ıxAϕ. ./

(148) Suppose z is substitutable for x and doesn’t occur free in ϕ. Then by the
axiom governing descriptions (47) we know:

(ϑ) x= ıxϕ ≡ ∀z(Aϕzx ≡ z=x)

437If no free variable in ıxϕ is captured when ıxϕ is substituted for all the free occurrences of
x in ϕ, then since the initial occurrence of x in x = ıxϕ → ϕ doesn’t fall under the scope of any
quantifiers, no free variable in ıxϕ is captured when ıxϕ is substituted for all the free occurrences
of x in x= ıxϕ→ ϕ.
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But, given our hypothesis that z is substitutable for x in ϕ and doesn’t occur
free in ϕ, we have as an instance of (126.3) that:

(Aϕ&∀z(Aϕzx→ z=x)) ≡ ∀z(Aϕzx ≡ z=x)

From this last claim, it follows by the commutativity of ≡ (88.2.e) that:

(ξ) ∀z(Aϕzx ≡ z=x) ≡ (Aϕ&∀z(Aϕzx→ z=x))

So by biconditional syllogism (89.3.e) from (ϑ) and (ξ) it follows that:

x= ıxϕ ≡ (Aϕ&∀z(Aϕzx→ z=x)) ./

(149.1) Assume A∀x(ϕ ≡ ψ). Then by the left-to-right direction of (139.11), we
know:

(ϑ) ∀x(Aϕ ≡ Aψ)

Now we want to show ∀x(x = ıxϕ ≡ x = ıxψ). By GEN, it suffices to show
x= ıxϕ ≡ x = ıxψ. (→) Assume x = ıxϕ. Without loss of generality, pick some
variable, say z, that (a) is substitutable for x in both ϕ and ψ and (b) doesn’t
occur free in ϕ and ψ. Then by the axiom governing descriptions (47), our
assumption x= ıxϕ implies:

(ξ) ∀z(Aϕzx ≡ z=x)

Now we want to show x = ıxψ. Again, by the axiom for descriptions and our
choice of z, it suffices to show ∀z(Aψzx ≡ z=x). And by GEN, it suffices to show
Aψzx ≡ z = x. Now since z is, by hypothesis, substitutable for x in both ϕ and
ψ, it is substitutable for x in Aϕ ≡ Aψ. That is, it is substitutable for x in the
matrix of (ϑ). Hence, since z is a variable, it follows from (ϑ) by Rule ∀E (93.2)
that:

(Aϕ ≡ Aψ)zx

But, by definition of χzx (14), the above is just Aϕzx ≡ Aψzx, which by the com-
mutativity of ≡ is equivalent to:

(ζ) Aψzx ≡ Aϕzx

Now by Rule ∀E (93.3), (ξ) implies Aϕzx ≡ z=x. But by biconditional syllogism
from (ζ) and this last result, it follows that Aψzx ≡ z = x, which is all that it
remained to show. (←) By analogous reasoning. ./

(149.2) Assume both ıxϕ↓ and A∀x(ϕ ≡ ψ). From our second assumption, it
follows, by (149.1), that:

∀x(x = ıxϕ ≡ x = ıxψ)
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But from the assumption ıxϕ↓ and the fact (exercise) that ıxϕ is substitutable
for x in the matrix of this last claim, it follows by Rule ∀E (93.1) that:

ıxϕ = ıxϕ ≡ ıxϕ = ıxψ

But it also follows from our first assumption that ıxϕ = ıxϕ, by Rule =I (118).
Hence ıxϕ = ıxψ. ./

(149.3) Assume both ıxϕ↓ and �∀x(ϕ ≡ ψ). From our second assumption, it
follows from (132) that A∀x(ϕ ≡ ψ). Hence ıxϕ = ıxψ, by (149.2). ./

(149.4) (Exercise)

(149.5) Assume ıxϕ↓ and that the variable y doesn’t occur free in ϕ. Note in-
dependently that as an instance of theorem (124.2), we know ∀z�(z = z). Since
ıxϕ is substitutable for z in the matrix of this universal claim, we can apply
Rule ∀E (93.1) and conclude �ıxϕ = ıxϕ. From this last fact, the assumption
that ıxϕ↓, and the fact that y doesn’t occur free in ϕ, it follows by Rule ∃I
(101.1) that ∃y�(y = ıxϕ). ./

(150.1)? Assume ∀x(ϕ ≡ ψ). Then by the fact that χ→ Aχ (130.1)?, we know
A∀x(ϕ ≡ ψ). So by (149.1), it follows that ∀x(x = ıxϕ ≡ x = ıxψ). ./

(150.2)? Assume both ıxϕ ↓ and ∀x(ϕ ≡ ψ). Then by the fact that χ → Aχ
(130.1)?, the second assumption implies A∀x(ϕ ≡ ψ). From this and our first
assumption, it follow by (149.2) that ıxϕ = ıxψ. ./

(151) For both directions, follow the proof of (143)?, but instead of appealing
to (142)?, appeal to the modally-strict version of Hintikka’s schema (148) and
reason with respect to Aϕ instead of ϕ. ./

(152.1) (→) Assume ıxϕ↓. Then by the left-to-right direction of an appropriate
instance of (121.1), ∃y(y= ıxϕ), where y is some variable that doesn’t occur free
in ϕ. Suppose a is such an object, so that we know a= ıxϕ. Now, independently,
if we apply GEN to the axiom governing descriptions (47) and instantiate the
resulting universal claim to the constant a, we know, by Rule ∀E (93.2):

a = ıxϕ ≡ ∀z(Aϕzx ≡ z=a)

where z is some variable that is substitutable for x in ϕ and that doesn’t occur
free in ϕ. So it follows by biconditional syllogism that ∀z(Aϕzx ≡ z=a). Hence,
by ∃I, it follows that ∃x∀z(Aϕzx ≡ z= x). Given our choice of z, it follows by a
fact about the uniqueness quantifier (127.2) that ∃!xAϕ. This last conclusion
remains once we discharge our assumption about a by ∃E. (←) Use analogous
reasoning in the reverse direction. ./

(152.2) Assume x = ıxϕ. Then, for some variable, say z, that is substitutable for
x in ϕ and that doesn’t occur free in ϕ, we know, by the modally strict version
of Hintikka’s schema (148), that Aϕ&∀z(Aϕzx→ z=x). A fortiori, Aϕ. ./
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(152.3) Suppose z is substitutable for x in ϕ. By applying GEN to theorem
(152.2), we know it is a theorem that:

(ϑ) ∀x(x= ıxϕ→ Aϕ)

Since z is, by hypothesis, substitutable for x in ϕ, it is substitutable for x in the
formula x = ıxϕ → Aϕ. Since z is a variable substitutable for x in the matrix
of (ϑ), we may instantiate it into (ϑ), by Rule ∀E (93.2), to conclude z= ıxϕ→
Aϕzx. ./

(152.4) Assume ıxϕ↓. Note independently that it follows by GEN from (152.2)
that:

(ϑ) ∀x(x= ıxϕ→ Aϕ)

Since ıxϕ is, by hypothesis, substitutable for x in ϕ, it must be substitutable
for x in x= ıxϕ→ Aϕ. Hence the conditions for applying Rule ∀E (93.1) obtain
and we may conclude from (ϑ) that ıxϕ = ıxϕ → Aϕıxϕx . But our assumption
ıxϕ↓ also implies, by Rule =I (118), that ıxϕ= ıxϕ. Hence, Aϕıxϕx . ./

(152.5) Assume ıxϕ= ıxψ. By (107.1) and (107.2), respectively, it follows that
ıxϕ↓ and ıxψ↓. So, instantiating these terms into (117.2), we therefore know
ıxψ = ıxϕ. From this last result and (152.2), it follows that Aϕ, and from our
assumption and (152.2), it follows that Aψ. Hence Aϕ ≡ Aψ. So by (139.5),
A(ϕ ≡ ψ). Since x isn’t free in our assumption, it follows by GEN that ∀xA(ϕ ≡
ψ). Hence by axiom (44.3), A∀x(ϕ ≡ ψ). ./

(153.1) Assume ∃!x�ϕ, where y doesn’t occur free in ϕ and is substitutable
for x in ϕ. By Rule ≡df E of Definiendum Elimination (90.2), it follows from
definition (127.1) that:

(ζ) ∃x(�ϕ&∀z(�ϕzx→ z = x))

where z is some variable that is substitutable for x in ϕ and that doesn’t occur
free in ϕ. Suppose b is an arbitrary such object, i.e., that:

(ϑ) �ϕbx &∀z(�ϕzx→ z = b)

Now we want to show that ∀y(y = ıxϕ → ϕ
y
x ). But it suffices by GEN to show

y= ıxϕ→ ϕ
y
x . So assume y= ıxϕ. If we apply GEN to the modally strict version

of Hintikka’s Schema (148) and instantiate the result to the variable y, then
y= ıxϕ implies:

(ξ) Aϕyx &∀z(Aϕzx→ z=y)

If we now instantiate b into the second conjunct of (ξ), we obtain Aϕbx → b=y.
But the first conjunct of (ϑ) implies, by theorem (132), that Aϕbx . So b=y. But
the first conjunct of (ϑ) also implies ϕbx , by the T schema (45.2). Hence, by
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Rule =E, ϕyx . Since this is what remained to show that ∀y(y= ıxϕ→ ϕ
y
x ), we’ve

derived the latter from (ϑ). Hence, by ∃E, we’ve derived ∀y(y= ıxϕ→ ϕ
y
x ) from

(ξ) and, thus, from our initial assumption. ./

(153.2) Assume ∀x(ϕ → �ϕ) and ∃!xϕ. Then by (129), it follows that ∃!x�ϕ.
But then by (153.1), we may conclude ∀y(y= ıxϕ→ ϕ

y
x ). ./

(154) Assume ıνϕ↓. Then by the Variant of Rule =I (118.1), it follows that
ıνϕ = ıνϕ. By definition (16.4), (16.5) and the ensuing discussion in (16), we
know that since ıνϕ and (ıνϕ)′ are alphabetically-variant terms, then ıνϕ =
ıνϕ and ıνϕ = (ıνϕ)′ are alphabetically variant formulas. So it follows by the
Rule of Alphabetic Variants (114) that ıνϕ = (ıνϕ)′. ./

(157.1) [We prove only the stronger form, since the weaker form follows triv-
ially by (62.1).] Assume Γ `� ϕ→ ψ, i.e., that there is a modally-strict deriva-
tion of ϕ → ψ from Γ . Then the conditions of the strong form of RN are met
and we may apply RN to conclude �Γ `� �(ϕ → ψ). Since instances of the K
schema are necessary axioms, we know `� �(ϕ→ ψ)→ (�ϕ→ �ψ), by (63.1).
So �Γ `� �(ϕ → ψ) → (�ϕ → �ψ), by (63.3), and by (63.6), it follows that
�Γ `� �ϕ→ �ψ. ./

(157.2) [We prove only the stronger form, since the weaker form follows triv-
ially by (62.1).] Assume Γ `� ϕ→ ψ, i.e., that there is a modally-strict deriva-
tion of ϕ → ψ from Γ . Since the metarules of contraposition (80) apply gen-
erally to all derivations, they apply to modally-strict derivations, and so it fol-
lows by (80.1) that Γ `� ¬ψ → ¬ϕ. Hence by Rule RM (157.1), it follows that
�Γ `� �¬ψ → �¬ϕ. So, again by our metarule of contraposition (80.1), it fol-
lows that:

(ϑ) �Γ `� ¬�¬ϕ→¬�¬ψ

Now by the definition of ♦ and the `� form of the Rule of Definition by Equiv-
alence (72), we independently know:438

�Γ `� ¬�¬ψ→ ♦ψ

Hence it follows from this last result and (ϑ) by a corollary (76.1) to the De-
duction Theorem that:

(ξ) �Γ `� ¬�¬ϕ→ ♦ψ

Moreover, again by the definition of ♦ and Rule of Definition by Equivalence,
we independently know:

�Γ `� ♦ϕ→¬�¬ϕ
438Recall that though the Rule of Definition by Equivalence (72) was formulated for `, it also

holds for `�; we omitted the statement of the rule for `�, by convention (67).
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From this last result and (ξ), it follows by the same corollary (76.1) to the
Deduction Theorem that �Γ `� ♦ϕ→ ♦ψ. ./

(157.3) Assume Γ `� ϕ ≡ ψ. Then, by the definition of ≡ and the `� form of
Rule ≡df E of Definiendum Elimination (90.2):

Γ `� (ϕ→ ψ) & (ψ→ ϕ)

So by two applications of Rule &E, we have both:

Γ `� ϕ→ ψ

Γ `� ψ→ ϕ

By applying Rule RM (157.1)to each, we have:

Γ `� �ϕ→ �ψ

Γ `� �ψ→ �ϕ

Hence, by Rule &I:

Γ `� (�ϕ→ �ψ) & (�ψ→ �ϕ)

So by the Rule of Definiendum Introduction (90.3):

�Γ `� �ϕ ≡ �ψ ./

(157.4) (Exercise)

(158.1) By the first axiom (38.1) governing conditionals, we haveϕ→ (ψ→ ϕ).
Since this is a �-theorem, we may apply RM (157.1) to conclude �ϕ→ �(ψ→
ϕ). ./

(158.2) Since the tautology (77.3), i.e., ¬ϕ→ (ϕ→ ψ), is a modally strict theo-
rem, it follows by RM (157.1) that �¬ϕ→ �(ϕ→ ψ). ./

(158.3) (→) A tautology of conjunction simplification (85.1) is (ϕ & ψ) → ϕ.
Since this is a �-theorem, we may apply RM (157.1) to obtain:

(a) �(ϕ&ψ)→ �ϕ

By analogous reasoning from (ϕ&ψ)→ ψ (85.2), we obtain:

(b) �(ϕ&ψ)→ �ψ

Assume �(ϕ&ψ) for conditional proof. Then from (a) and (b), respectively, we
may infer �ϕ and �ψ. Hence by &I, �ϕ&�ψ. (←) The principle of Adjunction
(85.5) is ϕ → (ψ → (ϕ & ψ)). Since this is a �-theorem, we may apply RM
(157.1) to obtain:
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(c) �ϕ→ �(ψ→ (ϕ&ψ))

The consequent of (c) can be used to form an instance of K (45.1):

(d) �(ψ→ (ϕ&ψ))→ (�ψ→ �(ϕ&ψ))

By hypothetical syllogism (76.3), if follows from (c) and (d) that �ϕ→ (�ψ→
�(ϕ&ψ)). Then by Importation (88.7.b), it follows that (�ϕ&�ψ)→ �(ϕ&ψ).
./

(158.4) As an instance of (158.3), we have:

(ϑ) �((ϕ→ ψ) & (ψ→ ϕ)) ≡ (�(ϕ→ ψ) &�(ψ→ ϕ))

Independently, we know, by the `� form of Rule ≡Df (90.1) of Equivalence by
Definition, that the following is a modally strict theorem, given the definition
of ≡:

(ϕ ≡ ψ) ≡ ((ϕ→ ψ) & (ψ→ ϕ))

So by Rule RE (157.3):

(ξ) �(ϕ ≡ ψ) ≡ �((ϕ→ ψ) & (ψ→ ϕ))

But then it follows from (ξ) and (ϑ) by biconditional syllogism that:

�(ϕ ≡ ψ) ≡ (�(ϕ→ ψ) &�(ψ→ ϕ)) ./

(158.5) The following are both instances of the K axiom (45.1):

�(ϕ→ ψ)→ (�ϕ→ �ψ)

�(ψ→ ϕ)→ (�ψ→ �ϕ)

So by Double Composition (88.8.d), we may conjoin the two antecedents into
a single conjunctive antecedent and conjoin the two consequents into a single
conjunctive consequent, to obtain:

(�(ϕ→ ψ) &�(ψ→ ϕ))→ ((�ϕ→ �ψ) & (�ψ→ �ϕ))

But by the Rule of Definition by Equivalence (72) and the definition of ≡, we
know:

((�ϕ→ �ψ) & (�ψ→ �ϕ))→ (�ϕ ≡ �ψ)

So by hypothetical syllogism:

(�(ϕ→ ψ) &�(ψ→ ϕ))→ (�ϕ ≡ �ψ) ./



1066

(158.6) Theorem (158.4) is �(ϕ ≡ ψ) ≡ (�(ϕ → ψ) & �(ψ → ϕ)). From this, it
follows, by the definition of ≡ and the Rules ≡df E of Definiendum Elimination
(90.2) and &E (86.2.a) that �(ϕ ≡ ψ)→ (�(ϕ→ ψ) & �(ψ→ ϕ)). But from this
and (158.5), it follows by hypothetical syllogism (76.3) that �(ϕ ≡ ψ)→ (�ϕ ≡
�ψ). ./

(158.7) Assume (�ϕ&�ψ)∨ (�¬ϕ&�¬ψ). Then we reason by cases (86.4.a).

Assume �ϕ&�ψ. Then by &E, both �ϕ and �ψ. From the latter, it follows by
(158.1) that �(ϕ → ψ). From the former, it follows by (158.1) that �(ψ → ϕ).
Hence, by &I, it follows that �(ϕ → ψ) &�(ψ → ϕ). This last conclusion and
the right-to-left direction of (158.4) jointly imply �(ϕ ≡ ψ), by biconditional
syllogism.

Now assume �¬ϕ & �¬ψ. By the right-to-left direction of (158.3), it follows
that �(¬ϕ & ¬ψ). Note independently that it is easy to establish, by condi-
tional proof, ∨I, and the right-to-left direction of (88.4.g), that (¬ϕ & ¬ψ) →
(ϕ ≡ ψ). Since this is a modally strict theorem, it follows by RM (157.1)
that �(¬ϕ&¬ψ)→ �(ϕ ≡ ψ). Since we’ve already established the antecedent,
�(ϕ ≡ ψ) follows by Modus Ponens. ./

(158.8) Assume �(ϕ&ψ). From this and (158.3), it follows by ≡E (89.3.a) that
�ϕ&�ψ. So by (158.7), �(ϕ ≡ ψ). ./

(158.9) Assume �(¬ϕ&¬ψ). Independently, we leave it as an exercise to prove,
using the right-to-left direction of the modally strict theorem (88.4.g) and ∨I,
that (¬ϕ & ¬ψ)→ (ϕ ≡ ψ) is a modally-strict theorem. Hence by Rule RM it
follows that:

�(¬ϕ ≡ ¬ψ)→ �(ϕ ≡ ψ)

From this and our assumption, it follows that �(ϕ ≡ ψ). ./

(158.10) Since the tautology ϕ ≡ ¬¬ϕ (88.3.b) is a �-theorem, it follows by
Rule RE that �ϕ ≡ �¬¬ϕ. ./

(158.11) (→) Assume ¬�ϕ, for conditional proof. We want to show ♦¬ϕ. By
definition of ♦ and Rule ≡df I, we have to show ¬�¬¬ϕ. For reductio, assume
�¬¬ϕ. From this and (158.10), it follows by biconditional syllogism that �ϕ,
which contradicts our initial assumption. (←) Assume ♦¬ϕ. Then by defi-
nition of ♦ and Rule ≡df I, ¬�¬¬ϕ. We want to show ¬�ϕ. So, for reductio,
assume �ϕ. From this and (158.10), it follows by biconditional syllogism that
�¬¬ϕ, which is a contradiction. ./

(158.12) (→) Assume �ϕ. For reductio, assume ♦¬ϕ. From this and (158.11),
it follows by biconditional syllogism that ¬�ϕ, which contradicts our initial
assumption. (←) Assume ¬♦¬ϕ, for conditional proof. For reductio, assume



Proofs of Theorems and Metarules 1067

¬�ϕ. From this and (158.11), it follows by biconditional syllogism that ♦¬ϕ,
which contradicts our initial assumption. ./

(158.13) By the special case of (63.2), we know (ϕ → ψ) `� (ϕ → ψ). So by
RM♦ (157.2), it follows that �(ϕ → ψ) `� ♦ϕ → ♦ψ. Hence, by the `� version
of the Deduction Theorem (75), it is a modally strict theorem that �(ϕ→ ψ)→
♦ϕ→ ♦ψ. ./

(158.14) By (158.11), it is a �-theorem that ¬�ϕ ≡ ♦¬ϕ. Hence, by RE, it fol-
lows that �¬�ϕ ≡ �♦¬ϕ. By the relevant instance of a biconditional tautology
(88.4.b), we can negate both sides to obtain: ¬�¬�ϕ ≡ ¬�♦¬ϕ. But by defi-
nition of ♦ and Rule ≡Df (90.1), we know ♦�ϕ ≡ ¬�¬�ϕ. So by biconditional
syllogism, it follows that ♦�ϕ ≡ ¬�♦¬ϕ. ./

(158.15) By simple conditional proofs and the rules for∨I (86.3.a) and (86.3.b),
we can establish the following �-theorems:

ϕ→ (ϕ ∨ψ)

ψ→ (ϕ ∨ψ)

Hence it follows by Rule RM (157.1) that:

�ϕ→ �(ϕ ∨ψ)

�ψ→ �(ϕ ∨ψ)

So by an appropriate instance of the tautology (88.8.c), it follows that (�ϕ ∨
�ψ)→ �(ϕ ∨ψ). ./

(158.16) Assume:

(ϑ) �ϕ&♦ψ

Now independently, by (85.5), we know that ϕ → (ψ → (ϕ &ψ) is a modally
strict theorem. So by Rule RM, �ϕ→ �(ψ→ (ϕ&ψ)). So from this last result
and the first conjunct of (ϑ), �(ψ → (ϕ &ψ)). So by the K♦ schema (158.13),
♦ψ→ ♦(ϕ&ψ). This result and the second conjunct of (ϑ) imply ♦(ϕ&ψ). ./

(159.1) Our global assumption is:

(ξ) ` �(ψ ≡ χ)

Since instances of the T schema (45.2) are axioms, we know:

` �(ψ ≡ χ)→ (ψ ≡ χ)

by (63.1). From this and our global assumption, it follows by (63.6) that:

(ϑ) ` ψ ≡ χ
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We frequently appeal to either (ξ) or (ϑ) in establishing the following cases of
the consequent of the rule:

(.a) Show ` ¬ψ ≡ ¬χ. Since instances of (88.4.b) are theorems, we know:

` ψ ≡ χ ≡ ¬ψ ≡ ¬χ

From this and (ϑ), it follows by biconditional syllogism (89.3.a) that:

` ¬ψ ≡ ¬χ

(.b) Show ` (ψ → θ) ≡ (χ → θ). Note that since instances of (88.4.c) are
theorems, we know:

` (ψ ≡ χ)→ ((ψ→ θ) ≡ (χ→ θ))

From this and (ϑ), it follows by (63.6) that ` (ψ→ θ) ≡ (χ→ θ).

(.c) Show ` (θ→ ψ) ≡ (θ→ χ). By reasoning analogous to the previous case,
but starting with an instance of (88.4.d) instead of (88.4.c).

(.d) Show ` ∀αψ ≡ ∀αχ. From (ϑ), it follows by GEN that ` ∀α(ψ ≡ χ). But
by our proof of (99.3), we know:

` ∀α(ψ ≡ χ)→ (∀αψ ≡ ∀αχ)

Hence it follows by (63.6) that ` ∀αψ ≡ ∀αχ.

(.e) Show ` [λ ψ] ≡ [λ χ]. Since the instances of (111.6) are theorems, we
know:

` (ψ ≡ χ) ≡ ([λψ] ≡ [λχ])

From this fact and (ϑ), it follows by biconditional syllogism (89.3.a) that
` [λψ] ≡ [λχ].

(.f) Show ` Aψ ≡ Aχ. Our proof of (132) establishes that:

` �(ψ ≡ χ)→ A(ψ ≡ χ)

From this and our global assumption (ξ), it follows that:

(ζ) ` A(ψ ≡ χ),
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by (63.6).439 But by (139.5), we know that A(ψ ≡ χ) ≡ (Aψ ≡ Aχ), so that
we know:440

` A(ψ ≡ χ) ≡ (Aψ ≡ Aχ)

Hence it follows that ` Aψ ≡ Aχ, by (89.3.a).

(.g) Show ` �ψ ≡ �χ. By our proof of (158.6), we know:

` �(ψ ≡ χ)→ (�ψ ≡ �χ)

But it follows from this and our global assumption (ξ) that ` �ψ ≡ �χ,
by biconditional syllogism (89.3.a). ./

(159.2) Assume:

(ϑ) ` �(ψ ≡ χ)

and let ϕ′ be the result of substituting the formula χ for zero or more occur-
rences of ψ where the latter is a subformula of ϕ. We then show, by induction
on the complexity of ϕ, that ` ϕ ≡ ϕ′.

However, we may put aside the following subcases that occur in the base
case and the inductive cases:

(ζ) If no occurrences of ψ in ϕ are replaced by χ, then ϕ′ = ϕ, and we simply
have to show ` ϕ ≡ ϕ. But ϕ ≡ ϕ is theorem (88.3.a).

(ξ) If ψ is a subformula of ϕ because ψ = ϕ, then ϕ′ = χ and (ϑ) becomes
` �(ϕ ≡ ϕ′). Since instances of the T schema (45.2) are axioms, we know
` �(ϕ ≡ ϕ′)→ (ϕ ≡ ϕ′), by (63.1). It follows that ` ϕ ≡ ϕ′, by (63.6).

Given (ζ) and (ξ), we need to reason only in those cases where (a) ϕ′ is the
result of substituting χ for at least one occurrence of ψ in ϕ, and (b) ψ is a
proper subformula of ϕ (i.e., a subformula of ϕ not identical with ϕ).

Base Case. By our BNF (4), ϕ is (a) an exemplification formula of the form
Πnκ1 . . .κn (n ≥ 1) or (b) an encoding formula of the form κ1 . . .κnΠ

n (n ≥ 1)
or (c) a 0-ary relation constant or variable. In all three cases, ϕ has no proper
subformulas and so ψ can’t be a proper subformula of ϕ. So these cases are
covered by (ζ) and (ξ) above.

439 Although we could have established ` A(ψ ≡ χ) by citing (ϑ) and appealing to theorem
(130.2)?, we have refrained from doing so. If we had done so, this rule and the subsequently deriv-
able the Rules of Substitution would have become non-strict metarules, since their justification
would depend on an axiom that is modally fragile. Any conclusions drawn using the metarules
derived in this manner would be ?-theorems. By appealing to (132), we prove the present case
without an appeal to any ?-theorems.
440Again, (139.5) could have been proved using an appeal to (130.2)?, but for the reasons given

in footnote 439, we are relying on the proof that makes no appeal to ?-theorems.
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Inductive Case 1. ϕ = [λ θ]. Then ϕ′, i.e., [λ θ]′, must be [λ θ′]. So our IH
implies:

If ` �(ψ ≡ χ), then ` θ ≡ θ′

It follows from this and (ϑ) that ` θ ≡ θ′. But from our proof of (111.6), it
follows a fortiori that:

` (θ ≡ θ′)→ ([λθ] ≡ [λθ′])

Hence it follows by (63.6) that ` [λθ] ≡ [λθ′], i.e., ϕ ≡ ϕ′.

Inductive Case 2. ϕ = ¬θ. Then ϕ′, i.e., (¬θ)′ must be ¬(θ′), which we hence-
forth write simply as ¬θ′. Now our IH implies:

If ` �(ψ ≡ χ), then ` θ ≡ θ′

So it follows from this and (ϑ) that ` θ ≡ θ′. Since we’ve proved instances of
the tautology (88.4.b), we know:

` (θ ≡ θ′) ≡ (¬θ ≡ ¬θ′)

From this and ` θ ≡ θ′, it follows by biconditional syllogism (89.3.a) that
` ¬θ ≡ ¬θ′, i.e., ` ϕ ≡ ϕ′.

Inductive Case 3. ϕ = θ → ω. Then ϕ′, i.e., (θ → ω), must be θ′ → ω′. Our
IHs are:

If ` �(ψ ≡ χ), then ` θ ≡ θ′

If ` �(ψ ≡ χ), then `ω ≡ω′

So it follows from these and (ϑ) that ` θ ≡ θ′ and `ω ≡ω′. Hence by &I (86.1),
it follows that:

(a) ` (θ ≡ θ′) & (ω ≡ω)′

But one can prove (as an exercise) the tautology:

((θ ≡ θ′) & (ω ≡ω′))→ ((θ→ω) ≡ (θ′→ω′))

It therefore follows from the theoremhood of this tautology and (a), by (63.6),
that:

` (θ→ω) ≡ (θ′→ω′)

i.e., ` ϕ ≡ ϕ′.

Inductive Case 4. ϕ = ∀αθ. Then ϕ′, i.e., (∀αθ)′, must be ∀αθ′. Our IH
implies:

If ` �(ψ ≡ χ), then ` θ ≡ θ′
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So it follows from this and (ϑ) that ` θ ≡ θ′. So by GEN it follows that ` ∀α(θ ≡
θ′). But by our proof of (99.3), we know:

` ∀α(θ ≡ θ′)→ (∀αθ ≡ ∀αθ′)

Hence it follows by biconditional syllogism (89.3.a) that ` ∀αθ ≡ ∀αθ′, i.e.,
` ϕ ≡ ϕ′.

Inductive Case 5. ϕ = Aθ. Then ϕ′, i.e., (Aθ)′ must be Aθ′. Our IH implies:

If ` �(ψ ≡ χ), then ` θ ≡ θ′

It follows from this and (ϑ) that ` θ ≡ θ′. So by the Rule of Actualization (135),
we have ` A(θ ≡ θ′). But since (139.5) is a theorem, we know ` A(θ ≡ θ′) ≡
(Aθ ≡ Aθ′). So by biconditional syllogism (89.3.a), we have ` Aθ ≡ Aθ′, i.e.,
` ϕ ≡ ϕ′.

Inductive Case 6. ϕ = �θ. Then ϕ′, i.e., (�θ)′, must be �θ′. Our IH implies:

If ` �(ψ ≡ χ), then ` θ ≡ θ′

It follows from this and (ϑ) that ` θ ≡ θ′. Since no ?-theorems were cited to
establish this theorem, it follows by the Rule of Necessitation that ` �(θ ≡ θ′).
But by our proof of (158.6), we know:

` �(θ ≡ θ′)→ (�θ ≡ �θ′)

Hence it follows by (63.6) that ` �θ ≡ �θ′, i.e., ϕ ≡ ϕ′. ./

(159.3) By hypothesis, `� ψ ≡ χ. Then, by RN, ` �(ψ ≡ χ). So, where ϕ′ is the
result of substituting the formula χ for zero or more occurrences of ψ where
the latter is a subformula of ϕ, it follows by by (159.2) that ` ϕ ≡ ϕ′. ./

(159.4) By hypothesis, ψ ≡df χ. Then by Rule ≡Df (90.1) of Equivalence by
Definition, the ψ ≡ χ is a theorem. So by RN, �(ψ ≡ χ) is a theorem. If ϕ′ is the
result of substituting ψ for zero or more occurrences of the χ where the latter
is a subformula of ϕ, then by (159.2), ` ϕ ≡ ϕ′ is a theorem.441 ./

(160.1) By hypothesis, ` �(ψ ≡ χ) and ϕ′ is the result of substituting the for-
mula χ for zero or more occurrences of ψ where the latter is a subformula of
ϕ. Then, by (159.2), ` ϕ ≡ ϕ′. By the definition of ≡ and &E, it follows both
that ` ϕ→ ϕ′ and ` ϕ′→ ϕ. So by (63.10), we know both:

(a) ϕ ` ϕ′

(b) ϕ′ ` ϕ

441To justify the `� form of the present rule, we use the `� form of (90.1), which lets us conclude
that `� ψ ≡ χ from the definition ψ ≡df χ. So by the `� version of (159.3), it follows that `� ϕ ≡ ϕ′.
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Now we show both directions of the rule. (→) Assume Γ ` ϕ. Then from this
and (a) it follows that Γ ` ϕ′, by (63.8). (←) By analogous reasoning from (b).
./

(160.2) By hypothesis, `� ψ ≡ χ and ϕ′ is the result of substituting the formula
χ for zero or more occurrences ofψ where the latter is a subformula ofϕ. Then,
by Rule RN, ` �(ψ ≡ χ). Hence by (160.1), Γ ` ϕ if and only if Γ ` ϕ′. ./

(160.3) (Exercise)

(162.1) (Exercise)

(162.2) We reason using a Rule of Necessary Equivalence (159.3):

♦(ϕ ∨ψ) ≡ ♦¬(¬ϕ&¬ψ) by (88.5.b) and (159.3)
≡ ¬�(¬ϕ&¬ψ) by (158.11)
≡ ¬(�¬ϕ&�¬ψ) by (158.3) and (159.3)
≡ ¬(¬♦ϕ&¬♦ψ by (162.1) and (159.3)
≡ ¬¬(♦ϕ ∨♦ψ) by (88.5.b) and (159.3)
≡ ♦ϕ ∨♦ψ by (88.3.b) ./

(162.3) The tautologies of conjunction simplification (88.1) are (ϕ &ψ) → ϕ
and (ϕ &ψ)→ ψ. Since these are modally strict theorems, it follows by RM♦
(157.2) that ♦(ϕ&ψ)→ ♦ϕ and ♦(ϕ&ψ)→ ♦ψ. So assume ♦(ϕ&ψ), for condi-
tional proof. Then both ♦ϕ and ♦ψ. So by &I, we have ♦ϕ&♦ψ. ./

(162.4) We reason using a Rule of Necessary Equivalence (159.3):

♦(ϕ→ ψ) ≡ ♦(¬ϕ ∨ψ) by (88.1.c) and (159.3)
≡ ♦¬ϕ ∨♦ψ by (162.2)
≡ ¬�ϕ ∨♦ψ by (158.1) and (159.3)
≡ �ϕ→ ♦ψ by (88.1.c) ./

(162.5) We reason using a Rule of Necessary Equivalence (159.4):

♦♦ϕ ≡ ♦¬�¬ϕ by definition ♦ (18.5) and (159.4)
≡ ¬��¬ϕ by (158.11) ./

(162.6) Assume �(ϕ ∨ ψ). Suppose, for reductio, ¬(�ϕ ∨ ♦ψ). Then by a De
Morgan’s law (88.5.d) and &E, it follows both that ¬�ϕ and ¬♦ψ. By (158.11),
the first implies:

(ϑ) ♦¬ϕ

But our initial assumption implies, by definition of ∨ and the Rule of Substi-
tution for Defined Formulas (160.3), that �(¬ϕ → ψ). This latter implies, by
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the K♦ schema (158.13), ♦¬ϕ → ♦ψ. From this and (ϑ), it follows that ♦ψ.
Contradiction. ./

(162.7) Assume �(ϕ ∨ψ) and ♦¬ϕ. From the first assumption and (162.6), it
follows that �ϕ ∨ ♦ψ. From the second assumption it follows that ¬�ϕ, by
(158.11). From our last two results, it follows that ♦ψ, by disjunctive syllogism
(86.4.b). ./

(163.1) As an instance of the T schema (45.2), we know �¬ϕ → ¬ϕ. So by
contraposition (80), ¬¬ϕ→ ¬�¬ϕ. But ϕ→ ¬¬ϕ is a tautology (77.2). So by
hypothetical syllogism (76.3), it follows that ϕ→¬�¬ϕ.By the definition of ♦
(18.5) and the Rule of Definition by Equivalence (72), we independently know
¬�¬ϕ→ ♦ϕ. So our last two results imply ϕ→ ♦ϕ, by hypothetical syllogism.
./

(163.2) Assume ♦�ϕ. From this and (158.14), it follows by biconditional syl-
logism that ¬�♦¬ϕ. But note that the following is an instance of the 5 schema:
♦¬ϕ→ �♦¬ϕ. So by a rule of modus tollens (79.1), ¬♦¬ϕ, which by (158.12),
yields �ϕ. ./

(164.1) As an instance of theorem (88.3.b), we know Aϕ ≡ ¬¬Aϕ. Indepen-
dently, a necessary axiom of actuality (44.1) yields, by the commutativity of
≡, the modally strict theorem ¬Aϕ ≡ A¬ϕ. Hence, it follows from these two
results, by a Rule of Substitution (160.2), that Aϕ ≡ ¬A¬ϕ. ./

(164.2) As an instance of axiom (46.2), we know �¬ϕ ≡ A�¬ϕ. By a classical
tautology (88.4.b), it follows that ¬�¬ϕ ≡ ¬A�¬ϕ. Since ♦ϕ ≡ ¬�¬ϕ follows
from definition (18.5) by Rule ≡Df (90.1), it follows from the last two results
that ♦ϕ ≡ ¬A�¬ϕ, by biconditional syllogism. But as an instance of necessary
axiom (44.1), we know ¬A�¬ϕ ≡ A¬�¬ψ. So again by biconditional syllogism,
♦ϕ ≡ A¬�¬ϕ. But since ♦ϕ ≡ ¬�¬ϕ is a modally strict equivalence arising
from a definition, it follows by a Rule of Substitution (160.3) that ♦ϕ ≡ A♦ϕ. ./

(164.3) As an instance of (132), we know �¬ϕ→ A¬ϕ. So by contraposition,
¬A¬ϕ → ¬�¬ϕ. But by (164.1), we know Aϕ → ¬A¬ϕ. So by biconditional
syllogism, Aϕ→¬�¬ϕ. But since ¬�¬ϕ→ ♦ϕ, by definition of ♦ and the Rule
of Definition by Equivalence (72), it follows that Aϕ→ ♦ϕ. ./

(164.4) (→) This is an instance of the the T♦ schema (163.1). (←) Assume ♦Aϕ.
Then by definition of ♦, we know ¬�¬Aϕ. But by commuting (44.1), we know
¬Aϕ ≡ A¬ϕ is a modally strict theorem. So it follows by a Rule of Substitution
(160.2) that:

(ϑ) ¬�A¬ϕ

Now assume, for reductio, ¬Aϕ. Then by the right-to-left direction of axiom
(44.1), A¬ϕ. But, as an instance of (46.1), we know A¬ϕ → �A¬ϕ. Hence,
�A¬ϕ, which contradicts (ϑ). ./
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(164.5) By the right-to-left direction of (164.4), we know ♦Aϕ → Aϕ. Inde-
pendently, by (164.3) we know Aϕ → ♦ϕ. And independently, by (164.2), we
know ♦ϕ→ A♦ϕ. Hence by hypothetical syllogism, ♦Aϕ→ A♦ϕ. ./

(165.1) (→) ♦ϕ→ �♦ϕ is the 5 schema. (←) �♦ϕ→ ♦ϕ is an instance of the T
schema (45.2). ./

(165.2) (→) �ϕ→ ♦�ϕ is an instance of the T♦ schema (163.1). (←) ♦�ϕ→ �ϕ
is an instance of the 5♦ schema (163.2) ./

(165.3) By the T♦ schema (163.1), we know ϕ→ ♦ϕ. And as an instance of the
5 schema (45.3), we know: ♦ϕ→ �♦ϕ. So by hypothetical syllogism (76.3), it
follows that ϕ→ �♦ϕ. ./

(165.4) As an instance of the B schema (165.3), we have ¬ϕ→ �♦¬ϕ. It follows
from this by contraposition that ¬�♦¬ϕ → ¬¬ϕ. Since ¬¬ϕ → ϕ (77.1), it
follows by hypothetical syllogism that:

(ϑ) ¬�♦¬ϕ→ ϕ

Now, independently, it follows a fortiori from (158.14) that ♦�ϕ → ¬�♦¬ϕ.
From this and (ϑ), it follows by hypothetical syllogism that ♦�ϕ→ ϕ. ./

(165.5) �ϕ → �♦�ϕ is an instance of the B schema (165.3). Independently,
since ♦�ϕ→ �ϕ is a �-theorem (163.2), it follows by RM (157.1) that �♦�ϕ→
��ϕ. So by hypothetical syllogism, �ϕ→ ��ϕ. ./

(165.6) (Exercise)

(165.7) As an instance of (165.5) we have �¬ϕ→ ��¬ϕ. By a rule of contra-
position, this implies ¬��¬ϕ→¬�¬ϕ. But from the definition of ♦ (18.5), we
may infer that ¬�¬ϕ→ ♦ϕ (72). So ¬��¬ϕ→ ♦ϕ, by hypothetical syllogism.
But the left-to-right direction of (162.5) is ♦♦ϕ → ¬��¬ϕ. From this and the
previous result, it follows that ♦♦ϕ→ ♦ϕ, by hypothetical syllogism. ./

(165.8) (Exercise)

(165.9) (→) As an instance of (162.6), we know:

�(ϕ ∨�ψ)→ (�ϕ ∨♦�ψ)

Since the commuted form of (165.2) establishes a modally strict equivalence
between ♦�ψ and �ψ, the Rule of Substitution (160.2) allows us to infer the
following: �(ϕ ∨�ψ)→ (�ϕ ∨�ψ). (←) As an instance of (158.15), we know:

(�ϕ ∨��ψ)→ �(ϕ ∨�ψ)

Since (165.6) establishes a modally strict equivalence between ��ψ and �ψ,
the Rule of Substitution (160.2) allows us to infer the following: (�ϕ ∨�ψ)→
�(ϕ ∨�ψ). ./
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(165.10) (Exercise)

(165.11) We reason using a Rule of Necessary Equivalence (159.3) as follows:

♦(ϕ&♦ψ) ≡ ♦¬(¬ϕ ∨¬♦ψ) by (88.5.a) and (159.3)
≡ ♦¬(¬ϕ ∨�¬ψ) by (162.1) and (159.3)
≡ ¬�(¬ϕ ∨�¬ψ) by (158.11)
≡ ¬(�¬ϕ ∨�¬ψ) by (165.9) and (88.4.c)
≡ ¬(¬♦ϕ ∨¬♦ψ) by (162.1) and (159.3) (×2)
≡ ♦ϕ&♦ψ by (88.5.a) ./

(165.12) (Exercise)

(165.13) (→) For the left-to-right direction, our proof strategy is as follows:

(a) Show �(ϕ→ �ψ)→ (♦ϕ→ ψ), by a modally strict proof.

(b) Conclude ��(ϕ→ �ψ)→ �(♦ϕ→ ψ) from (a) by Rule RM (157.1)

(c) Show that the left-to-right direction of our theorem, i.e., �(ϕ → �ψ)→
�(♦ϕ→ ψ), follows from (b).

It remains to show (a) and (c).

For (a), assume �(ϕ → �ψ). Then by K♦ (158.13), it follows that ♦ϕ → ♦�ψ.
But the B♦ schema (165.4) is ♦�ψ → ψ. So ♦ϕ → ψ follows by hypothetical
syllogism from our last two results.

For (c), assume �(ϕ → �ψ). Then by the 4 schema (165.5), it follows that
��(ϕ→ �ψ). So by (b), it follows that �(♦ϕ→ ψ).

(←) We leave the right-to-left direction as an exercise. ./

(166.1) [We prove only the stronger version.] Assume Γ `� ♦ϕ → ψ, i.e., that
there is a modally-strict derivation of ♦ϕ→ ψ from Γ . So by the strong form of
Rule RM (157.1), it follows that �Γ `� �♦ϕ→ �ψ. By (165.3), the instances of
the B schema are modally strict theorems, so by (63.3) we have �Γ `� ϕ→ �♦ϕ.
Hence, by the `� version of (76.1), it follows that �Γ `� ϕ→ �ψ. ./

(166.2) [We prove only the stronger version.] Assume Γ `� ϕ → �ψ. Then
by the strong form of RM♦ (157.2), it follows that �Γ `� ♦ϕ → ♦�ψ. But the
schema B♦ (165.4) is a modally strict theorem, and so �Γ `� ♦�ψ → ψ, by
(63.3). Hence, by the `� version of (76.1) it follows that �Γ `� ♦ϕ→ ψ. ./

(167.1) We reason as follows:
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1. ∀α�ϕ→ �ϕ instance of (95.3)
2. ♦∀α�ϕ→ ♦�ϕ from (1) by RM♦ (157.2)
3. ♦�ϕ→ ϕ instance of B♦ (165.4)
4. ♦∀α�ϕ→ ϕ from (2),(3) by (76.3)
5. ∀α(♦∀α�ϕ→ ϕ) from (5) by GEN
6. ∀α(♦∀α�ϕ→ ϕ)→ (♦∀α�ϕ→∀αϕ) instance of (95.2)
7. ♦∀α�ϕ→∀αϕ from (5),(6) by MP
8. ∀α�ϕ→ �∀αϕ from (7), by Rule (166.1) ./

(167.2) Theorem (95.3) asserts ∀αϕ→ ϕ. So by Rule RM (157.1), it follows that
�∀αϕ→ �ϕ. By GEN, it follows that ∀α(�∀αϕ→ �ϕ). But since α isn’t free
in �∀αϕ, it follows by an appropriate instance of (95.2) that �∀αϕ → ∀α�ϕ.
./

(167.3) Given (167.1) and (167.2), it is a modally strict theorem that ∀α�ϕ ≡
�∀αϕ. So as an instance, we know ∀α�¬ϕ ≡ �∀α¬ϕ, which commutes to:

(ϑ) �∀α¬ϕ ≡ ∀α�¬ϕ

Hence we may reason using the Rules of Substitution (160.2) and (160.3) as
follows:

♦∃αϕ → ¬�¬∃αϕ by definition ♦ and (72)
→ ¬�∀α¬ϕ by (103.4) and (160.2)
→ ¬∀α�¬ϕ by (ϑ) and (160.2)
→ ∃α¬�¬ϕ by (103.2)
→ ∃α♦ϕ by definition ♦ and (160.3) ./

(167.4) Given (167.1) and (167.2), it is a modally strict theorem that ∀α�ϕ ≡
�∀αϕ. So as an instance, we know:

(ϑ) ∀α�¬ϕ ≡ �∀α¬ϕ

Hence we may reason using the Rules of Substitution (160.2) and (160.3) as
follows:

∃α♦ϕ → ¬∀α¬♦ϕ by definition ∃ and (72)
→ ¬∀α�¬ϕ by (162.1) and (160.2)
→ ¬�∀α¬ϕ by (ϑ) and (160.2)
→ ♦¬∀α¬ϕ by (158.11)
→ ♦∃αϕ by definition ∃ and (160.3) ./

(168.1) Assume ∃α�ϕ. Now assume τ be an arbitrary such α, so that we know:

(ϑ) �ϕτα
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Since τ is an arbitrarily chosen, primitive constant that is substitutable for, and
has the same type as, the variable α in ϕ, we know independently that τ↓ by
(39.2). Hence, by (106):

(ξ) �τ↓

Also, independently, Rule ∃I (101.1) tells us ϕτα , τ ↓ ` ∃αϕ. Hence, by RN,
�ϕτα ,�τ ↓ ` �∃αϕ. So from (ϑ) and (ξ) it follows that �∃αϕ. By Rule ∃E
(102), we may discharge (ϑ) and we’ve thereby derived �∃αϕ from our initial
assumption ∃α�ϕ. ./

(168.2) Theorem (95.3) asserts ∀αϕ→ ϕ. By RM♦ (157.2), then, it follows that
♦∀αϕ→ ♦ϕ. So by GEN, it follows that ∀α(♦∀αϕ→ ♦ϕ). But since α isn’t free
in ♦∀αϕ, it follows by an appropriate instance of (95.2) that ♦∀αϕ→∀α♦ϕ. ./

(168.3) From (103.5), by RM♦ (157.2). ./

(168.4) (Exercise)

(168.5) Assume, for conditional proof:

�∀α(ϕ→ ψ) &�∀α(ψ→ χ)

Then since a conjunction of necessities implies a necessary conjunction (158.3),
it follows that:

(ϑ) �(∀α(ϕ→ ψ) &∀α(ψ→ χ))

Note, independently, that the following is an instance of (99.9):

(∀α(ϕ→ ψ) &∀α(ψ→ χ))→∀α(ϕ→ χ)

Since this is a modally strict theorem, it follows by Rule RM (157.1) that:

�(∀α(ϕ→ ψ) &∀α(ψ→ χ))→ �∀α(ϕ→ χ)

And from this last result and (ϑ), it follows by MP that �∀α(ϕ→ χ). ./

(168.6) By reasoning analogous to (168.5) but starting with (99.10) and using
(158.6) instead of the K axiom. ./

(169.1) Since it is a modally strict theorem (106) that τ↓ → �τ↓, it follows by
rule (166.2) that ♦τ↓ → τ↓. ./

(169.2) (Exercise)

(169.3) It follows from (169.1) that ¬τ↓→ ¬♦τ↓, by contraposition. But by the
right-to-left direction of (162.1), ¬♦τ↓ → �¬τ↓. So by hypothetical syllogism,
¬τ↓ → �¬τ↓. ./

(169.4) (Exercise)
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(170.1) (→) By theorem (125.1), we know α = β → �α = β. Since this is a �-
theorem, it follows by (166.2) that ♦α=β→ α=β. ./

(170.2) By (170.1), ♦α=β→ α=β. By contraposition, ¬α=β→¬♦α = β. But
by (162.1), ¬♦α=β→ �¬α=β. Hence, ¬α=β→ �¬α=β. Using infix notation,
α,β→ �α,β. ./

(170.3) (→) By (170.2), α ,β → �α ,β, Since this is a modally strict theorem,
we may apply (166.2) to conclude ♦α,β→ α,β. ./

(170.4) – (170.5) (Exercises)

(171.1) Assume �(ϕ → �ϕ). Assume, for reductio, ¬�(¬ϕ → �¬ϕ), i.e., by
(158.11), that ♦¬(¬ϕ → �¬ϕ). Then by the relevant instance of the modally
strict theorem (88.1.b) and a Rule of Substitution, it follows that ♦(¬ϕ&¬�¬ϕ).
By definition (18.5) and a Rule of Substitution, this implies ♦(¬ϕ& ♦ϕ). Then
by (162.3), it follows that both ♦¬ϕ and ♦♦ϕ. The former is equivalent to
¬�ϕ (158.11); the latter reduces to ♦ϕ, by 4♦ (165.7). From ♦ϕ and our initial
assumption, it follows that ♦�ϕ (158.13). So by (165.2), �ϕ. Contradiction. ./

(171.1) [Alternative proof:] Our theorem is a consequence of the following
derivability claims, by (63.8):

�(ϕ→ �ϕ) `� ��(ϕ→ �ϕ)

��(ϕ→ �ϕ) `� �(¬ϕ→ �¬ϕ)

The first claim is immediate by the 4 schema (165.5). The second claim follows
by RN from �(ϕ → �ϕ) `� (¬ϕ → �¬ϕ). So it suffices to show the latter.
Assume �(ϕ→ �ϕ). Now assume ¬ϕ. Then ♦¬ϕ, by the T♦ schema. So ¬�ϕ.
But from our first assumption, it follows by (172.3) that ¬�ϕ ≡ �¬ϕ. Hence
�¬ϕ. ./

(171.2) Assume �(ϕ→ �ϕ) and �(ψ→ �ψ). For reductio, assume:

¬�((ϕ→ ψ)→ �(ϕ→ ψ))

By reasoning analogous to steps in the previous proof, we therefore know both:

(A) ♦(ϕ→ ψ)

(B) ♦¬�(ϕ→ ψ)

To complete our reductio, we show that (B) implies both ♦ϕ and ¬�ψ, and that
from ♦ϕ and our initial assumptions, (A) implies �ψ.

To see that (B) implies ♦ϕ and ¬�ψ, note that by (158.11) and a Rule of Substi-
tution, (B) is equivalent to ♦♦¬(ϕ→ ψ). This reduces to ♦¬(ϕ→ ψ), by the 4♦
schema (165.7). But this is equivalent to ♦(ϕ &¬ψ) (exercise), which implies
♦ϕ and ♦¬ψ, by (162.3). The latter yields ¬�ψ.
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To see that from ♦ϕ and our initial assumptions, (A) implies �ψ, note that from
♦ϕ and our first assumption, �(ϕ → �ϕ), it follows that ♦�ϕ, which reduces
to �ϕ. But by (162.4), �ϕ and (A) imply ♦ψ. From ♦ψ and our second assump-
tion, �(ψ → �ψ), it follows that ♦�ψ, which reduces to �ψ. Contradiction.
./

(171.3) – (171.5) (Exercises)

(171.6) Assume �∀α(ϕ→ �ϕ) and for reductio, ¬�(∀αϕ→ �∀αϕ). Then, by
now familiar reasoning, we know both:

(A) ♦∀αϕ

(B) ♦¬�∀αϕ

We complete our reductio by showing that (A) and our initial assumption im-
ply �∀αϕ whereas (B) implies ¬�∀αϕ.

To see that (A) and our initial assumptions imply �∀αϕ, note first that the
following modal closure of an instance of axiom (39.3) is an axiom:

�(∀α(ϕ→ �ϕ)→ (∀αϕ→∀α�ϕ))

Hence by the K axiom, it follows that:

�∀α(ϕ→ �ϕ)→ �(∀αϕ→∀α�ϕ)

From this and our initial assumption, it follows that �(∀αϕ → ∀α�ϕ). From
this and (A) it follows by (158.13) that ♦∀α�ϕ. But by the modally strict equiv-
alence of BF and CBF, by (167.1) and (167.2), it follows by a Rule of Substitu-
tion that ♦�∀αϕ. Then by (165.2), �∀αϕ.

To see that (B) implies¬�∀αϕ, note that by the modally strict theorem (158.11)
and a Rule of Substitution, (B) implies ♦♦¬∀αϕ. This reduces to ♦¬∀αϕ, by
the 4♦ schema. Hence, ¬�∀αϕ. Contradiction. ./

(172.1) (→) Assume �(ϕ→ �ϕ). Then by (158.13), ♦ϕ→ ♦�ϕ. But by the 5♦
schema (163.2), ♦�ϕ → �ϕ. Hence, by hypothetical syllogism, ♦ϕ → �ϕ.442

(←) Assume ♦ϕ → �ϕ. For reductio, assume ¬�(ϕ → �ϕ), i.e., by (158.11),
assume:

(ϑ) ♦¬(ϕ→ �ϕ)

But it is a modally strict theorem that ¬(ϕ → �ϕ) ≡ (ϕ & ¬�ϕ), by (88.1.b).
Hence, it follows from (ϑ) and this last fact by the Rule of Substitution (160.2)
that ♦(ϕ & ¬�ϕ). So by (162.3) and &E, it follows that both ♦ϕ and ♦¬�ϕ.

442Here is an alternative proof of this direction. Assume �(ϕ→ �ϕ). Then by (165.13), �(♦ϕ→
ϕ). Hence by the K axiom, �♦ϕ→ �ϕ. Now assume ♦ϕ. Then by the 5 axiom (45.3), �♦ϕ. Hence,
�ϕ.
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The former implies, by our initial assumption, �ϕ. The latter implies, by the
modally strict theorem ¬�ϕ ≡ ♦¬ϕ and the Rule of Substitution, ♦♦¬ϕ, which
by the 4♦ principle (165.7) implies ♦¬ϕ, i.e, ¬�ϕ. Contradiction. ./

(172.2) Since �(ϕ→ �ϕ) implies ♦ϕ→ �ϕ by (172.1), it suffices to show that
the latter implies ♦ϕ ≡ �ϕ. But this is easy, since we only have to show �ϕ→
♦ϕ, which follows from the T and T♦ schemata. ./

(172.3) Assume �(ϕ→ �ϕ). (→) Assume ¬�ϕ. Our global assumption implies
♦ϕ → �ϕ, by (172.1). Hence, ¬♦ϕ, i.e., �¬ϕ, by (162.1). (←) Assume �¬ϕ.
Then ¬ϕ by the T schema, and so ♦¬ϕ, by the T♦ schema. Hence, ¬�ϕ, by
(158.11). ./

(172.4) Assume both the antecedent and the antecedent of the consequent:

(ϑ) �(ϕ→ �ϕ) &�(ψ→ �ψ)

(ξ) �ϕ ≡ �ψ

From (ξ) it follows that (�ϕ&�ψ)∨ (¬�ϕ&¬�ψ), by an appropriate instance
of (88.4.g). We now reason by cases from the two disjuncts to show, in each
case, that �(ϕ ≡ ψ):

• Assume �ϕ&�ψ. Then it follows from (158.7) that �(ϕ ≡ ψ), by a bicon-
ditional syllogism (89.3.a).

• Assume ¬�ϕ &¬�ψ. Note independently that by (172.3), the conjuncts
of (ϑ) imply, respectively:

¬�ϕ ≡ �¬ϕ
¬�ψ ≡ �¬ψ

So we may easily derive �¬ϕ&�¬ψ from our local assumption. But then
by (158.3), it follows that �(¬ϕ&¬ψ), and by (158.9) that �(ϕ ≡ ψ). ./

(172.5) Though we could follow the proof strategy in (171.2), the following is
an alternative strategy:

(A) Show �(ϕ→ �ϕ),�(ψ→ �ψ) `� (ϕ ≡ ψ)→ �(ϕ ≡ ψ)

(B) Infer from (A), by Rule RN, that:

��(ϕ→ �ϕ),��(ψ→ �ψ) `� �((ϕ ≡ ψ)→ �(ϕ ≡ ϕ))

(C) Note that by the 4 schema and (63.10), we independently know:

�(ϕ→ �ϕ) `� ��(ϕ→ �ϕ)

�(ψ→ �ψ) `� ��(ψ→ �ψ)
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(D) Conclude from (C) and (B) that:

�(ϕ→ �ϕ),�(ψ→ �ψ) `� �((ϕ ≡ ψ)→ �(ϕ ≡ ϕ))

(E) Reason from (D), using two applications of the Deduction Theorem (75)
and then an application of Importation (88.7.b), to obtain the following
modally strict theorem:

(�(ϕ→ �ϕ) &�(ψ→ �ψ))→ �((ϕ ≡ ψ)→ �(ϕ ≡ ψ))

Since (B) – (E) are straightforward, it remains to show (A). Our assumptions
are:

�(ϕ→ �ϕ)

�(ψ→ �ψ)

Then by the T schema, it follows from each, respectively, that:

(ϑ) ϕ→ �ϕ

(ξ) ψ→ �ψ

Now to complete the proof of (A), we have to show: (ϕ ≡ ψ)→ �(ϕ ≡ ψ). So
assume ϕ ≡ ψ. Then either ϕ&ψ or ¬ϕ&¬ψ (88.4.g) and so we show �(ϕ ≡ ψ)
in both cases:

ϕ&ψ. The first conjunct and (ϑ) yield �ϕ, and the second conjunct and
(ξ) yield �ψ. So �ϕ&�ψ, which implies �ϕ ≡ �ψ, by (88.4.g). From this
and our assumptions �(ϕ → �ϕ) and �(ψ → �ψ), it follows by (172.4)
that �(ϕ ≡ ψ).

¬ϕ & ¬ψ. Then both ♦¬ϕ and ♦¬ψ, i.e., both ¬�ϕ and ¬�ψ. It fol-
lows from the first and (ϑ) that ¬ϕ and from the second and (ξ) that ¬ψ.
Hence ♦¬ϕ and ♦¬ψ, i.e., ¬�ϕ and ¬�ψ. Then �ϕ ≡ �ψ, by (88.4.g). So
again it follows from this and our assumptions �(ϕ → �ϕ) and �(ψ →
�ψ) by (172.4) that �(ϕ ≡ ψ). ./

(172.6) Assume �(ϕ→ �ϕ) and ϕ→ �ψ. Assume, for reductio, that ¬�(ϕ→
ψ), i.e., by (158.11), ♦¬(ϕ → ψ), i.e., by (88.1.b) and a Rule of Subtitution,
♦(ϕ&¬ψ). So by (162.3), we know both ♦ϕ and ♦¬ψ. From the former and our
first assumption, it follows by K♦ (158.13) that ♦�ϕ, which by (163.2) reduces
to �ϕ and, hence, ϕ, by the T schema. But from ϕ, our second assumption
implies �ψ, which contradicts ♦¬ψ, i.e., ¬�ψ. ./

(172.7) (Exercise)

(173) This is proved in the text.
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(174.1) By commuting (164.4), we know ♦Aϕ ≡ Aϕ. But theorem (139.6) as-
serts Aϕ ≡ �Aϕ. Hence ♦Aϕ ≡ �Aϕ. ./

(174.2) Assume �(ϕ→ �ϕ). Then by (172.1):

(ϑ) ♦ϕ→ �ϕ

(→) Assume Aϕ. Then by (164.3), it follows that ♦ϕ. Hence, by (ϑ), �ϕ, and so
by the T schema (45.2), ϕ. (←) Assume ϕ. Then ♦ϕ, by the T♦ schema (163.1).
Hence �ϕ, by (ϑ). So, Aϕ, by (132). ./

(174.3) (→) We know that both of the following are modally strict theorems:

�(ϕ→ �ϕ)→ (Aϕ ≡ ϕ) (174.2)

(Aϕ ≡ ϕ)→ (Aϕ→ ϕ) (by definition of ≡ and &E)

Hence, by biconditional syllogism, it is a modally strict theorem that:

�(ϕ→ �ϕ)→ (Aϕ→ ϕ)

So by Rule RM:

��(ϕ→ �ϕ)→ �(Aϕ→ ϕ)

By the relevant instance of the 4 schema, it follows from this by hypothetical
syllogism that �(ϕ → �ϕ)→ �(Aϕ → ϕ). (←) Assume �(Aϕ → ϕ). Then by
the T schema Aϕ → ϕ. But we can now establish ϕ → Aϕ by modally strict
reasoning:

Assume ϕ and, for reductio, ¬Aϕ. Then by (44.1), A¬ϕ. But we’ve estab-
lished that Aϕ→ ϕ, so if we consider the instance in which we substitute
¬ϕ for ϕ, it follows from A¬ϕ that ¬ϕ. Contradiction.

Now by axiom (46.1), we know Aϕ→ �Aϕ. So ϕ→ �Aϕ, by hypothetical syl-
logism. Moreover, it follows from our initial hypothesis by a relevant instance
of (158.6) that �Aϕ ≡ �ϕ, which implies �Aϕ → �ϕ. So our last two condi-
tionals imply, by hypothetical syllogism, that ϕ → �ϕ. By conditional proof,
we’ve thus established, as a modally strict theorem, that:

�(Aϕ→ ϕ)→ (ϕ→ �ϕ)

So by RM, ��(Aϕ→ ϕ)→ �(ϕ→ �ϕ). Again, by the relevant instance of the 4
schema, it follows by hypothetical syllogism that �(Aϕ→ ϕ)→ �(ϕ→ �ϕ). ./

(174.4) Assume:

(ϑ) �∀x(ϕ→ �ϕ)

(ξ) ∃!xϕ
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We want to show ıxϕ↓, but by (152.1), it suffices to show: ∃!xAϕ. Now from
(ξ), let a be such an object, so that we know:

(ζ) ϕax &∀y(ϕyx → y=a)

Since we want to show ∃!xAϕ and a is going to be our witness, the definition
of the uniqueness quantifier requires us to show: Aϕax &∀y(Aϕyx → y=a). Note
independently that by the Converse Barcan Formula (167.2), (ϑ) implies:

(A) ∀x�(ϕ→ �ϕ)

Instantiating to a, it follows that �(ϕax → �ϕax), and so by the T schema, ϕax ≡
�ϕax. From this and the first conjunct of (ζ), it follows that �ϕax, which imme-
diately implies Aϕax.

Now by GEN, it remains to show Aϕyx → y=a. So assume Aϕyx . Now inde-
pendently, it follows from (A) that �(ϕyx → �ϕyx ). So by (172.1), ♦ϕyx → �ϕyx .
But from our assumption Aϕyx it follows that ♦ϕyx . Hence �ϕyx , and so ϕyx . Then
by the second conjunct of (ζ), y=a. So we’ve established ∃!xAϕ, which implies
ıxϕ↓, by (152.1). ./

(174.5) (Exercise) [Hint: This follows from (174.2) and the modally strict ver-
sion of Hintikka’s scheme (148).]

(174.6) Assume:

(a) �∀α(ϕ→ �ϕ)

(b) ∃!αϕ

Now pick β to be a variable that doesn’t occur free, and is substitutable for α, in
ϕ. Then from (b), it follows by definition (127.1) of the uniqueness quantifier
and our Rule ≡df E of Definiendum Elimination (90.2) that:

(ϑ) ∃α(ϕ&∀β(ϕβα→ β=α))

So suppose τ is an arbitrary such entity, i.e., suppose:

(ξ) ϕτα &∀β(ϕβα→ β=τ),

where τ is an arbitrarily chosen constant of the same type as α and β. Our
strategy is as follows:

(A) Infer �ϕτα from (ξ) and (a)

(B) Show �∀β(ϕβα→ β=τ)

(C) Conclude �(ϕτα &∀β(ϕβα→ β=τ)) from (A) and (B)

(D) Conclude ∃α�(ϕ&∀β(ϕβα→ β=α)) from (C)
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(E) Conclude �∃α(ϕ & ∀β(ϕβα → β = α)) from (D) by the Buridan formula
(168.1)

(F) Conclude �∃!αϕ from (E) by the definition of the uniqueness quantifier
and a Rule of Substitution.

Since all of the steps are straightforward except for (B), we conclude with a
proof of (B). By the Barcan Formula, it suffices to show ∀β�(ϕβα→ β=τ). Since
β isn’t free in any assumption, it suffices by GEN to show �(ϕβα → β = τ). For
reductio, assume not, i.e., that ¬�(ϕβα → β = τ), i.e., ♦¬(ϕβα → β = τ). So by a
Rule of Substitution, ♦(ϕβα &¬β=τ). So by distributing the ♦ (162.3), we know
both:

(c) ♦ϕβα

(d) ♦¬β=τ

But note independently that (a) implies ∀α�(ϕ→ �ϕ). So instantiating to ϕβα,
we know: �(ϕβα→ �ϕβα). But by (172.1), this last result implies ♦ϕβα→ �ϕβα . So
by (c), �ϕβα and hence ϕβα . But then by the second conjunct of (ξ), β=τ . So by
by (125.2), �β=τ , which contradicts (d). ./

(175.1) Let α,β be variables of the same type. By (125.1), we know α = β →
�α=β. Since this is a modally strict theorem, it follows by RN that �(α=β→
�α=β). So, by (174.2), it follows that Aα=β ≡ α=β. So by commutativity of
≡, α=β ≡ Aα=β. ./

(175.2) We may reason as follows:

α , β ≡ ¬α=β by (24) and Rule ≡Df
≡ ¬Aα=β by (175.1) and (88.4.b)
≡ A¬α=β commute (44.1)
≡ Aα,β (24), Rule ≡Df, (159.3) ./

(176.1) We want to establish:

A∃!αϕ ≡ ∃!αAϕ

By a fact about the uniqueness quantifier (127.2), we have to show, for some
variable β that is substitutable for α in ϕ and that doesn’t occur free in ϕ:

A∃α∀β(ϕβα ≡ β=α) ≡ ∃α∀β(Aϕβα ≡ β=α)

We do this by first noting some modally strict theorems:

(ϑ) A∀β(ϕβα ≡ β=α) ≡ ∀βA(ϕβα ≡ β=α) (44.3)

(ξ) A(ϕβα ≡ β=α) ≡ (Aϕβα ≡ Aβ=α) (139.5)
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(ζ) Aβ=α ≡ β=α (175.1)

Hence we may reason as follows:

A∃α∀β(ϕβα ≡ β=α) ≡ ∃αA∀β(ϕβα ≡ β=α) instance of (139.10)
≡ ∃α∀βA(ϕβα ≡ β=α) by (ϑ), (159.3)
≡ ∃α∀β(Aϕβα ≡ Aβ=α) by (ξ), (159.3)
≡ ∃α∀β(Aϕβα ≡ β=α) by (ζ), (159.3) ./

(176.2) By (152.1) we know ıxϕ ↓ ≡ ∃!xAϕ. But if we set the variable α in
(176.1) to x, we obtain the instance A∃!xϕ ≡ ∃!xAϕ, which commutes to ∃!xAϕ ≡
A∃!xϕ. Hence ıxϕ↓ ≡ A∃!xϕ. ./

(177.1) By definition of ↓ (20.1) and Rule ≡df I, we have to show ∃FFıx(x= y).
Consider the well-defined property L =df [λx E!x → E!x]. By ∃I, it suffices to
show Lıx(x = y). By the modally strict version of Russell’s analysis (151), we
have to show:

∃x(Ax=y &∀z(Az=y→ z=x) &Lx)

But again by ∃I and the fact that y↓ (39.2), it suffices to show that y is a witness
to this claim, i.e., to show:

(ϑ) Ay=y &∀z(Az=y→ z=y) &Ly

Before we begin, we establish some consequences of (175.1), which has as an
instance that x = y ≡ Ax = y. By a single application of GEN, it follows that
∀x(x = y ≡ Ax = y). Since both y↓ and z↓, we may infer both of the following
from this last result:

(ξ) y=y ≡ Ay=y

(ζ) z=y ≡ Az=y

The first conjunct of (ϑ) follows from (ξ) and y=y, which we know by Rule =I.
To show the second conjunct of (ϑ), it suffices, by GEN, to show Az=y→ z=y.
But this is just the right-to-left direction of (ζ). And the third conjunct of
(ϑ) follows from the fact that ∀zLz, which we know by reasoning from the
definition of L (exercise). ./

(177.2) Since the closures of axiom (47) are axioms, the following is an axiom:

∀x(x= ıxϕ ≡ ∀z(Aϕzx ≡ z= x)), provided z is substitutable for x in ϕ and
doesn’t occur free in ϕ

Now consider the variable y. We not only know y ↓, but also that no matter
what ϕ is, y is substitutable for x in the matrix of the above universal claim,
since the matrix has only two free occurrences of x, neither of which is in the
scope of a variable-binding operator that binds y. So we may instantiate that
claim to the variable y and obtain:
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y = ıxϕ ≡ ∀z(Aϕzx ≡ z = y), provided z is substitutable for x in ϕ and
doesn’t occur free in ϕ

Now let ϕ be the formula x= y. Then z is substitutable for x in ϕ and doesn’t
occur free in ϕ. So as an instance of our last result, we know:

(ϑ) y= ıx(x = y) ≡ ∀z(Az=y ≡ z=y)

Now, independently, by (175.1), we know x = y ≡ Ax = y, which commutes to
Ax = y ≡ x = y. By GEN, it follows that ∀x(Ax = y ≡ x = y). By the Rule of
Alphabetic Variants, it follows that:

∀z(Az=y ≡ z=y)

But this last fact and (ϑ) jointly imply y= ıx(x=y). ./

(178.1) Consider any n ≥ 1 and assume x1 . . .xnF
n. Then by axiom (50), bicon-

ditional syllogism, and &E, we know all of the following:

x1[λy Fnyx2 . . .xn]
x2[λy Fnx1yx3 . . .xn]

...
xn[λy Fnx1 . . .xn−1y]

By (106), F↓→ �F↓, and by axiom (51), each of these unary encoding claims
implies its own necessitation. Hence, we know:

�x1[λy Fnyx2 . . .xn]
�x2[λy Fnx1yx3 . . .xn]

...
�xn[λy Fnx1 . . .xn−1y]

Now we leave it as an exercise to prove the generalized version of theorem
(158.3), i.e., to prove �(ϕ1 & . . . &ϕn) ≡ (�ϕ1 & . . . &�ϕn). So, after we conjoin
last set of lines displayed above by n− 1 applications of &I, it follows that:

(ϑ) �(x1[λy Fnyx2 . . .xn] & x2[λy Fnx1yx3 . . .xn] & . . . & xn[λxy Fnx1 . . .xn−1y])

Independently, if we apply Rule RE to the necessary axiom (50), then we ob-
tain:

(ξ) �x1 . . .xnF
n ≡

�(x1[λyFnyx2 . . .xn] & x2[λyFnx1yx3 . . .xn] & . . . & xn[λyFnx1 . . .xn−1y])

From (ξ) and (ϑ), it follows by biconditional syllogism (89.3.b) that �x1 . . .xnF
n.

./
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(178.2) Assume ¬x1 . . .xnF
n, and for reductio, assume ¬�¬x1 . . .xnF

n. Then by
definition of ♦ and Rule ≡Df (90.1), it follows from the latter that ♦x1 . . .xnF

n.
But, independently, it follows from the modally strict theorem x1 . . .xnF

n →
�x1 . . .xnF

n (178.1) that ♦x1 . . .xnF
n → x1 . . .xnF

n, by (166.2). Hence x1 . . .xnF
n.

Contradiction. ./

(179.1) Since theorem (178.1), i.e., x1 . . .xnF
n → �x1 . . .xnF

n, is modally strict,
it follows by RN that �(x1 . . .xnF

n→ �x1 . . .xnF
n). By ∨I, it follows that:

�(x1 . . .xnF
n→ �x1 . . .xnF

n)∨ (♦x1 . . .xnF
n→ �x1 . . .xnF

n)

So by theorem (172.2), it follows that ♦x1 . . .xnF
n ≡ �x1 . . .xnF

n. ./

(179.2) By (178.1) for (→) direction and the T schema for the (←) direction. ./

(179.3) (→) By the �-theorem (178.1), i.e., x1 . . .xnF
n → �x1 . . .xnF

n, and rule
(166.2). (←) By the T♦ (163.1) schema. ./

(179.4) To make the proof more easily readable, we prove this for the unary
case. For n ≥ 2, the proof is obtained by analogous reasoning in which appeals
to appeals to theorem (178.1) replace appeals to axiom (51).

(→) Assume:

(ϑ) xF ≡ yG

To show �xF ≡ �yG, we show both directions:

(→) Assume �xF. Then by the T schema (45.2), xF. So by (ϑ), yG. Then
by axiom (51), �yG.

(←) By analogous reasoning.

(←) Assume �xF ≡ �yG. Again, we show both directions:

(→) Assume xF. Then by axiom (51), �xF. From this and our global
assumption, it follows that �yG. Hence, by the T schema (45.2), yG.

(←) By analogous reasoning. ./

(179.5) Again, without loss of generality, we prove this for the unary case.
For n ≥ 2, the proof is obtained by analogous reasoning in which appeals to
theorem (178.1) replace appeals to axiom (51).

(→) This direction is immediate from the relevant instance of theorem (158.6),
which asserts that �(ϕ ≡ ψ) → (�ϕ ≡ �ψ). Alternatively, if one assumes the
antecedent, i.e., �(x1 . . .xnF

n ≡ y1 . . . ynG
n) and applies the T schema, we obtain

x1 . . .xnF
n ≡ y1 . . . ynG

n, which by the left-to-right direction of the previous the-
orem (179.4) implies �x1 . . .xnF

n ≡ �y1 . . . ynG
n.

(←) As an instance of (172.4), we know:
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(ϑ) (�(xF→ �xF) &�(yG→ �yG))→ ((�xF ≡ �yG)→ �(xF ≡ yG))

But xF→ �xF and yG→ �yG are both just instances of axiom (51). Hence, by
RN, we have both �(xF→ �xF) and �(yG→ �yG). So it follows from (ϑ) that
(�xF ≡ �yG)→ �(xF ≡ yG). ./

(179.6) Without loss of generality, we prove only the unary case. By the com-
mutativity of the biconditional (88.2.e), (179.5) converts to (�xF ≡ �yG) ≡
�(xF ≡ yG). Then (179.4) and this last result imply (xF ≡ yG) ≡ �(xF ≡ yG), by
≡E (89.3.e). ./

(179.7) (→) By theorem (178.2). (←) By the T schema. ./

(179.8) Without loss of generality, we prove only the unary case. Theorem
(179.2) is that xF ≡ �xF. So by a classical tautology (88.4.b), it follows that
¬xF ≡ ¬�xF. Independently, as an instance of (158.11), we know that ¬�xF ≡
♦¬xF. So by the transitivity of ≡ (89.3.e), it follows that ¬xF ≡ ♦¬xF, which
commutes to ♦¬xF ≡ ¬xF. ./

(179.9) (Exercise)

(179.10) Since x1 . . .xnF → �x1 . . .xn is a �-theorem (178.1), it follows by Rule
RN that �(x1 . . .xnF → �x1 . . .xnF). So by (174.2), Ax1 . . .xnF ≡ x1 . . .xnF. By the
commutativity of ≡, x1 . . .xnF ≡ Ax1 . . .xnF. ./

(180.1) AssumeO!x. Then by definition of O! (22.1) and Rule =df E, [λx♦E!x]x.
Now, independently, since [λx ♦E!x]↓, β-Conversion (48.2) yields:

(ϑ) [λx ♦E!x]x ≡ ♦E!x

So it follows from what we’ve established thus far that ♦E!x. This implies,
by the 5 axiom (45.3), that �♦E!x. Note also that from the �-theorem (ϑ), its
commuted form ♦E!x ≡ [λx ♦E!x]x is also as �-theorem. From this and �♦E!x
it follows, by the Rule of Substitution (160.2), that �[λx ♦E!x]x. Hence, by
definition of O! and Rule =df I, �O!x. ./

(180.2) Assume A!x. Then by definition of A! (22.2) and Rule =df E, we know
[λx ¬♦E!x]x. Independently, from the fact that [λx ¬♦E!x]↓, it follows by β-
Conversion that the following is a �-theorem:

(ϑ) [λx¬♦E!x]x ≡ ¬♦E!x

So it follows from what we’ve established that ¬♦E!x. This implies �¬E!x, by
the modally strict equivalence (162.1). By the 4 schema (165.5) it follows that
��¬E!x. From this and (162.1) again, we apply the Rule of Substitution (160.2)
to obtain �¬♦E!x. This implies, by the commuted form of (ϑ) (which is also a
�-theorem) and the Rule of Substitution (160.2) that �[λx ¬♦E!x]x. So by the
definition of A! and Rule =df I, we have �A!x. ./
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(180.3) From the�-theorem (180.1), it follows that ♦O!x→O!x, by rule (166.2).
./

(180.4) From the �-theorem (180.2) it follows that ♦A!x→ A!x, by rule (166.2).
./

(180.5) (→) By hypothetical syllogism from (180.3) and (180.1). (←) By the T
and T♦ schemata. ./

(180.6) (→) By hypothetical syllogism from (180.4) and (180.2). (←) By the T
and T♦ schemata. ./

(180.7) Since O!x → �O!x (180.1) is a theorem, it follows by Rule RN that
�(O!x→ �O!x). So by (174.2), AO!x ≡O!x, which commutes to O!x ≡ AO!x. ./

(180.8) (Exercise)

(181) Let µ1, . . . ,µn (n ≥ 1) be any distinct individual variables, and let ϕ be any
formula in which ν1, . . . ,νn are any individual variables substitutable, respec-
tively, for µ1, . . . ,µn. We want to prove:443

(ξ) [λµ1 . . .µn ϕ]↓ → ([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn )

Note that by n applications of the Special Case of Rule ∀E (93.3), it suffices to
prove a universal closure of (ξ), namely:

(ζ) ∀ν1 . . .∀νn([λµ1 . . .µn ϕ]↓→ ([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn ))

Note also that there may be free variables inϕ not among ν1, . . . ,νn and µ1, . . . ,µn.
If there are such, then these variables occur free in (ζ). So suppose that α1, . . . ,αm
are the variables that occur free in (ζ). Then by m applications of the Special
Case of Rule ∀E (93.3), it suffices to prove a universal closure of (ζ), namely
(ω):

(ω) ∀α1 . . .∀αm∀ν1 . . .∀νn([λµ1 . . .µn ϕ]↓→ ([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn ))

Clearly, there are no free variables in (ω). Now consider the specific list x1, . . . ,xn
of individual variables and perform the following transformation of ϕ:

• For each αj (1 ≤ j ≤ m), if αj is among the list of variables x1, . . . ,xn, let
α′
j be a variable distinct from x1, . . . ,xn and substitute α′

j for every free
occurrence of αj in ϕ and call the result ϕ′′; otherwise, let α′

j be αj . Thus,
ϕ′′ has no free occurrences of x1, . . . ,xn.

443I’m indebted to Uri Nodelman for helping me to work through a number of subtleties in the
following proof; my original attempt had a number of gaps.
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• Let ϕ′ be an alphabetic variant of ϕ′′ such that every bound occurrence
of xi in ϕ′′ is replaced with a fresh variable.444

Then consider the following alphabetic variant of (ω):

(ω′) ∀α′
1 . . .∀α′

m∀ν1 . . .∀νn([λµ1 . . .µn ϕ
′]↓→ ([λµ1 . . .µn ϕ

′]ν1 . . .νn ≡ ϕ′ν1,...,νn
µ1, ...,µn

))

To prove (ω), it suffices to prove (ω′), by the Rule of Alphabetic Variants. So if
we can show that (ω′) itself is an alphabetic variant of an axiom, we’re done.
Observe that there are no free variables in (ω′) and, moreover, none of the
variables x1, . . . ,xn occur free in any subformula or term in (ω′) (since any free
occurrence in ϕ would have been swapped out in the transformation from ϕ to
ϕ′′). Observe also that each variable xi in the list x1, . . . ,xn is substitutable for
µi in ϕ′, for there are no operators binding xi that could capture them after the
transformation from ϕ′′ to ϕ′. (One might recall here the discussion following
theorem (99.13).) Consider the following alphabetic variant of (ω′):

∀α′
1 . . .∀α′

m∀x1 . . .∀xn([λx1 . . .xn (ϕ′)x1,...,xn
µ1,...,µn ]↓→

([λx1 . . .xn (ϕ′)x1,...,xn
µ1,...,µn ]x1 . . .xn ≡ (ϕ′)x1,...,xn

µ1,...,µn ))

But this claim is a universal closure of an instance of (48.2) and hence an axiom.
./

(183.1) For simplicity, we prove the theorem using the variables xi and yi as
arbitrary stand-ins for any variables meeting the conditions of the theorem.
(This will be easier to read than a proof using metavariables.) By hypothesis,
for 1 ≤ i ≤ n, the variable yi is substitutable for the variable xi in ϕ. Note
that by n applications of GEN to an appropriate instance of Strengthened β-
Conversion (181), we obtain:

∀y1 . . .∀yn([λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn ))

Then by theorem (99.14), we may distribute the quantifiers ∀y1, . . . ,∀yn over
the conditional, so that we may conclude:

∀y1 . . .∀yn([λx1 . . .xn ϕ]↓) →∀y1 . . .∀yn([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn ) ./

(183.2) For simplicity, we prove the theorem using the variables xi and yi as
arbitrary stand-ins for any variables meeting the conditions of the theorem.
(This will be easier to read than a proof using metavariables.) Assume:

(ϑ) [λx1 . . .xn ϕ]↓
444The transformation from ϕ′′ to ϕ′ is done to ensure that every xi is substitutable for µi . We

want to avoid the situation in which the substitution of xi for µi inϕ would result in xi ’s capture by
a variable-binding operator binding x. But, by the transformation, ϕ′ has no xi -binding operators
within it.
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By hypothesis, y1, . . . , yn are substitutable, respectively, for x1, . . . ,xn in ϕ and so
[λx1 . . .xn ϕ] gives rise to instances of (181):

[λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn )

So by GEN, we may infer:

∀y1 . . .∀yn([λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn ))

But also, by hypothesis, none of y1, . . . , yn occur free in [λx1 . . .xn ϕ]. So from
our last conclusion and (99.15), it follows that:

[λx1 . . .xn ϕ]↓ → ∀y1 . . .∀yn([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn )

From this last result and our assumption (ϑ), it then follows that:

∀y1 . . .∀yn([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn ) ./

(184.1) We prove the (.a) and (b) forms of the rule together. Assume:

(ϑ) [λµ1 . . .µn ϕ]κ1 . . .κn

Then by axiom (39.5.a), we know all of the following:

(A) [λµ1 . . .µn ϕ]↓

(B1) κ1↓

...

(Bn) κn↓

By hypothesis, [λµ1 . . .µn ϕ] has no free variables. Now let ν1, . . . ,νn be any in-
dividual variables substitutable, respectively, for µ1, . . . ,µn in ϕ. Since ν1, . . . ,νn
aren’t free in [λµ1 . . .µn ϕ], it follows from (A) by (183.2) that:

∀ν1 . . .∀νn([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn )

But from (B1) – (Bn) and the fact that κ1, . . . ,κn are substitutable, respectively,
for µ1, . . . ,µn in ϕ, it follows by n applications of Rule ∀E that:

(ξ) [λµ1 . . .µn ϕ]κ1 . . .κn ≡ (ϕν1,...,νn
µ1,...,µn )

κ1,...,κn
ν1,...,νn

Since, for all i such that 1 ≤ i ≤ n, both κi and νi are substitutable for µi in
ϕ, we can establish independently that (ϕν1,...,νn

µ1,...,µn )
κ1,...,κn
ν1,...,νn just is ϕκ1,...,κn

µ1,...,µn (exercise).
Hence, (ξ) becomes [λµ1 . . .µn ϕ]κ1 . . .κn ≡ ϕ

κ1,...,κn
µ1,...,µn . But then, given (ϑ), it fol-

lows that ϕκ1,...,κn
µ1,...,µn . So, by conditional proof, we’ve established:

(ζ) ` [λµ1 . . .µn ϕ]κ1 . . .κn→ ϕκ1,...,κn
µ1,...,µn
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So by (63.10), the (.a) form of our rule follows from (ζ):

(.a) [λµ1 . . .µn ϕ]κ1 . . .κn ` ϕ
κ1,...,κn
µ1,...,µn

Moreover, from (ζ) and the rules of contraposition (80), it follows that:

` ¬ϕκ1,...,κn
µ1,...,µn →¬[λµ1 . . .µn ϕ]κ1 . . .κn

But this implies, by (63.10), the (.b) form of our rule:

(.b) ¬ϕκ1,...,κn
µ1,...,µn ` ¬[λµ1 . . .µn ϕ]κ1 . . .κn ./

(184.2) We prove only the (.a) form of the rule and leave the (.b) form as an
exercise. Assume all of the following:

(A) [λµ1 . . .µn ϕ]↓

(B1) κ1↓

...

(Bn) κn↓

(C) ϕκ1,...,κn
µ1,...,µn

By hypothesis, [λµ1 . . .µn ϕ] has no free variables. Now let ν1, . . . ,νn be any in-
dividual variables substitutable, respectively, for µ1, . . . ,µn in ϕ. Since ν1, . . . ,νn
aren’t free in [λµ1 . . .µn ϕ], it follows from (A) by (183.2) that:

∀ν1 . . .∀νn([λµ1 . . .µn ϕ]ν1 . . .νn ≡ ϕ
ν1,...,νn
µ1,...,µn )

But from (B1) – (Bn) and the fact that κ1, . . . ,κn are substitutable, respectively,
for µ1, . . . ,µn in ϕ, it follows by n applications of Rule ∀E that:

(ϑ) [λµ1 . . .µn ϕ]κ1 . . .κn ≡ (ϕν1,...,νn
µ1,...,µn )

κ1,...,κn
ν1,...,νn

Since, for all i such that 1 ≤ i ≤ n, both κi and νi are substitutable for µi in
ϕ, we can establish independently that (ϕν1,...,νn

µ1,...,µn )
κ1,...,κn
ν1,...,νn just is ϕκ1,...,κn

µ1,...,µn (exercise).
Hence, it follows from (ϑ) that [λµ1 . . .µn ϕ]κ1 . . .κn ≡ ϕ

κ1,...,κn
µ1,...,µn . But then, by (C),

it follows that [λµ1 . . .µn ϕ]κ1 . . .κn. Hence, by n+ 2 applications of conditional
proof, we have established that:

` [λµ1 . . .µnϕ]↓→ (κ1↓→ (. . .→ (κn↓→ (ϕκ1,...,κn
µ1,...,µn → [λµ1 . . .µnϕ]κ1 . . .κn))))

So by n+ 1 applications of (63.10), it follows that

[λµ1 . . .µn ϕ]↓ , κ1↓ , . . . , κn↓ , ϕ
κ1,...,κn
µ1,...,µn ` [λµ1 . . .µn ϕ]κ1 . . .κn ./
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(186.1) Let Πn be any n-ary relation term (n ≥ 0) in which none of x1, . . . ,xn
occur free. Now assume Πn ↓. Independently, we know that the closures of
η-Conversion (48.3) are axioms. Hence, we know, for every n ≥ 0:

(ξ) ∀Fn([λx1 . . .xn F
nx1 . . .xn] = Fn)

By hypothesis, x1, . . . ,xn aren’t free in Πn, and so Πn is substitutable for F in
[λx1 . . .xn F

nx1 . . .xn] = Fn. Hence, the provisos for applying Rule ∀E (93.1) are
met so that we may conclude [λx1 . . .xnΠ

nx1 . . .xn] = Πn. ./

(186.2) Assume Πn↓, where x1, . . . ,xn are any distinct individual variables none
of which occur free in Πn. Then by (186.1), it follows that:

(ϑ) [λx1 . . .xnΠ
nx1 . . .xn] = Πn

But then, where ν1, . . . ,νn are any distinct variables not free in Πn, we know:

[λν1 . . .νnΠ
nν1 . . .νn] is an alphabetic variant of [λx1 . . .xnΠ

nx1 . . .xn]

Hence [λν1 . . .νnΠ
nν1 . . .νn] = Πn is an alphabetic variant of (ϑ) and so follows

from (ϑ) by the Rule of Alphabetic Variants (114). ./

(187) By hypothesis:

(a) ` ρ↓,

(b) ρ′ is an η-variant of ρ witnessed by the sequence ρ1, . . . ,ρm, for which
ρ = ρ1 and ρ′ = ρm (m ≥ 1), and

(c) `Πn↓ (n ≥ 0) whenever ρi+1 is an immediate η-variant of ρi with respect
to Πn, for each i such that 1 ≤ i ≤m− 1.

We want to show ` ρ=ρ′. We prove this by cases.

Case 1: ρ′ is an immediate η-variant of ρ with respect to Πn. Then:

• by definition (185.4), either (i) Πn is a subterm of ρ and ρ′ results from
ρ by replacing Πn by an η-expansion [λν1 . . .νnΠ

nν1 . . .νn] or (ii) the ele-
mentary expression [λν1 . . .νnΠ

nν1 . . .νn] is a subterm of ρ and ρ′ results
from ρ by replacing [λν1 . . .νnΠ

nν1 . . .νn] by its η-contraction Πn, and

• by definition (185.5), the sequence 〈ρ,ρ′〉 is a witness to the fact that ρ′ is
an η-variant of ρ.

By assumption (c), i.e., `Πn↓, and so from the fact that (186.2) is a theorem, it
follows by (63.6) that:

(ϑ) ` [λν1 . . .νnΠ
nν1 . . .νn] = Πn

By symmetry of identity, we also know:
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(ξ) `Πn = [λν1 . . .νnΠ
nν1 . . .νn]

Moreover, since ` ρ↓ by assumption (a), we know by Rule =I that:

(ζ) ` ρ = ρ

Then in case (i), (ξ) and (ζ) imply ρ = ρ′ by Rule =E (110), and in case (ii), (ϑ)
and (ζ) imply ρ = ρ′ by Rule =E.

Case 2: ρ′ is an η-variant of ρ but not an immediate η-variant with respect to
Πn. Since ρ′ is not an immediate η-variant of ρ, it follows from assumption
(b) that m ≥ 3. By assumption (c), we know that for 1 ≤ i ≤ m − 1, if ρi+1 is an
immediate η-variant of ρi with respect to the n-ary relation term Πn (n ≥ 1),
then ` Πn↓. So for each i, 1 ≤ i ≤ m − 1, it follows from Case 1 that ` ρi =ρi+1.
Hence, by m − 2 applications of the transitivity of identity (117.3), it follows
that ` ρ=ρ′ ./

(188.1) Assume both:

(A) [λz1 . . . zn χ
ıxϕ
y ]↓

(B) ıxϕ= ıxψ

Now (A) implies, by Rule =I:

(C) [λz1 . . . zn χ
ıxϕ
y ] = [λz1 . . . zn χ

ıxϕ
y ]

But where (ϑ) is:

(ϑ) [λz1 . . . zn χ] = [λz1 . . . zn χ]

then (C) is, by the definition of substitutions, (ϑ)ıxϕy . Now since ıxϕ and ıxψ
are, by hypothesis, both substitutable for y in [λz1 . . . znχ], they are both substi-
tutable for y in (ϑ). Hence, by Rule =E (110), (ϑ)ıxϕy and (B), we may infer (ϑ′),
i.e., the result of substituting ıxψ for zero or more occurrences of ıxϕ in (ϑ)ıxϕy .
But the following is such a (ϑ′):

[λz1 . . . zn χ
ıxϕ
y ]=[λz1 . . . zn χ

′]

since, by hypothesis, χ′ is the result of substituting ıxψ for one or more occur-
rences of ıxϕ in χıxϕy . ./

(188.2) (Exercise)

(189) (→) Exercise. (←) For conditional proof, assume:

(ϑ) ∀x(xF1 ≡ xG1)

to show F1 =G1. By theorem (116.1), we have to show:
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�∀x(xF1 ≡ xG1)

We can’t simply apply RN (68) to (ϑ), for that would violate the conditions of
application of the rule. But by the Barcan Formula (167.1), it suffices to show:

∀x�(xF1 ≡ xG1)

Since x is not free in our assumption (ϑ), it suffices by GEN to show �(xF1 ≡
xG1). We do this as follows. From (ϑ), it follows by Rule ∀E (93.3) that:

(ζ) xF1 ≡ xG1

Note that we independently know, by (179.2), both:

(ξ) xF1 ≡ �xF1

(ω) xG1 ≡ �xG1

So we can show �xF1 ≡ �xG1 as follows:

�xF1 ≡ xF1 by (ξ), commutativity of ≡
≡ xG1 by (ζ)
≡ �xG1 by (ω)

From this, we can reach �(xF1 ≡ xG1), by the right-to-left direction of (179.5).
./

(191.1) Suppose ϕ contains (a) no free occurrences of x1, . . . ,xn in encoding
position (9.1), and (b) no free occurrences of Fn. Then, from (a) and (39.2), we
know [λx1 . . .xn ϕ]↓. It then follows by β-Conversion (48.2) that:

[λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ

So by n applications of GEN:

∀x1 . . .∀xn([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)

Since this claim has been established by a modally strict proof, it follows by
RN (68) that:

(ϑ) �∀x1 . . .∀xn([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)

Since F doesn’t occur free in ϕ, the previous line has the form ψ
[λx1...xn ϕ]
F when

ψ is the formula:

�∀x1 . . .∀xn(Fx1 . . .xn ≡ ϕ)

From (ϑ) and the fact that [λx1 . . .xn ϕ]↓, it follows by ∃I that ∃Fψ, i.e., that:445

445Thus, the fact that F doesn’t occur free in ϕ is essential to the proof, for otherwise the free
occurrence of F in ϕ would be captured if we were to introduce ∃F to existentially generalize on
the relation term [λx1 . . .xn ϕ]. This would be an invalid application of ∃I, like the ones discussed
in the penultimate paragraph of (101).
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∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ) ./

(191.2) This is just the unary case of (191.1). ./

(192.1) Suppose, for reductio:

[λx ∃G(xG&¬Gx)]↓

Note that the above λ-expression has no free variables. Now consider the fol-
lowing instance of the Comprehension Principle for Abstract Objects (53):

∃x(A!x&∀F(xF ≡ F=[λx ∃G(xG&¬Gx)]))

Suppose a is such an object, so that we know a↓ and:

(ξ) A!a&∀F(aF ≡ F=[λx ∃G(xG&¬Gx)])

Now, for notational convenience, abbreviate [λx∃G(xG&¬Gx)] as [λxϕ]. Since
either [λxϕ]a or ¬[λxϕ]a, we may reason each case to a contradiction. Assume

[λxϕ]a. Then by Rule
−→
βC (184.1.a), ∃G(aG&¬Ga). Let P be such a property, so

that we know P ↓, aP , and ¬P a. But from the first two, it follows from the sec-
ond conjunct of (ξ) by ∀E that P = [λx ϕ]. So ¬[λx ϕ]a, contrary to hypothesis.

Then assume ¬[λx ϕ]a. From this and the facts that [λx ϕ]↓ and a↓, Rule
←−
βC

(184.2.b) implies ¬∃G(aG&¬Ga), i.e., ∀G(aG→ Ga). Hence, a[λxϕ]→ [λxϕ]a.
But since [λx ϕ]↓, the second conjunct of (ξ) implies a[λx ϕ] ≡ [λx ϕ] = [λx ϕ]
and Rule =I (118) implies [λxϕ]=[λxϕ]. Hence, a[λxϕ], and so [λxϕ]a. Con-
tradiction. ./

(192.2) (Exercise)

(192.3) Assume, for reductio:

(ϑ) ∀y([λz z=y]↓)

Now by the Comprehension Principle for Abstract Objects (53), we know:

∃x(A!x&∀F(xF ≡ ∃y(F=[λz z=y] &¬yF)))

Let a be such an object, so that we know both a↓ and:

(ξ) A!a&∀F(aF ≡ ∃y(F=[λz z=y] &¬yF))

Then it follows from (ϑ) that [λz z= a]↓. So we may instantiate [λz z= a] into
the second conjunct of (ξ) to conclude:

(ζ) a[λz z=a] ≡ ∃y([λz z=a]=[λz z=y] &¬y[λz z=a])

Now either a[λz z=a] or ¬a[λz z=a], but both cases lead to contradiction.

• Assume a[λz z=a]. Then by (ζ):



Proofs of Theorems and Metarules 1097

∃y([λz z=a]=[λz z=y] &¬y[λz z=a])

Suppose b is such an object, so that [λz z = a] = [λz z = b] & ¬b[λz z = a].
Since a↓, we know by Rule =I that a = a. From this and the facts that
[λz z=a]↓ and a↓, it follows by Rule

←−
βC (184.2.a) that [λz z=a]a. But we

know [λzz=a]=[λzz=b] and so by Rule =E, [λzz=b]a. It follows by Rule
−→
βC (184.1.a) that a=b, i.e., b=a. But since we established ¬b[λz z=a], it
follows that ¬a[λz z=a], contrary to hypothesis.

• Assume ¬a[λz z=a]. Then by (ζ):

¬∃y([λz z=a]=[λz z=y] &¬y[λz z=a])

i.e.,

∀y([λz z=a]=[λz z=y]→ y[λz z=a])

Since a↓, we may instantiate the above to a to obtain:

[λz z=a]=[λz z=a]→ a[λz z=a]

But since we’ve established that [λz z = a]↓, we know by Rule =I that
the antecedent of this last result holds. Hence, a[λz z = a], contrary to
hypothesis. ./

(192.4) (Exercise) [Note: it is easier to prove this theorem with the help of a
later theorem, namely, (269). But the preceding theorem shows the way to-
wards a proof that doesn’t cite (269).]

(192.5) (Exercise)

(193.1)? Assume ∀xGx. To prove our theorem, we need the following lemma,
which holds under this assumption:

Lemma: ∀x(Gıy(y=x&∃H(xH &¬Hx)) ≡ ∃H(xH &¬Hx))

Let’s suppose, for the moment, that the Lemma holds (we’ll prove it at the end).
Then assume, for reductio:

[λxGıy(y=x&∃H(xH &¬Hx))]↓

Now suppose we simply abbreviate the λ-expression in the above claim as
[λx ϕ]. Then since [λx ϕ] has no free variables (and, in particular, x doesn’t
occur free in [λx ϕ]) and x is substitutable for itself in the matrix of [λx ϕ], it
follows from the above claim, by (183.2), that:

(ϑ) ∀x([λxϕ]x ≡ Gıy(y=x&∃H(xH &¬Hx)))

But from this and the Lemma, it follows by (99.10) that:
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∀x([λxϕ]x ≡ ∃H(xH &¬Hx))

Since [λxϕ]↓, it follow by ∃I that:

∃F∀x(Fx ≡ ∃H(xH &¬Hx))

But this contradicts (192.2). So it remains only to show the Lemma holds under
the assumption ∀xGx.

Proof of the Lemma: We gave a proof sketch of this in footnote 29. But here is a
proof sketch that cites the theorems we’ve now established. By GEN, it suffices
to show:

Gıy(y=x&∃H(xH &¬Hx)) ≡ ∃H(xH &¬Hx)

But this follows, by biconditional syllogism, from the following two bicondi-
tionals:

(A) Gıy(y=x&∃H(xH &¬Hx)) ≡ ∃!y(y=x&∃H(xH &¬Hx))

(B) ∃!y(y=x&∃H(xH &¬Hx)) ≡ ∃H(xH &¬Hx)

Proof of (A). We prove both directions. (→) AssumeGıy(y=x&∃H(xH&¬Hx)).
Then by axiom (39.5.a), ıy(y=x&∃H(xH &¬Hx))↓. So by (144.1)?, ∃!y(y=x&
∃H(xH & ¬Hx)). (←) Assume ∃!y(y = x & ∃H(xH & ¬Hx)). Let a be such an
object so that, by the definition of the unique existence quantifier, we know
both:

a=x&∃H(xH &¬Hx))

∀z(z=x&∃H(xH &¬Hx)→ z=a)

But recall that we’re under the assumption ∀xGx. Hence Ga. So if we conjoin
the above two claims with Ga, it follows by ∃I that there is an object y (namely
a) such that (i) y=x&∃H(xH&¬Hx), (ii) ∀z(z=x&∃H(xH&¬Hx)→ z=y), and
(iii) Gy. Hence, by Russell’s theory of descriptions (143)?, Gıy(y=x&∃H(xH&
¬Hx)).

Proof of (B). Again, we prove both directions. (→) Assume ∃!y(y=x&∃H(xH&
¬Hx)). Then, as before, let a be such an object, so that we know, among other
things, that a= x& ∃H(xH &¬Hx)). Then it follows that ∃H(xH &¬Hx). (←)
Assume ∃H(xH &¬Hx). Since we know x= x by the reflexivity of identity, it
follows that:

(ζ) x=x&∃H(xH &¬Hx)

Moreover, it is trivial that:

(ω) ∀z(z=x&∃H(xH &¬Hx)→ z=x)



Proofs of Theorems and Metarules 1099

So if we conjoin (ζ) and (ω) and apply ∃I, it follows that:

∃y(y=x&∃H(xH &¬Hx) &∀z(z=x&∃H(xH &¬Hx)→ z=y))

So by the definition of the unique existence quantifier, ∃!y(y = x & ∃H(xH &
¬Hx)). ./

(193.2)? (Exercise)

(194) Let ϕ be any formula with no free occurrences of p. Since ϕ ≡ ϕ is an
instance of the modally strict theorem (88.3.a), it follows by RN that �(ϕ ≡ ϕ).
But by (104.2), we know that ϕ↓. Since p doesn’t occur free in ϕ, we may use
Rule ∃I (101.1) to conclude ∃p�(p ≡ ϕ). ./

(195.1) Assume ♦¬∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn), which by (158.11), im-
plies ¬�∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn). Then by modus tollens and (108.1),
Fn, Gn. ./

(195.2) [The following proof was found by Daniel Kirchner’s implementation
in Isabelle and so replaces the longer proof I had originally constructed; see
Kirchner 2017 [2021] and 2022.] Suppose G is substitutable for F in ϕ and ϕ′

is the result of substituting G for one or more free occurrences of F in ϕ. Our
proof strategy is:

(A) Prove, by modally strict means, that (ϕ . ϕ′)→ F,G.

(B) By RM♦, conclude ♦(ϕ . ϕ′)→ ♦F,G.

(C) But by (170.3), we know ♦F,G→ F,G.

(D) From (B) and (C) it follows that ♦(ϕ . ϕ′)→ F,G.

Since (B) – (D) are straightforward, it remains to show (A). So assume ϕ . ϕ′.
Hence by (88.4.h), (ϕ&¬ϕ′)∨(¬ϕ&ϕ′). We then show that F,G in both cases.

• ϕ & ¬ϕ′. So ¬(ϕ → ϕ′). But since G is substitutable for F in ϕ and ϕ′

is the result of substituting G for one or more occurrences of F in ϕ, we
know F =G→ (ϕ → ϕ′) is an instance of the axiom for the substitution
of identicals (41). Hence, F,G.

• ¬ϕ &ϕ′. Then since ϕ′ &¬ϕ, we know ¬(ϕ′ → ϕ). But note that if G is
substitutable for F in ϕ and ϕ′ is the result of substituting G for one or
more free occurrences of F in ϕ, then F is substitutable for G in ϕ′ and
ϕ is the result of substituting F for free occurrences of G in ϕ′. So as an
instance (41) we know G=F → (ϕ′ → ϕ). Hence G,F, and so F ,G, by
the symmetry of identity and modus tollens. ./
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(195.3) – (195.4) (Exercises)

(197.1) Let Πn be any n-ary relation term in which x1, . . . ,xn don’t occur free
(n ≥ 0). Then [λx1 . . .xn¬Πnx1 . . .xn] is a core λ-expression and so as an instance
of axiom (39.2) we know [λx1 . . .xn ¬Πnx1 . . .xn]↓. ./

(197.2) Let Π be any n-ary relation term in which x1, . . . ,xn don’t occur free
(n ≥ 0). Note that the Rule of Definition by Identity asserts the following with
respect to the instance of definition (196) in which Π is substituted for F:

(ϑ) ([λx1 . . .xn ¬Πx1 . . .xn]↓ → (Π = [λx1 . . .xn ¬Πx1 . . .xn])) &
(¬[λx1 . . .xn ¬Πx1 . . .xn]↓ → ¬Π↓)

But by (197.1), we know [λx1 . . .xn ¬Πx1 . . .xn]↓. Hence, we may infer from the
first conjunct of (ϑ) that Π = [λx1 . . .xn ¬Πx1 . . .xn]. ./

(197.3) (Exercise)

(199.1) We reason by cases: Case: n ≥ 1 and Case: n = 0.

Case n ≥ 1. By (197.2), we know Fn = [λx1 . . .xn ¬Fnx1 . . .xn]. By the symmetry
of identity, this implies [λx1 . . .xn ¬Fnx1 . . .xn] = Fn. It follows from these facts,
respectively, by the axiom for the substitution of identicals (41) that:

Fnx1 . . .xn→ [λx1 . . .xn ¬Fnx1 . . .xn]x1 . . .xn

[λx1 . . .xn ¬Fnx1 . . .xn]x1 . . .xn→ Fnx1 . . .xn

Hence:

(ϑ) Fnx1 . . .xn ≡ [λx1 . . .xn ¬Fnx1 . . .xn]x1 . . .xn

Moreover, since we know [λx1 . . .xn¬Fnx1 . . .xn]↓, it is a consequence of β-Con-
version (48.2) that:

(ξ) [λx1 . . .xn ¬Fnx1 . . .xn]x1 . . .xn ≡ ¬Fnx1 . . .xn

But (ϑ) and (ξ) imply:

Fnx1 . . .xn ≡ ¬Fnx1 . . .xn

Case n = 0. By (197.2), we know p = [λ¬p]. By theorem (108.2), this implies
�(p ≡ [λ¬p]), and so p ≡ [λ¬p], by the T schema. But [λ¬p] ≡ ¬p, by (111.2).
Hence, p ≡ ¬p. ./

(199.2) (Exercise)

(199.3) This is the 0-ary case of (199.1). ./

(199.4) This is the 0-ary case of (199.2). ./
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(199.5) Assume, for reductio, that Fn = Fn. Then by (107.1) and (107.2), both
Fn↓ and Fn↓, and so we can apply the symmetry of identity (117.2) to conclude
Fn = Fn. Since theorem (199.1) is that Fnx1 . . .xn ≡ ¬Fnx1 . . .xn, it follows by
Rule =E that Fnx1 . . .xn ≡ ¬Fnx1 . . .xn, which is a contradiction (88.3.c). ./

(199.6) This is the 0-ary case of (199.5). ./

(199.7) By definition (196), we know p = [λ¬p]. Moreover, by theorem (111.1),
we also know [λ ¬p] = ¬p. Clearly, all of the terms mentioned thus far are
significant, and so by the transitivity of identity (117.3), p = ¬p. ./

(199.8) Assume p=q. Although it is a theorem that every formula is significant
and, hence, that (¬p)↓, we prove the latter without appeal to this theorem, for
when we get to the type-theoretic version of object theory, there will be for-
mulas that aren’t significant and so a proof based on the theorem that every
formula is significant wouldn’t transfer to type theory. So note that (¬p)↓ fol-
lows directly from two principles: definition (20.3), which has the instance
(¬p)↓≡ [λx ¬p]↓, and axiom (39.2), which has [λx ¬p]↓ as an instance. Since
(¬p)↓, it follows by Rule =I (118.1) that ¬p = ¬p. Hence ¬p = ¬q, by Rule =E
(110). ./

(199.9) (Exercise)

(202.1) (→) Assume NonContingent(F). Then by the unary case of definition
(200.3) and Rule ≡df E (90.2), we know:

(A) Necessary(F)∨ Impossible(F)

Given (A) and definition (200.1), we may infer, by a relevant instance of (88.8.h)
and biconditional syllogism, that:

(B) �∀xFx∨ Impossible(F)

Independently, by Rule ≡S of Biconditional Simplication (91.1), we can infer,
from definition (200.2) and the fact that F↓ (recall Remark (201)), that:

(C) Impossible(F) ≡ �∀x¬Fx

So from (B) and (C), it follows by (88.8.g) and biconditional syllogism that:

(D) �∀xFx∨�∀x¬Fx

Now we know by (199.2) and (199.1), respectively, that the following are �-
theorems: ¬Fx ≡ Fx and Fx ≡ ¬Fx. Applying the commutativity of ≡ to each,
we therefore have the following �-theorems:

(E) Fx ≡ ¬Fx

(F) ¬Fx ≡ Fx
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Hence, from (D), (E), and (F), it follows by two applications of the Rule of
Substitution (160.2) that:

�∀x¬Fx∨�∀xFx

And by the commutativity of ∨, this implies:

(G) �∀xFx∨�∀x¬Fx

From the commuted form of definition (200.1) and (G) it follows by an instance
of (88.8.h) that:

(H) Necessary(F)∨�∀x¬Fx

Independently, by Rule ≡S of Biconditional Simplification (91.1), we know that
definition (200.2) and the fact that F↓ jointly imply the following equivalence:

(I) Impossible(F) ≡ �∀x¬Fx

If we start with the commuted form of (I) and then consider (H), we may con-
clude, by (88.8.g), that:

Necessary(F)∨ Impossible(F)

Hence, NonContingent(F), by definition (200.3). (←) Reverse the reasoning. ./

(202.2) (→) Assume Contingent(F). Its definition (200.4) and the axiom F ↓
imply, by Rule ≡S of Biconditional Simplification (91.1):

(A) ¬(Necessary(F)∨ Impossible(F))

From (A) and the modally strict biconditional introduced by definition (200.1),
we may infer, by the Rule of Substitution for Defined Formulas (160.3), that:

(B) ¬(�∀xFx∨ Impossible(F))

Independently, by Rule ≡S of Biconditional Simplification (91.1), definition
(200.2) and the axiom F↓ imply the modally strict theorem:

(C) Impossible(F) ≡ �∀x¬Fx

So by the Rule of Substitution (160.2), it follows from (B) and (C) that:

¬(�∀xFx∨�∀x¬Fx)

By De Morgan’s Law (88.5.d), it follows that:

¬�∀xFx & ¬�∀x¬Fx

Using (158.11) on both conjuncts, it follows that:
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♦¬∀xFx & ♦¬∀x¬Fx

If we consider the form of the left conjunct and consider a modally-strict quan-
tifier-negation �-theorem (103.2), we may infer by the Rule of Substitution
(160.2) that:

♦∃x¬Fx & ♦¬∀x¬Fx

If we consider the form of the right conjunct and consider the modally strict
biconditional introduced by the definition of ∃ (18.4), it follows by the Rule of
Substitution for Defined Formulas (160.3) that:

♦∃x¬Fx & ♦∃xFx

Finally, by the commutativity of & (88.2.a), it follows that:

♦∃xFx & ♦∃x¬Fx

(←) Reverse the reasoning. ./

(202.3) (→) Assume Contingent(F). Its definition (200.4) and the axiom F ↓
imply, by Rule ≡S (91.1):

¬(Necessary(F)∨ Impossible(F))

From this and the modally strict biconditional introduced by definition (200.1),
we may infer, by the Rule of Substitution for Defined Formulas (160.3), that:

¬(�∀xFx∨ Impossible(F))

And by now familiar reasoning, definition (200.2) and the axiom F↓ indepen-
dently imply, by the special case of Rule ≡S, the modally strict biconditional:

Impossible(F) ≡ �∀x¬Fx

So, by the Rule of Substitution (160.2), the last two displayed results imply:

(ϑ) ¬(�∀xFx∨�∀x¬Fx)

Now we know by (199.2) and (199.1), respectively, that the following are �-
theorems: ¬Fx ≡ Fx and Fx ≡ ¬Fx. Applying the commutativity of ≡ to both,
we therefore have, respectively, the following �-theorems:

(a) Fx ≡ ¬Fx

(b) ¬Fx ≡ Fx

Then (ϑ), (a) and (b) imply, by two applications of the Rule of Substitution
(160.2) that:
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(ξ) ¬(�∀x¬Fx∨�∀xFx)

Now every instance of the commutativity of ∨ is a modally strict theorem. So
from the relevant instance of the commutativity of ∨ and the Rule of Substitu-
tion (160.2) it follows from (ξ) that:

¬(�∀xFx∨�∀x¬Fx)

From this and the modally strict biconditional introduced by definition (200.1),
we may infer, by the Rule of Substitution for Defined Formulas (160.3):

(ζ) ¬(Necessary(F)∨�∀x¬Fx)

Independently, definition (200.2) and the fact that F↓ imply, by the special case
of Rule ≡S:

Impossible(F) ≡ �∀x¬Fx

So by the Rule of Substitution (160.2), (ζ) and the commuted form of this last
result imply:

¬(Necessary(F)∨ Impossible(F))

Hence, by conjoining the fact that F↓with this last fact, it follows by definition
(200.4) that Contingent(F). (←) Reverse the reasoning. ./

(203.1) By definition (200.1) and the Rule of Alphabetic Variants (114), it suf-
fices to show �∀xLx. From the fact that [λx E!x→ E!x]↓ (39.2), it follows from
β-Conversion (48.2) that:

[λx E!x→ E!x]x ≡ E!x→ E!x

Since the right side is a tautology, it follows that [λx E!x → E!x]x, i.e., Lx, by
definition of L and Rule =df I of Definiendum Introduction (120.2.b). Since this
is a theorem, we may apply GEN and conclude ∀xLx. Since this is a �-theorem,
it follows by RN that �∀xLx. ./

(203.2) From (199.2) and the commutativity of ≡, we know Fx ≡ ¬Fx. By
two applications of GEN, it then follows that ∀F∀x(Fx ≡ ¬Fx). Since L clearly
exists, given its definition, it follows that:

(a) ∀x(Lx ≡ ¬Lx)

Independently, from theorem (203.1), definition (200.1), and Rule ≡df E, it fol-
lows that �∀xLx. So by the T schema (45.2):

(b) ∀xLx

By (99.3), it follows from (a) and (b) that:
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∀x¬Lx

Since this is a �-theorem, it follows by RN that �∀x¬Lx. Since we also know
L↓, it follows from definition (200.2) and Rule ≡df I that Impossible(L). ./

(203.3) (Exercise)

(203.4) This follows either by theorems (203.3) and (202.1), or by theorem
(203.2) and definition (200.3). ./

(203.5) (Exercise) [Use (203.3), (203.4), and facts about the distinctness of
properties that are negations of one another, or use (195.1).]

(204.1) We may reason as follows:446

♦∃x(Fx&♦¬Fx)≡ ∃x♦(Fx&♦¬Fx) by (167.3) and (167.4)
≡ ∃x(♦Fx&♦¬Fx) (165.11) and (159.3)
≡ ∃x(♦¬Fx&♦Fx) by (88.2.a) and (159.3)
≡ ∃x♦(¬Fx&♦Fx) commute (165.11), and (159.3)
≡ ♦∃x(¬Fx&♦Fx) by (167.4) and (167.3) ./

(204.2) Apply (199.1), (199.2) and the Rule of Substitution (160.2) to the right-
hand condition of (204.1). ./

(205.1) We want to show ♦∃x(E!x & ♦¬E!x). By CBF♦ (167.4), it suffices to
show ∃x♦(E!x&♦¬E!x). By the commuted version of an appropriate instance of
(165.11) and a Rule of Substitution (160.2), it suffices to show ∃x(♦E!x&♦¬E!x).
We prove this by first noting that by BF♦ (167.3), axiom (45.4) implies ∃x♦(E!x&
¬AE!x). Suppose a is such an object, so that we know ♦(E!a & ¬AE!a). By
(162.3), this implies:

(ϑ) ♦E!a&♦¬AE!a

Now since ¬AE!a ≡ A¬E!a is an instance of a modally strict axiom (44.1), we
may infer from (ϑ) by the Rule of Substitution (160.2) that:

(ξ) ♦E!a&♦A¬E!a

But as an instance of the commuted form of (164.4), we know ♦A¬E!a ≡ A¬E!a.
From this last fact and (ξ) it follows by (88.4.f) that:

(ζ) ♦E!a&A¬E!a

But the right conjunct of (ζ) implies ♦¬E!a, by (164.3). So if we conjoin the left
conjunct of (ζ) with this last fact, we have established ♦E!a& ♦¬E!a. Hence,
∃x(♦E!x&♦¬E!x), which is what it sufficed to show. ./

446The following proof by Uri Nodelman simplified my original.
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(205.2) Apply GEN to theorem (204.1), instantiate the result to E! (which
clearly exists), and then apply biconditional reasoning to the resulting instance
and (205.1). ./

(205.3) By (205.1) and (168.4). ./

(205.4) By (205.2) and (168.4). ./

(205.5) By (202.2), (205.3) and (205.4). ./

(205.6) From (205.5) and (202.3). ./

(205.7) (Exercise)

(206.1) Assume NonContingent(F). Then by definition (200.3):

(ϑ) Necessary(F)∨ Impossible(F)

Now assume, for reductio, that ∃G(Contingent(G)&G=F). Let P be an arbitrary
such property, so that we have Contingent(P )&P =F. Given the second conjunct
and Rule =E, the first conjunct implies that Contingent(F). Now, independently,
from definition (200.4) and the axiom F↓, it follows by Rule ≡S (91.1) that:

Contingent(F) ≡ ¬(Necessary(F)∨ Impossible(F))

Hence, ¬(Necessary(F)∨ Impossible(F)), which contradicts (ϑ). ./

(206.2) (Exercise) [Hint: Use reasoning similar to that of (206.1).]

(206.3) (Exercise)

(207.1) (→) Assume NonContingent(p). Then by the 0-ary case of definition
(200.3) and Rule ≡df E, we know Necessary(p)∨ Impossible(p). From definition
(200.1) and this last fact, it follows by (88.8.h) and biconditional reasoning that
�p ∨ Impossible(p). Now, independently, definition (200.2) and the axiom p↓
imply, by Rule ≡S (91.1), the biconditional Impossible(p) ≡ �¬p. So by (88.8.g)
and biconditional reasoning, it follows that:

(ϑ) �p∨�¬p

Independently, if we commute �-theorems (199.4) and (199.3), respectively,
then we know that p ≡ ¬p and ¬p ≡ p are �-theorems. So by Rule RE (157.3),
respectively:

(a) �p ≡ �¬p

(b) �¬p ≡ �p
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From (a) and (ϑ), it follows by (88.8.h) that �¬p∨�¬p, and from (b) and this
last result, it follows by (88.8.g) that �¬p∨�p. By the commutativity of ∨, this
implies: �p∨�¬p. From definition (200.1) and this last fact, we may infer by
(88.8.h) that Necessary(p)∨�¬p. Independently, by applying the special case
of Rule ≡S to definition (200.2) and the axiom p↓, we know the following is a
modally strict theorem: Impossible(p) ≡ �¬p. Hence, by now familiar reason-
ing, Necessary(p)∨Impossible(p). So NonContingent(p), by definition (200.3) and
Rule ≡df I. (←) Reverse the reasoning. ./

(207.2) Assume Contingent(p). Definition (200.4) and the axiom p↓ then imply,
by Rule ≡S (91.1), ¬(Necessary(p)∨ Impossible(p)). From this and (the modally
strict biconditional introduced by) definition (200.1), it follows by the Rule of
Substitution for Defined Formulas (160.3) that ¬(�p∨Impossible(p)). And since
we know, by now familiar reasoning, that Impossible(p) ≡ �¬p is a modally
strict theorem, it follows by the Rule of Substitution (160.2) that:

¬(�p∨�¬p)

By De Morgan’s Law (88.5.d), it follows that:

¬�p & ¬�¬p

The modally strict theorem (158.11) and this last fact imply, by (88.4.e), that
♦¬p&¬�¬p. And from the definition of ♦ and this last fact, it follows by now
familiar reasoning from (88.4.f) that:

♦¬p & ♦p

Finally, by the commutativity of & (88.2.a), it follows that:

♦p & ♦¬p

(←) Reverse the reasoning. ./

(207.3) (→) Assume Contingent(p). Then its definition (200.4) and the ax-
iom p↓ imply, by the special case of Rule ≡S, ¬(Necessary(p) ∨ Impossible(p)).
This and definition (200.1) imply, by the Rule of Substitution (160.2), ¬(�p ∨
Impossible(p)). Since we know, by now familiar reasoning, that Impossible(p) ≡
�¬p is a modally strict theorem, it follows by the Rule of Substitution (160.2)
that:

(ϑ) ¬(�p∨�¬p)

Independently, if we commute (199.4) and (199.3), we have as �-theorems:

(a) p ≡ ¬p

(b) ¬p ≡ p



1108

From (ϑ) and (a), it follows by the Rule of Substitution (160.2) that ¬(�¬p ∨
�¬p), and from this result and (b), it follows by the same rule that:

¬(�¬p∨�p)

So we may use an appropriate instance of the commutativity of ∨ (which is a
�-theorem) and the Rule of Substitution (160.2) to transform the last formula
into:

¬(�p∨�¬p)

From this and definition (200.1), we obtain ¬(Necessary(p)∨�¬p), by the Rule
of Substitution (160.2). Independently, Impossible(p) ≡ �¬p is a modally strict
theorem, by now familiar reasoning. By commuting this last result and com-
bining it with the previous result, it follows by the Rule of Substitution (160.2)
that:

¬(Necessary(p)∨ Impossible(p))

Conjoining p↓with this last result yields Contingent(p), by (200.3). (←) Reverse
the reasoning. ./

(208.1) We’re given the definition p0 =df ∀x(E!x→ E!x). Now from E!x→ E!x,
GEN and RN, we have �∀x(E!x → E!x). By definition of p0 and Rule =df I, it
follows that �p0. Hence by definition (200.1) and Rule ≡df I, it follows that
Necessary(p0). ./

(208.2) By the reasoning in (208.1), we established the following as a theorem:

(a) �p0

Note that by the commutativity of ≡, it follows from theorem (199.4) that
p ≡ ¬p, and hence by GEN that ∀p(p ≡ ¬p). Since p0 clearly exists, we can
instantiate this last claim to p0 to obtain p0 ≡ ¬p0. From (a) and this last �-
theorem, the Rule of Substitution (160.2) yields �¬p0. We can conjoin the fact
(exercise) that p0↓with this last result and apply definition (200.2) to conclude
Impossible(p0). ./

(208.3) – (208.5) (Exercises)

(209)? Suppose, for reductio, that ∃x(E!x&¬AE!x). Let a be such an object, so
that we know:

(ϑ) E!a&¬AE!a

Then the second conjunct of (ϑ) implies A¬E!a, by the right-to-left direction of
axiom (44.1). Then by axiom (43)?, it follows that ¬E!a, which contradicts the
first conjunct of (ϑ).
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(210.1) Suppose, for reductio, that A∃x(E!x & ¬AE!x). Then it follows by
(139.10) that ∃xA(E!x&¬AE!x). Suppose a is such an object, so that we know
A(E!a&¬AE!a). But this implies a contradiction, by the following reasoning:

A(E!a&¬AE!a) → AE!a&A¬AE!a by (139.2)
→ AE!a&¬AAE!a commute (44.1), (88.4.f)
→ AE!a&¬AE!a commute (44.4), (160.2) ./

(210.2) By (210.1), we know ¬A∃x(E!x&¬AE!x). Hence, A¬∃x(E!x&¬AE!x),
by (44.1). But then by (164.3), ♦¬∃x(E!x&¬AE!x). ./

(210.3) Axiom (45.4) asserts ♦∃x(E!x&¬AE!x). By BF♦ (167.3), it follows that
∃x♦(E!x&¬AE!x). Suppose a is such an object, so that we know ♦(E!a&¬AE!a).
Then by (162.3), it follows that both:

(ϑ) ♦E!a

(ξ) ♦¬AE!a

Now (ξ) implies¬�AE!a, by (158.11). But as an instance of the theorem (139.6),
we know AE!a ≡ �AE!a. Hence, by biconditional syllogism, ¬AE!a. Conjoining
(ϑ) with this last result yields ♦E!a&¬AE!a. So ∃x(♦E!x&¬AE!x). ./

(211.1) – (211.4) (Exercises)

(212.1) Assume NonContingent(p). By the 0-ary case of definition (200.3),
it follows that Necessary(p) ∨ Impossible(p). Now assume, for reductio, that
∃q(Contingent(q) & q = p). Let q1 be an arbitrary such proposition, so that
Contingent(q1) & q1 = p. Then Contingent(p). But, independently, from defi-
nition (200.4) and the fact that p↓, it follows by Rule ≡S that Contingent(p) is
equivalent to ¬(Necessary(p)∨ Impossible(p)). Contradiction. ./.

(212.2) – (212.4) (Exercise)

(214.1) – (214.2) (Exercises)

(214.3) Assume ContingentlyTrue(p). Then by definition (213.1) and Rule ≡df E,
we know:

(ϑ) p&♦¬p

By (213.2), we have to show: ¬p & ♦p. By (199.4), the first conjunct of (ϑ)
implies¬p. So it remains to show ♦p. Now if we commute (199.3), we obtain, as
a modally strict theorem, ¬p ≡ p. Hence it follows by the Rule of Substitution
(160.2) from the second conjunct of (ϑ) that ♦p. ./

(214.4) Assume ContingentlyFalse(p). Then by definition (213.2), we know:

(ϑ) ¬p&♦p
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By (213.1), we have to show: p & ♦¬p. By (199.3), the first conjunct of (ϑ)
implies p. So it remains to show ♦¬p. Now if we commute (199.4), we obtain
a modally strict proof of p ≡ ¬p. Hence it follows by the Rule of Substitution
(160.2) from the second conjunct of (ϑ) that ♦¬p. ./

(214.5) Assume ContingentlyTrue(p) and Necessary(q). Assume for reductio
that p = q. Then Necessary(p), i.e., �p, i.e., ¬♦¬p. But since p is contingently
true, it follows by definition (213.1) that ♦¬p. Contradiction. ./

(214.6) Assume ContingentlyFalse(p) and Impossible(q). Assume for reductio
that p=q. Then Impossible(p), and so it follows from definition (200.4) a fortiori
that �¬p, i.e., ¬♦p. But since p is contingently false, it follows by definition
(213.2) that ♦p. Contradiction. ./

(215.1)? By (209)? and the definition of q0 as ∃x(E!x&¬AE!x), we know ¬q0.
By axiom (45.4) and the definition of q0, we know ♦q0. Hence, by &I and defi-
nition (213.2), it follows that ContingentlyFalse(q0). ./

(215.2)? (Exercise)

(217.1) Since we’ve defined q0 =df ∃x(E!x & ¬AE!x), axiom (45.4) implies, by
Rule =df I:

(ϑ) ♦q0

and theorem (210.2) implies:

(ξ) ♦¬q0

From these two facts, we can reason by cases from the tautology q0∨¬q0 to the
conclusion ∃pContingentlyTrue(p).

Assume q0. From this and (ξ), we have q0 & ♦¬q0. So, ContingentlyTrue(q0), by
definition (213.1). Hence ∃pContingentlyTrue(p).

Assume ¬q0. From this and (ϑ), we have ¬q0 & ♦q0. So, ContingentlyFalse(q0),
by definition (213.2). But then, since q0↓, we may infer ContingentlyTrue(q0),
by (214.4). Since q0↓, we may conclude ∃pContingentlyTrue(p). ./

(217.2) If we let q0 be ∃x(E!x&¬AE!x), axiom (45.4) becomes:

(ϑ) ♦q0

and theorem (210.2) becomes:

(ξ) ♦¬q0

From these two facts, we can reason by cases from the tautology q0∨¬q0 to the
conclusion ∃pContingentlyFalse(p).
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Assume q0. From this and (ξ), we have q0 & ♦¬q0. So, ContingentlyTrue(q0), by
definition (213.1). But then, since q0↓, we may infer ContingentlyFalse(q0), by
(214.3). Since q0↓, we may conclude ∃pContingentlyFalse(p).

Assume ¬q0. From this and (ϑ), we have ¬q0 & ♦q0. So, ContingentlyFalse(q0),
by definition (213.2). Hence, ∃pContingentlyFalse(p). ./

(217.2) [Simpler Proof] By (217.1), we know ∃pContingentlyTrue(p). Let r
be such a proposition, so that we know ContingentlyTrue(r). (See the discus-
sion in Remark 218 as to why this assumption doesn’t undermine the modal
strictness of the reasoning.) Then since r exists by hypothesis, we may infer
ContingentlyFalse(r), by (214.3). But r↓, and so, ∃pContingentlyFalse(p). ./

(219.1) In the following, let:

Qp =df [λz p]

Clearly, Qp↓, for every p. Before we begin our proof, note that the following,
modally strict lemma governs Qp:

(ϑ) ∀p∀x�(Qpx ≡ p)

Proof. Since [λz p]↓, it follows by (183.2) that ∀x([λz p]x ≡ p) is a modally
strict theorem. So by RN,�∀x([λzp]x ≡ p) and by BF (167.1), ∀x�([λzp]x ≡
p). And by GEN, ∀p∀x�([λz p]x ≡ p) is a theorem. Then by definition of
Qp, ∀p∀x�(Qpx ≡ p).

Now to prove our theorem, by (217.1), we know that there are contingently
true propositions. Let p1 be such a proposition, so that we know p1 & ♦¬p1.447

Now consider Qp1
, which we know exists. We now argue as follows:

(A) Show: p1 `Qp1
y. By (63.10), it suffices to show p1→Qp1

y. So assume p1.
Then by lemma (ϑ), ∀x�(Qp1

x ≡ p1). Hence �(Qp1
y ≡ p1), and by the T

schema, Qp1
y ≡ p1. So Qp1

y.

(B) Show: ♦¬p1 ` ♦¬Qp1
y. By (63.10), it suffices to show ♦¬p1→ ♦¬Qp1

y. By
instantiating p1 and y into lemma (ϑ), we know �(Qp1

y ≡ p1). A fortiori,
�(Qp1

y→ p1). This implies �(¬p1→¬Qp1
). Hence by K♦, ♦¬p1→ ♦¬Qp1

.

(C) Infer from (A) and (B):

447Again, we emphasize that although this assumption is not a necessary truth, it won’t under-
mine the modal strictness of the reasoning, since the assumption will be discharged by ∃E and so
the theorem will depend only on (217.1). See Remark (70) and the discussion in Remark (218).
More specifically, we will derive the present theorem from the assumption that p1 & ♦¬p1. But it
then follows by ∃E that our theorem is derivable from ∃p(p&♦¬p). Since latter is a modally strict
theorem, by (217.1) and (213.1), our theorem will be proved from no assumptions. We develop the
proof in detail below because it is important to see that it is modally strict, notwithstanding the
introduction of assumptions that aren’t necessary truths.
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p1 &♦¬p1 `Qy &♦¬Qy

by using the principle:

If ϕ ` ψ and χ ` θ, then ϕ&ψ ` χ&θ

(D) By ∃I, we independently know: Qy &♦¬Qy ` ∃F∃x(Fx&♦¬Fx)

(E) Hence from (C) and (D) it follows by (63.8) that:

p1 &♦¬p1 ` ∃F∃x(Fx&♦¬Fx)

(F) It follows by ∃E that:

∃p(p&♦¬p) ` ∃F∃x(Fx&♦¬Fx)

(G) But by by (217.1) and (213.1), ∃p(p&♦¬p) is a theorem, and so it follows
from (F) that ∃F∃x(Fx&♦¬Fx), by (63.8).

Since the reasoning in (A) – (G) is straightforward, it remains only to show the
principle used in (C):

If ϕ ` ψ and χ ` θ, then ϕ&ψ ` χ&θ

Proof. Assume ϕ ` ψ and χ ` θ. Then by the Deduction Theorem, it
follows, respectively, that ϕ→ ψ and χ→ θ. So by Double Composition
(88.8.d), (ϕ&χ)→ (ψ&θ). But then by (63.10), we have: ϕ&χ ` ψ&θ. ./

(219.2) (Exercise)

(221.1) In the following, let:

L =df [λx E!x→ E!x]

Qp =df [λz p]

Clearly, L exists, and Qp exists for every proposition p. Before starting the
proof proper, we first prove two modally strict lemmas:

(ϑ) ∀p(p→∀x(Lx ≡Qpx))

Proof. By GEN, we show p→∀x(Lx ≡Qpx). So assume p. By GEN, it then
suffices to show Lx ≡Qpx. Since L↓ and Qp↓, we independently know, by
Strengthened β-Conversion (181) and the definitions of L and Qp:

(ζ) Lx ≡ (E!x→ E!x)

(ω) Qpx ≡ p
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Hence, to show Lx ≡Qpx, it suffices to show (E!x→ E!x) ≡ p. But the left
side is a tautology (74) and the right side is true by assumption. So since
both sides of the biconditional are true, the biconditional is true.

(ξ) ∀p(♦¬p→ ♦¬∀x(Lx ≡Qpx))

Proof. By GEN, we show ♦¬p → ♦¬∀x(Lx ≡ Qpx). But we can infer this
by RM♦ (157.2) from a modally strict proof of ¬p→ ¬∀x(Lx ≡ Qpx). So
assume ¬p. For reductio, assume ∀x(Lx ≡ Qpx). Then, Lx ≡ Qpx. From
(ζ) and (ω) above (which were established independently) and this last
result it follows that:

(E!x→ E!x) ≡ p

But since ¬p by assumption, it follows that ¬(E!x→ E!x), which contra-
dicts the tautology E!x→ E!x (74).

Now to prove our theorem. By (217.1), we know that there are contingently
true propositions. Let p1 be such a proposition, so that we know p1 & ♦¬p1.448

We now show that L and Qp1
are the witnesses to the theorem we’re trying to

prove. The proof then, goes as follows:

(A) Show: p1 ` ∀x(Lx ≡ Qp1
x). By (63.10), it suffices to show p1 → ∀x(Lx ≡

Qp1
x). This, however, is an instance of lemma (ϑ).

(B) Show: ♦¬p1 ` ♦¬∀x(Lx ≡Qp1
x). But it suffices by (63.10) to show ♦¬p1→

♦¬∀x(Lx ≡Qp1
x). This, however, is an instance of lemma (ξ).

(C) It follows from (A) and (B) that:449

p1 &♦¬p1 ` ∀x(Lx ≡Qp1
x) &♦¬∀x(Lx ≡Qp1

x)

(D) But clearly, by ∃I, we know the following about the conclusion of the
derivation in (C):

∀x(Lx ≡Qp1
x) &♦¬∀x(Lx ≡Qp1

x) ` ∃F∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx))

(E) Hence, from (C) and (D) it follows by (63.8) that:

p1 &♦¬p1 ` ∃F∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx))

448See footnote 447.
449The principle used to go from (A) and (B) to (C) is:

If ϕ ` ψ and χ ` θ, then ϕ&ψ ` χ&θ

To see that this holds, assume ϕ ` ψ and χ ` θ. Then by the Deduction Theorem, it follows,
respectively, that ϕ → ψ and χ→ θ. So by Double Composition (88.8.d), (ϕ &χ)→ (ψ & θ). But
then by (63.10), we have: ϕ&χ ` ψ&θ.
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(F) It follows by ∃E that:

∃p(p&♦¬p) ` ∃F∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx))

(G) But by (217.1) and (213.1), ∃p(p & ♦¬p) is a theorem, and so it follows
from (F) that ` ∃F∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx)), by (63.8). ./

(221.2) In the following, let:

L =df [λx E!x→ E!x]

Qp =df [λz p]

Clearly, L exists, and Qp exists for every proposition p. Before starting the
proof proper, we first prove two modally strict lemmas:

(ϑ) ∀p(¬p→¬∀x(Lx ≡Qpx))

Proof. By GEN, we show: ¬p→¬∀x(Lx ≡Qpx). Assume ¬p. For reductio,
assume ∀x(Lx ≡ Qpx). But by the definition of L, we know ∀xLx. So it
follows that ∀xQpx. Hence, by definition of Qp, ∀x([λz p]x). But then
[λx p]x, by ∀E, and by β-Conversion, p. Contradiction.

(ξ) ∀p(♦p→ ♦∀x(Lx ≡Qpx))

Proof. By GEN, we show: ♦p→ ♦∀x(Lx ≡ Qpx). But we can infer this by
RM♦ (157.2) from a modally strict proof of p→∀x(Lx ≡Qpx). So assume
p. Then, by β-Conversion, [λzp]x. Hence, by definition of Qp, Qpx. Since
x doesn’t occur free in any assumption, ∀xQpx, by GEN. But we know
∀xLx, by definition and properties of L. Hence, ∀x(Lx ≡Qpx).

Now we prove our theorem. By (217.2), we know that there are contingently
false propositions. Let p1 be such a proposition, so that we know ¬p1 & ♦p1.
Now we are going to show that L and Qp1

are the witnesses to the theorem
we’re trying to prove. The proof, then, goes as follows:

(A) Show: ¬p1 ` ¬∀x(Lx ≡ Qp1
x). By (63.10), it suffices to show ¬p1 →

¬∀x(Lx ≡Qp1
x). This, however, is an instance of lemma (ϑ).

(B) Show: ♦p1 ` ♦∀x(Lx ≡ Qp1
x). But it suffices, by (63.10), to show ♦p1 `

♦∀x(Lx ≡Qp1
x). This, however, is an instance of lemma (ξ).

(C) Then it follows from (A) and (B), by the reasoning in footnote 449, that:

¬p1 &♦p1 ` ¬∀x(Lx ≡Qp1
x) &♦∀x(Lx ≡Qp1

x)

(D) But clearly, by ∃I, we also know the following about the conclusion of the
derivation in (C):
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¬∀x(Lx ≡Qp1
x) &♦∀x(Lx ≡Qp1

x) ` ∃F∃G(¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

(E) Hence, from (C) and (D) it follows by (63.8) that:

¬p1 &♦p1 ` ∃F∃G(¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

(F) It follows by ∃E that:

∃p(¬p&♦p) ` ∃F∃G(¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

(G) But by (217.1) and (213.1), ∃p(¬p & ♦p) is a theorem, and so it follows
from (F) that ` ∃F∃G(¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx)), by (63.8). ./

(221.3) In the following, let:

L =df [λx E!x→ E!x]

Qp =df [λz p]

Clearly, L exists, and Qp exists for every proposition p. Before starting the
proof proper, we first prove two modally strict lemmas:

(ϑ) ∀p(A¬p→ A¬∀x(Lx ≡Qpx))

Proof. In the proof of (221.2), we independently established, as lemma
(ϑ), that ∀p(¬p → ¬∀x(Lx ≡ Qpx)). Since this is a theorem, it follows
by the Rule of Actualization that A∀p(¬p → ¬∀x(Lx ≡ Qpx)). Hence by
axiom (44.3), ∀pA(¬p → ¬∀x(Lx ≡ Qpx)). But as an instance of axiom
(44.2), the following is a modally strict theorem:

A(¬p→¬∀x(Lx ≡Qpx)) ≡ (A¬p→ A¬∀x(Lx ≡Qpx))

So (ϑ) follows by a Rule of Substitution.

(ξ) ∀p(♦p→ ♦∀x(Lx ≡Qpx))

Proof. See the proof of (ξ) in (221.2).

Now we prove our theorem. Let q0 again be the proposition ∃x(E!x&¬AE!x).
Then it follows from (210.1) by axiom (44.1) that A¬q0. Independently, by
axiom (45.4), we know ♦q0. So both A¬q0 and ♦q0 are theorems.

Now consider Qq0
. We now show that L and Qq0

, are the witnesses to the
theorem we’re trying to prove. The proof, then, goes as follows:

(A) Show: A¬q0 ` A¬∀x(Lx ≡ Qq0
x). By (63.10), it suffices to show A¬q0 →

A¬∀x(Lx ≡Qq0
x). This, however, is an instance of lemma (ϑ).

(B) Show: ♦q0 ` ♦∀x(Lx ≡ Qq0
x). But it suffices, by (63.10), to show ♦q0 `

♦∀x(Lx ≡Qq0
x). This, however, is an instance of lemma (ξ).
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(C) Then it follows from (A) and (B), by reasoning analogous to (but not ex-
actly the same as) that in footnote 449, that:

A¬q0,♦q0 ` A¬∀x(Lx ≡Qq0
x) &♦∀x(Lx ≡Qq0

x)

(D) But clearly, by ∃I, we also know the following about the conclusion of the
derivation in (C):

A¬∀x(Lx ≡Qq0
x) &♦∀x(Lx ≡Qq0

x) ` ∃F∃G(A¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

(E) Hence, from (C) and (D) it follows by (63.8) that:

A¬q0,♦q0 ` ∃F∃G(A¬∀x(Fx ≡ Gx) &♦∀x(Fx ≡ Gx))

(F) Since we established (at the outset) that both A¬q0 and ♦q0 are theorems,
it follows that ` ∃F∃G(A¬∀x(Fx ≡ Gx) & ♦∀x(Fx ≡ Gx)), by a generaliza-
tion of (63.8) when Γ is empty.450 ./

(221.4) By GEN, it suffices to show:

(ϑ) ∃G(∀x(Fx ≡ Gx) &♦¬∀x(Fx ≡ Gx))

We first prove some facts before laying out the proof of (ϑ).451

Let q be any proposition you please and consider the following two proper-
ties, both of which exist, by (39.2):

Fq =df [λz Fz& q]

F′
q =df [λz (Fz& q)∨¬q]

Given these definitions, it follows that:

(A) q→∀x(Fx ≡ Fqx)

(B) q→∀x(Fx ≡ F′
qx)

(C) ♦¬q→ ♦¬∀x(Fqx ≡ F′
qx)

(D) �∀x(Fx ≡ Fqx)→ (♦¬∀x(Fqx ≡ F′
qx) ≡ ♦¬∀x(Fx ≡ F′

qx))

We leave (A) and (B) as exercises. To see that (C) holds, note that without too
much work, one can show:

¬q→¬∀x(Fqx ≡ F′
qx)

450The generalization in question, which we leave as an exercise, states: if ` ϕ1 and . . . and ` ϕn
and ϕ1, . . . ,ϕn ` ψ, then ` ψ.
451I’m indebted to Uri Nodelman for suggesting this proof strategy.
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Proof. Assume ¬q and, for reductio, ∀x(Fqx ≡ F′
qx), so that we know

Fqx ≡ F′
qx. From this last fact, it follows by definitions of Fq, F′

q and
β-Conversion that (Fx& q) ≡ ((Fx& q)∨¬q). But our assumption ¬q im-
plies (Fx& q)∨¬q. And from this and the biconditional just established,
it follows that (Fx and) q. Contradiction.

Since the fact we just established is modally strict, it follows by RM♦ that (C).
To see that (D) holds, assume �∀x(Fx ≡ Fqx), which by the commutativity of

the biconditional and easy quantified modal logic reasoning implies �∀x(Fqx ≡
Fx). Note independently by reasoning from the tautology (88.4.a), it is easy to
establish, as a modally strict theorem, that:

∀α(ϕ ≡ ψ)→ (∀α(ϕ ≡ χ) ≡ ∀α(ψ ≡ χ))

But the consequent of this conditional, i.e., ∀α(ϕ ≡ χ) ≡ ∀α(ψ ≡ χ) implies, by
modally strict means, ¬∀α(ϕ ≡ χ) ≡ ¬∀α(ψ ≡ χ). So by hypothetical syllogism,
the following is a modally strict theorem:

∀α(ϕ ≡ ψ)→ (¬∀α(ϕ ≡ χ) ≡ ¬∀α(ψ ≡ χ))

From this it follows by RM that:

�∀α(ϕ ≡ ψ)→ �(¬∀α(ϕ ≡ χ) ≡ ¬∀α(ψ ≡ χ))

As a particular instance of this, we have:

�∀x(Fqx ≡ Fx)→ �(¬∀x(Fqx ≡ F′
qx) ≡ ¬∀x(Fx ≡ F′

qx))

Since we’ve already established the antecedent, it follows that:

(ζ) �(¬∀x(Fqx ≡ F′
qx) ≡ ¬∀x(Fx ≡ F′

qx))

Now it is straightforward to derive from theorem (158.4) that:

�(ϕ ≡ ψ)→ (♦ϕ ≡ ♦ψ)

By the relevant instance of this last fact, it follows from (ζ) that:

♦¬∀x(Fqx ≡ F′
qx) ≡ ♦¬∀x(Fx ≡ F′

qx)

concluding our proof of (D). And with this proof of (D), we may conclude our
preliminaries by noting that one may universally generalize on the free vari-
able q in (A) – (D), by GEN.

Now to prove (ϑ). We know that there is a contingently true proposition
(217.1). Then let p1 be such a proposition, so that p1 and ♦¬p1. Now consider
Fp1

and F′
p1

. Either �∀x(Fx ≡ Fp1
x) or not. We show that there is a witness to

(ϑ) in both cases.

Case 1. �∀x(Fx ≡ Fp1
x). Note that it follows from the fact that p1, by (B), that

∀x(Fx ≡ F′
p1
x). So to show that F′

p1
is a witness to (ϑ), it remains only to show

♦¬∀x(Fx ≡ F′
p1
x). Now from the fact that ♦¬p1, it follows from (C) that:
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(ξ) ♦¬∀x(Fp1
x ≡ F′

p1
x)

But since we’re in Case 1, �∀x(Fx ≡ Fp1
x). This implies, by instantiating (D) to

p1, that:

(ζ)′ ♦¬∀x(Fp1
x ≡ F′

p1
x) ≡ ♦¬∀x(Fx ≡ F′

p1
x)

But (ξ) and (ζ)′ imply ♦¬∀x(Fx ≡ F′
p1
x).

Case 2. �∀x(Fx ≡ Fp1
x). Then, ♦¬∀x(Fx ≡ Fp1

x). Note that it follows from the
fact that p1, by (A), that ∀x(Fx ≡ Fp1

x). So Fp1
is a witness to (ϑ).452 ./

(221.5) – (221.6) (Exercises)

(222.1) By definition (24), we have to show ¬(O! = A!). For reductio, assume
O! = A!. Now, independently, by (115.3), we know O!x ≡ ♦E!x. Hence by Rule
=E, A!x ≡ ♦E!x. But we also independently know, by (115.4), that A!x ≡ ¬♦E!x.
Hence, ♦E!x ≡ ¬♦E!x. Contradiction. ./

(222.2) By (115.3), we know O!x ≡ ♦E!x. It follows from this, by the relevant
instance of (88.3.b) and biconditional syllogism that O!x ≡ ¬¬♦E!x. But since
the modally strict theorem (115.4) implies, by the commutativity of the bicon-
ditional, that ¬♦E!x ≡ A!x is a modally strict theorem, it follows by a Rule of
Substitution (160.2) that O!x ≡ ¬A!x. ./

(222.3) (Exercise)

(222.4) By (202.2) and &I, it suffices to establish ♦∃xO!x and ♦∃x¬O!x.

To prove ♦∃xO!x, we start with theorem (205.3), i.e., ♦∃xE!x. By BF♦ (167.3),
we obtain ∃x♦E!x. Note independently that [λx♦E!x] exists. So it follows from
β-Conversion and the commutativity of ≡ that ♦E!x ≡ [λx ♦E!x]x. Since this is
a �-theorem, it follows from ∃x♦E!x that ∃x([λx ♦E!x]x), by the Rule of Sub-
stitution (160.2). But by definition of O! (22.1), this is just ∃xO!x. So by T♦
(163.1), we have ♦∃xO!x.

To prove ♦∃x¬O!x, let ϕ be an formula in which x doesn’t occur free. Then
by comprehension axiom for abstract objects (53), we know ∃x(A!x&∀F(xF ≡
ϕ)). By (103.5), it follows that ∃xA!x. Now we know by the previous theorem
(222.3) that A!x ≡ ¬O!x. This is a �-theorem and so by the Rule of Substitution
(160.2), we may infer ∃x¬O!x from ∃xA!x. But by T♦, it then follows that
♦∃x¬O!x. ./

(222.5) – (222.7) (Exercises)

(222.8) From (222.4) and (202.3). ./

452I’m indebted to Daniel Kirchner and his implementation in Isabelle/HOL (2017 [2021] and
2022) for finding an invalid application of a Rule of Necessary Equivalence in an earlier version of
this proof. The rule was mistakenly applied under an assumption in the proof of fact (D).
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(222.9) From (222.5) and (202.3). ./

(224.1) (→) Assume WeaklyContingent(F). Then by definition (223) and Rule
≡df E, we know both Contingent(F) and ∀x(♦Fx → �Fx). From the former, it
follows that Contingent(F), by (202.3). So, to show WeaklyContingent(F), it re-
mains, by Rule ≡df I, to establish ∀x(♦Fx→ �Fx). By GEN, it suffices to show
♦Fx→ �Fx. So assume ♦Fx. Since it is a �-theorem (199.1) that Fx ≡ ¬Fx, it
follows by the Rule of Substitution (160.2) that ♦¬Fx, i.e., ¬�Fx. Now we want
to show �Fx, but for reductio, assume ¬�Fx, i.e., by definition of relation nega-
tion and Rule =df E, ¬�[λy¬Fy]x. Since [λy¬Fy]↓, Strengthened β-Conversion
implies the �-theorem [λy ¬Fy]x ≡ ¬Fx. So it follows by the Rule of Substitu-
tion (160.2) that ¬�¬Fx, i.e., ♦Fx, by definition of ♦. Since we already know
∀x(♦Fx→ �Fx), it follows that �Fx. Contradiction. (←) Exercise. ./

(224.2) (Exercise)

(225.1) By (222.4), we know Contingent(O!). By the left-to-right direction of
(180.5) and GEN, we know ∀x(♦O!x→ �O!x). Hence, by definition (223) and
Rule ≡df I, WeaklyContingent(O!). ./

(225.2) By (222.5), we know Contingent(A!). By the left-to-right direction of
(180.6) and GEN, we know: ∀x(♦A!x→ �A!x). Hence by definition (223) and
Rule≡df I, WeaklyContingent(A!). ./

(225.3) By (223), we have to show either ¬Contingent(E!) or ¬∀x(♦E!x→ �E!x).
But we already know, by (205.5), that Contingent(E!). So we have to show
¬∀x(♦E!x→ �E!x). For reductio, assume ∀x(♦E!x→ �E!x). Now axiom (45.4)
tells us ♦∃x(E!x&¬AE!x). So by BF♦ (167.3), ∃x♦(E!x&¬AE!x). Suppose a is
such an object, so that we know ♦(E!a&¬AE!a). Then by (162.3):

(ϑ) ♦E!a&♦¬AE!a)

The first conjunct of (ϑ) implies, by our reductio assumption, that �E!a. But
from this, it follows by (132) that AE!a, and by axiom (46.1), that �AE!a. But
the second conjunct of (ϑ) implies that ¬�AE!a (158.11). Contradiction. ./

(225.4) (Exercise) [Hint: Show that L fails the first conjunct in the definition of
weakly contingent. Appeal to previous theorems.] ./

(225.5) (Exercise)

(225.6) (Exercise)

(226) Consider the following entities and definitions:453

453The following extended proof sketch was contributed by Daniel Kirchner, personal communi-
cation, 29 May 2018, and reproduced with permission.
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• By (210.3), we know ∃x(♦E!x & ¬AE!x). So let o be an (arbitrary) such
object, so that we know ♦E!o&¬AE!o.

• Let a be an (arbitrary) abstract object.

• Let 4 be the necessary or not-actually-true-but-possible operator,454 defined
as follows:

4ϕ ≡df �ϕ ∨ (¬Aϕ&♦ϕ)

• Define q0 =df ∃x(E!x&¬AE!x), so that we know ♦q0 by axiom (45.5), ¬Aq0

by theorem (210.1), and ¬�q0 by (210.2) and modal negation.

• Define L =df [λx E!x→ E!x].

Now consider Figure 1 (see below). In this figure, each cell represents a for-

AΠo 4Πo AΠa 4Πa entries as binary

L − − − − 0
[λy A!y & q0] − − − + 1
[λy A!y & q0] − − + − 2

A! − − + + 3
E! − + − − 4

[λy q0] − + − + 5
[λy E!y ∨ (A!y & q0)] − + + − 6

[λy A!y ∨ E!y] − + + + 7
[λy O!y &E!y] + − − − 8

[λy E!y & (O!y ∨ q0)] + − − + 9
[λy q0] + − + − 10
E! + − + + 11
O! + + − − 12

[λy O!y ∨ q0] + + − + 13
[λy O!y ∨ q0] + + + − 14

L + + + + 15

Figure 1: Assign + if Provable and − if Negation is Provable

mula, namely, the result of taking the expression labeling a cell’s row as the
value of the metavariable Π labeling a cell’s column. We place ‘+’ in a cell

454Since we know by (217.1) and (217.2) that there are contingently true and contingently false
propositions, then we intuitively know (in terms of semantically primitive possible worlds) that
there is a non-actual possible world distinct from the actual world. (This will be proved within our
system in Chapter 12.) So, given the following definition, 4ϕ holds if and only if either ϕ is true
at every possible world or ϕ true in some non-actual world but not at the actual world.
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to indicate that the formula represented is provable, and ‘−’ to indicate that
the negation of the formula is provable. To see that the rows are pairwise dis-
tinct, note that the entries for a given row can be interpreted as the 4-bit binary
representation (reading − as 0 and + as 1) of a number between 0 to 15.

Note the following two facts:

• as a general truth about object theory, any two formulas ϕ and ψ are
equivalent if one results from the other by the substitution of identicals,
and

• since no two rows in the table are the same, all of the properties are pair-
wise distinct; if two properties F and G in the left column were such that
F =G, then substituting G for F would result in an equivalent formula
and so the rows for F and G in the table would have to be the same.

Now, by straightforward arguments, one can prove that each cell in the table
is correctly labeled with + or −, if given the following facts about particular
properties and propositions (and the dual facts about their negations):

• ♦q0, ¬Aq0, ¬�q0, ♦¬q0, Aq0, ♦q0

• �∀x Lx, �∀x¬Lx

• O!o, �O!o, �¬A!o, 4E!o

• �A!a, �¬O!a, �¬E!a

• ∀x(4[λy q0]x)

• ∀x(¬A[λy q0]x)

and the general principles:

• �ϕ→ Aϕ (132)

• �ϕ→4ϕ

It is then straightforward to show that the cells in the rows of A!, E!, O!, L and
[λy q0] are correctly labeled, i.e., to produce the relevant proofs. The label for
each cell in the remaining rows is just a consequence of the labels for the cells
in the first five rows (by applying combinatory methods).

It may make it easier to see that the cells are correctly labeled by regrouping
the properties, so that it becomes clearer that the cells in the final 11 rows are
negations and combinations of (negations of) the cells in the first 5 rows. We’ve
done this in Figure 2 (below), though the regrouping in this figure may make
it more difficult to see that all of the properties are pairwise distinct, since the
rows are no longer systematically ordered by their entries. ./
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AΠo 4Πo AΠa 4Πa entries as binary

L + + + + 15
A! − − + + 3
O! + + − − 12
E! − + − − 4

[λy q0] + − + − 10

L − − − − 0
E! + − + + 11

[λy q0] − + − + 5

[λy A!y ∨ E!y] − + + + 7
[λy O!y &E!y] + − − − 8

[λy O!y ∨ q0] + + + − 14
[λy O!y ∨ q0] + + − + 13
[λy A!y & q0] − − − + 1
[λy A!y & q0] − − + − 2

[λy E!y & (O!y ∨ q0)] + − − + 9
[λy E!y ∨ (A!y & q0)] − + + − 6

Figure 2: Proof of Pairwise Distinctness

(227.1) In the first part of the proof of (222.4), we proved ∃xO!x along the way,
by modally strict means. So our theorem follows by RN. ./

(227.2) In the second part of the proof of (222.4), we proved ∃xA!x along the
way, by modally strict means. So our theorem follows by RN. ./

(227.3) From the modally strict theorem (222.3), i.e., A!x ≡ ¬O!x, and the
previous theorem (227.2), it follows, by the Rule of Substitution (160.2), that
�∃x¬O!x. Hence from this and the modally strict theorem (103.2), i.e., ∃x¬ϕ ≡
¬∀xϕ, it follows that �¬∀xO!x, also by the Rule of Substitution (160.2). ./

(227.4) From modally strict theorem (222.2), i.e., thatO!x ≡ ¬A!x, and theorem
(227.1), it follows, by the Rule of Substitution (160.2), that �∃x¬A!x. From this
and the modally strict theorem (103.2), it follows by the Rule of Substitution
(160.2) that �¬∀xA!x. ./

(227.5) In the second part of the proof of (222.4), we established ∃xA!x as a
modally strict theorem. By definition of A!, this implies ∃x[λx ¬♦E!x]x. Sup-
pose a is such an object, so that we know [λx¬♦E!x]a. Then ¬♦E!a, by Rule

−→
β C

(184.1.a). By (162.1), �¬E!a. Hence ¬E!a, by the T schema. Hence, by ∃I and
∃E, ∃x¬E!x. By (103.2), the implies ¬∀xE!x. Since this last result constitutes a
modally strict theorem, it follows that �¬∀xE!x. ./



Proofs of Theorems and Metarules 1123

(228) Assume, for reductio, that ∃x(O!x &A!x). Suppose b is such an object,
so that we know both O!b and A!b. From the former, it follows that ¬A!b, by
(222.2). Contradiction. ./

(229) If we let:

ϕ = O!x&O!y &�∀F(Fx ≡ Fy)

ψ = O!x&O!y & x=y

then the following is an instance of axiom (49):

[λxy O!x&O!y &�∀F(Fx ≡ Fy)]↓ &
�∀x∀y(O!x&O!y &�∀F(Fx ≡ Fy) ≡ O!x&O!y & x=y) →

[λxy O!x&O!y & x=y]↓

Since we want to show that the consequent of this axiom is a theorem, it suf-
fices to establish the antecedent. But the first conjunct of the antecedent is
axiomatic, since a core λ-expression is involved, by (39.2). So it remains only
to establish the second conjunct of the antecedent. And by GEN and RN, it
suffices to show:

O!x&O!y &�∀F(Fx ≡ Fy) ≡ O!x&O!y & x=y

(→) Assume O!x&O!y &�∀F(Fx ≡ Fy). Then it suffices to show x= y. But by
∨I, our assumption implies:

(O!x&O!y &�∀F(Fx ≡ Fy))∨ (A!x&A!y &�∀F(xF ≡ yF))

Hence, x=y, by definition (23.1).

(←) Assume O!x &O!y & x = y. Then it suffices to show �∀F(Fx ≡ Fy). Note
independently that �∀F(Fx ≡ Fx) is an easy modally strict theorem. From this
and the 3rd conjunct of our assumption, it follows that �∀F(Fx ≡ Fy), by Rule
=E. ./

(233.1) – (233.2) (Exercises)

(233.3) We established in proof of (229) that:

(O!x&O!y &�∀F(Fx ≡ Fy)) ≡ (O!x&O!y & x=y)

and we established in (233.1) that:

x =E y ≡ (O!x&O!y & x=y)

Then our theorem follows by simple biconditional reasoning from these two
claims. ./

(234.1) (→) Assume x=E y. Then, by theorem (233.1), we know the following:
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(ϑ) O!x&O!y & x=y

By (180.1), the first two conjuncts of (ϑ) imply, respectively, �O!x and �O!y.
The third conjunct of (ϑ) implies �x=y, by (125.1). Assembling what we have
established:

�O!x&�O!y &�x=y

We now leave it as an exercise to show that we can extend theorem (158.3) to
establish that �ϕ&�ψ&�χ implies �(ϕ&ψ&χ). Hence it follows that:

�(O!x&O!y & x=y)

But, independently, it follows from (233.1) by Rule RE that:

�x=E y ≡ �(O!x&O!y & x=y)

Hence, our last two results imply �x=E y, by (89.3.b). (←) This direction is an
instance of the T schema. ./

(234.2) (→) From (234.1), it follows a fortiori that x=E y → �x=E y. Since this
is a �-theorem, it follows by (166.2) that ♦x=E y→ x=E y. (←) This direction is
an instance of the T♦ schema. ./

(234.3) (Exercise)

(236) Observe that [λxy ¬(=E xy)]↓ is a core λ-expression, notwithstanding
the fact that =E is not a primitive constant; for every λ-expression of the form
[λxy ¬Πxy], where Π is any binary relation term in which x and y don’t occur
free, is a core λ-expression, by definition (9.2). So as an instance of axiom
(39.2), we know:

(ϑ) [λxy ¬(=E xy)]↓

Then we may reason as follows:

x ,E y ≡ ,E xy by convention (235.2)
≡ =Exy by convention (235.1)
≡ [λxy ¬(=E xy)]xy by Df (196), Rules =df E and =df I
≡ ¬(=E xy) by (ϑ) and β-Conversion (48.2)
≡ ¬(x =E y) by convention (231) ./

(237.1) (→) The left-to-right direction of (234.1) is modally strict and so by RN,
�(x=E y → �x=E y). So by theorem (171.1) �(¬x=E y → �¬x=E y), and so by
the T schema, ¬x=E y → �¬x=E y). Then by (236) and a Rule of Substitution,
x,E y→ �x,E y). (→) By the T schema. ./

(237.1) [Alternative Proof:] It is a theorem of modal negation (162.1) that
�¬x =E y ≡ ¬♦x =E y. Independently, we may negate both sides of (234.2) to
conclude ¬♦x=E y ≡ ¬x=E y. So by biconditional syllogism:
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�¬x=E y ≡ ¬x=E y

From this and the �-theorem derivable by commuting theorem (236), namely
¬x =E y ≡ x ,E y, it follows by the Rule of Substitution (160.2) that �x ,E y ≡
x,E y. Hence, x,E y ≡ �x,E y. ./

(237.2) (→) It follows a fortiori from (237.1) that x,E y→ �x,E y. Since this is
a �-theorem, it follows by (166.2) that ♦x,E y→ x,E y. (←) This is an instance
of the T♦ schema. ./

(237.3) (Exercise)

(238.1) By the left-to-right direction of (234.1), it is a modally strict theorem
that x=E y → �x=E y. So by Rule RN, �(x=E y → �x=E y). Hence, by (174.2),
Ax=E y ≡ x=E y. So x=E y ≡ Ax=E y. ./

(238.2) We may reason as follows:

x,E y ≡ ¬(x=E y) by (236)
≡ ¬Ax=E y by (238.1) and (88.4.b)
≡ A¬x=E y by (44.1)
≡ Ax,E y commute (236) and Rule (159.3) ./

(239.1) Assume O!x. So by (85.6), it follows that O!x &O!x. Independently,
by (117.1), we know x = x. So we have established: O!x &O!x & x = y. So by
theorem (233.1), it follows that x=E x. ./

(239.2) Assume x=E y. Then, by (233.1) and &E, it follows a fortiori that O!x.
Hence we know x=E x, by (239.1). But it also follows from our assumption, by
(233.2), that x=y. From these last two results, we may infer y=E x, by Rule =E.
./

(239.3) Let ϕ be y =E z and let ϕ′ be x=E z. Then, the following is an instance
of the axiom for the substitution of identicals (41):

(ξ) y=E x→ (y=E z→ x=E z)

But by (239.2), we know x =E y → y =E x. From this and (ξ) it follows by
hypothetical syllogism (76.3) that:

x=E y→ (y=E z→ x=E z)

So by Importation (88.7.b), it follows that:

x=E y & y=E z→ x=E z ./

(240.1) Assume O!x∨O!y. We reason by cases from the disjuncts.

Case 1. O!x. Our proof strategy is to show:
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(ϑ) O!x ` �O!x

(ξ) �O!x ` �(x=y ≡ x=E y)

For these two facts establish that �(x = y ≡ x =E y) is derivable from O!x, by
(63.8).

Now (ϑ) follows from (180.1), by (63.10). To show (ξ), it suffices, by Rule
RN, to show that there is a modally strict derivation of x=y ≡ x=E y from O!x,
i.e., to show O!x `� x = y ≡ x =E y. So, by (63.10), it suffices to show. O!x →
(x=y ≡ x=E y). O!x is already an assumption of the present case. (→) Assume
x = y. From O!x and (239.1), we know that x=E x. Hence, by substitution of
identicals, x=E y. (←) Assume x=E y. Then by (233.2), x=y.

Case 2. By analogous reasoning. ./

(240.2) Assume O!y. Note independently that our conclusion is the conse-
quent of the following instance of axiom (49):

([λx x=E y]↓&�∀x(x=E y ≡ x=y))→ [λx x=y]↓

So it suffices to show:

(ϑ) [λx x=E y]↓

(ξ) �∀x(x=E y ≡ x=y)

But (ϑ) is axiomatic (39.2), since [λxx=E y] is a core λ-expression. To show (ξ),
note that our assumption O!y implies O!x∨O!y, and so it follows from (240.1)
that �(x= y ≡ x=E y). Since it is a modally strict theorem that biconditionals
commute, it follows by a Rule of Substitution that �(x =E y ≡ x = y). Since x
isn’t free in our assumption, it follows by GEN that ∀x�(x=E y ≡ x= y). So by
the Barcan Formula (167.1), it follows that �∀x(x=y ≡ x=E y). ./

(241) Assume ∀F(Fx ≡ Fy). Now consider the λ-expression [λx�∀F(Fx ≡ Fy)].
Since this is a core λ-expression, (39.2) asserts that it is significant. Moreover,
[λx �∀F(Fx ≡ Fy)] is substitutable for F in the matrix Fx ≡ Fy of our assump-
tion – no variable gets captured if we substitute [λx�∀F(Fx ≡ Fy)] for F in this
biconditional. Hence, by ∀E:

[λx�∀F(Fx ≡ Fy)]x ≡ [λx�∀F(Fx ≡ Fy)]y

But we also know that β-Conversion applies to both sides of this biconditional,
i.e., that:

[λx�∀F(Fx ≡ Fy)]x ≡ �∀F(Fx ≡ Fy)

[λx�∀F(Fx ≡ Fy)]y ≡ �∀F(Fy ≡ Fy)
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Hence it follows that �∀F(Fx ≡ Fy) ≡ �∀F(Fy ≡ Fy). But the right side of this
last result is a theorem. Hence �∀F(Fx ≡ Fy). ./

(242.1) Assume O!x and ∀F(Fx ≡ Fy). Then O!y. Moreover, ∀F(Fx ≡ Fy) im-
plies �∀F(Fx ≡ Fy), by the theorem (241). So by the right-to-left direction of
(233.3), it follows from our first two assumptions and this last result that x=E y.
./

(242.2) (Exercise)

(243.1) Assume O!x, O!y. Note that both [λz z=E x]↓ and [λz z=E y]↓, by now
familiar reasoning. (→) Assume x , y. Then x ,E y, by (233.2). For reductio,
assume [λz z =E x] = [λz z =E y]. Since O!x, we know by the reflexivity of =E
(239.1) that x=E x. Since [λz z=E x]↓ and x↓, it follows by Rule

←−
βC (184.2.a)

that [λz z =E x]x. But then by Rule =E, it follows that [λz z =E y]x. By Rule
−→
β C (184.1.a), it follows that x=E y. But by (236), this contradicts x,E y. (←)
The proof of this direction, which is equivalent to its contrapositive x = y →
[λz z=E x]=[λz z=E y], is trivial.455 ./

(243.2) (Exercise)

(244) Assume O!x. Then by (180.1), it follows that �O!x. Since the closures of
the instances of (52) are axioms, we also know: �(O!x→¬∃FxF). So by the K
axiom (45.1), �O!x→ �¬∃FxF and, hence, �¬∃FxF. ./

(245.1) Assume ∀F(xF ≡ yF). By the Barcan formula (167.1), it suffices to show,
∀F�(xF ≡ yF). Since F isn’t free in our assumption, it suffices by GEN to show
�(xF ≡ yF). By (179.5) (set G in (179.5) to F), it suffices to show �xF ≡ �yF.
But we may establish this by the following biconditional chain:

�xF ≡ xF by (179.2)
≡ yF by our assumption
≡ �yF by (179.2) ./

(245.2) Suppose A!x, A!y, and ∀F(xF ≡ yF). The third assumption implies, by
(245.1), that �∀F(xF ≡ yF). From this last fact and our first two assumptions,
it follows by (23.1) that x=y. ./

(245.3) (Exercise)

(246) By contraposing (52) and eliminating the double negation, we have:
∃FxF → ¬O!x. But the right-to-left direction of (222.3) is ¬O!x → A!x. So
by hypothetical syllogism, ∃FxF→ A!x ./

455In an earlier draft of this work, the statement of the contrapositive in the proof was inadver-
tently reversed. The error was discovered by Daniel Kirchner, using automated reasoning tech-
niques. See Kirchner 2017 [2021] and 2022.
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(247.1) By axiom (39.2), H↓. So by the unary case of definition (20.2), ∃xxH .
By GEN, ∀H∃xxH . ./

(247.2) – (247.4) (Exercises)

(250) Let ϕ be any formula with no free xs. Then by (53), ∃x(A!x&∀F(xF ≡ ϕ)).
Assume a is an arbitrary such object, so that we know:

(ϑ) A!a&∀F(aF ≡ ϕ)

To show ∃!x(A!x & ∀F(xF ≡ ϕ)), it suffices, by &I, ∃I, the definition of the
uniqueness quantifier (127.1) and ∃E, to show:

∀y[(A!y &∀F(yF ≡ ϕ))→ y=a]

But by GEN, it then suffices to show A!y &∀F(yF ≡ ϕ)→ y=a. So assume:

(ξ) A!y &∀F(yF ≡ ϕ)

The second conjuncts of (ϑ) and (ξ) jointly imply ∀F(aF ≡ yF), by the laws
of quantified biconditionals (99.11) and (99.10). It then follows from this, by
(245.2), that a=y, since we already know A!a and A!y as the first conjuncts of
(ϑ) and (ξ). So y=a, by the symmetry of identity. ./

(251.1) – (251.6) These are all instances of theorem (250). ./

(252) Let ϕ be any formula in which x doesn’t occur free. Then by Strength-
ened Comprehension (250), it is a theorem that ∃!x(A!x&∀F(xF ≡ ϕ)). Hence,
by the Rule of Actualization (135), it follows that A∃!x(A!x& ∀F(xF ≡ ϕ)). So
by (176.2), ıx(A!x&∀F(xF ≡ ϕ))↓. ./

(254)? (Exercise)

(255) Consider any formula ϕ in which x doesn’t occur free. Now let ψ be the
formula A!x&∀F(xF ≡ ϕ). Then if we assume the antecedent of our theorem,
our assumption can be expressed as:

(ϑ) y = ıxψ

Without loss of generality, choose z be to some variable substitutable for x in ϕ.
Then, independently, as an instance of the modally strict version of Hintikka’s
schema (148), we know:

y = ıxψ→ (Aψyx &∀z(Aϕzx→ z = y))

From the last fact and (ϑ), it follows that:

Aψyx & ∀z(Aϕzx→ z = y)

i.e.,
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A(A!y &∀F(yF ≡ ϕ)) & ∀z(A(A!z&∀F(zF ≡ ϕ))→ z = y)

By (139.2), A distibutes over a conjunction and so the first conjunct of our last
result implies:

AA!y & A∀F(yF ≡ ϕ)

The first conjunct of this result, namely AA!y, implies A!y, by the modally-
strict theorem (180.8). ./

(256.1)? Suppose ϕ is a formula in which x doesn’t occur free. Then by (252),
we know that ıx(A!x&∀F(xF ≡ ϕ))↓. We leave it as an exercise to show that the
description ıx(A!x&∀F(xF ≡ ϕ)) is substitutable for x in its own matrix. Hence
by (145.3)?, we may perform the substitution to conclude:

A!ıx(A!x&∀F(xF ≡ ϕ)) & ∀F(ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ)

The second conjunct of this result is:

∀F(ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ)

So by the special case of Rule ∀E (93.3):

ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ ./

(256.2)? In the proof of (256.1)? we established:

∀F(ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ)

Since G is, by hypothesis, substitutable for F in ϕ, it is substitutable for F in
the matrix of the above universal claim. And since G↓, we may use Rule ∀E
(93.1) to instantiate G for ∀F in the above to obtain:

ıx(A!x&∀F(xF ≡ ϕ))G ≡ ϕGF ./

(258.1) Consider any formula ϕ where x doesn’t occur free. We want to show:

ıx(A!x&∀F(xF ≡ ϕ))F ≡ Aϕ

In what follows, we take ψ to be: A!x&∀F(xF ≡ ϕ). Hence, we want to show:

ıxψF ≡ Aϕ

Now ıxψ is a canonical description, and so we know, by (252), that ıxψ↓. So by
(152.4), it follows that Aψıxψx , i.e.,

A(A!ıxψ&∀F(ıxψF ≡ ϕ))
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Since the actuality operator distributes over a conjunction (139.2), it follows
that A∀F(ıxψF ≡ ϕ). Since the actuality operator and the universal quantifier
commute (44.3), we may infer ∀FA(ıxψF ≡ ϕ). Hence, by the special case of
Rule ∀E, A(ıxψF ≡ ϕ). So by (139.5), AıxψF ≡ Aϕ. But we also know, by the
commuted version of (179.10) and the fact that (ıxψ)↓, that ıxψF ≡ AıxψF. So
by biconditional syllogism, ıxψF ≡ Aϕ, which is what we had to show ./

(258.2) (Exercise)

(259.1) Assume �ϕGF , where x doesn’t occur free in ϕ and G is substitutable
for F in ϕ. It follows that AϕGF , by theorem (132). But then by the right-to-left
direction of the theorem (258.2), we may conclude ıx(A!x&∀F(xF ≡ ϕ))G. ./

(259.2) Assume:

(ϑ) �ϕGF

where ϕ is any formula in which both x doesn’t occur free in ϕ and G is sub-
stitutable for F. Then by a ‘paradox’ of strict implication (158.1), (ϑ) implies:

(ξ) �(ıx(A!x&∀F(xF ≡ ϕ))G→ ϕGF )

Put this result aside for the moment. By our previous theorem (259.1), it also
follows from (ϑ) that:

ıx(A!x&∀F(xF ≡ ϕ))G

From this and the fact that every canonically-described individual exists (252)
it follows by the rigidity of encoding that:

�ıx(A!x&∀F(xF ≡ ϕ))G

This implies, by the same ‘paradox’ of strict implication, that:

(ζ) �(ϕGF → ıx(A!x&∀F(xF ≡ ϕ))G)

By &I we may conjoin (ξ) and (ζ), so that by (158.4), we’ve derived:

�(ıx(A!x&∀F(xF ≡ ϕ))G ≡ ϕGF ) ./

(261.1) Suppose ϕ is a rigid condition on properties (260.1) in which x doesn’t
occur free. Now assume the antecedent of our theorem, so that we know both:

(a) A!x

(b) ∀F(xF ≡ ϕ)

To show �(A!x&∀F(xF ≡ ϕ)), it suffices, by the right-to-left direction of (158.3),
to show both �A!x and �∀F(xF ≡ ϕ). But �A!x follows from (a) by (180.2). So
it remains to show �∀F(xF ≡ ϕ). By BF (167.1), it suffices to show ∀F�(xF ≡ ϕ)
and by GEN, it suffices to show �(xF ≡ ϕ). But note that this is the consequent
of the following instance of (172.4):
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(�(ϕ→ �ϕ) &�(xF→ �xF))→ ((�xF ≡ �ϕ)→ �(xF ≡ ϕ))

So it remains to establish:

(ϑ) �(ϕ→ �ϕ)

(ξ) �(xF→ �xF)

(ζ) �xF ≡ �ϕ

For (ϑ), note that since ϕ is, by hypothesis, a rigid condition on properties, it
follows by definition (260.1) that `� ∀F(ϕ→ �ϕ). Hence `� ϕ→ �ϕ, by Rule
∀E (93.3). So by RN, �(ϕ→ �ϕ) is a theorem. ./

For (ξ), we simply note that it is an axiom; it is a closure of (51).

For (ζ), we prove both directions. (→) Assume �xF. Then xF by the T schema
(45.2). But (b) implies xF ≡ ϕ. Hence, ϕ. Moreover, by the T schema, (ϑ)
implies ϕ→ �ϕ. Hence �ϕ. (←) Assume �ϕ. Then ϕ, by the T schema. Since
(b) implies xF ≡ ϕ, it follows that xF, which implies �xF by axiom (51). ./

(261.2) Suppose ϕ is a rigid condition on properties in which x doesn’t occur
free. Now let ψ be the formula A!x&∀F(xF ≡ ϕ). Then it follows from (261.1)
by GEN that:

∀x(ψ→ �ψ)

So by theorem (153.2), it follows that:456

∃!xψ→∀y(y = ıxψ→ ψ
y
x )

But we know ∃!xψ, since that just is Strenghtened Comprehension for Abstract
Objects (250), i.e.,

∃!x(A!x&∀F(xF ≡ ϕ))

So we may conclude ∀y(y = ıxψ→ ψ
y
x ), i.e.,

∀y(y = ıx(A!x&∀F(xF ≡ ϕ))→ (A!y &∀F(yF ≡ ϕ)))

Hence, our theorem follows by Rule ∀E (93.3). ./

(261.3) Let ϕ be a rigid condition on properties in which both x doesn’t occur
free. Now we know, independently, by (252), that:

ıx(A!x&∀F(xF ≡ ϕ))↓

456I’m indebted to Daniel Kirchner for discovering, using automated reasoning techniques, that
an incorrect theorem was cited in a previous version of this proof. See Kirchner 2017 [2021] and
2022.
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For ease of reading, abbreviate the description as ıxψ, so that we know ıxψ↓.
Then the description can be instantiated in the universal generalization of
(261.2) to obtain:

ıxψ= ıxψ→ (A!ıxψ&∀F(ıxψF ≡ ϕ))

Since the antecedent holds by Rule =I, we may detach the consequent. The
second conjunct of the consequent is ∀F(ıxψF ≡ ϕ), i.e.,

ıx(A!x&∀F(xF ≡ ϕ))F ≡ ϕ ./

(264.1) By definition (263.1) and the Rule of Substitution for Defined Formulas
(160.3), we have to show:

(ϑ) ∃!x(A!x&¬∃FxF)

To find a witness, note that by the Comprehension Principle for Abstract Ob-
jects (53), we know:

∃x(A!x&∀F(xF ≡ F,F))

Suppose a is an arbitrary such object, so that we know:

(ξ) A!a&∀F(aF ≡ F,F)

Our strategy is to show that a is a witness to (ϑ). So by &I, ∃I, the definition of
the uniqueness quantifier, and Rule ≡df I, it suffices to show both:

(a) A!a&¬∃FaF

(b) ∀y((A!y &¬∃FyF)→ y=a)

(a) Since the first conjunct of (ξ) is A!a, it remains to show ¬∃FaF. Suppose, for
reductio, that ∃FaF and that P is an arbitrary such property, so that we know
aP . Then by the right conjunct of (ξ), it follows that P , P , contradicting the
fact that P =P , which we know by the special case of Rule =I (118.2).

(b) By GEN, it suffices to show (A!y&¬∃FyF)→ y = a. So assume A!y&¬∃FyF.
But the second conjunct, ¬∃FyF, and the fact we just established, namely
¬∃FaF, jointly imply ∀F(aF ≡ yF), by (103.9). Since we also know that both
y and a are abstract, it follows by (245.2) that y = a. ./

(264.2) (Exercise)

(264.3) Since (264.1) is a modally strict theorem, it follows that A∃!xNull(x),
by the Rule of Actualization. So by (176.2), ıxNull(x)↓. ./

(264.4) (Exercise)
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(266.1) Assume Null(x). Then, by definition (263.1) and &E, we know both
(a)A!x and (b) ¬∃FxF. Now to show �Null(x), we have to show �(A!x&¬∃FxF),
by the Rule of Substitution for Defined Formulas (160.3). By &I and (158.3),
it suffices to show �A!x and �¬∃FxF. By (180.2), (a) implies �A!x. Now to
show �¬∃FxF, suppose ¬�¬∃FxF, for reductio. Then by definition (18.5) and
Rule ≡df I, ♦∃FxF. So by BF♦ (167.3), ∃F♦xF. Suppose P is an arbitrary such
property, so that we know ♦xP . Then by the left-to-right direction of (179.3),
it follows that xP , and hence, ∃FxF, by ∃I, which contradicts (b). ./

(266.2) Assume Universal(x). Then, by definition (263.2), we know both (a) A!x
and (b) ∀FxF. Now to show �Universal(x), we have to show �(A!x & ∀FxF),
by the Rule of Substitution for Defined Formulas (160.3). By &I and (158.3),
it suffices to show �A!x and �∀FxF. By (180.2), (a) implies �A!x. Now to
show �∀FxF, suppose ¬�∀FxF, for reductio. Then by (158.11), ♦¬∀FxF. Since
¬∀FxF ≡ ∃F¬xF is an instance of the modally strict theorem (103.2), it follows
by the Rule of Substitution (160.2) that ♦∃F¬xF. So by BF♦ (167.3), ∃F♦¬xF.
Suppose P is an arbitrary such property, so that we know ♦¬xP . Then by the
left-to-right direction of (179.8), it follows that ¬xP , and hence, ∃F¬xF, i.e.,
¬∀FxF, which contradicts (b). ./

(266.3) As an instance of (153.2), we know:

∀x(Null(x)→ �Null(x))→ (∃!xNull(x)→∀y(y= ıxNull(x)→Null(y)))

By applying GEN to (266.1), we know ∀x(Null(x)→ �Null(x)). Hence:

∃!xNull(x)→∀y(y= ıxNull(x)→Null(y))

But (264.1) is ∃!xNull(x). Hence:

∀y(y= ıxNull(x)→Null(y))

Since a
∅
↓, it follows that:

a
∅

= ıxNull(x)→Null(a
∅

)

But by definition (265.1) and Rule of Identity by Definition (120.1), a
∅

= ıxNull(x).
Hence Null(a

∅
). ./

(266.4) (Exercise)

(266.5) By (266.4) and (263.2), it follows that A!aV and ∀FaV F. By (266.3)
and (263.1), it follows that A!a

∅
and ¬∃Fa

∅
F. Since both aV and a

∅
are ab-

stract, it suffices, by (245.3), to show ∃F(aV F&¬a
∅
F). Given that we can prove

the existence of at least some properties, any property you please serves as a
witness (exercise). ./

(266.6) – (266.7) (Exercises)
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(268.1) [Note: Readers who have gotten this far should now be well-equipped
to follow the more obvious shortcuts in reasoning we take in this proof and the
ones that follow.] Consider the following instance of comprehension, in which
there is a free occurrence of the binary relation variable F:

∃x(A!x&∀G(xG ≡ ∃y(A!y &G=[λz Fzy] &¬yF)))

Assume a is an arbitrary such object, so that we have:

(ϑ) A!a&∀G(aG ≡ ∃y(A!y &G=[λzFzy] &¬yF))

Now consider the property [λz Fza], which we know exists by (39.2), and we
now show, by reductio, that a encodes this property. Assume ¬a[λzFza]. Then,
from the second conjunct of (ϑ) it follows that:

¬∃y(A!y & [λz Fza]=[λz Fzy] &¬y[λz Fza]))),

i.e., by quantifier negation:

(ξ) ∀y((A!y & [λz Fza]=[λz Fzy])→ y[λz Fza]),

i.e., for any abstract object y, if [λz Fza] = [λz Fzy], then y[λz Fza]. Instantiate
(ξ) to a. We knowA!a by the left conjunct of (ϑ) and we know [λzFza] = [λzFza]
by Rule =I. Hence a[λz Fza], contrary to assumption. So we’ve established
by reductio that a[λz Fza]. Then by the second conjunct of (ϑ), there is an
abstract object, say b, such that both [λz Fza] = [λz Fzb] and ¬b[λz Fza]. But
since a[λz Fza] and ¬b[λz Fza], it follows by the contrapositive of Rule =E that
a,b.457 So, by two sequences of applying ∃I and then ∃E (i.e., first generalizing
on, and then discharging b, and then generalizing on, and then discharging a),
we’ve established that there are abstract objects x and y such that x,y, yet such
that [λz Fzx] = [λz Fzy]. By GEN, this theorem holds for every binary relation
F. ./

(268.2) By reasoning analogous to that used in the proof of (268.1). ./

(268.3) Consider the following instance of comprehension in which there is a
free occurrence of the property variable F:

∃x(A!x&∀G(xG ≡ ∃y(A!y &G=[λz Fy] &¬yG)))

By reasoning analogous to that used in the proof of (268.1), it is straightfor-
ward to establish that there are distinct abstract objects, say k and l, such that
[λz Fk] is identical to [λz Fl]. But, then by the fundamental theorem govern-
ing proposition identity (116.3), it follows that Fk = Fl. We know generally,
by (111.1) and symmetry of identity, that ϕ= [λϕ]. So it follows from Fk=Fl

457Since Rule =E is: ϕτα , τ = τ′ ` ϕ′, its contrapositive rule is: ϕτα , ¬ϕ′ ` τ , τ′. We leave its
justification as an exercise.
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that [λFk]= [λFl]. Hence, there are distinct abstract objects x and y such that
[λFx] = [λFy]. By GEN, this holds for every property F. ./

(269) Let R1 be the relation [λxy ∀F(Fx ≡ Fy)], which exists by (39.2). By
(268.1), it follows that:

∃x∃y(A!x&A!y & x,y & [λz R1zx]=[λz R1zy])

Suppose a and b are such objects, so that we know:

(ϑ) A!a&A!b& a,b& [λz R1za]=[λz R1zb]

Since we know both R1↓ and a↓, we can apply Rule
←−
βC (184.2.a) to the easily-

established fact that ∀F(Fa ≡ Fa) and conclude R1aa. Note independently that

by (39.2), [λz [λxy ∀F(Fx ≡ Fy)]za] ↓, i.e., [λz R1za] ↓. Hence by Rule
←−
β C

(184.2.a) we may infer from the previously established R1aa that [λz R1za]a.
From this and the fourth conjunct of (ϑ), it follows by Rule =E that [λz R1zb]a.
Hence, by Rule

−→
β C (184.1.a), R1ab. Since R1 is [λxy ∀F(Fx ≡ Fy)], we may ap-

ply Rule
−→
β C again to conclude ∀F(Fa ≡ Fb). Hence, ∃x∃y(A!x&A!y & a , b&

∀F(Fx ≡ Fy)). ./

(271.1) Let ϕ be any formula in which y doesn’t occur free. (→) Our proof
strategy is:

(A) Assume [λxϕ]↓, for conditional proof

(B) Infer �[λxϕ]↓, from (A) by (106)

(C) Establish: �[λxϕ]↓ → �∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))

(D) Conclude �∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx )), from (B) and (C)

Given this strategy, we need only prove (C). By Rule RM, it suffices to show
that there is a modally strict proof of:

[λxϕ]↓ → ∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))

So assume [λxϕ]↓. Since x and y don’t occur free in any assumption, it suffices
by GEN to show ∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ). So assume ∀F(Fx ≡ Fy). Since [λxϕ]↓
and is substitutable for F in the matrix of our last assumption, it follows that
[λxϕ]x ≡ [λxϕ]y. But since we can apply β-Conversion to both sides, it follows
that ϕ ≡ ϕyx . ./

(←) Our proof strategy is:

(E) Assume: �∀x∀y(∀F(Fx ≡ Fy)→ ϕ ≡ ϕyx ), for conditional proof.

(F) Show: �∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))→ �∀y(∃x(∀F(Fx ≡ Fy) &ϕ) ≡ ϕyx ).
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(G) Infer: �∀y(∃x(∀F(Fx ≡ Fy) &ϕ) ≡ ϕyx ), from (E) and (F).

(H) Infer: [λyϕyx ]↓, by appealing to the following alphabetic-variant of axiom
(49):

[λy ∃x(∀F(Fx ≡ Fy) &ϕ)]↓& �∀y(∃x(∀F(Fx ≡ Fy) &ϕ) ≡ ϕyx )→ [λy ϕyx ]↓

and deriving both conjuncts of the antecedent. The first conjunct of the
antecedent of the above, namely [λy∃x(∀F(Fx ≡ Fy)&ϕ)]↓, is an instance
of (39.2); since y doesn’t occur free inϕ by hypothesis, the λ-expression is
a core λ-expression (9.2) – no variable bound by the λ occurs in encoding
position (9.1) in the matrix. The second conjunct of the antecedent of the
instance of (49) is just (G).

(I) Conclude: [λxϕ]↓, since this is just an alphabetic variant of (H).

Given this proof strategy, it remains to show (F). By Rule RM, it suffices to show
that there is a modally strict proof of:

∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))→∀y(∃x(∀F(Fx ≡ Fy) &ϕ) ≡ ϕyx )

So assume ∀x∀y(∀F(Fx ≡ Fy) → (ϕ ≡ ϕyx )). Since y doesn’t occur free in our
assumption, it suffices by GEN to show: ∃x(∀F(Fx ≡ Fy) & ϕ) ≡ ϕyx . So, for
reductio, assume not. Then either (J) or (K):

(J) ∃x(∀F(Fx ≡ Fy) &ϕ) &¬ϕyx

(K) ϕyx &¬∃x(∀F(Fx ≡ Fy) &ϕ)

But both lead to contradiction.
If (J), then suppose a is a witness to the first conjunct, so that we know:

(L) ∀F(Fa ≡ Fy) &ϕax

If we instantiate a and y, respectively, into our initial assumption, it follows
that ∀F(Fa ≡ Fy)→ (ϕax ≡ ϕyx). This and the first conjunct of (L) imply ϕax ≡ ϕyx.
But this result and the second conjunct of (L) imply ϕyx, which contradicts the
second conjunct of (J).

If (K), then the second conjunct implies:

(M) ∀x(¬∀F(Fx ≡ Fy)∨¬ϕ)

If we instantiate (M) to y, then either ¬∀F(Fy ≡ Fy) or ¬ϕyx . Since ∀F(Fy ≡ Fy)
is a theorem, it follows that ¬ϕyx , which contradicts the first conjunct of (K). ./

(271.2) – (271.3) (Exercises)

(272.1) Let ϕ be any formula in which y doesn’t occur free. Assume [λx ϕ]↓.
Then by (271.1), �∀x∀y(∀F(Fx ≡ Fy) → (ϕ ≡ ϕyx )). By now familiar modal
reasoning using the Converse Barcan Formula and a Rule of Substitution, it
follows that:
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(ϑ) ∀x∀y�(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))

Now we want to show ∀x∀y(∀F(Fx ≡ Fy) → �(ϕ ≡ ϕyx )). Since x and y don’t
occur free in any assumptions we’ve made, it suffices by GEN to show ∀F(Fx ≡
Fy)→ �(ϕ ≡ ϕyx ). So assume ∀F(Fx ≡ Fy). Then if we instantiate x and y into
(ϑ), it follows that:

�(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))

By the K axiom, this implies:

(ξ) �∀F(Fx ≡ Fy)→ �(ϕ ≡ ϕyx )

But it follows from our assumption ∀F(Fx ≡ Fy) that �∀F(Fx ≡ Fy), by (241).
Hence �(ϕ ≡ ϕyx ). ./

(272.2) (Exercise)

(272.3) [Contributed by Daniel Kirchner] Let w,x,y,z all be unrestricted indi-
vidual variables. Then note that the term [λx w[λzGxz] ] is a core λ-expression.
So [λx w[λz Gxz] ]↓ is an instance of axiom (39.2). Now consider the following
instance of the Corollary to Kirchner Theorem (272.1):

[λx w[λzGxz] ]↓ → ∀x∀y(∀F(Fx ≡ Fy)→ �(w[λzGxz] ≡ w[λzGyz]))

Since the antecedent is axiomatic, we may infer:

∀x∀y(∀F(Fx ≡ Fy)→ �(w[λzGxz] ≡ w[λzGyz]))

And for an arbitrary x and y, this reduces by the special case of ∀E to:

∀F(Fx ≡ Fy)→ �(w[λzGxz] ≡ w[λzGyz])

Since we derived the above from no assumptions and w is free, it follows by
GEN:

∀w(∀F(Fx ≡ Fy)→ �(w[λzGxz] ≡ w[λzGyz]))

By theorem (95.2), the above implies:

∀F(Fx ≡ Fy)→∀w�(w[λzGxz] ≡ w[λzGyz])

And since the Barcan formulas (167.1) and (167.2) yield the modally strict
equivalence ∀α�ϕ ≡ �∀αϕ, it follows by a Rule of Substitution that:

(ϑ) ∀F(Fx ≡ Fy)→ �∀w(w[λzGxz] ≡ w[λzGyz])

Now if we can show:

(ζ) �∀w(w[λzGxz] ≡ w[λzGyz])→ [λzGxz]=[λzGyz]
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then our theorem:

∀F(Fx ≡ Fy)→ [λzGxz]=[λzGyz]

will follow by a simple hypothetical syllogism from (ϑ) and (ζ). So it remains
to show (ζ). Assume �∀w(w[λzGxz] ≡ w[λzGyz]), to show [λzGxz]=[λzGyz].
Note that by definition (23.2) and the Rule of Biconditional Simplification, the
following derivation is valid:

[λzGxz]↓, [λzGyz]↓ `� [λzGxz]=[λzGyz] ≡ �∀w(w[λzGxz] ≡ w[λzGyz])

But the two premises of this derivation are both axioms, since the terms as-
serted to be significant are core λ-expressions. Hence it follows that:

[λzGxz]=[λzGyz] ≡ �∀w(w[λzGxz] ≡ w[λzGyz])

But since we know the right-hand side by assumption, it follows that [λzGxz]=
[λzGyz]. ./

(272.4) (Exercise)

(272.5) Let w,x,y,z all be unrestricted individual variables. Assume [λz ϕ]↓,
where none of the free occurrences of x in ϕ are in encoding position (9.1).
Note that this condition implies that the term [λx w[λzϕ] ] is a core λ-expression
(9.2). So [λx w[λz ϕ] ]↓ is an instance of axiom (39.2). Now consider the fol-
lowing instance of the Corollary to Kirchner Theorem (272.1):

[λx w[λz ϕ] ]↓ → ∀x∀y(∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ]))

Since the antecedent is axiomatic, we may infer:

∀x∀y(∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ]))

So for an arbitrary x and y, it follows that:

∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ])

Since we derived the above from no assumptions with w free, it follows by
GEN:

∀w(∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ]))

So by (95.2):

∀F(Fx ≡ Fy)→∀w�(w[λz ϕ] ≡ w[λz ϕyx ])

By a Rule of Substitution and the modally strict equivalence of the Barcan
Formulas (167.1) and (167.2):

(ϑ) ∀F(Fx ≡ Fy)→ �∀w(w[λz ϕ] ≡ w[λz ϕyx ])



Proofs of Theorems and Metarules 1139

Now our goal is to show that we can derive the following from our initial as-
sumption:

∀F(Fx ≡ Fy)→ [λz ϕ]=[λz ϕyx ]

So assume ∀F(Fx ≡ Fy) (as a local assumption). It then follows from (ϑ) that
�∀w(w[λzϕ] ≡ w[λzϕyx ]). Note that by definition (23.2) and the Rule of Bicon-
ditional Simplification, the following derivation is valid and modally strict:

(ξ) [λz ϕ]↓, [λz ϕyx ]↓ `� [λz ϕ]=[λz ϕyx ] ≡ �∀w(w[λz ϕ] ≡ w[λz ϕyx ])

But the first premise of this derivation is our initial assumption. And we can
derive the second premise from what we know:

By our initial assumption, [λz ϕ]↓. But given the condition on x in ϕ,
we also know that [λx [λz ϕ]↓]↓. So we can instantiate [λx [λz ϕ]↓] into
our local assumption ∀F(Fx ≡ Fy), to obtain [λx [λzϕ]↓]x ≡ [λx [λzϕ]↓]y.
Applying β-Conversion to both sides, this reduces to [λz ϕ]↓ ≡ [λz ϕ]↓yx.
Hence, [λz ϕ]↓yx, i.e., [λz ϕyx ]↓.

Since we’ve established both premises of (ξ), it follows that:

[λz ϕ]=[λz ϕyx ] ≡ �∀w(w[λz ϕ] ≡ w[λz ϕyx ])

But since we’ve established the right-hand side, it follows that [λz ϕ]=[λz ϕyx ].
./

(272.5) [Exercise] Assume ∀F(Fx ≡ Fy). Now as an instance of axiom (39.2),
we know [λzGx]↓. This implies, by the previous theorem (272.5) with ϕ set to
Gx, that ∀F(Fx ≡ Fy)→ [λz Gx] = [λz Gy]. Hence, [λz Gx] = [λz Gy]. Now both
Gx↓ and Gy↓ are also theorems (104.2). So we have established:

Gx↓&Gy↓& [λzGx]=[λzGy].

So by the definition of proposition identity (23.4), Gx=Gy. Since G isn’t free
in our assumption, it follows by GEN that ∀G(Gx = Gy). (←) By analogous
reasoning. ./

(273.1) Let ϕ be the formula �∀z(z , x → ∃F¬(Fz ≡ Fx)). Then we have to
show [λx ϕ]↓. By an appropriate instance of the Kirchner Theorem (271.1), it
suffices to show:

�∀x∀y(∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx ))

By two applications of GEN and then an application of RN, we only need to
show, by modally strict means:

∀F(Fx ≡ Fy)→ (ϕ ≡ ϕyx )
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So let ∀F(Fx ≡ Fy) be our global assumption, to show both directions ofϕ ≡ ϕyx .

(→) Assume ϕ, i.e.,

(ϕ) �∀z(z,x→∃F¬(Fz ≡ Fx))

We want to show ϕ
y
x , i.e.,

(ϕyx ) �∀z(z,y→∃F¬(Fz ≡ Fy))

Note that ϕyx can be obtained by the following instance of Rule RN:

If ∀z(z,x→∃F¬(Fz ≡ Fx)) `� ∀z(z,y→∃F¬(Fz ≡ Fy)), then ϕ ` ϕyx .

So if we can show the antecedent of the above instance of RN, then since the
premise ϕ of the consequent is an assumption, we may validly infer the con-
clusion ϕyx . To show the antecedent, take the premise of the derivation as an
assumption:

(ζ) ∀z(z,x→∃F¬(Fz ≡ Fx))

By GEN, we need only derive z , y → ∃F¬(Fz ≡ Fy) by modally strict means,
since z doesn’t occur free in the premise. So assume z,y. For reductio, assume
¬∃F¬(Fz ≡ Fy), i.e., ∀F(Fz ≡ Fy). From this and our global assumption, it
follows by biconditional syllogism that ∀F(Fz ≡ Fx). Note independently that
it follows from (ζ) that z , x → ∃F¬(Fz ≡ Fx), i.e., z , x → ¬∀F(Fz ≡ Fx), i.e.,
∀F(Fz ≡ Fx)→ z=x. Hence z=x. But from this and our local assumption z,y,
it follows that y , x, on pain of contradiction. And from this last result and
(ζ), it follows that ∃F¬(Fy ≡ Fx). This is equivalent to ¬∀F(Fx ≡ Fy), which
contradicts our global assumption.

(←) By analogous reasoning. ./

(273.3) (→) Assume D!x. Then by definition of D! (273.2) and β-Conversion:

�∀z(z,x→∃F¬(Fz ≡ Fx))

So by the T schema:

∀z(z,x→∃F¬(Fz ≡ Fx))

(←) Assume:

(ϑ) ∀z(z,x→∃F¬(Fz ≡ Fx))

Since D! exists, it suffices, by β-Conversion and the definition of D!, to show:

�∀z(z,x→∃F¬(Fz ≡ Fx))

By BF, it suffices to show:
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∀z�(z,x→∃F¬(Fz ≡ Fx))

So by GEN, it suffices to show:

�(z,x→∃F¬(Fz ≡ Fx))

And by an instance of (171.2), it suffices to show that both the antecedent and
consequent of this necessary conditional are modally collapsed, i.e., it suffices
to show both:

(ξ) �(z,x→ �z,x)

(ζ) �(∃F¬(Fz ≡ Fx)→ �∃F¬(Fz ≡ Fx))

But (ξ) follows by applying RN to (170.2). To obtain (ζ), first apply RN to the
modally strict theorem (241) to obtain:

�(∀F(Fz ≡ Fx)→ �∀F(Fz ≡ Fx))

But by (171.1), the negation of a modally collapsed formula is also modally
collapsed. So:

�(¬∀F(Fz ≡ Fx)→ �¬∀F(Fz ≡ Fx))

But then (ζ) follows from this by a Rule of Substitution and the modally strict
fact that ¬∀αϕ ≡ ∃α¬ϕ. ./

(273.3) [Alternative proof of (←) direction, without appealing to (171.1) and
(171.2).] (←) Assume:

(ϑ) ∀z(z,x→∃F¬(Fz ≡ Fx))

Since D! exists, it suffices, by β-Conversion and the definition of D!, to show:

�∀z(z,x→∃F¬(Fz ≡ Fx))

By BF, we have to show:

∀z�(z,x→∃F¬(Fz ≡ Fx))

So by GEN, it suffices to show:

�(z,x→∃F¬(Fz ≡ Fx))

i.e., by a Rule of Substitution and by now familiar reasoning:

�(∀F(Fz ≡ Fx)→ z=x)

We can prove this by cases, where the cases are z=x and z,x.

Case 1: z=x. Then �z=x, by (117.1). So �(∀F(Fz ≡ Fx)→ z=x), by (158.1).

Case 2: z,x. Then by (ϑ), ∃F¬(Fz ≡ Fx). So ♦∃F¬(Fz ≡ Fx), by T♦. Hence, by
the 5 schema:
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(ξ) �♦∃F¬(Fz ≡ Fx)

Note that ∀F(Fz ≡ Fx)→ �∀F(Fz ≡ Fx) is a modally strict theorem (241). So
by contraposition and modal negation, ♦¬∀F(Fz ≡ Fx)→ ¬∀F(Fz ≡ Fx). I.e.,
♦∃F¬(Fz ≡ Fx) → ∃F¬(Fz ≡ Fx). Since we’ve derived this result by modally
strict means from a modally strict theorem, it follow by RN that:

�(♦∃F¬(Fz ≡ Fx)→∃F¬(Fz ≡ Fx))

So by K axiom: �♦∃F¬(Fz ≡ Fx)→ �∃F¬(Fz ≡ Fx). So �∃F¬(Fz ≡ Fx), by (ξ).
Then, again by (158.1), �(z,x→∃F¬(Fz ≡ Fx)), i.e., �(∀F(Fz ≡ Fx)→ z=x). ./

(273.4) Assume O!x. By (273.3), it suffices to show ∀z(z,x→ ∃F¬(Fz ≡ Fx)),
or equivalently, to show ∀z(∀F(Fz ≡ Fx)→ z=x). So, by GEN, assume ∀F(Fz ≡
Fx). Then by (242.2), z=x. ./

(273.5) (Exercise)

(273.6) To prove our theorem, we need to find an abstract object that isn’t
discernible. But theorem (269) ensures that there are at least two of them. For
by (269), we know:

∃x∃y(A!x&A!y & x,y &∀F(Fx ≡ Fy))

So let a and b be such objects, so that we know A!a&A!b& a,b&∀F(Fa ≡ Fb).
We leave it as an exercise to show that ¬D!a and ¬D!b. ./

(273.7) Assume D!x∨D!y and ∀F(Fx ≡ Fy). We then prove x=y by disjunctive
syllogism from the two cases of first assumption.

Case 1: D!x. Then it follows by (273.3) that ∀z(z , x → ∃F¬(Fz ≡ Fx)), i.e.,
that ∀z(∀F(Fz ≡ Fx)→ z=x). Instantiating to y, it follows that ∀F(Fy ≡ Fx)→
y=x. But the antecedent of this last result is equivalent to our 2nd assumption.
Hence y=x, and so by symmetry, x=y.

Case 2: D!y. By analogous reasoning. ./

(273.8) Assume D!x. Since the definiens of D! exists, we know by our theory
of definition and the definition of D! that:

D! = [λx�∀z(z,x→∃F¬(Fz ≡ Fx))]

So by β-Conversion and Rule =E, it is a modally strict theorem that:

(ϑ) D!x ≡ �∀z(z,x→∃F¬(Fz ≡ Fx))

Hence:

�∀z(z,x→∃F¬(Fz ≡ Fx)))

Then by the 4 schema (165.5):
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��∀z(z,x→∃F¬(Fz ≡ Fx)))

But since (ϑ) is a modally strict theorem, it follows from this by a Rule of
Substitution that �D!x. ./

(273.9) – (273.12) (Exercises)

(273.13) We want to show: [λx D!x&ϕ]↓. Substituting D!x&ϕ for ϕ in the
Kirchner Theorem (271.1), it suffices to show:

�∀x∀y
(
∀F(Fx ≡ Fy)→ ((D!x&ϕ) ≡ (D!y &ϕyx ))

)
By GEN and RN, it suffices to show the embedded conditional. So assume
∀F(Fx ≡ Fy). Without loss of generality, we show only the → direction. So
assume D!x & ϕ, to show D!y & ϕ

y
x . But D!y follows from D!x and the first

assumption. Since D!x, we know by (273.3) that ∀z(z,x→∃F¬(Fz ≡ Fx)), i.e.,
∀z(∀F(Fz ≡ Fx)→ z=x). Instantiating to y: ∀F(Fy ≡ Fx)→ y =x. Hence y =x,
i.e., x=y. And so by Rule =E, ϕyx . ./

(273.14) Assume the antecedent, but for reductio, suppose the consequent is
false. Then one or more of the conjuncts in the consequent is false. Suppose the
ith conjunct is false, for some i such that 1 ≤ i ≤ n. Then we know ∃G¬(Gxi ≡
Gzi). Suppose P is such a property and, without loss of generality, suppose
P xi &¬P zi Then consider the n-ary relation H = [λx1 . . .xi . . .xn P xi]. H clearly
exists. To complete our reductio, it remains to show that H is a witness to, and
thus implies, ∃F¬(Fx1 . . .xn ≡ Fz1 . . . zn), for this existential claim contradicts
our assumption. So we want to show:

¬(Hx1 . . .xn ≡Hz1 . . . zn)

For reductio, suppose Hx1 . . .xn ≡Hz1 . . . zn. But by the definition and existence
of H , and β-Conversion, we know:

Hx1 . . .xn ≡ P xi

Hz1 . . . zn ≡ P zi

Hence, P xi ≡ P zi , by biconditional reasoning. But this contradicts our assump-
tion that P xi &¬P zi . ./

(273.15) We want to show, for an arbitrary formula ϕ, that when n ≥ 1:

[λx1 . . .xnD!x1 & . . . &D!xn &ϕ]↓

Let ϕ in the Kirchner Theorem (271.2) be D!x1 & . . . & D!xn & ϕ. Then the
Kirchner Theorem tells us:

[λx1 . . .xnD!x1 & . . . &D!xn &ϕ]↓ ≡
�∀x1 . . .∀xn∀y1 . . .∀yn(∀F(Fx1 . . .xn ≡ Fy1 . . . yn)→

((D!x1 & . . . &D!xn &ϕ) ≡ (D!y1 & . . . &D!yn &ϕy1,...,yn
x1,...,xn )))



1144

So it suffices to show the right side of the biconditional and, by GEN and RN,
it suffices to show:

∀F(Fx1 . . .xn ≡ Fy1 . . . yn)→ ((D!x1& . . .&D!xn&ϕ) ≡ (D!y1& . . .&D!yn&ϕy1,...,yn
x1,...,xn ))

So assume:

(ϑ) ∀F(Fx1 . . .xn ≡ Fy1 . . . yn)

Without loss of generality, we show only the (→) direction. So assume:

(ξ) D!x1 & . . . &D!xn &ϕ

Note that it follows from (ϑ) by lemma (273.14) that:

(ζ1) ∀G(Gx1 ≡ Gy1)

...

(ζn) ∀G(Gxn ≡ Gyn)

Thus, we may infer:

D!y1, from the 1st conjunct of (ξ) and (ζ1)
...

D!yn, from the nth conjunct of (ξ) and (ζn)

So it remains to show ϕ
y1,...,yn
x1,...,xn . But we may also infer:

x1 =y1, from the 1st conjunct of (ξ), (ζ1), and (273.7)
...

xn=yn, from the nth conjunct of (ξ), (ζn), and (273.7)

But from these results and the final conjunct of (ξ) it follows that ϕy1,...,yn
x1,...,xn by

Rule =E. ./

(273.16) This is an instance of (273.15). ./

(273.18) Since [λxy D!x & D!y & x = y]↓ (273.16), we know both (ξ), which
follows from the theory of definitions-by-= and the definition of =D (273.17),
and (ϑ), which follows by β-Conversion:

(ξ) =D = [λxy D!x&D!y & x=y]

(ϑ) [λxy D!x&D!y & x=y]xy ≡D!x&D!y & x=y

Hence, by Rule =E and the application of infix notation for =D :

x=D y ≡D!x&D!y & x=y ./
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(273.19) (Exercise)

(273.20) (→) Assume x=D y. Then by (273.18), D!x&D!y&x=y. So it remains
to show �∀F(Fx ≡ Fy). But this follows from the easy theorem �∀F(Fx ≡ Fx)
and x = y. (←) Assume D!x &D!y & �∀F(Fx ≡ Fy). Then by the right-to-left
direction of (273.18), it remains only to show x= y. But this follows from the
first and third conjuncts of our assumption by (273.7). ./

(273.21) By the T schema, it suffices to show only the (→) direction. Assume
x=D y. Then by (273.18):

D!x&D!y & x=y

But by (273.8), the first two conjuncts imply, respectively, �D!x and �D!y. And
by (125.1), the third conjunct implies �x=y. Hence:

�D!x&�D!y &�x=y

So by (158.3):

�(D!x&D!y & x=y)

Since (273.18) is a modally strict theorem, it follows by a Rule of Substitution
that �x=D y. ./

(273.22) – (273.25) (Exercises)

(273.26) By applying RN to the left-to-right direction of (273.21) and applying
an appropriate instance of (171.1). ./

(273.27) – (273.29) (Exercises)

(273.30) Assume D!x. Then since x=x is a modally strict theorem (117.1), we
know:

D!x&D!x& x=x

Hence by (273.18), x=D x. ./

(273.31) Assume x=D y. Then by (273.18):

D!x&D!y & x=y

We leave it as an exercise to show that this implies, by modally strict reasoning:

D!y &D!x& y=x

Hence, y=D x, by (273.18). ./

(273.32) Assume x=D y and y=D z. Then by (273.18), we know both:

D!x&D!y & x=y
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D!y &D!z& y=z

We leave it as an exercise to show that these imply, by modally strict reasoning:

D!x&D!z& x=z

Hence, x=D z, by (273.18). ./

(273.33) We first independently establish, as a modally strict theorem, that:

D!x→ (x=y ≡ x=D y)

Proof. Assume D!x. (→) Assume x=y. Since D!x, it follows from (273.30)
that x =D x. Hence, by Rule =E, x =D y. (←) Assume x =D y. Then by
(273.18), x=y.

Given this modally strict proof, it follows by Rule RM that:

(ϑ) �D!x→ �(x=y ≡ x=D y)

is a theorem. Now to prove our theorem, we reason by cases from D!x∨D!y.

Case 1. Assume D!x. Then �D!x, by (273.8). Hence, �(x=y ≡ x=D y) by (ϑ).

Case 2. By analogous reasoning. ./

(273.34) [The following reasoning is analogous to that used in (240.2).] As-
sume D!y. Note independently that our conclusion is the consequent of the
following instance of axiom (49):

([λx x=D y]↓&�∀x(x=D y ≡ x=y))→ [λx x=y]↓

So it suffices to show:

(ϑ) [λx x=D y]↓

(ξ) �∀x(x=D y ≡ x=y)

But (ϑ) is axiomatic (39.2) since [λx x=D y] is a core λ-expression. To show (ξ),
note that our assumptionD!y impliesD!x∨D!y, and so it follows from (273.33)
that �(x= y ≡ x=D y). Since it is a modally strict theorem that biconditionals
commute, it follows by a Rule of Substitution that �(x =D y ≡ x = y). Since x
isn’t free in our assumption, it follows by GEN that ∀x�(x=D y ≡ x=y). So by
the Barcan Formula (167.1), it follows that �∀x(x=y ≡ x=D y). ./

(273.35) Assume D!x, D!y. Note that both [λz z=D x]↓ and [λz z=D y]↓, by now
familiar reasoning. (→) Assume x, y. Then x,D y, by (273.19). For reductio,
assume [λz z =D x] = [λz z =D y]. Since D!x, we know by the reflexivity of =D
(273.30) that x=D x. Since [λz z=D x]↓ and x↓, it follows by Rule

←−
βC (184.2.a)

that [λz z=D x]x. But then by Rule =E, it follows that [λz z=D y]x. By Rule
−→
β C
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(184.1.a), it follows that x=D y. But by (273.25), this contradicts x,D y. (←)
The proof of this direction, which is equivalent to its contrapositive x = y →
[λz z=D x]=[λz z=D y], is trivial. ./

(276.1) [λy p] is a core λ-expression and so [λy p]↓ is an instance of axiom
(39.2). So the present theorem is axiomatic, since it is a universal closure of
this instance. ./

(276.2) Note that this schema has two metavariables, ν and ϕ. As mentioned
in the text, there are two interesting ways to prove this theorem. First, it can be
derived from the previous theorem, (276.1), by the following reasoning. Since
ν is a metavariable ranging over individual variables, note that the following is a
schema and that its instances are alphabetic variants of (276.1) and so theorems:

(ϑ) ∀p([λν p]↓)

Now, independently, we know that ϕ↓ for any ϕ (104.2). A fortiori, ϕ↓ for any
ϕ in which ν doesn’t occur free. So a formula ϕ in which ν doesn’t occur free
is substitutable for the variable p in the matrix of (ϑ). Hence, by ∀E, [λν ϕ]↓,
for any formula ϕ in which ν doesn’t occur free.

The following, rather different, proof is simpler (despite being longer) and
may come as a surprise if one has forgotten the definition of ↓ as it applies to
propositions. By our conventions for definitions (17.2), definition (20.3) is an
easier-to-read version of the following definition, in which Π0 is a metavariable
ranging over 0-ary relation terms:

Π0↓ ≡df [λνΠ0]↓, provided ν doesn’t occur free in Π0

So by Rule ≡df E, we know the following are theorems:

Π0↓ ≡ [λνΠ0]↓, provided ν doesn’t occur free in Π0)

But since all and only formulas are 0-ary relation terms, we may rewrite the
above as:

(ξ) ϕ↓ ≡ [λν ϕ]↓, provided ν doesn’t occur free in ϕ)

So consider any formula ϕ in which the individual variable ν doesn’t occur
free. Then ϕ↓ by (104.2). So by (ξ), it follows that [λν ϕ]↓. ./

(276.3) From the fact that [λy p] ↓ (39.2), Strengthened β-Conversion (181)
implies [λy p]x ≡ p. So by GEN, it follows that ∀x([λy p]x ≡ p). Since this
last theorem is modally strict, it follows by RN that �∀x([λy p]x ≡ p). Now
assume F = [λy p]. Then by substitution of identicals into what we’ve already
established, it follows that �∀x(Fx ≡ p). ./

(276.4) Assume Propositional(F). Then by definition, ∃p(F = [λy p]). Assume
q1 is such a proposition, so that we know F = [λy q1]. Hence by (125.2), �(F =



1148

[λy q1]). So, by ∃I and ∃E, ∃p�(F = [λy p]). Then by the Buridan Formula
(168.1), �∃p(F = [λy p]). Hence, �Propositional(F), by definition (275) and the
Rule of Substitution for Defined Formulas (160.3). ./

(278) Assume Propositional(F). Since F↓, it remains only to show �(∃xFx →
∀xFx), by definition (277) of Indiscriminate(F) and Rule ≡df I. By (276.4), our
assumption implies that �Propositional(F). So by definition (275) and the Rule
of Substitution for Defined Formulas (160.3), it follows that �∃p(F = [λy p]).
Now if we can establish:

�∃p(F=[λy p])→ �(∃xFx→∀xFx)

we’re done. But by Rule RM (157.1), it suffices to give a modally strict proof of
∃p(F= [λy p])→ (∃xFx→∀xFx). So assume ∃p(F= [λy p]). Suppose q1 is such
a proposition, so that we know F = [λy q1]. Now assume ∃xFx, to show ∀xFx.
Suppose a is such an object, so that we know Fa. Then [λy q1]a, and by Rule
−→
β C (184.1.a), q1. But since [λy q1]↓ and x↓, it follows that [λy q1]x, by Rule

←−
βC

(184.2.a). So Fx. Since x doesn’t occur free in any of our assumptions, we may
infer ∀xFx by GEN. ./

(279.1) As an instance of (38.1), we know:

∀xFx→ (∃xFx→∀xFx)

Since this theorem is modally strict, it follows by RM (157.1) that:

�∀xFx→ �(∃xFx→∀xFx)

By definition (200.1) and the Rule of Substitution for Defined Formulas (160.3),
we may infer:

(ϑ) Necessary(F)→ �(∃xFx→∀xFx)

Independently, it follows from definition (277), the axiom F↓, and Rule ≡S of
Biconditional Simplification, that the following is a modally strict theorem:

Indiscriminate(F) ≡ �(∃xFx→∀xFx)

From this and (ϑ), it follows that that Necessary(F)→ Indiscriminate(F), by the
Rule of Substitution (160.2). ./

(279.2) As an instance of (77.3), we know:

¬∃xFx→ (∃xFx→∀xFx)

So from the right-to-left direction of an appropriate instance of (103.4) and the
above, it follows by hypothetical syllogism that:

∀x¬Fx→ (∃xFx→∀xFx)
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Since this theorem is modally strict, it follows by RM (157.1) that:

�∀x¬Fx→ �(∃xFx→∀xFx)

Independently, we know that Impossible(F) ≡ �∀x¬Fx is a modally strict the-
orem, by definition (200.2), the axiom F↓ and Rule ≡S (91.1). So our last two
results imply the following, by the Rule of Substitution (160.2):

Impossible(F)→ �(∃xFx→∀xFx)

Again, independently, we know Indiscriminate(F) ≡ �(∃xFx→ ∀xFx), by now
familiar reasoning. So by the Rule of Substitution, our last two results imply:

Impossible(F)→ Indiscriminate(F) ./

(279.3.a) Suppose, for reductio, that E! is indiscriminate. Then, by definition
(277) and Rule ≡df E:

(ϑ) E!↓&�(∃xE!x→∀xE!x)

Now independently we know ♦∃xE!x (205.3). But this and the right conjunct
of (ϑ) imply ♦∀xE!x, by (158.13). Moreover, we also know independently that
�¬∀xE!x (227.5), which is equivalent to ¬♦∀xE!x. Contradiction. ./

(279.3.b) Suppose, for reductio, that E! is indiscriminate. Then, by definition
(277) and Rule ≡df E:

(ϑ) E!↓&�(∃xE!x→∀xE!x)

Now independently, we know�¬∀xE!x (227.5), which is equivalent to�∃x¬E!x
(exercise). In turn, this is equivalent to �∃xE!x (exercise). But from this last
result and the right conjunct of (ϑ), it follows that �∀xE!x, by the K schema. In-
dependently, however, we know ♦∃xE!x (205.3), i.e., by definition, ¬�¬∃xE!x.
But this is equivalent to ¬�∀x¬E!x (exercise), which in turn is equivalent to
¬�∀xE!x (exercise). Contradiction. ./

(279.3.c) Suppose, for reductio, that O! is indiscriminate. Then, by definition
(277) and Rule ≡df E:

(ϑ) O!↓&�(∃xO!x→∀xO!x)

Now independently we know �∃xO!x (227.1). From this and the right conjunct
of (ϑ), it follows by the K schema that �∀xO!x. By the T schema, ∀xO!x. But
an application of the T schema to (227.3) yields ¬∀xO!x. Contradiction. ./

(279.3.d) Suppose, for reductio, that A! is indiscriminate. Then, by definition
(277) and Rule ≡df E:

(ϑ) A!↓&�(∃xA!x→∀xA!x)
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Now independently we know �∃xA!x (227.1). From this and the right conjunct
of (ϑ), it follows by the K schema that �∀xA!x. By the T schema, ∀xA!x. But an
application of the T schema to (227.4) yields ¬∀xA!x. Contradiction. ./

(279.4.a) – (279.4.d) (Exercises)

(280.1) Assume ♦∃p(F = [λy p]), to show ∃p(F = [λy p]). By BF♦ (167.3), it
follows that ∃p♦(F=[λy p]). Assume q1 is an arbitrary such p, so that we know
♦(F = [λy q1]). But properties that are possibly identical are identical (170.1),
and since F↓ and [λy q1]↓, it follows that F= [λy q1]. Hence, by ∃I (101.2) that
∃p(F=[λy p]). ./

(280.2) Assume ∀p(F, [λy p]). Then F, [λy p]. Since F↓ and [λy p]↓, it follows
by (170.2) that �F , [λy p]. Hence, by GEN, ∀p�F , [λy p]. And by BF (167.1),
�∀p(F, [λy p]). ./

(280.3) From (280.1) by (166.1), given that the (280.1) is a modally-strict the-
orem. ./

(280.4) From (280.2) by (166.2), given that (280.2) is a modally strict theorem.
./

(281.1) Assume ♦∀F(xF → ∃p(F = [λy p])), for conditional proof. By the Buri-
dan♦ formula (168.2), this implies:

(ϑ) ∀F♦(xF→∃p(F=[λy p]))

Now we want to show ∀F(xF → ∃p(F = [λy p])). By GEN it suffices to show
xF → ∃p(F = [λy p]). So assume xF. Then �xF, by axiom (51). Now if we
instantiate (ϑ) to F, it follows that ♦(xF → ∃p(F = [λy p])). This together with
�xF yields ♦∃p(F = [λy p]), by (162.4). But by a previous theorem (280.1), it
follows that ∃p(F=[λy p]). ./

(281.2) From (281.1), by (166.1), given that (281.1) is a �-theorem. ./

(288.1) As an instance of the Comprehension Principle for Abstract Objects
(53), we know:

∃x(A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q])))

But by definition (286) and the Rule of Substitution for Defined Formulas
(160.3), it follows that:

∃xTruthValueOf (x,p) ./

(288.2) By the same reasoning as in (288.1), but starting with an instance of
the Strengthened Comprehension for Abstract Objects (250). ./

(288.3) Assume:
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(ϑ) TruthValueOf (x,p)

(ξ) TruthValueOf (y,q)

(→) Assume x=y. By (ϑ) and definition (286), we know:

A!x&∀F(xF ≡ ∃r((r≡p) & F=[λz r]))

Since it is easy to establish independently that (p ≡ p)&[λzp]=[λzp], it follows
that ∃r((r ≡ p) & [λz p] = [λz r]). So x[λy p]. From this and our local assump-
tion x = y, it follows that y[λz p]. Since (ξ) similarly implies ∀F(yF ≡ ∃r((r ≡
q) & F = [λz r])), it follows that ∃r((r ≡ q) & [λz p] = [λz r]). Suppose r1 is such
a proposition, so that we know (r1 ≡ q) & [λz p] = [λz r1]. The second conjunct
implies, by the identity conditions for propositions (23.4), that p=r1. So p ≡ q.

(←) Assume p ≡ q. Since x and y are both abstract, it suffices to show ∀G(xG ≡
yG). So, by GEN, we show xG ≡ yG. (→) Assume xG. Then by (ϑ), and defi-
nition (286), we know: ∃r((r ≡ p) & G = [λz r]). Suppose (r2 ≡ p) & G = [λz r2].
Then (r2 ≡ q) & G=[λz r2]. So ∃r((r≡q) & G=[λz r]) and, hence, yG, by (ξ) and
definition (286). (←) By analogous reasoning. ./

(289.1) (→) Assume p. By GEN, it suffices to show the equivalence of (ϑ) and
(ξ):

(ϑ) ∃q(q&F=[λy q])

(ξ) ∃q((q ≡ p) &F=[λy q])

We show each direction separately:

(→) Assume (ϑ). Suppose q1 is such a proposition, so that we know q1 is true
and F= [λy q1]. But since p is true, it is materially equivalent to q1. So it
follows that (q1 ≡ p) &F=[λy q1], and by ∃I, that (ξ).

(←) Assume (ξ). Suppose q2 is an arbitrary such proposition, so that we know
q2 ≡ p and F=[λyq2]. But then since p is true, q2 is true. So q2&F=[λyq2],
and by ∃I, (ϑ).

(←) Our assumption is:

∀F[∃q(q&F=[λy q]) ≡ ∃q((q ≡ p) &F=[λy q])]

We want to show p. For reductio, assume ¬p. Since [λy ¬p]↓, instantiate the
property [λy ¬p] into our assumption, to obtain:

(ζ) ∃q(q& [λy ¬p]=[λy q]) ≡ ∃q((q ≡ p) & [λy ¬p]=[λy q])

Note also that Rule =I (118.2) governs [λy ¬p], and so we know [λy ¬p] =
[λy ¬p]. Hence we know:
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¬p& [λy ¬p] = [λy ¬p]

So, by ∃I,

∃q(q& [λy ¬p] = [λy q])

From this last conclusion and (ζ), it follows that:

∃q((q ≡ p) & [λy ¬p]=[λy q])

Let q1 be such a proposition, so that we know (q1 ≡ p)&[λy¬p]=[λyq1]. By the
definition of identity for propositions, the second conjunct implies ¬p = q1.
But ¬p is true by our reductio assumption. So it follows that q1 is true. But
since q1 is equivalent to p, p is true. Contradiction. ./

(289.2) (→) Assume ¬p. By GEN, it suffices to show the equivalence of (ϑ) and
(ξ):

(ϑ) ∃q(¬q&F=[λy q])

(ξ) ∃q((q ≡ p) &F=[λy q])

We show each direction separately:

(→) Assume (ϑ). Suppose q1 is an arbitrary such proposition, so that we
know ¬q1 and F = [λy q1]. But since ¬p, it follows that q1 ≡ p. Hence
(q1 ≡ p) &F=[λy q1], and by ∃I, that (ξ).

(←) Assume (ξ). Suppose q2 is an arbitrary such proposition, so that we
know q2 ≡ p and F = [λy q2]. But then since ¬p, it follows that ¬q2. So
¬q2 &F=[λy q2], and by ∃I, (ϑ).

(←) (Exercise) ./

(291.1) Assume:

(ϑ) A!x&∀F(xF ≡ ∃q(q&F=[λy q]))

To show TruthValue(x), we have to show, by definition (290):

∃p(TruthValueOf (x,p))

We can do this if we take our witness to be ∀x(E!x→ E!x). Call this proposition
p0 (we also defined p0 this way in (208). So we have to show:

TruthValueOf (x,p0)

By definition (286), we have to show:

(ξ) A!x&∀F(xF ≡ ∃q((q ≡ p0) &F=[λy q]))
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Now clearly it follows from the tautology E!x→ E!x, by GEN, that p0 is prov-
ably true, and by modally strict means. So it follows from (289.1) that:

∀F[∃q(q&F=[λy q]) ≡ ∃q((q ≡ p0) &F=[λy q])]

Then by ∀E:

∃q(q&F=[λy q]) ≡ ∃q((q ≡ p0) &F=[λy q])

Since we’ve established this by a modally-strict proof, it follows from (ϑ) by
the Rule of Substitution (160.2) that (ξ). ./

(291.2) (Exercise)

(292) Consider the following two instances of Object Comprehension (53):

∃x(A!x&∀F(xF ≡ ∃p(p&F=[λy p])))

∃x(A!x&∀F(xF ≡ ∃p(¬p&F=[λy p]))

Let a,b be arbitrary such objects, respectively, so that we know:

(ϑ) A!a&∀F(aF ≡ ∃p(p&F=[λy p]))

(ξ) A!b&∀F(bF ≡ ∃p(¬p&F=[λy p]))

We now develop modally-strict arguments that show:

(1) TruthValue(a) & TruthValue(b)

(2) a , b

(3) ∀z(TruthValue(z)→ z=a∨ z=b)

Note that (1) follows from (291.1) and (291.2), respectively, given (ϑ) and (ξ).
To show (2), note that the left conjuncts of (ϑ) and (ξ), respectively, are that

A!a and A!b. So, it suffices, by theorem (245.2), to show a encodes a property
that b fails to encode, or vice versa. Consider the property [λy p0], where p0

is the proposition ∀x(E!x → E!x). Now although p0 is a defined constant, we
can cite (39.2) to conclude [λy p0]↓, since [λy p0] still qualifies as a core λ-
expression. And since [λy p0]↓, it follows from the right conjunct of (ϑ) that:

a[λy p0] ≡ ∃p(p& [λy p0]=[λy p])

But the right condition is easily derived since p0 is a witness: it is true and
[λy p0] = [λy p0] is known by the special case of Rule =I (118.2). So a[λy p0].
Now, for reductio, assume b[λyp0]. Then by the right conjunct of (ξ), it follows
that ∃p(¬p& [λy p0] = [λy p]). Suppose p1 is an arbitrary such proposition, so
that we know ¬p1 & [λy p0] = [λy p1]. By the theorem governing proposition



1154

identity (116.3), it follows that p0 = p1. Hence by Rule =E (110), it follows that
¬p0, which contradicts the fact that p0 is true.

To show (3), since z isn’t free in any assumption, it suffices by GEN to show
TruthValue(z)→ z=a∨z=b. Assume TruthValue(z). Then ∃p(TruthValueOf (z,p)).
Let p2 be such a proposition, so that we know TruthValueOf (z,p2). Then by
(286), we know:

(ζ) A!z&∀F(zF ≡ ∃q((q ≡ p2) &F=[λy q]))

Now we reason by disjunctive syllogism, from the tautology p2 ∨¬p2, to show
z=a∨ z=b.

• Assume p2, to show z = a. Since both z and a are abstract, it suffices to
show ∀G(zG ≡ aG) by theorem (245.2). Since G isn’t free in our assump-
tion, it suffices, by GEN, to show zG ≡ aG. But since p2 is true, we may
reason as follows:

zG ≡ ∃q((q ≡ p2) &G=[λy q]) by right conjunct of (ζ)
≡ ∃q(q&G=[λy q]) by (289.1) and the truth of p2

≡ aG by right conjunct of (ϑ)

• Assume ¬p2 to show z=b by analogous reasoning, using (289.2).

Hence, by disjunctive syllogism, z=a∨ z=b.
Since the proofs of (1), (2), and (3) make no appeal to any ?-theorems, they

constitute a modally-strict proof that there are exactly two truth-values. ./

(293) It follows from (288.2) that A∃!xTruthValueOf (x,p), by the Rule of Actu-
alization. Hence by (176.2), ıxTruthValueOf (x,p)↓. ./

(296.1) By (293), we know:

(ϑ) ıxTruthValueOf (x,p)↓

By Rule ≡Df, definition (286) yields the following as a theorem:

TruthValueOf (x,p) ≡ A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q]))

So by GEN and RN:

(ξ) �∀x(TruthValueOf (x,p) ≡ A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q])))

It follows from (ϑ) and (ξ) by (149.3) that:

(ζ) ıxTruthValueOf (x,p) = ıx(A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q])))

Since all of the terms in question are significant, it follows by (294), (ζ), and
the transitivity of identity that:

◦p = ıx(A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q]))) ./
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(296.2) Since p ≡ p is a tautology (88.3.a) and [λy p]=[λy p] is a modally strict
theorem (118.2), we can conjoin them and existentially generalize to conclude:

∃q((q ≡ p) & [λy p]=[λy q])

From this theorem, we may conclude, by the Rule of Actualization:

(ϑ) A∃q((q ≡ p) & [λy p]=[λy q])

Now if we let ϕ be the formula ∃q((q ≡ p) &F=[λy q]), then (ϑ) has the form:

Aϕ[λy p]
F

But by (258.2), we know:

ıx(A!x&∀F(xF ≡ ϕ))[λy p] ≡ Aϕ[λy p]
F

Hence ıx(A!x&∀F(xF ≡ ϕ))[λy p]. But since ϕ is ∃q((q ≡ p) & [λy p]=[λy q]), it
follows by (296.1) and Rule =E that ◦p[λy p]. So by definition (295), ◦pΣp. ./

(297) We can establish our theorem by taking as our witnesses a contingently
true proposition and a propositional property constructed out of a necessarily
true proposition. We know that there are contingently true propositions by
(217.1). So assume p1 is such a proposition, so that we know p1 &♦¬p1.458 Fur-
thermore, where p0 is the necessarily true proposition ∀x(E!x→ E!x) (208.1),
consider the property [λy p0]. Clearly, then, [λy p0]↓. By two applications of
∃Iand an application of ∃E, it suffices to show:

♦(∃q((q≡p1) & [λy p0]=[λy q]) &♦¬∃q((q≡p1) & [λy p0]=[λy q]))

By the T♦ schema, it suffices to show:

(ζ) ∃q((q≡p1) & [λy p0]=[λy q]) &♦¬∃q((q≡p1) & [λy p0]=[λy q])

The first conjunct of (ζ) is easy to establish, since p0 is a witness: p0 is materi-
ally equivalent to p1 (given that p0 and p1 are both true) and [λy p0] = [λy p0]
follows from [λy p0]↓ by Rule =I (118.1) (Variant).

To establish the second conjunct of (ζ), we first prove the following general
lemma, for any propositions p and r:

(A) �[∃q((q≡p) & [λy r]=[λy q])→ (r ≡ p)]

458We’ve noted on prior occasions why reasoning of the kind used in the remainder of this proof
is modally strict notwithstanding the appeal to assumptions that aren’t necessary truths. In this
particular case, the assumption will be discharged by ∃E – we prove our theorem follows from the
assumption p1 & ♦¬p1 and then conclude by ∃E that our theorem follows from the modally strict
theorem ∃p(p& ♦¬p). See the discussion in Remark (70), Remark (218), and the proof of theorem
(221.1).
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Proof. By RN it suffices to give a modally strict proof of: ∃q((q ≡ p) &
[λy r]=[λy q])→ (p ≡ r). So assume ∃q((q≡p) & [λy r]=[λy q]). Suppose s
is such a proposition, so that we know both s ≡ p and [λy r] = [λy s]. The
latter implies r = s. Hence, r ≡ p.

As an instance of (A), we know:

(B) �[∃q((q≡p1) & [λy p0]=[λy q])→ (p0 ≡ p1)]

Now to prove the second conjunct of (ζ), assume its negation for reductio, i.e.,
assume �∃q((q≡p1) & [λy p0]=[λy q]). Then from this and (B), it follows by the
K axiom (45.1) that �(p0 ≡ p1). But by (158.6), this result and our assumption
�p0 imply �p1, which contradicts the assumption that ♦¬p1.459 ./

(299.1)? By theorem (293) and definition (294), the Rule of Identity by Defini-
tion (120) implies:

(ϑ) ◦p = ıxTruthValueOf (x,p)

This implies ◦p↓, by (107.1). Hence, by (145.2)?:

TruthValueOf (◦p,p) ./

(299.2)? By the previous theorem (299.1)? and definition (286), it follows that
A! ◦ p&∀F(◦pF ≡ ∃q((q≡p) & F=[λy q])). Our theorem follows a fortiori. ./

(299.3)? By instantiating (299.2)? to the property [λy r], it follows that:

(ϑ) ◦p[λy r] ≡ ∃q((q≡p) & [λy r]=[λy q])

Now we have to show ◦pΣr ≡ (r ≡ p). (→) Assume ◦pΣr. By definition (295), it
follows that ◦p[λy r]. From this and (ϑ), we may conclude that:

(ξ) ∃q((q ≡ p) & [λy r]=[λy q])

Let q1 be an arbitrary such proposition, so that we know:

(ζ) (q1 ≡ p) & [λy r]=[λy q1]

From the right conjunct of (ζ), it follows by the theorem governing proposition
identity (116.3) that r=q1, which by symmetry yields q1 = r. But from this and
the left conjunct of (ζ), it follows by Rule =E that r ≡ p.

459Intuitively, this reductio proof can be restated more simply as follows. For reductio, assume
the negation of the second conjunct of (ζ), i.e., assume that necessarily, some proposition materi-
ally equivalent to p1, say r, is such that [λy p0] = [λy r]. By definition of proposition identity, this
is just to suppose that necessarily, r is both materially equivalent to p1 and identical to p0. But
now we have a contradiction: if necessarily r is both materially equivalent to p1 and identical to a
necessary truth, then p1 is a necessary truth, contradicting the hypothesis that p1 is contingently
true.
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(←) Suppose that r ≡ p. Independently, since [λy r]↓ (39.2), it follows by Rule
=I (118.1) that [λy r]=[λy r]. Conjoining our assumption and this last fact, we
obtain: (r≡p) & [λy r]=[λy r]. By ∃I, it follows that ∃q((q ≡ p) & [λy r]=[λy q]).
So, by (ϑ), it follows that ◦p[λy r]. From this, it follows that ◦pΣr, by (295). ./

(299.4)? Since z is a variable substitutable for x in TruthValueOf (x,p) and
doesn’t occur free in TruthValueOf (x,p), we have the following instance of the-
orem (141)?, where ϕ in that theorem is set to TruthValueOf (x,p):

x= ıxTruthValueOf (x,p) ≡ ∀z(TruthValueOf (z,p) ≡ z=x)

So by GEN:

(ϑ) ∀x(x= ıxTruthValueOf (x,p) ≡ ∀z(TruthValueOf (z,p) ≡ z=x))

But by (293), ıxTruthValueOf (x,p)↓. Hence by definition (294), we know ◦p↓.
From this last result and (ϑ), it follows by Rule ∀E (93.1) Variant that:

◦p= ıxTruthValueOf (x,p) ≡ ∀z(TruthValueOf (z,p) ≡ z=◦p)

So, by definition (294) and biconditional syllogism, it follows that:

∀z(TruthValueOf (z,p) ≡ z=◦p)

By instantiating this last result to x, and we have:

TruthValueOf (x,p) ≡ x=◦p ./

(300)? Since ◦p↓ and ◦q↓, we can instantiate these into (288.3) to obtain:

(TruthValueOf (◦p,p) & TruthValueOf (◦q,q))→ (◦p=◦q ≡ (p ≡ q))

But by (299.1)?, we know both TruthValueOf (◦p,p) and TruthValueOf (◦q,q).
Hence ◦p=◦q ≡ (p ≡ q) ./

(300)? [Alternative Proof] (→) Assume ◦p = ◦q. Since we know that ◦pΣp
by (296.2), it follows by Rule =E that ◦qΣp. Hence by (299.3)?, it follows that
p ≡ q. (←) Assume p ≡ q. We want to show that ◦p=◦q. Clearly, A!◦p andA!◦q.
So by theorem (245.2), it remains only to show ∀F(◦pF ≡ ◦qF). Since F isn’t
free in our assumptions, it suffices by GEN to show ◦pF ≡ ◦qF. Without loss
of generality, we prove only ◦pF→◦qF, since the reasoning for the converse is
analogous. So assume ◦pF. From this and an alphabetic variant of (299.2)? it
follows that:

∃r((r ≡ p) &F=[λy r])

Let r1 be an arbitrary such proposition, so that we know:

(ϑ) (r1 ≡ p) &F=[λy r1]
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From the first conjunct of (ϑ) and our global assumption that p ≡ q, it follows
that r1 ≡ q. Conjoining this result with the second conjunct of (ϑ) and we have:
(r1 ≡ q) &F=[λy r1]. So by ∃I, we have:

∃r((r ≡ q) &F=[λy r])

From this it follows by (299.2)? that ◦qF. ./

(301)? By (299.1)?, we know TruthValueOf (◦q,q). Hence, ∃pTruthValueOf (◦q,p).
So by definition (290), it follows that TruthValue(◦q). ./

(302.3) By (255) and the definitions of > (302.1) and ⊥ (302.2), we know that
both > and ⊥ are abstract. So to show they are distinct, it suffices to show that
there is a property one encodes that the other doesn’t (245.3). Let p0 be the
necessary proposition ∀x(E!x→ E!x) and consider the property [λz p0], which
exists by (39.2). Our proof strategy is to show that >[λz p0] and then show by
reductio that ¬⊥[λz p0]. We first prove the following:

Lemma: �∃p(p& [λz p0]=[λz p])

Proof : Clearly, p0 is derivable from the tautology E!x → E!x and GEN,
and [λz p0] = [λz p0], by Rule =I (118.1) and the fact that [λz p0]↓. So by
conjoining the two and applying Rule ∃I, we have ∃p(p& [λzp0]=[λzp]).
Since we established this by modally strict means from no assumptions,
our lemma holds by RN.

Now if we let ϕ be ∃p(p& F = [λz p]), then our Lemma has the form �ϕ[λz p0]
F .

Note that by theorem (259.1), the definition of >, and Rule =E, we know
�ϕGF → >G. Since this holds for any G, and we know the antecedent holds
when G is [λz p0], it follows that >[λz p0]. Now assume ⊥[λz p0], for reductio.
If we let ψ be ∃p(¬p& F = [λz p]), then by theorem (258.2) and the definition
of ⊥, we know ⊥G ≡ AψGF . Since this holds for any G, it holds for [λz p0]. So
our assumption implies Aψ[λz p0]

F , i.e., A∃p(¬p& [λz p0] = [λz p]). Since the ac-
tuality operator commutes with the existential quantifier (139.10), it follows
that ∃pA(¬p& [λz p0] = [λz p]). Let p1 be such a proposition, so that we know
A(¬p1 &[λzp0]=[λzp1]). Since actuality distributes over a conjunction (139.2),
we therefore know both:

(ϑ) A¬p1

(ξ) A[λy p0]=[λy p1]

It follows from (ξ) by (175.1) that [λy p0] = [λy p1]. Since p0 and p0 exist, it
follows by the definition of identity for propositions (23.4) that p0 =p1, which
by symmetry (117.2) yields p1 =p0. From this and (ϑ), we know A¬p0, which
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by axiom (44.1) implies ¬Ap0. But since p0 is ∀x(E!x→ E!x), �p0 is a theorem,
which implies Ap0, by (132). Contradiction. ./

(303.1)? Since the definiens of > (302.1) is canonical and thereby significant
(252), it follows by the Rule of Identity by Definition (120) that:

(ϑ) > = ıx(A!x&∀F(xF ≡ ∃p(p&F=[λy p])))

So >↓, by (107.1). By applying GEN to an appropriate instance of (145.2)? and
instantiating >, it follows that:

A!>&∀F(>F ≡ ∃p(p&F=[λy p]))

Hence by lemma (291.1), it follows that TruthValue(>). ./

(303.2)? (Exercise)

(304.1)? Assume TruthValueOf (x,p). By definition (286), it follows that:

(ϑ) A!x&∀F(xF ≡ ∃q((q ≡ p) &F=[λy q]))

Independently, by the reasoning in the proof of (303.1)?, we know:

(a) A!>

(b) ∀F(>F ≡ ∃q(q&F=[λy q]))

Now we want to show p ≡ x = >. (→) Assume p. Since we know both x and >
are abstract, it suffices by (245.2) to show that ∀F(xF ≡ >F). Note that since p
is true, we know by theorem (289.1) that:

∀F[∃q(q&F=[λy q]) ≡ ∃q((q ≡ p) &F=[λy q])]

By (99.10), it follows from (b) and this last result that:

∀F(>F ≡ ∃q((q ≡ p) &F=[λy q]))

By (99.11), we can commute the conditions of a quantified biconditional, to
obtain:

(c) ∀F(∃q((q ≡ p) &F=[λy q]) ≡ >F)

Again by (99.10), the right conjunct of (ϑ) and (c) jointly imply ∀F(xF ≡ >F).

(←) Assume x = >. Then by Rule =E, it follows from the right conjunct of (ϑ)
that:

(d) ∀F(>F ≡ ∃q((q ≡ p) &F=[λy q]))

By by commuting the biconditional in (b) (99.11) and applying (99.10) to the
result and (d), it follows that:
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∀F[∃q((q ≡ p) &F=[λy q]) ≡ ∃q((q ≡ p) &F=[λy q])]

Hence by (289.1), it follows that p. ./

(304.2)? (Exercise)

(305.1)? By (299.1)?, we know TruthValueOf (◦p,p). So by the previous theo-
rem (304.1)?, it follows that p ≡ ◦p=>. ./

(305.2)? (Exercise)

(305.3)? (→) Assume p. Then by (305.1)?, ◦p =>. But we know independently
by (296.2), that ◦pΣp. Hence by Rule =E, >Σp. (←) Assume >Σp. Then, by
definition (295), >[λy p]. By the reasoning in (303.1)?, we already know that:

∀F(>F ≡ ∃q(q&F = [λy q])

Hence, ∃q(q& [λy p] = [λy q]). Suppose q1 is an arbitrary such proposition, so
that we know both that q1 is true and that [λy p] = [λy q1]. Then by definition
of proposition identity, p = q1. Hence p is true. ./

(305.4)? (Exercise)

(305.5)? (Exercise)

(305.6)? (Exercise)

(307) (→) Assume ExtensionOf (x,p). So by definition (306):

A!x & ∀F(xF→ Propositional(F)) & ∀q((xΣq) ≡ (q ≡ p))

And by definition (275) and the Rule of Substitution for Defined Formulas
(160.3), it follows that:

(ϑ) A!x & ∀F(xF→∃q(F=[λy q])) & ∀q((xΣq) ≡ (q ≡ p))

Since the first conjunct is A!x, it remains by definition (286) to show:

∀F(xF ≡ ∃q((q ≡ p) &F=[λy q]))

By GEN, it suffices to show:

xF ≡ ∃q((q ≡ p) &F=[λy q])

We prove both directions:

(→) Assume xF. Then by the second conjunct of (ϑ), it follows that ∃q(F =
[λy q]). Let q1 be an arbitrary such proposition, so that we know F =
[λy q1]. Hence, x[λy q1], and so it follows by definition (295) that xΣq1.
But then from the third conjunct of (ϑ), it follows that q1 ≡ p. So we’ve
established (q1≡p) & F=[λy q1]. Hence, ∃q((q≡p) & F=[λy q]).
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(←) Assume ∃q((q ≡ p) & F = [λy q]). Let q2 be an arbitrary such proposition,
so that we know:

(ξ) (q2 ≡ p) &F=[λy q2]

Now by the third conjunct of (ϑ), it follows that (xΣq2) ≡ (q2 ≡ p). From
this and the first conjunct of (ξ), it follows that xΣq2. By definition (295),
it follows that x[λy q2]. But then by the second conjunct of (ξ), it follows
that xF.

(←) Assume TruthValueOf (x,p). So by definition (286), we know:

(ζ) A!x&∀F(xF ≡ ∃q((q ≡ p) &F=[λy q]))

Since A!x, it remains by definition (306) to show:

(a) ∀F(xF→ Propositional(F))

(b) ∀q((xΣq) ≡ (q ≡ p))

(a) is easy, since it follows a fortiori from the second conjunct of (ζ) that ∀F(xF→
∃q(F = [λy q])). This implies (a), by definition (275) and the Rule of Substitu-
tion for Defined Formulas (160.3). For (b), it suffices to show (xΣq3) ≡ (q3 ≡ p),
for an arbitrary proposition q3:

(→) Assume xΣq3. Then by definition (295), x[λyq3]. So by the second conjuct
of (ζ), it follows that:

∃q((q ≡ p) & [λy q3]=[λy q])

Suppose q4 is an arbitrary such proposition, so that we know: (q4 ≡
p) & [λy q3] = [λy q4]. But the second conjunct of this last result and a
well-known fact about the identity of propositions jointly imply q3 = q4.
So from the first conjunct, it follows that q3 ≡ p.

(←) Assume q3 ≡ p. Then by Rule =I (118.2) and &I, (q3 ≡ p)&[λyq3]=[λyq3].
Hence, ∃q((q ≡ p) & [λy q3] = [λy q]). So by the second conjunct of (ζ), it
follows that x[λy q3]. So by (295), xΣq3.

./

(308.1) By (288.2), ∃!xTruthValueOf (x,p). Since (307) is modally strict, we may
use it and the Rule of Substitution (160.2) to infer ∃!xExtensionOf (x,p). ./

(308.2) (Exercise)

(308.3) As an instance of theorem (149.1), we know:

A∀x(ExtensionOf (x,p) ≡ TruthValueOf (x,p))→
∀x(x= ıxExtensionOf (x,p) ≡ x= ıxTruthValueOf (x,p))
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But the antecedent is obtained by applying GEN and then the Rule of Actual-
ization to theorem (307). Hence:

∀x(x= ıxTruthValueOf (x,p) ≡ x= ıxExtensionOf (x,p))

Instantiating to ◦p (which we know exists), we obtain:

◦p= ıxTruthValueOf (x,p) ≡ ◦p= ıxExtensionOf (x,p)

But the left condition holds by definition (294). Hence ◦p= ıxExtensionOf (x,p),
which by the symmetry of identity gives us ıxExtensionOf (x,p) = ◦p. ./

(314.1) Assume ExtensionOf (x,G) and ExtensionOf (y,H). By definition (312.1),
the fact that G↓, and Rule ≡S, these assumptions imply, respectively:

(a) A!x&∀F(xF ≡ ∀z(Fz ≡ Gz))

(b) A!y &∀F(yF ≡ ∀z(Fz ≡Hz))

(→) Assume x=y. Then by Rule =E, it follows from (a) that:

(c) A!y &∀F(yF ≡ ∀z(Fz ≡ Gz))

Hence, by (99.11) and (99.10), the second conjuncts of (b) and (c) imply:

(d) ∀F[∀z(Fz ≡Hz) ≡ ∀z(Fz ≡ Gz)]

Now if we instantiate (d) to G, it follows that:

(e) ∀z(Gz ≡Hz) ≡ ∀z(Gz ≡ Gz)

But the right condition of (e) is easily derivable. So ∀z(Gz ≡ Hz), by bicondi-
tional syllogism.

(←) Assume:

(f) ∀z(Gz ≡Hz)

Since we know A!x and A!y by the left conjuncts of (a) and (b), it suffices by
theorem (245.2) to show ∀F(xF ≡ yF), and by GEN, that xF ≡ yF:

(→) Assume xF. Then by the right conjunct of (a), it follows that ∀z(Fz ≡
Gz). But from this and (f), it follows that ∀z(Fz ≡Hz). Hence, by the right
conjunct of (b), it follows that yF.

(←) Assume yF. Then by the right conjunct of (b), it follows that ∀z(Fz ≡
Hz). Now since our assumption (f), which asserts the material equiv-
alence of G and H , is a symmetric condition on G and H (99.11), it
follows that ∀z(Hz ≡ Gz). But material equivalence is also a transitive
condition on properties (99.10). Hence it follows from ∀z(Fz ≡ Hz) and
∀z(Hz ≡ Gz) that ∀z(Fz ≡ Gz). So by the right conjunct of (a), xF. ./
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(314.2) Assume ExtensionOf (x,H)), xF, and xG. From the first, it follows by
definition (312.1) that:

(ϑ) ∀K(xK ≡ ∀z(Kz ≡Hz))

From our assumptions xF, xG, and (ϑ), it follows respectively that ∀z(Fz ≡Hz)
and ∀z(Gz ≡Hz). Hence ∀z(Fz ≡ Gz). ./

(314.3) Assume xF, xG, and ¬∀z(Fz ≡ Gz). Assume, for reductio, that Class(x).
Then by definition, ∃H(ExtensionOf (x,H)). Suppose P is such a property, so
that we know ExtensionOf (x,P ). Now, independently, by instantiating P into
(314.2), we know that:

(ExtensionOf (x,P ) & xF& xG)→∀z(Fz ≡ Gz)

Since we’ve established all three conjuncts of the antecedent, it follows that
∀z(Fz ≡ Gz). Contradiction. ./

(314.3) [Alternative Proof] By classical propositional logic, (314.2) is equiva-
lent to (exercise):

(xF& xG&¬∀z(Fz ≡ Gz))→¬ExtensionOf (x,H)

By GEN, this holds universally for H , and since H doesn’t occur free in the
antecedent of the resulting universal claim, it follows by the right-to-left di-
rection of (99.7) that:

(xF& xG&¬∀z(Fz ≡ Gz))→∀H¬ExtensionOf (x,H)

Hence, by the modally strict equivalence ∀α¬ϕ ≡ ¬∃αϕ, it follows by a Rule
of Substitution that:

(xF& xG&¬∀z(Fz ≡ Gz))→¬∃H(ExtensionOf (x,H))

Hence, by definition of Class(x) (312.2) and a Rule of Substitution:

(xF& xG&¬∀z(Fz ≡ Gz))→¬Class(x) ./

(315.1) As an instance of the Comprehension Principle for Abstract Objects
(53), we know:

(ϑ) ∃x(A!x&∀F(xF ≡ ∀z(Fz ≡ Gz)))

But from definition (312.1) and the fact that G↓, it becomes a modally strict
theorem, by Rule ≡S, that:

(ξ) ExtensionOf (x,G) ≡ (A!x&∀F(xF ≡ ∀z(Fz ≡ Gz)))
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It then follows from (ϑ) and (ξ) that ∃xExtensionOf (x,G), by a Rule of Substi-
tution (160.2). ./

(315.2) (Exercise)

(315.3) It follows from (315.2) that A∃!xExtensionOf (x,G), by the Rule of Ac-
tualization. Hence by (176.2), ıxExtensionOf (x,G)↓. ./

(315.4) (Exercise)

(317.1) Assume ExtensionOf (x,H). Then, by definition (312.1) it follows that:

∀F(xF ≡ ∀z(Fz ≡Hz))

We want to show ∀y(y ∈ x ≡Hy). Since y isn’t free in our assumption, it suffices
by GEN to show y ∈ x ≡Hy.

(→) Assume y ∈ x. Then by definition of membership (316), it follows that
∃G(ExtensionOf (x,G) &Gy). Suppose P is an arbitrary such property, so that
we know ExtensionOf (x,P ) & P y. Note independently that it follows from pre-
Basic Law V (314.1) that:

(ϑ) (ExtensionOf (x,P ) & ExtensionOf (x,H))→ (x=x ≡ ∀z(P z ≡Hz))

But we know both conjuncts of the antecedent. So we may infer from (ϑ) that
x = x ≡ ∀z(P z ≡ Hz). By the reflexivity of identity, (117.1), it follows that
∀z(P z ≡Hz). But since we also know P y, it follows that Hy.

(←) AssumeHy. But given our initial assumption, we have ExtensionOf (x,H)&
Hy. So ∃G(ExtensionOf (x,G)&Gy). Hence, by definition of membership (316),
y ∈ x. ./

(317.2) Assume, for reductio, [λx x 6∈ x]↓. Then by (315.1):

∃yExtensionOf (y, [λx x 6∈ x])

Suppose a is such an object, so that we know ExtensionOf (a, [λx x 6∈ x]). Then
by (317.1), we know:

∀y(y ∈ a ≡ [λx x 6∈ x]y)

Instantiating to a, we therefore know:

a ∈ a ≡ [λx x 6∈ x]a

However, since [λxx 6∈ x] exists, it follows from λ-Conversion that [λxx 6∈ x]a ≡
a 6∈ a. So by biconditional syllogism, a ∈ a ≡ a 6∈ a. Contradiction. ./

(317.3) Assume, for reductio, ∃xExtensionOf (x, [λx x 6∈ x]) and that, say, a is
such an object. Then it follows a fortiori from definition (312.1) that [λxx 6∈ x]↓,
which contradicts (317.2). ./
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(318) By (315.1), we know ∃xExtensionOf (x,F). Let a be an arbitrary such ob-
ject, so that we know ExtensionOf (a,F). Hence, ∃GExtensionOf (a,G), and so by
definition (312.2), Class(a). But also follows from ExtensionOf (a,F), by (317.1),
that ∀y(y ∈ a ≡ Fy). Hence, we may conjoin our results to conclude Class(a,F)&
∀y(y ∈ a ≡ Fy). By ∃I, it follows that ∃x(Class(x,F) &∀y(y ∈ x ≡ Fy)). Since we
derived this from no assumptions, it follows by GEN that ∀F∃x(Class(x,F) &
∀y(y ∈ x ≡ Fy)). ./

(319) By applying GEN to theorem (315.1) and instantiating to A!, we may
infer ∃xClassOf (x,A!). Let b be such an object, so that we know ClassOf (b,A!).
It follows from this, a fortiori by definition (312), that A!b. Conjoining what
we know, we have ClassOf (b,A!) &A!b. Hence, ∃G(ClassOf (b,G) &Gb). So by
definition (316), b ∈ b. But ClassOf (b,A!) also implies ∃F(ClassOf (x,F)), and so
by (315.2), Class(b). Hence Class(b) & b ∈ b. So ∃x(Class(x) & x ∈ x). ./

(320.1) By the usual principles of predicate logic, it suffices to show:

∃x∃G(ExtensionOf (x,G) &¬�ExtensionOf (x,G))

Before we look for witnesses to this claim, recall that by theorem (221.1), we
know ∃F∃G(∀z(Fz ≡ Gz) & ♦¬∀z(Fz ≡ Gz)). Let P and Q be such properties, so
that we know:

(ϑ) ∀z(P z ≡Qz) &♦¬∀z(P z ≡Qz)

Now by (315.1), we know ∃xExtensionOf (x,Q). Let a be such an object, so that
we know ExtensionOf (a,Q). So it remains only to show ¬�ExtensionOf (a,Q).
Before we do, note that from ExtensionOf (a,Q), we may infer ∀F(aF ≡ ∀z(Fz ≡
Qz)), by definition (312.1). This last fact and the first conjunct of (ϑ) yield aP .

Now suppose, for reductio, that �ExtensionOf (a,Q). Then, by definition
(312.1), and a Rule of Substitution, it follows that:

�(A!a&Q↓&∀F(aF ≡ ∀z(Fz ≡Qz)))

By (158.3), all three conjuncts are necessary and so �∀F(aF ≡ ∀z(Fz ≡ Qz)), in
particular. Then by the Converse Barcan Formula (167.2):

∀F�(aF ≡ ∀z(Fz ≡Qz))

Instantiating to P and we obtain: �(aP ≡ ∀z(P z ≡ Qz)). So by (158.6), �aP ≡
�∀z(P z ≡ Qz). But we established above that aP , and so by axiom (51), �aP .
Hence �∀z(P z ≡ Qz), i.e., ¬♦¬∀z(P z ≡ Qz), which contradicts the second con-
junct of (ϑ). ./

(320.1) [Alternative Proof] By the usual principles of predicate logic, it suffices
to show:

∃x∃G(ExtensionOf (x,G) &¬�ExtensionOf (x,G))



1166

Before we look for a witness to this claim, recall that by theorem (221.1), we
know ∃F∃G(∀z(Fz ≡ Gz) & ♦¬∀z(Fz ≡ Gz)). Let P and Q be such properties, so
that we know:

(ϑ) ∀z(P z ≡Qz) &♦¬∀z(P z ≡Qz)

Now by (315.1), we know ∃xExtensionOf (x,Q). Let a be such an object, so that
we know ExtensionOf (a,Q). So it remains only to show ¬�ExtensionOf (a,Q).
Note that from ExtensionOf (a,Q), it follows a fortiori, from definition (312.1),
that:

∀F(aF ≡ ∀z(Fz ≡Qz))

This last fact implies not only aQ, but together with the first conjunct of (ϑ),
implies aP . So by axiom (51), �aP and �aQ. Now since we want to show
¬�ExtensionOf (a,Q), assume, for reductio, that �ExtensionOf (a,Q). Then we
know:

�ExtensionOf (a,Q) &�aP &�aQ

Hence, by the right-to-left direction of an extended version of (158.3):

(ζ) �(ExtensionOf (a,Q) & aP & aQ)

Now, independently, if we apply RN and then GEN to the modally strict theo-
rem (314.2), we obtain:

∀H∀F∀G∀x�((ExtensionOf (x,H)) & xF& xG)→∀z(Fz ≡ Gz))

Instantiating to Q, P , Q, and a, respectively:

�((ExtensionOf (a,Q)) & aP & aQ)→∀z(P z ≡Qz))

So by the K axiom:

�(ExtensionOf (a,Q)) & aP & aQ)→ �∀z(P z ≡Qz)

But the antecedent is just (ζ). Hence �∀z(P z ≡Qz), i.e., ¬♦¬∀z(P z ≡Qz), which
contradicts the second conjunct of (ϑ). ./

(320.2) By the usual principles of predicate logic, it suffices to show:

∃x(Class(x) &¬�Class(x))

Before we identify a witness, recall that ∃F∃G(∀x(Fx ≡ Gx) & ♦¬∀x(Fx ≡ Gx)),
by (221.1). Suppose P and Q are such properties, so that we know:

(A) ∀z(P z ≡Qz)

(B) ♦¬∀z(P z ≡Qz)
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Now by (315.1), we know ∃xExtensionOf (x,Q). So let a be such an object, so
that we know:

(C) ExtensionOf (a,Q)

Since (C) implies ∃H(ExtensionOf (a,H)), we may infer by definition (312.2)
that Class(a). It then remains to show ¬�Class(a), and so it suffices to show
♦¬Class(a). Our strategy is to use (314.3), which by RN and GEN implies:

∀x∀F∀G�((xF& xG&¬∀z(Fz ≡ Gz))→¬Class(x)) (314.3)

But first note that (C) also implies, by definition (312.1), that:

(D) ∀F(aF ≡ ∀z(Fz ≡Qz))

By now familiar reasoning, we may infer from (D) and (A) that aP and from
(D) and ∀z(Qz ≡Qz) that aQ. So by axiom (51):

(E1) �aP

(E2) �aQ

Now if we instantiate (314.3) to a, P , and Q, it follows that:

�((aP & aQ&¬∀z(P z ≡Qz))→¬Class(a))

From this it follows by the K♦ principle (158.13) that:

♦(aP & aQ&¬∀z(P z ≡Qz))→ ♦¬Class(a)

So if we can establish the antecedent, we’re done. But note that the following
is an easy theorem of K :

(�ϕ&�ψ&♦χ)→ ♦(ϕ&ψ&χ)

This is a variant of (158.16) and we leave it as an exercise. As an instance, we
know:

(�aP &�aQ&♦¬∀z(P z ≡Qz))→ ♦(aP & aQ&¬∀z(P z ≡Qz))

But by &I, we’ve established the antecedent, since �aP is (E1), �aQ is (E2), and
♦¬∀z(P z ≡Qx) is (B). ./

(320.3) To show our theorem, it suffices to show ♦¬∀x(Class(x)→ AClass(x)),
i.e., to show ♦∃x(Class(x) &¬AClass(x)). By CBF♦ (167.4), it suffices to show:

(ϑ) ∃x♦(Class(x) &¬AClass(x))

So we have to find a witness to (ϑ). Before we do so, we first prove an instru-
mental, modally strict lemma:
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(ξ) ∀F∀G�(∀z(Fz ≡ Gz)→∃x(Class(x) & xF& xG))

Proof. By GEN, we show �(∀z(Fz ≡ Gz)→∃x(Class(x)&xF&xG)). By RN,
it suffices to find a modally strict proof of ∀z(Fz ≡ Gz)→ ∃x(Class(x) &
xF & xG). So assume ∀z(Fz ≡ Gz). Now we know independently by
(315.1) ∃xExtensionOf (x,G). So let a be such an object, so that we know
ExtensionOf (a,G). It then remains only to show that a is a witness to
∃x(Class(x)&xF&xG). Since ∃H(ExtensionOf (a,H)), it follows by (312.2),
that Class(a). It also follows from ExtensionOf (a,G), by definition (312.1),
that ∀H(aH ≡ ∀z(Hz ≡ Gz)). But, our assumption is ∀z(Fz ≡ Gz), and so
it also follows that aF. And, clearly, aG.

Now to prove our theorem, note that by (221.3), we know ∃F∃G(A¬∀z(Fz ≡
Gz) &♦∀z(Fz ≡ Gz)). So let P and Q be such properties, so that we know:

(A) A¬∀z(P z ≡Qz)

(B) ♦∀z(P z ≡Qz)

Moreover, instantiating P and Q into our lemma (ξ), we know that the follow-
ing is a theorem:

�(∀z(P z ≡Qz)→∃x(Class(x) & xP & xQ))

Hence, by the K♦ schema, ♦∀z(P z ≡ Qz)→ ♦∃x(Class(x) & xP & xQ). From this
last result and (B), it follows that ♦∃x(Class(x) & xP & xQ). So by CBF (167.3),
∃x♦(Class(x) & xP & xQ). Now suppose b is such an object, so that we know:

♦(Class(b) & bP & bQ)

This implies, by (162.3):

(ζ) ♦Class(b) &♦bP &♦bQ

Now if we can show that b is the desired witness to (ϑ), we’re done. So we have
to show ♦(Class(b)&¬AClass(b)). But this follows from (158.16) if we can show:
♦Class(b) &�¬AClass(b). So, by &I, it suffices to show both:

(C) ♦Class(b)

(D) �¬AClass(b)

But (C) is the first conjunct of (ζ). So it remains to show (D). Now if we apply
the Rule of Actualization (RA) and then GEN thrice to theorem (314.3), then
we know:

∀F∀G∀xA((xF& xG&¬∀z(Fz ≡ Gz))→¬Class(x))

Instantiating to P , Q, and b:
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A((bP & bQ&¬∀z(P z ≡Qz))→¬Class(b))

By applications of axiom (44.2) and theorem (139.2), it follows that:

(AbP &AbQ&A¬∀z(P z ≡Qz))→ A¬Class(b)

The antecedent of this last result holds, since:

• the first conjunct follows from the 2nd conjunct of (ζ), by (179.3) and
(179.10),

• the second conjunct follows from the 3rd conjunct of (ζ), by (179.3) and
(179.10), and

• the third conjunct is (A).

Thus A¬Class(b). So by axiom (46.1), �A¬Class(b), which is all that remained
for us to show. ./

(320.4) Assume ExtensionOf (x,H). Then it follows from definition (312.1) that:

(ϑ) ∀F(xF ≡ ∀z(Fz ≡Hz))

Hence, xH , and by axiom (51), �xH . Now by (221.4), it follows that for some
propertyG,H is equivalent toG but might not have been, i.e., that ∃G(∀z(Hz ≡
Gz) & ♦¬∀z(Hz ≡ Gz)). Suppose Q is such a property, so that we know both
∀z(Hz ≡Qz) and ♦¬∀z(Hz ≡Qz). It follows from the first and (ϑ) that xQ, and
so �xQ. Now as an instance of (314.2), substituting H for H , H for F, and Q
for G, we know:

(ExtensionOf (x,H) & xH & xQ)→∀z(Hz ≡Qz)

By classical propositional logic (exercise), it follows that:

(xH & xQ&¬∀z(Hz ≡Qz))→¬ExtensionOf (x,H)

Since this is a modally strict theorem, it follows by RM♦ that:

(ξ) ♦(xH & xQ&¬∀z(Hz ≡Qz))→ ♦¬ExtensionOf (x,H)

But we already know all of �xH , �xQ and ♦¬∀z(Hz ≡ Qz). But we saw in
the proof of (320.2) that by reasoning from (158.16), these three facts imply
♦(xH & xQ&¬∀z(Hz ≡Qz)). So by (ξ), ♦¬ExtensionOf (x,H). ./

(320.5) Assume Class(x). Then by definition (312.2), ∃F(ClassOf (x,F)). Let
P be such a property, so that we know ClassOf (x,P ). By definition (312.1), it
follows that:

(ϑ) ∀F(xF ≡ ∀z(Fz ≡ P z))
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Hence, xP , and by axiom (51), �xP . Independently, if we instantiate P into
theorem (221.4), then we know there is a property G such that P is equivalent
to G but possibly not, i.e., that ∃G(∀z(P z ≡ Gz)&♦¬∀z(P z ≡ Gz)). LetQ be such
a property, so that we know:

(ξ) ∀z(P z ≡Qz) &♦¬∀z(P z ≡Qz)

From (ϑ) and the first conjunct of (ξ), we may infer xQ, and so �xQ, again by
(51). But from the second conjunct of (ξ) and the facts that �xP and �xQ, it
follows by now familiar modal reasoning based on (158.16) that (exercise):

♦(xP & xQ&¬∀z(P z ≡Qz))

But if we apply RM♦ to theorem (314.3) and instantiate to P and Q, we also
know:

♦(xP & xQ&¬∀z(P z ≡Qz))→ ♦¬Class(x)

Hence ♦¬Class(x). ./

(321.1) By standard principles of predicate logic, it suffices to establish:

∃x∃y(y ∈ x&¬�y ∈ x)

We start with the fact that ∃pContingentlyTrue(p) (217.1). Suppose p1 is such a
proposition, so that we know p1 & ♦¬p1. Then consider [λx p1], which clearly
exists. Call this property Q. By (315.1), we know ∃xExtensionOf (x,Q). Let a
be such an object, so that we know ExtensionOf (a,Q). By definition (312), it
follows that:

(A) ∀F(aF ≡ ∀z(Fz ≡Qz))

And by β-Conversion, we know, where y is an arbitrary but fixed object:

(B) Qy ≡ p1

Now consider the property we’ve previously designated as L, i.e., [λx E!x →
E!x]. Then by the reasoning in the proof of (221.1), we know that L and Q are
materially equivalent but possibly not materially equivalent:

(C) ∀z(Lz ≡Qz) &♦¬∀z(Lz ≡Qz)

From (A), (B), and (C) it is straightforward to establish aQ, aL, and Qy. From
the first two, it follows by axiom (51) that �aQ and �aL. From the third, we
now know ExtensionOf (a,Q) &Qy, and so it follows by ∃I and definition (316)
that y ∈ a. So it remains only to show ¬�y ∈ a.

First note that by the principles of propositional logic, theorem (314.2) is
equivalent to (exercise):
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(xF& xG&¬∀z(Fz ≡ Gz))→¬ExtensionOf (x,H)

If we apply GEN to universally generalize on H , then by the right to left direc-
tion of (39.7) it follows that:

(xF& xG&¬∀z(Fz ≡ Gz))→∀H¬ExtensionOf (x,H)

Hence, by the modally strict equivalence ∀α¬ϕ ≡ ¬∃αϕ, it follows by a Rule
of Substitution that:

(xF& xG&¬∀z(Fz ≡ Gz))→¬∃H(ExtensionOf (x,H))

Since this is a modally strict theorem, it follows by RM♦ that:

♦(xF& xG&¬∀z(Fz ≡ Gz))→ ♦¬∃H(ExtensionOf (x,H))

By GEN, this holds for any x, F, and G, and so it holds for a, L, and Q:

(D) ♦(aL& aQ&¬∀z(Lz ≡Qz))→ ♦¬∃H(ExtensionOf (x,H))

But by now familiar reasoning from (158.16), the antecedent of (D) follows
from �aL, �aQ, and ♦¬∀z(Lz ≡ Qz), all of which we’ve established. Hence
♦¬∃H(ExtensionOf (a,H)). But ♦¬∃αϕ→ ♦¬∃α(ϕ&ψ) is also a modal principle
– this is easily established as a modal consequence of the contrapositive of
(103.5). So it follows that ♦¬∃H(ExtensionOf (a,H) &Hy). Hence, by definition
(316) and a Rule of Substitution (160.3), it follows that ♦¬y ∈ a, i.e., ¬�y ∈ a. ./

(321.2) Assume y ∈ x. Then ∃F(ExtensionOf (x,F) & Fy). Suppose P is such
a property, so that we know both ExtensionOf (x,P ) and P y. From the first it
follows a fortiori from definition (312.1) that:

(ϑ) ∀F(xF ≡ ∀z(Fz ≡ P z))

Hence, xP , and so �xP . Now by (221.4), we independently know that, for some
property G, P is equivalent to G but might not have been. So supposeQ is such
a property, so that we know both ∀x(P x ≡ Qx) and ♦¬∀x(P x ≡ Qx). The first
and (ϑ) imply xQ, and so �xQ. But by now familiar reasoning from (158.16),
�xP , �xQ and ♦¬∀x(P x ≡Qx) imply:

♦(xP & xQ&¬∀x(P x ≡Qx)

But by applying RM♦ to the relevant instance of (314.3), we know:

♦(xP & xQ&¬∀x(P x ≡Qx)→ ♦¬Class(x)

Hence, ♦¬Class(x), and so by definition (312.2) and a Rule of Substitution,
♦¬∃F(ExtensionOf (x,F)). It follows a fortiori, that ♦¬∃F(ExtensionOf (x,F)&Fy),
by reasoning from a modal consequence of the contrapositive of (103.5), which
we also used at the end of (321.1). Hence ♦¬y ∈ x, i.e., ¬�y ∈ x. ./

(323.1) Let Π be any unary relation term in which x doesn’t occur free. Then,
to prove our theorem, we first establish the following Lemma:
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Lemma: ¬Π↓ ` ¬∃!xExtensionOf (x,Π)

Proof. Assume ¬Π↓. Then given that ¬ϕ→¬(ψ&ϕ&χ), we know:

¬(A!x&Π↓&∀F(xF ≡ ∀z(Fz ≡Πz)))

Hence, by definition of ExtensionOf (x,G) (312.1), ¬ExtensionOf (x,Π). By
hypothesis, x isn’t free in Π, and so it isn’t free in our assumption. By
GEN it follows that ∀x¬ExtensionOf (x,Π), i.e., ¬∃xExtensionOf (x,Π). So
by the definition of the uniqueness quantifier, ¬∃!xExtensionOf (x,Π).
Since we’ve established ¬Π ↓ → ¬∃!xExtensionOf (x,Π) by conditional
proof, our Lemma follows by (63.10).

We then prove our theorem as follows: Assume ¬Π↓. Then by (106.2), it fol-
lows that �¬Π↓. So by (132), A¬Π↓. But it follows from our Lemma by Rule
RA that: A¬Π↓ ` A¬∃!xExtensionOf (x,Π). Hence A¬∃!xExtensionOf (x,Π). So
by axiom (44.1), ¬A∃!xExtensionOf (x,Π). Hence, by (176.1):

¬∃!xAExtensionOf (x,Π)

So by (176.2), ¬ıxExtensionOf (x,Π)↓. ./

(323.2) Assume ¬Π↓. Without loss of generality, pick some variable, say x,
that doesn’t occur free in Π. Then by (323.1), we have ¬ıxExtensionOf (x,Π)↓.
Now the definition of εG (322) and the Rule of Definition by Identity (73), we
know that:

(ıxExtensionOf (x,Π)↓ → εΠ= ıxExtensionOf (x,Π)) &
(¬ıxExtensionOf (x,Π)↓ → ¬εΠ↓)

It therefore follows from ¬ıxExtensionOf (x,Π)↓ and the second conjunct that
¬εΠ↓. ./

(324.1) By (315.3), we know:

(A) ıxExtensionOf (x,G)↓

So, by definition (322) and the Rule of Identity by Definition (120.1) :

(B) εG = ıxExtensionOf (x,G)

Now, independently, definition (312.1) and the `� version of the Rule of Equiv-
alence by Definition (90.1) jointly imply that the following is a modally strict
theorem:

ExtensionOf (x,G) ≡ A!x&G↓&∀F(xF ≡ ∀z(Fz ≡ Gz))

By Rule ≡S of Biconditional Simplification, the following is therefore a modally
strict theorem:
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ExtensionOf (x,G) ≡ A!x &∀F(xF ≡ ∀z(Fz ≡ Gz))

So by GEN and RN:

(C) �∀x(ExtensionOf (x,G) ≡ A!x &∀F(xF ≡ ∀z(Fz ≡ Gz)))

It follows from (A) and (C) by theorem (149.3) that:

(D) ıxExtensionOf (x,G) = ıx(A!x&∀F(xF ≡ ∀z(Fz ≡ Gz)))

By the 2nd Exercise in (117), we know that the transitivity of identity can be
applied to (B) and (D) to conclude:

εG = ıx(A!x&∀F(xF ≡ ∀z(Fz ≡ Gz))) ./

(324.2) Since the tautology Gz ≡ Gz and GEN yield the easy theorem that
∀z(Gz ≡ Gz), it follows by the Rule of Actualization that A∀z(Gz ≡ Gz). If
we let ϕ be ∀z(Fz ≡ Gz), then we have established AϕGF . But by (258.2), we
know:

ıx(A!x&∀F(xF ≡ ϕ))G ≡ AϕGF

Hence ıx(A!x&∀F(xF ≡ ϕ))G. But since ϕ is ∀z(Fz ≡ Gz), it follows by (324.1)
and Rule =E that εGG. ./

(325) Theorem (221.1) is ∃F∃G(∀z(Fz ≡ Gz) & ♦¬∀z(Fz ≡ Gz)). Let P and Q be
such properties, so that we know:

∀z(P z ≡Qz) &♦¬∀z(P z ≡Qz)

Hence, by the T♦ schema (163.1):

♦(∀z(P z ≡Qz) &♦¬∀z(P z ≡Qz))

So by two applications of ∃I:

∃G∃F♦(∀z(Fz ≡ Gz) &♦¬∀z(Fz ≡ Gz)) ./

(327.1)? By definition (322), we know εG = ıxExtensionOf (x,G). This in turn
implies εG↓. So by (145.2)?, ExtensionOf (εG,G). ./

(327.2)? By (327.1)?, ExtensionOf (εG,G). When we expand this by the defini-
tion of ExtensionOf (312.1), our theorem, ∀F(εGF ≡ ∀z(Fz ≡ Gz)), is the third
conjunct. ./

(327.3)? By theorem (141)? and GEN, we know:

(ϑ) ∀x(x= ıxExtensionOf (x,G) ≡ ∀z(ExtensionOf (z,G) ≡ z=x))
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But by (315.3), ıxExtensionOf (x,G)↓. So by definition (322), εG↓. If we instan-
tiate (ϑ) to εG, we obtain:

εG= ıxExtensionOf (x,G) ≡ ∀z(ExtensionOf (z,G) ≡ z=εG)

So, by definition (322) and biconditional syllogism, it follows that:

∀z(ExtensionOf (z,G) ≡ z=εG)

By instantiating this last result to x, and we have:

ExtensionOf (x,G) ≡ x=εG ./

(328)? Since εF↓ and εG↓ exist, we can instantiate εF and εG into pre-Basic
Law V (314.1). Substituting εF for x, F for G, εG for y, and G for H , we obtain:

(ExtensionOf (εF,F) & ExtensionOf (εG,G))→ (εF=εG ≡ ∀z(Fz ≡ Gz))

But we also know by (327.1)? that ExtensionOf (εF,F) and ExtensionOf (εG,G).
Hence, εF=εG ≡ ∀z(Fz ≡ Gz). ./460

(331.1)461 Suppose, for reductio, that [λx ∃G(x=εG&¬Gx)]↓. Let’s abbreviate
the λ-expression in this claim as K , so that our reductio assumption becomes
K↓. Then by (315.3), ızExtensionOf (z,K)↓, and by definition (322), εK↓. We
can derive a contradiction with the help of the following lemma, namely, that
for any property F, εK encodes F if and only if it is actually the case that F is
materially equivalent to K :

Lemma: ∀F(εKF ≡ A∀z(Fz ≡ Kz))

Proof : By GEN, we prove εKF ≡ A∀z(Fz ≡ Kz). As an instance of (258.1),
we know: ıx(A!x & ∀F(xF ≡ ∀z(Fz ≡ Kz)))F ≡ A∀z(Fz ≡ Az). But, by
(324.1), we know εK = ıx(A!x & ∀F(xF ≡ ∀z(Fz ≡ Kz))). So by Rule =E,
εKF ≡ A∀z(Fz ≡ Kz)).

460Alternatively: (→) Assume εF = εG. By (327.2)?, we know that ∀H(εFH ≡ ∀x(Hx ≡ Fx)).
Since εF = εG, it follows by Rule =E that ∀H(εGH ≡ ∀x(Hx ≡ Fx)). Instantiating the universal
claim to G, it follows that εGG ≡ ∀x(Gx ≡ Fx). Since εGG by (324.2), it follows that ∀x(Gx ≡ Fx),
which in turn implies ∀x(Fx ≡ Gx). (←) Take ∀x(Fx ≡ Gx) as a global assumption. By (324.1),
εF and εG are canonical individuals, and so by (255), they are both abstract. So to show they are
identical it suffices, by (245.2), to show they encode the same properties. By GEN, it suffices to
show εFH ≡ εGH:

(→) Assume εFH. Then by the left-to-right direction of (327.2)?, ∀x(Hx ≡ Fx). From this
and our global assumption it follows that ∀x(Hx ≡ Gx). But by the right-to-left direction of
(327.2)?, it follows that εGH.

(←) By analogous reasoning. ./

461I’m indebted to Daniel West, who pointed out and proved that this theorem and the next are
modally strict. This improved an earlier version of this monograph, in which I had given only
non-modally strict proofs. The following argument follows his proof in most of the details.
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With this Lemma, we can reason to the contradiction AKεK ≡ ¬AKεK, i.e., it is
actually the case that εK exemplifies K if and only if it is not actually the case
that εK exemplifies K .

(→) Assume AKεK. As an instance of Rule
−→
βC (184.1.a), we know the follow-

ing, since the formula to the left of ` abbreviates [λx ∃G(x=εG&¬Gx)]εK:

KεK ` ∃G(εK=εG&¬GεK)

So by the Rule of Actualization (135):

AKεK ` A∃G(εK=εG&¬GεK)

Given our assumption, it follows that A∃G(εK = εG& ¬GεK). So by theorem
(139.10), ∃GA(εK=εG&¬GεK). Suppose P is such a property, so that we know
A(εK=εP &¬P εK). By (139.2) and &E, we know both:

(ϑ) A(εK=εP )

(ξ) A¬P εK

But (ϑ) implies εK = εP , by (175.1). Since we know independently by (324.2)
that εPP , it follows that εKP . So by the above Lemma, it follows that A∀z(P z ≡
Kz). Hence, by axiom (44.3), ∀zA(P z ≡ Kz). Instantiating this latter to εK ,
it follows that A(P εK ≡ KεK). So by theorem (139.5), AP εK ≡ AKεK. But it
follows from (ξ) that ¬AP εK, by axiom (44.1). Hence ¬AKεK, by biconditional
syllogism.

(←) Assume ¬AKεK. As an instance of Rule
←−
βC (184.2.b), we know the fol-

lowing:

K↓, εK↓, ¬KεK ` ¬∃G(εK=εG&¬GεK)

So by the Rule of Actualization:

(ζ) AK↓, AεK↓, A¬KεK ` A¬∃G(εK=εG&¬GεK)

But AK↓ follows from: our assumption K↓, the instance K↓→ �K↓ of theorem
(106), and the instance �K↓→ AK↓ of theorem (132). By analogous reasoning,
AεK↓. And our assumption implies A¬KεK, by axiom (44.1). From these facts
and (ζ), we may conclude A¬∃G(εK = εG&¬GεK). Now it is a modally strict
theorem that ¬∃α(ϕ&¬ψ) ≡ ∀α(ϕ→ ψ) (exercise). So it follows from our last
result by an appropriate instance of this theorem and a Rule of Substitution
that A∀G(εK =εG→ GεK). Hence ∀GA(εK =εG→ GεK). If we instantiate this
to K , it follows that A(εK = εK → KεK). So AεK = εK → AKεK, by distribut-
ing the A operator. Since we already εK↓, we can invoke Rule =I (118.1) to
establish εK=εK . So by (175.1), AεK=εK . Hence AKεK. Contradiction. ./
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(331.2) By (331.1), ¬[λx ∃G(x=εG&¬Gx)]↓. So ¬ε[λx ∃G(x=εG&¬Gx)]↓, by
(323.2). ./

(333)? (Exercise)

(334)? It follows from (327.1)? that ∃G(ExtensionOf (εG,G)) and so by theorem
(312.2), Class(εG). ./

(341.3.a) We want to show that the following metarule is justified:

If Γ (γ1, . . . ,γn) `� ϕ(γ1, . . . ,γn), then �Γ (γ1, . . . ,γn) ` �ϕ(γ1, . . . ,γn)

Our strategy is to show that when we apply our conventions for restricted
variables, this abbreviates a metarule justified by RN. Now to see what our
metatheorem abbreviates, give the conjunctive interpretation to each formula
in Γ (γ1, . . . ,γn) and �Γ (γ1, . . . ,γn), and the give the conditional interpretation to
ϕ(γ1, . . . ,γn) and �ϕ(γ1, . . . ,γn). As noted in the discussion in the text, the latter
is easy:

ϕ(γ1, . . . ,γn) abbreviates (ψ1 & . . . &ψn)→ ϕ
�ϕ(γ1, . . . ,γn) abbreviates (ψ1 & . . . &ψn)→ �ϕ

However, to give the conjunctive interpretation to each formula in Γ (γi , . . . ,γj ),
we follow the indication in footnote 234:

interpret each χ(γ1, . . . ,γn) in Γ (γ1, . . . ,γn) as ψ1 & . . . &ψn &χ
interpret each �χ(γ1, . . . ,γn) in �Γ (γ1, . . . ,γn) as ψ1 & . . . &ψn &�χ

Now we leave it as an exercise to show that the following equivalences govern
our strict derivability relation:

ψ1 & . . . &ψn &χ `� ϕ if and only if ψ1, . . . ,ψn,χ `� ϕ

Γ `� (ψ1 & . . . &ψn)→ ϕ if and only if ψ1, . . . ,ψn,Γ `� ϕ

Hence we may validly factor out all of the ψis (a) from all the premises in Γ and
�Γ and (b) from the conclusions (ψ1 & . . . &ψn)→ ϕ and (ψ1 & . . . &ψn)→ �ϕ.
It therefore suffices to show that the following metarule is justified:

If ψ1, . . . ,ψn,Γ `� ϕ, then ψ1, . . . ,ψn,�Γ `� �ϕ, where ψ1, . . . ,ψn are rigid
restriction conditions.

So assume:

ψ1, . . . ,ψn,Γ `� ϕ

We want to show:

ψ1, . . . ,ψn,�Γ `� �ϕ
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Note first that it follows from our assumption by RN that:

�ψ1, . . . ,�ψn,�Γ `� �ϕ

Now we leave it as an exercise to show that χ1, . . . ,χn,Γ `� ϕ if and only if
χ1 & . . . & χn,Γ `� ϕ. Given this principle, it follows from our last displayed
result that:

(ϑ) �ψ1 & . . . &�ψn,�Γ `� �ϕ

Independently, since ψ1, . . . ,ψn are, by hypothesis, rigid restriction conditions,
we know all of the following:

`� ∀α(ψ1→ �ψ1)
...

`� ∀α(ψn→ �ψn)

Hence, by ∀E:

`� ψ1→ �ψ1
...

`� ψn→ �ψn

So by (63.10), we know:

ψ1 `� �ψ1
...

ψn `� �ψn

By enough applications of (86.1), it follows from this last sequence of results
that:

(ξ) ψ1, . . . ,ψn `� �ψ1 & . . . &�ψn

Thus, from (ξ) and (ϑ) it follows by (63.8) that:

ψ1, . . . ,ψn,�Γ `� �ϕ ./

(341.3.b) By the reasoning at the outset of (341.3.a), it suffices to show that the
following metarule is justified:

If ψ1, . . . ,ψn,Γ ` ϕ, then ψ1, . . . ,ψn,AΓ ` Aϕ, where ψ1, . . . ,ψn are rigid re-
striction conditions.

So assume:

ψ1, . . . ,ψn,Γ ` ϕ
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We want to show:

ψ1, . . . ,ψn,AΓ ` Aϕ

Note first that it follows from our assumption by RA that:

Aψ1, . . . ,Aψn,AΓ ` Aϕ

Now we leave it as an exercise to show that χ1, . . . ,χn,Γ ` ϕ if and only if
χ1 & . . . & χn,Γ ` ϕ. Given this principle, it follows from our last displayed
result that:

(ϑ) Aψ1 & . . . &Aψn,AΓ ` Aϕ

Independently, since (a) ψ1, . . . ,ψn are, by hypothesis, rigid restriction condi-
tions, and (b) modally strict theorems are theorems (62.2), we know all of the
following:

` ∀α(ψ1→ �ψ1)
...

` ∀α(ψn→ �ψn)

Hence, by ∀E:

` ψ1→ �ψ1
...

` ψn→ �ψn

So by (63.10), we know:

ψ1 ` �ψ1
...

ψn ` �ψn

By enough applications of (86.1), it follows from this last sequence of results
that:

(ξ) ψ1, . . . ,ψn ` �ψ1 & . . . &�ψn

It is also easy to establish, by theorem (132) and the rules for &, that (exercise):

(ζ) �ψ1 & . . . &�ψn ` Aψ1 & . . . &Aψn

From (ξ) and (ζ), it follows that (exercise):

ψ1, . . . ,ψn ` Aψ1 & . . . &Aψn

Thus, from this last result and (ϑ) it follows by (63.8) that:



Proofs of Theorems and Metarules 1179

ψ1, . . . ,ψn,AΓ ` Aϕ ./

(343) If we eliminate all the restricted variables, then the theorem to be proved
is:

∀x∀y((Class(x) & Class(y))→ (x=y ≡ ∀z(z ∈ x ≡ z ∈ y)))

So by GEN, it suffices to show:

(Class(x) & Class(y))→ (x=y ≡ ∀z(z ∈ x ≡ z ∈ y))

Assume Class(x) & Class(y). (→) Exercise. (←) Assume:

(a) ∀z(z ∈ x ≡ z ∈ y)

By definition (312.2), Class(x) and Class(y) imply ∃F(ExtensionOf (x,F)) and
∃G(ExtensionOf (y,G)). Let P andQ be such properties, so that ExtensionOf (x,P )
and ExtensionOf (y,Q), respectively. But by theorem (317.1), it follows from the
first that ∀z(z ∈ x ≡ P z), which is equivalent to:

(b) ∀z(P z ≡ z ∈ x)

And it follows from the second that:

(c) ∀z(z ∈ y ≡Qy)

From (b) and (a), it follows by (99.10) that ∀z(P z ≡ z ∈ y), and from this and (c)
it follows, also by (99.10), that ∀z(P z ≡Qz). Now, independently, the following
is an instance of pre-Basic Law V (314):

(ExtensionOf (x,P ) & ExtensionOf (y,Q))→ (x=y ≡ ∀z(P z ≡Qz))

Since both conjuncts of the antecedent are known, it follows that:

x=y ≡ ∀z(P z ≡Qz)

Since we’ve established the right side of the above biconditional, it follows that
x=y. ./

(345.1) By our convention (337.2) for bound restricted variables, we have to
show:

(ϑ) ∃x(Class(x) & Empty(x))

Moreover, by our convention (337.1) for definitions-by-equivalence with free
restricted variables, (344) is an abbreviation of:

Empty(x) ≡df Class(x) &¬∃y(y ∈ x)
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By a Rule of Substitution (160.3), we can exchange the definiens and definien-
dum when they occur as subformulas, so to show (ϑ) it suffices to show:

∃x(Class(x) & Class(x) &¬∃y(y ∈ x))

But given the otiose conjunct, it suffices by the idempotence of & (85.6) to
show:

(ξ) ∃x(Class(x) &¬∃y(y ∈ x))

Consider the impossible property L, where L was defined as [λx E!x → E!x]
(203) and F was defined as [λy¬Fy] (196). Then by the Fundamental Theorem
for Natural Classes and Logical Sets (318), we know:

∃x(Class(x) &∀y(y ∈ x ≡ Ly))

Suppose a is an arbitrary such object, so that we know:

(ζ) Class(a) &∀y(y ∈ a ≡ Ly)

It now suffices to show that a is a witness to (ξ). And given the first conjunct of
(ζ), it remains to show ¬∃y(y ∈ a). Suppose, for reductio, that ∃y(y ∈ a). Let b
be an arbitrary such object, so that we know b ∈ a. Then by the second conjunct
of (ζ), it follows that Lb. But recall that in the proof of (203.2), we developed a
(modally-strict) proof of ∀x¬Lx. So ¬Lb. Contradiction. ./

(345.2) Eliminating the restricted variables, we have to show:

∃x(Class(x) & Empty(x) &∀z((Class(z) & Empty(z))→ z=x))

By (345.1), we already know ∃x(Class(x) & Empty(x)). So suppose a is an arbi-
trary such object, so that Class(a)&Empty(a). So to conclude that a is the needed
witness, it remains to show ∀z((Class(z) & Empty(z))→ z=a). Since z isn’t free
in our assumption, it suffices by GEN to show (Class(z) & Empty(z))→ z=a. So
assume Class(z) & Empty(z). By our conventions for free restricted variables in
definition-by-≡ (338.1), definition (344) implies:

Empty(a) ≡ Class(a) &¬∃y(y ∈ a)

Empty(z) ≡ Class(z) &¬∃y(y ∈ z)

Given what we’ve established, it follows that ¬∃y(y ∈ a) and ¬∃y(y ∈ z). So by
(103.9), ∀x(x ∈ z ≡ x ∈ a), i.e., that z and a have the same members. Hence, by
the principle of extensionality (343), it follows that z=a. ./

(345.3) By (176.2), we know:

(ϑ) ıx(Class(x) & Empty(x))↓≡ A∃!x(Class(x) & Empty(x))
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But theorem (345.2) is ∃!cEmpty(c), i.e., ∃!x(Class(x)&Empty(x)). So by the Rule
of Actualization, A∃!x(Class(x) & Empty(x)). From this and (ϑ), it follows that
ıx(Class(x) & Empty(x))↓. So by our conventions for restricted variables bound
by term-forming operators (337.3), ıcEmpty(c)↓. ./

(347.1) (Exercise)

(347.2) By eliminating the restricted variable in definition (346), we know:

∅ = ıx(Class(x) & Empty(x))

Since all the terms involved are significant, it suffices, by the transitivity of
identity, to show:

ıx(Class(x) & Empty(x)) = ıx(A!x&∀F(xF ≡ ¬∃zFz))

We show this by way of theorem (149.3). Given theorem (345.3), it remains
only to establish:

(ϑ) �∀x((Class(x) & Empty(x)) ≡ (A!x&∀F(xF ≡ ¬∃zFz)))

By GEN and RN, it suffices to show:

(Class(x) & Empty(x)) ≡ (A!x&∀F(xF ≡ ¬∃zFz))

(→) Assume both Class(x) and Empty(x). The latter implies by definition (344)
that¬∃y(y ∈ x). The former implies ∃G(ExtensionOf (x,G)), by (312.2). Suppose
P is such a property, so that we know ExtensionOf (x,P ). Hence, by definition
(312.1), we know both A!x and:

(ζ) ∀F(xF ≡ ∀z(Fz ≡ P z))

And ExtensionOf (x,P ) also implies, by (317.1):

(ξ) ∀y(y ∈ x ≡ P y)

Now since we’ve established A!x, it remains to show ∀F(xF ≡ ¬∃zFz). By GEN,
we show xF ≡ ¬∃zFz. (→) Assume xF. Then by (ζ), ∀z(Fz ≡ P z). Indepen-
dently, from our hypothesis that ¬∃y(y ∈ x) and (ξ) it follows that ¬∃yP y. But
we’ve established that F is materially equivalent to P . So ¬∃zFz. (←) Assume
¬∃zFz. But we know, ¬∃y(y ∈ x). Then by (ξ), ¬∃yP y. Since F and P are both
unexemplified, they are materially equivalent (103.9), i.e.,∀z(Fz ≡ P z). Hence
xF, by (ζ).

(←) Assume A!x&∀F(xF ≡ ¬∃zFz). We have to show:

(A) Class(x)

and, by definition (344), show:
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(B) ¬∃y(y ∈ x)

(A) By (312.2), we want to show that ∃G(ExtensionOf (x,G)). To find a witness,
consider the necessarily unexemplified property L, which we defined previ-
ously as the negation (196) of L, which in turn was defined as [λx E!x→ E!x]
(203). By definition (312.1) and ∃I, we need only show:

(C) A!x&L↓&∀F(xF ≡ ∀z(Fz ≡ Lz))

But A!x is already known. L↓ is also known, given the definition of L. Now
given our assumption ∀F(xF ≡ ¬∃zFz), to show the third conjunct of (C) we
need only show ∀F(¬∃zFz ≡ ∀z(Fz ≡ Lz)), by properties of quantified bicondi-
tionals (99.10). So, by GEN, we show ¬∃zFz ≡ ∀z(Fz ≡ Lz). This is easy:

(→) Assume ¬∃zFz. From this and the fact (exercise) that ¬∃zLz, it follows
by (103.9) that ∀z(Fz ≡ Lz).

(←) Assume ∀z(Fz ≡ Lz). For reductio, assume ∃zFz and suppose a is such an
individual, so that we know Fa. Then since our local assumption implies
Fa ≡ La, it follows that La, which contradicts the fact that ¬∃zLz. ./

(B) In the proof of (A) we established that ExtensionOf (x,L). This implies, by
(317.1), that:

(ξ) ∀y(y ∈ x ≡ Ly)

But L is an impossible property, and so we know ¬∃yLy. Hence, ¬∃y(y ∈ x). ./

(349.1) Consider the necessary property L, which we defined previously as
[λx E!x→ E!x] (203). Then by the Fundamental Theorem for Natural Classes
and Logical Sets (318), we know:

∃x(Class(x) &∀y(y ∈ x ≡ Ly)

Suppose a is an arbitrary such class, so that we know:

(ϑ) ∀y(y ∈ a ≡ Ly)

So if a is to be our witness, it remains, by the definition of a universal∗ class
(348), only to show ∀y(y ∈ a). By GEN, we show y ∈ a. Since (ϑ) implies y ∈ a ≡
Ly, it suffices to show Ly. But by the definition of L, β-Conversion, and the fact
that L↓, we know Ly ≡ (E!y→ E!y). Since the right side of this biconditional is
a tautology, Ly. ./

(349.2) (Exercise)

(351.1) By our conventions for restricted variables, we have to show:

∀x∀y((Class(x) & Class(y))→∃z(Class(z) & UnionOf (z,x,y)))
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So by GEN, we have to show:

(Class(x) & Class(y))→∃z(Class(z) & UnionOf (z,x,y))

So assume Class(x) & Class(y). By definition of UnionOf (350) and eliminating
the otiose conjuncts from the definiens, we have to show:

∃z(Class(z) &∀w(w∈z ≡ (w∈x ∨ w∈y))

To find our witness, note that since x and y are classes, it follows by (312.2) that
there are properties P andQ such that ExtensionOf (x,P ) and ExtensionOf (y,Q).
So by (317.1), we know both:

(ϑ) ∀w(w ∈ x ≡ Pw)

(ξ) ∀w(w ∈ y ≡Qw)

Now consider the property [λz P z∨Qz]. By (39.2), [λz P z∨Qz]↓. Then by the
Fundamental Theorem for Natural Classes and Logical Sets (318), we know:

∃x(Class(x) &∀y(y ∈ x ≡ [λz P z∨Qz]y))

Let b be an arbitrary such object, so that we know Class(b) and:

(ζ) ∀y(y ∈ b ≡ [λz P z∨Qz]y)

Now if we can show ∀w(w ∈ b ≡ (w ∈ x∨w ∈ y)), then b is the desired witness
and we’re done. By GEN, it suffices to showw ∈ b ≡ (w∈x∨w∈y). This is estab-
lished by the following chain of biconditionals, all of which are consequences
of what we have established so far:

w ∈ b ≡ [λz P z∨Qz]w by (ζ)

≡ Pw∨Qw by [λz P z∨Qz]↓ and Rule
−→
β C (184.1.a)

≡ w ∈ x∨Qw by (ϑ) and (88.8.h)
≡ w ∈ x∨w ∈ y by (ξ), and (88.8.g) ./

(351.2) By our conventions for restricted variables and GEN, we have to show:

(Class(x) & Class(y))→
∃z(Class(z)&UnionOf (z,x,y)&∀w(Class(w)&UnionOf (w,x,y)→ w=z))

So assume Class(x) & Class(y). We may therefore instantiate x and y into by
(351.1), and conclude:

∃z(Class(z) & UnionOf (z,x,y))

Assume a is an arbitrary such class, so that Class(a) and UnionOf (a,x,y). By
GEN, &I, and ∃I, it remains to show Class(w) & UnionOf (w,x,y) → w = a. So
assume both Class(w) and UnionOf (w,x,y). Then, by definition of UnionOf
(350), it follows that:
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(ϑ) ∀z(z ∈ w ≡ (z ∈ x∨ z ∈ y))

Now since UnionOf (a,x,y), we know by definition (350) that:

(ξ) ∀z(z ∈ a ≡ (z ∈ x∨ z ∈ y))

So by the logic of quantified biconditionals, (ϑ) and (ξ) jointly imply ∀z(z ∈ w ≡
z ∈ a). It follows by the principle of extensionality (343) that w=a. ./

(352.1)? By eliminating the restricted variables and applying the Rule of Ac-
tualization to theorem (351.2), it follows that:

A∀x∀y((Class(x) & Class(y))→∃!z(Class(z) & UnionOf (z,x,y)))

Note that this is equivalent to:

(ϑ) A∀x(Class(x)→∀y(Class(y)→∃!z(Class(z) & UnionOf (z,x,y))))

Now in footnote 231, in the discussion in Remark (340), we saw that it is a
?-theorem that A∀α(ψ→ ϕ)→∀α(ψ→ Aϕ). Hence (ϑ) implies:

∀x(Class(x)→ A∀y(Class(y)→∃!z(Class(z) & UnionOf (z,x,y))))

So by ∀E:

Class(x)→ A∀y(Class(y)→∃!z(Class(z) & UnionOf (z,x,y)))

Now, for conditional proof, assume Class(x). Hence:

A∀y(Class(y)→∃!z(Class(z) & UnionOf (z,x,y)))

We now repeat this sequence of reasoning. By the ?-theorem in footnote 231:

∀y(Class(y)→ A∃!z(Class(z) & UnionOf (z,x,y)))

And, again by ∀E:

Class(y)→ A∃!z(Class(z) & UnionOf (z,x,y))

And, again, for conditional proof, assume Class(y). Hence:

A∃!z(Class(z) & UnionOf (z,x,y)))

So, by theorem (176.2), it follows that ız(Class(z) & UnionOf (z,x,y))↓. Hence,
by conditional proof, we’ve established:

(Class(x) & Class(y))→ ız(Class(z) & UnionOf (z,x,y))↓

Since x and y aren’t free in any undischarged assumption, it follows by GEN
that:

∀x∀y((Class(x) & Class(y))→ ız(Class(z) & UnionOf (z,x,y))↓)
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So by our conventions for restricted variables, ∀c′∀c′′(ıcUnionOf (c,c′, c′′)↓). ./

(352.2)? If we eliminate the restricted variables, we have to show:

¬�∀x∀y((Class(x) & Class(y))→ ız(Class(z) & UnionOf(z,x,y))↓)

Suppose this were necessary, for reductio. Then by CBF (167.2):

(ϑ) ∀x∀y�((Class(x) & Class(y))→ ız(Class(z) & UnionOf(z,x,y))↓)

Now independently, note that by standard modal reasoning, theorem (320.3)
is equivalent to:

♦∃x(Class(x) &¬AClass(x))

So by BF♦ (167.3):

∃x♦(Class(x) &¬AClass(x))

Now suppose a is such an object, so that we know:

♦(Class(a) &¬AClass(a))

Hence, by (162.3):

(ξ) ♦Class(a) &♦¬AClass(a)

But since ¬Aϕ ≡ A¬ϕ is a necessary axiom (44.1) (and so a modally strict
theorem), we can apply a Rule of Substitution to the second conjunct of (ξ)
to infer ♦A¬Class(a). Hence by (164.4), A¬Class(a), and so by (43)?, ¬Class(a).
But this last result implies (exercise):

¬∃z(Class(z) & Class(a) & Class(a) &∀y(y ∈ z ≡ (y ∈ a∨ y ∈ a)))

So by adding an otiose conjunct, it follows, by definition (350) and a Rule of
Substitution:

¬∃z(Class(z) & UnionOf(z,a,a))

Hence, ¬∃!z(Class(z) & UnionOf(z,a,a)) and so by (144.1)?:

¬ız(Class(z) & UnionOf(z,a,a))↓

But if we instantiate a twice into (ϑ), we obtain:

�((Class(a) & Class(a))→ ız(Class(z) & UnionOf(z,a,a))↓)

By the K♦ principle, this implies:

(ζ) ♦(Class(a) & Class(a))→ ♦ız(Class(z) & UnionOf(z,a,a))↓
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But ♦ϕ→ ♦(ϕ&ϕ) (exercise), and so the first conjunct of (ζ) follows from the
first conjunct of (ξ). Hence, ♦ız(Class(z) & UnionOf(z,a,a))↓. But by theorem
(169.1), ♦τ↓ → τ↓. Hence ız(Class(z) & UnionOf(z,a,a))↓. Contradiction. ./

(353) To prove our theorem, we begin as we did in the previous proof, elimi-
nating the restricted variables. Thus, we have to show:

¬�∀x∀y((Class(x) & Class(y))→ ız(Class(z) & UnionOf(z,x,y))↓)

Suppose this were necessary, for reductio. Then by CBF (167.2):

(ϑ) ∀x∀y�((Class(x) & Class(y))→ ız(Class(z) & UnionOf(z,x,y))↓)

Now independently, note that by standard modal reasoning, theorem (320.3)
is equivalent to:

♦∃x(Class(x) &¬AClass(x))

So by BF♦ (167.3):

∃x♦(Class(x) &¬AClass(x))

Now suppose a is such an object, so that we know:

♦(Class(a) &¬AClass(a))

Hence, by (162.3):

(ξ) ♦Class(a) &♦¬AClass(a)

But the second conjunct of (ξ) is equivalent to ♦A¬Class(a), by the necessary
axiom (44.1) and a Rule of Substitution. Hence by (164.4), A¬Class(a), and so
by axiom (44.1), ¬AClass(a). Hence (exercise):

¬∃zA(Class(z) & Class(a) & Class(a) &∀y(y ∈ z ≡ (y ∈ a∨ y ∈ a)))

So by adding an otiose conjunct and applying definition (350) and a Rule of
Substitution:

¬∃zA(Class(z) & UnionOf (z,a,a))

A fortiori,

¬∃!zA(Class(z) & UnionOf (z,a,a))

So by theorem (152.1):

¬ız(Class(z) & UnionOf (z,a,a))↓

But if we instantiate a twice into (ϑ), we obtain:
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�((Class(a) & Class(a))→ ız(Class(z) & UnionOf(z,a,a))↓)

By the K♦ principle, this implies:

(ζ) ♦(Class(a) & Class(a))→ ♦ız(Class(z) & UnionOf(z,a,a))↓

But ♦ϕ→ ♦(ϕ&ϕ) (exercise), and so the first conjunct of (ζ) follows from the
first conjunct of (ξ). Hence, ♦ız(Class(z) & UnionOf(z,a,a))↓. But by theorem
(169.1), ♦τ↓ → τ↓. Hence ız(Class(z) & UnionOf(z,a,a))↓. Contradiction. ./

(355)? We want to show:

∀x∀y((Class(x) & Class(y))→∀z(z ∈ x∪ y ≡ (z ∈ x∨ z ∈ y)))

So by GEN, it suffices to show:

(Class(x) & Class(y))→∀z(z ∈ x∪ y ≡ (z ∈ x∨ z ∈ y))

Assume Class(x) & Class(y). By our conventions for free restricted variables in
definitions-by-= (339.1), the definition of ∪ (354) abbreviates:

(ϑ) x∪ y ≡df ız(Class(z) & Class(x) & Class(y) & UnionOf (z,x,y))

Independently, since Class(x) & Class(y), it follows from (352.1)? that:

(ξ) ız(Class(z) & UnionOf (z,x,y))↓

Similarly, by our conventions for free restricted variables in definitions-by-≡
(338.2), the definition of UnionOf (350) abbreviates:

UnionOf (z,x,y) ≡df Class(z)&Class(x)&Class(y)&∀w(w ∈ z ≡ w ∈ x∨w ∈ y)

Since the definiens of UnionOf (z,x,y) includes the conjuncts Class(x) and Class(y),
it follows that (exercise):

�∀z((Class(z)&UnionOf (z,x,y)) ≡ (Class(z)&Class(x)&Class(y)&UnionOf (z,x,y)))

From this last result and (ξ), it follows by (149.3) that:

ız(Class(z) & Class(x) & Class(y) & UnionOf (z,x,y))↓

So by definition (ϑ) and the theories of definition and identity, (x∪ y)↓. Hence
by theorem (145.2)?:

Class(x∪ y) & Class(x) & Class(y) & UnionOf (x∪ y,x,y)

So by definition of UnionOf (350), the last conjunct implies:

∀z(z ∈ x∪ y ≡ (z ∈ x∨ z ∈ y)) ./

(357.1) If we eliminate the restricted variables, then by GEN, we have to show:
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Class(x)→∃y(Class(y) & ComplementOf (y,x))

Assume Class(x), to find a witness to the consequent. By theorem (312.2), there
is a property, say P , such that ExtensionOf (x,P ). So consider the property P , i.e.,
[λz¬P z], which we know exists by (39.2). Then by the Fundamental Theorem
for Natural Classes and Logical Sets (318), we know:

∃y(Class(y) &∀z(z ∈ y ≡ P z))

Suppose a is an arbitrary such object, so that we know Class(a) and:

(ϑ) ∀z(z ∈ a ≡ P z)

To see a that is our witness, it remains only to show ∀z(z ∈ a ≡ z 6∈ x), by def-
inition (356). Since z isn’t free in any assumption, it suffices by GEN to show
z ∈ a ≡ z 6∈ x. We do this as follows:

z ∈ a ≡ P z by (ϑ)
≡ [λz¬P z]z by definition P , Rule =df I, and Rule =df E

≡ ¬P z by Rule
−→
β C (184.1.a) and (184.1.b)

≡ ¬z ∈ x by (317.1), ExtensionOf (x,P )
≡ z 6∈ x by convention for 6∈ ./

(357.2) By definition of the uniqueness quantifier, our theorem asserts:

∀c∃c′(ComplementOf (c′, c) &∀c′′(ComplementOf (c′′, c)→ c′′ =c′))

Eliminating the restricted variables:

∀x(Class(x)→∃y(Class(y) & ComplementOf (y,x) &
∀z(Class(z) & ComplementOf (z,x)→ z=y)))

By GEN, we assume Class(x), and find a witness to the consequent. But we
know, by (357.1), that since Class(x), ∃y(Class(y) & ComplementOf (y,x)). Sup-
pose a is such an object so that we know Class(a) and, by definition of Comple-
mentOf (356):

(ϑ) ∀w(w ∈ a ≡ w 6∈ x)

To see that a is our witness, it remains to show Class(z)&ComplementOf (z,x)→
z=a, by GEN. So assume Class(z) and ComplementOf (z,x). Then again by defi-
nition of ComplementOf (356):

(ξ) ∀w(w ∈ z ≡ w 6∈ x)

Hence by properties of the biconditional, (ϑ) and (ξ) imply ∀w(w ∈ z ≡ w ∈ a).
So by the principle of extensionality (343), z=a. ./

(358)? If we eliminate the restricted variables and apply the Rule of Actual-
ization to theorem (357.2), we know:
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A∀x(Class(x)→∃!y(Class(y) & ComplementOf (y,x)))

By the ?-theorem established at the beginning of footnote 231, it follows that:

∀x(Class(x)→ A∃!y(Class(y) & ComplementOf (y,x)))

By ∀E, it follows that:

Class(x)→ A∃!y(Class(y) & ComplementOf (y,x))

Now assume Class(x), for conditional proof. Then:

A∃!y(Class(y) & ComplementOf (y,x))

So by theorem (176.2), it follows that ıy(Class(y)&ComplementOf (y,x))↓. Hence,
by conditional proof:

Class(x)→ ıy(Class(y) & ComplementOf (y,x))↓

Since x isn’t free in any undischarged assumptions, it follows by GEN that:

∀x(Class(x)→ ıy(Class(y) & ComplementOf (y,x))↓)

So by our conventions for restricted variables, ∀c(ıc′ComplementOf (c′, c)↓). ./

(360.1) By eliminating our restricted variables and GEN, we want to show:

(Class(x) & Class(y))→∃z(Class(z) & IntersectionOf (z,x,y))

Assume Class(x) & Class(y), to find a witness to the consequent. Since x and y
are classes, there are, by (312.2), properties P andQ such that ExtensionOf (x,P )
and ExtensionOf (y,Q). Now consider the property [λzP z&Qz], which we know
exists by (39.2). By the Fundamental Theorem for Natural Classes and Logical
Sets (318), we know:

∃x(Class(x) &∀w(w ∈ x ≡ [λz P z&Qz]w))

Suppose a is an arbitrary such object, so that we know Class(a) and ∀w(w ∈ a ≡
[λzP z&Qz]w). Then to see that a is our desired witness, it remains to show, By
definition (359):

∀w(w ∈ a ≡ (w ∈ x&w ∈ y))

We leave this as an exercise. ./

(360.2) (Exercise)

(361)? (Exercise)

(363)? By our conventions for restricted variables and GEN, we want to show:

(Class(x) & Class(y))→∀z(z ∈ x∩ y ≡ (z ∈ x& z ∈ y))
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Assume Class(x) & Class(y). By our conventions for free restricted variables in
definitions-by-= (339.1), definition of ∩ (362) abbreviates:

(ϑ) x∩ y =df ız(Class(z) & Class(x) & Class(y) & IntersectionOf (z,x,y))

Independently, since Class(x) & Class(y), it follows from (361)? that:

(ξ) ız(Class(z) & IntersectionOf (z,x,y))↓

Similarly, by our conventions for free restricted variables in definitions-by-≡
(338.2), the definition of IntersectionOf (359) abbreviates:

IntersectionOf (z,x,y) ≡df Class(z)&Class(x)&Class(y)&∀w(w ∈ z ≡ w ∈ x∨w ∈ y)

Since the definiens of IntersectionOf (z,x,y) includes the conjuncts Class(x) and
Class(y), it follows that (exercise):

�∀z((Class(z) & IntersectionOf (z,x,y)) ≡
(Class(z) & Class(x) & Class(y) & IntersectionOf (z,x,y)))

From this last result and (ξ), it follows by (149.3) that:

ız(Class(z) & Class(x) & Class(y) & IntersectionOf (z,x,y))↓

So by definition (ϑ) and the theories of definition and identity, (x∩ y)↓. Hence
by theorem (145.2)?:

Class(x∩ y) & Class(x) & Class(y) & IntersectionOf (x∩ y,x,y)

So by definition of IntersectionOf (350), the last conjunct implies:

∀z(z ∈ x∪ y ≡ (z ∈ x& z ∈ y)) ./

(364.1) When we eliminate the restricted variable, our theorem becomes:

[λyϕ]↓→ ∃z(Class(z)&∀y(y ∈z ≡ ϕ)), provided ϕ has no free occurrences
of z

Assume [λy ϕ]↓, where z doesn’t occur free in ϕ. We want to find a witness to
the consequent. Now consider the following alphabetic variant of the Funda-
mental Theorem for Natural Classes and Logical Sets (318):

(ξ) ∀F∃z(Class(z) &∀y(y ∈ z ≡ Fy))

Note that (a) [λy ϕ] exists; (b) z doesn’t occur free in ϕ and so doesn’t occur
free in [λy ϕ]; and (c) any occurrences of y in ϕ are bound by the λ and so y
doesn’t occur free in [λy ϕ]. Hence, neither of the quantifiers ∃z and ∀y in (ξ)
will capture any variables if we instantiate [λy ϕ] for ∀F into (ξ). By doing so
we obtain:
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(ϑ) ∃z(Class(z) &∀y(y ∈ z ≡ [λy ϕ]y))

But it also follows from the existence of [λyϕ] that [λyϕ] ≡ ϕ is a modally strict
theorem, by β-Conversion. Hence by a Rule of Substitution, we may infer from
(ϑ) that ∃z(Class(z) &∀y(y ∈ z ≡ ϕ)). ./

(364.2) (Exercise)

(364.3) When we eliminate the restricted variable, our theorem becomes:

[λy ϕ]↓ → ız(Class(z) & ∀y(y ∈ z ≡ ϕ))↓, provided ϕ has no free occur-
rences of z

Assume [λy ϕ]↓ and that z doesn’t occur free in ϕ. Then by the necessity of
logical existence (106), �[λy ϕ]↓, and since necessity implies actuality (132):

(ϑ) A[λy ϕ]↓

Now, independently, if we apply the Rule of Actualization to theorem (364.2),
we obtain:

A([λy ϕ]↓ → ∃!z(Class(z) &∀y(y ∈z ≡ ϕ)))

This implies, by theorem (131):

(ξ) A[λy ϕ]↓ → A∃!z(Class(z) &∀y(y ∈z ≡ ϕ))

It follows from (ξ) and (ϑ) that:

A∃!z(Class(z) &∀y(y ∈z ≡ ϕ))

So by (176.2):

ız(Class(z) &∀y(y ∈z ≡ ϕ))↓

By our convention for restricted variables, ıc∀y(y ∈c ≡ ϕ)↓. ./

(368.1)? Let ϕ[y] be any y-predicable formula (365). Then if x doesn’t occur
free in ϕ, we may eliminate the restricted variables in the version of (364.3)
formulated with our conventions in (365), to obtain:

(ϑ) ıx(Class(x) &∀y(y ∈x ≡ ϕ[y]))↓

If x does occur free in ϕ, then pick some variable that is not free in ϕ, say z
(without loss of generality), and use the alphabetic variant of (ϑ) with z replac-
ing x as the bound variable in what follows. So by definition (366) and the Rule
of Identity by Definition (120.1), we obtain:

(ζ) {y |ϕ[y]} = ıx(Class(x) &∀y(y ∈x ≡ ϕ[y]))
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Since this implies {y |ϕ[y]}↓, we may instantiate {y |ϕ[y]} into (145.2)? to pro-
duce the following instance:

(ξ) {y |ϕ[y]} = ıx(Class(x) &∀y(y ∈x ≡ ϕ[y]))→
Class({y |ϕ[y]}) &∀y(y ∈ {y |ϕ[y]} ≡ ϕ[y])

Hence, (ζ) and (ξ) imply:

∀y(y ∈ {y |ϕ[y]} ≡ ϕ[y])

which suffices for the proof of our theorem by Rule ∀E. ./

(368.2)? Let ϕ[y] be any y-predicable formula (365) in which z is substitutable
for y. By applying GEN to (368.1)?, we know:

(ϑ) ∀y(y ∈ {y |ϕ[y]} ≡ ϕ[y])

Since z is substitutable for y in ϕ[y], it is substitutable for y in y ∈ {y |ϕ[y]} ≡
ϕ[y]. Moreover, all free occurrences of y in ϕ[y] become bound occurrences in
{y |ϕ[y]}. So if we instantiate (ϑ) to z, we obtain:

z ∈ {y |ϕ[y]} ≡ ϕ[y]zy

by the definition of substitutions (14). ./

(369.1)462 Let ϕ[y] be any y-predicable formula (365), so that [λy ϕ[y]]↓. Now
choose a variable, say x, that doesn’t occur free in ϕ[y]. Then, by the discussion
in Remark (367), we know that definitions (366) and (322) imply, respectively,
by our Rule of Definition by Identity:

{y |ϕ[y]} = ıx(Class(x) &∀y(y ∈x ≡ ϕ[y]))

ε[λy ϕ[y]] = ıxExtensionOf (x, [λy ϕ[y]])

Then to show {y |ϕ[y]} = ε[λy ϕ[y]], it suffices to show:

(A) ıx(Class(x) &∀y(y ∈x ≡ ϕ[y])) = ıxExtensionOf (x, [λy ϕ[y]])

To establish (A), we make use of theorem (149.3), which asserts:

ıxψ↓ &�∀x(ψ ≡ χ)→ ıxψ= ıxχ

Now if we let ψ be Class(x)&∀y(y ∈x ≡ ϕ[y]) and χ be ExtensionOf (x, [λyϕ[y]]),
then to establish (A), we have to show:

462There is an easier, non-modally strict proof of this theorem that goes by way of the Principle
of Extensionality. Since both {y |ϕ[y]} and ε[λy ϕ[y]] are classes, it suffices to show z ∈ {y |ϕ[y]} ≡
z ∈ ε[λy ϕ[y]]. But, for the → direction, if we assume z ∈ {y |ϕ[y]}, we’d have to use (368.2)? to
conclude ϕ[y]zy , and then go on to show z ∈ ε[λy ϕ[y]]. But the appeal to (368.2)? undermines the
modal strictness of the proof. The following proof is lengthy in part because it avoids (368.2)?.
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(B) ıx(Class(x) &∀y(y ∈x ≡ ϕ[y]))↓

(C) �∀x((Class(x) &∀y(y ∈x ≡ ϕ[y])) ≡ ExtensionOf (x, [λy ϕ[y]]))

But (B) has already been established as theorem, by (364.3) and our conven-
tions in (365). So it remains to show (C). By RN and GEN, it suffices to show:

(D) (Class(x) &∀y(y ∈x ≡ ϕ[y])) ≡ ExtensionOf (x, [λy ϕ[y]])

(→) Assume:

(E) Class(x) &∀y(y ∈x ≡ ϕ[y])

Then from the first conjunct of (E) it follows by definition (312.2) that:

(F) ∃G(ExtensionOf (x,G))

Suppose P is such a property, so that we know:

(G) ExtensionOf (x,P )

Then by (317.1), (G) implies:

(H) ∀y(y ∈ x ≡ P y)

But the second conjunct of (E) and the fact that [λy ϕ[y]]↓ imply, by the rel-
evant instance of β-Conversion (namely, [λy ϕ[y]]y ≡ ϕ[y]) and the Rule of
Substitution (160.2), that:

(I) ∀y(y ∈x ≡ [λy ϕ[y]]y)

So, from (H) and (I) we may conclude either of the following:

(J) ∀y(P y ≡ [λy ϕ[y]]y)
∀y([λy ϕ[y]]y ≡ P y)

One final preliminary fact is that by (312.1), (G) implies:

(K) A!x&∀F(xF ≡ ∀y(Fy ≡ P y))

Now we want to show ExtensionOf (x, [λy ϕ[y]]), i.e., by definition (312.1):

A!x& [λy ϕ[y]]↓&∀F(xF ≡ ∀y(Fy ≡ [λy ϕ[y]]y))

A!x is the first conjunct of (K). [λy ϕ[y]]↓ is already known. So by GEN, it
remains to show xF ≡ ∀y(Fy ≡ [λy ϕ[y]]y):

(→) Assume xF. From this and the second conjunct of (K), it follows that
∀y(Fy ≡ P y). But this last result and (J) jointly imply ∀y(Fy ≡ [λyϕ[y]]y).

(←) Assume ∀y(Fy ≡ [λyϕ[y]]y). From this and (J) it follows that ∀y(Fy ≡ P y).
But then by (K), we may conclude xF.
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(←) Assume ExtensionOf (x, [λyϕ[y]]). We have to show both (a) Class(x) and (b)
∀y(y ∈ x ≡ ϕ[y]). (a) Our assumption implies ∃G(ExtensionOf (x,G), and so by
definition (312.2), Class(x). (b) By (317.1), our assumption implies ∀y(y ∈ x ≡
[λy ϕ[y]]y). But since [λy ϕ[y]]↓, this implies ∀y(y ∈x ≡ ϕ[y]) by β-Conversion
and the Rule of Substitution. ./

(369.2) Gy is a y-predicable formula (365), since [λy Gy]↓ is an axiom and
hence a theorem. So, as an instance of (369.1), we know that {y |Gy} = ε[λyGy].
Now by η-Conversion (48.3), [λy Gy]=G. Hence, by Rule =E, {y |Gy} = εG. ./

(370.1) By hypothesis, ϕ[y] is y-predicable formula, and so it is a theorem that
the property [λy ϕ[y]] exists. If we eliminate the restricted variables from our
theorem, then we want to show, by GEN:

Class(x)→∃z(Class(z) &∀y(y ∈z ≡ y ∈x&ϕ[y])),
provided ϕ[y] has no free occurrences of z

Assume Class(x), to find a witness to the consequent. Then there exists a prop-
erty, say P , such that ExtentionOf (x,P ), by (312.2). So by (317.1), we know the
following:

(ϑ) ∀y(y ∈ x ≡ P y)

Now pick some variable, say w, that doesn’t occur free in ϕ[y] and consider the
property [λw Pw & [λy ϕ[y]]w]. To see that this property exists, note that by
(39.2), [λw Pw& Fw]↓, for every property F. So, since [λy ϕ[y]] exists, we can
instantiate it for F to obtain [λw Pw& [λy ϕ[y]]w]↓. Then by the Fundamental
Theorem for Natural Classes and Logical Sets (318), we therefore know:

∃z(Class(z) &∀y(y ∈ z ≡ [λw Pw& [λy ϕ[y]]w]y)

Suppose a is such an object, so that we know Class(a) and:

(A) ∀y(y ∈ a ≡ [λw Pw& [λy ϕ[y]]w]y)

To confirm that a is our desired witness, it remains only to show:

(B) ∀y(y ∈ a ≡ y ∈ x&ϕ[y])

Since [λw Pw& [λy ϕ[y]]w]↓, β-Conversion yields the modally strict fact that:

(C) [λw Pw& [λy ϕ[y]]w]y ≡ P y & [λy ϕ[y]]y

Then by a Rule of Substitution, (A) and (C) imply:

(D) ∀y(y ∈ a ≡ P y & [λy ϕ[y]]y)

But [λy ϕ[y]] also exists, and so β-Conversion also yields the modally strict
fact:
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(E) [λy ϕ[y]]y ≡ ϕ[y]

So by a Rule of Substitution, (D) and (E) imply:

(F) ∀y(y ∈ a ≡ P y &ϕ[y])

But now to show (B), it suffices to show:

(G) ∀y(P y &ϕ[y] ≡ y ∈ x&ϕ[y])

since (F) and (G) imply (B) by the properties of the quantified biconditional
(99.10). So by GEN, we need to show:

P y &ϕ[y] ≡ y ∈ x&ϕ[y]

But this follows easily from a consequence of (ϑ), namely P y ≡ y ∈ x, by
(88.4.e). ./

(370.2) (Exercise)

(371)? (Exercise)

(373)? Let ϕ[y] be any y-predicable formula in which z is substitutable for y.
If we eliminate the restricted variable from our theorem, then we have to show,
by GEN:

Class(x)→∀z(z ∈ {y | y ∈ x&ϕ[y] } ≡ (z ∈ x&ϕ[y]zy))

Assume Class(x), to find a witness to the consequent. Since x is a class, we
may instantiate it into (371)?, and if we eliminate the restricted variable in
the result by choosing some variable, say w, that doesn’t occur free in ϕ[y], we
know:

ıw(Class(w) &∀y(y ∈w ≡ y ∈ x&ϕ[y]))↓

Hence, by definition (372) and the Rule of Identity by Definition (120.1):

{y | y ∈ x&ϕ[y] } = ıw(Class(w) &∀y(y ∈w ≡ y ∈ x&ϕ[y]))

Since this implies that the class abstract is significant, it follows by (145)? that:

(ϑ) Class({y | y ∈ x&ϕ}) &∀y(y ∈ {y | y ∈ x&ϕ[y] } ≡ (y ∈ x&ϕ[y]))

By hypothesis, z is substitutable for y in ϕ[y]. Hence it is substitutable for y
in the matrix of the second conjunct of (ϑ). So as an alphabetic variant of the
second conjunct of (ϑ), we have:

∀z(z ∈ {y | y ∈ x&ϕ[y] } ≡ (z ∈ x&ϕ[y]zy)) ./

(374)? By hypothesis, ϕ[y] is a y-predicable formula. Assume Class(x). Then
we have to show:
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{y | y ∈ x&ϕ[y] } = x∩ {y |ϕ[y] }

By the Principle of Extensionality (343), it suffices to show:

∀z(z ∈ {y | y ∈ x&ϕ[y] } ≡ z ∈ x∩ {y |ϕ[y] })

By GEN, it suffices to show:

z ∈ {y | y ∈ x&ϕ[y] } ≡ z ∈ x∩ {y |ϕ[y] }

(→) Assume z ∈ {y | y ∈ x&ϕ[y] }. Then by (373)?, it follows that z ∈ x&ϕ[y]zy .
But by (368.2)?, the second conjunct is equivalent to z ∈ {y |ϕ[y] }. Hence z ∈ x&
z ∈ {y |ϕ[y] }. So by (363)?, z ∈ x∩ {y |ϕ[y] }. (←) By reversing the reasoning. ./

(375) Eliminating the restricted variable, our theorem asserts:

∀R∀x(Class(x)→∃z(Class(z) &∀y(y ∈ z ≡ ∃w(w ∈ x&Rwy))))

By GEN, we assume Class(x), to find a witness. Then ExtensionOf (x,P ), for
some P . Hence by (317.1), it follows that:

(ϑ) ∀y(y ∈ x ≡ P y)

Now consider the property [λx∃w(Pw&Rwx)], which we know exists by (39.2).
By the Fundamental Theorem for Natural Classes:

∃x(Class(x) &∀y(y ∈ x ≡ [λx ∃w(Pw&Rwx)]y))

Suppose a is such an object, so that we know Class(a) and:

(A) ∀y(y ∈ a ≡ [λx ∃w(Pw&Rwx)]y)

To see a is our desired witness, it remains only to show:

(B) ∀y(y ∈ a ≡ ∃w(w ∈ x&Rwy))

Since [λx ∃w(Pw&Rwx)]↓, β-Conversion yields the modally strict fact that:

(C) [λx ∃w(Pw&Rwx)]y ≡ ∃w(Pw&Rwy)

Then by a Rule of Substitution, (A) and (C) imply:

(D) ∀y(y ∈ a ≡ ∃w(Pw&Rwy))

But to show (B), it suffices to show:

(E) ∀y(∃w(Pw&Rwy) ≡ ∃w(w ∈ x&Rwy))

since (D) and (E) imply (B) by the properties of the quantified biconditional
(99.10). So by GEN, we need to show:

∃w(Pw&Rwy) ≡ ∃w(w ∈ x&Rwy)
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(→) Assume ∃w(Pw& Rwy). Suppose b such an individual, so that we know
P b&Rby. Instantiating b to (ϑ), we know b ∈ x ≡ P b, i.e., P b ≡ b ∈ x. Hence, by
(88.4.e), it follows that b ∈ x&Rby. So ∃w(w ∈ x&Rwy).

(←) Assume ∃w(w ∈ x & Rwy). Suppose b is such an individual, so that we
know b ∈ x&Rby. Again, instantiating to (ϑ), we know b ∈ x ≡ P b. Hence by
(88.4.e), it follows that P b&Rby. Hence, ∃w(Pw&Rwy). ./

(376) For reductio, assume:

∀x∃c∀y(y ∈ c ≡ y=x),

i.e.,

∀x∃z(Class(z) &∀y(y ∈ z ≡ y=x)

Instantiate this to an arbitrary x, so that we know:

∃z(Class(z) &∀y(y ∈ z ≡ y=x)

Now suppose a is such an object, so that we know:

(ϑ) Class(a) &∀y(y ∈ a ≡ y=x)

Class(a) implies, by definition (312.2), that ∃G(ExtensionOf (a,G)). Suppose
then that that ExtensionOf (a,P ). Then by (317.1), it follows that:

(ξ) ∀y(y ∈ a ≡ P y)

Then the 2nd conjunct of (ϑ) and (ξ) imply:

∀y(P y ≡ y=x)

By ∃I, it follows that ∃F∀y(Fy ≡ y =x). And since x was arbitrary and doesn’t
occur free in any assumption, it follows by GEN that ∀x∃F∀y(Fy ≡ y = x),
which contradicts (192.5). ./

(377.1) We have to show:

∃c∀y(y ∈ c ≡D!y & y=x)

But by (364.1), it suffices to show [λy D!y & y = x]↓. But this is an instance of
(273.13). ./

(377.2) (Exercise)

(377.3) By (377.2), we know:

∃!z(Class(z) &∀y(y ∈ z ≡D!y & y=x))

So by the Rule of Actualization:
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A∃!z(Class(z) &∀y(y ∈ z ≡D!y & y=x))

Hence by (176.2):

ız(Class(z) &∀y(y ∈ z ≡D!y & y=x))↓

So by our conventions for restricted variables, ıc∀y(y ∈ c ≡D!y & y=x))↓. ./

(377.4) (Exercise)

(379.1) A non-modally strict proof is relatively easy, but the following, modally
strict proof is more involved. AssumeA!z and¬D!z. We want to show {z }D = ∅.
We know both objects exist: {z }D exists by (378) and (377.4), and ∅ exists by
(346) and (345.3). So by definitions (378) and (346), respectively, we have to
show:

{y |D!y & y=z } = ıx(Class(x) & Empty(x))

By definition (366), we have to show:

ıx(Class(x) &∀y(y ∈ x ≡D!y & y=z)) = ıx(Class(x) & Empty(x))

To prove this by modally strict means, our proof strategy is to derive the above
from an appropriate instance of (149.2), which says that if ıxϕ↓ & A∀x(ϕ ≡
ψ)→ ıxϕ = ıxψ. So if we set:

ϕ = Class(x) &∀y(y ∈ x ≡D!y & y=z)

ψ = Class(x) & Empty(x)

then since ıxϕ↓ is already known, it remains only to show that we can derive:

A∀x(ϕ ≡ ψ)

from our assumptions that A!z and ¬D!z. By Rule CP, it suffices to show:

A!z,¬D!z ` A∀x(ϕ ≡ ψ)

Note that the following is an instance of the Rule of Actualization (RA):

If A!z,¬D!z,ϕ ` ψ, then AA!z,A¬D!z,Aϕ ` Aψ

Moreover, as an instance of Rule CP (75), we know:

If AA!z,A¬D!z,Aϕ ` Aψ, then AA!z,A¬D!z ` Aϕ→ Aψ

So, combining these two facts, the following is a valid form of reasoning:

(A) If A!z,¬D!z,ϕ ` ψ, then AA!z,A¬D!z ` Aϕ→ Aψ

And by analogous reasoning:
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(A′) If A!z,¬D!z,ψ ` ϕ, then AA!z,A¬D!z ` Aψ→ Aϕ

Our strategy now is as follows:

(B) Show A!z,¬D!z,ϕ ` ψ

(B′) Show A!z,¬D!z,ψ ` ϕ.

(C) Infer AA!z,A¬D!z ` Aϕ ≡ Aψ, from (B) and (A), (B′) and (A′), by &I and
the definition of ≡.

(D) Infer AA!z,A¬D!z ` A(ϕ ≡ ψ) from (C), by the right-to-left direction of
(139.5).

(E) Infer A!z,¬D!z ` A(ϕ ≡ ψ), from (D) and the facts that A!z ` AA!z and
D!z ` AD!z; these latter facts are consequences of left-to-right directions
of (180.8) and (273.12), and (63.10).

(F) Infer A!z,¬D!z ` ∀xA(ϕ ≡ ψ), by GEN, from (E), since x isn’t free in the
assumption A!z.

(G) Conclude A!z,¬D!z ` A∀x(ϕ ≡ ψ), from (F) and axiom (44.3).

Since steps (C) – (G) are straightforward if not explicit, it remains only to es-
tablish (B) and (B′):

(B) Assume A!z, ¬D!z, and ϕ, i.e., Class(x) &∀y(y ∈ x ≡ D!y & y=z). To show
ψ, it suffices to show Empty(x), and by definition (344), it suffices to show
¬∃y(y ∈ x). Assume, for reductio, ∃y(y ∈ x). Suppose a is such an object,
so that we know a ∈ x. Then D!a& a= z. But this last fact implies D!z.
Contradiction.

(B′) Assume A!z, ¬D!z, and ψ, i.e., Class(x) & Empty(x). To show ϕ, it suffices,
by GEN, to show y ∈ x ≡ D!y & y = z. Since x is empty, it follows by
definition (344) that ¬∃y(y ∈ x), i.e., ∀y¬(y ∈ x). (→) Hence ¬(y ∈ x) and
so y ∈ x→ D!y & y = z, by the failure of the antecedent. (←) Since ¬D!z,
it follows that ¬(D!y&y=z) on pain of contradiction. So by failure of the
antecedent, (D!y & y=z)→ y ∈ x. ./

(379.2) Assume, for reductio, ∀x∀z(x , z → {x}D , {z}D ). Now by (269), we
know:

∃x∃y(A!x&A!y & x,y &∀F(Fx ≡ Fy))

Let a and b be such objects, so that we know:

A!a&A!b& a,b&∀F(Fa ≡ Fb)
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Since a , b, it follows by our reductio assumption that {a}D , {b}D . But since
both ∀F(Fa ≡ Fb) and a,b, we also know ¬(∀F(Fa ≡ Fb)→ a,b). So by (273.7),
it follows that both ¬D!a and ¬D!b. By (379.1), these last two facts imply,
respectively, that {a}D =∅ and {b}D =∅. Hence, {a}D = {b}D . Contradiction. ./

(379.3) Assume D!z. For reductio, suppose {z}D = ∅. We know independently,
by definitions (378), (366) and (346), that:

(ϑ) {z}D = ıx(Class(x) &∀y(y ∈ x ≡ y=D z))

(ξ) ∅ = ıx(Class(x) & Empty(x))

From (ϑ), it follows by theorem (152.3) that:

A(Class({z}D ) &∀y(y ∈ {z}D ≡ y=D z))

So given our reductio hypothesis:

A(Class(∅) &∀y(y ∈ ∅ ≡ y=D z))

If we distribute the actuality operator over the conjunction and commute A
and ∀y on the second conjunct of the result, it follows a fortiori that:

∀yA(y ∈ ∅ ≡ y=D z)

Hence:

A(z ∈ ∅ ≡ z=D z)

But it follows from our initial assumption that z=D z (273.30), and so Az=D z,
by (273.24). So by (139.5):

(ζ) Az ∈ ∅

But this can’t be. From (ξ), it follows that A(Class(∅) & Empty(∅)), by theorem
(152.3). By distributing the actuality operator, it follows that AEmpty(∅). By
definition (344) and the Rule of Substitution (160.2), this implies A¬∃y(y ∈ ∅),
i.e., A∀y¬(y ∈ ∅). So by commutativity, ∀yA¬(y ∈ ∅). Hence A¬(z ∈ ∅), which
by (44.1) implies ¬Az ∈ ∅. This contradicts (ζ). ./

(379.4) AssumeD!x,D!z, and x , z. Note that if we eliminate the infix notation
for , (24), then x,z implies ¬(x=D z), by (273.19). Now for reductio, suppose
{x}D = {z}D . By applying definitions, we know:

(ϑ) {x}D = ıw(Class(w) &∀y(y ∈ w ≡ y=D x))

(ξ) {z}D = ıw′(Class(w′) &∀y(y ∈ w′ ≡ y=D z))

From (ξ), it follows by theorem (152.3) that:
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A(Class({z}D ) &∀y(y ∈ {z}D ≡ y=D z))

If we distribute the actuality operator over the conjunction and commute A
and ∀y in the second conjunct of the result, it follows a fortiori that:

∀yA(y ∈ {z}D ≡ y=D z)

Instantiating to z:

A(z ∈ {z}D ≡ z=D z)

But from D!z, it follows that z=D z (273.30), and so by (273.24), Az=E z. From
this and our last displayed result, it follows by (139.5) that :

(ζ) Az ∈ {z}D
Put (ζ) aside for the moment and note that (ϑ) implies, by theorem (152.3),
that:

A(Class({x}D ) &∀y(y ∈ {x}D ≡ y=D x))

Given our reductio hypothesis, this implies:

A(Class({z}D ) &∀y(y ∈ {z}D ≡ y=D x))

By now familiar reasoning, we can infer from this that:

A(z ∈ {z}D ≡ z=D x)

From this and (ζ), it follows that Az =D x. But this implies, by (273.24), that
z=D x, which by (273.31), implies x=D z. Contradiction. ./

(380)? Assume D!x. Clearly, {x}D↓ (exercise). Now, by GEN, we have to show
y ∈ {x}D ≡ y=x. We may therefore reason as follows:

y ∈ {x}D ≡ y ∈ {y |D!y & y=x} by definition of {x}D (378)
≡ D!y & y=x by (368.1)?
≡ y=x (→) by &E; (←) by D!x and Rule =E ./

(381.1) – (381.2) (Exercises)

(382.1) If we eliminate the restricted variables, then we have to show:

∀z(Class(z)→∃w(Class(w) &∀y(y ∈w ≡ y ∈z ∨ y=D x)))

By GEN, assume Class(z), to find a witness to the consequent. Then there is
some property, say P , such that ExtensionOf (z,P ).463 Now consider the prop-
erty [λy P y ∨ y =D x]. This property clearly exists. Then by the Fundamental
Theorem:
463It is tempting, at this point, to consider the class {y |P y ∨ y=P x} and then show it is a witness

that proves the theorem. But, then, we would have to argue by way of (368.1)?, which provides us
with the fact:

(ϑ) y ∈ {y |P y ∨ y=D x} ≡ (P y ∨ y=D x)

Though we could subsequently prove that y ∈ {y |P y ∨ y =D x} ≡ y ∈ z∨ y =D x, which by GEN and
∃I, yields the desired conclusion. But the resulting proof wouldn’t be modally strict.
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∃w(Class(w) &∀y(y ∈ w ≡ [λy P y ∨ y=D x]y))

Suppose a is an arbitrary such class. By now familiar reasoning, to show a is
our witness, it remains to show y ∈ a ≡ y ∈ z∨ y=D x. (Exercise) ./

(382.2) (Exercise)

(386.1) – (386.4) (Exercises)

(387.1) – (387.2) (Exercises)

(389.1)? – (389.2)? (Exercises)

(391) By hypothesis, ‖ is an equivalence relation with respect to lines. Then if
we eliminate the restricted variables, we have to show:

∀x∀x′((Lx&Lx′)→ (∀z([λy Ly& y ‖x]z ≡ [λy Ly& y ‖x′]z) ≡ x ‖x′)

By GEN, assume Lx and Lx′. (→) Assume:

∀z([λy Ly& y ‖x]z ≡ [λy Ly& y ‖x′]z)

Then, instantiating to x:

[λy Ly& y ‖x]x ≡ [λy Ly& y ‖x′]x

Since both [λy Ly & y ‖x] and [λy Ly & y ‖x′] exist, we can reduce both the left
and right conditions by strengthened β-Conversion and a Rule of Substitution:

(Lx& x ‖x) ≡ (Lx& x ‖x′)

But this is equivalent to (88.8.e):

Lx→ (x ‖x ≡ x ‖x′)

Since Lx by assumption, it follows that x ‖x ≡ x ‖x′. And since ‖ is, by hypoth-
esis, an equivalence relation, we know x ‖x. Hence x ‖x′.
(←) Assume x ‖x′. We want to show:

∀z([λy Ly& y ‖x]z ≡ [λy Ly& y ‖x′]z)

By GEN, it suffices to show:

[λy Ly& y ‖x]z ≡ [λy Ly& y ‖x′]z

We prove both directions:

(→) Assume [λy Ly& y ‖x]z. Then Rule
−→
β C yields both Lz and z ‖x. From the

latter, our assumption that x ‖x′, and the transitivity of ‖, it follows that
z ‖x′. Since [λy Ly& y ‖x′] exists and Lz, Rule

←−
βC yields [λy Ly& y ‖x′]z.
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(←) Assume [λy Ly & y ‖ x′]z. So by Rule
−→
βC, we know both Lz and z ‖ x′.

Independently, by the symmetry of ‖, our assumption x ‖ x′ implies that
x′ ‖ x. Hence, by the transitivity of ‖, z ‖ x. So from the existence of the
terms in question and the fact that Lz, it follows that [λy Ly & y ‖x]z, by

Rule
←−
βC. ./

(393.1) Eliminating the restricted variables, we have to show:

∀y(Ly→∃xDirectionOf (x,y))

So by GEN, assume Ly. By definition (392), we have to find a witness to:

∃x(Ly & ExtensionOf (x, [λz Lz& z ‖y])

Clearly, [λz Lz& z ‖y] exists. So ∃xExtensionOf (x, [λz Lz& z ‖y]), by (315.1). Let
a be such an object, so that we have ExtensionOf (a, [λz Lz& z ‖y]). Hence:

Ly & ExtensionOf (a, [λz Lz& z ‖y])

Then a is our witness. ./

(393.2) (Exercise)

(394) (Exercise)

(396)? (Exercise)

(397)? If we eliminate the restricted variables and apply the Rule of Actualiza-
tion to theorem (393.2), we know A∀y(Ly → ∃!xDirectionOf (x,y)). By the 2nd
of the two ?-theorems established at the beginning of footnote 231, it follows
that ∀y(Ly → A∃!xDirectionOf (x,y)). So by ∀E, Ly → A∃!xDirectionOf (x,y).
Now assume Ly, for conditional proof. Then A∃!xDirectionOf (x,y). So by
(176.2), ıxDirectionOf (x,y)↓. Hence, Ly → ıxDirectionOf (x,y)↓, by conditional
proof. Since y isn’t free in any assumption, it follows by GEN that:

∀y(Ly→ ıxDirectionOf (x,y)↓)

Employing our conventions for restricted variables: ∀u(ıxDirectionOf (x,u)↓).
./

(399)? Eliminating the restricted variables, we want to show:

∀y∀z((Ly &Lz)→ (~y=~z ≡ y ‖z))

By GEN, assume Lx and Ly. By definition (398), we know both:

~y = ıx(Ly & DirectionOf (x,y))

~z = ıx(Lz& DirectionOf (x,z))
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Since ~y and ~z both exist, it follows by (145.2)?, respectively, that:

Ly & DirectionOf (~y,y)

Ly & DirectionOf (~z,z)

It follows from the second conjuncts of the last two results, respectively, by
definition (392), that:

ExtensionOf (~y, [λw Lw&w ‖y])

ExtensionOf (~z, [λw Lw&w ‖z])

Hence, by (327.3)?, respectively:

(ϑ) ~y = ε[λw Lw&w ‖y]

(ξ) ~z = ε[λw Lw&w ‖z]

So we may now reason as follows:

~y=~z ≡ ε[λw Lw&w ‖y] = ε[λw Lw&w ‖z] by (ϑ), (ξ), Rule =E (×2)
≡ ∀x([λw Lw&w ‖y]x ≡ [λw Lw&w ‖z]x) by Basic Law V (328)?
≡ y ‖z by (391) ./

(401) (Exercise)

(403.1) – (403.2) (Exercises)

(404) (Exercise)

(406)? (Exercise)

(407)? (Exercise)

(409)? (Exercise)

(411) (Exercise)

(412.1) By ∃I, from (411) and the fact [λxy ∀F(Fx ≡ Fy)]↓. ./.

(412.2) Let Π be any binary relation term. Assume Equivalence(Π). Then it
follows from definition (410) that Π is reflexive, symmetric, and transitive. By
reflexivity, ∀xΠxx. Then Πxx, by ∀E. Hence Π↓, by axiom (39.5.a). ./

(413.1) If we eliminate the restricted variable, then by GEN, we have to show:

Equivalence(F)→ (∀w([λz Fzx]w ≡ [λz Fzy]w) ≡ Fxy)
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So assume Equivalence(F). (→) Assume ∀w([λz Fzx]w ≡ [λz Fzy]w). Instantiat-
ing to x, it follows that [λz Fzx]x ≡ [λz Fzy]x. Since both [λz Fzx] and [λz Fzx]
exist, we can reduce both the left and right conditions by β-Conversion. Hence
we may conclude Fxx ≡ Fxy. But F is, by hypothesis, an equivalence relation,
and so Fxx. Hence, Fxy. (←) Exercise. ./

(←) Let Fxy be our global assumption. We want to show ∀w([λz Fzx]w ≡
[λz Fzy]w). By GEN, it suffices to show [λz Fzx]w ≡ [λz Fzy]w:

(→) Assume [λz Fzx]w. So by Rule
−→
βC, Fwx. Since F is a transitive

relation, this last result and our global assumption imply Fwy. Since

[λz Fzy] and w exist, it follows by Rule
←−
βC that [λz Fzy]w.

(←) Assume [λz Fzy]w. So by Rule
−→
βC, Fwy. Independently, by the

symmetry of F, our global assumption Fxy implies that Fyx. Hence Fwx,

by the transitivity of F. So by Rule
←−
βC, [λz Fzx]w. ./

(413.2) – (413.3) (Exercises)

(415) (Exercise)

(416.1) – (416.2) (Exercises)

(417)? (Exercise)

(419)? If we eliminate the restricted variable, then by GEN, we have to show:

Equivalence(F)→ (x̂F = ŷF ≡ Fxy)

We reason by analogy with (399)?. By definition (418) and our conventions for
restricted variables, we know both:

x̂F = ıw(Equivalence(F) &F-AbstractionOf (w,x))

ŷF = ıw(Equivalence(F) &F-AbstractionOf (w,y))

Since x̂F and ŷF both exist, it follows by (145.2)?, respectively, that:

Equivalence(F) &F-AbstractionOf (x̂F ,x)

Equivalence(F) &F-AbstractionOf (ŷF , y)

But since both [λz Fzx] and [λz Fzy] exist, the second conjuncts of each of the
above respectively imply, by definition (414), that:

ExtensionOf (x̂F , [λz Fzx])

ExtensionOf (ŷF , [λz Fzy])

Hence, by (327.3)?, respectively:
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(ϑ) x̂F = ε[λz Fzx]

(ξ) ŷF = ε[λz Fzy]

So we may now reason as follows:

x̂F = ŷF ≡ ε[λz Fzx] = ε[λz Fzy] by (ϑ), (ξ), Rule =E
≡ ∀w([λz Fzx]w ≡ [λz Fzy]w) by Basic Law V (328)?
≡ Fxy by (413.1) ./

(422.1) – (422.4) (Exercises)

(424) (Exercise) [Hint: The proof is analogous to the proofs of theorems (296.1)
and (324.1).]

(425) By GEN, it suffices to show: F=G→ �F=G. But this is just an instance
of the necessity of identity (125.1). (This argument reprises the one in Remark
(262), in the discussion of Example (b).) ./

(426.1) By (424), we know aG is the abstract object that encodes just G:

aG = ıx(A!x&∀F(xF ≡ F=G))

Hence aG ↓. Moreover, we know by (425) that F = G is a rigid condition on
properties. So by (261.2):

A!aG &∀F(aGF ≡ F=G) ./

(426.2) Definition (421) implies:

ThinFormOf (aG,G) ≡ A!aG &G↓&∀F(aGF ≡ F=G)

By Rule ≡S of Biconditional Simplification and the fact that G↓ is an axiom, it
follows that:

ThinFormOf (aG,G) ≡ A!aG &∀F(aGF ≡ F=G)

Hence, by (426.1), ThinFormOf (aG,G). ./

(427) Assume ThinFormOf (x,G). Then by definition of ThinFormOf (421), it
follows a fortiori that ∀F(xF ≡ F =G). Instantiating to G, we have xG ≡ G=G.
But the right side is known, by the special case of Rule =I (118.2). Hence xG.
./

(429) Assume ThinFormOf (x,G). By GEN, we show Gy ≡ ParticipatesIn(y,x).
(→) Assume Gy. Then by conjoining our two assumptions and applying ∃I, it
follows that ∃F(ThinFormOf (x,F) & Fy). So by the definition of ParticipatesIn
(428), it follows that ParticipatesIn(y,x). (←) Assume ParticipatesIn(y,x). By
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definition of ParticipatesIn (428), it follows that ∃F(ThinFormOf (x,F)&Fy). As-
sume P is an arbitrary such property, so that we know both (a) ThinFormOf (x,P )
and (b) P y. From (a), it follows that xP , by (427). But our global assumption
is ThinFormOf (x,G), from which it follows by definition of ThinFormOf (421)
that ∀F(xF ≡ F =G). Hence xP ≡ P =G. Since we’ve established xP , it follows
that P =G. So from (b) it follows that Gy, by Rule =E. ./

(430) Since aG exists, we can instantiate (429) to obtain:

ThinFormOf (aG,G)→∀y(Gy ≡ ParticipatesIn(y,aG))

But we know the antecedent by (426.2). Hence:

∀y(Gy ≡ ParticipatesIn(y,aG))

By ∀E, Gx ≡ ParticipatesIn(x,aG). ./

(431) Assume Gx &Gy & x , y. Since aG exists, it follows by Rule =I (118.1)
that aG = aG. Independently, it follows from the first conjunct of our assump-
tion and (430) that Participates(x,aG). By similar reasoning from the second
conjunct of our assumption, we can derive Participates(y,aG). Hence, we have
established that:

aG=aG & Participates(x,aG) & Participates(y,aG)

Hence, ∃z(z=aG & ParticipatesIn(x,z) & ParticipatesIn(y,z)). ./

(432.1) – (432.2) (Exercises)

(433.1) By (426.2), (427), and the fact that aG exists. ./

(433.2) By the second conjunct of (426.1), we know ∀F(aGF ≡ F =G). Hence
∃H∀F(aGF ≡ F=H)), i.e., ∃!HaGH , by (127.2). ./

(436) (Exercise)

(437.1) Assume ThinForm(x). Then by definition (435.1), ∃F(ThinFormOf (x,F)).
Assume P is an arbitrary such property, so that we know ThinFormOf (x,P ).
Then by applying definition (421), it follows that A!x. ./

(437.2) Assume �∀y(A!y→ Fy) and ThinForm(x). Our second assumption im-
plies A!x, by (437.1). Independently, our first assumption and the T schema
imply that ∀y(A!y→ Fy), and so A!x→ Fx. Hence Fx. ./

(437.3) By instantiating A! for G in the left conjunct of (426.1). ./

(437.4) Assume ThinForm(x). Then by (437.1), it follows that A!x. But then by
(430), it follows that Participates(x,aA!). ./
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(437.5) Assume �∀y(A!y → Fy) and ThinForm(x). Then by (437.2), it follows
from our two assumptions that Fx. By (430), it follows that ParticipatesIn(x,aF).
./

(438.1) By (436), ThinForm(aA!). So by (437.4), ParticipatesIn(aA!,aA!). By &I
and ∃I, we’re done. ./

(438.2) By (436), ThinForm(aO!). So by (430), ∀y(O!y ≡ ParticipatesIn(y,aO!)).
Instantiating to aO!, we have: O!aO! ≡ ParticipatesIn(aO!,aO!). But by (432.2),
we know ¬O!aO!. Hence, ¬ParticipatesIn(aO!,aO!). By &I and ∃I, we’re done. ./

(440.1) For reductio, assume:

[λxThinForm(x) &¬ParticipatesIn(x,x)]↓

To simplify notation, let’s abbreviate the λ-expression as K , so that our as-
sumption is K↓. Then by (422.1), ∃xThinFormOf (x,K). Let a be such an object,
so that we know ThinFormOf (a,K). Moreover, given the definition of K and the
fact that K↓, it follows by β-Conversion that:

(ϑ) Ka ≡ ThinForm(a) &¬ParticipatesIn(a,a)

Now we can conclude our reductio if we can establish either of two contradic-
tory claims:

Ka ≡ ¬Ka

ParticipatesIn(a,a) ≡ ¬ParticipatesIn(a,a)

We’ll establish the first and leave the second as an exercise. (→) Take Ka as
a local assumption. Independently, we may appeal to (429) to infer from the
fact that ThinFormOf (a,K) that ∀y(Ky ≡ ParticipatesIn(y,a)). From this and
our local assumption it follows that ParticipatesIn(a,a). But given our local as-
sumption, it follows from (ϑ) a fortiori that ¬ParticipatesIn(a,a). Contradiction.
Hence ¬Ka.
(←) Now take ¬Ka as a local assumption. Then by (ϑ), ¬(ThinForm(a) &
¬ParticipatesIn(a,a)), i.e.,

(ξ) ThinForm(a)→ ParticipatesIn(a,a)

But from ThinFormOf (a,K) it follows that ∃G(ThinFormOf (a,G)) and so by def-
inition (435), ThinForm(a). From this and (ξ), we have ParticipatesIn(a,a). So
by definition (428), ∃G(ThinFormOf (a,G) &Ga). Let P be such a property, so
that we know both ThinFormOf (a,P ) and P a. But by (422.4), it follows from
ThinFormOf (a,P ) and ThinFormOf (a,K) that P =K . Hence, Ka. ./

(440.2) (Exercise)
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(443.1) – (443.2) (Exercise)

(443.3) (→) Assume G⇔ F. By definitions (442.1) and (442.2), we know a
fortiori:

(a) �∀x(Gx→ Fx)

(b) �∀x(Fx→ Gx)

Since H doesn’t have a free occurrence in our assumption, it suffices by GEN
to show G⇒H ≡ F⇒H :

(→) AssumeG⇒H . By (442.1), we know a fortiori thatH↓ and�∀x(Gx→
Hx). So from (b) and this latter conclusion, it follows that �∀x(Fx→Hx),
by (168.5). Since F ↓ is axiomatic, it follows that F ⇒ H by definition
(442.1).

(←) By analogous reasoning using (a).

(←) Assume ∀H(G⇒H ≡ F⇒H). By definition of⇔ (442), we have to show
both (a) G⇒ F and (b) F⇒ G. To show (a), instantiate G into our assumption,
to obtain G⇒G ≡ F⇒G. The left condition follows from the fact that⇔ is an
equivalence condition and so reflexive (443.2.a). Hence, F⇒G. To show (b),
reason analogously by instantiating our assumption to F. ./

(443.4) (Exercise)

(443.5) Before we begin, note two things. First that by Rule ≡S of Biconditional
Simplification and definition (442.1), we know the following is a modally strict
theorem:

(A) F⇒H ≡ �∀x(Fx→Hx)

Second, the following lemma holds:

(B) �∀x¬Fx → F⇒H

Proof :

1. ¬Fx→ (Fx→Hx) instance of (77.3)
2. ∀x(¬Fx→ (Fx→Hx)) from 1, by GEN
3. ∀x¬Fx→∀x(Fx→Hx) from 2, by axiom (39.3)
4. �(∀x¬Fx→∀x(Fx→Hx)) from 3, by RN
5. �∀x¬Fx→ �∀x(Fx→Hx) from 4, by K (45.1)
6. �∀x¬Fx → F⇒H from 5, by (A) and substitution

Now to prove our theorem, assume Impossible(G) & Impossible(F). Hence, we
know:
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(C) �∀x¬Gx

(D) �∀x¬Fx

Now by (443.3) and GEN, it suffices to show G⇒H ≡ F⇒H . (→) From (B)
and (D), it follows that F⇒ H . Hence, G⇒H → F⇒H , by axiom (38.1). (←)
By GEN, (B) implies ∀F∀H(�∀x¬Fx → F⇒H) by GEN. Hence instantiating
to G and H , we obtain �∀x¬Gx → G⇒H . From this and (C), it follows that
G⇒H . Hence F⇒H → G⇒H , by axiom (38.1). ./

(445.1) – (445.3) (Exercises)

(447) (Exercise)

(448) By GEN and RN, it suffices to show G⇒F → �G⇒F. So assume G⇒F.
Independently, from definition (442.1) and the facts that G↓ and F↓, the fol-
lowing is a modally strict theorem, by Rule ≡S of Biconditional Simplification
that:

(ϑ) G⇒F ≡ �∀x(Gx→ Fx)

Hence. �∀x(Gx→ Fx). So by the 4 schema, ��∀x(Gx→ Fx). Hence from (ϑ)
and a Rule of Substitution (160.2), it follows that �G⇒F. ./

(449.1) By (448) and (260.1), we know that G⇒F is a rigid condition on prop-
erties. So the following is an instance of (261.2):

y = ıx(A!x&∀F(xF ≡ G⇒F))→ (A!y &∀F(yF ≡ G⇒F))

By GEN, the fact that ΦG↓, and ∀E, it follows that:

ΦG = ıx(A!x&∀F(xF ≡ G⇒F))→ (A!ΦG &∀F(ΦGF ≡ G⇒F))

So by theorem (447), A!ΦG &∀F(ΦGF ≡ G⇒F). ./

(449.2) From (449.1) and the fact that G↓, by definition (444). ./

(452.1) Assume FormOf (x,G). By GEN, it suffices to show:

Gy ≡ ParticipatesIn
PTA

(y,x)

(→) Assume Gy. Then by conjoining our two assumptions and applying ∃I,
it follows that ∃F(FormOf (x,F) & Fy). So by the definition of ParticipatesIn

PTA

(451.1), it follows that ParticipatesIn
PTA

(y,x). (←) Assume ParticipatesIn
PTA

(y,x).
By definition of ParticipatesIn

PTA
(451.1), it follows that ∃F(FormOf (x,F) & Fy).

Assume P is an arbitrary such property, so that we know both (a) FormOf (x,P )
and (b) P y. From (a), it follows a fortiori by definition (444) that ∀F(xF ≡ P⇒
F). But we also know FormOf (x,G), from which it also follows by (444) that
∀F(xF ≡ G⇒F). By the laws of quantified biconditional, (99.11) and (99.10), it
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thus follows that ∀F(P⇒F ≡ G⇒F). But by a fact about necessary equivalence
(443.3), it follows that P ⇔ G, i.e., by (443.1), that �∀x(P x ≡ Gx). By the T
schema, ∀x(P x ≡ Gx), and by ∀E, P y ≡ Gy. But P y is already known. Hence
Gy. ./

(452.2) Assume FormOf (x,G). By GEN, it suffices to show:

yG→ ParticipatesIn
PH

(y,x)

So assume yG. Then by conjoining our two assumptions and applying ∃I, it fol-
lows that ∃F(FormOf (x,F)&yF). So by the definition of ParticipatesIn

PH
(451.2),

it follows that ParticipatesIn
PH

(y,x). ./

(454.1) Instantiate ΦG into (452.1) to obtain:

FormOf (ΦG,G)→∀y(Gy ≡ ParticipatesIn
PTA

(y,ΦG))

Then by (449.2), it follows that ∀y(Gy ≡ ParticipatesIn
PTA

(y,ΦG)). Instantiate
this result to x and we obtain: Gx ≡ ParticipatesIn

PTA
(x,ΦG). ./

(454.2) Instantiate ΦG into (452.2) to obtain:

FormOf (ΦG,G)→∀y(yG→ ParticipatesIn
PH

(y,ΦG))

Then by (449.2), it follows that, ∀y(yG → ParticipatesIn
PH

(y,ΦG)). Instantiate
this result to x and we obtain: xG→ ParticipatesIn

PH
(x,ΦG). ./

(455) Assume ParticipatesIn
PTA

(y,x). Then ∃F(FormOf (x,F) & Fy), by (451.1).
Suppose P is an arbitrary such property, so that we know both FormOf (x,P )
and P y. By GEN, it suffices to show xF → Fy. So assume xF. Then P ⇒ F, by
the established fact that FormOf (x,P ) and definition (444). So �∀y(P y → Fy),
by (442.1). Since P y is already known, it follows by now familiar reasoning
that Fy. ./

(456.1) Assume Gx&Gy & x,y. Since ΦG exists, it follows by Rule =I (118.1)
that ΦG = ΦG. Independently, it follows from the first conjunct of our assump-
tion and (454.1) that ParticipatesIn

PTA
(x,ΦG). By similar reasoning from the sec-

ond conjunct of our assumption, we can derive ParticipatesIn
PTA

(y,ΦG). Hence,
we have established that:

ΦG=ΦG & ParticipatesIn
PTA

(x,ΦG) & ParticipatesIn
PTA

(y,ΦG)

By ∃I, we’re done. ./

(456.2) (Exercise)

(457.1) By reasoning analogous to the proof of (432.1).

(457.2) By reasoning analogous to the proof of (432.2).
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(457.3) (Exercise)

(458) By instantiating G into the second conjunct of (449.1), it follows that
ΦGG ≡ G⇒G. But the right-hand side, by definition (442.1), is just �∀x(Gx→
Gx), which is easily derivable by applying GEN and then RN to the tautology
Gx→ Gx. So ΦGG. ./

(460.1) – (460.3) (Exercises)

(461.1) Instantiate the first conjunct of (449.1) to A!. ./

(461.2) By (461.1), we know A!ΦA!. It follows that ParticipatesIn
PTA

(ΦA!,ΦA!), by
(454.1). ./

(461.3) By (460.1), we know Form(ΦA!). Conjoin this with (461.2) and existen-
tially generalize. ./

(461.4) Assume A! ⇒ H . Since G isn’t free in our assumption, it suffices by
GEN to show HΦG. By definition (442), it follows from our assumption that
�∀x(A!x→Hx), and by the T schema, that ∀x(A!x→Hx). By the first conjunct
of (449.1), we know A!ΦG. Hence HΦG. ./

(461.5) (Exercise)

(461.6) Assume A! ⇒ H . By GEN, it suffices to show ¬HΦG. By (461.4), it
follows from our assumption that ∀G(HΦG), and hence HΦG. By theorem
(199.1), it follows that ¬HΦG. ./

(461.7) (Exercise)

(462.1) Assume A!⇒ H . Then by (461.4), it follows that ∀G(HΦG). But since
theorem (454.1) is modally strict, there is a modally strict proof of its instance
HΦG ≡ ParticipatesIn

PTA
(ΦG,ΦH ). Hence, by the Rule of Substitution (160.2),

∀G(ParticipatesIn
PTA

(ΦG,ΦH )). ./

(462.2) Assume G⇒H . Then by the second conjunct of (449.1), it follows that
ΦGH . So by an appropriate instance of (454.1), obtained by substituting ΦG for
x and H for G, it follows that ParticipatesIn

PH
(ΦG,ΦH ). ./

(467.2) – (467.3) (Exercises)

(468) Assume TruthValue(x). Then by (290), ∃p(TruthValueOf (x,p)). Let p1 be
such a proposition, so that we know TruthValueOf (x,p1). Hence by (286), it
follows that:

(ϑ) A!x&∀F(xF ≡ ∃q((q≡p1) & F=[λy q]))

Now since the first conjunct of (ϑ) is that A!x, it remains to show, by defini-
tion (467), that ∀F(xF → Propositional(F)). By GEN, it suffices to show xF →
Propositional(F). So assume xF. Then by the second conjunct of (ϑ) it follows
that:
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∃q((q≡p1) & F=[λy q])

It follows a fortiori that ∃q(F=[λy q]), for which ∃p(F = [λy p]) is an alphabetic
variant. So Propositional(F), by definition (275). ./

(469.1) (→) Suppose Situation(x). Then, by the definition of Situation (467),
we know:

(ϑ) A!x&∀F(xF→∃p(F=[λy p]))

To show �(ϑ), it suffices to show that both conjuncts of (ϑ) are necessary, by
right-to-left direction of theorem (158.3), i.e., by the fact that (�ϕ & �ψ) →
�(ϕ&ψ). But the first conjunct of (ϑ), i.e., A!x, implies �A!x, by (180.2). And
the second conjunct of (ϑ) also implies its own necessity, by (281.2). (←) Exer-
cise. ./

(469.2) – (469.3) (Exercises)

(469.4) (→) Assume ASituation(x). Independently, since the left-to-right direc-
tion of (469.1) is Situation(x)→ �Situation(x), it follows by RA that:

A(Situation(x)→ �Situation(x))

So by theorem (131):

ASituation(x)→ A�Situation(x)

Hence, A�Situation(x), given our assumption. So �Situation(x), by (46.2). And
thus Situation(x), by the T schema. (←) Assume Situation(x). Then by (469.1),
�Situation(x). So by (132), ASituation(x). ./

(469.5) As noted in the text, this can be proved using the Rule of Modal Strict-
ness (173) from the fact that Situation(⊥) (which we mentioned was derivable
at the end of (468)) and the fact that Situation(x) is modally collapsed (which is
derivable from (469.1)). But what follows is a proof without the Rule of Modal
Strictness.

By definition (467), we have to show:

A!◦p&∀F(◦pF→ Propositional(F))

By theorem (296.1), we know:

◦p = ıx(A!x&∀F(xF ≡ ∃q((q≡p) & F=[λy q])))

By (255), it follows that A! ◦ p. So it remains to show ◦pF → Propositional(F),
by GEN. Assume ◦pF. By definition (275), we have to show ∃p(F = [λy p]).
Independently, in the solution to the Exercise in (299) – see footnote 197 – we
established that:
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◦pF ≡ A∃q((q≡p) &F=[λy q])

Hence A∃q((q≡p) & F = [λy q]). A fortiori, A∃q(F = [λy q]) (exercise). So by by
(139.10), ∃qA(F = [λy q]). Suppose q1 is such a proposition, so that we know
A(F = [λy q1]). But by the right-to-left direction of (175.1), it follows that F =
[λy q1]. Hence ∃p(F=[λy p]). ./

(469.6) (Exercises)

(469.7) As noted in the text, this can be proved using the Rule of Modal Strict-
ness (173) from the fact that Situation(⊥), which we mentioned was derivable
at the end of (468), and the fact that Situation(x) is modally collapsed, which is
derivable from (469.1).

But here is a proof without the Rule of Modal Strictness: By definition
(467), we have to show:

A!⊥&∀F(⊥F→ Propositional(F))

By definition of ⊥ (302.2) and (255), it follows that A!⊥. So, by GEN, it re-
mains to show ⊥F → Propositional(F). Assume ⊥F. By definition (275), we
have to show ∃p(F=[λy p]). By (258.1) and the definition of ⊥, we know ⊥F ≡
A∃p(¬p& F = [λy p]). Hence A∃p(¬p& F = [λy p]). A fortiori, A∃p(F = [λy p])
(exercise). So ∃pA(F = [λy p]), by (139.10). Suppose q1 is such a proposition,
so that we know A(F = [λy q1]). But by the right-to-left direction of (175.1), it
follows that F=[λy q1]. Hence ∃p(F=[λy p]). ./

(471) Assume Situation(x). (→) Assume x |= p. Then it follows a fortiori from
definition (470) that xΣp. From this it follows from definition (295) that x[λyp].
(←) Assume x[λy p]. So by definition (295), it follows that:

xΣp ≡ x[λy p]

So from this and our local assumption it follows that xΣp. From our global
assumption that Situation(x) and this last result, it follows, by definition (470),
that x |= p. ./

(473.1) If we eliminate the restricted variable, we have to prove: Situation(x)→
(x |= p ≡ �x |= p). So assume Situation(x).

(→) Assume x |= p. Then by (471), it follows that x[λy p]. Since this is an
encoding formula, axiom (51) applies and yields:

(ϑ) �x[λy p]

But note also that theorem (471) is modally strict, and so by Rule RM, it im-
plies:

�Situation(x)→ �((x |= p) ≡ x[λy p])
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But our global assumption is that Situation(x), which implies �Situation(x), by
(469.1). Hence:

(ξ) �((x |= p) ≡ x[λy p])

But from (ξ) and (ϑ), it follows that �x |= p, by a version of (158.6).

(←) By the T schema. ./

[Note: In light of Remark (472), and our previous discussions of reasoning with
restricted variables in (340) and (341.2), we may use our the rigid restricted
variable s to simplify the reasoning in the left-to-right direction, as follows.
(→) Assume s |= p. Then by (471), s[λy p]. So by axiom (51), �s[λy p]. But
since the antecedent of (471) is, by (469.1), necessarily true if true, we can
independently derive, using restricted variables, �((s |= p) ≡ s[λy p]) (exercise).
Hence �s |= p.]

(473.2) – (473.4) (Exercises)

(473.5) Theorem (473.2) is that ♦s |= p ≡ s |= p. So by a classical tautology
(88.4.b), ¬♦s |= p ≡ ¬s |= p. Independently, as an instance of (162.1), we know
�¬s |=p ≡ ¬♦s |=p. So by transitivity, �¬s |=p ≡ ¬s |=p, and by commutativity,
¬s |=p ≡ �¬s |=p. ./

(474) (→) Exercise. (←) Assume ∀p(s |= p ≡ s′ |= p). Since both s and s′ are situ-
ations, it follows that they are abstract objects, by definition (467). By (245.2),
it suffices to show that s and s′ encode the same properties:

(→) Assume sF. Then since s is a situation, it follows that ∃p(F = [λy p]),
by definitions (467) and (275). Suppose p1 is an arbitrary such proposi-
tion, so that we know F = [λy p1]. So s[λy p1] and by (471), s |= p1. But
our initial hypothesis is that the same propositions are true in s and s′.
So s′ |= p1. Hence by (471), s′[λy p1]. So s′F.

(←) By analogous reasoning. ./

(476.1) (Exercise)

(476.2) Assume s E s′ and s , s′. For reductio, assume s′ E s. From the as-
sumption that s E s′, it follows that ∀p(s |= p → s′ |= p), by definition (475).
Similarly, from the reductio assumption, it follows that ∀p(s′ |= p → s |= p).
Hence, ∀p(s |= p ≡ s′ |= p). So by theorem (474), s = s′. Contradiction. ./

(476.3) Assume (a) s E s′ and (b) s′ E s′′. To show s E s′′, assume s |= p. From
this and (a), it follows by definition of E (475) that s′ |= p. From this and (b), it
follows by (475) that s′′ |= p. ./

(477.1) (→) Exercise. (←) By exportation (88.7.a), the anti-symmetry of E
(476.2) becomes sEs′→ (s,s′→¬(s′Es)). By contraposition of the consequent,
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we get sE s′→ (s′E s→ s=s′). So by importation (88.7.b), (sE s′ & s′E s)→ s=s′.
./

(477.2) (→) Exercise. (←) We take ∀s′′(s′′ E s ≡ s′′ E s′) as a global assumption.
Given theorem (474), it suffices to show ∀p(s |= p ≡ s′ |= p). By GEN, it suffices
to show s |= p ≡ s′ |= p:

(→) Assume s |= p. By instantiating our global assumption to s, we know
sE s ≡ sE s′. But by (476.1), we know sE s. Hence sE s′. So by definition
of E (475), it follows that s′ |= p.

(←) Assume s′ |= p. Then s |= p follows by analogous reasoning once we
instantiate our global assumption to s′ and let our instance of (476.1) be
s′ E s′. ./

(479) (Exercise)

(481) Suppose ϕ is a condition on propositional properties. Then by (480), we
know there is a modally strict proof of:

(ϑ) ∀F(ϕ→ Propositional(F))

Now if we let θ be Situation(x), ψ be ∀F(xF ≡ ϕ), and χ be A!x, then the theo-
rem we have to prove has the form:

(θ&ψ) ≡ (χ&ψ)

But to prove this, it suffices to show ψ → (θ ≡ χ), in light of the right-to-left
direction of the tautology (88.8.f):

((θ&ψ) ≡ (χ&ψ)) ≡ (ψ→ (θ ≡ χ))

So we want to show ∀F(xF ≡ ϕ)→ (Situation(x) ≡ A!x). Assume:

(ζ) ∀F(xF ≡ ϕ)

(→) Assume Situation(x). But A!x follows immediately by definition (467) of
Situation.

(←) Assume A!x. In virtue of the definition (467) of Situation, it remains
only to show ∀F(xF → Propositional(F)). By GEN, we need only show: xF →
Propositional(F). So assume xF. Then by (ζ), it follows that ϕ. But if we in-
stantiate (ϑ) to F, it follows that ϕ→ Propositional(F). Hence, Propositional(F).
./

(482.1) Supposeϕ is a condition on propositional properties in which x doesn’t
occur free. Since x doesn’t occur free in ϕ, it follows by the Comprehension
Principle for Abstract Objects (53) that:
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∃x(A!x&∀F(xF ≡ ϕ))

Since ϕ is a condition on propositional properties, it follows from the modally
strict theorem (481) and the Rule of Substitution (160.2) that:

∃x(Situation(x) &∀F(xF ≡ ϕ)) ./

(482.2) (Exercise)

(483.1) Let ϕ be a condition on propositional properties in which x doesn’t
occur free. Then by (482.2), it follows that:

∃!x(Situation(x) &∀F(xF ≡ ϕ))

If apply the Rule of Actualization and then use the right-to-left direction of
(176.2), it follows that:

ıx(Situation(x) &∀F(xF ≡ ϕ))↓ ./

(483.2) Let ϕ be a condition on propositional properties in which x doesn’t
occur free. Now by applying GEN and RN to (481), we know:

(ϑ) �∀x((Situation(x) &∀F(xF ≡ ϕ)) ≡ (A!x&∀F(xF ≡ ϕ)))

Consequently, our theorem follows from (483.1) and (ϑ) by theorem (149.3). ./

(484) Suppose ϕ is a rigid condition on propositional properties in which x
isn’t free. Given our conventions for interpreting bound restricted variables,
we have to show:

y= ıx(Situation(x) &∀F(xF ≡ ϕ))→∀F(yF ≡ ϕ))

So assume:

(ϑ) y = ıx(Situation(x) &∀F(xF ≡ ϕ))

Since ϕ is, by hypothesis, a condition on propositional properties in which x
doesn’t occur free, we may appeal to the identity (483.2) and infer from (ϑ)
that:

(ξ) y = ıx(A!x&∀F(xF ≡ ϕ))

But since ϕ is also, by hypothesis, a rigid condition on properties in which x
doesn’t occur free, it follows from (ξ) by (261.2) that:

A!y &∀F(yF ≡ ϕ)

A fortiori, ∀F(yF ≡ ϕ). ./

(486.1) If we eliminate the restricted variable, then we have to show:
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∃x(Situation(x) &∀p(x |= p ≡ ϕ)), provided x doesn’t occur free in ϕ

Now let ϕ be any formula in which x doesn’t occur free and pick a property
variable that doesn’t occur free in ϕ. Without loss of generality, suppose F
doesn’t occur free in ϕ. Then, the formula ϕ & F = [λy p] is nevertheless a
condition on propositional properties (480) – it is provable, by modally strict
means, that any property that satisfies this condition is a propositional prop-
erty. Hence, by (482.1), we know:464

∃x(Situation(x) &∀F(xF ≡ ϕ&F=[λy p]))

Let a be such a situation, so that we know:

(ϑ) Situation(a) &∀F(aF ≡ ϕ&F=[λy p])

It then remains only to show ∀p(a |= p ≡ ϕ). Since we’ve not made any special
assumptions about p other than citing theorems in which p occurs free, we
need only show a |= p ≡ ϕ, by GEN. (→) Assume a |= p. Then since a is a
situation, it follows by (471) that a[λy p]. Hence, by the second conjunct of (ϑ)
and the fact that F doesn’t occur free in ϕ, it follows that ϕ& [λy p]=[λy p].465

A fortiori, ϕ. (←) Assume ϕ. Then by =I and &I, ϕ& [λy p]=[λy p]. Hence, by
the second conjunct of (ϑ), a[λyp]. So by (471) and the fact that a is a situation,
a |= p. ./

(486.2) – (486.4) (Exercises)

(488.1) By the simplified comprehension principle for situations (486.1), we
know:

∃s∀p(s |= p ≡ p,p)

If we eliminate the restricted variable, this becomes:

∃x(Situation(x) &∀p(x |= p ≡ p,p))

464If ϕ is a formula in which x doesn’t occur free but F does occur free, then pick some property
variable, say G, that doesn’t occur free in ϕ. Then the following is an instance of comprehension
for situations:

∃x(Situation(x) &∀G(xG ≡ ϕ&G=[λy p]))

Now use this alphabetic variant in the proof that follows.
465To be maximally explicit, when we instantiate a[λy p] into the universal claim ∀F(aF ≡ ϕ&F=

[λyp]), we may infer the result of substituting [λyp] for all the free occurrences of F in the formula
aF ≡ ϕ&F=[λy p]), which is:

a[λy p] ≡ ϕ[λy p]
F & [λy p]=[λy p]

Since we’ve established a[λy p], it follows that:

ϕ
[λy p]
F & [λy p]=[λy p]

But since F doesn’t occur free in ϕ, the first conjunct is just ϕ. So we reach the conclusion just
mentioned in the text, namely, ϕ& [λy p]=[λy p].
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Suppose x0 is an arbitrary such object, so that we know:

(ξ) Situtation(x0) &∀p(x0 |= p ≡ p,p)

By definition of NullSituation(x) (487.1), it remains to show:

(a) ¬∃p(x0 |= p)

(b) ∀y(Situation(y) &¬∃p(y |= p))→ y=x0)

(a) Suppose for reductio that some proposition, say q1, is such that x0 |= q1.
Then by (ξ), it follows that q1,q1, which contradicts the fact that q1 =q1.

(b) Assume Situation(y) and ¬∃p(y |= p). By (a), we know ¬∃p(x0 |= p). So it
follows that ∀p(y |= p ≡ x0 |= p), by (103.9). Since both y and x0 are situations,
it follows by (474) that y=x0. ./

(488.2) (Exercise)

(488.3) By the Rule of Actualization, (488.1) implies A∃!xNullSituation(x). So
by the right-to-left direction of (176.2), it follows that ıxNullSituation(x)↓. ./

(488.4) (Exercise)

(490.1) Assume NullSituation(x). Then by definition (487.1), we know both:

(ϑ) Situation(x)

(ξ) ¬∃p(x |= p)

Now to show �NullSituation(x), we have to show:

�(Situation(x) &¬∃p(x |= p))

By &I and (158.3), it suffices to show:

(a) �Situation(x)

(b) �¬∃p(x |= p)

(a) By the left-to-right direction of (469.1), (ϑ) implies �Situation(x).

(b) Suppose, for reductio, ¬�¬∃p(x |= p). Then by definition (18.5), ♦∃p(x |= p).
So by BF♦ (167.3), ∃p♦x |= p. Suppose p1 is an arbitrary such proposition, so
that we know ♦x |= p1. But by (ϑ), x is a situation. So by the left-to-right
direction of (473.2), it follows that x |= p1. But then, ∃p(x |= p), by ∃I, which
contradicts (ξ). ./

(490.2) (Exercise)

(490.3) Let ψ be the formula NullSituation(x). As an instance of (153.2), we
know:
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∀x(ψ→ �ψ)→ (∃!xψ→∀y(y= ıxψ→ ψ
y
x ))

By applying GEN to (490.1), we know ∀x(ψ→ �ψ). Hence:

∃!xψ→∀y(y= ıxψ→ ψ
y
x )

But (488.1) is ∃!xψ. Hence:

∀y(y= ıxψ→ ψ
y
x )

Since s
∅
↓, it follows that:

s
∅

= ıxψ→ ψs
∅

x

Hence by definition (489.1), ψs
∅

x , i.e., NullSituation(s
∅

). ./

(490.4) (Exercise)

(491.1) (Exercise)

(491.2) By GEN and the Rule of Actualization, (491.1) implies:

A∀x(NullSituation(x) ≡Null(x))

So by (149.1), it follows that:

∀x(x= ıxNullSituation(x) ≡ x= ıxNull(x))

Since s
∅
↓, it follows that:

s
∅

= ıxNullSituation(x) ≡ s
∅

= ıxNull(x)

By definition (489.1), it follows that:

s
∅

= ıxNull(x)

Hence, by definition (265.1), s
∅

= a
∅

. ./

(491.3) Before we begin, note that by theorem (266.4), we know Universal(aV ),
and so by definition (263.2), that:

(ϑ) A!aV &∀FaVF

Furthermore, by theorem (490.4), we know Trivial Situation(sV ), and so by def-
inition (487.2), that:

(ζ) Situation(sV ) &∀p(sV |= p)

Since the first conjunct of (ζ) implies A!sV , we’ve established that aV and sV
are abstract. Hence, to establish our theorem, it suffices to show:

∃F(aV F&¬sV F)



Proofs of Theorems and Metarules 1221

by (245.3). So we have to find a witness to this existential claim. If we take the
witness to be A!, we have to show:

aV A! &¬sV A!

Now the first conjunct follows immediately by instantiating the second con-
junct of (ϑ) to A!. So it remains to show the second conjunct. For reductio, sup-
pose sV A!. Now since sV is a situation, every property it encodes is a propo-
sitional property. So ∃p(A! = [λy p]). Let p1 be an arbitary such proposition, so
that we know A! = [λy p1]. Independently, it is clear that ∃xA!x&∃x¬A!x:

∃xA!x follows from the Comprehension Principle for Abstract Objects.
To show ∃x¬A!x, it suffices, by the modally strict fact (222.2) and the
Rule of Substitution (160.2), to show ∃xO!x. But this follows from (227.1),
by the T schema (45.2).

So from ∃xA!x&∃x¬A!x and our identity A! = [λy p1], it follows that

∃x([λy p1]x) &∃x(¬[λy p1]x)

But this yields a contradiction, for suppose b and c are arbitrary such an ob-
jects, so that we know both [λy p1]b and ¬[λy p1]c. Now, clearly, [λy p1]↓. So
by β-Conversion, it follows from [λy p1]b that p1 and from ¬[λy p1]c that ¬p1.
Contradiction. ./

(493) Theorem (217.1) tells us that there are contingently true propositions.
So, by definition (213), we know ∃p(p&♦¬p). Suppose q1 is such a proposition,
so that we know:

(ϑ) q1 &♦¬q1

Now consider the following instance of the simplified comprehension condi-
tions for situations (486.1):

∃s∀p(s |= p ≡ p=q1)

Suppose s1 is such a situation, so that we know:

(ξ) ∀p(s1 |= p ≡ p=q1)

We now show that s1 is a witness that proves our theorem by establishing:

(A) Actual(s1)

(B) ♦¬Actual(s1)

(A) To show Actual(s1), we have to show ∀p(s1 |= p → p). So by GEN, assume
s1 |=p. Then by (ξ), p=q1. But by (ϑ), we know q1. Hence p.

(B) Assume, for reductio, that ¬♦¬Actual(s1). Then, by (158.12), �Actual(s1),
and so �∀p(s1 |=p→ p), by definition of Actual (492) and a rule of substitution
(160.3). By CBF (167.2), it follows that ∀p�(s1 |=p→ p). So, in particular:
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(ζ) �(s1 |=q1→ q1)

But by (ξ), we know s1 |= q1 ≡ q1 = q1. Since the right side is true by the laws
of identity, it follows that s1 |= q1. So by the rigidity of of truth in a situation
(473.1), �s1 |= q1. But by the K axiom, this last conclusion and (ζ) together
imply �q1, i.e., ¬♦¬q1, which contradicts the second conjunct of (ϑ). ./

(495.1) There are a number of ways to prove this theorem. Consider, for exam-
ple, the null situation s

∅
. Since no propositions are true in s

∅
, by (490.3) and

(487.1), it follows, by failure of the antecedent, that every proposition true in
s
∅

is true.
But we can also easily construct a non-null actual situation. Consider the

following instance of simplified comprehension for situations (486.1):

∃s∀p(s |= p ≡ p)

Let s2 be an arbitrary such situation, so that we know ∀p(s2 |= p ≡ p). A fortiori,
(s2 |= p)→ p. Hence Actual(s2), by definition (492). ./

(495.2) As a witness to prove this claim, consider the trivial situation sV . By
theorem (490.4) and definition (487.2), every proposition is true in sV . Hence,
sV |= (p & ¬p), where p is any proposition you please. For reductio, sup-
pose Actual(sV ). Then by definition of Actual, p&¬p. Contradiction. Hence
¬Actual(sV ). ./

(495.3) Consider the (necessarily) false proposition ∃q(q&¬q), which we know
exists. It suffices to show that this is a witness to our theorem. And by GEN,
it suffices to show Actual(s)→ ¬s |= ∃q(q&¬q). So assume Actual(s). Then, by
definition (492):

(ϑ) ∀p(s |= p→ p)

Now suppose, for reductio, that s |= ∃q(q & ¬q). Then by (ϑ), it follows that
∃q(q&¬q). Contradiction. ./

(496) By simplified comprehension for situations (486.1):

∃s∀p(s |= p ≡ s′ |= p∨ s′′ |= p)

Let s3 be an arbitrary such situation, so that we know:

(ϑ) ∀p(s3 |= p ≡ s′ |= p∨ s′′ |= p)

By &I and ∃I, we have to show (a) s′E s3, (b) s′′E s3, and (c) ∀s′′′(s′E s′′′&s′′E s′′′→
s3 E s

′′′). (a) By definition of E (475), we have to show ∀p(s′ |= p→ s3 |= p). But
this follows a fortiori from (ϑ). (b) By analogous reasoning. (c) By GEN, we
want to show: s′ E s′′′ & s′′ E s′′′ → s3 E s

′′′. So let s′ E s′′′ and s′′ E s′′′ be our
global assumptions. Since we want to show ∀p(s3 |= p→ s′′′ |= p) and p doesn’t
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occur free in any assumption, it suffices to show (s3 |= p)→ (s′′′ |= p). So assume
s3 |= p. Then it follows from (ϑ) that s′ |= p∨s′′ |= p. But the first disjunct implies
s′′′ |= p by our first global assumption, and the second disjunct implies s′′′ |= p
by our second global assumption. So s′′′ |= p, reasoning by cases. ./

(497.1) Assume Actual(s) and s |= p. By definition of Actual (492), it follows that
p is true. Note independently that since [λy p]↓, we know by β-Conversion that
[λy p]x ≡ p. Since this last fact is a theorem, it follows by GEN that ∀x([λy p]x ≡
p). In particular, [λy p]s ≡ p. But since we’ve established p, it follows that
[λy p]s. ./

(497.2) (Exercise) [Hint: Use reasoning analogous to the proof of (496).]

(500) Assume Actual(s). Then by definition (492):

(ϑ) ∀p(s |= p→ p)

Now suppose, for reductio, that ¬Consistent(s). So by Rule ¬¬E (78.2) and the
definition of Consistent (498), there is a proposition q, say q1, such that both
s |= q1 and s |= ¬q1. Then, it follows from the first and (ϑ) that q1 and it follows
from the second and (ϑ) that ¬q1. Contradiction. ./

(501.1) (→) Assume ¬Consistent(s). By definition (498) and Rule ¬¬E (78.2), it
follows that ∃p(s |= p & s |= ¬p). Let q1 be an arbitrary such proposition, so that
we know:

(ϑ) s |= q1 & s |= ¬q1

Then by (473.1), it follows that both �s |= q1 and �s |= ¬q1. But a conjunction
of necessities is equivalent to a necessary conjunction (158.3), and so it follows
that �(s |= q1 & s |= ¬q1). Hence, by ∃I, ∃p�(s |= p& s |= ¬p), and this conclusion
remains once we discharge (ϑ) by ∃E. Thus, by the Buridan formula (168.1), it
follows that �∃p(s |= p & s |= ¬p). But we may apply the relevant instance of
the modally-strict theorem that ϕ ≡ ¬¬ϕ and a Rule of Substitution (160.2) to
obtain:

�¬¬∃p(s |= p& s |= ¬p)

Hence, by definition of Consistent (498) and a Rule of Substitution (160.3), it
follows that �¬Consistent(s). (←) Exercise. ./

(501.2) (Exercise)

(503.1) (Exercise)

(503.2) Assume ∃p((s |= p) & ¬♦p). Suppose p1 is such a proposition, so that
we know (a) s |= p1 and (b) ¬♦p1. By definitions (502) and (492), we have to
show ¬♦∀q(s |= q → q). By (162.1), it suffices to show �¬∀q(s |= q → q). But
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since there is a modally strict proof of the equivalence of ¬∀q(s |= q→ q) and
∃q(s |= q&¬q) (exercise), it suffices by the Rule of Substitution (160.2) to show
�∃q(s |= q&¬q). Now from (a) we know �s |= p1 by (473.1), and from (b) we
know �¬p1 by (162.1). So by &I and (158.3) , we know �(s |= p1 &¬p1). By ∃I,
it follows that ∃q�(s |= q&¬q). But by the Buridan formula (168.1), it follows
that �∃q(s |= q&¬q). ./

(504.1) Assume Possible(s). Then by definition (502),

(ϑ) ♦Actual(s)

Note independently that (500) is a theorem, and since the free restricted vari-
able is rigid, we can apply expanded RN (341.3.a) to obtain:

(ξ) �(Actual(s)→ Consistent(s))

Hence by an instance of the K♦ schema (158.13), it follows from (ϑ) and (ξ)
that ♦Consistent(s). But then, by (501.2), Consistent(s). ./

(504.2) [The following proof rehearses some of the discussion in Remark (499).]
Let q1 be any proposition and let s1 be the situation:

ıs∀p(s |= p ≡ p=(q1 &¬q1))

We leave it as an exercise to show s1 is identical to a strictly canonical situation,
i.e., to show, when ϕ is the formula p=(q1 &¬q1), that there are modally strict
proofs of ∀p(ϕ→ �ϕ). Hence by (486.4), it follows by definition of s1 that:

∀p(s1 |= p ≡ p=(q1 &¬q1))

So we know both that s1 |= (q1 &¬q1) and that s1 encodes no other properties.
Hence, we know both that s1 |= (q1 &¬q1) and that no other proposition is true
in s1. Consequently, there is no proposition p such that both p and ¬p are true
in s1. So by definition (498), Consistent(s1). It remains to show ¬Possible(s1).
Assume, for reductio, that Actual(s1). Then by definition of Actual (492), it
follows that q1 &¬q1, which is a contradiction. Hence, ¬Actual(s1). Since this
is a modally strict theorem, we may apply RN to obtain: �¬Actual(s1), i.e.,
¬♦Actual(s1). So, by definition (502), ¬Possible(s1). ./

(505.1) – (505.11) (Exercises)

(506.4) Assume s!s′. Then by (506.1), ∃p(s |= p & s′ |= p), say q1, so that we
know s |= q1 & s′ |= q1. But ¬♦(q1 &¬q1). Since ¬q1 = q1, ¬♦(q1 & q1). Hence:

¬♦(q1 & q1) & s |= q1 & s′ |= q1

So by one application of ∃I:

∃q(¬♦(q1 & q) & s |= q1 & s′ |= q)
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And by a second application:

∃p∃q(¬♦(p& q) & s |= p & s′ |= q)

Hence, s�s′, by (506.2). ./

(506.5) Assume s�s′. Then by (506.2), ∃p∃q(¬♦(p& q) & s |= p & s′ |= q). So by
modal negation, ∃p∃q(�¬(p& q) & s |= p & s′ |= q). A fortiori, by the T schema,
∃p∃q(¬(p& q) & s |= p & s′ |= q). Hence s|s′, by (506.3). ./

(506.6) By hypothetical syllogism, from (506.4) and (506.5). ./

(506.7) To construct witnesses to (.7), let:

• p1 be some contingently true proposition (217.1),

• q1 be some necessarily false proposition (208.2)

• s1 = ıs∀r(s |= r ≡ r=p1), i.e., p1 is the only proposition true in s1, and

• s2 = ıs∀r(s |= r ≡ r=q1), i.e., q1 is the only proposition true in s2.

Then since q1 is necessarily false, so is (p1 &q1). So we know ¬♦(p1 &q1), s1 |= p1,
and s2 |= q1, from which it follows that s1�s2. But p1 can’t be the negation of
q1 – the negation of a necessary falsehood is a necessary truth and p1 is, by hy-
pothesis, contingently true. Nor can q1 be the negation of p1 – the negation of a
contingent truth is a contingent falsehood and q1 is, by hypothesis, a necessary
falsehood. So we have ¬∃p(s |= p & s′ |= p), i.e., ¬s!s′. ./

(506.8) Use the same two witnesses constructed in the proof of (506.7): if q1

is necessarily false, then p1 & q1 is false, and so we have ¬(p1 & q1), s1 |= p1,
and s2 |= q1, from which it follows that s|s′. Yet we still have ¬s|s′, by the same
reasoning used above.

(506.9) To construct witnesses to (.9), we need to first find propositions p and
q such that ¬(p & q) and ♦(p & q). Let p2 be a contingently false proposition,
and q2 be a necessarily true proposition. So ¬(p2 & q2), since p2 is contingently
false, but ♦(p2 & q2), since p2 & q2 is true at any world where p2 is true. Then if
s3 = ıs∀r(s |= r ≡ r=p2) and s4 = ıs∀r(s |= r ≡ r=q2), we have both:

• s3|s4. Since ¬(p2 &q2), s3 |= p2, and s4 |= q2, it follows that ∃p∃q(¬(p&q) &
s3 |= p & s4 |= q).

• ¬s3�s4. Suppose, for reductio, ∃p∃q(¬♦(p&q) & s3 |= p & s4 |= q). Then let
p3 and q3 be such that ¬♦(p3 & q3) & s3 |= p3 & s4 |= q3. By the definition
of s3 and its strict canonicity, it follows that ∀r(s3 |= r ≡ r = p2). Hence
p3 =p2. And by the definition of s4 and its strict canonicity, it follows that
∀r(s4 |= r ≡ r = q2). Hence q3 = q2. But from the two identity claims just
established and the fact that ¬♦(p3 &q3), it follows that ¬♦(p2 &q2), which
contradicts the fact that ♦(p2 & q2). ./
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(507.1) Assume s!s′. Then by (506.1), ∃p(s |= p & s′ |= p), say q1, so that we
know:

(ϑ) s |= q1 & s′ |= q1

Suppose, for reductio, ∃s′′(Consistent(s′′) & sE s′′ & s′E s′′). Suppose s1 is such a
situation, so that we know:

Consistent(s1) & sE s1 & s′ E s1

So by definitions (498) and (475), we know:

(A) ¬∃p(s1 |= p& s1 |= ¬p)

(B) ∀p(s |= p→ s1 |= p)

(C) ∀p(s′ |= p→ s1 |= p)

But (B) and the first conjunct of (ϑ) imply s1 |= q1. And (C) and the second
conjunct of (ϑ) imply s1 |= q1. The latter implies s1 |= ¬q1. Hence q1 is a witness
to that establishes ∃p(s1 |= p& s1 |= p), contradicting (A). ./

(507.2) Assume s�s′. Then by (506.1):

∃p∃q(¬♦(p& q) & s |= p & s′ |= q)

Suppose p1 and q1 are such propositions, so that we know:

(ϑ) ¬♦(p1 & q1) & s |= p1 & s′ |= q1

Suppose, for reductio, ∃s′′(Possible(s′′)&sEs′′&s′Es′′). Let s1 be such a situation,
so that we know:

Possible(s1) & sE s1 & s′ E s1

So by definitions (502), (492), and (475), we know:

(A) ♦∀p(s1 |= p→ p)

(B) ∀p(s |= p→ s1 |= p)

(C) ∀p(s′ |= p→ s1 |= p)

But (B) and the second conjunct of (ϑ) imply s1 |= p1. And (C) and the third
conjunct of (ϑ) imply s1 |= q1. Since both s1 |= p1 and s1 |= ¬q1 are necessary,
we can conjoin their necessitations and then, by the principle (�ϕ &�ψ) →
�(ϕ&ψ), conclude:

(D) �(s1 |= p1 & s1 |= q1)

Now independently, we can establish:



Proofs of Theorems and Metarules 1227

(E) �(s1 |= p1 & s1 |= q1)→ �(∀p(s1 |= p→ p)→ (p1 & q1))

Proof. Assume first s1 |= p1 &s1 |= q1 and then assume ∀p(s1 |= p→ p). Our
two assumptions imply p1 &q1. So we may discharge our assumptions by
two applications of conditional proof to obtain:

(s1 |= p1 & s1 |= q1)→ (∀p(s1 |= p→ p)→ (p1 & q1))

Since we established this by modally strict means and from no assump-
tions, it follows by RN that:

�((s1 |= p1 & s1 |= q1)→ (∀p(s1 |= p→ p)→ (p1 & q1)))

Hence, (E) follows by the K axiom.

So from (D) and (E), it follows that �(∀p(s1 |= p→ p)→ (p1 &q1)). Hence by the
K♦ principle, it follows that ♦∀p(s1 |= p→ p)→ ♦(p1 & q1). But the antecedent
of this last fact is just (A). Hence ♦(p1 &q1), which contradicts the first conjunct
of (ϑ). ./

(507.3) By hypothetical syllogism, from (506.4) and (507.2). ./

(508.2) (Exercise)

(508.3) Assume (s |= p&¬s |= p)∨ (s |= p&¬s |= p). Then we prove the conse-
quent by cases. (1) Assume s |= p and ¬s |= p. Then by the latter and (508.2),
s∗ |= p. Since s∗ |= p and s |= p are both true, s∗ |= p ≡ s |= p. (2) Assume s |= p and
¬s |= p. Then by the former and (508.2), ¬s∗ |= p. Since s∗ |= p and s |= p are both
false, we again have s∗ |= p ≡ s |= p. ./

(508.4) We prove our theorem with the help of some preliminary facts. If we
apply GEN to (508.2), we know:

(A) ∀s∀p(s∗ |= p ≡ ¬s |= p)

Moreover, since the universal quantifiers of (A) commute, it follows also that:

(B) ∀p∀s(s∗ |= p ≡ ¬s |= p)

With the help of (A) and (B), we next prove two lemmata:

Lemma 1: ∀p(s∗∗ |= p ≡ ¬s∗ |= p)
Proof. By instantiating (A) to s∗.

Lemma 2: ∀p(s∗ |= p ≡ ¬s |= p)
Proof. If we instantiate (B) to q, where q is arbitrary, we obtain:

s∗ |= q ≡ ¬s |= q

Since q was arbitrary, this last result implies:
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∀q(s∗ |= q ≡ ¬s |= q)

But this is an alphabetic variant of what we’re trying to prove.

Now we may prove both directions of our theorem as follows: (→) Assume s is
classical w.r.t. double negation, i.e.,

(ϑ) ∀p(s |= p ≡ s |= p)

From (ϑ), Lemma 1, and Lemma2, we can establish s∗∗ = s by appealing to
(474). So we have to show, for an arbitrary q, that s∗∗ |= q ≡ s |= q:

s∗∗ |= q ≡ ¬s∗ |= q by Lemma 1
≡ ¬¬s |= q by Lemma 2
≡ s |= q by (88.3.b)
≡ s |= q by (ϑ)

(←) Assume s∗∗ = s. To show ∀p(s |= p ≡ s |= p), we may reason with respect to
an arbitrary q, as follows:

s |= q ≡ s∗∗ |= q from our assumption, by Rule =E
≡ ¬s∗ |= q by Lemma 1
≡ ¬¬s |= q by Lemma 2
≡ s |= q by (88.3.b) ./

(508.5) Assume ∀p(s |= p ≡ s |= p) and that s has a gap w.r.t. q, i.e., ¬s |= q and
¬s |= q. From the latter and (508.2), it follows that s∗ |= q. From the former and
the assumption that ∀p(s |= p ≡ s |= p), it follows that ¬s |= q. But by (508.2), we
know ∀p(s∗ |= p ≡ ¬s |= p) – see the proof of Lemma 2 in the previous theorem.
Hence s∗ |= q. So s∗ has a glut w.r.t. q. ./

(508.6) Assume ∀p(s |= p ≡ s |= p) and that s has a glut w.r.t. q, i.e., that s |= q and
s |= q. Then to show s∗ has a gap w.r.t. q, we show both ¬s∗ |= q and ¬s∗ |= q. Now
(508.2) tells us that ∀p(s∗ |= p ≡ ¬s |= p). So from the assumption that s |= q, it
follows that ¬s∗ |= q. So it remains to show ¬s∗ |= q. From the assumption that
∀p(s |= p ≡ s |= p) and the assumption that s |= q, it follows that s |= q. However,
if we instantiate (508.2) to q, then it follows that s∗ |= q ≡ ¬s |= q. Hence ¬s∗ |= q.
./

(508.7) Assume s is consistent w.r.t. double negation, and suppose, for reduc-
tio, that s!s∗. Then by definition (506.1), ∃p(s |= p& s∗ |= p). Suppose q1 is such
a proposition, so that we know s |= q1 and s∗ |= q1. By the principal fact about
s∗ (508.2), the latter implies ¬s |= q1. But since s is consistent w.r.t. double
negation, it follows that ¬s |= q1. Contradiction. ./

(508.8) Assume:
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(ϑ) ¬s!s′

(ξ) ∀p(s′ |= p ≡ s′ |= p)

To show s′ E s∗, i.e., ∀q(s′ |= q → s∗ |= q), it suffices by GEN to show s′ |= q →
s∗ |= q. So further assume:

(ζ) s′ |= q

Now it follows from (ϑ) by definition (506.1) that ¬∃p(s |= p & s′ |= p), i.e.,
∀p¬(s |= p& s′ |= p). If we instantiate this last fact to q, then we know ¬(s |= q&
s′ |= q), i.e.,

(ω) ¬s |= q∨¬s′ |= q

Now suppose, for reductio, ¬s∗ |= q. Then by (508.2), ¬¬s |= q. From this and
(ω), it follows that ¬s′ |= q. But (ξ) and (ζ) jointly imply s′ |= q. Contradiction.
./

(511.1) Assume ∀p(s |= p ≡ p). By GEN, it suffices to show (s |= ¬q) ≡ ¬s |= q.
Now the following are instances of our assumption:

(ϑ) s |= q ≡ q

(ξ) s |= ¬q ≡ ¬q

It follows from (ϑ) by (88.4.b) that ¬s |= q ≡ ¬q, i.e., ¬q ≡ ¬s |= q. Hence from
(ξ) and this conclusion it follows that (s |= ¬q) ≡ ¬s |= q. ./

(511.2) Assume ∀p(s |=p ≡ p). Now the following are instances of our assump-
tion:

(ϑ) s |=q ≡ q

(ξ) s |=r ≡ r

(ζ) (s |= (q→ r)) ≡ (q→ r)

By two applications of GEN, it suffices to show s |= (q→ r) ≡ ((s |= q)→ (s |= r)).
(→) Assume both s |= (q→ r) and s |= q, to show s |= r. By the first and (ζ), q→ r.
By the second and (ϑ), q. Hence, r. But from r and (ξ), it follows that s |= r. (←)
Assume (s |= q)→ (s |= r). For reductio, assume ¬s |= (q→ r). Since we’re under
the global assumption ∀p(s |= p ≡ p), it follows from our reductio assumption
that s |= ¬(q→ r), by (511.1). But this implies, by our global assumption and
the fact that (¬(q→ r))↓ (104.2), that ¬(q→ r). So we know both q and ¬r. By
(ϑ), the former implies s |= q, and this implies, by our local assumption, that
s |=r. Hence, by (ξ), r. Contradiction. ./

(511.3) Assume ∀p(s |= p ≡ p). Since both ϕ ↓ and (∀αϕ)↓ (104.2), we may
instantiate them for p in our assumption to obtain:
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(ϑ) s |=ϕ ≡ ϕ

(ξ) s |= ∀αϕ ≡ ∀αϕ

(→) Assume s |= ∀αϕ. But this implies, by (ξ), that ∀αϕ. Hence ϕ, by the
Variant of ∀E (93.3). So, by (ϑ), s |= ϕ. Since α is not free in any assumption, it
follows by GEN that ∀α(s |= ϕ).

(←) Assume ∀α(s |= ϕ). Then by the Variant of ∀E (93.3), s |= ϕ. So by (ϑ), ϕ.
Since α is not free in any assumption, it follows by GEN that ∀αϕ. Hence, by
(ξ), s |= ∀αϕ. ./

(511.4) Assume ∀p(s |= p ≡ p). By GEN, we have to show (s |= �q)→ (�s |= q).
Note that the following are instances of our assumption:

(ϑ) s |= q ≡ q

(ξ) s |= �q ≡ �q

To complete our proof, assume s |= �q. Then by (ξ), �q, and by the T schema,
q. So by (ϑ), s |= q. Since truth-in-s is rigid (473.1), �s |= q. ./

(511.5) Assume ∀p(s |=p ≡ p). Then since we know there are contingently true
propositions (217.1), let r be an arbitrary such proposition, so that we know by
(213.1) that:

(A) r

(B) ♦¬r, i.e., ¬�r

Since r↓, (A) and our assumption imply s |= r. So by the rigidity of truth-in-s
(473.1):

(C) �s |= r

But, clearly, (¬�r)↓, and so (B) and our assumption imply s |= ¬�r. Hence, by
(511.1), ¬s |= �r. So by (C) and this last result: ∃q(�(s |= q) &¬(s |= �q)). ./

(511.6) This is an instance of theorem (486.1), when ϕ is the variable p. ./

(512.2) To find our witness to this existential claim, note that by theorem
(511.6), we know ∃s∀p(s |= p ≡ p). By eliminating the restricted variables,
this becomes:

∃x(Situation(x) &∀p(x |= p ≡ p))

Let a be such an object, so that we know:

(ϑ) Situation(a) &∀p(a |= p ≡ p)
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But by the T♦ schema (163.1), the right conjuct of (ϑ) implies ♦∀p(a |= p ≡ p).
Hence, we’ve established:

Situation(a) &♦∀p(a |= p ≡ p)

and so by definition (512), it follows that a is a possible world. So by now
familiar reasoning, ∃xPossibleWorld(x). ./

(512.3) (Exercise)

(513.1) We prove only the left-to-right direction since the right-to-left direc-
tion is just an instance of the T schema. (→) Assume PossibleWorld(x). By
definition (512), we know:

(ϑ) Situation(x) &♦∀p(x |= p ≡ p)

By (469.1), the first conjunct of (ϑ) implies:

(ξ) �Situation(x)

Moreover, by the 5 schema (45.3), the second conjunct of (ϑ) implies:

(ζ) �♦∀p(x |= p ≡ p)

Hence, by the right-to-left direction of (158.3), the conjunction of (ξ) and (ζ)
implies:

�(Situation(x) &♦∀p(x |= p ≡ p))

So by the definition of possible world (512) and the Rule of Substitution for
Defined Subformulas (160.3), �PossibleWorld(x). ./

(513.2) (→) It follows a fortiori from (513.1) that:

PossibleWorld(x)→ �PossibleWorld(x)

Since this result is a modally strict theorem, it follows by Rule (166.2) that
♦PossibleWorld(x)→ PossibleWorld(x). (←) (Exercise) ./

(513.3) (Exercise)

(513.4) (→) Assume APossibleWorld(x). Independently, it is a consequence of
(513.1) that PossibleWorld(x)→ �PossibleWorld(x). So by RA:

A(PossibleWorld(x)→ �PossibleWorld(x))

So by theorem (131):

APossibleWorld(x)→ A�PossibleWorld(x)
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Since the antecedent holds by assumption, it follows that A�PossibleWorld(x).
So by (46.2), �PossibleWorld(x). Hence by the T schema, PossibleWorld(x). (←)
Assume PossibleWorld(x). Then by (513.1), �PossibleWorld(x). So by (132),
APossibleWorld(x). ./

(516) (Exercise)

(517) By the conventions for rigid restricted variables (341.2) and the fact that
w is a rigid restricted variable for the rigid restriction condition PossibleWorld(x),
it is a necessary axiom that PossibleWorld(w). So by definition (512), that ♦∀p(w |=
p ≡ p). A fortiori (exercise), ♦∀p(w |= p → p). So by the definition of Actual
(492), ♦Actual(w). By the definition of Possible (502), Possible(w). ./

(518.1) By the previous theorem (517), Possible(w). So by (504.1), Consistent(w).
./

(518.2) (Exercise)

(519.1) – (519.5) (Exercises) [Cf. (473.1) – (473.5)]

(521) Since w is a possible world, it follows by definition (512) that:

(ϑ) ♦∀p(w |=p ≡ p)

To show Maximal(w) (520), we have to show ∀q(w |=q ∨ w |=¬q). So, by GEN, it
suffices to show, w |=q ∨ w |=¬q. Our proof strategy will be to:

(a) show that ♦(w |=q ∨ w |=¬q), and then

(b) appeal to various modal facts, including the rigidity of truth at (519.2),
to derive that w |=q ∨ w |=¬q from (a).

For (a), our proof strategy is to:

(i) show �(ϕ→ ψ), where ϕ is ∀p(w |=p ≡ p) and ψ is w |=q∨w |=¬q, and

(ii) use the modal law �(ϕ→ ψ)→ (♦ϕ→ ♦ψ) (158.13) to conclude ♦ψ from
(i) and (ϑ), i.e., from �(ϕ→ ψ) and ♦ϕ.

For (i), assume ∀p(w |= p ≡ p). Then both w |= q ≡ q and w |= ¬q ≡ ¬q. Since
q∨¬q, it follows by disjunctive syllogism (89.1) that w |=q∨w |=¬q. Since we’ve
now established, by conditional proof, that ∀p(w |=p ≡ p)→ (w |=q∨w |=¬q) is
a modally strict theorem, it follows by the fact that the free restricted variables
are rigid and expanded RN (341.3.a) that:

(ξ) �(∀p(w |=p ≡ p)→ (w |=q∨w |=¬q))

Now for (ii), it follows from (ξ) and (ϑ) by the modal law (158.13) that:

(ζ) ♦(w |=q∨w |=¬q)
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Now for (b), if we apply to (ζ) the modal law (162.2), which asserts that possi-
bility distributes over a disjunction, it follows that:

♦w |=q∨♦w |=¬q

But by (519.2), the left disjunct is equivalent to w |= q and the right is equiva-
lent tow |= ¬q. So, by disjunctive syllogism (89.1), it follows thatw |=q∨w |=¬q.
./

(522.1) Assume Maximal(s). Then by definition of Maximal (520):

(ϑ) ∀p(s |=p∨ s |=¬p)

We want to show �∀p(s |=p∨ s |=¬p). By the Barcan Formula (167.1), it suffices
to show ∀p�(s |=p∨ s |=¬p). By GEN, it suffices to show �(s |=p∨ s |=¬p). Now
from (ϑ), it follows by ∀E that s |=p ∨ s |=¬p. But by (473.1), the first disjunct
implies �s |=p and the second disjunct implies �s |=¬p. Hence, by disjunctive
syllogism, �s |=p∨�s |=¬p. So by (158.15), �(s |=p∨ s |=¬p). ./

(522.2) (→) By (521) and (517). (←) Before we begin, we establish a few facts
needed for the proof, the first of which is:

Maximal(s)→ (∀p(s |=p→ p)→∀p(s |=p ≡ p))

Proof. Assume (a) Maximal(s) and (b) ∀p(s |=p→ p). To show ∀p(s |=p ≡ p)
it suffices, by GEN, to show s |=p ≡ p. (→) This direction is immediate by
instantiating (b) to p. (←) Assume p. Now assume, for reductio, that
¬s |=p. Then by (a) and the definition of maximality (520), it follows that
s |=¬p. But we know, as an instance of (b) that s |=¬p→ ¬p. Hence, ¬p.
Contradiction.

Since this first fact is a modally strict theorem and the free restricted variables
are rigid, it follows by expanded RN (341.3.a) that:

�[Maximal(s)→ (∀p(s |=p→ p)→∀p(s |=p ≡ p))]

So by the K axiom, we know:

(ϑ) �Maximal(s)→ �(∀p(s |=p→ p)→∀p(s |=p ≡ p))

Now to establish our theorem, assume Maximal(s) & Possible(s). Then from
Maximal(s) and the previous theorem (522.1), it follows that�Maximal(s). From
this and (ϑ) it follows that:

�(∀p(s |=p→ p)→∀p(s |=p ≡ p))

From this, it follows by theorem (158.13) that:

(ξ) ♦∀p(s |=p→ p)→ ♦∀p(s |=p ≡ p)
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But Possible(s) by assumption, from which it follows by definition of Possible
that ♦Actual(s), and by definition of Actual that ♦∀p(s |= p → p) But from this
last fact and (ξ), it follows that ♦∀p(s |=p ≡ p), i.e., PossibleWorld(s). ./

(525) (Exercise)

(526.1) We prove that our theorem holds for any choice of n ≥ 1. For condi-
tional proof, assume both:

(ϑ) s |= p1 & . . . & s |= pn & ((p1 & . . . & pn)→ q)

(ξ) ∀p(s |= p ≡ p)

Then instantiate each of p1, . . . ,pn into (ξ), to obtain:

s |= p1 ≡ p1
...

s |= pn ≡ pn

But each left-side condition in the above biconditionals is one of the first n
conjuncts in (ϑ), and so it follows that p1 & . . . &pn. Hence, by the last conjunct
in (ϑ), it follows that q. But now instantiate q into (ξ), and we obtain s |= q ≡ q.
Hence s |= q. ./

(526.2) We prove that our theorem holds for any choice of n ≥ 1. Since the free
restricted variables in (526.1) are rigid, we can apply expanded RN (341.3.a)
to obtain:

(ϑ) �[(s |= p1 & . . . & s |= pn & ((p1 & . . . & pn)→ q))→ (∀p(s |= p ≡ p)→ s |= q)]

If we:

let ϕ1 be the formula s |= p1

· · ·
let ϕn be the formula s |= pn
let ψ be the formula (p1 & . . . & pn)→ q
let χ be the formula ∀p(s |= p ≡ p)
let θ be the formula s |= q

then (ϑ) has the form:

�((ϕ1 & . . . &ϕn &ψ)→ (χ→ θ))

By the K axiom (45.1), it follows that:

�(ϕ1 & . . . &ϕn &ψ)→ �(χ→ θ)

But since it is a modally strict fact that a necessary conjunction is equivalent to
a conjunction of necessary truths (158.3), we may use the Rule of Substitution
(160.2) to infer:
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(ξ) (�ϕ1 & . . . &�ϕn &�ψ)→ �(χ→ θ)

But if we replace the metavariables in (ξ) with the formulas that they represent,
we obtain:

(ζ) (�s |= p1 & . . . & �s |= pn & �((p1 & . . . & pn)→ q))→
�(∀p(s |= p ≡ p)→ s |= q)

But by definition (524.1), we know that it is a modally strict theorem that
�((p1 & . . . & pn) → q) is equivalent to (p1 & . . . & pn) ⇒ q. So by a Rule of
Substitution, it follows from (ζ) that:

(�s |= p1 & . . . & �s |= pn & ((p1 & . . . & pn)⇒ q))→
�(∀p(s |= p ≡ p)→ s |= q) ./

(528) By the definition of PossibleWorld, we know:

(ϑ) ♦∀p(w |= p ≡ p)

To show that n-ModallyClosed(w), fix n ≥ 1 and assume:

(ξ) w |=p1 & . . . & w |=pn & ((p1 & . . . & pn)⇒ q)

By (519.1), we can infer the necessitation of each of the first n conjuncts of (ξ),
and so by &I, we have:

�w |= p1 & . . . & �w |= pn

Conjoining this result with the last conjunct of (ξ), we have:

�w |= p1 & . . . & �w |= pn & ((p1 & . . . & pn)⇒ q)

Hence, by (526.2), it follows that:

(ζ) �(∀p(w |= p ≡ p)→ w |= q)

From (ζ) and (ϑ), it follows that: ♦w |= q, by (158.13). But by (519.2), it follows
that w |= q. So we have established, by conditional proof:

(w |=p1 & . . . & w |=pn & ((p1 & . . . & pn)⇒ q))→ w |= q

This conclusion rests on no assumptions and so the variables p1, . . . ,pn and q do
not occur free in any assumption. So our theorem follows by n+ 1 applications
of GEN. ./

(529.1) We’ve already established Maximal(w) and Consistent(w), by (521) and
(518.1), respectively. So, by definitions (520) and (498), we know, respectively,
the following:

(ϑ) ∀q(w |= q ∨ w |= ¬q)



1236

(ζ) ¬∃q(w |= q & w |= ¬q)

Now to prove our theorem, we prove both directions:

(→) Assume w |= ¬p. For reductio, suppose w |= p. Then w |= p&w |= ¬p,
and so ∃q(w |= q&w |= ¬q), contradicting (ζ).

(←) Assume ¬w |= p. Then by (ϑ), w |= ¬p. ./

(529.2) By applying GEN to (529.1), we know:

(ϑ) ∀p(w |=¬p ≡ ¬w |= p)

(→) Assume w |= p. For reductio, assume ¬¬w |= ¬p. Then w |= ¬p. By (ϑ),
¬w |= p. Contradiction. (←) Assume ¬w |= ¬p. Then by (ϑ), ¬¬w |= p. Hence
w |= p. ./

(531.1) Recall that in the proof of (512.2), we established that there was an
object, arbitrarily named a, that is a possible world. But as part of the proof,
we established (ϑ) that ∀p(a |= p ≡ p). So some possible world makes true all
and only the truths. ./

(531.2) By the definition of uniqueness, we have to show:

∃w(Actual(w) & ∀w′(Actual(w′)→ w′ =w))

Now to find our witness to this existential claim, note that by theorem (531.1),
we know ∃w∀p(s |= p ≡ p). Let w0 be such a world, so that we know:

(ϑ) ∀p(w0 |= p ≡ p)

By &I and ∃I, it suffices to show:

(A) Actual(w0)

(B) ∀w(Actual(w)→ w=w0)

To show (A), we have to show, by (492), that ∀p(w0 |=p → p). But this follows a
fortiori from (ϑ).

To show (B), it suffices to show Actual(w)→ w=w0, by GEN. Assume Actual(w)
and suppose, for reductio, w , w0. Since w and w0 are distinct possible worlds,
it follows by (516) that there is a proposition, say r, true in one but not in the
other. Without loss of generality, assume that w |= r and ¬w0 |= r. Since we
know by (A) above that w0 is a possible world, it follows by theorem (521)
that it is maximal. So w0 |= ¬r. But w is actual by hypothesis and w0 is actual
by (A) above. Hence, by definition of Actual (492), r and ¬r are both true.
Contradiction. ./

(533) By applying the Rule of Actualization to theorem (531.2), we may con-
clude:
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A∃!wActual(w)

So by (176.2), it follows that:

ıwActual(w)↓ ./

(535) By definition (302.1), we know:466

> = ıx(A!x&∀F(xF ≡ ∃q(q&F=[λy q])))

Here we use an alphabetic variant of the definition of >, to avoid a clash of
variables later. Independently, by expanding the definition (534) to eliminate
the restricted variable, we know:

wα = ıx(PossibleWorld(x) & Actual(w))

Let ϕ and ψ, respectively, be the matrices of the descriptions appearing on the
right side of the foregoing identities, so that they assert > = ıxϕ and wα = ıxψ,
respectively. So to show > = wα, it suffices to show ıxϕ = ıxψ. We’ll prove this
by an appeal to (149.3); since we know ıxϕ↓, (149.3) implies that it suffices to
show �∀x(ϕ ≡ ψ). And by GEN and RN, it suffices to show ϕ ≡ ψ.

(→) Assume ϕ, i.e., A!x and

(ϑ) ∀F(xF ≡ ∃q(q&F=[λy q]))

To show ψ, we have to show both:

(A) PossibleWorld(x)

(B) Actual(x)

(A) By definition (512), we have to show Situation(x) and ♦∀p(x |= p ≡ p). For
the former, we already know A!x, and so by definition (467), we have to show
∀F(xF → Propositional(F)). So, by GEN, assume xF. Then ∃q(q & F = [λy q]),
by (ϑ). A fortiori, ∃q(F = [λy q]). Hence Propositional(F), by definition (275).
So it remains to show ♦∀p(x |= p ≡ p). By the T♦ schema, it suffices to show
∀p(x |= p ≡ p), and by GEN, to show x |= p ≡ p. (→) Assume x |= p. Since
x is a situation, we know by (471) that x[λy p]. Note that we can instantiate
[λy p] into (ϑ); the quantifier ∃q won’t capture the free variable p. So by (ϑ),
∃q(q & [λy p] = [λy q]). Suppose q1 is such a proposition, so that we know q1

and [λy p] = [λy q1]. Then by definition of proposition identity, p= q1. Hence
p. (←) Assume p. Then p& [λy p] = [λy p]. So ∃q(q& [λy p] = [λy q]). Hence,

466I’m indebted here to Daniel West. West showed that this theorem need not be labeled as a ?-
theorem (as I had done in an earlier draft) and sent a modally strict proof as evidence. I’ve adopted
West’s proof strategy in what follows, both in outline and in many of the details.
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by (ϑ), x[λy p]. And since x is a situation, it follows that x |= p, by now familiar
reasoning.

(B) By definition (492), we have to show ∀p(x |= p → p). But this was proved as
part of the reasoning used to establish (A).

(←) Assume ψ, i.e., PossibleWorld(x) & Actual(w). To show ϕ, we have to show
both A!x and ∀F(xF ≡ ∃q(q & F = [λy q])). A!x follows from the facts that
PossibleWorld(x) → Situation(x), by definition (512), and that Situation(x) →
A!x, by definition (467). So, by GEN, it remains to show xF ≡ ∃q(q&F=[λy q]).
(→) Assume xF, to find a witness to ∃q(q & F = [λy q]). But since we’ve al-
ready established that x is a situation, it also follows by definition (467) that
∀F(xF→∃p(F=[λy p])). Since xF by assumption, it follows that ∃p(F=[λy p]).
Let q2 be such a proposition, so that we know F = [λy q2]. Then all we have
to do to show that q2 is the desired witness is to show that q2 is true. But
x[λy q2] follows from what we’ve assumed and established thus far, and since
x is a situation, we therefore know x |= q2 by now familiar reasoning. But since
x is actual, it follows by definition (492) that q2 is true. (←) Assume ∃q(q &
F=[λy q]). Then, a fortiori, ∃q(F=[λy q]). So by (ϑ), xF. ./

(536.1)? (Exercise)

(536.2)? By (305.3)?, we know p ≡ >Σp. But by a previous theorem (535),
we know > = wα . Hence, p ≡ wαΣp. But since wα is a situation, we know
wαΣp ≡wα |= p, by definition (470) and Rule ≡S. Hence, p ≡wα |= p. ./

(537.1) By definition (534) and the method of eliminating restricted w vari-
ables noted in Remark (514), we know:

wα = ıx(PossibleWorld(x) & Actual(x))

Since wα↓, it follows from the relevant instance of (152.3) that:

A(PossibleWorld(wα) & Actual(wα))

By (139.2), it follows that:

APossibleWorld(wα) &AActual(wα))

So by (513.4), the first conjunct implies PossibleWorld(wα). ./

(537.2) By (537.1) we know PossibleWorld(wα). Hence by (521), Maximal(wα).
./

(538) By the first Exercise at the end of (305)?, we know there is a modally strict
proof of Ap ≡ >Σp. But by (535), we established that > = wα . So Ap ≡ wαΣp.
But wα is a situation and so it follows from (471) that wαΣp ≡ wα |= p. So by
biconditional syllogism, Ap ≡wα |= p. ./
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(539)? Assume w ,wα but suppose, for reductio, that Actual(w). Since w and
wα are distinct possible worlds, it follows by (516) that there is a proposition q
true in one but not in the other. Without loss of generality, suppose w |= q and
¬wα |= q. From the actuality of w and w |= q, it follows that q. But by (536.2)?
and ¬wα |= q, it follows that ¬q. Contradiction. ./

(540)? (→) Assume Actual(s). To show s Ewα, it suffices, by definition (475)
and GEN, to show: s |= p→wα |= p. So assume s |= p. Since s is actual, p is true.
But by (536.2)?, all and only true propositions are true at wα. Hence, wα |= p.
(←) Assume sEwα . To show Actual(s), it suffices by definition (492) and GEN
to show: s |= p → p. So assume s |= p. Then it follows from s Ewα and the
definition of E (475) that wα |= p. But we know by (536.2)? that all and only
true propositions are true in wα . Hence, p is true. ./

(541.1)? (→) By (536.2)?, we know p ≡ wα |= p. But since [λy p]↓, we know
by β-Conversion that [λy p]wα ≡ p. So by biconditional syllogism, [λy p]wα ≡
wα |= p. Our theorem is the commuted form. ./

(541.2)? (→) Suppose p. Then since [λy p]↓, Rule
←−
βC implies [λy p]wα . But

note that [λy p]wα is a 0-ary relation term and so may be instantiated into the
universal generalization of (536.2)? to obtain:

[λy p]wα ≡wα |= [λy p]wα

Hence, wα |= [λy p]wα . (←) By reverse reasoning. ./

(542.1) As an instance of theorem (158.13), we know:

�(p→∃w(w |= p))→ (♦p→ ♦∃w(w |= p))

So to show the consequent ♦p→ ♦∃w(w |= p), it suffices to show the antecedent
�(p → ∃w(w |= p)). But by RN, it suffices to give a modally strict proof of
p→ ∃w(w |= p). So assume p and, for reductio, ¬∃w(w |= p), i.e., ∀w¬(w |= p).
Now we know, independently by (531.1), that:

∃w∀q(w |= q ≡ q)

Suppose w0 is an arbitrary such possible world, so that we know:

(ϑ) ∀q(w0 |=q ≡ q)

Since w0 is, by hypothesis, a possible world, it follows from our reductio as-
sumption that ¬w0 |= p. It also follows that w0 is maximal (521). So by the
definition of Maximal, w0 |= ¬p. Hence, by (ϑ), it follows that ¬p, which con-
tradicts our assumption that p. ./

(542.2) Our assumption is ♦∃w(w |= p) and we want to show ∃w(w |= p). If
we treat the restricted variable w in our assumption as singly restricted, our
assumption becomes:
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♦∃x(PossibleWorld(x) & x |= p)

By BF♦ (167.3), it follows from our assumption that:

∃x♦(PossibleWorld(x) & x |= p)

Let b be an arbitrary such object, yielding ♦(PossibleWorld(b)&b |= p). Since the
conjuncts of a possibly true conjunction are possible (162.3), it follows that:

(ξ) ♦PossibleWorld(b) &♦b |= p

Now by lemma (513.2), the first conjunct of (ξ) implies PossibleWorld(b). Since
PossibleWorld(b), the facts (519) about the rigidity of truth at a possible world
apply. So by (519.2), the second conjunct of (ξ) implies b |= p. Since we’ve
established that PossibleWorld(b) & b |= p, it follows that ∃x(PossibleWorld(x) &
x |= p), i.e., ∃w(w |= p). ./

(542.3) (→) Assume p. By GEN, it suffices to show ∀q(s |= q ≡ q) → s |= p.
So assume ∀q(s |= q ≡ q). As an instance of this latter assumption, we know
s |= p ≡ p. Hence s |= p. ./

(542.4) Since (542.3) is modally strict, it follows by RN that:

�(p→∀s(∀q(s |= q ≡ q)→ s |= p))

Hence by the K axiom (45.1), it follows that �p→ �∀s(∀q(s |= q ≡ q)→ s |= p).
./

(542.5) To show �∀sϕ → ∀s�ϕ, note that by our conventions for restricted
variables, the formulas �∀sϕ and ∀s�ϕ are really shorthand for the formulas
�∀sϕsx and ∀s�ϕsx, respectively, for some free variable x in ϕ. So by eliminating
the restricted variables, we have to show:

�∀x(Situation(x)→ ϕ)→∀x(Situation(x)→ �ϕ)

So assume �∀x(Situation(x)→ ϕ). By the Converse Barcan Formula (167.2), it
follows that:

(ϑ) ∀x�(Situation(x)→ ϕ)

Now to show ∀x(Situation(x)→ �ϕ), it suffices by GEN to show Situation(x)→
�ϕ. So assume Situation(x). By the rigidity of the notion of situation (469.1), it
follows that:

(ξ) �Situation(x)

Moreover, it follows by applying ∀E to (ϑ) that:

(ζ) �(Situation(x)→ ϕ)
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Hence, from (ξ) and (ζ) it follows that �ϕ, by the relevant instance of the K
axiom (45.1). ./

(542.6)467 Assume ∀w(w |= p). Now by (519.1), it is a modally strict theorem
that w |= p ≡ �w |= p. So by a Rule of Substitution, ∀w�(w |= p). But since
we’re working with bound restricted variables, the Barcan Formula holds. So
�∀w(w |= p). ./

(542.7) By the K axiom, it suffices to show �(∀w(w |= p)→ p). And by RN, it
suffices to show ∀w(w |= p)→ p by a modally strict proof. So assume ∀w(w |= p).
If we eliminate the restricted variable from our assumption, we know:

(ϑ) ∀x(PossibleWorld(x)→ x |= p)

Now by (531.2), we know a fortiori that ∃x(PossibleWorld(x) & Actual(x)). Sup-
pose a is an arbitrary such object, so that we know:

(ξ) PossibleWorld(a) & Actual(a)

From (ϑ) and the first conjunct of (ξ), it follows that a |= p. From this and the
second conjunct of (ξ), it follows by the definition of Actual that p. ./

(543.1) (→) By hypothetical syllogism from (542.1) and (542.2). (←) Assume
∃w(w |= p). Suppose w1 is such a possible world, so that we know w1 |= p.
Then by the definition of possible world, ♦∀q(w1 |= q ≡ q). By the Buridan♦
formula (168.2), it follows that ∀q♦(w1 |= q ≡ q). Hence, ♦(w1 |= p ≡ p) and, a
fortiori, ♦(w1 |= p → p). But we also know w1 |= p and so, by the rigidity of
truth at (519.1), �w1 |= p. Note that ♦(ϕ→ ψ)→ (�ϕ→ ♦ψ) is the left-to-right
direction of (162.4). So from ♦(w1 |= p→ p) and �w1 |= p, it follows that ♦p. ./

(543.2) The following proof uses (542.4) – (542.7). However, after the proof,
we provide an alternative, simpler proof that appeals to (543.1) instead. (→)
Assume �p. It follows from this and (542.4) that:

�∀s(∀q(s |= q ≡ q)→ s |= p)

From this last fact and the version of the Converse Barcan Formula restricted
to situations (542.5), it follows that:

(ξ) ∀s�(∀q(s |= q ≡ q)→ s |= p)

Now we want to show: ∀w(w |= p), i.e., ∀s(PossibleWorld(s)→ s |= p) (treating
w as doubly-restricted). By GEN, it suffices to show: PossibleWorld(s)→ s |= p.
So assume PossibleWorld(s). By the rigidity of truth at (473.2) for situations, it
suffices to show ♦s |= p. By definition of PossibleWorld (512), we know:

467The following proof that takes advantage of w as a rigid restricted variable was contributed by
Daniel West.
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♦∀q(s |= q ≡ q)

But since (ξ) holds for every situation, it follows from (ξ) in particular that:

�(∀q(s |= q ≡ q)→ s |= p)

But then, from our last two results it follows that ♦s |= p, by K♦ (158.13).

(←) By hypothetical syllogism from (542.6) and (542.7). ./

(543.2) (Alternative) By (529.1) and GEN, we know ∀w((w |= ¬q) ≡ ¬(w |= q)).
But it is an simple exercise show that ∀α(ϕ ≡ ψ) → (∃αϕ ≡ ∃αψ). Hence it
follows that:

(ϑ) ∃w(w |= ¬q) ≡ ∃w¬(w |= q)

Then we may reason as follows:

1. ♦¬q ≡ ∃w(w |= ¬q) Instance of (543.1)
2. ♦¬q ≡ ∃w¬(w |= q) From 1 and (ϑ)
3. ¬♦¬q ≡ ¬∃w¬(w |= q) From 2 and (88.4.b)
4. �q ≡ ¬∃w¬(w |= q) From 3 and Df� (158.12)
5. �q ≡ ∀w(w |= q) From 4 and (103.3) ./

(543.3) (Exercise)

(543.4) (Exercise)

(544.1) By (165.2), �p ≡ ♦�p. But by (543.1), ♦�p ≡ ∃w(w |= �p). Hence �p ≡
∃w(w |= �p). ./

(544.2) By (165.6), �p ≡ ��p. But by (543.2), ��p ≡ ∀w(w |= �p). Hence
�p ≡ ∀w(w |= �p). ./

(544.3) – (544.4) (Exercises)

(545.1) (→) Assume w |= (p&q). Since w is by (528) n-modally closed for n ≥ 1,
we know that the following unary instances of the definition (527) of n-modal
closure obtain:

∀r1∀r2((w |= r1 & (r1⇒ r2))→ w |= r2)

Substituting p& q for r1 and p for r2, we obtain:

(w |= (p& q) & ((p& q)⇒ p))→ w |= p

And substituting p& q for r1 and q for r2, we obtain:

(w |= (p& q) & ((p& q)⇒ q))→ w |= q
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Since the first conjunct of each antecedent is just our assumption and the sec-
ond conjunct of each antecedent follows by an easily proved fact (exercise), we
can derive, respectively, w |= p and w |= q. Hence (w |= p) & (w |= q).

(←) Assume (w |= p) & (w |= q). Since w is by (528) n-modally closed for n ≥ 1,
we know that the following binary instance of the definition (527) of n-modal
closure obtains:

∀r1∀r2∀r3((w |=r1 & w |=r2 & ((r1 & r2)⇒ r3))→ w |= r3)

Substituting p for r1, q for r2, and p& q for r3, we obtain:

(w |=p & w |=q & ((p& q)⇒ (p& q)))→ w |= (p& q)

Now the first two conjuncts of the antecedent follow from our initial assump-
tion, and the third conjunct of the antecedent is easily established (exercise).
It follows that w |= (p& q). ./

(545.2) (→) Assume both w |= (p→ q) and w |= p. Clearly, it is a modally strict
theorem that ((p→ q) & p)→ q. Hence by RN and the definition of necessary
implication, ((p → q) & p) ⇒ q. So by the relevant instance of the fact that
possible worlds are modally closed, it follows that w |= q.

(←) Assume (w |= p) → (w |= q). Assume, for reductio, that ¬w |= (p → q).
Then by (529.1), w |= ¬(p → q). But since it is a modally strict theorem that
¬(p→ q)→ (p&¬q) (88.1.b), it follows by RN and the definition of⇒ (524.1)
that ¬(p→ q)⇒ (p&¬q). Hence w |= (p&¬q), by the fact that possible worlds
are 1-modally closed (528). So by (545.1):

(ϑ) (w |= p) & (w |= ¬q)

The first conjunct of (ϑ) and our initial assumption jointly imply w |= q. But
the second conjunct of (ϑ) implies ¬w |= q, by (529.1). Contradiction. ./

(545.3) In what follows, we use w 6|= p to abbreviate ¬w |= p.

(→) For conditional proof, assume:

(a) w |= (p∨ q)

Suppose, for reductio, that ¬(w |= p∨w |= q), i.e.,

(b) (w 6|= p) & (w 6|= q)

Then, by (529.1), it follows from the first conjunct of (b) that:

(c) w |= ¬p

Independently, starting with disjunctive syllogism (86.4.b), we may derive ((p∨
q) &¬p)→ q by a modally strict proof. Hence, by RN:
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(d) �(((p∨ q) &¬p)→ q)

By definition of⇒ (524), (d) implies:

(e) ((p∨ q) &¬p)⇒ q

But by the fact that worlds are 2-modally closed (528), it follows from (a), (c),
and (e) that w |= q. But this contradicts the second conjunct of (b).

(←) (Exercise) ./

(545.4) (Exercise)

(545.5) If we eliminate the restricted variable, then the theorem to be proved
is: PossibleWorld(s)→ ((s |= ∀αϕ) ≡ ∀α(s |= ϕ)). Our proof strategy is:468

(A) Establish �(∀p(s |= p ≡ p) → ((s |= ∀αϕ) ≡ ∀α(s |= ϕ))), by applying, to
(511.3), our expanded RN (341.3.a) and the fact that the free restricted
variable s is rigid.

(B) Infer from (A) that ♦∀p(s |= p ≡ p) → ♦((s |= ∀αϕ) ≡ ∀α(s |= ϕ)), by the
relevant instance of K♦ (158.13).

(C) Conclude from (B) that PossibleWorld(s)→ ♦((s |= ∀αϕ) ≡ ∀α(s |= ϕ)) by
definition (512).

(D) Independently show that ♦((s |= ∀αϕ) ≡ ∀α(s |= ϕ)) → ((s |= ∀αϕ) ≡
∀α(s |= ϕ)).

(E) Our theorem then follows by hypothetical syllogism from (C) and (D).

It remains only to show (D). But to show (D), it suffices, by metarule (166.2)
when Γ is empty, to show that the following is a modally strict theorem:

(F) ((s |= ∀αϕ) ≡ ∀α(s |= ϕ))→ �((s |= ∀αϕ) ≡ ∀α(s |= ϕ))

Note that we can prove (F) by modally strict means if we establish that the two
formulas s |= ∀αϕ and ∀α(s |= ϕ) both exhibit modal collapse, i.e., that:

(ϑ) �((s |= ∀αϕ)→ �s |= ∀αϕ)

(ξ) �(∀α(s |= ϕ)→ �∀α(s |= ϕ))

For then, the relevant instance of (172.5) and the T schema (45.2) jointly imply
that (F) is a theorem. So it remains to show (ϑ) and (ξ).

(ϑ) Assume s |= ∀αϕ. Then, by (473.1), �s |= ∀αϕ. So, by conditional proof,
(s |= ∀αϕ) → �s |= ∀αϕ is a modally strict theorem. Since the free restricted

468I’m indebted to Daniel Kirchner, who developed the following proof sketch in one of our
working sessions on object theory.
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variables are rigid, we can conclude �((s |= ∀αϕ) → �s |= ∀αϕ) by applying
expanded RN (341.3.a).

(ξ) Assume ∀α(s |= ϕ). Then by ∀E, s |= ϕ. So again by (473.1), �s |= ϕ. Since
α isn’t free in our assumption, it follows by GEN that ∀α�s |= ϕ. Hence by BF
(167.1), �∀α(s |= ϕ). So, by conditional proof, it is a modally strict theorem
that ∀α(s |= ϕ)→ �∀α(s |= ϕ). Since the free restricted variables are rigid, we
can conclude �(∀α(s |= ϕ)→ �∀α(s |= ϕ)) by applying expanded RN (341.3.a).
./

(545.6) (Exercise)

(545.7) Assume w |= �p. Since �p→ p is an instance of the T schema axiom,
we may conclude by RN that �(�p → p). Since possible worlds are modally
closed, it follows that w |= p. So by (519.1), �w |= p. ./

(545.8) See footnote 288.

(545.9) Assume ♦w |= p. Assume, for reductio, that ¬w |= ♦p. By the co-
herency of possible worlds (529.1), it follows that w |= ¬♦p. But since worlds
are modally closed and ¬♦p is necessarily equivalent to �¬p, it follows that
w |= �¬p. Hence, by (545.7), �w |= ¬p. Since the coherency of possible worlds
is a modally strict theorem, it follows by a Rule of Substitution that �¬w |= p.
But this is equivalent to ¬♦w |= p. Contradiction. ./

(545.10) Since there are contingently false propositions (217.2), let r be such
a proposition, so that we know by (213.1) that ¬r & ♦r. By the T♦ schema, it
follows that ♦(¬r &♦r). So by a fundamental theorem of possible world theory
(543.1), ∃w(w |= (¬r & ♦r)). Let w1 be such a possible world, so that we know
w1 |= (¬r &♦r). Then by (545.1), it follows that:

(ϑ) w1 |= ¬r

(ξ) w1 |= ♦r

From (ϑ) and the coherence of possible worlds, it follows that ¬w1 |= r. Hence
by (519.5), �¬w1 |= r, which implies ¬♦w1 |= r. Conjoining (ξ) with this last
result yields (w1 |= ♦r) &¬♦w1 |= r. Hence, ∃w∃p((w |= ♦p) &¬♦w |= p). ./

(547.1) Assume ∃pContingentlyTrue(p). Let p1 be an arbitrary such proposi-
tion, so that, by definition, we know both p1 and ♦¬p1. Now if we instantiate
a Fundamental Theorem of Possible World Theory (543.1) to ¬p1, we know
♦¬p1 ≡ ∃w(w |= ¬p1). So from this and the second conjunct of our assumption,
it follows that ∃w(w |= ¬p1). Let w1 be such a possible world, so that we know
w1 |= ¬p1. Now suppose, for reductio, that Actual(w1). Then by definition of
Actual, every proposition true at w1 is true. Hence ¬p1, which is a contradic-
tion. So ¬Actual(w1) and, hence, ∃w¬Actual(w). ./
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(547.2) (Exercise)

(547.3) (The proof is given in the text.)

(547.4) Since ∃!wActual(w) (531.2), supposew1 is such a possible world, so that
we know Actual(w1), among other things. Independently, by (547.3), we know
∃w¬Actual(w). Let w2 be such a possible world, so that we know ¬Actual(w2).
Since w1 is actual and w2 is not, it follows that w1 , w2. Hence ∃w∃w′(w , w′).
./

(549)? Our strategy is to prove a stronger claim, �∃p(p&∀q(q→ �(p→ q))), so
that our resulte follows by the T schema.469 Then by a fundamental theorem
of world theory (543.2), it suffices to show:

∀w
(
w |= ∃p(p&∀q(q→ �(p→ q)))

)
Since GEN is valid for restricted variables, it suffices to show:

w |= ∃p(p&∀q(q→ �(p→ q)))

By (545.6), this is equivalent to:

∃p
(
w |= (p&∀q(q→ �(p→ q)))

)
Now w is a fixed, but arbitrary possible world, so let p1 be the proposition
∀p(p ≡ w |= p). To establish that p1 is a witness to the above, we have to show:

469In West’s original communication (01 January 2023), he presented a non-modally strict proof,
which goes as follows. Let p1 be the formula ∀p(p ≡ wα |= p), where wα is the actual world. Note
that p1 is a theorem and hence true (536.2)?. So it remains to show that p1 necessarily implies
every true proposition, i.e.,

∀q(q→ �(p1→ q))

By GEN, it suffices to show, q→ �(p1 → q). So assume q, to show �(p1 → q). By a fundamental
theorem of possible world theory (543.2), it suffices to show:

∀w(w |= (p→ q))

Again, by GEN (which is valid for restricted variables), it suffices to show w |= (p1 → q). By the
equivalence (545.2), it suffices to show (w |= p1)→ (w |= q). So assume w |= p1, to show w |= q. Then
by definition of p1:

w |= ∀p(p ≡ wα |= p)

Applying (545.5), this assumption is equivalent to:

∀p(w |= (p ≡ wα |= p))

Instantiating to q, it follows that:

w |= (q ≡ wα |= q)

Thus by (545.4):

(w |= q) ≡ w |= (wα |= q)

Since we’re trying to show the left side, it remains only to prove w |= (wα |= q). But q is true, by
hypothesis, and so we know wα |= q as an instance of (536.2)?. Hence, it follows that �wα |= q, by
the rigidity of truth at a world (519.1). Then by a fundamental theorem (543.2), ∀w(w |= (wα |= q)).
Instantiating to w, it follows that w |= (wα |= q). ./
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w |= (p1 &∀q(q→ �(p1→ q)))

By (545.1), it suffices to show:

(w |= p1) &w |= ∀q(q→ �(p1→ q))

We prove the conjuncts in turn.

(A) Show w |= p1. By definition of p1, we have to show w |= ∀p(p ≡ w |= p). By
(545.5), it suffices to show ∀p(w |= (p ≡ w |= p)). So by GEN, we need only show
w |= (p ≡ w |= p), i.e., by (545.4), (w |= p) ≡ w |= (w |= p). But this is an almost
immediate consequence of the following, more general, modally strict lemma:

Lemma. ∀p∀w∀w′((w |= p) ≡ w′ |= (w |= p))

Proof. By GEN, it suffices to show (w |= p) ≡ w′ |= (w |= p). (→) Assume
w |= p. Then by the rigidity of truth at a world (519.1), �w |= p. By a
fundamental theorem of world theory, ∀w′(w′ |= (w |= p)). Instantiating
to w′, we obtain w′ |= (w |= p). (←) Assume w′ |= (w |= p). Clearly then
∃w′(w′ |= (w |= p)). Hence, by a fundamental theorem of world theory,
♦w |= p. So by (519.2), w |= p.

(B) Show w |= ∀q(q→ �(p1→ q)). By (545.5), it suffices to show:

∀q
(
w |= (q→ �(p1→ q))

)
and by GEN:

w |= (q→ �(p1→ q))

But is last is equivalent, by (545.2), to:

(w |= q)→ w |= �(p1→ q)

So assume w |= q. Though we want to show w |= �(p1 → q), note that if we
show �(p1 → q), then by (544.2) we could infer ∀w′(w′ |= �(p1 → q)) and by
instantiating to w, we would then have w |= �(p1 → q). So, to show �(p1 → q),
suppose not, for reductio. Then ♦¬(p1 → q) and by classical modal reasoning,
♦(p1 & ¬q). So by a fundamental theorem of possible world theory (543.1),
∃w′(w′ |= (p1&¬q)). Supposew1 is such a world, so that we knoww1 |= (p1&¬q).
Then by (545.1), we know both w1 |= p1 and w1 |= ¬q. The first of these, by
definition of p1, comes to: w1 |= ∀p(p ≡ w |= p). So by (545.5):

∀p(w1 |= (p ≡ w |= p))

By (545.4) and a Rule of Substitution, we may infer:

(ϑ) ∀p
(
(w1 |= p) ≡ w1 |= (w |= p)

)
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Now recall the modally strict Lemma proved above. Commute the quantifiers
in that Lemma so that we have:

∀w∀w′∀p((w |= p) ≡ w′ |= (w |= p))

Instantiate the first quantifier to w and the second to w1 and we therefore
know:

(ξ) ∀p
(
(w |= p) ≡ w1 |= (w |= p)

)
Note that (ϑ) has the form ∀p(ϕ ≡ ψ) and that (ξ) has the form ∀p(χ ≡ ψ).
So we may infer something of the form ∀p(ϕ ≡ χ), i.e., ∀p((w1 |= p) ≡ w |= p).
Hence, w1 =w, by (516). But then from our earlier result that w1 |= ¬q it follows
that w |= ¬q. So by the coherency of possible worlds (529.1), ¬w |= q, which
contradicts the assumption that w |= q. ./470

(551) From the fact that [λyp]↓ (39.2) and β-Conversion, we know that [λyp]x ≡
p is a modally strict theorem. Hence, by RN, �([λy p]x ≡ p), and by (158.4),
�([λy p]x→ p) and �(p→ [λy p]x). Hence by definition of⇒ (524), we know
both:

(ϑ) [λy p]x⇒ p

(ζ) p⇒ [λy p]x

We now establish our theorem by arguing for both directions. (→) Assume
w |= p. Then by (ζ), the fact that possible worlds are 1-modally closed (528),
and the definition of n-modal closure (527), it follows that w |= [λy p]x. (←) By
analogous reasoning, from (ϑ). ./

(552.1) Assume, for reductio, ∃w∃p(w |= (p&¬p)). Letw1 and p1 be an arbitrary
such world and proposition, respectively, so that we know w1 |= (p1 & ¬p1).
Hence, ∃w(w |= (p1 &¬p1)). Then by fundamental theorem (543.1), it follows
that ♦(p1 & ¬p1), contradicting the fact, provable from (84), RN, and (162.1),
that ¬♦(p1 &¬p1). ./

(552.2) By (552.1), we know that ¬∃w∃p(w |= (p & ¬p)). This is equivalent
to ∀w¬∃p(w |= (p & ¬p)), and so by ∀E, ¬∃p(w |= (p & ¬p)). Hence, by (77.3),
∃p(w |= (p&¬p))→∀q(w |= q). ./

(553) (Exercise)

(556.1) – (556.2) (Exercises)

(558.1) – (558.2) (Exercises)

470This preserves, almost intact, the proof described in Daniel West’s personal communication of
02 January 2023.
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(558.3) By definition of ◦wp (558.1), theorem (261.2), and the fact that the
formula w |=(q ≡ p) is a rigid condition on properties (558.2). ./

(558.4) – (558.5) (Exercises)

(558.6) By definition (558.3), we know the following respective facts about ◦wp
and ◦wq:

(ϑ) ∀r(◦wp |= r ≡ w |=(r ≡ p))

(ξ) ∀r(◦wq |= r ≡ w |=(r ≡ q))

(→) Assume ◦wp=◦wq. Now (558.5) tells us that ◦wp |= p. Hence ◦wq |= p. This
implies w |= (p ≡ q) by (ξ).

(←) Assume w |= (p ≡ q). Since ◦wp and ◦wq are both situations, it suffices to
show ∀r((◦wp |= r) ≡ (◦wq |= r)), by (474). So, by GEN, we show (◦wp |= r) ≡
(◦wq |= r). (→) Assume ◦wp |= r. Then by (ϑ), we know: w |= (r ≡ p). Since we
also know w |= (p ≡ q) by assumption, it follows that w |= (r ≡ q), from the facts
that (a) �(((r ≡ p) & (p ≡ q)) → (r ≡ q)) and (b) w is 2-modally closed (528).
Hence, ◦wq |= r, by (ξ). (←) By analogous reasoning. ./

(560.1) – (560.5) (Exercises)

(561.1) By (558.3), we know:

(ϑ) ∀q(◦wp |= q ≡ w |= (q ≡ p))

Moreover, theorem (560.3) is:

(ξ) ∀q(>w |= q ≡ w |= q)

We now prove both directions of our biconditional theorem.

(→) Assume w |= p. By (474), it suffices to show ∀r(◦wp |= r ≡ >w |= r). By GEN,
it suffices to show ◦wp |=r ≡ >w |=r.

(→) Assume ◦wp |= r. Then by (ϑ), it follows that w |= (r ≡ p). But from
this last fact, our assumption that w |= p, and the easily established fact
that ((r ≡ p) & p) ⇒ r, it follows that w |= r, by the 2-modal closure of
possible worlds (528). Hence, by (560.3), >w |= r.
(←) Assume >w |= r. Then by (560.3), w |= r. But from this last fact, our
assumption that w |= p, and the easily established fact that (r & p)⇒ (r ≡
p), it follows that w |= (r ≡ p), again by the 2-modal closure of possible
worlds. It follows by (ϑ) that ◦wp |= r.

(←) Assume ◦wp = >w. Independently, by (558.5), we know ◦wp |= p. Hence,
>w |= p, by the substitution of identicals. But then by (560.3), w |= p. ./

(561.2) (Exercise)

(562.1) By applying GEN to theorem (561.1), we know:
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∀w(w |=p ≡ ◦wp=>w)

It follows from this, by a law of quantification theory (99.3), that:

(ϑ) ∀w(w |=p) ≡ ∀w(◦wp=>w)

But it is a Fundamental Theorem of Possible World Theory (543.2) that:

�p ≡ ∀w(w |=p)

From this and (ϑ), it follows that �p ≡ ∀w(◦wp =>w). ./

(562.2) – (562.4) (Exercises)

(564.1) – (564.2) (Exercises)

(566.1) (Exercise)

(566.2) By GEN, it suffices to show ϕ→ �ϕ. So assume ϕ, that is, w |= ∀y(Fy ≡
Gy). Then by the rigidity of truth at a world (519.1), it follows that �w |=
∀y(Fy ≡ Gy), i.e., �ϕ.

(566.3) By definition of εwG, (563), theorem (261.2) and the fact (566.2) that
w |=∀y(Fy ≡ Gy) is a rigid condition on properties. ./

(566.4) – (566.5) (Exercises)

(567.1) Assume ExtensionAtOf (x,w,G) and ExtensionAtOf (y,w,H). By the def-
inition of ExtensionAtOf (563), we therefore know:

(a) A!x&G↓&∀F(xF ≡ w |= ∀z(Fz ≡ Gz))

(b) A!y &H↓&∀F(yF ≡ w |= ∀z(Fz ≡Hz))

(→) Assume x=y. Then by Rule =E, it follows from (a) that:

(c) A!y &G↓&∀F(yF ≡ w |= ∀z(Fz ≡ Gz))

Hence, by (99.11) and (99.10), the third conjuncts of (b) and (c) imply:

(d) ∀F[w |=∀z(Fz ≡Hz) ≡ w |=∀z(Fz ≡ Gz)]

Now if we instantiate (d) to G, we know:

(e) w |=∀z(Gz ≡Hz) ≡ w |=∀z(Gz ≡ Gz)

But the right side of (e) is easily derived: from the tautology Gz ≡ Gz, we
obtain ∀z(Gz ≡ Gz), by GEN. Since this is a modally strict theorem, we obtain
�∀z(Gz ≡ Gz). So by a Fundamental Theorem of Possible World Theory (543.2),
it follows that ∀w′(w′ |= ∀z(Gz ≡ Gz)). Instantiating to w, we obtain the right
side of (e). So the left side of (e), w |= ∀z(Gz ≡ Hz), follows by biconditional
syllogism.

(←) Assume:
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(f) w |=∀z(Gz ≡Hz)

Since we know A!x and A!y by the left conjuncts of (a) and (b), it suffices by
theorem (245.2) to show ∀F(xF ≡ yF), and by GEN, that xF ≡ yF:

(→) Assume xF. Then by the right conjunct of (a), it follows that

(g) w |=∀z(Fz ≡ Gz)

Now, independently, if we apply RN to the modally strict theorem (99.10)
and apply the definition⇒ (524), then we know:

(h) (∀z(Fz ≡ Gz) &∀z(Gz ≡Hz))⇒∀z(Fz ≡Hz)

Hence, from (g), (f), and (h), it follows by the 2-modal closure of possible
worlds (528) that w |= ∀z(Fz ≡ Hz). Hence, by the right conjunct of (b),
yF.

(←) (Exercise) ./

(567.2) Since εwF↓ and εwG↓, we can instantiate εwF and εwG into world-rela-
tivized pre-Law V (567.1). Simultaneously substituting εwF for x, F for G, εwG
for y, and G for H , we obtain:

(ExtensionAtOf (εwF,w,F) & ExtensionAtOf (εwG,w,G))→
(εwF=εwG ≡ w |= ∀z(Fz ≡ Gz))

But we also know both conjuncts of the antecedent, by (566.4). Hence,
εwF=εwG ≡ w |=∀z(Fz ≡ Gz). ./

(569.1) Without loss of generality, suppose that y doesn’t occur free in ϕ; if ϕ
is a formula in which y occurs free, then we can still establish our theorem by
appealing to alphabetic variants of the principles used below. Our strategy is to
prove the theorem by conditional proof, i.e., assume [λxϕ]↓ and show [λxw |=
ϕ]↓, where w is some fixed but arbitrary possible world. Before we begin the
proof, we first establish a Lemma about our fixed but arbitrary world w:

Lemma: �[λxϕ]↓ → �∀x∀y(∀F(Fx ≡ Fy)→ (w |= ϕ ≡ w |= ϕyx ))

Proof. By Rule RM, it suffices to show the following by a modally strict
proof:

[λxϕ]↓ → ∀x∀y(∀F(Fx ≡ Fy)→ (w |= ϕ ≡ w |= ϕyx ))

So assume [λx ϕ]↓. Then by the Corollary to Kirchner’s Theorem (272),
it follows that:

∀x∀y(∀F(Fx ≡ Fy)→ �(ϕ ≡ ϕyx ))
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Hence, by ∀E:

(ϑ) ∀F(Fx ≡ Fy)→ �(ϕ ≡ ϕyx )

But it is a fact about the consequent that:

(ξ) �(ϕ ≡ ϕyx )→ (w |= ϕ ≡ w |= ϕyx )

This is established by the following hypothetical syllogism chain:

�(ϕ ≡ ϕyx ) → ∀w′(w′ |= (ϕ ≡ ϕyx )) by (543.2)
→ w |= (ϕ ≡ ϕyx ) by ∀E
→ w |= ϕ ≡ w |= ϕyx by (545.4)

So from (ϑ) and (ξ) if follows that:

∀F(Fx ≡ Fy)→ (w |= ϕ ≡ w |= ϕyx )

Since x and y are not free in our assumption, it follows by GEN that:

∀x∀y(∀F(Fx ≡ Fy)→ (w |= ϕ ≡ w |= ϕyx ))

Now using this Lemma, we prove our theorem. Assume [λxϕ]↓. Then by (106),
�[λxϕ]↓. So by our Lemma:

�∀x∀y(∀F(Fx ≡ Fy)→ (w |= ϕ ≡ w |= ϕyx ))

But w |= ϕyx is the same formula as (w |= ϕ)yx. Hence:

�∀x∀y(∀F(Fx ≡ Fy)→ (w |= ϕ ≡ (w |= ϕ)yx))

So, by an instance of the right-to-left direction of Kirchner’s Theorem (271.1),
in which we set ϕ in Kirchner’s Theorem to w |= ϕ, it follows that [λxw |= ϕ]↓.
./

(569.2) The proof is by cases:

n = 0. [λ w |= ϕ] is a core λ-expression and so by (39.2), [λ w |= ϕ]↓.
Hence, [λϕ]↓ → [λ w |= ϕ]↓, by the truth of the consequent.

n=1. By (569.1).

n ≥ 2. (Exercise)

(569.3) See the discussion in the text as to why this is an instance of axiom
(39.2). ./

(573.1) We prove this for the cases n ≥ 1 and n=0.

Case n ≥ 1. By (569.3), [λx1 . . .xnw |= Fnx1 . . .xn]↓. So we may reason with this
relation as follows:
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Fnwx1 . . .xn ≡ [λx1 . . .xnw |= Fnx1 . . .xn]x1 . . .xn by (570.1), Rules =df E, =df I
≡ w |= Fnx1 . . .xn by β-Conversion

Case n=0. (Exercise) ./

(570.2) By (569.3), we know [λx1 . . .xn w |= Fx1 . . .xn]↓ (n ≥ 0). So by our theory
of definitions and the definition of Fnw (570.1), Fnw↓. So by two applications of
GEN, ∀Fn∀w(Fnw↓). ./

(573.2) We prove this for the cases n ≥ 1 and n=0.

Case n ≥ 1. By the definition of rigid (571.1), we have to show:

(A) Gnw↓

(B) �∀x1 . . .∀xn(Gnwx1 . . .xn→ �Gnwx1 . . .xn)

(A) By theorem (570.2).

(B) By RN and GEN, we have to show: Gnwx1 . . .xn → �Gnwx1 . . .xn. So assume
Gnwx1 . . .xn. Then by (573.1), w |= Gnx1 . . .xn. But possible worlds necessarily
encode any propositions true at them; i.e., w |= p→ �w |= p is the left-to-right
direction of theorem (519.1). Hence �w |= Gnx1 . . .xn. But by a Rule of Sub-
stitution and the fact that (573.1) is a modally strict theorem, it follows that
�Gnwx1 . . .xn.

Case n=0. (Exercise) ./

(573.3) Note that we also include an alternative proof after the first proof.
The alternative (somewhat simpler) proof was contributed by Daniel Kirchner.
But both are of interest, since they approach the problem in two completely
different ways.

We prove our theorem by cases n ≥ 1 and n=0.

Case n ≥ 1. By the T schema, it suffices to prove the stronger claim:

�∃Fn(Rigidifies(Fn,Gn))

By (543.2), it suffices to show:

∀w(w |= ∃Fn(Rigidifies(Fn,Gn)))

By GEN, it suffices to show:

w |= ∃Fn(Rigidifies(Fn,Gn))

By (545.6), it suffices to show:

∃Fn(w |= Rigidifies(Fn,Gn)

Let’s then show that Gnw is a witness to this existential claim, i.e., that:
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(ϑ) w |= Rigidifies(Gnw,G
n)

Note that the definition of Rigidifies (571.2) yields the necessary equivalence:

�(Rigidifies(Gnw,G
n) ≡ (Rigid(Gnw) &∀x1 . . .∀xn(Gnwx1 . . .xn ≡ Gnx1 . . .xn)))

So since worlds are 2-modally closed (528), we can establish (ϑ) if we can
show:471

w |= (Rigid(Gnw) &∀x1 . . .∀xn(Gnwx1 . . .xn ≡ Gnx1 . . .xn))

So by (545.1), it suffices to show:

(A) w |= Rigid(Gnw)

(B) w |= ∀x1 . . .∀xn(Gnwx1 . . .xn ≡ Gnx1 . . .xn)

(A) Theorem (573.2) is modally strict. Since the free restricted variable is rigid,
it follows by expanded RN (341.3.a) that �Rigid(Gnw). A fundamental theorem
of world theory (543.2) then implies ∀w′(w′ |= Rigid(Gnw)). Instantiating to w,
we have w |= Rigid(Gnw).

(B) By (545.5), it suffices to show:

∀x1 . . .∀xn(w |= (Gnwx1 . . .xn ≡ Gnx1 . . .xn))

So by GEN, we need only show:

w |= (Gnwx1 . . .xn ≡ Gnx1 . . .xn)

And by (545.4), it suffices to show:

(ζ) w |= Gnwx1 . . .xn ≡ w |= Gnx1 . . .xn

To prove this, we use the following modally strict theorem and its Corollary:

Lemma: Gnwx1 . . .xn ≡ �Gnwx1 . . .xn
Proof. (→) If Gnwx1 . . .xn, then since Gnw is rigid (573.2), it follows by the
definition of rigidity (571.1) that �Gnwx1 . . .xn. (←) This is an instance of
the T schema.

Corollary: ♦Gnwx1 . . .xn ≡ Gnwx1 . . .xn
Proof. (→) Since Gnwx1 . . .xn → �Gnwx1 . . .xn is a modally strict theorem
implied by our Lemma, it follows by Rule (166.2) that ♦Gnwx1 . . .xn ≡
Gnwx1 . . .xn. (←) This is an instance of the T♦ schema.

471We have to appeal to the modal closure of possible worlds here, since one can’t validly substi-
tute necessarily equivalent properties for one another in this context. Given that possible worlds
are situations and, hence, abstract, (ϑ) becomes, by definition, necessarily equivalent to an en-
coding claim of the form x[λy ϕ], where y isn’t free in ϕ. If ψ is necessarily equivalent to ϕ, we
can’t validly substitute ψ for ϕ in x[λy ϕ] to conclude x[λy ψ]. It’s crucial here that we’re dealing
with possible worlds. For then we know that w |= ϕ implies w |= ψ when ϕ and ψ are necessarily
equivalent, by applying (528).
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With this Lemma, we can prove both directions of (ζ).

(→) Assume w |= Gnwx1 . . .xn. Hence ∃w(w |= Gnwx1 . . .xn), and so by a fundamen-
tal theorem of world theory (543.1), ♦Gnwx1 . . .xn. Hence, by the Corollary to
the Lemma, Gnwx1 . . .xn. So by (573.1), w |= Gnx1 . . .xn.

(←) Assume w |= Gnx1 . . .xn. Then by (573.1), Gnwx1 . . .xn. So by our Lemma,
�Gnwx1 . . .xn, and by a fundamental theorem (543.2), ∀w′(w′ |= Gnwx1 . . .xn). In-
stantiating to w, we have w |= Gnwx1 . . .xn.

Case n=0. (Exercise) ./

(573.3) [Alternative Proof]. Also by cases n ≥ 1 and n= 0, where n is the arity
of G.

Case n ≥ 1. We know ∃w∀p(w |= p ≡ p), by (531.1). Let w1 be such a possible
world, so that we know:

(ϑ) ∀p(w1 |= p ≡ p)

Now consider Gnw1
. To establish our theorem by showing that Gnw1

is a witness,
we have to show, by definition (571.2):

(A) Rigid(Gnw1
)

(B) ∀x1 . . .∀xn(Gnw1
x1 . . .xn ≡ Gx1 . . .xn)

Proof of (A). By (571.1), we have to show:

(C) Gnw1
↓

(D) �∀x1 . . .∀xn(Gnw1
x1 . . .xn→ �Gnw1

x1 . . .xn)

Proof of (C). By theorem (570.2).

Proof of (D). By RN and GEN, it suffices to show Gnw1
x1 . . .xn → �Gnw1

x1 . . .xn.
So assume Gnw1

x1 . . .xn. Then by (573.1), w1 |= Gnx1 . . .xn. Hence by (519.1),
�w1 |= Gnx1 . . .xn. But since (573.1) is a modally strict biconditional, it follows
by a Rule of Substitution that �Gnw1

x1 . . .xn.

Proof of (B). By GEN, it suffices to show:

Gnw1
x1 . . .xn ≡ Gx1 . . .xn

But if we substitute Gnx1 . . .xn into (ϑ), then we know that:

(ξ) w1 |= Gnx1 . . .xn ≡ Gnx1 . . .xn

So we may reason as follows:

Gnw1
x1 . . .xn ≡ [λx1 . . .xn w1 |= Gnx1 . . .xn]x1 . . .xn by df (570.1), Rules =df I, =df E

≡ w1 |= Gnx1 . . .xn by β-Conversion
≡ Gnx1 . . .xn by (ξ) ./
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Case n = 0. (Exercise) ./

(574.1) We prove this by cases.

Case 1: n = 0. Then our theorem asserts �(p→ �p) ≡ (♦p→ �p). But this is just
an instance of (172.1).

Case 2: n ≥ 1. By an instance of (172.1), we know:

�(Fx1 . . .xn→ �Fx1 . . .xn) ≡ (♦Fx1 . . .xn→ �Fx1 . . .xn)

So by n applications of GEN:

∀x1 . . .∀xn(�(Fx1 . . .xn→ �Fx1 . . .xn) ≡ (♦Fx1 . . .xn→ �Fx1 . . .xn))

So by n applications of (99.3) and a Rule of Substitution:

∀x1 . . .∀xn�(Fx1 . . .xn→ �Fx1 . . .xn) ≡ ∀x1 . . .∀xn(♦Fx1 . . .xn→ �Fx1 . . .xn)

By n applications of BF and the Rule of Substitution (160.2):

�∀x1 . . .∀xn(Fx1 . . .xn→ �Fx1 . . .xn) ≡ ∀x1 . . .∀xn(♦Fx1 . . .xn→ �Fx1 . . .xn)

./

(574.2) We prove this by cases.

Case 1: n = 0. Then our theorem asserts �(p → �p) ≡ (�p ∨ �¬p). This is
established by the following sequence of equivalences:

�(p→ �p) ≡ ♦p→ �p (172.1) or (574.1)
≡ ¬♦p∨�p (88.1.c)
≡ �¬p∨�p (162.1), (159.3)
≡ �p∨�¬p (88.2.c)

Case 2: Exercise. ./

(574.3) (Exercise)

(577.2) It follows from (490.4) and (487.2) that:

(ϑ) ∀p(sV |=p)

Since sV is known to be a situation, we have to show: (a) sV is maximal and
(b) sV fails to be possible. But clearly, if every proposition is true in sV , then
for every proposition q, either q is true in sV or ¬q is true in sV . So (a) holds,
by definition of Maximal (520). And just as clearly, if every proposition is true
in sV , then for every (and hence, for some) proposition q, both q is true in sV
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and ¬q is true in sV . So by definition (498), ¬Consistent(sV ), and by theorem
(504.1), it follows that ¬Possible(sV ).472 ./

(577.3) – (577.4) (Exercises)

(578.1) Assume ImpossibleWorld(x). Then by definition (577), we know:

(A) Situation(x)

(B) Maximal(x)

(C) ¬Possible(x)

Our proof strategy is:

• Show (A)→ �(A), (B)→ �(B), and (C)→ �(C)

• Infer from these results that �((A) & (B) & (C)), by a more general version
of (158.3) (exercise)

• Conclude �ImpossibleWorld(x), by definition (577) and the Rule of Sub-
stitution for Defined Formulas (160.3)

Since the reasoning in the last two steps is straightforward, it remains to show
the first. (A)→ �(A) holds by the left-to-right direction of (469.1). (B)→ �(B)
holds, by (522.1). To show (C)→ �(C), assume ¬Possible(x). Then it follows, by
definition (502) and the Rule of Substitution for Defined Subformulas (160.3),
that¬♦Actual(x). Hence�¬Actual(x), and so by the 4 schema, ��¬Actual(x). So
by now familiar reasoning, �¬♦Actual(x), and again by definition of Possible(x)
and the Rule of Substitution for Defined Subformulas, �¬Possible(x). ./

(578.2) – (578.3) From (578.1), by RN and GEN, respectively.

(580) (Exercise)

(581) Our theorem requires us to show:473

(a) Situation(⊥)

(b) Maximal(⊥)

(c) ¬Possible(⊥)

472To see precisely how these arguments for (a) and (b) can be made precise, we can reason as
follows. (a) To show maximality, we have to show ∀p(sV |= p ∨ sV |=¬p), and so, by GEN, that
sV |= p ∨ sV |=¬p. But by ∀E, the first disjunct follows from (ϑ) and by ∨I, sV |= p ∨ sV |=¬p.
(b) Let p1 be any proposition. Then by (104.2), (p1 &¬p1)↓. So we can instantiate the 0-ary relation
term p1 &¬p1 in (ϑ) and obtain sV |= (p1 &¬p1). But, it is a theorem that ¬♦(p1 &¬p1), by (84),
RN, and (162.1). Hence by an appropriate instance of (503.2), it follows that ¬Possible(sV ).
473I’m indebted to Daniel West, who offer a modally strict proof in lieu of the non-modally strict

proof originally developed. The following argument follows his proof in many, but not all, details.
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(d) ¬TrivialSituation(⊥)

(a) is theorem (469.7). We prove (b) – (d) with the aid of two modally strict
lemmas:

Lemma 1: ∀F(⊥F ≡ A∃q(¬q&F=[λy q]))
Proof: By definition of⊥ (302.2),⊥= ıx(A!x&∀F(xF ≡ ∃q(¬q&F=[λyq]))).
From this and an appropriate instance of (258.1), if follows that ⊥F ≡
A∃q(¬q& F= [λy q]). Since we’ve derived this from no assumptions, our
lemma follows by GEN.

Lemma 2: ∀p(⊥ |= p ≡ A¬p)
Proof: By GEN, it suffices to show ⊥ |= p ≡ A¬p. Since we know ⊥ is a
situation, it follows by (471) that ⊥ |= p ≡ ⊥[λy p]. So by biconditional
syllogism, it suffices to show ⊥[λy p] ≡ A¬p. (→) Assume ⊥[λy p]. Then
by Lemma 1, A∃q(¬q& [λy p]=[λy q]). So by (139.10), ∃qA(¬q& [λy p]=
[λyq])). Assume q1 is such a proposition, so that we know A(¬q1&[λyp]=
[λy q1]). Hence, by (139.2), we know both A¬q1 and A[λy p] = [λy q1].
The latter implies [λy p] = [λy q1], by (175.1). So by proposition identity,
p = q1. Hence A¬p. (←) Assume A¬p. Note that since [λy p] = [λy p]
is a theorem (118.2), it follows by the Rule of Actualization (135) that
A[λy p] = [λy p]. So by &I and (139.2), A(¬p & [λy p] = [λy p]). Hence
∃qA(¬q& [λy p] = [λy q]). So by (139.10), A∃q(¬q& [λy p] = [λy q]). Then
by Lemma 1, ⊥[λy p].

We then establish (b) – (d) as follows.

(b) By GEN and the definition of maximality, we have to show ⊥ |= p ∨⊥ |= ¬p.
We reason to this last claim by disjunctive syllogism from theorem (139.1), the
commuted form of which tells us A¬p ∨ Ap. Assume A¬p. Then by Lemma
2, ⊥ |= p. Assume Ap. Since it is a modally strict theorem that p ≡ ¬¬p, it
follows by a Rule of Substitution that A¬¬p. Hence, by Lemma 2, ⊥ |= ¬p. So
by disjunctive syllogism (86.3.c), ⊥ |= p ∨⊥ |= ¬p.

(c) Consider any proposition q. Since ¬(q&¬q) is a theorem it follows by the
Rule of Actualization that A¬(q&¬q). Hence, by Lemma 2, ⊥ |= (q&¬q). Since
¬(q & ¬q) is also a modally strict theorem, it follows by RN that �¬(q & ¬q)
and, by modal negation, ¬♦(q & ¬q). So by &I and existentially generalizing
on the proposition q&¬q, we have established ∃p((⊥ |= p) &¬♦p). Since ⊥ is a
situation, it follows by (503.2) that ¬Possible(⊥).

(d) By definition (487.2), to show that ⊥ isn’t a trivial situation, we have to
show that either it isn’t a situation or that there is some proposition that it
doesn’t make true. Since we know ⊥ is a situation, we therefore have to show
∃q¬(⊥ |= q). As our witness, consider any proposition that we can prove by
modally strict means, say, p0, which was defined in (208) as ∀x(E!x→ E!x). We
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want to show ¬⊥ |= p0. Assume, for reductio, that ⊥ |= p0. Then by Lemma 2,
A¬p0, and so by axiom (44.1), ¬Ap0. But since p0 is provable by modally strict
means, it follows by RN that �p0 and, hence, that Ap0, by (132). Contradiction.
./

(582) We prove this theorem with the help of one of the lemmas (Lemma 2)
established in the proof of (581):

Lemma 2: ∀p(⊥ |= p ≡ A¬p)

By definition of 1-modal closure (527), we have to show that there exist propo-
sitions p and q such that ⊥ |= p, p⇒ q, and ¬(⊥ |= q). Let our witness for p be
p0 &¬p0, where p0 is ∀x(E!x→ E!x), and let our witness for q be p0. So we have
to show:

(i) ⊥ |= (p0 &¬p0)

(ii) (p0 &¬p0)⇒ p0

(iii) ¬(⊥ |= p0)

(i) Since p0 & ¬p0 is a contradiction, we know ¬(p0 & ¬p0) is a theorem (84).
Hence, by Rule RA, A¬(p0 &¬p0). So by Lemma 2, ⊥ |= (p0 &¬p0).

(ii) By (85.1), (p0 &¬p0)→ p0. Since this is a modally strict theorem, it follows
by RN that �((p0 & ¬p0)→ p0). So by definition of ⇒ (442.1), it follows that
(p0 &¬p0)⇒ p0.

(iii) ¬(⊥ |= p0) was established in part (d) of the proof of (581). ./

(584.1) Let ϕ be formula s |=q ∨ q=p. By GEN, it suffices to show, by modally
strict means, that ϕ→ �ϕ. So assume ϕ, i.e.,

s |=q ∨ q=p

Note that both disjuncts imply their own necessity: s |= q implies �s |= q by
(473.1), and q=p implies �q=p by (125.1). Hence, by disjunctive syllogism:

�s |= q ∨ �q=p

But by (158.15), it follows that �(s |= q ∨ q=p). ./

(584.2) (Exercise)

(584.3) Assume s |= q. Hence by ∨I, s |= q ∨ q=p. So by (584.2), it follows that
s+p |= q. ./

(584.4) (Exercise)

(585) By theorem (531.1), we know ∃w∀q(w |= q ≡ q). Let w0 be an arbitrary
such possible world, so that we know:
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(ϑ) ∀q(w0 |= q ≡ q)

Note that, by definition, w0 is a situation. Now to establish the present theorem
by conditional proof, assume ¬♦p. Then consider the p-extension of w0, i.e.,
w0

+p, as this is defined in (583). Clearly, w0
+p is a situation (exercise). Since

both w0 and w0
+p are situations, it follows from (584.4) that w0

+p |= p. So to
show that w0

+p is a witness to ∃i(¬TrivialSituation(i)& i |= p), it remains, by the
definition of an impossible world (577.1), &I, and ∃I, to show:

(a) Maximal(w0
+p)

(b) ¬Possible(w0
+p)

(c) ¬TrivialSituation(w0
+p)

(a) Since w0 is a possible world, we know that it is maximal (521). But by
(584.3) and the fact that possible worlds are situations, we know that every
proposition true at w0 is true at w0

+p. Hence w0
+p is maximal, by disjunctive

syllogism from the maximality of w0.

(b) It follows from our initial assumption that �¬p. So ∀w(w |= ¬p), by a fun-
damental theorem (543.2) of possible world theory. Hence w0 |= ¬p. So by
(584.3) and the fact that possible worlds are situations, w0

+p |= ¬p. But we
already know w0

+p |= p. By conjoining our last two results in reverse order
and generalizing, we have ∃q(w0

+p |= q & w0
+p |= ¬q). Hence, by definition,

¬Consistent(w0
+p). Thus, by (504.1), ¬Possible(w0

+p).

(c) To show that ¬TrivialSituation(w0
+p), we have to show ∃q¬(w0

+p |= q), i.e.,
find a proposition that isn’t true at w0

+p.474 If we choose our witness to be
a contingent falsehood, then we can show that such a proposition is provably
distinct from p and fails to be true inw0

+p, as follows. By (217.2), we know that
there are contingently false propositions. So let q1 be such a proposition. Since
q1 is false, it follows from (ϑ) that ¬w0 |= q1. Moreover, since q1 is contingently
false and p is impossible, it follows by (214.6) that q1 , p. Hence ¬(w0 |= q1 ∨
q1 =p). So by (584.2), ¬(w0

+p |= q1). Hence ∃q¬(w0
+p |= q). ./

(586.1) By (581), ⊥ is an impossible world. In (582), we established that ⊥ is
not 1-modally closed. In the proof of the latter, we saw that when p0 is the
necessary truth ∀x(E!x→ E!x), then the contradiction p0 &¬p0 is true at ⊥ but
that p0 fails to be true at ⊥, i.e., that both ⊥ |= (p0 &¬p0) and ¬(⊥ |= p0). Hence,

474The witness can’t be a true proposition, for by (ϑ), all and only true propositions are true
at w0 and so the propositions true at w0 are true at w0

+p (584.3). Nor can the witness be an
arbitrary falsehood, since the arbitrary choice might be p itself, which is true in w0

+p despite
being necessarily false. The witness can’t be some necessary falsehood distinct from p because we
haven’t established that there is such a falsehood. Though our system allows us to assert, without
contradiction, that there are distinct necessary falsehoods, our axioms thus far don’t guarantee
that there are such. See the discussion in footnote 306.
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there is an impossible world i and propositions p (= p0) and q (= p0) such that
p&¬p is true at i but q fails to be true at i. ./

(586.2) Again let p0 be the proposition ∀x(E!x→ E!x) and consider p0, which
by (199.7) is defined as ¬∀x(E!x→ E!x). Clearly, ¬♦p0. Now theorem (531.1)
tells us that ∃w∀p(w |=p ≡ p). Let w0 be such a world, so that we know ∀p(w0 |=
p ≡ p). Consider the p0-extension ofw0, namely,w0

+p0 . By reasoning analogous
to that used in the proof of (585), it follows that (exercise):

• ImpossibleWorld(w0
+p0 )

• w0
+p0 |= p0

• w0
+p0 |= ¬p0 (since ¬p0 is true)

Moreover, by reasoning analogous to part (c) of the proof of (585), there is a
contingently false proposition, say q1, that fails to be true at w0

+p0 . Hence,
there is an impossible world i and there are propositions p (= p0) and q (= q1)
such that p and ¬p are both true at i while q fails to be true at i. ./

(587) By (531.1), we know that there is a possible world that makes true all
and only the true propositions. Let w0 be such a world, so that we know:

(ϑ) ∀p(w0 |=p ≡ p)

Let p0 be ∀x(E!x→ E!x), so that p0 is the negation of p0. Now consider w0
+p0 ,

i.e., w0 extended with necessary falsehood p0. So by reasoning analogous to
that in (585), it can be established that w0

+p0 is an impossible world (exercise).
Finally, by theorem (217.2), there is a contingently false proposition, say r0.
With these facts in hand, it suffices by &I and ∃I to prove the following to
establish our theorem:

(a) w0
+p0 |= (p0 ∨ r0)

(b) w0
+p0 |= ¬p0

(c) ¬w0
+p0 |= r0

To prove these claims, we shall, on occasion, rehearse some of the steps in the
proof of (585).

(a) Since p0 is a necessary truth, it follows by a Fundamental Theorem of Pos-
sible World Theory (543.2) that ∀w(w |= p0). Hence w0 |= p0. Since possible
worlds are 1-modally closed (528), it follows that w0 |= (p0 ∨ r0). But since w0

is a situation, we know, by (584.3), that every proposition true at w0 is true in
w0

+p0 . Hence w0
+p0 |= (p0 ∨ r0).

(b) As as instance of (586.3), we know w0
+p0 |= p0. But by theorem (199.7),

p0 = ¬p0. Hence, w0
+p0 |= ¬p0.
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(c) The proof of ¬w0
+p0 |= r0 involves reasoning analogous to part (c) of the

proof of (585) and will appeal to the following instance of (584.2):

∀q(w0
+p0 |= q ≡ w0 |= q∨ q=p0)

The cases are analogous because: (1)w0
p in (585) andw0

+p0 in the present theo-
rem are both impossible worlds constructed by extending w0 with a necessary
falsehood, and (2) in part (c) of the proof of (585), it was established that in
such impossible worlds, contingently false propositions fail to be true. So we
leave the rest of the proof as an exercise. ./

(592.2) (Exercise)

(596) (Exercise)

(597) Since s is a weak restricted variable, it is best to eliminate it to avoid any
modal reasoning errors. Once we eliminate the restricted variable, we have to
show:

Story(x)→ (x= ıs∀p(s |= p ≡ x |= p))

So assume Story(x). (Although this assumption is modally fragile, it will be
discharged by our conditional proof, so that the resulting theorem is derived
by modally strict means.) Then by the definition of a story (592.1), we know
Situation(x). This means we’re now trying to establish the identity of situations,
and so it suffices by (474) to show that they make the same propositions true
propertie, i.e., for an arbitrary proposition q, we have to show that:

(x |= q) ≡ ıs∀p(s |= p ≡ x |= p) |= q

Note that if we apply GEN to theorem (486.4), we obtain:

∀y(y= ıs∀p(s |= p ≡ ϕ) → ∀p(y |= p ≡ ϕ)),
provided ϕ is a rigid condition on propositions

Now since the description ıs∀p(s |= p ≡ ϕ) is canonical and hence significant,
we may instantiate it into the above universal claim to obtain:

ıs∀p(s |= p ≡ ϕ)= ıs∀p(s |= p ≡ ϕ) → ∀p(ıs∀p(s |= p ≡ ϕ) |= p ≡ ϕ),
provided ϕ is a rigid condition on propositions

It also follows from the fact that the description ıs∀p(s |= p ≡ x |= p) is signficant
that the antecedent to the above claim holds. Hence:

(ϑ) ∀p(ıs∀p(s |= p ≡ ϕ) |= p ≡ ϕ),
provided ϕ is a rigid condition on propositions
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Now consider the formula x |= p. Since x is a story, then the fact that (596) is a
modally strict theorem implies that x |= p is a rigid condition on propositions.
Moreover, s is not free in the formula x |= p. So, if we take ϕ in (ϑ) to be x |= p,
the resulting instance of (ϑ) is:

∀p(ıs∀p(s |=p ≡ x |=p) |= p ≡ (x |= p))

Now if we instantiate our arbitrary proposition q into this universal claim, we
obtain:

ıs∀p(s |= p ≡ x |= p) |= q ≡ (x |= q)

By the commutativity of the biconditional, we have obtained what we had to
show, namely:

(x |= q) ≡ ıs∀p(s |= p ≡ x |= p) |= q ./

(603.1) Assume A!x. Then by (222.3), ¬O!x. So by (115.3), it follows that
¬♦E!x. But as an instance of (126.1), we know that the following is a modally
strict theorem:

♦E!x ≡ ∃y(y=x&♦E!y)

By the commutativity of &, so is:

♦E!x ≡ ∃y(♦E!y & y=x)

Hence, by a Rule of Substitution, ¬∃y(y=x&♦E!y). ./

(603.2) – (603.3) (Exercises)

(607) (Exercises)

(608.1) In the following derivation, let s denote A Study in Scarlet, h denote
Sherlock Holmes, and D denote being a detective. Assume both s |= Dhs and
OriginalCharacterOf (hs, s) as premises. The second implies, by axiom (600),
that:

(ϑ) hs= ıx(A!x&∀F(xF ≡ s |= Fhs))

By theorem (596), we know the formula s |= Fhs is a rigid condition on proper-
ties. Hence (ϑ) and (261.2) imply A!hs and ∀F(hsF ≡ s |= Fhs). So by our first
premise, it follows that hsD. ./

(608.2) In the following derivation, let i denote The Iliad, F denote the relation
x fought y, a denote Achilles and h denote Hector. Then we have, as assump-
tions:

(A) i |= Faihi
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(B) OriginalCharacterOf (ai , i)

(C) OriginalCharacterOf (hi , i)

Since our background assumption is that β-Conversion holds under the scope
of the story operator, (A) implies both:

(D) i |= [λx Fxhi]ai

(E) i |= [λx Faix]hi

Hence by the reasoning in (608.1), it follows both at ai[λxFxhi] and hi[λxFaix].
But, as an instance of axiom (50), we know:

aihiF ≡ (ai[λx Fxhi] & hi[λx Faix])

Hence, it follows that aihiF. ./

(613) (Exercise)

(614.1) – (614.4) (Exercises)

(616.1) – (616.3) (Exercises)

(618.1) – (618.3) (Exercises)

(620.1) (Exercise)

(620.2) By GEN, it suffices to show (dF∨ eF)→ �(dF∨ eF). So assume dF∨ eF.
Since axiom (51) applies to every individual whatsoever, it applies to concepts
and so each disjunct of our assumption implies its own necessitation. Hence,
by disjunctive syllogism, �dF ∨�eF. By (158.15), it follows that �(dF ∨ eF). ./

(620.3) Let ϕ be the formula dF ∨ eF. Then by (620.2), it is a rigid condition
on properties. So by (261.2), we know:

y = ıx(A!x&∀F(xF ≡ dF ∨ eF))→ (A!y &∀F(yF ≡ dF ∨ eF))

From the identity (614.4), it follows by Rule =E that:

y = ıx(C!x&∀F(xF ≡ dF ∨ eF))→ (A!y &∀F(yF ≡ dF ∨ eF))

Moreover, by definition of C! (612), it follows from this last result by Rule =E
that:

y = ıx(C!x&∀F(xF ≡ dF ∨ eF))→ (C!y &∀F(yF ≡ dF ∨ eF))

Furthermore, by our conventions for restricted variables, this previous result
can be expressed as:

y = ıc∀F(cF ≡ dF ∨ eF)→ (C!y &∀F(yF ≡ dF ∨ eF))
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So by GEN, the fact that (d⊕e)↓, and Rule =E, it follows that:

d⊕e = ıc∀F(cF ≡ dF ∨ eF)→ C!d⊕e & ∀F(d⊕eF ≡ dF ∨ eF)

Hence, by definition of d⊕e (619) it follows that:

C!d⊕e & ∀F(d⊕eF ≡ dF ∨ eF) ./

(620.4) (Exercise)

(621.1) Given that (c⊕ c)↓, that c⊕ c and c are both concepts (620.3), and that
both are abstract (612), it suffices by (245.2) to show c⊕c and c encode the same
properties. So, by GEN, we show c⊕cF ≡ cF, as follows:

c⊕cF ≡ cF ∨ cF by (620.3)
≡ cF by idempotence of ∨ (85.7) ./

(621.2) (Exercise)

(621.3) [In the following proof, we sometimes assert unary encoding formulas
of the form κΠ in which κ is either (c⊕d)⊕e or c⊕(d⊕e) and Π is F.] Since
((c ⊕ d)⊕ e)↓ and (c ⊕ (d ⊕ e))↓, and both (c ⊕ d)⊕ e and c ⊕ (d ⊕ e) are abstract
objects, it suffices by (245.2) to show they encode the same properties. So, by
GEN, we show (c⊕ d)⊕ eF ≡ c⊕ (d ⊕ e)F as follows:

(c⊕d)⊕eF ≡ c⊕dF ∨ eF by (620.3)
≡ (cF ∨ dF)∨ eF by (620.3) and (88.8.h)
≡ cF ∨ (dF ∨ eF) by associativity of ∨ (88.2.d)
≡ cF ∨ d⊕eF by (620.3) and (88.8.g)
≡ c⊕(d⊕e)F by (620.3) ./

(623.1) – (623.2) (Exercises)

(625.1) (Exercise)

(625.2) Suppose c � d and c , d. To show that d 6� c, we must establish that
there is a property that d encodes but which c doesn’t encode. Now since c
and d are both concepts, they are both abstract objects. Since they are distinct,
it follows by (245.3) that either there is a property c encodes that d doesn’t,
or there is a property d encodes that c doesn’t. But, since c � d it follows by
definition of � (624.1) that it must be the latter. ./

(625.3) (Exercise)

(626.1) (Exercise)

(626.2) (→) Exercise. (←) Assume ∀e(e � c ≡ e � d), to show that c= d. Since
concepts are abstract objects, it suffices by GEN to show cF ≡ dF:
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(→) Assume cF and, for reductio, assume ¬dF. So c 6� d. But it follows
from our initial hypothesis that c � c ≡ c � d. Hence c 6� c, which contra-
dicts the reflexivity of concept inclusion (625.1).

(←) By analogous reasoning. ./

(626.3) (→) Exercise. (←) Assume ∀e(c � e ≡ d � e). By now familiar reasoning,
it suffices to show that cF ≡ dF:

(→) Assume cF and, for reductio, assume ¬dF. So c 6� d. But it follows
from our initial hypothesis that c � d ≡ d � d. Hence d 6� d, which con-
tradicts the reflexivity of concept inclusion (625.1).

(←) By analogous reasoning. ./

(627.1) – (627.3) (Exercises)

(627.4) (→) Assume c⊕d � e. To show c � e, we have to show ∀F(cF → eF).
So assume cF. Then cF ∨ dF. So by the second conjunct of the modally-strict
theorem (620.3) about sums, it follows that c⊕dF. But by definition of �, our
initial assumption implies ∀F(c⊕dF → eF). Hence eF. One can show d � e by
analogous reasoning.

(←) Assume c � e&d � e. To show c⊕d � e, it suffices by GEN to show: c⊕dF→
eF. Assume c⊕dF. Then by the second conjunct of the modally-strict theorem
(620.3) about sums, it follows that cF ∨ dF. Reasoning by cases: if cF, then by
the first conjunct of our initial assumption, it follows that eF, and if dF, then
by the second conjunct of our initial assumption, it follows that eF. Hence, eF.
./

(627.5) (Exercise)

(628) (→) Assume c � d. We prove ∃e(c⊕e = d) by cases, with the two cases
being: (a) c = d and (b) c , d. (a) Suppose c = d. By the idempotency of
⊕, c⊕ c = c, in which case, c⊕ c = d. Therefore, ∃e(c⊕ e = d). (b) Suppose
c , d. Then since c � d, it follows that d 6� c (625.2), and so we know there
must be one or more properties encoded by d which are not encoded by c.
By Comprehension for Concepts (614.1), we know there exists a concept that
encodes those properties F that d encodes and c doesn’t:

∃c′∀F(c′F ≡ dF&¬cF)

Let c1 be an arbitrary such concept, so that we know:

(ϑ) ∀F(c1F ≡ dF&¬cF)

To complete the proof of (b), it suffices by ∃I to show c⊕c1 = d, i.e., that c⊕c1

and d encode the same properties:
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(→) Assume c ⊕ c1G (to show: dG). By (620.3), it follows that cG ∨ c1G.
Reasoning by cases: if cG, then by the fact that c � d, it follows that dG;
if c1G, then by (ϑ), it follows that dG&¬cG, and hence dG.

(←) Assume dG (to show c⊕c1G). This time our proof by cases begins
from cG∨¬cG. If cG, then cG∨ c1G, so by (620.3), c⊕c1G. Alternatively,
if ¬cG, then we have dG&¬cG. So by (ϑ), c1G, and hence cG∨ c1G. So by
(620.3), it follows that c⊕ c1G.

(←) Assume ∃e(c⊕ e = d). Let c2 be an arbitrary such concept, so that we know
c ⊕ c2 = d. To show c � d, assume cG (to show dG). Then, cG ∨ c2G, which by
(620.3) entails that c⊕ c2G. But by hypothesis, c⊕ c2 = d. So dG. ./

(629) (→) Assume c � d. So ∀F(cF→ dF). To show that c⊕d = d, it suffices, by
now familiar reasoning, to show that c⊕d and d encode the same properties:

(→) Assume c⊕dG. Then, by (620.3), cG∨dG. If we reason by cases from
the two disjuncts to the conclusion dG, then it suffices to show cG→ dG.
But the assumption that cG imples dG, by the fact that c � d.

(←) Assume dG. Then cG∨ dG. So by (620.3), c⊕dG.

(←) Assume that c⊕d = d. It follows that ∃e(c⊕e = d). So by (628), c � d. ./

(630.1) Assume (c 6� d) & (d 6� c)). We show that c⊕ d is a witness to ∃e(e , c &
e , d & c⊕e = c⊕d). We leave it as an exercise to show that c⊕d , c and c⊕d , d.
To show c⊕ (c⊕ d) = c⊕ d, we may reason as follows:

c⊕ (c⊕ d) = c⊕ (c⊕ d) Rule =I
= (c⊕ c)⊕ d by associativity (621.3)
= c⊕ d by idempotence (621.1) ./

(630.2) (→) Assume c � d and d 6� c. By Comprehension for Concepts (614.1),
we know:

∃c′∀F(c′F ≡ dF&¬cF)

Let e1 be such a concept, so that we know:

(ϑ) ∀F(e1F ≡ dF&¬cF)

Now by &I and ∃I, we want to show (a) e1 6� c, and (b) c⊕ e1 = d:

(a) Since d 6� c by assumption, ∃F(dF & ¬cF). Let P be an arbitrary such
property, so that we know dP & ¬cP . Then by (ϑ), it follows that e1P .
Hence, we’ve established e1P &¬cP . So e1 6� c.
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(b) Since concepts are abstract objects, it suffices by (245.2) and GEN to show
c⊕ e1G ≡ dG. (→) Assume c⊕ e1G. Then cG∨ e1G. So we may reason by
cases. If cG, then since c � d, dG. If e1G, then by (ϑ), it follows that
dG&¬cG. A fortiori, dG. (←) Assume dG. Now we reason by cases from
the tautology cG∨¬cG. If cG, then cG∨ e1G, and hence c ⊕ e1G. If ¬cG,
then dG&¬cG, and hence, by (ϑ), e1G. Therefore, cG∨e1G, and so c⊕e1G.

(←) Assume ∃e(e 6� c& c⊕ e = d). Let e2 be such a concept, so that we know:

(ξ) e2 6� c & c⊕ e2 = d

The right conjunct of (ξ) implies ∃e(c ⊕ e = d). So by (628), c � d. Hence it
remains to show d 6� c, i.e., that ∃F(dF &¬cF). Note that the first conjunct of
(ξ) implies ∃F(e2F&¬cF). Suppose Q is such a property, so that we know both
e2Q and ¬cQ. From the former, it follows that cQ∨ e2Q and hence that c⊕e2Q,
by the second conjunct of (620.3). So by the second conjunct of (ξ) and Rule
=E, it follows that dQ. So we have established dQ&¬cQ. Hence ∃F(dF&¬cF).
./

(632.1) – (632.3) (Exercises)

(634.1) – (634.4) (Exercises)

(635.1) – (635.3) (Exercises)

(636.1) It suffices to show c ⊕ (c ⊗ d)F ≡ cF. (→) Assume c ⊕ (c ⊗ d)F. Then
by (620.3), we know cF ∨ c ⊗ dF. Reasoning by cases, it remains only to show
c ⊗ dF → cF. So assume c ⊗ dF. Then by (634.3), both cF & dF. A fortiori, cF.
(←) Assume cF. Then cF ∨ c⊗ dF. Hence, by (620.3), c⊕ (c⊗ d)F. ./

(636.2) (Exercise)

(637.1) It suffices to show that c ⊕ a
∅
F ≡ cF. (→) Assume c ⊕ a

∅
F. Then, by

theorem (620.3), cF ∨a
∅
F. But by theorem (266.3) and definition (263.1), we

know a
∅

doesn’t encode any properties and so ¬a
∅
F. Hence cF. (←) Assume

cF. Then cF ∨a
∅
F. Hence, by theorem (620.3), c⊕a

∅
F. ./

(637.2) It suffices to show that c ⊗ aV F ≡ cF. (→) Assume c ⊗ aV F. Then, by
theorem (634.3), cF & aV F. A fortiori, cF. (←) Assume cF. But by theorem
(266.4) and definition (263.2), we know aV encodes every property. So aV F.
Hence cF&aV F. So by (634.3), c⊗aV F. ./

(637.3) – (637.4) (Exercises)

(639.1) It suffices to show that c⊕ (d ⊗ e)F ≡ (c⊕ d)⊗ (c⊕ e)F:
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c⊕(d⊗e)F ≡ cF ∨ d⊗eF by (620.3)
≡ cF ∨ (dF& eF) by (634.3) and (88.8.g)
≡ (cF ∨ dF) & (cF ∨ eF) by (88.6.b)
≡ (c⊕dF) & (cF ∨ eF) by (620.3) and (88.4.e)
≡ (c⊕dF) & (c⊕eF) by (620.3) and (88.4.f)
≡ (c⊕d)⊗(c⊕e)F by (634.3) ./

(639.2) (Exercise)

(641.1) – (641.3) (Exercises)

(643.1) (Exercise)

(643.2) By GEN and RN, it suffices to show ¬dF → �¬dF. But as an instance
of theorem (179.7), we know ¬dF ≡ �¬dF. A fortiori, ¬dF→ �¬dF. ./

(643.3) – (643.4) (Exercises)

(644.1) Theorem (266.4) is that Universal(aV ). By definition (263.2), it follows
that ∀F(aV F). So to show c ⊕ −c and aV are identical, i.e., encode the same
properties, it suffices to show that ∀F(c⊕−cF) and, by GEN, that c⊕−cF. Now
it is a tautology that cF ∨¬cF. Since ¬cF ≡ −cF is a consequence of the second
conjunct of (643.3), it follows by (88.8.g) that cF∨−cF. But from this it follows
by (620.3) that c⊕−cF. ./

(644.2) (Exercise)

(645.1) It suffices to show −−c and c encode the same properties. Before we
prove this, note that by the second conjunct of (643.3), we know:

(ϑ) ∀F(−cF ≡ ¬cF)

Since it is a modally strict theorem that a biconditional is equivalent to the
result of negating both sides, we know (−cF ≡ ¬cF) ≡ (¬−cF ≡ ¬¬cF). So by the
Rule of Substitution (160.2), it follows from (ϑ) that:

(ξ) ∀F(¬−cF ≡ ¬¬cF)

So we may prove our theorem as follows:

−−cF ≡ ¬−cF by (643.3), −c substituted for d
≡ ¬¬cF by (ξ)
≡ cF by ¬¬E (78.2) ./

(645.2) It suffices to show −c⊕−d encodes F if and only if −(c⊗ d) encodes F:
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−c⊕−dF ≡ −cF ∨−dF by (620.3)
≡ ¬cF ∨−dF by (643.3) and (88.8.h)
≡ ¬cF ∨¬dF by (643.3) and (88.8.g)
≡ ¬(cF& dF) by (88.5.c)
≡ ¬c⊗dF by (634.3) and (88.4.b)
≡ −(c⊗ d)F by (643.3) ./

(645.3) (Exercise)

(650.1) Assume for reductio that c ≺ c. Then by definition of ≺ (649), it follows
that c � c and c , c. But by Rule =I, c = c. Contradiction. ./

(650.2) Assume c ≺ d and d ≺ e. By (649), it follows from these two assump-
tions, respectively, that:

(ϑ) c � d & c , d

(ξ) d � e& d , e

Now to show c ≺ e, we have to show c � e&c , e, by (649). The first conjuncts of
(ϑ) and (ξ) jointly imply c � e, by the transitivity of � (625.3). So it remains to
show c , e. Assume, for reductio, that c = e. Then substituting e for c into the
first conjunct of (ϑ), it follows that e � d. But from this and the first conjunct
of (ξ), it follows that e = d, by the right-to-left direction of (626.1). But by the
symmetry of identity, this contradicts the second conjunct of (ξ). ./

(650.3) Assume c ≺ d. For reductio, assume d ≺ c. Then by (650.2), c ≺ c,
contradicting (650.1). ./

(652.1) By definition (651.1), we have to show ∀d(a
∅
� d). It suffices, by GEN,

to show a
∅
� d, and so by definition (624.1), we must show ∀F(a

∅
F → dF).

Again, by GEN, we show a
∅
F → dF. But independently, by theorem (266.3)

and definition (263.1), we know ¬∃Fa
∅
F, i.e., ∀F¬a

∅
F. Instantiating to F, it

follows that ¬a
∅
F. Hence a

∅
F→ dF, by failure of the antecedent. ./

(652.2) Since we know Bottom(a
∅

), it remains only to show ∀c(Bottom(c) →
c = a

∅
), since our theorem will then follow by &I, ∃I, and the definition of the

unique existence quantifier. By GEN, it suffices to show Bottom(c)→ c = a
∅

.
So assume Bottom(c). Since c and a

∅
are both abstract, we must show ∀F(cF ≡

a
∅
F). Now, by theorem (266.3) and definition (263.1), we know ¬∃Fa

∅
F. So

by (103.9), we need only show ¬∃FcF. For reductio, assume ∃FcF. Let P be an
arbitrary such property, so that we know cP . But c is, by hypothesis, a bottom
concept, and so ∀d(c � d). Since a

∅
is a concept, it follows that c � a

∅
. Hence,

∀F(cF→ a
∅
F). So a

∅
P , given that cP , and thus ∃Fa

∅
F. Contradiction. ./

(652.3) (Exercise)
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(652.4) Since the previous theorem is that a
∅
≺ aG, the present theorem will

follow by &I, ∃I, and the definition of the unique existence quantifier if we
can establish that ∀c(c ≺ aG → c = a

∅
). So, by GEN, assume c ≺ aG and,

for reductio, suppose c , a
∅

. Since a
∅

encodes no properties, c , a
∅

implies
∃F(cF &¬a

∅
F). Suppose P is an arbitrary such property, so that we know cP

and ¬a
∅
P . Since c ≺ aG by assumption, it follows by definition of ≺ (649) both

that:

(ϑ) c � aG

(ξ) c , aG

From (ϑ) and cP , it follows that aGP , and so P = G, by the right conjunct of
(426.1). Hence,

(ζ) cG

But (ϑ) and (ξ) jointly imply that there is a property that aG encodes that c fails
to encode. Suppose Q is such that (i) aGQ and (ii) ¬cQ. Then from (i) and the
right conjunct of (426.1), we know Q = G, and so from (ii), it follows that ¬cG,
which contradicts (ζ). ./

(652.5) Assume Bottom(c). So by definition (651.1),

(ϑ) ∀d(c � d)

To show Atom(c), we have to show ¬∃d(d ≺ c), by (651.2). For reductio, assume
∃d(d ≺ c). Suppose d1 is an arbitrary such concept, so that we know d1 ≺ c.
Then by definition of ≺ (649), it follows that (a) d1 � c and (b) d1 , c. But if we
instantiate d1 into (ϑ), it follows that c � d1. But from (a) and this last fact, it
follows by (626.1) that d1 = c, contradicting (b). ./

(652.6) (Exercise)

(652.7) Given a proof of Atom(a
∅

) (652.6), it suffices, by &I, ∃I, and the defini-
tion of the unique existence quantifier, to show ∀c(Atom(c)→ c = a

∅
). By GEN,

it suffices to show Atom(c) → c = a
∅

. So assume Atom(c) and, for reductio,
assume c , a

∅
. From the atomicity of c, it follows that:

(ϑ) ¬∃d(d ≺ c)

Now a
∅

is a bottom concept (652.1), and so ∀d(a
∅
� d), by definition (651.1).

In particular, a
∅
� c. But from our reductio assumption, we also know a

∅
, c,

by symmetry of identity. Hence, a
∅
≺ c, and so ∃d(d ≺ c), which contradicts

(ϑ). ./

(654.1) Assume Overlap(c,d). Then by (653.1), ∃F(cF & dF). Assume P is such
a property, so that we know cP & dP . Now to show Overlap∗(c,d), we have to
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show ∃e(e � c& e � d). Let’s show that Thin Form of P , namely aP , is a witness,
so that it suffices to show both aP � c and aP � d. To show that aP � c, we have
to show ∀F(aP F → cF), and by GEN, aP F → cF. So assume aP F. Then by the
second conjunct of (426.1), it follows that F=P . Since cP , it follows that cF. By
analogous reasoning, aP � d. ./

(654.2) Let’s choose our witnesses to be, respectively, the null concept, a
∅

, and
the Thin Form of P , aP , where P is any arbitrarily chosen property. Then it
suffices to show (a) Overlap∗(a

∅
,aP ), and (b) ¬Overlap(a

∅
,aP ). (a) By (625.1),

we know a
∅
� a

∅
, and by (652.3), we know a

∅
� aP . Hence, by &I and

∃I, ∃e(e � a
∅

& e � aP ), i.e., Overlap∗(a
∅
,aP ). (b) By now familiar reasoning,

¬∃Fa
∅
F. Hence, ¬∃F(a

∅
F&aP F). So ¬Overlap(a

∅
,aP ). ./

(654.3) – (654.7) (Exercises)

(654.8) By GEN, it suffices to show Overlap∗(c,d). Since Bottom(a
∅

) by (652.1),
it follows by definition (651.1) that a

∅
is a part of every concept. Hence, we

know both a
∅
� c and a

∅
� d, for any concepts c and d. So, ∃e(e � c& e � d).

Thus, Overlap∗(c,d), by definition (653.2). ./

(654.9) We can show a
∅

is a witness by showing:

(a) a
∅
� d

(b) ¬Overlap(a
∅
, c)

(a) follows immediately from the fact that a
∅

is a bottom concept, and so is a
part of every concept, by (652.1) and (651.1). For (b), we know that ¬∃Fa

∅
F.

Hence, it follows a fortiori that ¬∃F(a
∅
F& cF). So ¬Overlap(a

∅
, c). ./

Alternatively, d 	 c is a witness.475 Recall that d 	 c was defined in (646.5)
(as part of Exercise 1) as ıeDifferenceOf (e,d,c), where DifferenceOf (e,d,c) was
defined in (646.1) as ∀F(eF ≡ dF&¬cF). By &I and ∃I, it suffices to show:

(a) d 	 c � d

(b) ¬Overlap(d 	 c,c)

For (a), we need to show d	cF → dF. So assume d	cF. Then by Exercise
(646.6), it follows that dF &¬cF. So dF. For (b), proceed by reductio. Assume
Overlap(d	c,c). Then ∃F(d	cF& cF). Suppose P is an arbitrary such property,
so that we know d	cP and cP . From the former, it follows by Exercise (646.6)
that dP &¬cP . So ¬cP . Contradiction. ./

(654.10) (Complete the proof sketched in the text.)

(655.1) – (655.2) (Exercises)

475Note that if d � c, then d 	 c is a∅, and so the proof reduces to the previous one.
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(655.3) Assume c ≺ d. Then, to show that a
∅

is a witness to ∃e(e ≺ d &
¬Overlap(e,c)), we show both (a) a

∅
≺ d and (b) ¬Overlap(a

∅
, c):

(a) By definition, we have to show both a
∅
� d and a

∅
, d. The former is a

simple consequence of the fact that a
∅

is a bottom concept (652.1) and
thus by definition (651.1) a part of every concept. For the latter, it suffices
to show that d encodes a property, since we know, by theorem (266.3) and
definition (263.1), that a

∅
doesn’t. Note that from our initial hypothesis,

it follows that c � d and c , d. But since the former implies ∀F(cF→ dF)
and the latter implies that one of c and d encodes a property the other
fails to encode, it follows that ∃F(dF&¬cF). A fortiori, ∃FdF.

(b) By now familiar reasoning, a
∅

encodes no properties. A fortiori, there is
no property that both a

∅
encodes and c encodes. Hence ¬Overlap(a

∅
, c).

./

(657.1) – (657.2) (Exercises)

(660) By GEN, assume Concept+(x). Then by definition, C!x and ¬Null(x).
From the latter, it follows that ∃FxF, by the definition of (Null(x)) in (263.1).
And from the former, it follows that �C!x (exercise). Now assume P is a wit-
ness to ∃FxF, so that we know xP . The �xP . Hence, ∃F�xF. So by the Buri-
dan formula (168.1), �∃FxF. Hence, we’ve established �C!x & �∃FxF. So,
�(C!x&∃FxF). Hence �Concept+(x). ./

(662.1) Clearly, since a
∅

fails to be a non-null concept, it fails to be a non-null
bottom. ./

(662.2) Suppose, for reductio, that ∃cBottom+(c). Let c1 be such a non-null
concept, so that we know Bottom+(c1), i.e., by (661), that ∀d(c1 � d), i.e., that:

(ϑ) ∀d∀F(c1F→ dF)

Since c1 is non-null, ∃Fc1F. Suppose c1P . Then consider aP , i.e., the Thin Form
of P , which we know exists. Since A!aP (426.1), C!aP (612), and by (426.2),
aP P . So aP is non-null concept. Hence (ϑ) implies ∀F(c1F → aP F). So since
c1P , it follows that aP P . But P , P (199.5), and so it follows from the second
conjunct of (426.1) that ¬aP P . Contradiction. ./

(664.1) Clearly, aG is a non-null concept. So, we have to show, by the definition
of a non-null atom (663), that ¬∃d(d ≺ aG). We do this with the help of a
lemma, namely, if a non-null concept is a part of aG, it fails to be a proper part
of aG:

(ϑ) ∀d(d � aG→¬d ≺ aG)
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Proof. By GEN, we need to show d � aG → ¬d ≺ aG. Assume d � aG.
For reductio, assume d ≺ aG. Then by definition (649), we also know
that d , aG. So d and aG must differ by one of their encoded properties.
But since our first assumption implies ∀F(dF → aGF), it must be that
aG encodes a property d doesn’t encode, i.e., ∃F(aGF & ¬dF). Suppose
P is such a property, so that we know aGP and ¬dP . Since the former
implies P =G (426.1), it follows from the latter that ¬dG. But d is, by
hypothesis, non-null, and so ∃FdF. Suppose Q is such a property, so that
we know dQ. Then since d � aG, it follows that aGQ and, by now familiar
reasoning, G=Q. So it follows from the previously established fact ¬dG
that ¬dQ. Contradiction.

Now, for reductio, suppose that ∃d(d ≺ aG). Let d1 be such a non-null concept,
so that we know d1 ≺ aG. Then the definition of ≺ implies d1 � aG. But then
by (ϑ), ¬d1 ≺ aG. Contradiction. ./

(664.2) For reductio, assume ∃!d(d ≺ c). By definition of the unique existence
quantifier, it follows that ∃d(d ≺ c & ∀e(e ≺ c → e = d)). Suppose d1 is such a
non-null concept, so that we know:

(ϑ) d1 ≺ c & ∀e(e ≺ c→ e=d1)

By definition of ≺, the first conjunct of (ϑ) implies:

(ξ) d1 � c & d1,c

By now familiar reasoning, (ξ) implies ∃F(cF & ¬d1F). Suppose P is such a
property, so that we know both cP and ¬d1P . Now consider the Thin Form of
P , aP . Since aP P (433.1) and ¬d1P , it follows that:

(ζ) aP ,d1

Now if we can establish that aP ≺ c, then we will have reached our contra-
diction, since this would imply, by the second conjunct of (ϑ), that aP = d1,
contradicting (ζ). So it remains show (a) aP � c and (b) aP ,c:

(a) Assume aP F. Then by (426.1), F=P . But we already know cP . So cF.

(b) Assume, for reductio, aP =c. From this and the first conjunct of (ϑ), it fol-
lows that d1 ≺ aP . So ∃d(d ≺ aP ). But by definition (663), this contradicts
the atomicity+ of aP (664.1). ./

(664.3) Assume Atom+(c). Then, by definition:

(ϑ) ¬∃d(d ≺ c)
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Assume cF & cG and, for reductio, F , G. Consider, then, the Thin Form of
F, aF . Clearly, aF is a non-null concept. Our strategy is to establish both that
(a) aF � c and (b) aF , c, for then it follows by definition (649) that aF ≺ c and
thus ∃d(d ≺ c), contradicting (ϑ):

(a) We have to show ∀H(aFH → cH). So by GEN, assume aFH . Then by now
familiar reasoning, it follows that F =H . Since we know cF, it follows
that cH .

(b) By (426.1), we know aFG ≡ G=F. So it follows from our assumption that
F , G that ¬aFG. Since cG by assumption, it follows that aF , c. ./

(664.4) (Exercise)

(665) (→) Assume Overlap(c,d), i.e., that ∃F(cF & dF). Suppose P is such a
property, so that we know both cP and dP . Then choose our witness for e to
be the Thin Form of P , i.e., aP , which is clearly a non-null concept. Since aP
encodes the single property P , it follows that both aP � c and aP � d. Con-
sequently, ∃e(e � c & e � d). (←) Assume ∃e(e � c & e � d). Let e1 be such a
concept, so that we know both e1 � c and e1 � d. Since e1 is non-null, ∃Fe1F.
Suppose P is such a property, so that e1P . Then since both e1 � c and e1 � d, it
follows from each, respectively, that cP and dP . So ∃F(cF& dF). ./

(667.1) We leave the proof of the first conjunct as an exercise. To prove the
second conjunct, let P and Q be any two distinct properties and consider the
Thin Forms of P and Q, aP and aQ. Since both encode a property, both are
non-null concepts. But there is no property that they both encode. Hence
¬Overlap(aP ,aQ). So ∃c∃d¬Overlap(c,d). ./

(667.2) – (667.3) (Exercises)

(667.4) Consider any three, pairwise distinct properties P , Q, and R. We know
there are such by a previous theorem. Now consider the following three con-
cepts: the Thin Form of P , i.e., aP ; the (strictly canonical) concept that encodes
just the two properties P and Q; and the (strictly canonical) concept that en-
codes just the two properties Q and R. Call the latter two concepts c1 and c2,
respectively:

c1 = ıc∀F(cF ≡ F=P ∨F=Q)

c2 = ıc∀F(cF ≡ F=Q∨F=R)

Clearly, aP , c1, and c2 are all non-null concepts. So it suffices by &I and ∃I to
establish:

(a) Overlap(aP , c1)
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(b) Overlap(c1, c2)

(c) ¬Overlap(aP , c2)

(a) Since aP encodes just the property P and c1 encodes just P and Q, there is
a property they both encode, and so Overlap(aP , c1). (b) Since c1 and c2 both
encode Q, Overlap(c1, c2). (c) Since aP encodes just P and c2 encodes just Q and
R, then there is no property they encode in common. Hence ¬Overlap(aP , c2).
./

(667.5) By classical quantificational reasoning, the claim we want to prove is
equivalent to:

(ϑ) ∃c∃d∀e(e � d→Overlap(e,c))

So we show, where G is any property, that aG is a witness to both existential
claims. Clearly, aG is a non-null concept. So we have to show:

∀e(e � aG→Overlap(e,aG))

By GEN, it suffices to show e � aG→Overlap(e,aG). So assume e � aG. Now to
show Overlap(e,aG), we have to show ∃F(eF &aGF). But G is a witness, as can
be seen from the following reasoning. aGG follows immediately (426.2). So it
remains to show eG. Since e is non-null, ∃FeF. Let H be such a property, so
that we know eH . But since e is by hypothesis a part of aG, it follows that aGH .
But then H =G (426.1). So eG. ./

(667.6) (The proof was sketched in the text.)

(668.1) Assume c ≺ d. Then c � d & c , d. So ∃F(dF & ¬cF). Let P be such
a property, so that we know dP & ¬cP . Then as our witness to ∃e(e � d &
¬Overlap(e,c)), consider the Thin Form of P , aP , which is clearly a non-null
concept. It suffices to show aP � d and ¬Overlap(aP , c). Since aP encodes only
P and d encodes P , d encodes every property aP encodes. Hence, aP � d.
Moreover, since aP encodes just P and c doesn’t encode P , there is no property
that they encode in common. Hence ¬Overlap(aP , c). ./

(668.2) Assume d 6� c. Then ∃F(dF &¬cF) and our proof now reduces to that
of the previous theorem. ./

(668.3) Assume c ≺ d. Then c � d & c , d. So ∃F(dF &¬cF). Let P be such a
property, so that we know dP & ¬cP . Now, in the proof of (668.1), we estab-
lished that, under the same assumptions, the Thin Form of P , aP is a witness
to ∃e(e � d & ¬Overlap(e,c)) by showing that both aP � d and ¬Overlap(aP , c).
So to show that aP is a witness to ∃e(e ≺ d & ¬Overlap(e,c)), it suffices to show
only aP ,d.476 For reductio, suppose aP =d. Then from our initial assumption,

476Exercise. Under the assumption that c ≺ d, show that d 	 c is also a witness to ∃e(e ≺ d &
¬Overlap(e,c)).
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it follows that c ≺ aP . Hence ∃e(e ≺ aP ). But by theorem (664.1), we know that
Atom+(aP ). Hence, by the definition of a non-null atom (663), it follows that
¬∃e(e ≺ aP ). Contradiction. ./

(671.1) – (671.3) (Exercises)

(674) (Exercise)

(675.1) – (675.2) (Exercises)

(676) We want to show cG ⊕ cH = c1, where c1 is the following canonical con-
cept:

c1 = ıc∀F(cF ≡ G⇒ F ∨H ⇒ F)

Let ϕ be the condition G⇒ F ∨H ⇒ F. Then we leave it as a simple exercise
to show that ϕ is a rigid condition on properties and, hence, that c1 is strictly
canonical. From this, it follows by theorem (261.2) that:

(ϑ) ∀F(c1F ≡ G⇒F ∨H⇒F)

Now to see cG ⊕cH and c1 encode the same properties, we establish cG ⊕cHF ≡
c1F:

cG ⊕ cHF ≡ cGF ∨ cHF by (620.3)
≡ G⇒ F ∨ cHF by (675.1), (88.8.h)
≡ G⇒ F ∨H ⇒ F by (675.1), (88.8.g)
≡ c1F by (ϑ) ./

(677.1) – (677.2) (Exercises)

(673) (Exercise)

(681.1) – (681.3) (Exercises)

(683) Our theorem is implied by theorem (205.1), i.e., ♦∃x(E!x & ♦¬E!x), as
follows:

♦∃x(E!x&♦¬E!x) → ∃x♦(E!x&♦¬E!x) by BF♦
→ ∃x(♦E!x&♦¬E!x) by (165.11) and (160.2)
→ ∃u(♦E!u&♦¬E!u) (exercise)
→ ∃u♦(E!u&♦¬E!u) by (165.11) and (160.2)
→ ∃F∃u♦(Fu&♦¬Fu) by ∃I
→ ∃u∃F♦(Fu&♦¬Fu) (exercise) ./

(685)? By (681.3), ıcConceptOf (c,u)↓. So by our theory of definitions, cu =
ıcConceptOf (c,u). Then by (145.2)?, it follows that ConceptOf (cu ,u). Hence,
by definition (680), ∀F(cuF ≡ Fu). (See foonote 341.) Instantiating to G yields
cuG ≡ Gu. ./

(686) We prove this theorem with the help of the following Lemma, the proof
of which was the subject of the Exercise in (685):
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Lemma: ∀F(cuF ≡ AFu)
Proof : If we eliminate the restricted variable, then we want to show:
O!y → ∀F(cyF ≡ AFy). So assume O!y. Since F isn’t free in our assump-
tion, it suffices to show cyF ≡ AFy, by GEN. Now, as an instance of (258),
we know ıx(A!x&∀F(xF ≡ Fy))F ≡ AFy. But if we eliminate the restricted
variable in the fact cited at the outset of Remark (684), then our assump-
tion O!y implies cy = ıx(A!x&∀F(xF ≡ Fy)). So by Rule =E, cyF ≡ AFy.

This Lemma is needed only for the left-to-right direction of our theorem.

(→) Assume cuG. By definition of�, we need to show cG � cu , and by definition
of �, show ∀F(cGF → cuF). Since F isn’t free in our assumption, it suffices to
show cGF → cuF. So assume cGF. Then by (675.1), we know G⇒ F, i.e., that
�∀x(Gx→ Fx). By theorem (132), it follows that A∀x(Gx→ Fx), and by axiom
(44.3), that ∀xA(Gx→ Fx). Thus A(Gu → Fu), and so AGu → AFu, by (131).
But from our initial assumption that cuG, it follows by our Lemma that AGu.
Hence, AFu. But, then again by our Lemma, cuF.

(←) Assume cu � cG, i.e., cG � cu , i.e., ∀F(cGF→ cuF). Now independently, by
(675.2), we know cGG. Hence, cuG. ./

(688) By definition (687) we have to show ∀F(cF ∨ cF), and so by GEN, it suf-
fices to show cuF ∨ cuF. We establish this by disjunctive syllogism (86.3.c)
from AFu ∨A¬Fu, which is an instance of theorem (139.1). We reason from
each disjunct using the Lemma established at the outset of the proof of (686),
namely, ∀F(cuF ≡ AFu). If AFu, then cuF, by our Lemma. If A¬Fu, then note
that since Fx ≡ ¬Fx is, by theorem (199.1), a modally strict theorem that holds
universally for every object, it holds for ordinary objects, so that Fu ≡ ¬Fu is
a modally strict theorem. So we can use its commuted form with a Rule of
Substitution to conclude AFu. ./

(690.1)? – (690.2)? (Exercise)

(691.1) (→) Assume c∀GF. Independently, by now familiar reasoning, it fol-
lows from an appropriate instance of (258) and definition (689), by Rule =E
and GEN, that:

(ϑ) ∀F(c∀GF ≡ A∀x(Gx→ Fx))

So our assumption implies, by (ϑ), that A∀x(Gx→ Fx). Now by the definitions
of � and �, we have to show ∀H(cFH → c∀GH). So, by GEN, assume cFH , to
show c∀GH . But from cFH , we know by (675.1) that F ⇒ H , from which it
follows by definition of ⇒ and (132) that A∀x(Fx → Hx). We leave it as an
exercise to show that the two facts we’ve established, namely A∀x(Gx → Fx)
and A∀x(Fx → Hx), imply A∀x(Gx → Hx). So by (ϑ), c∀GH . (←) Assume
c∀G � cF . By the definitions of � and �, this implies ∀H(cFH → c∀GH). As an
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instance of this latter, we know cFF→ c∀GF, from which it follows, by (675.2),
that c∀GF. ./

(691.2) (→) Assume c∃GF. Independently, by now familiar reasoning, it fol-
lows from an appropriate instance of (258) and definition (689), by Rule =E
and GEN, that:

(ϑ) ∀F(c∃GF ≡ A∃x(Gx&Fx))

So our assumption implies, by (ϑ), that A∃x(Gx& Fx). Now by the definitions
of � and �, we have to show ∀H(cFH → c∃GH). So, by GEN, assume cFH ,
to show c∃GH . But from cFH , we know by (675.1) that F ⇒ H , from which
it follows by definition of⇒ and (132) that A∀x(Fx→ Hx). We leave it as an
exercise to show that the two facts we’ve established, namely A∃x(Gx&Fx) and
A∀x(Fx→ Hx), imply A∃x(Gx&Hx). So by (ϑ), c∃GH . (←) Assume c∃G � cF .
By the definitions of � and �, our assumption implies ∀H(cFH → c∃GH). As an
instance of this latter, we know cFF→ c∃GF, from which it follows, by (675.2),
that c∃GF. ./

(692.1)? By the commutativity of the biconditional, it follows from (685)? that
Gu ≡ cuG. But from this and (686), and it follows that Gu ≡ cu � cG by a
biconditional syllogism. ./

(692.2)? – (692.3)? (Exercises)

(699.1) Assume the antecedent and let a and w1 be such an ordinary object
and possible world, so that we know RealizesAt(a,c,w1) and RealizesAt(a,d,w1).
Then, by the definition of realization (697), we know both ∀F(w1 |= Fa ≡ cF)
and ∀F(w1 |= Fa ≡ dF). So, by the laws of quantified biconditionals, it follows
that ∀F(cF ≡ dF). Since c and d are concepts, they are abstract (612). So, by
theorem (245.2), c=d. ./

(699.2) Assume the antecedent and let c1 and w1 be such a concept and possi-
ble world, so that we know RealizesAt(u,c1,w1) and RealizesAt(v,c1,w1). Then,
by the definition of realization (697), we know both ∀F(w1 |= Fu ≡ c1F) and
∀F(w1 |= Fv ≡ c1F). So by the laws of quantified biconditionals, we know:
∀F(w1 |= Fu ≡ w1 |= Fv). Instantiating to F, it follows that (w1 |= Fu) ≡ (w1 |=
Fv). But then by the right-to-left direction of (545.4), w1 |= (Fu ≡ Fv). Since F is
arbitrary, it follows by Rule ∀I that ∀F(w1 |= (Fu ≡ Fv)). So by the right-to-left
direction of (545.5), w1 |= ∀F(Fu ≡ Fv). Since u and v are, by hypothesis, ordi-
nary objects, they are necessarily such (180.1), i.e., �O!u and �O!v, and so by a
fundamental theorem of world theory (543.2), ∀w(w |= O!u) and ∀w(w |= O!v).
In particular, w1 |=O!u and w1 |=O!v. But we only need the first of these facts,
since we may infer from it the following, in sequence, by the laws governing
possible worlds ((545.3) and (545.1):
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w1 |= (O!u ∨O!v)

w1 |= ((O!u ∨O!v) &∀F(Fu ≡ Fv))

Now independently, export the antecedent of the consequent of theorem (242.1)
and apply RN, and we obtain, as a modally strict theorem:

�[
(
(O!x∨O!y) &∀F(Fx ≡ Fy)

)
→ x=E y]

Since worlds are 1-modally closed (528), it follows from our last two displayed
results that w1 |= u =E v. Hence, ∃w(w |= u =E v), and so ♦u =E v, by (543.1). It
follows that u=E v (234.2), and then u=v (233.2). ./

(699.3) Assume the antecedent and suppose that a and c1 are such an ordinary
object and concept, so that we know RealizesAt(a,c1,w) and RealizesAt(a,c1,w

′).
So we know, by the definition of realization (697), that ∀F(w |=Fa ≡ c1F) and
∀F(w′ |=Fa ≡ c1F). So, by the laws of quantified biconditionals, we know:

(ϑ) ∀F(w |=Fa ≡ w′ |=Fa)

Suppose, for reductio, that w ,w′. Then, since w and w′ are possible worlds,
and hence situations, we know by (474) that there must be a proposition, say
q1, true at one and not at the other. Without loss of generality, assume w |= q1

and w′ 6|= q1. From the former, it follows by a useful fact about possible worlds
(551), that w |= [λy q1]a. So, by (ϑ), w′ |= [λy q1]a. So again by (551), w′ |= q1.
Contradiction. ./

(701) Assume AppearsAt(c,w). By the definition of appearance (700), it follows
that some ordinary individual, say a, is such that RealizesAt(a,c,w). It therefore
remains to show uniqueness, i.e., that ∀v(RealizesAt(v,c,w) → v = a). So, by
GEN, assume RealizesAt(v,c,w). Then the antecedent of (699.2) holds and we
can conclude v=a. ./

(702) Assume AppearsAt(c,w). By the definition of appearance (700), it follows
that some ordinary individual, say a, is such that RealizesAt(a,c,w). So, by
definition (697):

(ϑ) ∀F(w |=Fa ≡ cF)

Since we know O!a, we therefore know �O!a, by (180.1). Hence by a funda-
mental theorem of world theory (543.2), ∀w′(w′ |=O!a). In particular, w |= O!a.
Hence, by (ϑ), cO!. ./

(704) Suppose AppearsAt(c,w). So some ordinary object, say a, realizes c at w,
i.e.,

(ϑ) ∀F(w |=Fa ≡ cF)
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By (703) and GEN, we have to show that cΣp ≡ w |= p. (→) Assume cΣp. Then
by (295), c[λy p]. So by (ϑ), w |= [λy p]a. Hence, by (551), w |= p. (←) Assume
w |= p. Then by (551), w |= [λy p]a. Hence by (ϑ), c[λy p] and (295) now implies
cΣp. ./

(705) Assume the antecedent and suppose c1 is such a concept, so that we know
AppearsAt(c1,w) and AppearsAt(c1,w

′). Then by (704), it follows, respectively,
that Mirrors(c1,w) and Mirrors(c1,w

′). We may infer from these, respectively, by
the definition of mirroring (703), that ∀p(c1Σp ≡ w |= p) and ∀p(c1Σp ≡ w′ |= p).
So by the laws of quantified biconditionals, we know ∀p(w |= p ≡ w′ |= p). But
since w and w′ are both possible worlds, and hence situations, it follows by a
fact about the identity of situations (474), that w=w′.

(706) We prove only the left-to-right direction, since the right-to-left direc-
tion is an instance of the T schema. To simplify the proof of the left-to-right
direction, we first establish the following lemma:

(ϑ) (w |= Fu ≡ cF) ≡ �(w |= Fu ≡ cF)

Proof. By axiom (51), we know both w[λyFu]→ �w[λyFu] and cF→ �cF
are modally strict theorems. Hence by expanded RN (341.3.a) and &I, it
follows that:

�(w[λy Fu]→ �w[λy Fu]) & �(cF→ �cF)

Hence by theorem (172.5) and the T schema (45.2), it follows that:

(w[λy Fu] ≡ cF)→ �(w[λy Fu] ≡ cF)

But since the converse of the above holds by the T schema, we may infer:

(ξ) (w[λy Fu] ≡ cF) ≡ �(w[λy Fu] ≡ cF)

Now given the discussion in Remark (515), it is a modally strict fact that
w[λy Fu] ≡ w |= Fu. So (ϑ) follows from (ξ) by a Rule of Substitution.

Since (ϑ) is a modally strict theorem, a Rule of Substitution allows one to sub-
stitute instances of the right condition for the corresponding instances of the
left condition whenever the left condition occurs as a subformula, and vice
versa. Hence we may reason as follows:
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AppearsAt(c,w) → ∃uRealizesAt(u,c,w) By df (700)
→ RealizesAt(a,c,w) ‘a’ arbitrary and ordinary
→ ∀F(w |=Fa ≡ cF) by df (697)
→ ∀F�(w |=Fa ≡ cF) by (ϑ), Rule of Substitution
→ �∀F(w |=Fa ≡ cF) by BF (167.1)
→ �RealizesAt(a,c,w) by df (697)
→ ∃u�RealizesAt(u,c,w) by ∃I and ∃E
→ �∃uRealizesAt(u,c,w) by Buridan (168.1)
→ �AppearsAt(c,w) by df (700)

(707) Assume the antecedent and suppose c1 is such a concept, so that we know
both RealizesAt(u,c1,w) and RealizesAt(v,c1,w

′). By respective applications of
∃I, it follows that AppearsAt(c1,w) and AppearsAt(c1,w

′). Hence w = w′, by
(705). From this and RealizesAt(v,c1,w

′), we know RealizesAt(v,c1,w). From
this and RealizesAt(u,c1,w), it follows, by (699.2), that u=v. ./

(708.1) As an instance of (538) we know wα |= Fu ≡ AFu. The lemma estab-
lished at the beginning of the proof of (686) implies cuF ≡ AFu, i.e., AFu ≡ cuF.
So wα |=Fu ≡ cuF. By GEN, ∀F(wα |=Fu ≡ cuF). So by definition of realization
(697), Realizes(u,cu ,wα). ./

(708.2) – (708.3) (Exercises)

(710) Assume ∃uConceptOf(c,u). Suppose a is such an ordinary object, so that
we know ConceptOf(c,a). Then by definition (680), it follows that:

(ϑ) ∀F(cF ≡ Fa)

By (709), we have to show ∃wAppearsAt(c,w). So by (700), we have to show
∃w∃uRealizesAt(u,c,w), and so by (697), we have to show: ∃w∃u∀F(w |=Fu ≡
cF). Thus, if we can find witnesses to both existential quantifiers in this last
claim, we’re done.

By the simplified comprehension principle for situations (486.1), there is a
situation that makes true encodes all and only the propositions p such that for
some property F that a exemplifies, F is the property [λy p]:

∃s∀p(s |= p ≡ ∃F(Fa&F=[λy p]))

Let s1 be such a situation, so that we know:

(ξ) ∀p(s1 |= p ≡ ∃F(Fa&F=[λy p]))

If we can show (a) s1 is a possible world, and (b) ∀F(s1 |=Fa ≡ cF), then s1 and
a are the two witnesses we need.

(a) Since s1 is a situation, all we have to do to show s1 is a possible world is
to show ♦∀q(s1 |= q ≡ q). By the T♦ schema, it suffices to show ∀q(s1 |= q ≡ q).
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By GEN, it suffices to show s1 |= q ≡ q. (→) Assume s1 |= q. Hence by (ξ),
∃F(Fa& F = [λy q]). Suppose P is such a property, so that we know P a& P =
[λy q]. Then [λy q]a, by substitution of identicals. So by β-Conversion, q. (←)
Assume q. Then [λy q]a, by β-Conversion. So by =I, we may conclude [λy q]a&
[λy q]=[λy q]. Hence, ∃F(Fa&F=[λy q]). So by (ξ), s1 |=q.

(b) By GEN, we have to show s1 |=Fa ≡ cF. To do this, we begin by noting that
as part of (a), we established ∀q(s1 |=q ≡ q). If we instantiate this to the term Fa,
it follows that s1 |=Fa ≡ Fa. So by GEN, ∀F(s1 |=Fa ≡ Fa). But (ϑ) is equivalent
to ∀F(Fa ≡ cF). So by the laws of quantified biconditionals, ∀F(s1 |=Fa ≡ cF).
./

(711) By (708.2), AppearsAt(cu ,wα). So ∃w(AppearsAt(cu ,w)). By definition
PossibleIndividualConcept(cu). ./

(712) By GEN, assume PossibleIndividualConcept(x). Then, if we eliminate the
restricted variable in definition (709), we know:

(ϑ) C!x&∃y(PossibleWorld(y) & AppearsAt(x,y))

We want to show �PossibleIndividualConcept(x), i.e.,

�(C!x&∃y(PossibleWorld(y) & AppearsAt(x,y)))

So by (158.3), it suffices to show:

�C!x&�∃y(PossibleWorld(y) & AppearsAt(x,y)))

But �C!x follows from the first conjunct of (ϑ) (exercise). So by the Buridan
formula (168.1), it remains and suffices to show:

(ξ) ∃y�(PossibleWorld(y) & AppearsAt(x,y))

Now let w be a witness to the second conjunct of (ϑ), so that we know both
PossibleWorld(w) and AppearsAt(x,w). Then we establish (ξ) by showing w is a
witness. So by (158.3), we have to show:

�PossibleWorld(w)

�AppearsAt(x,w)

The first is easy: �PossibleWorld(w) follows from PossibleWorld(w) by (513). To
show that �AppearsAt(x,w) follows from AppearsAt(x,a), note that AppearsAt
is defined in terms of restricted variables and so when we expand definitions
(700) and (697), we have:

AppearsAt(x,w) ≡df C!x& PossibleWorld(w) &∃z(O!z& RealizesAt(z,x,w))

RealizesAt(z,x,w) ≡df O!z&C!x& PossibleWorld(w) &∀F((w |= Fz) ≡ xF)
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Hence, AppearsAt(x,w) implies, once we’ve expanded it by definition and sim-
plified:

(ζ) C!x& PossibleWorld(w) &∃z(O!z&∀F((w |= Fz) ≡ xF))

Since we know the first two conjuncts are necessary, to prove that the entire
claim is necessary, it remains only to show the following, by (158.3):

�∃z(O!z&∀F((w |= Fz) ≡ xF))

Again, by the Buridan formula (168.1), it suffices to show:

(ω) ∃z�(O!z&∀F((w |= Fz) ≡ xF))

Now let b be a witness to the third conjunct of (ζ), so that we know O!b and
∀F((w |= Fb) ≡ xF). So to see that b is the needed witness to (ω), it suffices, again
by (158.3), to show �O!b and �∀F((w |= Fb) ≡ xF). But �O!b follows from O!b
(180.1). To show the latter, it suffices, by the Barcan Formula (167.1), to show
∀F�((w |= Fb) ≡ xF). But from ∀F((w |= Fb) ≡ xF) it follows that (w |= Fb) ≡ xF.
Since w is a situation, the left condition implies, by (471), that w[λz Fb]. So
w[λz Fb] ≡ xF. Hence by (179.6), �(w[λz Fb] ≡ xF). Since F isn’t free in any
assumption, it follows that ∀F�(w[λz Fb] ≡ xF). ./

(713.1) Consider any possible-individual concept ĉ. Then by definition (709),
there is some possible world, say w1, such that AppearsAt(ĉ,w1). It there-
fore remains to show that ∀w(AppearsAt(ĉ,w) → w = w1), and by GEN, that
AppearsAt(ĉ,w)→ w=w1. So assume that AppearsAt(ĉ,w). Then by a fact about
appearance (705), it follows that w=w1. ./

(713.2) By theorem (706), we know:

AppearsAt(c,w) ≡ �AppearsAt(c,w)

Since this holds for arbitrary concepts, it holds for possible-individual con-
cepts:

AppearsAt(ĉ,w) ≡ �AppearsAt(ĉ,w)

Since this is a modally strict equivalence, it follows from the previous theorem
(713.1) by a Rule of Substitution that:

∃!w�AppearsAt(ĉ,w) ./

[Alternatively, AppearsAt(c,w)→ �AppearsAt(c,w) follows a fortiori from theo-
rem (706). A fortiori, AppearsAt(ĉ,w)→ �AppearsAt(ĉ,w). So by GEN, it follows
that ∀w(AppearsAt(ĉ,w)→ �AppearsAt(ĉ,w)). From this result and the the pre-
vious theorem (713.1), it follows by theorem (129) that ∃!w�AppearsAt(ĉ,w).]

(713.3) (Exercise)

(715.1) As an instance of (153.1), we know:
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∃!w�AppearsAt(ĉ,w)→∀y(y= ıw(AppearsAt(ĉ,w))→ AppearsAt(ĉ, y))

So by (713.2), it follows that:

∀y(y= ıw(AppearsAt(ĉ,w))→ AppearsAt(ĉ, y))

We may instantiate this to wĉ since we know it exists, to obtain:

wĉ= ıw(AppearsAt(ĉ,w)→ AppearsAt(ĉ,wĉ)

But then by definition (714), it follows that AppearsAt(ĉ,wĉ). ./

(715.2) By (715.1) and (704). ./

(715.3) By the definitions of � (624.2) and � (624.1), and GEN, we have to
show: wĉF → ĉF. So assume wĉF. Since wĉ is a situation, every property that
it encodes is a propositional property, and so for some proposition, say q1,
F = [λy q1]. Hence, wĉ[λy q1]. By definition of |=, this implies that wĉ |= q1.
Now, independently, we know by (715.2) that Mirrors(ĉ,wĉ). So by definition
of mirroring, ∀p(ĉΣp ≡wĉ |= p). Since we’ve established wĉ |= q1, it follows that
ĉΣq1. By definition of Σ, this implies ĉ[λy q1], i.e., ĉF. ./

(716) (→) Assume ĉG. Before we show ĉ � cG, note that since ĉ is a possible-
individual concept, it follows by definition (709) that for some possible world,
say w1, AppearsAt(ĉ,w1). Further, by the definition of appearance (700), for
some ordinary object, say a, we know RealizesAt(a, ĉ,w1). So by definition (697),
this implies:

(ϑ) ∀H(w1 |=Ha ≡ ĉH)

Now by the definition of � (624.2) and � (624.1), to show ĉ � cG, we have to
show ∀F(cGF → ĉF). So, by GEN, assume cGF. It follows that �∀x(Gx→ Fx),
by (675.1) and (442). So by a Fundamental Theorem of Possible World Theory
(543.2), we have ∀w(w |= ∀x(Gx→ Fx)). In particular, w1 |= ∀x(Gx→ Fx). But
since ĉG is our global assumption, it follows from (ϑ) that w1 |= Ga. Since
the conjunction of ∀x(Gx → Fx) and Ga necessarily implies Fa, and possi-
ble worlds are binary-closed under necessary implication (528), it follows that
w1 |= Fa. Hence, by (ϑ), it follows that ĉF.

(←) Assume ĉ � cG. Then, by now well-known reasoning, ∀F(cGF → ĉF). But
we also know cGG (675.2). So ĉG. ./

(717.1) Before we begin the proof proper, we establish two preliminary facts.
This first fact concerns arbitrary witnesses to existential quantifiers. If ĉ is a
possible-individual concept, then by definition of (709), we ∃wAppearsAt(ĉ,w).
Suppose w1 is such a world, so that we know AppearsAt(ĉ,w1). Then, by defini-
tion of appears at (700), ∃uRealizesAt(u, ĉ,w1), and by definition of realizes at
(697), ∃u∀F(w1 |=Fu ≡ ĉF). Suppose a is such an ordinary object. So it is a fact
about arbitrary witnesses w1 and a that:
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(ϑ) ∀F(w1 |=Fa ≡ ĉF)

Our second preliminary fact is obtained by first observing that it is a modally
strict theorem thatGa ≡ ¬Ga, by commuting an appropriate instance of (199.2).
Hence, by RN, �(Ga ≡ ¬Ga). So by theorem (525):

(ξ) Ga⇔¬Ga

With (ϑ) and (ξ), we may reason as follows:

ĉG ≡ w1 |= Ga by (ϑ) and commutativity of ≡
≡ w1 |= ¬Ga by (ξ) and the 1-modal closure of w1 (527)
≡ ¬w1 |= Ga by (529.1)
≡ ¬ĉG by (ϑ)

Since w1 and a were arbitrarily chosen witnesses, the conclusion ĉG ≡ ¬ĉG
follows from ∃wAppearsAt(ĉ,w). ./

(717.2) (Exercise)

(717.3) By (716), we know both:

(ϑ) ĉG ≡ ĉ � cG

(ξ) ĉG ≡ ĉ � cG

So we may reason as follows:

ĉ � cG ≡ ĉG by (ϑ) and commutativity of ≡
≡ ¬ĉG by (717.1)
≡ ĉ 6� cG by (ξ) ./

(717.4) (Exercise)

(718) By the definition of completeness (687) and GEN, we have to show ĉF ∨
ĉF. Since ĉ is a possible-individual concept, we know by the definitions of
PossibleIndividualConcept (709) and AppearsAt (700) that some ordinary object,
say a, realizes ĉ at some possible world, say w1. So by definition of RealizesAt
(697), we know:

(ϑ) ∀G(w1 |= Ga ≡ ĉG)

Now, independently, note that from the easily-proved theorem �(Fa∨¬Fa) and
the instance Fa ≡ ¬Fa of the modally strict theorem (199.1), it follows by the
Rule of Substitution (160.2) that �(Fa∨Fa). Then by a Fundamental Theorem
of Possible World Theory (543.2), it follows that w1 |= (Fa∨ Fa). But then by
(545.3), it follows that:

(ξ) w1 |=Fa ∨ w1 |=Fa
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So, we may reason by disjunctive syllogism from the disjuncts of (ξ): ifw1 |= Fa,
then ĉF by (ϑ), and if w1 |= Fa, then ĉF, again by (ϑ). Hence, ĉF ∨ ĉF. ./

(720) (→) Assume ĉ and ê are possible-individual concepts that are compos-
sible. Then by definition (719), there is a possible world, say w1, such that
both AppearsAt(ĉ,w1) and AppearsAt(ê,w1). But we also know, by (715.1), that
AppearsAt(ĉ,wĉ) and AppearsAt(ê,wê). Since possible-individual concepts ap-
pear at a unique possible world (713.1), it follows, respectively, that w1 = wĉ

and w1 = wê. Hence wĉ = wê. (←) Assume wĉ = wê. Independently, by (715.1),
we know both AppearsAt(ĉ,wĉ) and AppearsAt(ê,wê). But from our assumption
and the second of these, it follows that AppearsAt(ê,wĉ). But then, there is a
world, namely wĉ, where both ĉ and ê appear. So Compossible(ĉ, ê). ./

(721.1) By the definition of possible-individual concept (709), ∃w(Appear(ĉ,w).
Let w1 be such a world, so that we know Appear(ĉ,w1). By the idempotence of
conjunction (85.6), Appear(ĉ,w1) & Appear(ĉ,w1). So by ∃I, ∃w(Appear(ĉ,w) &
Appear(ĉ,w)). By the definition of compossibility (719), Compossible(ĉ, ĉ). ./

(721.2) Suppose Compossible(ĉ, ê). Then, by definition (719):

∃w(Appear(ĉ,w) & Appear(ê,w))

So, by the logic of quantification and the commutativity of conjunction (88.2.a):

∃w(Appear(ê,w) & Appear(ĉ,w))

Hence, Compossible(ê, ĉ), again by the definition of compossibility (719). ./

(721.3) Suppose Compossible(ĉ, d̂ ) and Compossible(d̂, ê). Then, by a previous
theorem (720), wĉ = wd̂ and wd̂ = wê. So, by transitivity of identity, wĉ = wê.
Hence, again by (720), Compossible(ĉ, ê). ./

(723.1) Since ĉ is a possible-individual concept, we know, by the definitions of
individual concept (709) and appearance (700), that there is an ordinary indi-
vidual, say b, and a possible world, say w1, such that RealizesAt(b, ĉ,w1). So, by
the idempotence of & (85.6), RealizesAt(b, ĉ,w1) & RealizesAt(b, ĉ,w1). By three
applications of ∃I, we have ∃u∃w∃w′(RealizesAt(u, ĉ,w) & RealizesAt(u, ĉ,w′)).
So, by the definition of counterpart (722), CounterpartOf (ĉ, ĉ). ./

(723.2) Assume CounterpartOf (ê, ĉ). Then, by applying definitions, we know
there is an ordinary object, say b, and there are possible worlds, say w1 and w2,
such that RealizesAt(b, ĉ,w1) & RealizesAt(b, ê,w2). By the commutativity of &
(88.2.a), RealizesAt(b, ê,w2) & RealizesAt(b, ĉ,w1). It follows that:

∃u∃w∃w′(RealizesAt(u, ê,w) & RealizesAt(u, ĉ,w′))

So by the definition of counterparts (722), CounterpartOf (ĉ, ê). ./
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(723.3) Assume CounterpartOf (ê, d̂) and CounterpartOf (d̂, ĉ). Then by the first
conjunct we know that there is an ordinary object, say a, and there are possible
worlds, say w1 and w2, such that:

(ϑ) RealizesAt(a, d̂,w1) & RealizesAt(a, ê,w2)

And by the second conjunct of our assumption we know that there is an ordi-
nary object, say b, and there are possible worlds, say w3 and w4, such that:

(ξ) RealizesAt(b, ĉ,w3) & RealizesAt(b, d̂,w4)

Then, from the first conjunct of (ϑ) and the second conjunct (ξ), it follows by a
fact about realization (707) that w1 =w4 and a=b. So after substituting a for b
in the first conjunct of (ξ), we may conjoin the result with the second conjunct
of (ϑ) to obtain: RealizesAt(a, ĉ,w3) & RealizesAt(a, ê,w2). It therefore follows
that:

∃u∃w∃w′(RealizesAt(u, ĉ,w) & RealizesAt(u, ê,w′)),

So by definition (722), CounterpartOf (ê, ĉ). ./

(724) (→) Assume CounterpartOf (ê, ĉ). Then by the definition of counterpart
(722), there is an ordinary object, say a, and there are possible worlds, say, w1

and w2, such that:

(ϑ) RealizesAt(a, ĉ,w1) & RealizesAt(a, ê,w2)

By &I, ∃I, and the definition of the uniqueness quantifier, it remains only to
establish:

∀u((RealizesAt(u, ĉ,w1) & RealizesAt(u, ê,w2))→ u = a)

So by GEN, assume:

(ξ) RealizesAt(u, ĉ,w1) & RealizesAt(u, ê,w2)

But if we conjoin the first conjunct of (ξ) with the first conjunct of (ϑ), we have
RealizesAt(u, ĉ,w1) & RealizesAt(a, ĉ,w1). So u = a, by a fact about realization
(699.2).

(←) Exercise. ./

(726.1) – (726.3) (Exercises)

(728.1) – (728.3) (Exercises)

(729.1) By the second conjunct of (728.3), we know ∀F(cwu F ≡ w |= Fu). So,
by the commutativity of the biconditional, ∀F(w |= Fu ≡ cwu F). Hence, by the
definition of realization (697), it follows that RealizesAt(u,cwu ,w). ./
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(729.2) By applying GEN to (729.1), we know that ∀uRealizesAt(u,cwu ,w). But
we also know that there are ordinary objects, by (227.1) and the T schema.
Hence ∃uRealizesAt(u,cwu ,w). So, by the definition of appearance (700), it fol-
lows that AppearsAt(cwu ,w). ./

(729.3) By applying GEN to (729.2), we know ∀wAppearsAt(cwu ,w). But we
know that there are possible worlds. Hence ∃wAppearsAt(cwu ,w). So by defini-
tion (709), PossibleIndividualConcept(cwu ). ./

(729.4) This follows immediately from (729.2) and (704). ./

(729.5) (Exercise)

(730.1) We may reason biconditionally as follows:

PossibleIndividualConcept(c) ≡ ∃wAppearsAt(c,w) by definition (709)
≡ ∃w∃uRealizesAt(u,c,w) by definition (700)
≡ ∃u∃wRealizesAt(u,c,w) by theorem (103.11)
≡ ∃u∃w∀F(w |= Fu ≡ cF) by definition (697)
≡ ∃u∃w∀F(cF ≡ w |= Fu) (88.2.e) and (159.3)
≡ ∃u∃wConceptOfAt(c,u,w) by definition (725) ./

(730.2) (→) Assume PossibleIndividualConcept(c). Then by definition (709), we
know ∃wAppearsAt(c,w). Suppose w1 is an arbitrary such world, so that we
have AppearsAt(c,w1). By the definition of appearance (700), some ordinary
individual, say b, is such that RealizesAt(b,c,w1). So ∀F(w1 |=Fb ≡ cF), by the
definition of realization (697). Now the second conjunct of (728.3) tells us
that ∀F(cw1

b F ≡ w1 |=Fb). So by the logic of quantified biconditionals, we know:
∀F(cF ≡ c

w1
b F). Since both c and c

w1
b are concepts and, hence, abstract, it follows

that c = c
w1
b . So by ∃I, ∃u∃w(c = cwu ).

(←) Assume ∃u∃w(c = cwu ), to show PossibleIndividualConcept(c). So c = c
w1
b ,

for some arbitrary ordinary object b and possible world w1. Now we indepen-
dently know that IndividualConcept(cw1

b ), by (729.3). So IndividualConcept(c).
./

(731) In Remark (684), we noted that cu can be canonically identified:

cu = ıx(A!x&∀F(xF ≡ Fu))

Moreover, as an instance of Actualized Abstraction (258.2), we know:

ıx(A!x&∀F(xF ≡ Fu))G ≡ AGu

From these two results, it follows that:

cuG ≡ AGu

But as an instance of (538), we know:
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AGu ≡wα |=Gu

Our last two results yield cuG ≡ wα |=Gu, which by the commutativity of the
biconditional leaves us with:

(ϑ) wα |=Gu ≡ cuG

Now, independently, since wα is a possible world (537.1), it follows from the
second conjunct of (728.3) that:

(ζ) c
wα
u G ≡ wα |=Gu

(ζ) and (ϑ) imply c
wα
u G ≡ cuG. So by GEN, ∀G(cwα

u G ≡ cuG). Since both c
wα
u

and cu are abstract, it follows that cwα
u = cu . ./

(732.1) By (729.3) cwu is a possible-individual concept. So by (716), it follows
that cwuG ≡ cwu � cG. ./

(732.2) From the second conjunct of (728.3), it follows that cwuG ≡ w |= Gu,
and so by commutativity of the biconditional, (w |= Gu) ≡ cwuG. But we just
established (732.1) that cwuG ≡ cwu � cG. Hence, (w |=Gu) ≡ cwu � cG. ./

(732.3) Assume cwu = cwv . Independently, we know both RealizesAt(u,cwu ,w) and
RealizesAt(v,cwv ,w), by (729.1). So we may substitute cwu for cwv in the latter, to
obtain RealizesAt(v,cwu ,w). But from RealizesAt(u,cwu ,w) and RealizesAt(v,cwu ,w),
it follows from a fact about realization (699.2), that u=v. ./

(732.4) Assume cwu = cw
′

u . Independently, we know both RealizesAt(u,cwu ,w) and
RealizesAt(u,cw

′

u ,w
′), by (729.1). So we may substitute cwu for cw

′

u in the latter, to
infer RealizesAt(u,cwu ,w

′). But from RealizesAt(u,cwu ,w) and RealizesAt(u,cwu ,w
′),

it follows from a fact about realization (699.3), that w=w′. ./

(732.5) (Exercise)

(733.1) From a fact about world-relative concepts of individuals (729.1), we
know both RealizesAt(u,cwu ,w) and RealizesAt(v,cwv ,w). Since ordinary objects
exist, by (227.1) and the T schema, we may infer, respectively:

∃uRealizesAt(u,cwu ,w)
∃vRealizesAt(v,cwv ,w)

So, by definition (700), it follows, respectively, that:

AppearsAt(cwu ,w)
AppearsAt(cwv ,w)

By conjoining these results and quantifying:

∃w′(AppearsAt(cwu ,w
′) & AppearsAt(cwv ,w

′))
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So by the definition of compossibility (719), Compossible(cwu ,c
w
v ). ./

(733.2) (Exercise)

(733.3) By (729.1), we know both RealizesAt(u,cwu ,w) and RealizesAt(u,cw
′

u ,w
′),

which we may conjoin. Since the restricted variables u, w, andw′ all range over
non-empty domains, we obtain by ∃I:

∃u∃w∃w′(RealizesAt(u,cwu ,w) & RealizesAt(u,cw
′

u ,w
′))

So, by the definition of counterparts (722), it follows that CounterpartOf (cw
′

u ,c
w
u ).

./

(733.4) (Exercise)

(736.1)? Assume:

(ϑ) Fu&♦¬Fu

The first conjunct and theorem (692.1)?, which asserts Gu ≡ cu � cG, together
imply cu � cF . So it remains show:

(ξ) ∃ĉ(CounterpartOf (ĉ,cu) & ĉ 6� cF &∃w(w,wα & AppearsAt(ĉ,w)))

Note that from the second conjunct of (ϑ) and a Fundamental Theorem of Pos-
sible World Theory (543.1), it follows that ∃w(w |=¬Fu). So, let w1 be an arbi-
trary such possible world, so that we know w1 |=¬Fu. Now consider the con-
cept of u atw1, i.e., cw1

u . We know by (729.3) that PossibleIndividualConcept(cw1
u ).

So to show (ξ), it suffices by &I and ∃I to show:

(a) CounterpartOf (cw1
u ,cu)

(b) c
w1
u 6� cF

(c) ∃w(w,wα & AppearsAt(cw1
u ,w))

(a) If we instantiate theorem (733.3) to worlds w1 and wα, it follows that:

CounterpartOf (cw1
u ,c

wα
u )

But by (731), we know c
wα
u = cu . So it follows that CounterpartOf (cw1

u ,cu).

(b) Since we know w1 |= ¬Fu, it follows by (529.1) that ¬w1 |= Fu. So by the
second conjunct of (728.3), it follows that ¬cw1

u F. But since c
w1
u is known to be

a possible-individual concept, it then follows from (732.1) that cw1
u 6� cF .

(c) By &I and ∃I, it suffices to show both w1,wα and AppearsAt(cw1
u ,w1). Note

that by a theorem of possible world theory (536.2)?, the first conjunct of (ϑ) is
equivalent to wα |= Fu. But given this last fact and the previously established
fact that ¬w1 |= Fu, there is a proposition, namely Fu, that is true at wα but
not true at w1. Since worlds are situations, it follows by (474) that w1 ,wα. So
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it remains to show AppearsAt(cw1
u ,w1). But this is immediate from a fact about

appearance and world-relative concepts of individuals (729.2). ./

(736.2)? (Exercise)

(737.1)? (→) This direction follows a fortiori from the left-to-right direction of
(736.1)?. (←) Assume the antecedent:

cu�cF & ∃ĉ(CounterpartOf (ĉ,cu) & ĉ 6�cF)

From the first conjunct and (692.1)?, it follows that Fu. So it remains to show
♦¬Fu. By a fundamental theorem of possible worlds (543.1), it suffices to show
∃w(w |= ¬Fu). So our proof strategy is to find a witness to this latter claim.

Suppose ĉ1 is a possible-individual concept that witnesses the second con-
junct of our assumption, so that we know:

(ϑ) CounterpartOf (ĉ1,cu) & ĉ1 6�cF

Now the first conjunct of (ϑ) implies by definition (722) that:

∃v∃w∃w′(RealizesAt(v,cu ,w) & RealizesAt(v, ĉ1,w
′))

Assume ordinary object b and possible worlds w1 and w2 are witnesses to this
existential claim. Then we know:

(ξ) RealizesAt(b,cu ,w1) & RealizesAt(b, ĉ1,w2)

Now independently by (708.1), we know RealizesAt(u,cu ,wα). This and the
first conjunct of (ξ) imply, by (707), that w1 = wα and b = u. From the latter
and the second conjunct of (ξ) it follows that RealizesAt(u, ĉ1,w2). By definition
(697), this implies ∀G(w2 |= Gu ≡ ĉ1G). So, in particular, w2 |= Fu ≡ ĉ1F. Now
assume, for reductio, thatw2 |= Fu. Then ĉ1F. But this implies ĉ1 � cF , by (716),
which contradicts the second conjunct of (ϑ). Hence ¬(w2 |= Fu), and so by the
coherence of truth at a world (529.1), it follows that w2 |= ¬Fu. Thus, w2 is a
witness to ∃w(w |= ¬Fu), which is what we had to find. ./

(737.2)? (Exercise)

(738.1) Assumew |= (Fu&♦¬Fu). Then since the laws of conjunction hold with
respect to truth at a possible world (545.1), it follows that:

(ϑ) w |=Fu & w |=♦¬Fu

Now the first conjunct of (ϑ) and the second conjunct of theorem (728.3), which
asserts ∀G(cwuG ≡ w |= Gu), together imply cwu F. This implies, by (732.1), that
cwu � cF . We’ve therefore established the first conjunct of our desired conclu-
sion. So it remains show:

(ξ) ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ 6� cF &∃w′(w′,w& AppearsAt(ĉ,w′)))
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Note that from the second conjunct of (ϑ), it follows that ∃w′(w′ |= ♦¬Fu). So
by a Fundamental Theorem of Possible World Theory (543.1), it follows that
♦♦¬Fu. This implies ♦¬Fu, by the 4♦ schema (165.7). So by the same Fun-
damental Theorem, ∃w′(w′ |= ¬Fu). Now let w1 be an arbitrary such possible
world, so that we know w1 |= ¬Fu, and consider the concept of u at w1, i.e.,
c
w1
u . We know by (729.3) that PossibleIndividualConcept(cw1

u ). So to show (ξ), it
suffices by &I and ∃I to show:

(a) CounterpartOf (cw1
u ,cwu )

(b) c
w1
u 6� cF

(c) ∃w′(w′,w& AppearsAt(cw1
u ,w′))

(a) This is an instance of theorem (733.3).

(b) Since we know w1 |= ¬Fu, it follows by (529.1) that ¬w1 |= Fu. So by the
second conjunct of (728.3), it follows that ¬cw1

u F. But since c
w1
u is known to be

a possible-individual concept, it then follows from (732.1) that cw1
u 6� cF .

(c) By &I and ∃I, it suffices to show both w1 , w and AppearsAt(cw1
u ,w1). By

the first conjunct of (ϑ), we know w |= Fu. But we’ve previously established
¬w1 |= Fu. So there is a proposition, namely Fu, that is true at w but not true
at w1. Since worlds are situations, it follows by (474) that w1 , w. So it remains
to show AppearsAt(cw1

u ,w1). But this is an instance of a fact about appearance
and world-relative concepts of individuals (729.2). ./

(738.2) (Exercise)

(738.3) (→) This direction follows a fortiori from the left-to-right direction of
(738.1). (←) Assume the antecedent:

cwu �cF & ∃ĉ(CounterpartOf (ĉ,cwu ) & ĉ 6�cF)

To show w |= (Fu & ♦¬Fu), it suffices to show both w |= Fu and w |= ♦¬Fu, in
virtue of the right-to-left condition of (545.1). But from the first conjunct of
our assumption and (732.2), it follows that w |= Fu. So it remains to show
w |= ♦¬Fu. Suppose ĉ1 is a witness to the second conjunct of our assumption,
so that we know:

(ϑ) CounterpartOf (ĉ1,c
w
u ) & ĉ1 6�cF

Now the first conjunct of (ϑ) implies by definition (722) that:

∃v∃w′∃w′′(RealizesAt(v,cwu ,w
′) & RealizesAt(v, ĉ1,w

′′))

Assume ordinary object b and possible worlds w1 and w2 are witnesses to this
existential claim. Then we know:
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(ξ) RealizesAt(b,cwu ,w1) & RealizesAt(b, ĉ1,w2)

Now independently by (729.1), we know RealizesAt(u,cwu ,w). This and the first
conjunct of (ξ) imply, by (707), that w1 = w and b = u. From the latter and
the second conjunct of (ξ) it follows that RealizesAt(u, ĉ1,w2). By definition
(697), this implies ∀G(w2 |= Gu ≡ ĉ1G). So, in particular, w2 |= Fu ≡ ĉ1F. Now
assume, for reductio, thatw2 |= Fu. Then ĉ1F. But this implies ĉ1 � cF , by (716),
which contradicts the second conjunct of (ϑ). Hence ¬(w2 |= Fu), and so by the
coherence of truth at a world (529.1), it follows thatw2 |= ¬Fu. So ∃w(w |= ¬Fu)
and, hence, by a fundamental theorem of possible worlds (543.1), ♦¬Fu. Then
by the 5 schema (45.3), �♦¬Fu, and so by another fundamental theorem of
possible worlds (543.2), ∀w′(w′ |= ♦¬Fu). But then w |= ♦¬Fu. ./

(738.4) (Exercise)

(744) In the usual manner, we need not concern ourselves with the existence
clauses in the definientia of the notions involved. We are citing only defini-
tions instanced to variables, and these instances imply biconditionals between
a definiendum and its definiens without the existence claims.

(→) Assume R | :F 1-1←→ G. Then by (741) we know both:

(A) ∀x(Fx→∃!y(Gy &Rxy))

(B) ∀y(Gy→∃!x(Fx&Rxy))

By (743.4), we have to show both:

(a) R | :F 1-1−−→G

(b) R | :F −−−→
onto

G

(a) By (743.2), we have to show both:

R | :F−→G

∀x∀y∀z((Fx&Fy &Gz)→ (Rxz&Ryz→ x=y))

By (743.1), the first just means ∀x(Fx→∃!y(Gy&Rxy)), which is just (A). So it
remains to show the second. Assume Fx&Fy&Gz. And further assume Rxz&
Ryz. Then from Gz and (B), it follows that there is a unique x that bears R to z.
Then from Fx, Fy, Rxz, and Ryz it follows that x=y, on pain of contradiction.

(b) By (743.3), we have to show both:

R | :F−→G

∀y(Gy→∃x(Fx&Rxy))
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But we’ve seen that the first is already known. And the second follows a fortiori
from (B).

(←) Assume R | :F
1-1
−→
onto
G. After applying definitions (743.4), (743.2), and (743.3),

and then simplifying, we know:

(C) R | :F −→ G

(D) ∀x∀y∀z((Fx&Fy &Gz)→ (Rxz&Ryz→ x=y))

(E) ∀y(Gy→∃x(Fx&Rxy))

We have to show:

(c) ∀x(Fx→∃!y(Gy &Rxy))

(d) ∀y(Gy→∃!x(Fx&Rxy))

(c) This follows from (C) and definition (743.1).

(d) By GEN, it suffices to show Gy → ∃!x(Fx & Rxy). So assume Gy. By (E),
it follows that ∃x(Fx&Rxy). So suppose a is such an object, so that we know
Fa and Ray. Then by &I, ∃I and the definition of the uniqueness quantifier, it
remains only to show ∀z(Fz&Rzy → z=a). So assume Fz&Rzy. But since we
now know Fz, Fa, Gy, Rzy, and Ray, we may infer z=a by (D). ./

(747.1) Pick a variable, say z, that is substitutable for x in ϕ. Then if we elimi-
nate the restricted variable, we have to show:

∃!x(D!x&ϕ) ≡ ∃x(D!x&ϕ&∀z((D!z&ϕzx)→ z=x))

But, clearly, this is an instance of the definition of the uniqueness quantifier
(127). ./

(748.1) Given Rule ≡S and the facts that R↓, F↓, and G↓, it suffices by defini-
tions (747.3) and (747.2) to show that:

∃R[∀u(Fu→∃!v(Fv&Ruv)) & ∀v(Fv→∃!u(Fu&Ruv))]

If we propose =D as our witness, then we have to show:

(a) ∀u(Fu→∃!v(Fv&u=D v))

(b) ∀v(Fv→∃!u(Fu&u=D v))]

(a) By GEN, it suffices to show Fu→∃!v(Fv& u=D v). So assume Fu. We have
to show, by the definition of the unique existence quantifier for discernible
objects (747.1):

∃v(Fv&u=D v&∀v′((Fv′ &u=D v′)→ v′ =v))
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But if we propose that u is a witness to this claim, then we have to show:

Fu&u=D u&∀v′((Fv′ &u=D v′)→ v′ =u)

We know Fu by assumption, and u =D u is a theorem. So it remains only to
show:

∀v′((Fv′ &u=D v′)→ v′ =u)

But this is trivial, by the fact that u =D v′ → u = v′ (273.19) and the symmetry
of =.

(b) Note that the following is an alphabetic variant of what we have to show:

∀u(Fu→∃!v(Fv& v=D u))

We leave it as an exercise to show that this follows from (a) by a modally strict
derivation that appeals to the symmetry of =D (273.31). ./

(748.2) To show that equinumerosityD is symmetric, assume that F ≈D G and
suppose R is a witness to this fact. Then by Rule ≡S and the facts that R↓, F↓,
and G↓, it follows by definitions (747.3) and (747.2) that:

(ϑ) ∀u(Fu→∃!v(Gv&Ruv)) & ∀v(Gv→∃!u(Fu&Ruv))

Now we want to show, for some R′, that R′ | :G 1-1←→ F. Consider the converse of
R, namely [λxy Ryx]. Clearly, [λxy Ryx]↓, by (39.2). So let us call this property
R−1. Clearly, R−1↓. By Rule ≡S, the facts that R↓, F↓, and G↓, and definitions
(747.3) and (747.2), we need to show:

(a) ∀u(Gu→∃!v(Fv&R−1uv))

(b) ∀v(Fv→∃!u(Gu&R−1vu))

(a) Assume Gu, by GEN. To avoid clash of variables, note that the second con-
junct of (ϑ) is equivalent to the following alphabetic variant:

∀v(Gv→∃!u′(Fu′ &Ru′v))

So, if instantiate u into this claim, we can, given our assumption Gu, detach
the consequent from the result, to conclude ∃!u′(Fu′ & Ru′u), i.e., again by
alphabetic variance, ∃!v(Fv &Rvu). Now, independently, since we know that
R−1↓ by definition, β-Conversion and the definition of R−1 imply the following
modally strict equivalence:

R−1uv ≡ Rvu
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So, by the Rule of Substitution (160.2), ∃!v(Fv&R−1uv).

(b) By analogous reasoning. ./

(748.3) To show that equinumerosityD is transitive, assume both that F ≈D G
and G ≈D H . Suppose R1 and R2 are relations that bear witness to these facts,
respectively. Then by Rule ≡S and the facts that R↓, F↓, and G↓, it follows from
definitions (747.3) and (747.2) that:

(ϑ) ∀u(Fu→∃!v(Gv&R1uv)) & ∀v(Gv→∃!u(Fu&R1uv))

(ξ) ∀u(Gu→∃!v(Hv&R2uv)) & ∀v(Hv→∃!u(Gu&R2uv))

Now let r and s be additional restricted variables ranging over discernible ob-
jects and consider the relation:

[λrs ∃v(Gv&R1rv&R2vs)]

Clearly, [λrs ∃v(Gv & R1rv & R2vs)]↓, so let us call it R.477 By now familiar
reasoning and definitions (747.3) and (747.2), to show that R | : F 1-1←→ H , we
must show:

(a) ∀u(Fu→∃!v(Hv&Ruv))

(b) ∀v(Hv→∃!u(Fu&Ruv))

To show (a), assume Fu, by GEN. By the first conjunct of (ϑ) and (747.1), there
is a discernible object, say b, such that both:

(c) Gb&R1ub

(d) ∀v((Gv&R1uv)→ v=b)

Then, after instantianting b into the first conjunct of (ξ), we know, given the
first conjunct of (c), that there is a discernible object, say c, such that both:

(e) Hc&R2bc

(f) ∀v((Hv&R2bv)→ v=c)

Now to prove ∃!v(Hv &Ruv), we choose c as our witness. It then suffices, by
∃I, the definition of the uniqueness quantifier for discernible objects (747.1),
and the fact that c is discernible, to show that:

477By our conventions for bound occurrences of restricted variables, the λ-expression R abbrevi-
ates in turn abbreviates:

[λxy D!x&D!y &∃z(D!z&Gz&R1xz&R2zy)]

By (337.4), the above eliminates bound occurrences of r and s with bound occurrences of x and y,
and by (337.2), the above eliminates bound occurrences of v with bound occurrences of z.
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(g) Hc&Ruc

(h) ∀v((Hv&Ruv)→ v=c)

To show (g), note that Hc is the first conjunct of (e). Now by the fact that R↓,
the definition of R and β-Conversion, we know Ruc iff ∃v(Gv &R1uv &R2vc).
But (c) and (e) above establish that b is witness to the existence claim. To show
(h), assume Hv&Ruv, to show v=c. Since Ruv, we know, by the existence and
definition of R and β-Conversion, that there is a discernible object, say e, such
that Ge&R1ue&R2ev. But the first two conjuncts imply, by (d), that e=b. This
last fact and R2ev imply R2bv. So we know Hv &R2bv. Then by (f), it follows
that v=c.

To show (b), assume Hv. Then by the 2nd conjunct of (ξ), we know, for some
discernible object, say c:

(i) Gc&R2cv&∀u((Gu&R2uv)→ u=c)

Now if we instantiate c into the second conjunct of (ϑ), then from the first
conjunct of (i), we know that for some discernible object, say d:

(j) Fd &R1dc&∀u((Fu&R1uc)→ u=d)

To complete the proof of (b), it suffices, by ∃I and the definition of the unique-
ness quantifier, to show:

Fd &Rdv&∀u((Fu&Ruv)→ u=d)

Fd is the first conjunct of (j). Moreover, by β-Conversion and the definition
and existence of R, we know Rdv, since there is a discernible object, namely c,
such that Gc, R1dc, and R2cv, by (i) and (j). Since it now remains only to show
∀u((Fu&Ruv)→ u=d), assume Fu&Ruv. From Ruv and the definition of R, it
follows that some discernible object, say e, is such that Ge&R1ue&R2ev. From
Ge, R2ev, and the third conjunct of (i), it follows that e= c. But then the third
conjunct of (j) implies ∀u((Fu&R1ue)→ u=d). So by ∀E, (Fu&R1ue)→ u=d.
But we already know both Fu and R1ue. Hence u=d. ./

(748.4) (→) Assume F≈DG. Then by GEN, it suffices to showH ≈D F ≡H ≈DG:

(→) Assume H ≈D F, then by transitivity (748.3), H ≈DG.

(←) Assume H ≈D G. Then, by symmetry (748.2), our initial assumption im-
plies G≈D F. So by transitivity, H ≈D F.

(←) Assume ∀H(H ≈D F ≡ H ≈D G). By instantiating to F we obtain: F ≈D F ≡
F≈DG. So by reflexivity (748.1), F≈DG. ./

(750) (Exercise)

(751.1) Assume ¬∃uFu and ¬∃vHv. Then pick any relation R you please. By
failures of the antecedent, we know both:
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Fu→∃!v(Hv&Ruv)

Hv→∃!u(Fu&Ruv)

So by GEN:

∀u(Fu→∃!v(Hv&Ruv))

∀v(Hv→∃!u(Fu&Ruv))

Hence, by &I and definition (747.2) (as simplified by Rule ≡S and the facts

that R↓, F↓, and H↓), it follows R | : F 1-1←−→D H . So by ∃I and definition (747.3),
F ≈D H . ./

(751.2) Assume ∃uFu and ¬∃vHv. Given the former, suppose b is such a dis-
cernible object, so that we know Fb. Now assume, for reductio, that F ≈D H .
Then by definitions (747.3) and (747.2), as simplified by Rule ≡S and the facts
that R↓, F↓, and H↓, it follows that:

(ϑ) ∃R[∀u(Fu→∃!v(Hv&Ruv)) & ∀v(Hv→∃!u(Fu&Ruv))]

Suppose R1 is such an R. Then from the first conjunct of (ϑ) and Fb, it follows
that ∃!v(Hv&Ruv). A fortiori, ∃vHv. Contradiction. ./

(752.1) (Exercise)

(753) Since the following proof is conducted entirely using variables and con-
stants, all of which are significant, we may omit any existence clauses that
would otherwise be required by the definitions of the notions involved. Let us
use r, s, and t as additional restricted variables for discernible objects, so that
r, s, t,u,v all range over discernible objects. Assume that F ≈D G, Fu, and Gv.
The first assumption implies, by definition (747.3), that some relation, say R,
correlatesD F and G one-to-one, i.e., by definition (747.2):

Fact 1: ∀r(Fr→∃!s(Gs&Rrs)) & ∀s(Gs→∃!r(Fr &Rrs))

Moreover, by (750), it follows that R mapsD F onto G one-to-one. By definition
(749.2), the one-to-one character of R entails:

Fact 2: ∀r∀s∀t((Fr &Fs&Gt)→ (Rrt&Rst→ r=s))

Now we want to show that F−u ≈D G−v . By definitions (747.3) and (747.2), we
have to show:

Claim: There is a relation R′ such that:

(A) ∀r(F−ur→∃!s(G−vs&R′rs))

(B) ∀s(G−vs→∃!r(F−ur &R′rs))
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We proceed by showing that if Ruv (Case 1), then R itself is the witness to the
Claim and if ¬Ruv (Case 2), then there exists a relation that can be defined in
terms of R that serves as a witness to the Claim.

Case 1: Ruv. Then we show R itself is the witness to the Claim, i.e., that both
(A) and (B) hold with respect to R. In what follows, we use a,b,c,d as constants
for discernible objects.

(A) By GEN, suppose F−ur, to show ∃!s(G−vs & Rrs)). Then Fr and r , u, by
the definition of F−u (752.2). But since Fr, the first conjunct of Fact 1 implies
∃!s(Gs&Rrs). Let b be such an object, so that we know:

(ζ) Gb&Rrb&∀t(Gt&Rrt→ t=b)

We can now show, using b as a witness, that ∃!s(G−vs & Rrs). Since we now
know Fr, Fu, Gb, Rrb, Ruv, and r ,u, it follows by Fact 2 that b,v, on pain of
contradiction. Since we have thatGb and b,v, it follows thatG−vb. Since we’ve
established G−vb and Rrb, it remains to show uniqueness. By GEN, it suffices
to show (G−vt &Rrt)→ t = b. So suppose G−vt and Rrt. Then by definition of
G−v , it follows that Gt. But then t=b, by the last conjunct of (ζ).

(B) By GEN, it suffices to show G−vs→∃!r(F−ur &Rrs). So assume G−vs. Then,
by definition of G−v (752.2), we know Gs and s , v. From Gs and the second
conjunct of Fact 1, we know ∃!r(Fr &Rrs). So suppose a is such an object, so
that we know:

(ω) Fa&Ras&∀t(Ft&Rts→ t=a)

We can now show, using a as a witness, that ∃!r(F−ur & Rrs). Since we now
know Fa, Gs, Gv, Ras, Ruv, and s, v, it follows from the fact that R mapsD F
to G (i.e., the first conjunct of Fact 1), that a,u, on pain of contradiction (if a
were identical to u, we would have Ras, Rav, and s, v, which would contradict
the fact that R relates a to a unique discernible object exemplifying G). Given
we know Fa and a,u, we have F−ua. So we have established F−ua and Ras. It
then remains to prove uniqueness. By GEN, it suffices to show (F−ut&Rts)→
t = a. So suppose F−ut and Rts. Then Ft, by definition of F−u . So by the last
conjunct of (ω), t=a.

Case 2: ¬Ruv. Since we’ve assumed Fu and Gv, we therefore know by Fact 1
both:

∃!s(Gs&Rus), i.e., there is a unique discernible object that exemplifies G
to which u bears R, and

∃!r(Fr &Rrv), i.e., there is a unique discernible object that exemplifies F
and that bears R to v.
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Let b be a witness to the first and a be a witness to the second. Now let R1 be
the relation:

[λrs (r,u& s,v&Rrs)∨ (r=a& s=b)∨ (r=u& s=v)]

By our conventions for restricted variables, this λ-expression has the form
[λxyD!x&D!y&ϕ], and so R1 exists by (273.15). So it remains to show that R1

is a witness to our Claim by showing both (A) and (B) hold with respect to R1.
However, we can simplify our task by showing both R1uv and that R1

correlatesD one-to-one F andG. For if so, then R1 serves as the relevant witness
and we have thereby reduced this problem to the reasoning in Case 1.

Clearly, R1uv, by the third disjunct of R1. So to show that R1 correlatesD
one-to-one F and G, it suffices to note that R1 is identical to R except that it
maps a uniquely to b (by the first and second disjuncts of R1) and u uniquely
to v (by the first and third disjuncts of R1). Hence, by the reasoning in Case 1,
R1 correlatesD one-to-one F−u and G−v . ./

(754) Since the following proof is conducted entirely using variables and con-
stants, all of which are significant, we may omit any existence clauses that
would otherwise be required by the definitions of the notions involved. We
continue to use r, s, and t as additional restricted variables for discernible ob-
jects, so that r, s, t,u,v all range over discernible objects. Assume that F−u ≈D
G−v , Fu, and Gv. The first implies, by definition (747.3) that some relation, say
R, correlatesD F−u and G−v one-to-one. Then by definition (747.2), we know:

Fact 1: ∀r(F−ur→∃!s(G−vs&Rrs)) & ∀s(G−vs→∃!r(F−ur &Rrs))

Now by (750), it also follows that R mapsD F−u onto G−v one-to-one. By defini-
tion (749.2), the one-to-one character of R entails:

Fact 2: ∀r∀s∀t((F−ur &F−us&G−vt)→ (Rrt&Rst→ r=s))

We want to show F ≈D G, i.e., by definitions (747.3) and (747.2):

Claim: There is a relation R′ such that:

(A) ∀r(Fr→∃!s(Gs&R′rs))

(B) ∀s(Gs→∃!r(Fr &R′rs))

Consider the following relation R2:

[λrs (F−ur &G−vs&Rrs)∨ (r=u& s=v)] R2

By our convention for restricted variables, R2 has the form [λxyD!x&D!y&ϕ],
and so R2 exists by (273.15). It remains to establish that R2 is a witness to
the Claim. But clearly, for any F-object a other than u, the first disjunct of R2

guarantees that there is a unique G-object b other than v such that R2ab, and
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vice versa. And by the second disjunct, R2 uniquely maps u to v. Hence, R2

correlatesD F and G one-to-one.

(755.1) We prove our theorem by letting L be the property [λx Ex→ E!x] and
showing that the following two properties are witnesses:

L, i.e., [λx E!x→ E!x]

P : [λx E!x&¬AE!x]

Before we begin the proof proper, we note some facts about these two prop-
erties. Clearly L is an impossible property, i.e., �¬∃xLx. Now as to P , recall
that by theorem (211.1), we know Contingent(q0), where q0 is ∃x(E!x&¬AE!x).
Hence by theorem (207.2), we know:

♦q0 &♦¬q0

i.e.,

(ω) ♦∃x(E!x&¬AE!x) &♦¬∃x(E!x&¬AE!x)

Clearly, since P ↓, it follows by β-Conversion that P x ≡ E!x&¬AE!x. From this
modally strict fact it follows from (ω) by the Rule of Substitution (160.2) that:

(ϑ) ♦∃xP x&♦¬∃xP x

Now to show that L and P are witnesses, we have to show ♦(L ≈D P &♦¬L ≈D P ).
But by (165.11), it suffices to show ♦L ≈D P &♦¬L ≈D P :

• ♦L ≈D P . We first establish ¬∃xP x→ L ≈D P . So assume ¬∃xP x. A fortiori,
¬∃uP u. Now we know, by definition of L, that ¬∃xLx. Again, a fortiori,
¬∃uLu. So we may invoke (751.1) to conclude P ≈D L, which by the sym-
metry of ≈D (748.2), yields L ≈D P . So by Conditional Proof, ¬∃xP x →
L ≈D P , and since this is a modally strict result, it follows by RM♦ (157.2)
that ♦¬∃xP x→ ♦L ≈D P . But we know ♦¬∃xP x, by (ϑ). Hence ♦L ≈D P .

• ♦¬L ≈D P . We begin by first proving ∃uP u → ¬L ≈D P . So assume
∃uP u. But we also know ¬∃xLx, which implies, a fortiori, that ¬∃uLu. So
we may invoke (751.2) to conclude ¬P ≈D L, which by symmetry yields
¬L ≈D P . Hence, ∃uP u→¬L ≈D P . Since this is a modally strict result, it
follows by RM♦ (157.2) that implies ♦∃uP u → ♦¬L ≈D P . But we know
♦∃xP x, by (ϑ). But if ♦∃xP x, then ♦∃uP u (exercise). Hence ♦¬L ≈D P . ./

(755.2) We prove our theorem by again showing that the following two prop-
erties are witnesses:

L: [λx E!x→ E!x]
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P : [λx E!x&¬AE!x]

This time we have to show:

(ξ) ♦([λzALz]≈D P & ♦¬[λzALz] ≈D P )

Note that the property [λzALz] is, like L, an impossible property, i.e., it is not
hard to show �¬∃x[λzALz]x:478

Proof. Suppose, for reductio, [λz ALz]x. Since this property exists, it
follows by β-Conversion that ALx. Hence, by (164.4), ALx. But, by def-
inition of L, we know �¬Lx. Hence A¬Lx, by (132). So by axiom (44.1),
¬ALx. Contradiction. Hence ¬[λzALz]x, and by ∀I and quantificational
logic, ¬∃x[λzALz]x. Since this was established by modally strict means
from no assumptions, RN implies �¬∃x[λzALz]x.

So [λzALz] is an impossible property (i.e., necessarily unexemplified) whereas
P is possibly exemplified and possibly not. Consequently, by reasoning analo-
gous to that used in the two bullet points at the end of the proof of (755.1), we
can show both conjuncts of (ξ). ./

(757.1) – (757.2) (Exercises)

(758.1)? Since F ↓ and [λz AFz]↓, we have to show ∀u([λz AFz]u ≡ Fu), by
definition (756). But this would follow, a fortiori, if we can show ∀x([λzAFz]x ≡
Fx). So, by GEN, we need only show [λzAFz]x ≡ Fx. By β-Conversion and the
fact that [λz AFz]↓, it follows that [λz AFz]x ≡ AFx. But theorem (130.2)? is
AFx ≡ Fx. Hence, [λzAFz]x ≡ Fx. ./

(758.2)? (Exercise)

(759.1)479 By theorem (133.4), we know A(AFx ≡ Fx), and since the commuta-
tivity of the biconditional is a modally strict theorem, it follows by a Rule of

478We thank Daniel West for suggesting a way to simplify the following subproof.
479In an earlier version, we had offered a proof of this theorem that appealed to the Fact discussed

in Remark (137); the proof inferred F ≈D [λz AFz] from (758.2)?, but then used the Fact just
referenced to conclude A(F ≈D [λzAFz]) is a modally strict theorem. But Daniel West reminded us
(personal communication, 5 August 2022) that (a) there are reasonable extensions of object theory
in which the Fact in question fails, as discussed in Remark (137), and (b) since many theorems
of number theory rely on the present theorem, our proof risked undermining the application to
number theory under reasonable extensions of object theory. So he presented an alternative proof
that doesn’t appeal to the Fact in Remark (137).

As I was about to input his proof and give him credit, I noticed that we had commented out our
original proof of this theorem, which didn’t appeal to the Fact in question. Further exmination
showed that our original and Daniel’s proof were almost identical – he saved one line at the outset,
by appealing to (133.4) instead of (44.4), but we saved some lines in the middle of the proof by
appealing to the Rule ≡S of Biconditional Simplification! So the proof that follows is blend of the
two. We’d like to thank Daniel for reminding us about the fragility of the Fact discussed in (137).
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Substitution that A(Fx ≡ AFx). Since [λzAFz]↓, we know independently, by β-
Conversion and the commutativity of the biconditional, that AFx ≡ [λzAFz]x
is a modally strict theorem. So by a Rule of Substitution, we may infer A(Fx ≡
[λzAFz]x). It follows by GEN that ∀xA(Fx ≡ [λzAFz]x). So A∀x(Fx ≡ [λzAFz]x),
by (44.3). A fortiori:

(ϑ) A∀u(Fu ≡ [λzAFz]u)

Note that since F↓ and [λz AFz]↓, definition (756) implies, by the Rule ≡S of
Biconditional Simplication (91), that (F ≡D [λzAFz]) ≡ ∀u(Fu ≡ [λzAFz]u) is a
modally strict theorem. Once we commute this result, it follows by a Rule of
Substitution from (ϑ) that A(F ≡D [λzAFz]). But independently, if we apply the
Rule of Actualization to (757.1), we know A(F ≡D [λzAFz]→ F ≈D [λzAFz]).
Hence, by theorem (131), A(F ≡D [λzAFz])→ A(F ≈D [λzAFz]). But since we’ve
established the antecedent, it follows that A(F ≈D [λzAFz]). ./

(759.2) Assume [λzAFz]x. Independently, since [λzAFz]↓, β-Conversion im-
plies that the following as a modally strict theorem:

(ϑ) [λzAFz]x ≡ AFx

So AFx. But this implies, by axiom (46.1), that �AFx. Since the commuted
form of (ϑ) is also a modally strict theorem, it follows that �[λz AFz]x, by a
Rule of Substitution. So by conditional proof, [λzAFz]x→ �[λzAFz]x. Since
this is a theorem, it follows by GEN, ∀x([λz AFz]x → �[λz AFz]x). And since
this last result was proved by modally strict means, it follows by RN that
�∀x([λzAFz]x→ �[λzAFz]x). So by definition (571.1), Rigid([λzAFz] ./

(760.1) Assume Rigid(F). Then it follows from definition (571.1) that�∀x(Fx→
�Fx). To show F ≈D [λz AFz], it suffices by (757.1) to show F ≡D [λz AFz].
Since this follows a fortiori from ∀x(Fx ≡ [λzAFz]x), we show the latter. Now
our assumption implies, by CBF, that ∀x�(Fx → �Fx), and so by Rule ∀E,
�(Fx→ �Fx). But then by (174.2), it follows that AFx ≡ Fx. But we also know
that since [λzAFz]↓, β-Conversion implies [λzAFz]x ≡ AFx. Hence, by hypo-
thetical syllogism, [λzAFz]x ≡ Fx, which by symmetry yields Fx ≡ [λzAFz]x.
Since x isn’t free in any assumption, it follows by GEN that ∀x(Fx ≡ [λzAFz]x).
./

(760.2) (→) Assume F≈DG. Then by (748.4), we know:

(ϑ) ∀H(H ≈D F ≡H ≈DG)

But by (39.2), [λzAHz]↓ and, moreover, this term is substitutable for H in the
matrix of (ϑ). Hence:

[λzAHz]≈D F ≡ [λzAHz]≈DG
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But then, by GEN, ∀H([λzAHz]≈D F ≡ [λzAHz]≈DG).

(←) Assume ∀H([λzAHz] ≈D F ≡ [λzAHz] ≈D G). Independently, by theorem
(573), we know:

∃H(Rigidifies(H,F))

Let P be such a property, so that we know Rigidifies(P ,F). It follows by (571.2)
that:

(ϑ) Rigid(P ) &∀x(P x ≡ Fx)

Now if we instantiate P into our assumption, we obtain:

(ζ) [λzAP z] ≈D F ≡ [λzAP z] ≈D G)

Our proof strategy is as follows:

(A) Show [λzAP z] ≈D F and conclude, by symmetry, that F ≈D [λzAP z].

(B) Conclude [λzAP z] ≈D G from first part of (A) and (ζ).

(C) Conclude F ≈D G, from the second part of (A), (B), and transitivity of ≈D
(748.3).

Since (B), (C), and the second part of (A) are all straightforward, it remains
only to show the first part of (A), i.e., [λzAP z] ≈D F. We do this by a direct hy-
pothetical syllogism. From the first conjunct of (ϑ) and (760.1), it follows that
P ≈D [λzAP z], which implies [λzAP z] ≈D P , by symmetry. But from the second
conjunct of (ϑ) it follows a fortiori that P ≡D F, and so P ≈D F, by (757.1). Then,
[λzAP z] ≈D F, by hypthetical syllogism. ./

(760.3) Let ϕ and ψ be as follows:

ϕ = Rigid(F) & Rigid(G)

ψ = F ≈D G→ �F ≈D G

Then we have to show ϕ→ �ψ. Our proof strategy is as follows:

(i) Show that there is a modally strict proof of ϕ→ ψ.

(ii) Conclude by RM that �ϕ→ �ψ.

(iii) Show that ϕ→ �ϕ.

(iv) Conclude that ϕ→ �ψ by hypothetical syllogism from (iii) and (ii).
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Now steps (ii) and (iv) are trivial. Step (iii) is derivable as follows. Assume ϕ.
Then if we expand both conjuncts by definition (571.1), the result is something
of the form �χ1 &�χ2. By the 4 and T schemas we know both that �χ1 ≡ ��χ1

and that �χ2 ≡ ��χ2. Since these are modally strict, it follows from ϕ by a
Rule of Substitution that ��χ1 &��χ2. Hence �(�χ1 &�χ2), by the right-to-
left direction of (158.3). But this is just �ϕ.

So it remains to show (i). Assume ϕ. Then by definition (571.1), we know
both:

(A) �∀x(Fx→ �Fx), i.e., by (574.1)
∀x(♦Fx→ �Fx)

(B) �∀x(Gx→ �Gx), i.e., by (574.1)
∀x(♦Gx→ �Gx)

Now further assume F ≈D G. Then, by (747.3) and (747.2):

∃R(∀u(Fu→∃!v(Gv&Ruv)) & ∀v(Gv→∃!u(Fu&Ruv)))

Suppose R1 is such a relation, so that we know:

(C) ∀u(Fu→∃!v(Gv&R1uv)) & ∀v(Gv→∃!u(Fu&R1uv))

Now our goal is to show �F ≈D G, and so by (747.3) and (747.2), we have to
show:

�∃R(∀u(Fu→∃!v(Gv&R1uv)) & ∀v(Gv→∃!u(Fu&R1uv)))

By the Buridan schema (168.1), it suffices to show:

∃R�(∀u(Fu→∃!v(Gv&R1uv)) & ∀v(Gv→∃!u(Fu&R1uv)))

So we need to find a relation that is provably a witness to this claim. By theo-
rem (573.3), we know that there is relation, say R2, such that Rigidifies(R2,R1),
i.e., by definition (571.2):

Rigid(R2) &∀x∀y(R2xy ≡ R1xy)

i.e., by definition (571.1) and &E:

(D) �∀x∀y(R2xy→ �R2xy), i.e., by (574.1)
∀x∀y(♦R2xy→ �R2xy)

(E) ∀x∀y(R2xy ≡ R1xy)

To show that R2 is the needed witness, we have to show:

�(∀u(Fu→∃!v(Gv&R2uv)) & ∀v(Gv→∃!u(Fu&R2uv)))
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Now by the right-to-left direction of (158.3), it suffices to show both �∀u(Fu→
∃!v(Gv & R2uv)) and �∀v(Gv → ∃!u(Fu & R2uv)). Without loss of generality,
we show only the first. We leave it as an exercise to show that BF (167.1) holds
for our restricted variable, i.e., we leave it as an exercise to show that it suf-
fices to prove ∀u�(Fu → ∃!v(Gv & R2uv)), and so by GEN, to show �(Fu →
∃!v(Gv & R2uv)). Assume not, i.e., ♦¬(Fu → ∃!v(Gv & R2uv)), i.e., ♦(Fu &
¬∃!v(Gv&R2uv)). Then, by (162.3):

(F) ♦Fu&♦¬∃!v(Gv&R2uv)

Now our strategy is to use the first conjunct of (F) to show the negation of the
second conjunct, yielding our contradiction. From the first conjunct of (F) and
the second line of (A), it follows that �Fu. Hence, Fu and so it follows from
the first conjunct of (C) that ∃!v(Gv &R1uv). Suppose a is such a discernible
object, so that by the definition of the uniqueness quantifier, we know:

(G) Ga&R1ua&∀v′(Gv′ &R1uv
′→ v′ =a)

Recall that our strategy is to show the negation of the second conjunct of (F).
So we have to show �∃!v(Gv&R2uv). That is, we have to show:

�∃v(Gv&R2uv&∀v′(Gv′ &R2uv
′→ v′ =v))

Now we leave it as an exercise that the Buridan formula ∃α�ϕ→ �∃αϕ (168.1)
holds for our rigid restricted variable v, i.e., that ∃v�ϕ → �∃vϕ is provable.
Hence, it suffices to show:

∃v�(Gv&R2uv&∀v′(Gv′ &R2uv
′→ v′ =v))

We now show that a is a witness to this claim, which means we have to show:

�(Ga&R2ua&∀v′(Gv′ &R2uv
′→ v′ =a))

By now familiar reasoning, it suffices to show:

(a) �Ga

(b) �R2ua

(c) �∀v′(Gv′ &R2uv
′→ v′ =a)

But (a) follows from (B) and the first conjunct of (G). To show (b), note that
(E) and the second conjunct of (G) yield R2ua. But this result and (D) im-
ply (b). Note that to show (c), it suffices to show ∀v′�(Gv′ & R2uv

′ → v′ = a),
and by GEN, show �(Gv′ & R2uv

′ → v′ = a). For reductio, suppose not, i.e.,
♦¬(Gv′ &R2uv

′→ v′ =a), i.e., ♦(Gv′ &R2uv
′ &¬v′ =a). Then:

(H) ♦Gv′ &♦R2uv
′ &♦¬v′ =a
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But the first conjunct of (H) implies, by the second line of (B), that �Gv′ and,
hence, Gv′. And the second conjunct of (H) implies, by the second line of
(D), �R2uv

′, and so R2uv
′. From this latter, (E) implies R1uv

′. Since we’ve
established Gv′ and R1uv

′, it follows from the third conjunct of (G) that v′ =a.
Then by the necessity of identity, �v′ =a, i.e., ¬♦¬v′ =a, which contradicts the
third conjunct of (H). ./

(763.1) – (763.2) (Exercises)

(764.1) Assume G≈DH . We need to show Numbers(x,G) ≡Numbers(x,H).

(→) Assume Numbers(x,G). Then, by definition (762), we know A!x, G↓, and:

(ϑ) ∀F(xF ≡ [λzAFz]≈DG)

SinceH↓, to show Numbers(x,H) it suffices by GEN to show xF ≡ [λzAFz]≈DH .
Now (ϑ) implies xF ≡ [λz AFz] ≈D G. Independently, our first assumption,
G ≈D H , implies, by (748.4), that [λz AFz] ≈D G ≡ [λz AFz] ≈D H . So, xF ≡
[λzAFz]≈DH .

(←) By analogous reasoning. ./

(764.2) Assume Numbers(x,G) and Numbers(x,H). Then by definition (762),
these imply, respectively:

∀F(xF ≡ [λzAFz]≈DG)

∀F(xF ≡ [λzAFz]≈DH)

Hence, by (99.11) and (99.10), it follows that:

∀F([λzAFz]≈DG ≡ [λzAFz]≈DH)

So by (760.2), G≈DH . ./

(765.1) Assume both Numbers(x,G) and Numbers(y,H). (→) Assume x = y.
Then Numbers(x,H). Hence by (764.2), G ≈D H . (←) Assume G ≈D H . Then
our global assumptions to imply, respectively:

(ϑ) A!x&G↓&∀F(xF ≡ [λzAFz]≈DG)

(ζ) A!y &H↓&∀F(yF ≡ [λzAFz]≈DH)

Since A!x and A!y, it suffices by theorem (245.2) to show ∀F(xF ≡ yF), and by
GEN, that xF ≡ yF:

(→) Assume xF. Then the right conjunct of (ϑ) implies [λz AFz] ≈D G.
But from this and our local assumption, it follows that [λzAFz]≈DH , by
the transitivity of ≈D (748.3) and the existence of [λzAFz]. Hence, by the
right conjunct of (ζ), it follows that yF.
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(←) Assume yF. Then the right conjunct of (ζ) implies [λz AFz] ≈D H .
Now since ≈D is symmetric (748.2), our local assumption implies that
H ≈D G. But then by transitivity of ≈D , it follows that [λzAFz] ≈D G. So
by the right conjunct of (ϑ), xF. ./

(765.2) (→) Assume ∃x(Numbers(x,F) & Numbers(x,G)). Suppose a is such an
object, so that we know Numbers(a,F)&Numbers(a,G). Then F ≈D G, by (764.2).

(←) Assume F ≈D G. Now by (763.1), we know ∃xNumbers(x,F). Suppose b is
such an object, so that we know Numbers(b,F). Our assumption and this last
fact imply, by (764.1), Numbers(b,G). Hence, ∃x(Numbers(x,F)&Numbers(x,G)).
./

(765.3) (Exercise)

(766) Assume G ≡D H . Then, by (757.1), G ≈D H . Hence, our conclusion fol-
lows by (764.1). ./

(768) Assume ∃u∃v(u , v). Let c and d be such discernible objects, so that
we know c , d. Then consider the properties [λx x= c] and [λx x= d], both of
which exist (273.34). By Comprehension for Abstract Objects (53), we know
that both:

∃x(A!x&∀F(xF ≡ [λzAFz]≈D [λx x=c]))

∃x(A!x&∀F(xF ≡ [λzAFz]≈D [λx x=d]))

Let a and b be such objects, so that we know, respectively:

A!a&∀F(aF ≡ [λzAFz]≈D [λx x=c])

A!b&∀F(bF ≡ [λzAFz]≈D [λx x=d])

Since we also know [λx x = c]↓ and [λx x = d]↓, it follows by definition (762),
respectively, that:

(ϑ) Numbers(a, [λx x=c])

(ξ) Numbers(b, [λx x=d])

Our first goal is to show a=b. But by a Principle Underlying Hume’s Principle
(765.1), it now follows from (ϑ) and (ξ) that:

a=b ≡ [λx x=c]≈D [λx x=d]

But, clearly, [λx x= c]≈D [λx x=d]: the relation [λyz D!y &D!z& y = c& z=d],
which exists (273.15), correlatesD the discernible objects exemplifying [λxx=c]
and the discernible objects exemplifying [λxx=d] one-to-one (exercise). Hence
a=b, and so it follows from (ξ) that:
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(ζ) Numbers(a, [λx x=d])

So, given (ϑ) and (ζ), it remains, by ∃I, to show ¬[λx x= c]≡D [λx x=d]. So we
have to show that some discernible object exemplifies one but not the other.
But clearly, c exemplifies [λxx=c] but not [λxx=d], and d exemplifies [λxx=d]
but not [λx x=c]. ./

(769.1) By (755.2), we know ∃F∃G♦([λzAFz]≈D G & ♦¬[λzAFz] ≈D G). Sup-
pose P and Q are such properties, so that we know:

♦([λzAP z]≈DQ & ♦¬[λzAP z] ≈D Q)

By (165.11), it follows that:

(ϑ) ♦[λzAP z] ≈DQ

(ζ) ♦¬[λzAP z] ≈DQ

Now, by (763.1), we know ∃xNumbers(x,Q). So suppose Numbers(a,Q). By &I
and two applications of ∃I, it remains to show ¬�Numbers(a,Q). For reduc-
tio, assume �Numbers(a,Q). Then by definition (762), �(A!a&Q↓ & ∀F(aF ≡
[λzAFz]≈DQ)). By (158.3), �A!a, �Q↓, and �∀F(aF ≡ [λzAFz]≈DQ). By CBF
(167.2), the latter implies ∀F�(aF ≡ [λzAFz]≈DQ). Instantiating to P , we then
know �(aP ≡ [λzAP z]≈DQ). By (158.4), this implies both:

(A) �(aP → [λzAP z]≈DQ)

(B) �([λzAP z]≈DQ→ aP )

By the modally strict laws of contraposition and the Rule of Subsititution, (A)
implies (C):

(C) �(¬[λzAP z]≈DQ→¬aP )

But, then (C) and (ζ) imply ♦¬aP , by (158.13). So ¬aP , by (179.8). Analogously,
(B) and (ϑ) imply ♦aP , by (158.13). So aP , by (179.3). Contradiction. ./

(769.2) Assume Rigid(G), i.e., by definition (571.1), that �∀z(Gz → �Gz) and
assume Numbers(x,G). It follows from the latter by definition that A!x, G↓,
and:

(ϑ) ∀F(xF ≡ [λzAFz] ≈D G)

Now we want to show �Numbers(x,G), i.e.,

�(A!x&G↓&∀F(xF ≡ [λzAFz] ≈D G))

Since �ϕ&�ψ&�χ implies �(ϕ&ψ&χ), it suffices to show:

• �A!x
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• �G↓

• �∀F(xF ≡ [λzAFz] ≈D G)

But the first follows from the fact that A!x by (180.2) and the second is ax-
iomatic (it is the modal closure of G↓). So it remains to show the third. By
BF, it suffices to show: ∀F�(xF ≡ [λz AFz] ≈D G). By GEN, it suffices to show
�(xF ≡ [λzAFz] ≈D G). But we already know �(xF → �xF), by an application
of RN to axiom (51). And note further that we can establish:

(ζ) �([λzAFz] ≈D G→ �([λzAFz] ≈D G))

Proof. We know [λz AFz] and G are both rigid properties: the first by
(759.2) and the second by hypothesis. So by a relevant instance of (760.3),
it follows that (ζ).

Then by an instance of theorem (172.5), where ϕ is xF and ψ is [λzAFz] ≈D G,
it follows that �((ϕ ≡ ψ)→ �(ϕ ≡ ψ)), i.e.,

�((xF ≡ [λzAFz] ≈D G)→ �(xF ≡ [λzAFz] ≈D G)

Then by the T schema, it follows that:

(xF ≡ [λzAFz] ≈D G)→ �(xF ≡ [λzAFz] ≈D G)

Since the antecedent follows from (ϑ), we have established:

�(xF ≡ [λzAFz] ≈D G)

which was what we had to show. ./

(769.3) (Exercise)

(769.4) We begin with some preliminary results that prepare the ground for
our reasoning. If we apply RN and then GEN (2x) to the modally strict theorem
(765.3) and then instantiate the result to G and [λzAGz], we know:

�(∃x(Numbers(x,G) & Numbers(x, [λzAGz])) ≡ G ≈D [λzAGz])

So by (132), it follows that:

(A) A(∃x(Numbers(x,G) & Numbers(x, [λzAGz])) ≡ G ≈D [λzAGz])

Now by (759.1), we know A(G ≈D [λz AGz]). Hence from this fact and (A) it
follows by the relevant instance of (139.5) that:

A∃x(Numbers(x,G) & Numbers(x, [λzAGz]))

From this it follows by (139.10) that:

∃xA(Numbers(x,G) & Numbers(x, [λzAGz]))
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Suppose a is such an object, so that we know:

A(Numbers(a,G) & Numbers(a, [λzAGz]))

Then by (139.2) and &E, it follows that:

(B) ANumbers(a,G)

(C) ANumbers(a, [λzAGz])

Now, independently, by applying CBF (167.2) to (769.3) and instantiating the
result to a, we know that Numbers(a, [λzAGz]) is modally collapsed, i.e., that:

�(Numbers(a, [λzAGz])→ �Numbers(a, [λzAGz]))

From this last result and (C) we may infer:

(D) Numbers(a, [λzAGz])

With these results in hand, we may prove our theorem as follows: (→) Sup-
pose ANumbers(x,G). Now since (763.2) is a theorem, we may apply the Rule
of Actualization to infer A∃!yNumbers(y,G). So by (176.1), ∃!yANumbers(y,G).
Hence, our assumption and (B) imply a= x. So by (D), Numbers(x, [λz AGz]).
(←) Suppose Numbers(x, [λzAGz]). But (763.2) ensures ∃!yNumbers(y, [λzAGz]).
So our assumption and (D) imply a=x. So by (B), ANumbers(x,G). ./

(770) (Exercise)

(771.2) (Exercise)

(772.1) By (770), we know:

(ϑ) ıxNumbers(x,G)↓

Independently, given that G↓ is axiomatic, we know that definition (762) im-
plies the following, simplified biconditional:

Numbers(x,G) ≡ (A!x&∀F(xF ≡ [λzAFz] ≈D G)))

Since this is a modally strict theorem, it follows by GEN and RN that:

(ξ) �∀x(Numbers(x,G) ≡ A!x&∀F(xF ≡ [λzAFz] ≈D G))

So from (ϑ) and (ξ), it follows by (149.3) that:

(ζ) ıxNumbers(x,G) = ıx(A!x&∀F(xF ≡ [λzAFz] ≈D G))

Since all of the terms in question are significant, it follows by definition (771.1),
(ζ), and the transitivity of identity that:

#G = ıx(A!x&∀F(xF ≡ [λzAFz] ≈D G)) ./
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(772.2) We just established:

#G = ıx(A!x&∀F(xF ≡ [λzAFz] ≈D G))

If we can establish:

ıx(A!x&∀F(xF ≡ [λzAFz] ≈D G)) = ıx(A!x&∀F(xF ≡ F ≈D G))

then by transitivity of identity, we’re done. Our proof strategy to establish the
above identity is to use an appropriate instance of (149.2). We already know:

ıx(A!x&∀F(xF ≡ [λzAFz] ≈D G))↓

since this follows from the preceding theorem. So it remains to show the fol-
lowing equivalence:

A∀x((A!x&∀F(xF ≡ [λzAFz] ≈D G)) ≡ (A!x&∀F(xF ≡ F ≈D G)))

But the actuality operator commutes with the universal quantifier, so it suffices
to show:

∀xA((A!x&∀F(xF ≡ [λzAFz] ≈D G)) ≡ (A!x&∀F(xF ≡ F ≈D G)))

Then by GEN, it suffices to show:

A((A!x&∀F(xF ≡ [λzAFz] ≈D G)) ≡ (A!x&∀F(xF ≡ F ≈D G)))

So by (139.5) and (139.2), it suffices to show:

(AA!x&A∀F(xF ≡ [λzAFz] ≈D G)) ≡ (AA!x&A∀F(xF ≡ F ≈D G))

Simplifying (i.e., removing A!x from both sides), we want to show:

A∀F(xF ≡ [λzAFz] ≈D G) ≡ A∀F(xF ≡ F ≈D G)

Again, by (44.3) and GEN, it suffices to show:

A(xF ≡ [λzAFz] ≈D G) ≡ A(xF ≡ F ≈D G)

Again, by (139.5), we have to show:

(AxF ≡ A[λzAFz] ≈D G) ≡ (AxF ≡ AF ≈D G)

Since it is a theorem of propositional logic that ((ϕ ≡ ψ) ≡ (ϕ ≡ χ)) ≡ (ψ ≡ χ),
we simply need to show:

(A[λzAFz] ≈D G) ≡ (AF ≈D G)

Again, by (139.5), we have to show:

(ϑ) A([λzAFz] ≈D G ≡ F ≈D G)
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Now, consider the following consequence of (760.2):

∀H([λzAFz] ≈D F ≡ (H ≈D [λzAFz] ≡H ≈D F))

Instantiating to G, we have ([λzAFz] ≈D F) ≡ (G ≈D [λzAFz] ≡ G ≈D F). By the
commutativity of ≡:

(G ≈D [λzAFz] ≡ G ≈D F) ≡ ([λzAFz] ≈D F)

Since it is a modally strict theorem that ≈D is a symmetrical condition (273.31),
it follows by a Rule of Substitution that:

([λzAFz] ≈D G ≡ F ≈D G) ≡ (F ≈D [λzAFz])

Since we proved the above as a theorem from no premises, it follows by the
Rule of Actualiation (RA) and the distribution of A over a biconditional (139.5)
that:

A([λzAFz] ≈D G ≡ F ≈D G) ≡ A(F ≈D [λzAFz])

Given this fact, to show (ϑ) we need only show:

A(F ≈D [λzAFz])

But this is just (759.1).

(774.1) Since y is a variable substitutable for x in Numbers (x,G) and doesn’t
occur free in Numbers (x,G), we have the following alphabetic variant of an
instance of axiom (47), where ϕ in that theorem is set to Numbers (x,G):

x= ıxNumbers (x,G) ≡ ∀y(ANumbers (y,G) ≡ y=x)

But by (769.4), ANumbers (y,G) ≡ Numbers (y, [λzAGz]) is a modally strict the-
orem. Hence by a Rule of Substitution, it follows from our first displayed line
that:

x= ıxNumbers (x,G) ≡ ∀y(Numbers (y, [λzAGz]) ≡ y=x)

Since this is a theorem, it follows by GEN that:

(ϑ) ∀x(x= ıxNumbers (x,G) ≡ ∀y(Numbers (y, [λzAGz]) ≡ y=x))

But by (770), ıxNumbers (x,G)↓. Hence by definition (771.1) and Rule =E, we
know #G↓. From this last result and (ϑ), it follows by Rule ∀E (93.1) Variant
that:

#G= ıxNumbers (x,G) ≡ ∀y(Numbers (y, [λzAGz]) ≡ y=#G)

So, by definition (771.1) and biconditional syllogism, it follows that:
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∀y(Numbers (y, [λzAGz]) ≡ y=#G)

By instantiating this last result to x, and we have:

Numbers (x, [λzAGz]) ≡ x=#G ./

(774.2) – (774.4) (Exercises)

(774.5) Assume Rigid(G). Then �∀x(Numbers(x,G)→ �Numbers(x,G)), by the-
orem (769.2). So by the T schema:

(ϑ) ∀x(Numbers(x,G)→ �Numbers(x,G))

Then by (153.2):

∃!xNumbers(x,G)→ (∀y(y= ıxNumbers(x,G)→Numbers(y,G)))

But it is a theorem that ∃!xNumbers(x,G) (763.2). Hence:

∀y(y= ıxNumbers(x,G)→Numbers(y,G))

Since #G↓, we may instantiate it to obtain:

#G= ıxNumbers(x,G)→Numbers(#G,G))

Since the antecedent holds by definition (771.1), Numbers(#G,G). ./

(775) Assume both Rigid(F) and Rigid(G). Note that, independently, it follows
from (765.1), by several applications of GEN, that:

∀G∀H∀x∀y[(Numbers(x,G) & Numbers(y,H))→ (x=y ≡ G ≈DH)]

If we instantiate ∀G to F, ∀H to G, ∀x to #F, and ∀y to #G, we obtain:

(Numbers(#F,F) & Numbers(#G,G))→ (#F=#G ≡ F ≈DG)

But (774.5) and our assumptions imply Numbers(#F,F) and Numbers(#G,G). So
#F=#G ≡ F ≈DG. ./

(776.1)? By definition (771.1) and theorem (145.2)?. ./

(776.2)? It follows from (765.1) by several applications of GEN that:

∀G∀H∀x∀y[(Numbers(x,G) & Numbers(y,H))→ (x=y ≡ G ≈DH)]

If we instantiate ∀G to F, ∀H to G, ∀x to #F, and ∀y to #G, we obtain:

(Numbers(#F,F) & Numbers(#G,G))→ (#F=#G ≡ F ≈DG)
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By (776.1)?, we know both Numbers(#F,F) and Numbers(#G,G). So by &I and
MP, #F=#G ≡ F ≈DG. ./

(776.3)? (Exercise)

(776.4)? Assume F≡DG. Then F≈DG, by (757.1). So #F=#G, by (776.2)?. ./

(778.1) Assume Numbers(x,G). Independently, by theorem (573.3), we know
∃F(Rigidifies(F,G)). Let P be such a property, so that we know Rigidifies(P ,G).
Then, by definition (571.2), we know:

(ϑ) Rigid(P ) &∀x(P x ≡ Gx)

Since the second conjunct of (ϑ) implies that P andG are materially equivalentD
(i.e., implies P ≡D G), Numbers(x,P ) follows from our initial assumption, by
(766). Independently, the first conjunct of (ϑ) and theorem (760.1) imply that
P ≈D [λzAP z]. It follows that Numbers(x, [λzAP z]), by (764.1). So, by (774.1)
we have x = #P . Hence, ∃F(x = #F), and so NaturalCardinal(x), by definition
(777). ./

(778.2) (→) Assume ∃G(x = #G). So suppose P is such a property, so that we
know x = #P . Then by (774.2), Numbers(x, [λz AP z]). So ∃G(Numbers(x,G)).
(←) Assume ∃G(Numbers(x,G)), and let Q be such a property, so that we know
Numbers(x,Q). Then by (778.1), NaturalCardinal(x), and so by definition (777),
∃G(x=#G). ./

(779.1) Assume NaturalCardinal(x). Then by definition (777), ∃G(x = #G).
Suppose P is such a property, so that we know x = #P . It follows by the ne-
cessity of identity (125.2) that �(x = #P ). Hence, by ∃I, ∃G�(x = #G). But
then by the Buridan formula (168.1), �∃G(x= #G). Hence by definition (777),
�NaturalCardinal(x). ./

(779.2) (Exercise)

(780) Assume NaturalCardinal(x). So ∃G(x = #G), by (777). Let P be such a
property, so that we know x=#P . Hence, by (774.1):

(ϑ) Numbers(x, [λzAP z])

By GEN, we have to show xF ≡ x=#F. If we substitute P for G in (774.3), then
we independently know:

#PF ≡ [λzAFz] ≈D [λzAP z]

Hence:

(ξ) xF ≡ [λzAFz] ≈D [λzAP z]

Next, we leave it as an exercise to show that as a matter of propositional logic,
the following is a theorem:
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(ζ) ϑ→ ((xF ≡ (ψ ≡ ϑ)) ≡ (xF ≡ ψ))

Hence, we may reason as follows:

xF ≡ [λzAFz] ≈D [λzAP z] by (ξ)
≡ Numbers(x, [λzAFz]) ≡Numbers(x, [λzAP z]) by (764.1)
≡ Numbers(x, [λzAFz]) via (ϑ) and (ζ)
≡ x=#F by (774.1)

(781) (Exercise)

(783) By definition (782.1), 0 = #[λu u,D u]. Since [λu u,D u]↓, it follows that
∃G(0 = #G). Hence, by definition (777), NaturalCardinal(0). ./

(784.1) (→) Assume ¬∃uFu. Note that ¬∃v([λu Au ,D u]v) is an easily estab-
lished theorem:

Clearly, since v =D v is a modally-strict theorem, then so is ¬(v ,D v).
Note that since D!x → �D!x (273.8), the variable v ranges over objects
satisfying a rigid condition. Hence we can apply expanded RN (341.3.a)
and conclude �¬(v ,D v) and by (132), A¬(v ,D v) and hence by (44.1),

¬A(v,D v). But then by Rule
←−
βC, ¬[λu Au,D u]v. So ∀v¬[λu Au,D u]v,

by GEN, i.e., ¬∃v[λu Au,D u]v.

From this and our hypothesis that ¬∃uFu, it follows that [λu Au ,D u] ≈D F
by (751.1). By (764.1), it follows that Numbers(0, [λuAu,D u]) ≡Numbers(0,F).
So it remains only to show: Numbers(0, [λu Au ,D u]). But 0 = #[λu u ,D u], by
definition. So by (774.2), Numbers(0, [λyA[λuu,D u]y]). But we now leave it as
an exercise to show that Numbers(0, [λu Au,D u]). (In completing the exercise
you might show that if Numbers(0, [λy ϕ]), then Numbers(0, [λu ϕ]).)

(←) Assume Numbers(0,F). By reasoning given above, we already know that
Numbers(0, [λu Au ,D u]). So, by (764.2), we have F ≈D [λu Au ,D u]. We also
know, by reasoning given above, that ¬∃v[λu Au ,D u]v. Now, suppose for
reductio, that ∃uFu. Then, by (751.2), it follows that F 6≈ D [λu Au ,D u]. Con-
tradiction. ./

(784.2) (→) Assume ∃uFu. Then by (763.1), ∃xNumbers(x,F). Say it is b, so that
Numbers(b,F). By &I and ∃I, it remains to show b , 0. For reductio, suppose
b = 0. Then Numbers(0,F), by Rule =E. So by (784.1), ¬∃uFu. Contradiction.
(←) Assume ∃x(Numbers(x,F) & x , 0). Suppose a is such, so that we know
Numbers(a,F) & a , 0. Now suppose, for reductio, ¬∃uFu. Then by (784.1),
Numbers(0,F). But by (763.2), ∃!xNumbers(x,F). So a=0. Contradiction. ./

(784.3) – (784.4) (Exercises)

(784.5) (→) Assume w |= ¬∃uFu. Then ¬w |= ∃uFu, by theorem (529.1). But
the modally strict theorem (545.6), i.e., (w |= ∃xFx) ≡ ∃x(w |= Fx), implies that
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(w |= ∃uFu) ≡ ∃u(w |= Fu) is a modally strict theorem (exercise).480 So by a
Rule of Substitution, ¬∃u(w |= Fu). Moreover, a universally generalized (573.1)
implies that w |= Fu ≡ Fwu is also a modally strict theorem. So by a Rule of
Substitution, ¬∃uFwu. But this implies �¬∃uFwu. To see why, suppose not.
Then ♦∃uFwu and so by CBF, ∃u♦Fwu (recall that the Barcan Formulas hold
for rigid restricted variables). Suppose a is such a discernible object so that we
know ♦Fwa. But it is a modally strict theorem (573.2) that Fw is rigid and so the
definition of rigidity (571.1) lets us conclude that �∀x(Fwx→ �Fwx). By CBF,
∀x�(Fwx → �Fwx), and so �(Fwa → �Fwa). By a fact about modal collapse,
namely (172.1), it follows from this last fact and ♦Fwa that �Fwa. By the T
schema, Fwa and, hence, ∃uFwu, which contradicts ¬∃uFwu. So by reductio,
�¬∃uFwu. And this implies, by (784.4), that #(Fw) = 0.

(←) Assume #(Fw) = 0. So by (784.3), ¬∃uAFwu. But we saw above that it is
a modally strict theorem that Fw is rigid, and so �∀x(Fwx → �Fwx). By CBF,
∀x�(Fwx → �Fwx). Hence �(Fwu → �Fwu). But from this and another fact
about modal collapse (174.2), we can derive, as a modally strict theorem, that
AFwu ≡ Fwu. So by a Rule of Substitution, ¬∃uFwu. Now by theorem (573.1), it
follows a fortiori that Fwu ≡ w |= Fu is also a modally strict theorem. Hence by
a Rule of Substitution, ¬∃u(w |= Fu). So by (545.6) and a Rule of Substitution,
¬(w |= ∃uFu). And by (529.1), w |= ¬∃uFu. ./

(785.1)? Assume NaturalCardinal(x). It suffices to show xF ≡Numbers(x,F), by
GEN. By (780), it follows from our assumption that:

∀F(xF ≡ x=#F)

So in particular, xF ≡ x=#F. But by definition of #F, this implies:

(ϑ) xF ≡ x= ıy(Numbers(y,F))

But by (145.2)?, we know:

(x= ıyNumbers(y,F))→Numbers(x,F)

Moreover, we leave it as an exercise, using (763.2) and the logic of descriptions,
to show that Numbers(x,F)→ x= ıyNumbers(y,F). Hence:

480Here is a solution. We want to show (w |= ∃uFu) ≡ ∃u(w |= Fu). (→) Assume w |= ∃uFu, i.e.,
w |= ∃x(D!x & Fx). To show ∃u(w |= Fu), we have to show ∃x(D!x & w |= Fx). Our assumption
implies ∃x(w |= (D!x& Fx)), by (545.6). Let a be such an object, so that we know w |= (D!a& Fa).
Then by (545.1), we know both w |= D!a and w |= Fa. The former implies ∃w(w |= D!a), and so by a
Fundamental Theorem, ♦D!a. Hence D!a, by (273.10). Since we now have D!a&w |= Fa, it follows
that ∃x(D!x&w |= Fx).

(←) Assume ∃u(w |= Fu), i.e., ∃x(D!x&w |= Fx), to showw |= ∃x(D!x&Fx). Let b be such an object,
so that we know both D!b and w |= Fb. But the first implies �D!b, by (273.9). So by a Fundamental
Theorem, ∀w′(w′ |= D!b). Hence w |= D!b. Since we’ve established (w |= D!b) & (w |= Fb), it follows
by (545.1) that w |= (D!b&Fb). Hence, ∃x(w |= (D!x&Fx)). And so by (545.6), w |= ∃x(D!x&Fx). ./
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(ξ) (x= ıyNumbers(y,F)) ≡Numbers(x,F)

So from (ϑ) and (ξ), xF ≡Numbers(x,F). ./

(785.2)? We know NaturalCardinal(0). So, by (785.1)?, 0F ≡ Numbers(0,F).
But, by (784.1), it follows that 0F ≡ ¬∃uFu. ./

(785.3)? By (785.2)? and the symmetry of ≡, we know that ¬∃uFu ≡ 0F. But
by (780), 0F ≡ 0 = #F. It follows that ¬∃uFu ≡ #F = 0. ./

(786.2) This is an instance of axiom (39.2), since the following is a core λ-
expression:

[λxy ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)]

To confirm this, note that no variable bound by the λ occurs in encoding posi-
tion (9.1) in the matrix. Though the defined expression Hereditary(F,G) does,
by convention, contain encoding formulas (buried in the conjuncts G ↓ and
F↓ of its definiens), x and y are not free in those formulas. To confirm this,
Hereditary(F,G) is defined as (786.1):

F↓&G↓&∀x∀y(Gxy→ (Fx→ Fy))

where F↓ and G↓ are defined as (20.2), respectively:

∃x(xF)

∃x∃y(xyG)

Though x and y occur in encoding position in xyG and xG, both are already
bound and so not bound by the λ in the target λ-expression. ./

(788) (Exercise)

(789.1) Assume Gxy. By (788) and GEN, we have to show:

(∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy

So assume ∀z(Gxz→ Fz) and Hereditary(F,G). Instantiate the first of these to
y, to obtain Gxy→ Fy. But then by our first assumption, Fy. ./

(789.2) Assume G∗xy, ∀z(Gxz → Fz), and Hereditary(F,G). Then by the first
assumption and the fundamental fact about G∗ (788), we know:

∀F[(∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy]

But we may instantiate this to F to obtain:

(∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy
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But both conjuncts of the antecedent hold by assumption. ./

(789.3) Assume Fx, G∗xy, and that Hereditary(F,G). Then by (789.2), it suffices
to show only ∀z(Gxz→ Fz). So assume Gxz. Since F is G-hereditary, we know
by definition (786.1) that ∀x∀y(Gxy→ (Fx→ Fy)). In particular, Gxz→ (Fx→
Fz). But both Gxz and Fx both hold by assumption. ./

(789.4) Assume Gxy and G∗yz. To prove G∗xz, further assume ∀z(Gxz → Fz)
and Hereditary(F,G). Our first and third assumptions imply Fy. But from this,
G∗yz, and Hereditary(F,G), it follows that Fz, by (789.3). ./

(789.5) Assume G∗xy. Now, by (789.2) and GEN, we know:

∀F[(G∗xy &∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy]

Instantiate to [λy′ ∃x′Gx′y′] (which we know exists) and we obtain:

(G∗xy & ∀z(Gxz→ [λy′ ∃x′Gx′y′]z) & Hereditary([λy′ ∃x′Gx′y′],G)) →
[λy′ ∃x′Gx′y′]y

Since [λy′ ∃x′Gx′y′] exists, β-Conversion (181) and the Rule of Substitution
(160.2) allow us to reduce this to:

(ϑ) (G∗xy &∀z(Gxz→∃x′Gx′z) & Hereditary([λy′ ∃x′Gx′y′],G))→∃x′Gx′y

The consequent of (ϑ), ∃x′Gx′y, is an alphabetic variant of what we have to
show. So since G∗xy by assumption, it remains to show the second and third
conjuncts of (ϑ). But these are quickly obtained. For the second conjunct,
assume Gxz, by GEN. Then ∃x′Gx′z, by ∃I. For the third conjunct, we have to
show, by (786.1):

∀z∀z′(Gzz′→ ([λy′ ∃x′Gx′y′]z→ [λy′ ∃x′Gx′y′]z′))

Since [λy′ ∃x′Gx′y′] exists, it suffices to show, by β-Conversion and the Rule of
Substitution (160.2):

∀z∀z′(Gzz′→ (∃x′Gx′z→∃x′Gx′z′))

By GEN, it suffices to show Gzz′→ (∃x′Gx′z→∃x′Gx′z′). So assume Gzz′ and
∃x′Gx′z. But the first of these assumptions yields ∃x′Gx′z′. ./

(789.6) Assume G∗xy and G∗yz. Then by theorem (788), it follows that:

(ϑ) ∀F[(∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy]

(ξ) ∀F[(∀z′(Gyz′→ Fz′) & Hereditary(F,G))→ Fz]

To show G∗xz, we have to show, by GEN:

(∀z′(Gxz′→ Fz′) & Hereditary(F,G))→ Fz
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So assume:

(ζ) ∀z′(Gxz′→ Fz′) & Hereditary(F,G)

to show Fz. Now with the second conjunct of (ζ) in hand, we need only to show
∀z′(Gyz′→ Fz′), for then by (ξ), we can infer Fz. So, by GEN, assume Gyz′, to
show Fz′. Now, independently, (ϑ) and (ζ) jointly imply Fy. But from Gyz′ and
Fy, it follows by the definition of Hereditary(F,G) (786.1) that Fz′. ./

(789.7) We have to show G∗xy → ∃zGxz. To minimize clash of variables, we
prove G∗ab → ∃zGaz, where a and b are any arbitrarily chosen objects. So
assume G∗ab and, for reductio, ¬∃zGaz. Note that the following is an instance
of theorem (789.2) with respect to our relation on discernibles G:

(G∗ab&∀z(Gaz→ Fz) & Hereditary(F,G))→ Fb

By GEN, this theorem holds for all F and so instantiate F to the impossible
property L, where L has been defined on previous occasions as [λx E!x→ E!x],
which we know exists:

(G∗ab&∀z(Gaz→ Lz) & Hereditary(L,G))→ Lb

By applying the definition of Hereditary and now familiar reasoning, we there-
fore know:

(ϑ) (G∗ab&∀z(Gaz→ Lz) &∀x∀x′(Gxx′→ (Lx→ Lx′))→ Lb

Clearly, the consequent of (ϑ) is false. By definition, nothing exemplifies L.
Hence, one of the following conjuncts of the antecedent of (ϑ) must be false:

(A) G∗ab

(B) ∀z(Gaz→ Lz)

(C) ∀x∀x′(Gxx′→ (Lx→ Lx′))

But (B) is true: our reductio hypothesis is ∀z¬Gaz and so a fortiori, ∀z(Gaz→
Lz). Moreover, (C) is true: since both Lx and Lx′ are false, Lx → Lx′ is true,
and so by the truth of the consequent, Gxx′ → (Lx → Lx′). Since this reason-
ing holds for arbitrary x and x′, we’ve established (C). Hence (A) is false, i.e.,
¬G∗ab, which contradicts our initial assumption. ./

(791.2) (Excercise)

(794) (Exercise)

(795.1) Assume Gxy. Then by (789.1), which holds for any strong ancestral,
including that of relations on discernibles, G∗xy. But then by ∨I, G∗xy∨x=D y.
Hence, G+xy, by (794). ./
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(795.2) Assume Fx, G+xy, and Hereditary(F,G). The second assumption im-
plies, by theorem (794), that either G∗xy or x=D y. If the former, then Fy, by
the first and third assumptions and (789.3), which holds for any strong ances-
trals, including those of relations on discernibles. If the latter, then by theorem
(273.19), x=y. So it follows from the first assumption, Fx, that Fy. ./

(795.3) Assume G+xy&Gyz. Then, by theorem (794), (G∗xy∨x=D y) &Gyz. So
by a variant of (88.6.a), we know either G∗xy &Gyz or x=D y &Gyz. We show
G∗xz holds in both cases:

Case 1: G∗xy and Gyz. But the latter implies G∗yz, by (789.1). Hence by
(789.6), G∗xz.

Case 2: x=D y and Gyz. The former implies x=y, by (273.3). Then from
Gyz we know Gxz. So by (789.1), which holds for any strong ancestral,
including that of rigid one-to-one relations, it follows that G∗xz. ./

(795.4) Assume G∗xy and Gyz. Then from the first assumption, it follows by
∨I that G∗xy ∨ x =D y. So by theorem (794), G+xy. From this and our second
assumption, it follows by (795.3) that G∗xz. So, again by ∨I, G∗xz∨ x=D z, and
hence G+xz, by definition (794). ./

(795.5) Assume Gxy and G+yz. By the latter and theorem (794), either G∗yz∨
y =D z. We reason by cases from the two disjuncts. From the first disjunct
and our first assumption, it follows that G∗xz, by (789.4), which holds for any
strong ancestral. From the second disjunct it follows that y=z, by (273.19). So
from the first assumption, it follows that Gxz, in which case, G∗xz, by (789.1).
./

(795.6) Assume G+xy and G+yz. We reason to the conclusion G+xz by cases:
x=D y and x,D y.

Case 1. x =D y. Then x = y, by (273.19). So from our initial assumption that
G+yz, it follows that G+xz.

Case 2. x,D y. We reason to the conclusion G+xz by cases: y=D z and y,D z:

Case A. y =D z. Then y = z, by now familiar reasoning. So from our as-
sumption that G+xy, it follows that G+xz.

Case B. y ,D z. Then since G+yz by assumption, it follows by the basic
fact about G+ (794) that G∗yz. Analogously, since we also know both
x,D y (Case 2) and G+xy (by assumption), it follows that G∗xy. Now the
strong ancestral G∗ is transitive for any G (789.6). So G∗ is transitive.
Hence, G∗xz. So by the main fact about the weak ancestral for relations
on discernibles (794), G+xz. ./
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(795.7) To avoid clash of variables, we prove G∗ab → ∃x(G+ax&Gxb), where
a and b are any arbitrarily chosen objects. So assume G∗ab. Note that the
following is an instance of (789.2) with respect to our rigid one-to-one relation:

(G∗ab&∀z(Gaz→ Fz) & Hereditary(F,G))→ Fb

Instantiate F in the above to the property [λy∃x(G+ax&Gxy)], which we know
exists:

(G∗ab&∀z(Gaz→ [λy ∃x(G+ax&Gxy)]z) &
Hereditary([λy ∃x(G+ax&Gxy)],G))→ [λy ∃x(G+ax&Gxy)]b

Since [λy∃x(G+ax&Gxy)]↓, applications of β-Conversion and the Rule of Sub-
stitution (160.2), reduce the above to:

(G∗ab&∀z(Gaz→∃x(G+ax&Gxz)) &
Hereditary([λy ∃x(G+ax&Gxy)],G))→∃x(G+ax&Gxb)

By applying the definition of hereditary (786.1), β-Conversion, and a Rule of
Substitution to the result, this becomes:

[G∗ab&∀z(Gaz→∃x(G+ax&Gxz)) &
∀y∀z(Gyz→ (∃x(G+ax&Gxy)→∃x(G+ax&Gxz)))]→∃x(G+ax&Gxb)

Since the consequent is the desired conclusion, it remains only to show the
three conjuncts of the antecedent. The first is true by assumption. For the
second, assume Gaz. Then since G is a relation on discernibles, it follows by
definition (791.1) that D!a. So by (273.18), a=D a. Hence by fact (794), G+aa.
So, from G+aa&Gaz, it follows that ∃x(G+ax &Gxz). For the third conjunct,
assume Gyz and ∃x(G+ax&Gxy), by GEN. Suppose c is a witness to the second
assumption, so that we know G+ac&Gcy. Then by (795.3), it follows that G∗ay.
Thus, by ∨I, G∗ay∨a=D y. So G+ay, by the main fact about G+ (794). Hence we
know G+ay &Gyz. So by ∃I, ∃x(G+ax&Gxz). ./

(796.2) Assume 1-1(G), Gxy, and G∗zy. By the latter and (795.7), it follows
that there is some object, say a, such that G+za and Gay. Since G is a one-to-
one relation by hypothesis, it follows that x=a (796.1). So G+zx. ./

(796.3) Assume 1-1(G), Gxy and ¬G∗xx. For reductio, assume G∗yy. Now,
independently, we know that the following is an instance of (796.2) by setting
z in that theorem to y:

(Gxy &G∗yy)→ G+yx

So, G+yx. Similarly, we know that the following is an instance of (795.5) if we
set z in that theorem to x:

(Gxy &G+yx)→ G∗xx
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Hence G∗xx. Contradiction. ./

(796.4) Assume 1-1(G), ¬G∗xx, andG+xy. Now independently, since [λz¬G∗zz]↓,
we can instantiate F in (795.2) to [λz ¬G∗zz] and apply β-Conversion and the
Rule of Substitution (160.2) to obtain:

(¬G∗xx&G+xy & Hereditary([λz¬G∗zz],G))→¬G∗yy

Since the consequent is what we want to show, we establish the antecedent. The
first two conjuncts of the antecedent are true by assumption. So by definition
(786.1), β-Conversion and the Rule of Substitution (160.2), it remains to show:

∀x′∀y′(Gx′y′→ (¬G∗x′x′→¬G∗y′y′))

So by GEN, it suffices to show:

(ϑ) Gx′y′→ (¬G∗x′x′→¬G∗y′y′)

But instantiating G, x′, and y′ into the universal closure of (796.3) yields:

1-1(G)→ ((Gx′y′ &¬G∗x′x′)→¬G∗y′y′)

Since the antecedent holds by assumption, it follows that:

(Gx′y′ &¬G∗x′x′)→¬G∗y′y′

But by exportation, this is equivalent to (ϑ). ./

(797) Consider any relation on discernibles G and assume the antecedent of
what we have to prove:

(ϑ) Fz & ∀x∀y((G+zx&G+zy)→ (Gxy→ (Fx→ Fy)))

The consequent of what we have to prove is ∀x(G+zx → Fx). So by GEN, as-
sume G+zx, to show Fx. We do this by appeal to lemma (795.2). Instantiate the
variable F in this lemma to [λy Fy &G+zy] (the significance of which we leave
as an exercise) and instantiate the variables x and y in the lemma to z and x,
respectively. So, by now familiar reasoning, this yields:

(ξ) [Fz&G+zz&G+zx& Hereditary([λy Fy&G+zy],G)]→ (Fx&G+zx)

So if we can establish the antecedent of (ξ), our desired conclusion, Fx, fol-
lows a fortiori from the consequent of (ξ). We know the first conjunct of the
antecedent of (ξ) is true by the first conjunct of our assumption (ϑ). We know
that the second conjunct of the antecedent of (ξ) is true, by the reflexivity of
G+, which immediately follows from theorem (794) and the reflexivity of =D on
discernible objects (273.30). We know that the third conjunct of the antecedent
is true, by further assumption. So it remains to show:
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Hereditary([λy Fy&G+zy],G),

By the definition of Hereditary and familiar reasoning, we therefore have to
show:

∀x∀x′(Gxx′→ ((Fx&G+zx)→ (Fx′ &G+zx′)))

Proof. Let a,b be arbitrary objects. Assume Gab, Fa, and G+za, to show
Fb&G+zb. The second conjunct G+zb follows easily: from the facts that
G+za and Gab, it follows from (795.3) that G∗zb, which implies G+zb, by
the theorem (794). So it remains to show Fb. Since we now have G+za,
G+zb, Gab, and Fa, it follows from the second conjunct of (ϑ) that Fb. ./

(801.2) Axiom (800) asserts:

[λxy ∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u))]↓

So by the Rule of Identity by Definition (120), it follows from definition (801.1)
that:

P = [λxy ∃F∃u(Fu & Numbers(y,F) & Numbers(x,F−u))]

So by (107.1), P↓. ./

(801.3) (Exercise)

(802.1) Assume Pxy. Then by theorem (801.3), this is equivalent, by modally
strict reasoning, to:

(A) ∃F∃u(Fu& Numbers(y,F) & Numbers(x,F−u))

If we show that (A) is necessary, then by (801.3) and a Rule of Substitution,
it follows that �P xy. Note that to show that (A) is necessary, it suffices, by
two applications of the Buridan formula (168.1) and a Rule of Substitution, to
show:

(B) ∃F∃u�(Fu& Numbers(y,F) & Numbers(x,F−u))

To find our witnesses, reconsider (A) and let Q and a be such a property and
discernible object, respectively, so that we know:

Qa& Numbers(y,Q) & Numbers(x,Q−a)

Since theorem (573.3) yields ∃G(Rigidifies(G,Q)), then let S be such a property,
so that we know Rigidifies(S,Q). Hence, we know, by (571.2) that:

(ξ) Rigid(S)

(ζ) ∀x(Sx ≡Qx)
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If we can show:

(a) �Sa

(b) �Numbers(y,S)

(c) �Numbers(x,S−a)

then since a conjunction of necessary truths implies a necessary conjunction of
the unnecessitated truths, it follows that S and a are the witnesses we need to
establish (B).

To show (a): since we know Qa, (ζ) implies Sa and so by (ξ), �Sa.

To show (b), it suffices by (769.2) and (ξ), to show Numbers(y,S). But this, in
turn, follows from (766) using (ζ) and the fact that Numbers(y,Q).

To show (c), it suffices to show that Rigidifies(S−a,Q−a). Specifically, we need
only show that S−a is rigid and materially equivalent to Q−a, i.e., that:

(ξ ′) �∀z(S−az→ �S−az)

(ζ′) ∀z(S−az ≡Q−az)

(Exercise) ./

(802.2) (Exercise)

(802.3) Clearly, P↓. So by (796.1) and GEN, we have to show:

Pxz&Pyz→ x=y

So assume both Pxz and Pyz. Then by theorem (801.3), these assumptions im-
ply, respectively, that there are properties and discernible objects, say R,Q,a,b,
such that:

(ϑ) Qa& Numbers(z,Q) & Numbers(x,Q−a)

(ξ) Rb & Numbers(z,R) & Numbers(y,R−b)

The second conjuncts of (ϑ) and (ξ) jointly yield Q ≈D R, by (764.2). Since
we also know Qa and Rb, it follows by lemma (753) that Q−a ≈D R−b. But,
separately, the third conjuncts of (ϑ) and (ξ) jointly imply x=y ≡ Q−a ≈D R−b,
by a Principle Underlying Hume’s Principle (765.1). Hence x=y. ./

(802.4) Assume both Pxy and Pxz. Then given the necessary and sufficient
conditions for predecessor (801.3), these assumptions imply, respectively, that
there are properties and discernible objects, say Q,R,a,b, such that:

(ϑ) Qa& Numbers(y,Q) & Numbers(x,Q−a)

(ξ) Rb& Numbers(z,R) & Numbers(x,R−b)
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Now the third conjuncts of (ϑ) and (ξ) jointly imply Q−a ≈D R−b, by (764.2).
Since we also know Qa and Rb, it follows by lemma (754) that Q ≈D R. But
independently, the second conjuncts of (ϑ) and (ξ) jointly imply y=z ≡ Q≈D R,
by a Principle Underlying Hume’s Principle (765.1). Hence y=z. ./

(803.1) By (273.5), ∃xD!x. Let a be such an object, so that we know D!a. Then
by (273.34), a’s haecceity exists, i.e., [λx x = a]↓. So by (771.2), #[λx x = a]↓.
Then we can establish our theorem by showing 0 and #[λx x=a] are witnesses,
i.e., that P0#[λx x=a]. By (801.3), we have to show the following:

(ϑ) ∃F∃u(Fu& Numbers(#[λx x=a],F) & Numbers(0,F−u))

Now by theorem (774.2), Numbers(#[λxx=a], [λzA[λxx=a]z]). So to show that
the witnesses to (ϑ) are, respectively, [λzA[λxx=a]z] and a, it remains to show:

(i) [λzA[λx x=a]z]a

(ii) Numbers(0, [λzA[λx x=a]z]−a)

(i) Since a = a (117.1), it follows that Aa = a (175.1). But since [λx x = a]↓,
strengthened β-Conversion implies that [λx x= a]a ≡ a= a, as a modally strict
theorem. Hence, by a Rule of Substitution, A[λxx=a]a. And from this last fact
and the facts that [λzA[λxx=a]z]↓ and a↓, it follows by Rule

←−
βC (184.2.a) that

[λzA[λx x=a]z]a.

(ii) To show Numbers(0, [λzA[λx x=a]z]−a), it suffices to show, by (784.1):

¬∃u([λzA[λx x=a]z]−au)

For reductio, suppose that there is such a discernible object, say b, so that we
know [λzA[λx x=a]z]−ab. Then by definition (752.2), we know:

[λy [λzA[λx x=a]z]y & y,a]b

By (752.1), [λy [λz A[λx x = a]z]y & y , a] exists, since a is discernible. So by
β-Conversion:

(ξ) [λzA[λx x=a]z]b& b,a

The first conjunct of (ξ) implies A[λx x= a]b, also by β-Conversion. Since, as
a modally strict theorem, we know [λx x = a]b ≡ b = a, it follows by a Rule of
Substitution that Ab = a. Hence b = a (175.1), which contradicts the second
conjunct of (ξ). ./

(803.2) Assume NaturalCardinal(x) and x,0. We want to show ∃yPyx, i.e.,

(ϑ) ∃y∃F∃u(Fu& Numbers(x,F) & Numbers(y,F−u)
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From the first assumption, we know, by definition (777), that ∃G(x= #G), and
so by (778.2), it follows that ∃G(Numbers(x,G)). Suppose P is such a property,
so that we know Numbers(x,P ). This and the fact that x , 0 imply, by (784.2),
that ∃uP u. Suppose a is such a discernible object, so that we know P a. Then
it follows, by (752.2), that [λz P z& z, a]↓. Hence P −a↓. So ∃yNumbers(y,P −a),
by (763.1). Let b be such an object, so that we know Numbers(b,P −a). Thus,
assembling what we know:

P a& Number(x,P ) & Numbers(b,P −a)

Then (ϑ) follows from this last result by 3 applications of ∃I. ./

(803.3) Assume NaturalCardinal(x). Since Zero is a natural cardinal (783), we
show D!x by disjunctive syllogism from x=0∨ x,0.

(a) x= 0. Note that as part of the reasoning in (803.1), we established that
∃yP0y. Let b be such an object, so that we know P0b. Then since [λzPzb]↓ and
0↓, it follows that [λzPzb]0. To show D!0, we have to show, by GEN, y ,0→
∃F¬(Fy ≡ F0) (273.3). So assume y ,0. Suppose, for reductio, ¬∃F¬(Fy ≡ F0),
i.e., ∀F(Fy ≡ F0). Then [λzPzb]y, and so Pyb. But P is a 1-1 relation (802.3),
and so by the definition of 1-1 relations (796.1) and the fact that P↓ (801.2),
we may infer 0=y from the previously established facts that P0b and Pyb. But
then, since x = 0, it follows that x = y, which contradicts our hypothesis that
y,x.

(b) x,0. Then since x is a natural cardinal, it follows by (803.2), that ∃yPyx.
For let c be such an object, so that we know Pcx. Then since [λzPcz]↓ and x↓,
it follows that [λz Pcz]x. To show D!x, we have to show, by GEN, y , x →
∃F¬(Fy ≡ Fx) (273.3). So assume y ,x. Suppose, for reductio, ¬∃F¬(Fy ≡ Fx),
i.e., ∀F(Fy ≡ Fx). Then [λzPcz]y, and hence Pcy. But P is a functional relation
(802.4) and so we may infer from Pcx and Pcy that x=y, which contradicts our
assumption that y,x. ./

(803.4) Assume Pxy. Then by theorem (801.3), it follows that there is a prop-
erty, say Q, and a discernible object, say b, such that:

Qb& Numbers(x,Q) & Numbers(y,Q−b)

The second and third conjuncts imply, respectively, by (778.1), that x and y are
natural cardinals. ./

(803.5) This follows directly from (803.3) and (803.4). ./

(803.6) By (273.13), we know [λxD!x&Numbers(x,F)]↓. By (778.1) and (803.3),
it is straightforward to establish:

�∀x(D!x& Numbers(x,F) ≡Numbers(x,F))
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Hence, by an instance of axiom (49), we may conclude [λxNumbers(x,F)]↓. ./

(804.1) By theorem (786.2) we know:

[λxy ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)]↓

Hence, by the Rule of Identity by Definition (120), it follows from definition
(787) that:

G∗ = [λxy ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)]

Since this is a theorem, it follows by GEN that:

∀G(G∗ = [λxy ∀F((∀z(Gxz→ Fz) & Hereditary(F,G))→ Fy)])

Since P↓ (801.2), it follows that:

P
∗ = [λxy ∀F((∀z(Pxz→ Fz) & Hereditary(F,P))→ Fy)] ./

(804.2) – (804.3) (Exercises)

(804.4) By (571).1, we have to show:

P
∗↓& �∀x∀y(P∗xy→ �P∗xy)

The first conjunct is just theorem (804.2), and to show the second conjunct, it
suffices by GEN and RN to show P

∗xy→ �P∗xy. Our proof strategy begins by
considering a variant of P∗, designated as P? , which relates x and y whenever
x is a strong ancestor of y w.r.t. rigid properties that are hereditary on P, i.e.,

P
?xy ≡df

∀F
(
Rigid(F)→ [(∀z(P xz→ Fz) &∀x′∀y′(P x′y′→ (Fx′→ Fy′)))→ Fy]

)
With this notion, our strategy then is to proceed as follows:

(ϑ) Show: P?xy→ �P?xy

(ξ) Show: �(P∗xy ≡ P?xy)

Our theorem is then implied by these two claims, by the following reasoning.
By (158.6), we know that �(ϕ ≡ ψ)→ (�ϕ ≡ �ψ). So (ξ) implies:

(ζ) �P∗xy ≡ �P?xy

Hence, we may argue as follows:

P
∗xy → P

?xy by (ξ) and the T schema
→ �P?xy by (ϑ)
→ �P∗xy by (ζ)
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This establishes P∗xy → �P∗xy by modally strict reasoning from no assump-
tions. So it remains only to show (ϑ) and (ξ).

Proof of (ϑ). Assume P?xy and, for reductio, ¬�P?xy, i.e., that ♦¬P?xy. Then,
from these assumptions, we know, respectively, by definition of P?xy, that:

(A) ∀F
(
Rigid(F)→ [(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
(B) ♦¬∀F

(
Rigid(F)→ [(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
From (B), it follows that:

♦∃F
(
Rigid(F) &¬[(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
So by BF♦:

∃F♦
(
Rigid(F) &¬[(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
Let Q be such a property so that we know:

(C) ♦
(
Rigid(Q) &¬[(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)))→Qy]

)
Now (C) has the form ♦(D), where:

(D) Rigid(Q) &¬[(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)))→Qy]

Now independently we can establish that (D)→ �(D) by modally strict means:

Proof. Assume (D). Then we know:

(i) Rigid(Q), i.e., �∀x(Qx→ �Qx)

(ii) ¬[(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)))→Qy]

Now if we can show that both (i) and (ii) are necessary, then by (158.3),
their conjunction is necessary, i.e., we may infer �(D). But (i) is necessary,
by the 4 schema. To see that (ii) is necessary, note first that by the modally
strict equivalence ¬[(ϕ&ψ)→ χ] ≡ (ϕ&ψ&¬χ), (ii) implies:

(E) ∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)) &¬Qy

But since P is a rigid relation (802.2) and Q is, by (i), a rigid property, all
three conjuncts of (E) are modally collapsed – for each conjunct ϕ in (E),
we know, by the theorems in (171), that �(ϕ → �ϕ). For example, the
rigidity of P and Q, together with theorems (171.2) and (171.6), imply
that each of the first two conjuncts of (E) imply their own necessity (ex-
ercise). And the rigidity of Q and theorem (171.1) imply that the third
conjunct of (E) implies its own necessity (exercise). So we can derive that
each of the conjuncts of (E) is necessary, to obtain:
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�∀z(Pxz→Qz) &�∀x′∀y′(Px′y′→ (Qx′→Qy′)) &�¬Qy

From this, by (158.3), it follows that:

�(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)) &¬Qy)

So by the modally strict equivalence mentioned above and a Rule of Sub-
stitution:

�¬[(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)))→Qy]

i.e., (ii) is necessary. Hence, �(D). ./

Since we’ve established (D)→ �(D) by modally strict means from no assump-
tions, it follows by RN that �((D)→ �(D)). So from this and (C), which is ♦(D),
it follows by (158.13) that ♦�(D), i.e.,

♦�
(
Rigid(Q) &¬[(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)))→Qy]

)
But by the B♦ schema (165.4), this collapses to (D), which contradicts (A).

Proof of (ξ). By Rule RN, we have to prove P∗xy ≡ P?xy by modally strict
means from no assumptions. We prove both directions separately. (→) Assume
P
∗xy. Assume, for reductio, ¬P?xy. These assumptions imply, respectively:

(F) ∀F
(
[∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′))]→ Fy

)
(G) ¬∀F

(
Rigid(F)→ [(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
Now (G) implies:

∃F
(
Rigid(F) &¬[(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
Let Q be such a property, so that we know:

Rigid(Q) &¬[(∀z(Pxz→Qz) &∀x′∀y′(Px′y′→ (Qx′→Qy′)))→Qy]

But the second conjunct contradicts the result of instantiating (F) to Q.

(←) Assume P?xy, and for reductio, ¬P∗xy. These assumptions imply, respec-
tively:

(H) ∀F
(
Rigid(F)→ [(∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′)))→ Fy]

)
(J) ¬∀F

(
[∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′))]→ Fy

)
Since (J) implies:

∃F¬
(
[∀z(Pxz→ Fz) &∀x′∀y′(Px′y′→ (Fx′→ Fy′))]→ Fy

)
let R be such a property, so that we know:
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(K) ¬
(
[∀z(Pxz→ Rz) &∀x′∀y′(Px′y′→ (Rx′→ Ry′))]→ Ry

)
This implies:

(L) ∀z(Pxz→ Rz) &∀x′∀y′(Px′y′→ (Rx′→ Ry′)) &¬Ry

Now by (573.3), ∃F(Rigidifies(F,R)). Suppose S is such a property, so that we
know Rigidifies(S,R). Then by definition (571.2):

Rigid(S) &∀x(Sx ≡ Rx)

Since S is rigid, it follows from (H) that:

(M) [∀z(Pxz→ Sz) &∀x′∀y′(Px′y′→ (Sx′→ Sy′))]→ Sy

But we know from (L) that ∀z(Pxz→ Rz). Since R and S are materially equiv-
alent, it follows by a variant of (99.10) that ∀z(Pxz→ Sz). And we also know
from (L) that ∀x′∀y′(Px′y′→ (Rx′→ Ry′)). But again, since R and S are mate-
rially equivalent, it follows that ∀x′∀y′(Px′y′→ (Sx′→ Sy′)) (exercise). We’ve
therefore established both conjuncts of the antecedent of (M). Hence Sy, and
since S and R are materially equivalent, Ry, which contradicts the third con-
junct of (L). ./

(805.1) Suppose, for reductio, that something, say a, is such that Pa0. Then,
by the theorem governing P (801.3), it follows that there is a property, say Q,
and a discernible object, say b, such that:

Qb& Numbers(0,Q) & Numbers(a,Q−b)

From Qb it follows that ∃uQu. But from Numbers(0,Q), it follows by (784.1)
that ¬∃uQu. Contradiction. ./

(805.2) Assume, for reductio, ∃xP∗x0. Suppose a is such an object, so that we
know P

∗a0. By (789.5), it follows that ∃xPx0. But this contradicts (805.1). ./

(805.3) (Exercise)

(806.1) – (806.2) (Exercises)

(806.3) By (571).1, we have to show:

P
+↓& �∀x∀y(P+xy→ �P+xy)

The first conjunct is just theorem (806.1), and to show the second conjunct, it
suffices by GEN and RN to show P

+xy → �P+xy. So assume P+xy. Then by
fact (806.2), P∗xy ∨ x =D y. But by (804.4), P∗xy → �P∗xy. And by (273.21),
x =D y → �x =D y. Hence �P∗xy ∨ �x =D y. So by (158.15), �(P∗xy ∨ x =D y).
Hence �P+xy, by fact (806.2). ./

(807.2) – (807.3) (Exercises)
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(808) As an instance of (807.3), we know thatN0 ≡ P+00. So it suffices to show
P

+00. By theorem (806.2), it suffices to show P
∗00∨ 0 =D 0, and a fortiori, to

show 0=D 0. But D!0 by (783) and (803.3). So, by (273.18), 0=D 0. ./

(809.1) Assume Nx. Then by (807.3), P+0x. But by (806.3), we know that P is
rigid. Hence �P+0x. But then by the fact (807.3) is a modally strict theorem
and a Rule of Substitution it follows that �Nx. ./

(809.2) (Exercise)

(810) By (805.1), nothing is a predecessor of Zero. A fortiori, no natural num-
ber is a predecessor of Zero. ./

(811) Though the proof given in the text prior to the statement of the theorem
is perfectly adequate, those interested in system implementation will note that
the following is required. By the one-to-one character of P (802.3), we know:

Pxz&Pyz→ x=y

A fortiori:

(Nx&Ny &Nz)→ (Pxz&Pyz→ x=y)

So by GEN,

∀x∀y∀z((Nx&Ny &Nz)→ (Pxz&Pyz→ x=y))

Hence, by the conventions for restricted variables, this becomes:

∀n∀m∀k(Pnk&Pmk→ n=m) ./

(812) By GEN, it suffices to show F0 & ∀n∀m(Pnm → (Fn → Fm)) → ∀nFn.
Now since P is a relation on discernibles, we can instantiate it for G in the
Principle of Generalized Induction (797). If we do so and simultaneously sub-
stitute Zero for z, we obtain the following instance:

[F0 &∀x∀y((P+0x&P
+0y)→ (Pxy→ (Fx→ Fy)))]→∀x(P+0x→ Fx)

By the main theorem governing N (807.3) and the Rule of Substitution, this
reduces to:

[F0 & ∀x∀y((Nx&Ny)→ (Pxy→ (Fx→ Fy)))]→∀x(Nx→ Fx)

By employing our restricted variables n and m, this can be written:

[F0 & ∀n∀m(Pnm→ (Fn→ Fm))]→∀nFn ./
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(813.1) Assume Nx. Then, by (807.3), P+0x. We then have two cases. If x= 0,
then NaturalCardinal(x), by (783). If x,0, then it follows that P∗0x, by (806.2)
and the fact that x , 0→ x ,D 0 (273.19). By (789.7), it follows a fortiori that
∃zPzx. Let a be such an object, so that we know Pax. Then by (803.4) again a
fortiori that NaturalCardinal(x). ./

(813.2) (Exercise)

(814.1) Assume the antecedent Pnx. Since n is, by hypothesis, a natural num-
ber, we know by (807.3) that P+0n. Independently, since P is a relation on
discernibles, we can instantiate it for G in (795.3) to produce the following
instance:

(P+0n&Pnx)→ P
∗0x

So P∗0x. Hence, by ∨I and theorem (806.2), it follows that P+0x. So Nx, by
(807.3). ./

(814.2) For convenience, we prove P∗ny →Ny. So assume P∗ny. Then by the
main theorem governing the strong ancestral of predecessor (804.3):

∀F((∀z(Pnz→ Fz) &∀x∀x′(Pxx′→ (Fx→ Fx′)))→ Fy)

If we instantiate this to N, then we know:

(ϑ) (∀z(Pnz→Nz) &∀x∀x′(Pxx′→ (Nx→Nx′)))→Ny

Since we’re trying to show Ny, we simply have to establish both conjuncts of
the antecedent of (ϑ). For the first conjunct, assume Pnz. But then Nz follows
by (814.1). So it remains to show the second conjunct of (ϑ). By GEN and con-
ditional proof, assume Pxx′ and Nx, to show Nx′. But these two assumptions
imply Nx′, also by (814.1). ./

(814.3) Assume P+nx. Then by theorem (806.2), it follows that P∗nx∨ n=D x.
Reason by cases from this disjunction. If P∗nx, then by (814.2), Nx. If n=D x,
then by (273.19), n=x. So Nx, given that Nn (n is a restricted variable ranging
over natural numbers). ./

(815) Assume Pxn. Since n is by hypothesis a natural number, we know by
theorem (807.3) that P+0n. Hence P∗0n∨ 0 =D n, by theorem (806.2). It can’t
be that 0 =D n for that implies 0 =n (273.19), which would imply Px0, contra-
dicting (805.1). Then P

∗0n. Now, independently, it follows from an instance
of (796.2) and the fact that P is both a relation on discernibles and one-to-one
(802.3), that (Pxn&P

∗0n)→ P
+0x. Hence, P+0x, i.e., Nx. ./

(815.2) Assume P∗xn.

(815.3) Assume P+xn. Then by definition, P∗xn∨ x=n. If the former, then by
(815.2), Nx. If the latter, then since n is by hypothesis a number, so is x. ./
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(816) (Exercise)

(817.1) Assume Nb, where b is an arbitrarily chosen object. By Rule ∀I (96), it
suffices to show: ¬P∗bb. Now theorem (795.2), concerning the weak ancestrals
of relations on discernibles is:

(Fx&G+(x,y) & Hereditary(F,G))→ Fy

So where x is 0, y is b, F is [λz¬P∗zz], and G is P, we know:

([λz¬P∗zz]0 &P
+(0,b) & Hereditary([λz¬P∗zz],P))→ [λz¬P∗zz]b

By applications of β-Conversion and a Rule of Substitution, this reduces to:

(¬P∗00 &P
+0b & Hereditary([λz¬P∗zz],P))→¬P∗bb

So to establish ¬P∗bb, we need to show each of the following conjuncts of the
antecedent:

(ϑ) ¬P∗00

(ξ) P+0b

(ζ) Hereditary([λz¬P∗zz],P)

(ϑ) follows immediately from theorem (805.2), which asserts ¬∃xP∗x0. (ξ)
follows from our assumption that Nb and the definition of N. So to prove (ζ),
we have to show, by definition (786.1):

P↓& [λz¬P∗zz]↓&∀x∀y(Pxy→ ([λz¬P∗zz]x→ [λz¬P∗zz]y))

The first conjunct is theorem (801.2); the second is easily established (exercise).
So it remains to show the third, which by applications of β-Conversion and a
Rule of Substitution, reduces to ∀x∀y(Pxy → (¬P∗xx→ ¬P∗yy)). So by GEN,
we have to show:

Pxy→ (¬P∗xx→¬P∗yy)

Assume Pxy and ¬P∗xx. Now by (802.2), (802.3), and (803.5), P is a 1-1 rela-
tion on discernibles. So by instantiating P, x, and y into the universal gener-
aliation of theorem (796.3) and detaching the consequent, we may infer:

(Pxy &¬P∗xx)→¬P∗yy

Hence ¬P∗yy. ./

(817.2) We take Nx and Pyx as global assumptions, to show:

Numbers(z, [λzP+zy]) ≡Numbers(z, [λzP+zx]−x)



1336

By (766), it suffices to show [λzP+zy] ≡D [λzP+zx]−x. So, by definition (756)
and GEN, we show:

[λzP+zy]u ≡ [λzP+zx]−xu

Note that since x is a natural number (by hypothesis) and so a discernible ob-
ject (813.2), [λzP+zx]−x is properly defined by an instance of definition (752.2).
So, in the line displayed above, we can replace [λz P+zx]−x by it definiens
[λz [λz P+zx]z & z , x] and apply β-Conversion to both sides of the resulting
biconditional. So it suffices to show:

P
+uy ≡ [λzP+zx]u&u,x

And by applying β-Conversion and a Rule of Substitution to the right side, we
have to show:

P
+uy ≡ P+ux&u,x

(→) Assume P+uy. From this, our global assumption Pyx, and the fact that
P is a relation on discernibles, it follows by an appropriate instance of (795.5)
that P∗ux. Hence P+ux (806.2). To see that u , x, suppose u = x, for reductio.
Then from the previously established fact thatP∗ux, it follows thatP∗xx, which
contradicts (817.1) given that Nx.

(←) Let P+ux and u , x be our local assumptions. Suppose, for reductio,
¬P+uy. From our second local assumption it follows that u ,D x, by (273.19)
and (273.25), and from this and the first local assumption it follows that P∗ux
(806.2). But since P is a 1-1 relation on discernibles, by (802.2) and (802.3),
the following is a consequence of (796.2), simultaneously substituting y for x,
x for y and u for z:

(Pyx&P
∗ux)→ P

+uy

This is equivalent to:

(Pyx&¬P+uy)→¬P∗ux)

But Pyx is a global assumption and ¬P+uy is our reductio hypothesis. Hence
¬P∗ux. Contradiction. ./

(817.3) Assume Nx and P(y,x). These imply, by (817.2) and (764.2), that:

(ϑ) [λzP+zy] ≈D [λzP+zx]−x

Note that from the fact that P+ is rigid, it follows that:

Rigid([λzP+zy])

Rigid([λzP+zx]−x)
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(We leave the proofs as exercises.) By (775), these imply that a modally strict
version of Hume’s Principle holds, so that we know:

#[λzP+zy] = #[λzP+zx]−x ≡ [λzP+zy] ≈D [λzP+zx]−x

So by (ϑ):

#[λzP+zy] = #[λzP+zx]−x ./

(817.4) We want to show:

[λx ∃y(Numbers(y, [λzP+zx]) &Pxy)]↓

Note that the matrix of the above λ-expression:

∃y(Numbers(y, [λzP+zx]) &Pxy)

is equivalent to:

D!x&∃y(Numbers(y, [λzP+zx]) &Pxy)

So it follows by GEN and RN that these formulas are necessarily and univer-
sally (for all x) equivalent. So our theorem follows from (273.13) and (49).
./

(817.5) Since [λx D!x & Px#[λz P+zx]] ↓, by (273.13), then from the easily-
established fact, by (803.5), that:

�∀x(D!x&Px#[λzP+zx] ≡ Px#[λzP+zx]),

we can appeal to an instance of axiom (49) to conclude [λxPx#[λzP+(z,x)]]↓.
./

(817.6) We want to show:

∀n∃y(Numbers(y, [λzP+zn]) &Pny)

We prove this by appeal to (Frege’s formulation of) the principle of induction
(812). So we have to find a property F such that:

• F0 and ∀n∀m(Pnm→ (Fn→ Fm)), and

• the conclusion ∀nFn that follows from these (by the principle of induc-
tion) is equivalent to our theorem.

Consider the property:

[λx ∃y(Numbers(y, [λzP+zx]) &Pxy)]

which exists by (817.4). It is therefore a consequence of β-Conversion that:
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[λx∃y(Numbers(y, [λzP+zx]) &Pxy)]x ≡ ∃y(Numbers(y, [λzP+zx]) &Pxy)

Since this equivalence holds for any object x, it holds for any natural number.
So the following equivalence is a theorem:

[λx∃y(Numbers(y, [λzP+zx]) &Pxy)]n ≡ ∃y(Numbers(y, [λzP+zn]) &Pny)

Then if we letQ be the property [λx∃y(Numbers(y, [λzP+zx])&Pxy)], the claim
∀nQn becomes equivalent to our theorem. So to prove our theorem by an ap-
peal to mathematical induction (812), we have to show:

Base case: Q0

Inductive case: ∀n∀m(Pnm→ (Qn→Qm))

Base case: Show Q0, i.e., [λx ∃y(Numbers(y, [λzP+zx]) &Pxy)]0. Since Q exists,
it suffices to show ∃y(Numbers(y, [λzP+z0]) &P0y), by β-Conversion. Now for
every G, there is an object y such that Numbers(y,G) (763.1). So let a be such
that Numbers(a, [λzP+z0]). It therefore remains and suffices to show P0a. By
the main theorem governing P (801.3), we have to show:

∃F∃u(Fu & Numbers(a,F) & Numbers(0,F−u))

where u ranges over discernible objects. Before we identify the witnesses to
the above, note that 0 is a discernible object, since it is a natural number (808)
and natural numbers are discernible (813.2). So we can show that the claim
displayed immediately above holds if we pick our witness for F to be [λzP+z0]
and pick our witness for u to be 0, for it then remains to show:

(ϑ) [λzP+z0]0

(ξ) Numbers(a, [λzP+z0])

(ζ) Numbers(0, [λzP+z0]−0)

To show that (ϑ) holds, we have to show [λzP+z0]0, i.e., by β-Conversion, that
P

+00. But since 0 is a discernible object, it follows by (273.30) that 0=D 0, and
so P+00, by the principal fact about the weak ancestral of predecessor (806.2).

(ξ) holds by assumption.

To show (ζ), i.e., Numbers(0, [λzP+z0]−0), it suffices, by (784.1), to show that:

¬∃u([λzP+z0]−0u)

For reductio, assume there is, and suppose b is such a discernible object, so that
we know [λz P+z0]−0b. Since [λz P+z0]↓, 0↓, and 0 is discernible (exercises),
it follows by the definition of [λzP+z0]−0 (752.2) that [λz [λzP+z0]z& z,0]b.
So by β-Conversion, [λz P+z0]b & b , 0. And by β-Conversion and a Rule of
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Substitution, P+b0 &b,0. The second conjunct implies b,D 0, by (273.19) and
(273.25), and so by the relevant instance of (806.2), it follows that P∗b0, which
contradicts (805.3).

Inductive Case: We want to show ∀n∀m(Pnm → (Qn → Qm)), where Q is
[λx ∃y(Numbers(y, [λzP+zx]) &Pxy)]. By GEN, we have to show:

Pnm→ (Qn→Qm)

By definition of Q, β-Conversion, and a Rule of Substitution, we have to show:

Pnm→
∃y(Numbers(y, [λzP+zn]) &Pny)→∃y(Numbers(y, [λzP+zm]) &Pmy)

So assume:

(A) Pnm

(B) ∃y(Numbers(y, [λzP+zn]) &Pny)

Suppose b is the witness to (B), so that we know Numbers(b, [λzP+zn]) andPnb.
Now we need to find a witness to ∃y(Numbers(y, [λz P+zm]) & Pmy). Again,
since for every G, there is an object y such that Numbers(y,G) (763.1), let c be
such that Numbers(c, [λzP+zm]). It therefore remains and suffices to showPmc.
By the principal fact about Predecessor (801.3), we have to show:

(C) ∃F∃u(Fu& Numbers(c,F) & Numbers(m,F−u))

To establish (C), we choose [λzP+zm] as our witness for F, andm as the witness
for u. (Note that since m is a natural number, it is a discernible object (813.2)
and so can serve as a witness for ∃u.) Then we have to show:

(ϑ) [λzP+zm]m

(ξ) Numbers(c, [λzP+zm])

(ζ) Numbers(m, [λzP+zm]−m)

Show (ϑ). Since [λz P+zm]↓ (exercise), it suffices, by β-Conversion, to show
P

+mm. But since m is a natural number, it is discernible (813.2). So m=D m,
by (273.19). Hence P+mm, by the principle fact about the weak ancestral of
predecessor (806.2).

Show (ξ). This holds by assumption.

Show (ζ). We start with the fact that the following is an instance of lemma
(817.2):

(Nm&Pnm)→ (Numbers(m, [λzP+zn]) ≡Numbers(m, [λzP+zm]−m))
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Since Nm (by hypothesis) and Pnm (by assumption), it follows that:

(D) Numbers(m, [λzP+zn]) ≡Numbers(m, [λzP+zm]−m)

Note that Pnm, by (A), and Pnb, by hypothesis. So m=b, by the functionality
of predecessor (816). Since we also know Numbers(b, [λzP+zn]) by hypothesis,
it follows that Numbers(m, [λzP+zn]). So by (D), Numbers(m, [λzP+zm]−m). ./

(817.7) Let n be an arbitrary natural number, so that by ∀I, it suffices show
Pn#[λzP+zn]. Then by (817.6), it follows that ∃y(Numbers(y, [λzP+zn])&Pny).
Suppose a is such an object, so that we know Numbers(a, [λzP+zn])&Pna. Given
the second conjunct, it suffices only to show a= #[λzP+zn]. Since P+ is rigid
(806.3), it is easy to establish that Rigid([λzP+zy]) (exercise). So by (774.5):

(ϑ) Numbers(#[λzP+zy], [λzP+zy])

But, independently, we know ∃!xNumbers(x, [λzP+zy]), since (763.2) holds for
every G. So (ϑ) and the assumption that Numbers(a, [λzP+zn]) imply that a=
#[λzP+zn]. ./

(817.7) [This proof more closely follows Frege’s original, modulo the facts that
we are working within a modal framework, making use an A operator, and
keeping the focus on discernible objects. Nevertheless, in the proof by in-
duction below, the base case corresponds to Frege’s Theorem 154 (1893 [2013,
147]), while the inductive case corresponds to Frege’s Theorem 155 (1893 [2013,
149]).] We prove this by appeal to (Frege’s formulation of) the principle of in-
duction (812). So we have to find a property F such that:

• F0 and ∀nn∀m(Pnm→ (Fn→ Fm)), and

• the conclusion ∀nFn that follows from these by the principle of induction
is equivalent to our theorem ∀nPn#[λzP+zn].

Consider the property:

[λxPx#[λzP+zx]]

which exists by (817.5). It is therefore a consequence of β-Conversion that:

[λxPx#[λzP+zx]]y ≡ Py#[λzP+zy]

Since this equivalence holds for any object y, it holds for any natural number.
So that the following equivalence is a theorem:

[λxPx#[λzP+zx]]n ≡ Pn#[λzP+zn]

Then if we let Q be the property [λxPx#[λzP+zx]], the claim ∀nQn becomes
equivalent to our theorem ∀nPn#[λz P+zn]. So to prove our theorem by an
appeal to mathematical induction (812), we have to show:
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Base case: Q0 (Frege 1893, Theorem 154)

Inductive case: ∀n∀m(Pnm→ (Qn→Qm)) (Frege 1893, Theorem 155)

Base case: Show Q0, i.e., [λxPx#[λzP+zx]]0. Since Q exists, it suffices to show
P0#[λzP+z0], by β-Conversion. By the main theorem governing P (801.3), we
have to show:

∃F∃u(Fu & #[λzP+z0]=#F & 0=#F−u)

where u ranges over discernible objects. Before we identify the witnesses to
the above, note that 0 is a discernible object, since it is a natural number (808)
and natural numbers are discernible (813.2). So if we pick our witness for F to
be [λzP+z0] and pick our witness for u to be 0, then it remains to show:

(ϑ) [λzP+z0]0

(ξ) #[λzP+z0] = #[λzP+z0]

(ζ) 0 = #[λzP+z0]−0

To show that (ϑ) holds, we have to show [λz P+(z,0)]0, i.e., by β-Conversion,
that P+(0,0). But since 0 is a discernible object, it follows by (273.30) that 0=D
0, and so P+(0,0), by the principal fact about the weak ancestral of predecssor
(806.2).

To show that (ξ) holds, we need only note that (a) [λz P+z0]↓ (exercise), and
hence #[λzP+z0]↓ (exercise), and (b) everything is self-identical.

To show (ζ) holds, it suffices, by (784.3), to show:

¬∃vA[λzP+z0]−0v

For reductio, assume that there is such a discernible object, say b, so that we
know A[λzP+z0]−0b. Since [λzP+z0]↓, 0↓, and 0 is a discernible object, we can
apply the definition of [λzP+z0]−0 (752.2) to conclude:

A[λz [λzP+z0]z& z,0]b

Since [λz [λzP+z0]z& z,0]↓ (exercise), it follows by β-Conversion and a Rule
of Substitution that: A([λzP+z0]b& b,0]). Again, by β-Conversion and a Rule
of Substitution, it follows that A(P+b0 & b , 0). Hence, by (139.2), we know
both:

(A) AP+b0

(B) Ab,0

Note that (A) implies AP∗b0∨Ab=D 0:
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Proof. By a relevant instance of (806.2) and a Rule of Substitution, (A)
implies A(P∗b0 ∨ b =D 0). But A distributes over a disjunction (139.9),
and so it follows that AP∗b0∨Ab=D 0.

Note also that (B) implies ¬Ab=D 0:

The contrapositive of theorem (273.19) is ¬b= 0→ ¬b=D 0. So by Rule
RA, A(¬b = 0→ ¬b =D 0). Now (B) implies A¬b = 0, by (24) and a Rule
of Substitution. So by (131), i.e., A(ϕ→ ψ)→ (Aϕ→ Aψ), we may infer,
from what we have established, that A¬(b=D 0). So ¬A(b=D 0), by (44.1).

From the two consequences of (A) and (B) just noted, it follows that AP∗b0.
Hence, ∃xAP∗x0, which implies A∃xP∗x0 (139.10). But by Rule RA, the actu-
alization of theorem (805.3) is also a theorem, and so we know A¬∃xP∗x0. So
by axiom (44.2), this last fact implies ¬A∃xP∗x0. Contradiction.

Inductive Case: Show ∀n∀m(Pnm→ (Qn→Qm)), whereQ is [λxPx#[λzP+zx]].
The proof of this claim appeals to (817.3), which tells us that if y precedes a
natural number x, then the number of being a weak predecessor ancestor of y is
identical to the number of being a weak predecessor ancestors of x but not x. Now
by GEN, we have to show:

Pnm→ (Qn→Qm)

By definition of Q, β-Conversion, and a Rule of Substitution, we have to show:

Pnm→ (Pn#[λzP+zn])→ Pm#[λzP+zm])

So assume:

(C) Pnm

(D) Pn#[λzP+zn]

to show Pm#[λz P+zm]. By the principal fact about Predecessor (801.3), we
have to show:

∃F∃u(Fu& #[λzP+zm] = #F&m = #F−u)

Note that since m is a natural number, it is a discernible object (813.2). So we
can prove that the above holds if we take our witness for F to be [λzP+zm] and
take our witness for u to be m. Then we have to show:

(ϑ) [λzP+zm]m

(ξ) #[λzP+zm] = #[λzP+zm]

(ζ) m = #[λzP+zm]−m
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Show (ϑ). Since [λz P+zm]↓ (exercise), it suffices, by β-Conversion, to show
P

+mm. But since m is a natural number, it is discernible (813.2). So m=D m,
by (273.19). Hence P+mm, by the principle fact about the weak ancestral of
predecessor (806.2).

Show (ξ). This holds by the fact that #[λz P+zm]↓ (exercise) and the logic of
identity.

Show (ζ), i.e., m = #[λzP+zm]−m. Recall our assumptions (C) and (D), i.e., Pnm
and Pn#[λzP+zn]. It follows by the functionality of Predecessor (802.4) that
m = #[λzP+zn]. So, by Rule =E, (ζ) follows immediately from:

#[λzP+zn] = #[λzP+zm]−m

But this, in turn, is a consequence of lemma (817.3) once we substitute m for x
and n for y, since we know Nm, by hypothesis, and Pnm, by (C). ./

(818) By GEN, it suffices to show ∃!mPnm. But since predecessor is a func-
tional relation (816), it suffices to show that ∃mPnm.481 Moreover, we know
that if n immediately precedes anything, that thing is a natural number (814.1),
and so it suffices to show that ∃yPny. But this follows, a fortiori from (817.6),
which tells us ∃y(Numbers(y, [λzP+zn]) &Pny). ./

(818) [A Frege-style proof that makes use of (817.6).] By GEN, it suffices to
show ∃!mPnm. But since predecessor is a functional relation (816), it suf-
fices to show that ∃mPnm.482 Moreover, we know that if n immediately pre-
cedes anything, that thing is a natural number (814.1), and so it suffices to
show that ∃yPny. But this follows a fortiori from (817.7), which tells us that
Pn#[λzP+zn]. ./

(822) From (818), we know ∃!mPnm, i.e.,

∃!x(Nx&Pnx)

Hence by Rule RA,

A∃!x(Nx&Pnx)

and so by (176.2):

(ϑ) ıx(Nx&Pnx)↓

481For suppose ∃mPnm and let m1 be such a natural number, so that we know Pnm1. To show
m1 is unique, we have to show ∀k(Pnk → k =m1). By GEN, it suffices to show Pnk → k =m1. So
assume Pnk. Then given both Pnk and Pnm1 it follows by (816) that k=m1.
482For suppose ∃mPnm and let m1 be such a natural number, so that we know Pnm1. To show
m1 is unique, we have to show ∀k(Pnk → k =m1). By GEN, it suffices to show Pnk → k =m1. So
assume Pnk. Then given both Pnk and Pnm1 it follows by (816) that k=m1.
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Now assume n=m. Then, �n=m, since the necessity of identity (125) holds
universally. From this and the necessitation of the axiom for the substitution
of identicals, it follows, by the K axiom, that:

�((Nx&Pnx)→ (Nx&Pmx))

�((Nx&Pmx)→ (Nx&Pnx)).

Hence by (158.4):

�((Nx&Pnx) ≡ (Nx&Pmx))

Since this holds for any x, it follows by GEN that:

∀x�((Nx&Pnx) ≡ (Nx&Pmx))

So by the Barcan Formula (167.1):

(ξ) �∀x((Nx&Pnx) ≡ (Nx&Pmx))

Hence from (ϑ) and (ξ) it follows by (149.3) that:

ıx(Nx&Pnx) = ıx(Nx&Pmx)

If we use k as a restricted variable ranging over numbers, the above becomes:

ıkPnk = ıkPmk

So by definition (821), n′ =m′. ./

(823) We prove this by mathematical induction (812). We run the induction
over the property:

[λmm=D 0∨∃n(m=D ımP nm)]

Call this property S. Since S exists (exercise), it follows by β-Conversion that:

(ϑ) Sm ≡m=D 0∨∃n(m=D ımP nm)

For induction we need only show S0 &Pnm → (Sn → Sm) and we are done.
It is easy to see that the left conjunct S0 holds, given that 0 =D 0 and (ϑ). For
the right conjunct, assume Pnm and Sn. It remains to show Sm. So by ∨I and
(ϑ), it suffices to show: ∃n(m=D ımP nm). By assumption we have Pnm. So it
suffices to show m=D ımP nm. And by Hintikka’s schema, we have to show:

APnm&∀j(APjm→ j=n)

It follows from our assumption, by (802.1), that �Pnm. And by (132), we have
the first conjunct, APnm.

To show the second conjunct, it suffices by GEN to show APjm→ j =n. So
assume APjm. Note independently that if we apply RN to relevant instances of
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the modally strict theorem (802.1), we know �(Pjm→ �Pjm). So by (174.2),
APjm ≡ Pjm. Hence Pjm. So it follows by the fact that P is a one-to-one
relation (802.3)) and the definition of one-to-one relation (796.1), that j=n. ./

(824) (Exercise) [Hint: The key theorem is an instance of (153.2), but to make
proper use of this instance, one needs to appeal to the rigidity of P (802.2),
the uniqueness of successor (818), and the description that defines successor
notation (821).]

(826.n) (Exercises)

(827.n) (Exercises)

(829) (Exercise) [Hint: The easiest proof may be by reductio.]

(831.1) (→) We may reason in this direction as follows:

x < y ≡ P
∗
�Nxy by definition (830.1)

≡ [λxyNx&P
∗xy]xy by definition (828.1)

≡ Nx&P
∗xy by β-Conversion, given [λxyNx&P

∗xy]↓
→ Ny by theorem (814.2)

(←) Assume Nx, Ny, and P∗xy. Conjoining the first and third, we have Nx&
P
∗xy. It follows by β-Conversion that [λxy Nx & P

∗xy]xy, given that the λ-
expression is significant. By definition (828.1),P∗�Nxy. Hence, by (830.1), x < y.
./

(831.2) (→) We may reason in this direction as follows:

x ≤ y ≡ P
+
�Nxy by definition (830.2)

≡ [λxyNx&P
+xy]xy by definition (828.1)

≡ Nx&P
+xy by β-Conversion, given [λxyNx&P

+xy]↓
→ Ny by theorem (814.3)

(←) Assume Nx, Ny, and P+xy. Conjoining the first and third, we have Nx&
P

+xy. It follows by β-Conversion that [λxyNx &P
+xy]xy, given that the λ-

expression is significant. By definition (828.1),P+
�Nxy. Hence, by (830.2), x ≤ y.

./

(832.1) – (832.4) (Exercises)

(833.1) Assume Pnm. Then by a fact about P∗ (789.1), it follows that P∗nm. So
by (832.1), n < m. ./

(833.2) (Exercise)

(833.3) Assume n < m. Then by (832.1), P∗nm. So by ∨I, P∗nm∨n=Dm. Hence
P

+nm, by theorem (806.2). So by (832.2), n ≤m. ./
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(833.4) Assume n ≤ m and n , m. From the former, it follows by theorem
(832.2) that P+nm. Now, we know, as an instance of theorem (273.19), that
n =D m→ n=m. Hence, from n,m, it follows that ¬(n =D m). So by theorem
(806.2), P∗nm. And by theorem (832.1), n < m. ./

(833.5) Assume n < m and m < k, so that we know, by theorem (832.1) that
P
∗nm and P

∗mk. But P is a relation and so by the transitivity of its strong
ancestral P∗ (789.6), it follows that P∗nk. So by (832.1), n < k. ./

(833.6) Assume n ≤ m and m ≤ k. Then by (832.2), we know both P+nm and
P

+mk. But P is a rigid one-to-one relation and so its weak ancestral P+ is
transitive (795.6). Hence P+nk, and so by (832.2), n ≤ k. ./

(833.7) Assume n < m and m ≤ k. We reason by cases. If m= k, then n < k. If
m,k, then by (833.4), m < k. So by transitivity of < (833.5), n < k. ./

(833.8) (Exercise)

(834.1) By theorem (824), we knowPnn′. So by theorem (789.1),P∗nn′. Hence,
by (832.1), n < n′.

(834.2) (Exercise)

(834.3) Assume 1 ≤ n. We also know 0 < 0′, by (834.1). It follows from this last
fact by definition of One (825.1), that 0 < 1. So by (833.7), 0 < n. ./

(834.4) Assume m′ ≤ n. By theorem (824), we know Pmm′. Hence by (833.1),
m <m′. But from this and our assumption, it follows by (833.7), that m < n. ./

(834.5) (Exercise)

(835) We prove this by induction onm. Base Case: m=0. Assume Numbers(n,F),
Numbers(m,G), and ∀u(Fu → Gu). Then Numbers(0,G), and so by (784.1),
¬∃uGu. Since ∀u(Fu → Gu) it follows that ¬∃uFu. Hence again by (784.1),
Numbers(0,F). Since a unique object numbers the property F (763.2), n=0. So
since 0 ≤ 0 (833.2), it follows that n ≤m.

Inductive Case: Assume that our theorem holds when m=k. Then our induc-
tive hypothesis is:

(IH) (Numbers(n,F) & Numbers(k,G) &∀u(Fu→ Gu))→ n ≤ k

and we need to show:

(Numbers(n,F) & Numbers(k′,G) &∀u(Fu→ Gu))→ n ≤ k′

So assume Numbers(n,F), Numbers(k′,G), and ∀u(Fu → Gu). We reason by
cases from ∀u(Fu ≡ Gu) or ¬∀u(Fu ≡ Gu). If ∀u(Fu ≡ Gu), then by (766),
Numbers(k′,F). Hence, by (763.2), n = k′. Since k′ ≤ k′ (833.2), n ≤ k′. If
¬∀u(Fu ≡ Gu), then given our initial assumption that ∀u(Fu → Gu), it must
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be that ∃u(Gu & ¬Fu). Let a be the (discernible) witness, so that we know
Ga&¬Fa. Since ∀u(Fu→ Gu) and ¬Fa, it follows that ∀u(Fu→ (Gu & u ,a)).
Hence ∀u(Fu→ G−au), by definition ofG−a (752.2), β-Conversion and a Rule of
Substitution. Now let b be such that Numbers(b,G−a) (763.1). Then by (801.3),
it follows that Pbk′. By (802.3), b = k. Hence, Numbers(k,G−a). Then, instan-
tiating our IH to F and G−a, it follows that n ≤ k, and hence n ≤ k′ by (833.6).
./

(836.n) (Exercises)

(838.1) Since we know Rigid(P) (802.2) and 1-1(P) (802.3), we have as a con-
sequence of (796.4):

¬P∗00→ (P+0n→¬P∗nn)

By theorem (805.3), we know ¬P∗00. Hence:

(ϑ) P+0n→¬P∗nn

But n is, by hypothesis, a natural number. So by (807.3), P+0n. So by (ϑ),
¬P∗nn. Consequently, by (833.1), we have ¬(n < n). ./

(838.2) By (838.1), n 6< n. So by (833.1), ¬P∗nn. So by (789.1), ¬Pnn. ./

(838.3) By (824), we knowPnn′. For reductio, suppose n=n′. ThenPnn, which
contradicts (838.2). ./

(839.2) (→) We may reason in this direction as follows, given that the λ-
expression is significant:

x =̇y ≡ x=D�N y by definition (839.1)
≡ [λxyNx& x=D y]xy by definition (828.1)
≡ Nx& x=D y by β-Conversion
→ Ny (273.19) and Rule =E

(←) Assume Nx, Ny, and x=D y. Conjoining the first and third, we have Nx&
x=D y. Since [λxyNx&x=D y] exists, it follows by β-Conversion that [λxyNx&
x=D y]xy. By definition (828.1), x=D�N y. Hence, by (839.1), x =̇y. ./

(840.1) Assume x =̇y. Then by (839.2), we know Nx, Ny, and x =D y. But by
an instance of (273.19), the last of these consequences implies x=y. ./

(840.2) Assume Nx ∨Ny. (→) Then x =̇y → x= y is already theorem (840.1).
(←) Assume x=y. To show x =̇y, we have to show, by (839.2):

Nx&Ny & x=D y

To do this we reason by cases from our initial assumption Nx∨Ny:
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Suppose Nx. Since we’ve assumed x=y, it follows that Ny. So it remains
to show x=D y. Now Nx and Ny imply, respectively, that D!x and D!y,
by (813.2). Then x=D y by (273.18).

Suppose Ny. Then our conclusion follows by analogous reasoning. ./

(840.3) – (840.6) (Exercises)

(840.7) We can reason as follows:

n ≤m ≡ P +nm (832.2)
≡ P ∗nm∨n=Dm (806.2)
≡ n < m∨n=Dm (832.1)
≡ n < m∨n=m (839.2), (840.2) ./

(841.2) (Exercise)

(842.1) By (836.1), 0 < 1. Hence, 1 > 0, by λ-Conversion and definition (830.3).
So, N+1, by (841.2). ./

(842.2) Assume 1 ≤ n. Then by (834.3), 0 < n, i.e., n > 0. Hence N+1, by
(841.2). ./

(843) Assume N+x. Since P is one-to-one (802.3), it suffices to show ∃nPnx.
Our assumption implies x > 0, by (841.1), i.e., 0 < x. So by (832.1), P∗0x. So by
(789.5), ∃zPzx. Let a be such an object, so that we know Pax. Since Pax and
our assumption implies Nx (exercise), it follows from (815) that Na. Hence,
∃nPnx. ./

(844.1) Assume Fu & Numbers(n,F−u). Independently, we know P(n,n′), by
(824). So by theorem (801.3), ∃H∃u(Hu & Numbers(n′,H) & Numbers(n,H−u)).
So letQ and b be such a property and discernible object, so that we knowQb&
Numbers(n′,Q) & Numbers(n,Q−b). Since Numbers(n,F−u) and Numbers(n,Q−b),
it follows that F−u ≈D Q−b, by (764.2). Hence, by Lemma (754), F ≈D Q. So
since Numbers(n′,Q), it follow by (764.1) that Numbers(n′,F). ./

(844.2) Assume Numbers(n′,F). We want to show ∃u(Fu & Numbers(n,F−u)).
Now, independently, we know P(n,n′), by (824). So by theorem (801.3):

∃H∃u(Hu& Numbers(n′,H) & Numbers(n,H−u))

Let Q and b be such a property and discernible object, so that we know:

Qb& Numbers(n′,Q) & Numbers(n,Q−b)

Since Numbers(n′,F) and Numbers(n′,Q), it follows by (764.2) that F ≈D Q and,
by symmetry, Q ≈D F. Hence, by definition (747.3), there is a relation G that
witnesses this equinumerosity, i.e.,
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∃G(G | :Q 1-1←−→D F)

Let R be such a relation. Then, a fortiori, by (747.2), ∀u(Qu → ∃!v(Fv &Ruv).
So, in particular, Qb→∃!v(Fv&Rbv). Since Qb, let c be the unique discernible
object such that Fc and Rbc. So we have now established Q ≈D F, Qb, and Fc.
So by (753), Q−b ≈D F−c. But since we also have that Numbers(n,Q−b), it follows
by (764.1) that Numbers(n,F−c). Hence we now have Fc& Numbers(n,F−c). So
∃u(Fu& Numbers(n,F−u)). ./

(845.2) By definition 845.1, we know ∃!0uFu ≡ Numbers(0,F). So, it suffices to
show Numbers(0,F) ≡ ¬∃uFu. But this is just (784.1). ./

(845.3) We want to show:

∃!n′uFu ≡ ∃u(Fu&∃!nvF
−uv)

By definition (845.1), we have to show:

Numbers(n′,F) ≡ ∃u(Fu&∃!nvF
−uv)

(→) Assume Numbers(n′,F). We need to show ∃u(Fu &∃!nvF
−uv). But by defi-

nition (845.1) and a rule of substitution, it suffices to show:

∃u(Fu& Numbers(n,F−u))

This is easy, since it follows directly from Numbers(n′,F) by (844.2).

(←) Assume ∃u(Fu & ∃!nvF
−uv). Let a be such an object, so that we know Fa

and ∃!nvF
−av. By definition (845.1), the latter implies Numbers(n,F−a). So by

(844.1), Numbers(n′,F). ./

(846.1) Since it is clear that the two individuals asserted to be identical are
abstract, it suffices to show they encode the same properties, i.e., to show:

nG ≡ ıx(A!x&∀F(xF ≡ ∃!nuFu))G

But by (258.2), it suffices to show:

(ϑ) nG ≡ A∃!nuGu

But by definition (845.1) and a Rule of Substitution (160.3), it suffices to show:

(ζ) nG ≡ ANumbers(n,G)

By (813.1), we know NaturalCardinal(n), so the antecedent of (780) is satisfied
and it follows that:

(A) nG ≡ n=#G

So we can now reason as follows:
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nG ≡ n=#G by (A)
≡ Numbers(n, [λzAGz]) by (774.1)
≡ ANumbers(n,G) by (769.4)

./

(846.2) Pick any natural number n. By (813.1), NaturalCardinal(n). So by defi-
nition (777), there exists a propertyG, such that n=#G. So let P be such a prop-
erty, so that n=#P . So if we let [λzAP z] be our witness, it suffices by ∃I to show
∃!nu([λzAP z]u). From n=#P and (774.2), it follows that Numbers(n, [λzAP z]).
So by definition (845.1), it follows that ∃!nu([λz P z]u). ./

(850.1) – (850.4) (Exercises)

(851.1) By definition (848.1), we have to show:

∀x∃!y[λxy Ux& y =̇0]xy

From the fact that the λ-expression is significant, β-Conversion, and a Rule of
Substitution, we have to show:

∀x∃!y(Ux& y =̇0)

By GEN, we have to show:

∃!y(Ux& y =̇0)

We can establish this if we choose Zero to be our witness. By the uniqueness
quantifier, we have to show:

(A) Ux& 0=̇0

(B) ∀z((Ux& z =̇0)→ z=0)

(A) Ux is an instance of (850.3). Since N0 is a theorem (808), it follows by
(840.3) that 0=̇0.

(B) By GEN, it suffices to show Ux & z =̇0 → z = 0. So assume Ux and z =̇0.
Then, again, since N0 is a theorem, it follows from the second assumption by
(840.2) that z=0. ./

(851.2) (Exercise)

(851.3) Although the theorem is a special case of (851.2), we give a proof with-
out assuming that theorem. Since [λy y =̇0] clearly exists, we have to show, by
definition (848.3), β-Conversion, and a Rule of Substitution, ∃!y(y =̇0). If we
choose Zero to be our witness, then by the definition of the uniqueness quan-
tifier, we have to show:

(A) 0=̇0
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(B) ∀z(z =̇0→ z=0)

(A) Since N0 is a theorem (808), it follows by (840.3) that 0=̇0. (B) By GEN, it
suffices to show z =̇0→ z= 0. So assume z =̇0. Then since N0 is a theorem, it
follows by (840.2) that z=0. ./

(852.1) By theorem (273.5) it is a theorem that there are discernible objects,
i.e., ∃xD!x. So assume a is such an object, i.e., D!a. Then our next step is to
show that the binary relation being an x and y such that x exemplifies U and y is
identical to a ([λxy Ux& y =D a]) is a witness to our existential claim, i.e., our
next step is to establish (ξ):

(ξ) Function1([λxy Ux& y=D a])

Proof. By definition (848.1), we have to show:

∀x∃!y[λxy Ux& y=D a]xy

where a is a discernible object. Given β-Conversion, the fact that the
λ-expression is significant, and a Rule of Substitution, we have to show:

∀x∃!y(Ux& y=D a)

By GEN, we have to show:

∃!y(Ux& y=D a)

So pick our witness to be a. Then by the definition of the uniqueness
quantifier and ∃I, we have to show both:

(ϑ) Ux& a=D a

(ζ) ∀z((Ux& z=D a)→ z=a)

But for (ϑ), we know Ux by theorem (850.3), and we know a=D a from
(273.30) and the assumption that a is discernible. For (ζ), assume, by
GEN, Ux& z=D a. Then it follows from the second conjunct that z=a, by
(273.19). This completes the subproof of (ξ).

Note that by (39.2), [λxyUx&y=D a]↓, since this is a core λ-expression (9.2): no
variable bound by the λ occurs in encoding position (9.1) in the matrix. Hence,
by Rule ∃I (101.2), then follows from (ξ) that:

∃RFunction1(R)

So thus far, we have shown:

D!a ` ∃RFunction1(R)

Hence, by ∃E:
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∃xD!x ` ∃RFunction1(R)

So, by the Deduction Theorem, ∃xD!x→∃RFunction1(R). But since ∃xD!x is a
theorem, ∃RFunction1(R). ./

(852.2) (Exercise)

(853.1) – (853.2) (Exercises)

(853.3) The proof starts out along the same lines as the proof in (852.1). By
(273.5), it is a theorem that there are discernible objects, i.e., ∃xD!x. So assume
a is such an object, i.e., D!a. Then, in the proof of (852.1), we derived that the
binary relation [λxyUx&y=D a] is a total unary function. This latter claim was
labeled (ξ) in the proof of (852.1), and so one of the first steps of that proof
was to establish the following derivation:

D!a ` Function1([λxy Ux& y=D a])

Hence, by RN:

(ϑ) �D!a ` �Function1([λxy Ux& y=D a])

Now independently we know, by applying GEN to the left-to-right direction of
theorem (180.1), we know ∀x(D!x→ �D!x). So as an instance we have D!a→
�D!a. Thus, by (63.10):

(ξ) D!a ` �D!a

So from (ξ) and (ϑ), it follows by (63.8) that:

(ζ) D!a ` �Function1([λxy Ux& y=D a])

But since the λ-expression [λxy Ux& y=D a] is significant, we can establish, by
now familiar reasoning, that:

(ω) �Function1([λxy Ux& y=D a]) ` ∃R�Function1(R)

So from (ζ) and (ω), it also follows by (63.8) that:

D!a ` ∃R�Function1(R)

Since a was arbitrary, it follows by ∃E that:

∃xD!x ` ∃R�Function1(R)

But it follows from this last fact and the fact that ∃xD!x is a theorem, by now
familiar reasoning, that ∃R�Function1(R). ./

(853.4) (Exercise)
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(854.1) We prove only the case for n = 1. By (217.1), there are contingently true
propositions. Assume p1 is such a proposition, so that we know p1 & ♦¬p1.483

Our proof strategy is as follows. First we derive our theorem from the assump-
tion p1 &♦¬p1; i.e., we show:

(A) p1 &♦¬p1 ` ∃R(Function(R) &♦¬Function(R))

Then we conclude, by an application of ∃E:

(B) ∃p(p&♦¬p) ` ∃R(Function(R) &♦¬Function(R))

Then by an applications of the Deduction Theorem, we conclude:

(C) ` ∃p(p&♦¬p)→ (∃R(Function(R) &♦¬Function(R)))

But since ∃p(p&♦¬p) is a theorem, we can conclude, by an application of (63.5),
that:

(D) ` ∃R(Function(R) &♦¬Function(R))

Since the inferences from (A) to (B), (B) to (C) and (C) to (D) are easy, it remains
only to show (A). So given our assumption p1 &♦¬p1, consider the relation f1:

[λxy p1 &Ux& & y =̇0] (f1)

To show ∃R(Function(R) &♦¬Function(R)), it suffices by &I and ∃I to show:

(E) Function(f1)

(F) ♦¬Function(f1)

(E) To show f1 is a total function, we have to show (848.1):

∀x∃!y[λxy p1 &Ux& y =̇0]xy

Given that the λ-expression is significant, β-Conversion, and a Rule of Substi-
tution, we have to show:

∀x∃!y(p1 &Ux& y =̇0)

By GEN, we have to show:

∃!y(p1 &Ux& y =̇0)

So pick our witness to be 0. Then by the definition of the uniqueness quantifier
and ∃I, we have to show both:

483We’ve noted on prior occasions why reasoning of the kind used in the remainder of this proof
is modally strict notwithstanding the appeal to an assumption that isn’t necessarily true. In this
particular case, the assumption plays a role in two places in the proof. In what follows, note that
(a) RN is correctly applied, and (b) the assumption is ultimately discharged in both places. See
again the discussion in Remark (70), Remark (218), and the proof of theorem (221.1).
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(ϑ) p1 &Ux& 0=̇0

(ζ) ∀z((p1 &Ux& z =̇0)→ z=0)

To show (ϑ), we note: p1 is true by hypothesis; Ux is a theorem, by (850.3); and
since N0 is a theorem (808), 0=̇0, by (840.3). To show (ζ), assume, by GEN,
p1 & Ux& z =̇0. Then it follows from the theorem N0 and the third conjunct
that z=0, by (840.2).

(F) To show f1 possibly fails to be a total function, we use the following proof
strategy. We’ll first prove the following conditional by modally strict means:

(G) ¬p1→¬Function(f1)

By Rule RM♦ (157.2), it then follows that:

(H) ♦¬p1→ ♦¬Function(f1)

But since ♦¬p1 is true by hypothesis, it follows that:

(I) ♦¬Function(f1)

Now since the reasoning in the steps from (G) to (H) and from (H) to (I) is
straightforward, it remains only to show (G). So assume ¬p1, for conditional
proof. (This assumption and the reasoning that follows is independent of our
earlier assumption that p1 & ♦¬p1.) Then ¬(p1 &Ux& y =̇0), for if a formula χ
is false, then no conjunction containing χ as a conjunct is true. Hence, by by
Rule

−→
βC (184.1.b):

¬[λxy p1 &Ux& y =̇0]xy

I.e., ¬f1xy. Since the free occurrences of y in the above don’t occur free in
any hypothesis, we may use GEN to infer ∀y¬f1xy. Hence, by quantifier nega-
tion, ¬∃yf1xy. A fortiori, ¬∃!yf1xy. So, existentially generalizing on x, we have
∃x¬∃!yf1xy. And again by quantifier negation, ¬∀x∃!yf1xy. So ¬Function(f1).
Thus, if we discharge our assumption ¬p1 by conditional proof, we have de-
rived¬p1→¬Function(f1). This conditional doesn’t depend on¬p1 and doesn’t
depend on our assumption p1 & ♦¬p1. Since it was derived by modally strict
means from no assumptions, we may apply RN and continue reasoning by way
of the remaining simple steps in the proof strategy outlined above. ./

(854.2) (Exercise)

(857)? (→) Assume f̂ (x1, . . . ,xn)=y. Then by definition of f̂ (x1, . . . ,xn) (856), it
follows that:

ızf̂ x1 . . .xnz = y
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So by the symmetry of identity and (145.2)?, f̂ x1 . . .xny.

(←) Assume f̂ x1 . . .xny. Now since f̂ is a total function, we know by defi-
nition (848.2) that f̂ relates x1, . . . ,xn to a unique object. So it follows that
∀z(f̂ x1 . . .xnz→ z=y). Thus, we have:

f̂ x1 . . .xny &∀z(f̂ x1 . . .xnz→ z=y)

Hence, by the right-to-left direction of Hintikka’s schema (142)?, it follows that
y = ıyf̂x1 . . .xny. Hence by definition (856), y = f̂ (x1, . . . ,xn). So f̂ (x1, . . . ,xn) = y,
by the symmetry of identity. ./

(858)? Without loss of generality, we prove only the case for n = 1. Assume
∀x∀y(f̂ xy ≡ ĥxy). Then by two applications of ∀E:

(ϑ) f̂ xy ≡ ĥxy

We may then conclude f̂ (x) = y ≡ ĥ(x) = y by the following biconditional rea-
soning:

f̂ (x)=y ≡ f̂ xy by (857)?
≡ ĥxy by (ϑ)
≡ ĥ(x)=y by (857)?

Since the variable y doesn’t occur free in the only assumption we’ve made to
derive f̂ (x)=y ≡ ĥ(x)=y, we may apply GEN to conclude:

∀y(f̂ (x)=y ≡ ĥ(x)=y)

Hence, by the right-to-left direction of (117.4) it follows that f̂ (x) = ĥ(x). By
the necessity of identity (125.2), it follows that �(f̂ (x) = ĥ(x)). Now since x
doesn’t occur free in the only assumption we’ve made to derive our last result,
it follows by GEN that ∀x�(f̂ (x)= ĥ(x)). Hence by the Barcan Formula (167.1),
it follows that �∀x(f̂ (x)= ĥ(x)). ./

(863.1) In what follows, we use w as an individual variable (not restricted to
possible worlds). By definition (862.1), we have to show:

∀x1∀x2([λxy Ux&D!y]x1x2→∃!w(D!w& [λxyzUx& y=D z]x1x2w))

To avoid clash of variables we prove this by ∀I instead of by GEN. So, where a
and b are arbitrary, assume [λxy Ux&D!y]ab, to show ∃!w(D!w& [λxyz Ux&
y=D z]abw). Since the λ-expression is significant, β-Conversion transforms our
assumption into:

(ϑ) Ua&D!b

Moreover, β-Conversion yields the modally strict theorem that:

[λxyzUx& y=D z]abw ≡ Ua& b=Dw



1356

So, to establish our conclusion, it suffices by a Rule of Substitution to show:
∃!w(D!w&Ua& b=Dw), i.e., we have to show:

∃w((D!w&Ua& b=Dw) &∀z((D!z&Ua& b=D z)→ z=w))

But we can prove this if we choose b as our witness. We need to show:

D!b&Ua& b=D b&∀z((D!z&Ua& b=D z)→ z=b)

D!b is known by (ϑ). We also know ∀xUx, by theorem (850.3). So Ua. More-
over, sinceD!b, it follows by (273.30) that b=D b. So it remains to show unique-
ness. By GEN, it suffices to show (D!z & Ua & b =D z) → z = b. So assume
D!z & Ua& b =D z. But the third conjunct implies b = z by (273.19), which in
turn yields z=b, by the symmetry of identity. ./

(863.2) By definition (743.1), we have to show:

∀x(Nx→∃!y(Ny & x =̇y))

So, by GEN, assume Nx. By definition of the uniqueness quantifier, we have to
show:

∃y((Ny & x =̇y) &∀z((Nz& x =̇z)→ z=y))

But we can prove this if we let x be our witness. For then we have to show:

Nx& x =̇x&∀z((Nz& x =̇z)→ z=x)

Now we have Nx by assumption. So we may apply (840.3) to conclude x =̇x.
It then remains to show uniqueness. Assume Nz & x =̇z. Then by (840.2), it
follows that x=z. So z=x by symmetry of identity. ./

(863.3) (Exercise)

(864) Theorem (818) is ∀n∃!mPnm. By expanding our restricted variables, this
becomes:

∀x(Nx→∃!y(Ny &Pxy))

Hence, by definition (743.1), P | :N→N. ./

(865.1) – (865.2) (Exercises)

(865.3) (Although this theorem is a special case of (865.2), we give an inde-
pendent proof.) Assume R | : p −→ G. Then by (862.2):

(ϑ) p→∃!y(Gy &Ry)

To show R�p | : p −→ G, we have to show, by (862.2):

p→∃!y(Gy &R�py)
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Since R�p is defined as [λyp&Ry] (828.3), which clearly exists, we have to show,
by β-Conversion and a Rule of Substitution:

(A) p→∃!y(Gy & p&Ry)

So assume p. Then by (ϑ), ∃!y(Gy&Ry). Suppose a is such an object, so that by
the definition of the uniqueness quantifier, we know:

(ξ) Ga&Ra&∀z(Gz&Rz→ z=a)

To show the consequent of (A), we choose a as our witness and show:

Ga& p&Ra&∀z(Gz& p&Rz→ z=a)

Since we already know Ga (ξ), p (by assumption), and Ra (ξ), it remains to
show uniqueness. So assume Gz& p&Rz. Then the first and third conjuncts
imply, by the third conjunct of (ξ), that z=a. ./

(867) We have to show:

(A) [λxy (Nx&Ny)→ x =̇y] | :N −→N

(B) ∀x∀y(Nx& [λxy (Nx&Ny)→ x =̇y]xy→Ny)

(A) By GEN, definition (743.1), β-Conversion, and a Rule of Substitution, we
have to show:

Nx→∃!y(Ny & ((Nx&Ny)→ x =̇y))

So assume the antecedent Nx. Then, we leave it as an exercise to show that x
is a witness to the consequent.

(B) (Exercise). ./

(868) We have to show:

(A) P | :N −→N

(B) ∀x∀y(Nx&Pxy→Ny)

(A) was established as theorem (864). For (B), assume by GEN that Nx&Pxy.
Then by (814.1), Ny. ./

(870.1) Assume R .∼. F −→ G. Then by definitions (866) and (743.1), we know:

(ϑ) ∀x(Fx→∃!y(Gy &Rxy))

(ξ) ∀x∀y(Fx&Rxy→ Gy)

To show FunctionalOn(R,F), we have to show, by (869):

∀x(Fx→∀y∀z(Rxy &Rxz→ y=z))
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So, by GEN, assume Fx. And again by GEN, assume Rxy and Rxz. Then,
by our three assumptions, it follows from (ξ) both that Gy and Gz. But our
assumption Fx, by (ϑ), implies that x bears R to a unique G-object. Hence,
y=z. ./

(870.2) (Exercise)

(870.3) (Although this theorem is a special case of (870.2), we give an inde-
pendent proof.) Assume R .∼. p −→ G. Then by definitions (866) and (862.2),
we know:

(ϑ) p→∃!y(Gy &Ry))

(ξ) ∀y(p&Ry→ Gy)

To show FunctionalOn(R,p), we have to show, by (869):

p→∀y∀z(Ry &Rz→ y=z))

So assume p. Since y and z don’t occur free in any assumptions, it suffices, by
GEN, to assume Ry and Rz and show y=z. Then, by our three assumptions, it
follows from (ξ) both that Gy and Gz. But our assumption p, by (ϑ), implies
that there is a unique object that is both G and R. Hence, y=z. ./

(875.1) – (875.5) (Exercises)

(875.6) (Although this theorem is a special case of (875.5), we give an inde-
pendent proof.) Assume R .∼. p −→ G. Then by (866.3), we know first that
R | : p −→ G, i.e., by (862.2):

(ϑ) p→∃!y(Gy &Ry)

and second that:

(ξ) ∀y(p&Ry→ Gy)

Now to show R�p : p −→ G, we have to show, by (875.3), that:

(A) p→∃!y(Gy &R�py)

(B) ∀y(p&R�py→ Gy)

(C) p ≡ ∃yR�py

(A) Assume p. Then by (ϑ), ∃!y(Gy &Ry). Hence ∃!y(Gy & p&Ry). But by the
definition of R�p (828.3) and β-Conversion, it is a modally strict theorem that
R�py ≡ p&Ry. Hence ∃!y(Gy &R�py), by a Rule of Substitution.

(B) By GEN, we show p&R�py → Gy. So assume both p and R�py. The latter,
by the definition of R�p as [λy p&Ry] (828.3), implies Ry a fortiori. Hence, by
(ξ), Gy.
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(C) By definition of R�p, β-Conversion and a Rule of Substitution, we need only
show p ≡ ∃y(p&Ry). (→) Assume p. Then by (ϑ), ∃!y(Gy &Ry). Suppose a is
such an object so that we know a fortiori from the definition of the uniqueness
quantifier that Ra. So p&Ra. Hence, ∃y(p&Ry). (←) Assume ∃y(p&Ry). Then
it follows a fortiori that p. ./

(875)/Exercise 13 (→) Assume R is a function on domain F, i.e., that ∃G(R :
F −→ G). Suppose P is a witness, so that we know R : F −→ P . Then by defini-
tion (874.1), it follows both that R .∼. F −→ P and HasDomain(R,F). So it remains
to show FunctionalOn(R,F). But this follows from R .∼. F −→ P by (870.1). (←)
Assume FunctionalOn(R,F) and HasDomain(R,F). It follows from these two as-
sumptions, by (869.1) and (872.1), respectively, that:

(ϑ) ∀x(Fx→∀y∀z(Rxy &Rxz→ y=z))

(ξ) ∀x(Fx ≡ ∃yRxy)

Now to show ∃G(R : F −→ G), we pick [λy∃xRxy] as our witness. Then by
(875.1), it suffices to show:

(A) ∀x(Fx→∃!y([λy∃xRxy]y &Rxy))

(B) ∀x∀y(Fx&Rxy→ [λy∃xRxy]y)

(C) ∀x(Fx ≡ ∃yRxy)

Since (C) follows by definition (872.1) from the assumption HasDomain(R,F),
it remains only to show (A) and (B).

(A) By GEN, we have to show Fx→ ∃!y([λy∃xRxy]y &Rxy). By β-Conversion
and a Rule of Substitution, it suffices to show Fx → ∃!y(∃xRxy & Rxy). So
assume Fx. Then by (ξ), we know ∃yRxy. So, suppose b is such an object, so
that we know Rxb. Now to show ∃!y(∃xRxy &Rxy), we have to show:

∃y(∃xRxy &Rxy &∀z(∃xRxz&Rxz→ z=y))

It suffices to show b is the witness. We already know Rxb, and it follows from
this that ∃xRxb. So it remains to show ∀z(∃xRxz& Rxz → z = y). By GEN, it
suffices to show ∃xRxz & Rxz → z = b. So assume ∃xRxz and Rxz. From the
latter and Rxb it follows from (ϑ) and our assumption Fx that z=b.

(B) By GEN, we have to show Fx&Rxy→ [λy∃xRxy]y. So assume Fx and Rxy.
But the latter implies ∃xRxy. So by β-Conversion, [λy ∃xRxy]y. ./

(876.1) By (874.2), we have to show:

(A) [λxyzUx& y=D z]
.∼. [λxy Ux&D!y] −→D!

(B) HasDomain([λxyzUx& y=D z], [λxy Ux&D!y])
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(A) By (866.2), we have to show both:

[λxyzUx& y=D z] | : [λxy Ux&D!y] −→D!

∀x∀y∀z([λx1y1 Ux1 &D!y1]xy & [λx1y1z1 Ux1 & y1 =D z1]xyz→D!z)

But the first was established as (863.1). For the second, we have to show, by
β-Conversion and a Rule of Substitution:

∀x∀y∀z((Ux&D!y &Ux& y=D z)→D!z)

By GEN, and simplifying, assume: Ux, D!y, and y =D z. Then from the latter,
by (273.18) that D!z.

(B) By (872.3), we have to show:

∀x∀y([λx1y1 Ux1 &D!y1]xy ≡ ∃z([λx1y1z1 Ux1 & y1 =D z1]xyz))

By β-Conversion and a Rule of Subsitution, we have to show:

∀x∀y((Ux&D!y) ≡ ∃z(Ux& y=D z))

By GEN, we have to show:

(ϑ) (Ux&D!y) ≡ ∃z(Ux& y=D z)

(→) Assume Ux&D!y. Then choose our witness to the right-side of (ϑ) to be y.
So by ∃I, we have to show Ux& y =D y. But Ux is true by the first conjunct of
our assumption, and y=D y follows from the second conjunct by (273.30).

(←) Assume ∃z(Ux& y=D z). Suppose that c is such an object, so that we know
Ux& y=D c. Then it remains only to show D!y. But this follows from y=D c, by
(273.18). ./

(876.2) By (874.1), we have to show:

(A) =̇ .∼. N −→N

(B) HasDomain(=̇,N)

(A) By (866.1), we have to show:

=̇ | :N −→N

∀x∀y(Nx& x =̇y→Ny)

But the first is just (863.2). For the second, assume Nx and x =̇y. By the latter
and theorem (839.2), it follows that Ny.

(B) By (872.1), we have to show:

∀x(Nx ≡ ∃y(x =̇y))
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and by GEN, that Nx ≡ ∃y(x =̇y). (→) Assume Nx. Then by (840.3), x =̇x.
Hence ∃y(x =̇y). (←) Assume ∃y(x =̇y). Suppose a is such an object, so that we
know x =̇a. But by theorem (839.2), Nx. ./

(876.3) By definition (849), U 0 is [λ p0], i.e., by (111.1), p0, where p0 is the
proposition ∀x(E!x→ E!x), by a convention in (208). So by (875.3), we have to
show:

(A) p0→∃!y([λnP0n]y & [λnn =̇1]y)

(B) ∀y(p0 & [λnn =̇1]y→ [λnP0n]y)

(C) p0 ≡ ∃y[λnn =̇1]y

(A) By the first axiom of propositional logic (38.1), it suffices to show the con-
sequent. By elimination of the restricted variables, β-Conversion, and a Rule
of Substitution, we have to show:

∃!y(Ny &P0y &Ny & y =̇1)

By simplifying (i.e., removing the otiose third conjunct), the definition of the
uniqueness quantifier requires us to show:

∃y(Ny &P0y & y =̇1 &∀z((Nz&P0z& z =̇1)→ z=y)

But this is easy to show if we let One be our witness. For we know N1 (827.1),
and P01 (826.1). The former implies 1=̇1, by (840.3). So it remains to show
uniqueness. By now familiar reasoning, assume Nz & P0z & z =̇1. Then the
third conjunct yields z=1, by (840.1).

(B) Assume p0 and [λn n =̇1]y, i.e., Ny & y =̇1. But by (840.1), y =̇1 implies
y = 1. Now we also know P01, by (826.1). Since N1 (827.1), it follows by
β-Conversion that [λnP0n]1, i.e., [λnP0n]y.

(C) By β-Conversion, a Rule of Substitution, and eliminating the restricted
variables, we have to show:

p0 ≡ ∃y(Ny & y =̇1)

(→) By propositional logic, it suffices to show ∃y(Ny & y =̇1). But this is easy
if we let One be our witness, since N1 is a theorem (827.1), and hence, so is
1=̇1 (840.3). So by &I and ∃I, ∃y(Ny&y =̇1). (←) p0 is a theorem. So ∃y(Ny&
y =̇1)→ p0. ./

(877.1) Assume:

(ϑ) R : F −→ G

(ζ) ∀x(Fx ≡Hx)
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To show R :H −→ G, it suffices to show, by (875.1):

(A) ∀x(Hx→∃!y(Gy &Rxy))

(B) ∀x∀y(Hx&Rxy→ Gy)

(C) HasDomain(R,H)

(A) By GEN, we need only show the embedded conditional. So assume Hx.
Then Fx, by (ζ). Since it follows from (ϑ) by (875.1) a fortiori that R | : F −→ G,
i.e., that ∀x(Fx→∃!y(Gy &Rxy)), we can conclude ∃!y(Gy &Rxy).

(B) By two applications of GEN, we need only show the embedded conditional.
So assume Hx and Rxy. But from Hx, it follows that Fx, by (ζ). Yet (ϑ) implies
by (875.1) a fortiori that ∀x∀y(Fx&Rxy → Gy). Since we have Fx and Rxy, it
follows that Gy.

(C) Now (ϑ) implies by (875.1) a fortiori that ∀x(Fx ≡ ∃yRxy). But from this
and (ζ) it follows that ∀x(Hx ≡ ∃yRxy). Hence HasDomain(R,H). ./

(877.2) (Exercise)

(877.3) Assume:

(ϑ) R : p −→ G

(ζ) p ≡ q

To show R : p −→ G, it suffices to show, by (875.1):

(A) q→∃!y(Gy &Ry)

(B) ∀y(q&Ry→ Gy)

(C) HasDomain(R,q)

(A) Assume q. Then p, by (ζ). Since it follows from (ϑ) by (875.1) a fortiori that
R | : p −→ G, i.e., that p→∃!y(Gy &Ry)), we can conclude ∃!y(Gy &Ry).

(B) By GEN, we show the embedded conditional. So assume q and Ry. But from
q, it follows that p, by (ζ). Yet (ϑ) implies by (875.1) a fortiori that ∀y(p&Ry→
Gy). Since we have p and Ry, it follows that Gy.

(C) Now (ϑ) implies by (875.1) a fortiori that p ≡ ∃yRy. But from this and (ζ) it
follows that q ≡ ∃yRy. Hence HasDomain(R,q). ./

(878.1) Assume:

(ϑ) R : F −→ G

(ζ) ∀x(Gx→Hx)
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To show R : F −→H , we have to show, by (875.1):

(A) ∀x(Fx→∃!y(Hy &Rxy))

(B) ∀x∀y(Fx&Rxy→Hy)

(C) ∀x(Fx ≡ ∃yRxy)

(A) By GEN, we show the embedded conditional. So assume Fx. Note that it
follows from (ϑ) by (875.1) a fortiori that ∀x(Fx→∃!y(Gy&Rxy)). This and our
assumption Fx imply ∃!y(Gy & Rxy), i.e., by the definition of the uniqueness
quantifier:

∃y(Gy &Rxy &∀z(Gz&Rxz→ z=y))

Let a be such an object, so that we know:

(ξ) Ga&Rxa&∀z(Gz&Rxz→ z=a)

Now we have to show, by definition of the uniqueness quantifier:

∃y(Hy &Rxy &∀z(Hz&Rxz→ z=y))

But we can show this if we choose a as our witness; by &I and ∃I, we have
to show: Ha, Rxa, and ∀z(Hz & Rxz → z = a). From the first conjunct of (ξ)
and (ζ), it follows that Ha. Rxa is also known – it’s the second conjunct of
(ξ). So, finally, assume Hz and Rxz (to show z=a). Then since we know Fx by
assumption, we have:

Fx&Rxz

But from (ϑ) it follows a fortiori by (875.1) that ∀x∀y(Fx&Rxy → Gy). Hence
from Fx& Rxz it follows that Gz. But from this and Rxz, it follows from the
third conjunct of (ξ) that z=a.

(B) By GEN, we show the embedded conditional. So assume Fx and Rxy. Now
we just established that we know ∀x∀y(Fx&Rxy→ Gy). Hence Gy. So by (ζ),
Hy.

(C) This is already known, since it follows from (ϑ) by (875.1) a fortiori. ./

(878.2) – (878.3) (Exercises)

(879.1) We show the first conjunct P�N : N −→ N, and then the second con-
junct HasRange(P�N,N+).

For the first conjunct, we have to show, by definition (874.1):

(A) P�N
.∼. N −→N

(B) ∀x(Nx ≡ ∃yP�Nxy)
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(A) By definition (866.1), we have to show both:

P�N | :N −→N

∀x∀y(Nx&P�Nxy→Ny)

For the first, we can’t just cite (864), since that only tells us that P | :N −→N.
But from this fact and (865.1), it follows that P�N | :N −→N. For the second,
assume, by GEN, Nx and P�Nxy. The latter, by definition of P�N (828.1) and
β-Conversion, implies both Nx and Pxy. So by (814.1), Ny.

(B) By GEN, we have to show Nx ≡ ∃yP�Nxy:

(→) Assume Nx. Then by (818), it follows a fortiori that ∃yPxy. Suppose a is
such an object, so that we know Pxa. Then we know:

Nx&Pxa

Hence, by β-Conversion,

[λxyNx&Pxy]xa

So by definition (828.1), P�Nxa. Hence, ∃yP�Nxy.

(←) Assume ∃yP�Nxy. Suppose a is such an object, so that we know P�Nxa.
Then by definition of P�N (828.1) and β-Conversion, it follows a fortiori
that Nx.

Finally, we show the second conjunct HasRange(P�N,N+). By definition (872),
we have to show:

(ϑ) ∀y(N+y ≡ ∃xP�Nxy)

So by GEN, we have to show N+y ≡ ∃xP�Nxy.

(→) Assume N+y. Then by (843), it follows a fortiori that ∃x(Nx & Pxy).
Let a be such an object, so that we know Na & Pay. It follows by β-
Conversion that [λxyNx&Pxy]ay. So by definition (828.1), P�Nay, and
by ∃I, ∃xP�Nxy.

(←) Assume ∃xP�Nxy. Suppose a is such an object, so that we know P�Nay.
By definition (828.1) and β-Conversion, this implies both Na and Pay.
Now to showN+y, we have to show y > 0, i.e., 0 < y. By (832.1), it suffices
to show P

∗0y. But this follows from facts we already have, namely, P+0a
(i.e., Na) and Pay, by (795.3). ./

(880.1) We begin by first establishing a preliminary fact. By theorem (850.3),
we know that ∀xUx is a theorem. So Uy is a theorem. Consequently, if Rxy,
then Uy&Rxy, and if Uy&Rxy, then Rxy. Hence, by definition of ≡ and GEN,
the following quantified biconditional is a modally strict theorem:
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(ϑ) ∀x∀y(Rxy ≡ (Uy &Rxy))

(→) Now suppose Function1(R). Then by definition (848.1), we know:

(ζ) ∀x∃!yRxy

Now by (875.1), we have to show:

(A) ∀x(Ux→∃!y(Uy &Rxy))

(B) ∀x∀y(Ux&Rxy→Uy)

(C) ∀x(Ux ≡ ∃yRxy)

(A) Note that from from (ζ) and (ϑ), it follows by a Rule of Substitution that
∀x∃!y(Uy&Rxy). Moreover, by quantifier law (99.12), we know ∀αϕ→∀α(ψ→
ϕ). Hence ∀x(Ux→∃!y(Uy &Rxy)).

(B) Assume Ux&Rxy. But Rxy alone implies Uy, by (ϑ).

(C) By GEN, we have to show Ux ≡ ∃yRxy. (→) It follows from (ζ) a fortiori
that ∃yRxy. Hence Ux→∃yRxy. (←) We know Ux is a theorem (850.3). Hence
∃yRxy→Ux. ./

(←) Assume R : U −→ U . Then by definition (866.1), it follows a fortiori that
R | :U −→U , which by (743.1), means:

(ξ) ∀x(Ux→∃!y(Uy &Rxy))

Now we have to show ∀x∃!yRxy, so by GEN, we have to show ∃!yRxy. Now
by (ξ), we know Ux → ∃!y(Uy & Rxy), and by theorem (850.3), we know Ux.
Hence ∃!y(Uy&Rxy). But by the modally-strict (ϑ) and a Rule of Substitution,
it follows that ∃!yRxy. ./

(880.2) (Exercise)

(880.3) (Although this theorem is a special case of (880.2), we give an indepen-
dent proof.) We begin with a preliminary fact. Since we know ∀xUx (850.3),
it follows that Uy and so we can reason as follows: if Ry, then Uy & Ry, and
if Uy & Ry, then Ry. Hence, by the definition of ≡ and GEN, we know the
following is a modally strict theorem:

(ϑ) ∀y(Ry ≡ (Uy &Ry))

Now we argue both directions of our theorem.

(→) Assume Function0(R), i.e., R is a nullary total function. By definition
(848.3), this implies ∃!yRy. Now by (875.3), it suffices to show:

(A) U 0→∃!y(Uy &Ry)

(B) ∀y(U 0 &Ry→Uy)
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(C) U 0 ≡ ∃yRy

(A) We know ∃!yRy, and so by (ϑ) and a Rule of Substitution, ∃!y(Uy & Ry).
Hence U 0→∃!y(Uy &Ry).

(B) Assume U 0 and Ry. But Ry alone implies Uy, by (ϑ).

(C) We know U 0 is true (850.2) and it follows a fortiori from ∃!yRy that ∃yRy.
Hence U 0 ≡ ∃yRy.

(←) Assume R : U 0 −→ U . Then by summary fact (875.3), it follows a fortiori
that:

U 0→∃!y(Uy &Ry)

Now by (848.3), we have to show ∃!yRy. But U 0 is true (850.2). So ∃!y(Uy &
Ry). But then by the modally strict fact (ϑ) and a Rule of Substitution, ∃!yRy.
./

(880.4) Assume Function0(R). Then by (880.3), we know that R : U 0 −→ U .
Hence, by definition (874.3), it follows a fortiori that HasDomain(R,U 0). So by
definition (872.5):

(ϑ) U 0 ≡ ∃yRy

Now we have to show ∀p(p ≡ HasDomain(R,p)). So by GEN, we show p ≡
HasDomain(R,p). (→) Assume p. Then since both p is true (by hypothesis)
and U 0 is true (850.2), p ≡ U 0. But from this and (ϑ), it follows that p ≡ ∃yRy.
Hence by definition (872.5), HasDomain(R,p). (←) Assume HasDomain(R,p).
Then by definition (872.5), p ≡ ∃yRy. But from this and (ϑ) it follows that
U 0 ≡ p. Since U 0 is true (850.2), it follows that p. ./

(882.1) Assume R : F −−−→
onto

G. Then by (881.4), we know both:

(ϑ) R : F −→ G

(ξ) ∀y(Gy→∃xRxy)

To show HasRange(R,G), we have to show, by (872.2) ∀y(Gy ≡ ∃xRxy). Given
(ξ), it remains only to show ∀y(∃xRxy → Gy). So, by GEN, assume ∃xRxy.
Let b be such an object, so that we know Rby. Then by ∃I, ∃yRby. But from
(ϑ) and its definition (874.1), we know that HasDomain(R,F), i.e., by (872.1),
∀x(Fx ≡ ∃yRxy). Hence Fb. But from (ϑ) and the summary fact (875.1), we
know a fortiori that ∀x(Fx&Rxy→ Gy). Since we’ve established Fb and know
Rby by assumption, it follows that Gy. ./

(882.2) (Exercise)

(882.3) (Although this theorem is a special case of (882.2), we give an inde-
pendent proof.) Assume R : p −−−→

onto
G. Then by definition (881.6), we know:
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(ϑ) R : p −→ G

(ξ) ∀y(Gy→ Ry)

To show HasRange(R,G), we have to show, by (872.6), ∀y(Gy ≡ Ry). Given (ξ),
it remains to show ∀y(Ry→ Gy). So assume Ry. Then ∃yRy. But from (ϑ) and
its definition (874.3), we know that HasDomain(R,p), i.e., by (872.5), p ≡ ∃yRy.
Hence p. But from (ϑ) and the summary fact (875.1), we know a fortiori that
∀y(p&Ry→ Gy). Since we established p and know Ry by assumption, Gy. ./

(885.1) (→) Assume �-function1(R). So by definition (884.1), ∃F∃G(R : F −→
G&¬Function1(R)). Let P and Q be such properties, so that we know both:

(ϑ) R : P −→Q

(ζ) ¬Function1(R)

Given (ϑ), it remains only show ¬∀x(P x ≡ Ux), by &I and ∃I. For reductio,
assume ∀x(P x ≡ Ux). From this assumption, (ϑ), and (877.1), it follows that
R : U −→ Q. Moreover, since we know ∀xUx, we also know that ∀x(Qx→Ux).
Hence by (878.1), R : U −→ U . So by (880.1), Function1(R), which contra-
dicts (ζ).

(←) Assume ∃F∃G(R : F −→ G & ¬∀x(Fx ≡ Ux)). Suppose P and Q are such
properties, so that we know both:

(ξ) R : P −→Q

(ω) ¬∀x(P x ≡ Ux)

To show �-function1(R), we have to show, by (884):

∃F∃G(R : F −→ G&¬Function1(R))

If we pick our witnesses to be P and Q, it remains only to show ¬Function1(R).
Assume, for reductio, Function1(R). Then by (880.1), R : U −→ U . This implies,
by (874.1), HasDomain(R,U ), i.e., by (872.1):

(A) ∀x(Ux ≡ ∃yRxy)

But from (ξ), it also follows by (874.1) that HasDomain(R,P ), i.e., by (872.1):

(B) ∀x(P x ≡ ∃yRxy)

From (A) and (B) it follows that ∀x(P x ≡ Ux), which contradicts (ω). ./

(885.2) (Exercise)

(885.3) (Although this theorem is a special case of theorem (885.2), we give an
independent proof.) (→) Suppose �-function0(R). Then by definition (884.3):
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∃p∃G(R : p −→ G&¬Function0(R))

Suppose q1 and P are such a proposition and property, so that we know:

(ϑ) R : q1 −→ P &¬Function0(R)

Given the first conjunct of (ϑ), it remains only to show q1 . U 0, by &I and ∃I.
For reductio, suppose q1 ≡ U 0. Then from this assumption, the first conjunct
of (ϑ) and (877.3), it follows that R : U 0 −→ P . Now since we know ∀xUx,
we also know ∀x(P x → Ux). Hence by (878.3), R : U 0 −→ U . So by (880.3),
Function0(R), which contradicts the second conjunct of (ϑ).

(←) Suppose ∃p∃G(R : p −→ G& p . U 0). Let q1 and P be such a proposition
and property, so that we know:

(ξ) R : q1 −→ P & q1 . U 0

By the definition of a restricted function (884.3), it remains only to show that
R is not a total function, i.e., by (848.3), ¬∃!yRy. From the second conjunct of
(ξ) and the truth of U 0 (850.2), we know ¬q1. Separately, from the first con-
junct of (ξ), it follows from (874.3) that HasDomain(R,q1). Hence by definition
(872.5), it follows that ¬∃yRy. But if nothing exemplifies R, nothing uniquely
exemplifies R, i.e., ¬∃!yRy. ./

(885.4) (→) Assume �-function0(R). Then by (885.3), ∃p∃G(R : p −→ G& p .
U 0). Let q1 and P be such a proposition and property, so that we know R :
q1 −→ P and q1 . U 0. Since q1 is not equivalent to the known truth U 0 (850.2),
it follows that ¬q1. Since R : q1 −→ P implies R has q1 as a domain (874.3),
it follows by definition of HasDomain(R,q1) (872.5) that q1 ≡ ∃yRy. Hence
¬∃yRy.

(←) Assume ¬∃yRy. Let p be any false proposition, say p0; and let G be any
property whatsoever. Then if we can show both:

(A) R : p −→ G

(B) p . U 0

then by &I and ∃I, it follows that ∃p∃G(R : p −→ G& p . U 0), which by (885.3)
establishes that �-function0(R).

(A) By (875.3), we have to show:

(i) p→∃y(Gy &Ry)

(ii) ∀y(p&Ry→ Gy)

(iii) p ≡ ∃yRy
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(i) Since we know ¬p by hypothesis, it follows by failure of the antecedent that
p→∃y(Gy &Ry).

(ii) Since we know ¬p by hypothesis, it follows that p & Ry → Gy, again by
failure of the antecedent. So by GEN, ∀y(p&Ry→ Gy).

(iii) We know both ¬p and ¬∃yRy by hypothesis. So p and ∃yRy have the same
truth value, i.e., p ≡ ∃yRy.

(B) We know both ¬p by hypothesis and U 0 by theorem (850.2). Hence p and
U 0 have different truth values, i.e., p . U 0. ./

(886.1) Let R be the relation:

[λxy D!x& y =̇0]

To show �-function(R), it suffices to show, by (885.2), that:

∃F∃G(R : F −→ G & ¬∀x(Fx ≡ Ux))

If we choose F to be D! and G to be N, then by &I and ∃I, it suffices to show:

(A) R :D! −→N

(B) ¬∀x(D!x ≡ Ux)

(A) By (875.1), we have to show:

(i) ∀x(D!x→∃!y(Ny &Rxy))

(ii) ∀x∀y(D!x&Rxy→Ny)

(iii) ∀x(D!x ≡ ∃yRxy)

(i) By GEN, we show the embedded conditional. So assume D!x. Then we pick
Zero to be our witness. By the definition of the uniqueness quantifier and ∃I,
we have to show:

N0 &Rx0 &∀z(Nz&Rxz→ z=0)

But N0 is a theorem, and implies 0=̇0, by (840.3). Hence, conjoining some
facts we have established, we obtain:

D!x& 0=̇0

But this is all we need to show Rx0, by β-Conversion and definition of R. It re-
mains therefore to show ∀z(Nz&Rxz→ z=0). By GEN, we show the embedded
conditional. So assume Nz&Rxz. The second conjunct implies, by definition
of R and β-Conversion, that D!x& z =̇0. But then z =̇0 implies z=0, by (840.1).

(ii) By two applications of GEN, we need only show the embedded conditional.
So assume D!x and Rxy. Then by the latter, it follows from the definition of R
and β-Conversion that:
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D!x& y =̇0

The second conjunct implies y=0, by now familiar reasoning. So from the fact
that N0, it follows that Ny.

(iii) By GEN, we have to show D!x ≡ ∃yRxy:

(→) Assume D!x. Independently, we know N0 and consequently that 0=̇0.
So, we have established D!x& 0=̇0. So by β-Conversion and definition of
R, Rx0. Hence, ∃yRxy.

(←) Assume ∃yRxy. Let a be the witness, so that we know Rxa. Then by
definition of R and β-Conversion, it follows a fortiori that D!x.

(B) Since there are abstract objects, let b be one, so that we know A!b. Hence, by
(222.3) ¬D!b. But we know Ub, by (850.3). So ¬(D!b ≡ Ub). Hence, ∃x¬(D!x ≡
Ux), i.e., ¬∀x(D!x ≡ Ux). ./

(886.2) We prove this for the case n ≥ 1, and prove the case n = 0 in (886.3).
Let R be the relation:

[λx1 . . .xny D!x1 & . . . &D!xn & y =̇0]

To show �-function(R), it suffices to show, by (885.2), that:

∃Sn∃G(R : Sn −→ G & ¬∀x1 . . .∀xn(Snx1 . . .xn ≡ U nx1 . . .xn))

If we choose Sn to be D!×n and G to beN, then by &I and ∃I, it suffices to show:

(A) R :D!×n −→N

(B) ¬∀x1 . . .∀xn(D!×nx1 . . .xn ≡ U nx1 . . .xn)

(A) By (875.2), we have to show:

(i) ∀x1 . . .∀xn(D!×nx1 . . .xn→∃!y(Ny &Rx1 . . .xny))

(ii) ∀x1 . . .∀xn∀y(D!×nx1 . . .xn &Rx1 . . .xny→Ny)

(iii) ∀x1 . . .∀xn(D!×nx1 . . .xn ≡ ∃yRx1 . . .xny)

(i) By n applications of GEN, we show only the embedded conditional. Assume
D!×nx1 . . .xn. Then we pick Zero to be our witness. By the definition of the
uniqueness quantifier and ∃I, we have to show:

N0 &Rx1 . . .xn0 &∀z(Nz&Rx1 . . .xnz→ z=0)

But N0 is a theorem, and implies 0=̇0, by (840.3). Now our assumption
D!×nx1 . . .xn implies, by definition (883.2) and β-Conversion:

D!x1 & . . . &D!xn
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Hence, conjoining some facts we have established, we obtain:

D!x1 & . . . &D!xn & 0=̇0

But this is all we need to show Rx1 . . .xn0, by β-Conversion and definition of
R. It remains therefore to show ∀z(Nz & Rx1 . . .xnz → z = 0) and, by GEN,
the embedded conditional. So assume Nz & Rx1 . . .xnz. The second conjunct
implies, by definition of R and β-Conversion, that D!x1 & . . . &D!xn&z =̇0. But
then the last conjunct implies z=0, by (840.1).

(ii) By GEN, we show the embedded conditional. Assume D!×nx1 . . .xn and
Rx1 . . .xny. Then by the latter, it follows from the definition of R and β-Conver-
sion that:

D!x1 & . . . &D!xn & y =̇0

The last conjunct implies y = 0, by now familiar reasoning. So from the fact
that N0, it follows that Ny.

(iii) By GEN, we have to show:

D!×nx1 . . .xn ≡ ∃yRx1 . . .xny

(→) AssumeD!×nx1 . . .xn. Then it follows by definition (883.2) and β-Conversion
thatD!x1& . . .&D!xn. Independently, we knowN0 and consequently that 0=̇0.
So, conjoining some things we know:

D!x1 & . . . &D!xn & 0=̇0

So by β-Conversion and definition of R, Rx1 . . .xn0. Hence, ∃yRx1 . . .xny.
(←) Assume ∃yRx1 . . .xny. Let a be the witness, so that we know Rx1 . . .xna.

Then by definition of R and β-Conversion, it follows a fortiori that D!x1 & . . . &
D!xn. So by definition (883.2) and β-Conversion, D!×n!x1 . . .xn.

(B) Since there are abstract objects, let a be one. Then we know A!a& . . . &A!a.
Hence, by (222.3) ¬D!a & . . . & ¬D!a. A fortiori, ¬(D!a & . . . & D!a), i.e., by
β-Conversion and definition (883.2), ¬(D!×na . . .a). But we know U na . . .a, by
(850.3) So:

¬(D!×na . . .a ≡ U na . . .a)

Hence,

∃x1 . . .∃xn¬(D!×nx1 . . .xn ≡ U nx1 . . .xn)

I.e.,

¬∀x1 . . .∀xn(D!×nx1 . . .xn ≡ U nx1 . . .xn) ./
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(886.3) Let R be any unexemplified property. Then by (885.4), �-function0(R).
./

(887.1) – (887.4) (Exercises)

(888.1) Assume �-function0(R). Then by (885.3), ∃p∃G(R : p −→ G& p . U 0).
Let q1 and P be such a proposition and property, so that we know:

(ϑ) R : q1 −→ P & q1 . U 0

By GEN, we have to show HasDomain(R,p) ≡ ¬p. (→) Assume HasDomain(R,p).
Then by definition (872.5), p ≡ ∃yRy. But by (885.4), ¬∃yRy. Hence ¬p. (←)
Assume ¬p. But we know ¬q1, since the second conjunct of (ϑ) asserts that
q1 fails to be equivalent to the truth U 0. So p ≡ q1. From this fact and the
first conjunct of (ϑ), it follows by (877.3) that R : p −→ P . Hence, by definition
(874.3), HasDomain(R,p). ./

(888.2) Assume �-function0(R). Then by (885.3), ∃p∃G(R : p −→ G& p . U 0).
Let q1 and P be such a proposition and property, so that we know:

(ϑ) R : q1 −→ P & q1 . U 0

By GEN, we have to show HasRange(R,H) ≡ ¬∃yHy.

(→) Assume HasRange(R,H), i.e., by definition (872.6), ∀y(Hy ≡ Ry). But the
fact that R is a nullary restricted function implies ¬∃yRy, by theorem (885.4).
Hence ¬∃yHy.

(←) Assume ¬∃yHy. To show HasRange(R,H), we have to show, by GEN, Hy ≡
Ry:

(→) By our assumption ¬∃yHy, we know ∀y¬Hy. Hence ¬Hy. So Hy→ Ry,
by failure of the antecedent.

(←) Since R is a nullary restricted function, we know ¬∃yRy, by theorem
(885.4). So ∀y¬Ry and, hence, ¬Ry. So by failure of the antecedent,
Ry→Hy. ./

(890) (Exercise)

(892) Assume f is any n-ary function such that ∃yfx1 . . .xny. Now by (890), we
know that f is either total or restricted. If f is total, then by (848.2), it follows
immediately that ∃!yfx1 . . .xny. If f is a nullary restricted function, then the
result follows immediately by failure of the antecedent. If f is a restricted
function with n ≥ 1, then by (889), ∃Sn∃G(f : Sn −→ G). Suppose An and Q are
such a relation and property, so that we know f : An −→ Q. Hence, by (875.2),
it follows a fortiori that:

(ϑ1) ∀x1 . . .∀xn(Anx1 . . .xn→∃!y(Qy & fx1 . . .xny))
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(ϑ2) ∀x1 . . .∀xn∀y(Anx1 . . .xn & fx1 . . .xny→Qy)

(ϑ3) ∀x1 . . .∀xn(Anx1 . . .xn ≡ ∃yfx1 . . .xny)

Our assumption ∃yfx1 . . .xny implies Anx1 . . .xn by (ϑ3). From this and (ϑ1), it
follows that ∃!y(Qy & fx1 . . .xny)), i.e.,

∃y(Qy & fx1 . . .xny &∀z(Qz& fx1 . . .xnz→ z=y))

Suppose a is such an object, so that we know:

(ζ) Qa& fx1 . . .xna&∀z(Qz& fx1 . . .xnz→ z=a)

Since the second conjunct is fx1 . . .xna, it remains only to show ∀z(fx1 . . .xnz→
z=a), since from the conjunction of these two, it follows by ∃I and the defini-
tion of the uniqueness quantifier that ∃!yfx1 . . .xny. So assume fx1 . . .xnz. Then
from the previously established fact that Anx1 . . .xn, it follows from (ϑ2) that
Qz. But then Qz and fx1 . . .xnz imply, by the third conjunct of (ζ) that z=a. ./

(894.2) (Exercise)

(895) By GEN, it suffices to show Opn(R)→ �Opn(R). So assume Opn(R). Then,
by (894.1), Rigid(R) and R : N×n −→ N. By now familiar modal principles, it
suffices to show both (a) �Rigid(R) and (b) �(R :N×n −→N).

(a) The definition of Rigid(R) in (571.1) tells us that our assumption Rigid(R)
implies both R↓ and �∀x1 . . .∀xn(Rnx1 . . .xn → �Rnx1 . . .xn). But the former is
necessary, since it is the modal closure of an instance of axiom (39.2), and the
latter is necessary by the 4 schema. Hence �R↓ and ��∀x1 . . .∀xn(Rnx1 . . .xn→
�Rnx1 . . .xn), it follows by standard modal reasoning and definition (571.1) that
�Rigid(R).

(b) From our assumption that R :N×n −→N, it follows by definition (862.1):

(ϑ) ∀x1 . . .∀xn(N×nx1 . . .xn→∃!y(Ny &Rx1 . . .xny))

But suppose this isn’t necessary, for reductio. Then:

¬�∀x1 . . .∀xn(N×nx1 . . .xn→∃!y(Ny &Rx1 . . .xny))

i.e.,

♦∃x1 . . .∃xn(N×nx1 . . .xn &¬∃!y(Ny &Rx1 . . .xny))

So by n applications of CBF♦:

∃x1 . . .∃xn♦(N×nx1 . . .xn &¬∃!y(Ny &Rx1 . . .xny))

from which it follows that:

∃x1 . . .∃xn(♦N×nx1 . . .xn &♦¬∃!y(Ny &Rx1 . . .xny)))
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Let a1, . . . , an be arbitrary such objects, so that we know:

(ζ) ♦N×na1 . . . an &♦¬∃!y(Ny &Ra1 . . . any)

Our strategy now is to show that �∃!y(Ny &Ra1 . . . any)which contradicts the
2nd conjunct of (ζ). Now the first conjunct of (ζ) implies N×na1 . . . an, by n
applications of the rigidity of N (809.2) and (172.1). (As an exercise, prove
this by induction.) But from this and (ϑ):

(ξ) ∃!y(Ny &Ra1 . . . any)

Note that the following is a modal fact, for arbitrary ϕ (174.6):

�∀α(ϕ→ �ϕ)→ (∃!αϕ→ �∃!αϕ)

So let α be y and let ϕ be Ny &Ra1 . . . any. So we know, as an instance of our
modal fact that:

�∀y((Ny &Ra1 . . . any)→ �(Ny &Ra1 . . . any))→
(∃!y(Ny &Ra1 . . . any)→ �∃!y(Ny &Ra1 . . . any))

Since we already have the antecedent of the consequent as (ξ), and our goal
is to show the consequent of the consequent, it remains only to show the an-
tecedent, i.e.,

�∀y((Ny &Ra1 . . . any)→ �(Ny &Ra1 . . . any))

But by RN and GEN, we need only show, by a modally strict proof, that:

(Ny &Ra1 . . . any)→ �(Ny &Ra1 . . . any)

So assume Ny &Ra1 . . . any. Then by the rigidity of N, it follows from the 1st
conjunct that �Ny. And by the rigidity of R, which we established in (a) above,
it follows from the 2nd conjunct that �Ra1 . . . any. Hence �(Ny & Ra1 . . . any).
Contradiction. ./

(896) (Exercise)

(897.2) Fix n and m. By definition, we have to show:

(A) Rigid(Cn′m )

(B) Cn′m :N×n −→N

(A) Clearly Cn′m exists by our theory of definitions and the fact that its definiens
is a core λ-expression (9.2), i.e., the λ doesn’t bind any variable that occurs in
encoding position (9.1) in the matrix. So it remains so show:

�∀x1 . . .xn∀y(Cn′mx1 . . .xny→ �Cn
′

mx1 . . .xny)
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By GEN and RN, it suffices to show Cn′mx1 . . .xny → �Cn
′

mx1 . . .xny. So assume
Cn′x1 . . .xny. Then by definition of Cn′m and λ-Conversion, Nx1 & . . .Nxn & y=̇m.
But Nxi implies �Nxi (1 ≤ i ≤ n), by (809.1). And we already know that =̇ is
rigid (840.6). So�y=̇m. Conjoining our results, we have�(Nx1& . . .&Nxn&y=̇m).
So by λ-Conversion:

�[λx1 . . .xnyNx1 & . . .Nxn & y=̇n]x1 . . .xny

i.e., �Cn′mx1 . . .xny, by Rule =df I.

(B) (exercise). ./

(898.4) (Exercise)

(899.1) We prove this by cases. Case 1 (n ≥ 1). Assume Opn(R), so that by
(894.1) we know R :N×n −→N. Hence, by (875.2), we know a fortiori:

(ϑ) ∀x1 . . .∀xn∀y(N×nx1 . . .xn &Rx1 . . .xny→Ny)

(ξ) ∀x1 . . .∀xn(N×nx1 . . .xn ≡ ∃yRx1 . . .xny)

Now assume Rx1 . . .xny. Hence ∃yRx1 . . .xny. Then by (ξ), it follows that:

(ζ) N×nx1 . . .xn

So by definition of the Cartesian product (883.2) and β-Conversion, it fol-
lows that Nx1 & . . . &Nxn. Moreover, it follows from (ζ) and our assumption
Rx1 . . .xny that Ny, by (ϑ).

Case 2 (n = 0). We want to show:

Op0(R)→∀y(Ry→Ny)

So, assume Op0(R). By (894.1), Rigid(R) & R : N×0 −→ N. Then by (882.3),
HasRange(R,N). And by (872.6), this implies that ∀y(Ny ≡ Ry). A fortiori,
∀y(Ry→Ny). ./

(899.2) Assume Opn(R), so that by (894.1) we know both that R is rigid and
that R : N×n −→N. If n ≥ 1, then ∃Sn∃G(R : Sn −→ G); if n = 0, ∃p∃G(R : p −→
G). So functionn(R), by (889). We use this fact to prove the consequent of our
theorem. By GEN, we prove both directions of the biconditional Rx1 . . .xny ≡
y= ıyRx1 . . .xny). (→) Assume Rx1 . . .xny. Since R is an n-ary function, it follows
by by (892) that y is unique. Hence, we know:

(ϑ) Rx1 . . .xny &∀z(Rx1 . . .xnz→ z=y)

Since R is rigid, it follows from definition (571.1) that:

R↓&�∀x1 . . .∀xn∀z(Rx1 . . .xnz→ �Rx1 . . .xnz)
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By n + 1 applications of CBF and n applications of a Rule of Substitution, the
2nd conjunct of this claim implies:

(ζ) ∀x1 . . .∀xn∀z�(Rx1 . . .xnz→ �Rx1 . . .xnz)

If we instantiate this to x1, . . . ,xn and y, we have:

(ξ) �(Rx1 . . .xny→ �Rx1 . . .xny)

If we apply the T schema to (ξ), then the result and our assumption yield
�Rx1 . . .xny. Hence ARx1 . . .xny. Put this aside for the moment and now in-
stantiate just the first n quantifiers of (ζ) to x1, . . . ,xn, so that we obtain:

∀z�(Rx1 . . .xnz→ �Rx1 . . .xnz)

But if we let ϕ in theorem (174.2) be Rx1 . . .xnz and apply GEN to the resulting
instance, we know:

∀z[�(Rx1 . . .xnz→ �Rx1 . . .xnz)→ (ARx1 . . .xnz ≡ Rx1 . . .xnz)]

Hence it follows from our last two results by an axiom of predicate logic (39.3)
that:

∀z(ARx1 . . .xnz ≡ Rx1 . . .xnz)

From this and the second conjunct of (ϑ) it follows by predicate logic that
∀z(ARx1 . . .xnz→ z=y). So, we may assemble what we have established as:

ARx1 . . .xny &∀z(ARx1 . . .xnz→ z=y)

Hence by an alphabetic variant of of the modally strict version of Hintikka’s
schema (148), it follows that:

y = ıyRx1 . . .xny

(←) (Exercise) ./

(899.3) We prove this by cases. Case 1 (n ≥ 1). Assume Opn(R). By eliminating
our restricted variables, we have to show:

∀x1 . . .∀xn((Nx1 & . . . &Nxn)→∃!y(Ny &Rx1 . . .xny))

So assume Nx1 & . . . &Nxn. Since Opn(R), we know by (875.1) a fortiori that:

∀x1 . . .∀xn(N×nx1 . . .xn→∃!y(Ny &Rx1 . . .xny))

Instantiating to x1, . . . ,xn, it follows that:

N
×nx1 . . .xn→∃!y(Ny &Rx1 . . .xny)
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But our assumption Nx1 & . . . &Nxn implies the antecedent, by (883.2) and
β-Conversion. Hence ∃!y(Ny &Rx1 . . .xny).

Case 2 (n = 0). We have to show:

Op0(R)→∃!kRk

So assume Op0(R). Then by (894.1), R : N×0 −→N. By (883.3), N×0 = U 0. By
(875.3), U 0 → ∃!y(Ny & Ry). But since U 0 is necessarily true, it follows that
∃!kRk. ./

(901.1) Assume Op1(H) and Op1(G). Then let R abbreviate G ◦H , where the
latter was defined in (900.1) as [λxy ∃z(Hxz&Gzy)]. As noted in (900), then R
exists, since its definiens is a core λ-expression and so exists by axiom (39.2).
We have to show:

(A) Op1(R)

(B) ∀x(R(x) = G(H(x)))

Proof of (A). By (894.1), we have to show:

(C) Rigid(R)

(D) R :N −→N

To show (C), suppose not, for reductio. Then since R exists, it follows by the
definition of rigidity (571.1) and modal reasoning, ♦∃x∃y(Rxy &¬�Rxy). So,
by CBF and further modal reasoning, ∃x∃y♦(Rxy & ♦¬Rxy). Then let a and
b be such objects so that we know ♦(Rab & ♦¬Rab). The ♦ distributes over a
conjunction but since ♦♦ϕ→ ♦ϕ (4♦), it follows that:

(ϑ) ♦Rab

(ξ) ♦¬Rab

Now we know, independently by β-Conversion and the existence of R, the fol-
lowing is a modally strict theorem:

(ζ) Rab ≡ ∃z(Haz&Gzb)

From this and ♦Rab, it follows by a Rule of Substitution that ♦∃z(Haz&Gzb).
Hence, by BF♦, ∃z♦(Haz&Gzb). Let c be witness so that we know ♦(Hac&Gcb).
Hence ♦Hac&♦Gcb, by (162.3). But sinceH andG are both operations, they are
rigid (894.1), and so both �(Hac → �Hac) and �(Gcb → �Gcb). So it follows
respectively by K♦ that both that ♦�Hac and ♦�Gcb. But then by (165.2), it fol-
lows respectively that�Hac and�Gcb. Hence�(Hac&Gcb). So ∃z�(Haz&Gzb).
By the Buridan formula (168.1), it follows that �∃z(Haz & Gzb). So by the
modally strict theorem (ζ) and a Rule of Substitution, it follows that �Rab,
which contradicts (ξ).

To show (D), we have to show, by (874.2):
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(E) R .∼. N −→N

(F) HasDomain(R,N)

To show (E), we have to show, by (866.1):

(E.1) R | :N −→N.

Proof. By (862), we have to show ∀x(Nx→ ∃!y(Ny &Rxy)). So by GEN,
assume Nx. Since both Op1(H) and Op1(G), let d be the unique number
such that Hxd and let e be the unique number such that Gde. Since e
is therefore the unique number such that Hxd &Gde, it follows not only
that Rxe, but also that e is the unique number such that Rxe. Thus e is
the witness to ∃!y(Ny &Rxy)

(E.2) ∀x∀y(Nx&Rxy→Ny).

Proof. By GEN, assume Nx&Rxy. From the second conjunct, it follows
by β-Conversion that ∃z(Hxz&Gzy). But since G is an operation, it maps
any witness to this last claim to a number. So Ny.

To show (F), we have to show, by (872.1):

∀x(Nx ≡ ∃yRxy)

Proof. (→) Assume Nx. But then ∃yRxy follows a fortiori from the rea-
soning used to establish (E.1). (←) Assume ∃yRxy. But then Nx follows
a fortiori from the reasoning used to establish (E.2).

Proof of (B). By Rule ∀I, it suffices to show, for an arbitrary number k, that
R(k) = G(H(k)). Since we now know R is a unary operation, there is a unique j
such that Rkj. So by β-conversion, we have ∃z(Hkz&Gzj). Let i be a witness,
so Hki & Gij. By (899.2) and (893), i = H(k) and j = G(i) and j = R(k). By
substitution of identicals, j = G(H(k)). So R(k) = G(H(k)).

(901.2) Assume Opn(H1), . . . ,Opn(Hm), and Opm(G). Then let R abbreviate the
defined notation G ◦ (H1, . . . ,Hm), where this was defined in (900.2) to be the
relation:

[λx1 . . .xny ∃z1 . . .∃zm(H1x1 . . .xnz1 & . . . &Hmx1 . . .xnzm &Gz1 . . . zmy)].

Then since the proof is a generalization of that used for the previous theorem,
we leave it as an exercise. ./

(905.1.b) By (898.4), we know Op1(π2
1). So by the definition (.1.a), Op1(A0). ./

(905.2.a) Assume Op1(Am). By (896), we know that Op1(s). Then by (901.1),
that Op1(s ◦Am). ./
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(905.3) We prove this by induction. The base case, Op1(A0) is established by
(905.1.b). For the inductive case, our I.H. is that Op1(Am). Then, by (905.2.a),
Op1(s ◦Am). So by (905.2.b), Op1(Am′ ). ./

(905.5) By the definition of a binary operation (894), we have to show:

(A) Rigid(A)

(B) A :N×2 −→N

(A) Suppose, for reductio, A isn’t rigid. Then if we apply standard modal
reasoning to the definition of rigidity, it follows that there are numbers a, b, c
such that:

(ζ) ♦Aabc&♦¬Aabc.

But now consider the fact that Op1Ab (905.3), which implies RigidAb (894.1).
Then by (899.3) there must be a unique number, say d, such that Abad and by
(571.1) �Abad. Hence, by definition (905.4), β-Conversion, and the fact that
n=m ≡ n=̇m, it follows that �Aabd. If c= d we have a contradiction with the
second conjunct of (ζ) and, otherwise, we have a contradiction with the first
conjunct of (ζ).

(B) Suppose, for reductio, that it is not the case that A :N×2 −→N. Then, given
that A takes only numbers as arguments (905.4), then one of the following
must hold, by (875.2):

• there are numbers a and b for which A doesn’t yield a unique number, or

• there are numbers a and b for which A yields something other than a
number, or

• there are numbers a and b for which A yields nothing.

By (905.4), each of these cases implies that Ab(a) is not a number. But Op1(Ab)
(905.3) and (899.1) imply that Fb(a) is a number. ./

(905.6.a) This follows from (905.1.a) directly. ./

(905.6.b) The fact that A(n,m′) = [s◦A](n,m) follows from 905.2.b) via (905.4)
directly. The result then follows immediately. ./

(908.1.b) (Exercise)

(908.2.a) Assume Op1(Fm), where m is any natural number. By (898.4), we
know that Op1(π2

1). By (897.2), we know that Op1(C2
m). Then by (901.2), it

follows that Op1(G ◦ (π2
1,C2

m,Fm)). ./

(908.3) We prove this by induction. The base case, Op1(F0) is established by
(908.1.b). For the inductive case, our IH is that Op1(Fm). Then, by (908.2.a),
Op1(G ◦ (π2

1,C2
m,Fm)). So by definition of Fm′ (908.2.b), Op1(Fm′ ). ./
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(908.5) We prove our theorem by showing:

(A) Rigid(F )

(B) F :N×2 −→N.

(A) Suppose, for reductio, F isn’t rigid. Then if we apply standard modal
reasoning to the definition of rigidity, it follows that there are numbers a, b, c
such that:

(ζ) ♦F abc&♦¬F abc.

But now consider the fact that Op1(Fb) (908.3), which implies Rigid(Fb) (894.1).
Then by (899.3) there must be a unique number, say d, such that Fbad and by
(571.1) �Fbad. Hence, by definition (908.4), β-Conversion, and the fact that
n=m ≡ n=̇m, it follows that �F abd. If c= d we have a contradiction with the
second conjunct of (ζ) and, otherwise, we have a contradiction with the first
conjunct of (ζ).

(B) Suppose, for reductio, that it is not the case that F : N×2 −→ N. Then,
given that F takes only numbers as arguments (908.4), one of the following
must hold, by (875.2):

• there are numbers a and b for which F doesn’t yield a unique number, or

• there are numbers a and b for which F yields something other than a
number, or

• there are numbers a and b for which F yields nothing.

By (908.4), each of these cases implies that Fb(a) is not a number. But Op1(Fb)
(908.3) and (899.1) jointly imply that Fb(a) is a number. ./

(908.6.a) F (n,0) = F0(n) =H(n) by (908.4), β-Conversion, and (908.1.a). ./

(908.6.b) We may reason as follows:

F (n,m′) = Fm′(n) by (908.4)
= [G ◦ (π2

1,C2
m,Fm)](n) by (908.2.b)

= [G ◦ (π3
1,π

3
2,F )](n,m) by (898.2), (897.1), (908.4)

= G(n,m,F (n,m)) by (898.2), (901.2) ./

(909) By (908.5) and (908.6.a), and (908.6.b). ./

(910.1.b) (Exercise)

(910.2.a) Assume Opi(Fm), where m is any natural number. By (898.4), we
know that for all k, Opi(πi

′

k ). By (897.2), we know that Op1(Ci′m). Then by
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(901.2), it follows that Opi
′′
(G ◦ (πi

′

1 , . . . ,π
i′
i ,Ci

′

m,Fm)). Note that when i = 0, this
still holds, though there are no projection functions in the composition. ./

(910.3) We prove this by induction. The base case, Opi(F0) is established by
(910.1.b). For the inductive case, our IH is that Opi(Fm). Then, by (910.2.a),
Opi(G ◦ (πi

′

1 , . . . ,π
i′
i ,Ci

′

m,Fm)). So by definition of Fm′ (910.2.b), Opi(Fm′ ). ./

(910.5) We prove our theorem by showing:

(A) Rigid(F )

(B) F :N×(i+1) −→N.

(A) Suppose, for reductio, F isn’t rigid. Then if we apply standard modal rea-
soning to the definition of rigidity, it follows that there are numbers a1, . . . , ai ,
b, and c such that:

(ζ) ♦F a1 . . . aibc&♦¬F a1 . . . aibc.

But now consider the fact that Opi(Fb) (910.3), which implies Rigid(Fb) (894.1).
Then by (899.3) there must be a unique number, say d, such that Fba1 . . . aid
and by (571.1) �Fba1 . . . aid. Hence, by definition (910.4), β-Conversion, and
the fact that n=m ≡ n=̇m, it follows that �F a1 . . . aibd. If c=d we have a contra-
diction with the second conjunct of (ζ) and, otherwise, we have a contradiction
with the first conjunct of (ζ). Note that when i = 0, this still holds, though no
numbers a1, . . . , ai are used.

(B) Suppose, for reductio, that it is not the case that F : N×(i+1) −→N. Then,
given that F takes only numbers as arguments (910.4), one of the following
must hold, by (875.2):

• there are numbers a1, . . . , ai , and b for which F doesn’t yield a unique
number, or

• there are numbers a1, . . . , ai , and b for which F yields something other
than a number, or

• there are numbers a1, . . . , ai , and b for which F yields nothing.

By (910.4), each of these cases implies that Fb(a1, . . . , ai) is not a number. But
this contradicts Opi(Fb) (910.3). Note that when i = 0, this still holds, though
no numbers a1, . . . , ai are used and Fb is nullary. ./

(910.6.a) F (n1, . . . ,ni ,0) = F0(n1, . . . ,ni) =H(n1, . . . ,ni), by (910.4), β-Conversion,
and (910.1.a). ./

(910.6.b) We may reason as follows, where i ≥ 0 :
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F (n1, . . . ,ni ,m
′) = Fm′(n1, . . . ,ni) (910.4)

= [G ◦ (πi
′

1 , . . . ,π
i′
i ,Ci

′

m,Fm)](n1, . . . ,ni) (910.2.b)
= [G ◦ (πi

′′

1 , . . . ,π
i′′
i ,π

i′′
i+1,F )](n1, . . . ,ni ,m) (898.2), (897.1), (910.4)

=G(n1, . . . ,ni ,m,F (n1, . . . ,ni ,m)) (898.2), (901.2)

Note that when i = 0, this still holds, though no variables n1, . . . ,ni are used and
Fm′ is nullary. ./

(911) Assume Opi(H) & Opi
′′
(G)), where i ≥ 0. Then it suffices to show that F ,

as defined in (910.4), is a witness to:

∃F(Opi
′
(F) &F(n1, . . . ,ni ,0) =H(n1, . . . ,ni) &

F(n1, . . . ,ni ,m
′) = G(n1, . . . ,ni ,m,F(n1, . . . ,ni ,m)))

By (910.5), it follows that Opi
′
(F ). By (910.6.a), F (n1, . . . ,ni ,0) = H(n1, . . . ,ni).

And by (910.6.b), F (n1, . . . ,ni ,m
′) = G(n1, . . . ,ni ,m,F (n1, . . . ,ni ,m)). Note that

when i = 0, this still holds, though no variables n1, . . . ,ni are used and H is
nullary. ./

(912.1.b) Note that in the argument below for the recursive clause, s ◦π4
3 only

makes use of its third argument:

Base clause:
A(n,0) = π2

1(n) by (.1.a) and (910.6.a)
= n by definition of π2

1 in (898.1)

Recursive Clause:
A(n,m′) = [s ◦π4

3](n,m,A(n,m)) by (.1.a) and (910.6.b)
= (A(n,m))′ by the definitions of π4

3 (898.3) ./

(912.2.b) The argument is easy:

Base clause:
M (n,0) = C2

0(n) by (.2.a) and (910.6.a)
= 0 by definition of C2

0 in (897.1)

Recursive Clause:
M (n,m′) = [A ◦ (π4

1,π
4
3)](n,m,M (n,m)) by (.2.a) and (910.6.b)

= n+M (n,m) by definitions π4
1, π4

3, A, and ◦ ./

(912.3.b) The argument is easy:

Base clause:
E(n,0) = C2

1(n) by (.3.a) and (910.6.a)
= 1 by definition of C2

1 in (897.1)

Recursive Clause:
E(n,m′) = [M ◦ (π4

1,π
4
3)](n,m,E(n,m)) by (.3.a) and (910.6.b)

= n×E(n,m) by dfs of π4
1, π4

3, M and ◦ ./

(912.4.b) The argument is:
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Base clause:
Π(0) = C1

1 by (.4.a) and (910.6.a)
= 1 by definition of C1

1 in (897.1)

Recursive Clause:
Π(n′) = [M ◦ (π3

2,s ◦π3
1)](n,Π(n)) by (.4.a) and (910.6.b)

= Π(n)×n′ by dfs of M , π3
2, s, π3

1, and ◦ ./

(916) We show each axiom in turn is a theorem.

• n′ , 0. By theorem (810) and (821).

• n′ =m′→ n=m. By theorem (811) and (821).

• n+ 0 = n. By theorem (912.1.b).

• n+m′ = (n+m)′. By theorem (912.1.b).

• n× 0 = 0. By theorem (912.2.b).

• n×m′ = n+ (n×m). By theorem (912.2.b).

• ¬(n < 0). By theorems (805.2) and (832.1).

• n < m′ ≡ (n < m∨ n=m). (→) Assume n < m′. By (796.2), we know (Gxy &
G∗zy)→ G+zx. Substituting P for G, m for x, m′ for y, and n for z, we obtain:
(Pmm′&P∗nm′)→ P

+nm. SincePmm′ is a theorem, and our assumption n < m′

implies P∗nm′ (832.1), it follows that P+nm, i.e., by (832.2), n ≤ m, i.e., by
(840.7), n < m∨n=m. (←) (Exercise)

• Induction Axiom:

(F0 &∀n(Fn→ Fn′))→∀nFn

By theorems (812) and (821).

• Comprehension Scheme:

∃F∀n(Fn ≡ ϕ∗),
where ϕ∗ is the translation of ϕ and F doesn’t occur free in ϕ∗

Proof. It suffices to show that [λnϕ∗] exists and is a witness to the existential
claim. Note that we can expand the restricted variable by choosing an unre-
stricted variable, say y, that doesn’t occur free in ϕ∗(n). Then it suffices to show
that [λyNy & ϕ∗]↓ and is a witness to the existential claim. But since there
are no encoding formulas in the translations of the atomic formulas of 2nd
order PA, and the translations of the complex formulas don’t introduce any en-
coding formulas, no variables occur in encoding position in ϕ∗ (9.1). Hence,
[λyNy & ϕ∗] is a core λ-expression (9.2) and so [λyNy & ϕ∗]↓ by (39.2). So
by GEN, it remains to show [λyNy &ϕ∗]n ≡ ϕ∗, which we do by the following
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biconditional chain:

[λyNy &ϕ∗]n
≡ n=n& [λyNy &ϕ∗]n (→) =I, &I / (←) &E
≡ x=n& [λyNy &ϕ∗]x =I / =E, (→) uses fresh variable x
≡ x=n& (Nx→ ϕ∗xn) β-Conversion with unrestricted variable
≡ x=n&Nx& (Nx→ ϕ∗xn) since x=n, Nx
≡ x=n&ϕ∗xn (→) MP / (←) since x=n, Nx and (38.1)
≡ n=n&ϕ∗ =E / =I, (←) use with fresh variable x
≡ ϕ∗ (→) &E / (←) =I and &I ./

(918.1) We proceed by induction onm. Base Case: m=0. By GEN, it suffices to
prove P+xm→Nx. So assume P+xm. Then P+x0. Since we know, by (805.2),
that ¬P∗x0 , it follows by a fact about P+ (806.2) that x= 0. Since N0 (808), it
follows that Nx.

Inductive Case: Assume our theorem holds for m, so that our inductive hy-
pothesis is:

(IH) ∀x(P+xm→Nx)

Then we need to show: ∀x(P+xm′→Nx). So, by GEN, assume P+xm′. Then by
a fact about P+ (806.2) either P∗xm′ ∨ x=m′. We reason to the conclusion Nx
by cases from the disjuncts.

• Suppose P∗xm′. Note that if we apply GEN twice to the modally strict
theorem (803.5) and then RN to the result, we obtain:

�∀x∀y(Pxy→ (D!x&D!y))

From this and the fact that P↓ (801.2), it follows by (791.1) that P is a
relation on discernibles. So the following is an instance of (796.2):

(ϑ) 1-1(P)→ ((Pmm′ &P
∗xm′)→ P

+xm)

But by (802.3), P is a 1-1 relation. Moreover, by (824), Pmm′. And since
we’re working under the hypothesis that P∗xm′, we have everything we
need to infer from (ϑ) that P+xm. So by our IH, Nx.

• Suppose x=m′. Then since Nm′ by hypothesis, we have Nx. ./

(918.2) Suppose, for reductio, ∃nNumbers(n,N), and let a be a witness, so that
we know Na and Numbers(a,N). Then by (817.6), it follows that:

∃y(Numbers(y, [λzP+za]) &Pay)
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Suppose b is a witness, so that we have Numbers(b, [λzP+za]) &Pab. From the
second conjunct and Na, it follows that Nb, by (814.1). It also follows, from
the second conjunct and the fact that a and b are natural numbers, that a < b,
by (833.1). Now, independently, in theorem (835), instantiate [λzP+za] for F,
N for G, a for m, and b for n, so that we know:

(ϑ)
(
Numbers(b, [λzP+za]) & Numbers(a,N) &∀u([λzP+za]u→Nu)

)
→ b ≤ a

We already know the first two conjuncts of the antecedent of (ϑ). To establish
the third conjunct, note that since (918.1) holds for any natural number m, it
holds for a. Hence ∀x(P+xa→Nx). Since [λzP+za]↓, it follows, by an instance
of λ-Conversion and a Rule of Substitution, that ∀x([λz P+za]x → Nx). The
third conjunct of the antecedent of (ϑ) follows from this a fortiori. Hence b ≤ a.
But we previously established a < b. So by (833.7), a < a, which contradicts
(838.1) ./

(918.3) By definitions (917.2) and (917.1), we have to show ¬N#N. Note first
that by (809.2), Rigid(N). So by a modally strict fact about numbering and
rigid properties (774.5), Numbers(#N,N). Now assume, for reductio, thatN#N.
Then ∃nNumbers(n,N), which contradicts (918.2). ./

(918.4) By (777). ./

(918.5) (Exercise)

(920.1) – (920.5) (Exercises)

(920.6) For reductio, assume some natural number, say n, is such that Pnℵ0.
Then by (814.1), Nℵ0. But this contradicts (920.4). ./

(920.7) Since N is rigid (809.2), it follows by (774.5) that Numbers(#N,N).
But ℵ0 = #N, by definition (919). So Numbers(ℵ0,N) and, so by (778.1), ℵ0

is a natural cardinal. Now since 0 is discernible, consider N−0. Since we
know that something numbers this property (763.1), suppose a is such that
Numbers(a,N−0). Then, similarly, a is a natural cardinal (778.1). Hence, where
N and 0 are witnesses, we have:

∃F∃u(Fu& Numbers(ℵ0,F) & Numbers(a,F−u))

So it follows by (801.3) that:

(ϑ) Paℵ0

Note independently, that as an instance of (764.1), we know:

N ≈D N−0→ (Numbers(ℵ0,N) ≡Numbers(ℵ0,N−0))

But with a little work, one can show N ≈D N−0:
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Proof. We establish this from the definition of ≈D (747.3) by showing that

the successor function s is the witness, i.e., that s | :N 1-1←−→D N
−0, i.e., that

s correlatesD N andN−0 one-to-one (747.2). Note first that s is 1-1, given
that P is 1-1 (802.3) and the definition of s as the predecessor relation
restricted to the numbers (879.2). Moreover, s hasN+ as its range (879.1).
So if we can show that ∀x(N+x ≡N−0x), then it follows that s has N−0 as
its range (872.2). By GEN, it remains to showN+x ≡N−0x. By definitions
(752.2), (841.1), and β-Conversion, we have to show:

x > 0 ≡ (Nx& x,0)

We prove the commuted form, (Nx& x,0) ≡ x > 0, as follows:

Nx& x,0

≡Nx&Nx& x,0 repeat/eliminate Nx conjunct
≡Nx& (P+0x& x,0) expand/apply df. N, group
≡Nx& ((P∗0x∨ x=0) & x,0) expand/apply definition P+

≡Nx& ((P∗0x& x,0)∨ (x=0 & x,0)) distribute/contract ∨, &
≡Nx& (P∗0x& x,0) eliminate/add impossibility
≡Nx&P

∗0x simplify/apply ¬P∗00 (805.3)
≡ [λxNx&P

∗0x]x β-Conversion
≡ 0 < x apply/expand, (828.1), (830.1)
≡ x > 0 (832.3)

Hence, Numbers(ℵ0,N) ≡ Numbers(ℵ0,N−0). Since we already know the left
side, it follows that Numbers(ℵ0,N−0). But by (763.2), there is a unique number
that numbers N−0. Hence a=ℵ0. Then by (ϑ), Pℵ0ℵ0. ./

(923) By definition (922.2) and a Rule of Substitution, we have to show:

∃x∃G(InfiniteClassOf (x,G))

So by definition (922.2) and a Rule of Substitution, we have to show:

(ϑ) ∃x∃G(G↓& ClassOf(x,G) &∃κ(Infinite(κ) & Numbers(κ,G)))

But consider N. By (315.1), ∃xClassOf(x,N). Suppose a is such an object, so
that we know ClassOf(a,N). Then we may prove our theorem by showing that
a and N are witnesses to (ϑ). And given what we’ve established thus far and
the fact that #N is a natural cardinal (918.4), it remains, by &I and ∃I, only
to show Infinite(#N) and Numbers(#N,N). But the first just is (918.3) and the
second follows from (774.5) and the rigidity of N (809.2). ./

(937.4) (Exercise)

(937.6) – (937.7) (Exercises)
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(938) – (939) (Exercises)

(940.1) Let ϕ be any formula other than a description of type 〈〉. Then ϕ is
either a constant or variable of type 〈〉 or a non-basic formula. So we establish
our theorem by cases:

Case (1): ϕ is a constant or variable of type 〈〉. Then ϕ↓ by (935.5).

Case (2): ϕ is a non-basic formula. Then by (935.23), O!ϕ. Hence, by
(935.8.a), ϕ↓. ./

(940.2) By the previous theorem (940.1), ϕ↓, for any formula ϕ other than a
description of type 〈〉. But by the BNF definition in (928), these formulas are
all the relation terms Π of type 〈〉. So Π〈〉↓, for any relation term of type 〈〉
other than a description of type 〈〉. ./

(942) By (935.5), the modal closures of α↓ are axioms, where α is a variable
of any type. So �α ↓ is an axiom. Hence, by GEN, ∀α�α ↓. Now let ϕ be
�α↓. Then, where τ is a term having the same type as α, we have the following
instance of axiom (935.4):

∀α�α↓→ (τ↓ → �τ↓), where τ is any term substitutable for α in �α↓

But every term τ of the same type as α is substitutable for α in �α ↓. So it
follows by Rule MP that τ↓→ �τ↓. ./

(943.1) We reason by cases from the definition of = in (933.9) – (933.12).

Case 1. Let τ and σ be arbitrary terms of type i, and assume τ=σ . Then, where
O!, A!, and F have type 〈i〉, it follows by definition (933.9) that:

(O!τ &O!σ &�∀F(Fτ ≡ Fσ )) ∨ (A!τ &A!σ &�∀F(τF ≡ σF))

Clearly both disjuncts contain a conjunct (O!τ in the first disjunct and A!τ in
the second) that implies, by (935.8), that τ↓.
Case 2. Let τ and σ be arbitrary terms, say Π and Π′, of type 〈t〉, where t is any
type, and assume τ =σ , i.e., Π=Π′. Then, where x has type t, and O!, A!, and
H have type 〈〈t〉〉, it follows by definition (933.10) that:

(O!Π &O!Π′ &�∀x(xΠ ≡ xΠ′)) ∨ (A!Π &A!Π′ &�∀H(ΠH≡ Π′H))

Again both disjuncts contain a conjunct (O!Π in the first disjunct and A!Π in
the second) that implies, by (935.8), that Π↓, i.e., τ↓.
Case 3. By reasoning analogous to Case 2.

Case 4. By reasoning analogous to Case 2. ./

(943.2) (Exercise)
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(944.1) Let Π and Π′ be any relation terms of type 〈t1, . . . , tn〉 (n ≥ 0), where
x1, . . . ,xn are variables of type t1, . . . , tn, respectively, that don’t occur free in Π

and Π′. Assume Π = Π′. Then by (943.1), it follows that Π↓, and by (943.2), it
follows that Π′↓. Note independently that where F and G are variables of the
same type as Π and Π′, respectively, then the following is axiomatic, since it is
a closure of the axiom for the substitution of identicals (935.9):

∀F∀G(F=G→ (�∀x1 . . .xn(Fx1 . . .xn ≡ Fx1 . . .xn)→ �∀x1 . . .xn(Fx1 . . .xn ≡ Gxx . . .xn)))

Since x1, . . . ,xn don’t occur free in Π↓ and Π′↓, they are substitutable, respec-
tively, for F and G in the matrix of the above universal claim. So it follows by
Rule ∀E (939) [93.1] that:

Π=Π′→
(�∀x1 . . .xn(Πx1 . . .xn ≡Πx1 . . .xn)→ �∀x1 . . .xn(Πx1 . . .xn ≡Π′xx . . .xn))

And since Π = Π′ by assumption, it follows that:

�∀x1 . . .xn(Πx1 . . .xn ≡Πx1 . . .xn)→ �∀x1 . . .xn(Πx1 . . .xn ≡Π′xx . . .xn)

But the antecedent is clearly a theorem, by n applications of GEN and an ap-
plication of RN to the instance Πx1 . . .xn ≡ Πx1 . . .xn of the tautology ϕ ≡ ϕ.
Hence �∀x1 . . .xn(Πx1 . . .xn ≡Π′xx . . .xn). ./

(944.2) (Exercise)

(945) The proof is analogous to the proof of (110), but appeals to: (a) the the-
orems in (937) [63] instead of the theorems in (63), (b) the theorems in (943)
instead of (107), (c) the typed axiom for the substitution of identicals (935.9)
instead of the second-order version (41), and (d) Rule ∀E (939) [93] instead of
to (93). ./

(946.1) Let t be any type and suppose x is a variable of type t. Then by axiom
(935.5), [λx♦E!x]↓. Now the definition of O! (933.7) and the Rule of Definition
by Identity (937) [73] imply:

([λx ♦E!x]↓ → (O! = [λx ♦E!x])) & (¬[λx ♦E!x]↓ → ¬O!↓)

Hence O! = [λx ♦E!x], and so by (943.1), O!↓. ./

(946.2) (Exercise)

(946.3) Let t be any type, x be a variable of type t, and E!, O!, and A! have type
〈t〉. We want to prove O!x ∨A!x. So for reductio, assume ¬(O!x ∨A!x). Then
¬O!x and ¬A!x. But since [λx♦E!x]↓ and [λx¬♦E!x]↓, we independently know,
by the definitions of O! and A! and our Rule of Definition by Identity, that:

O! = [λx ♦E!x]
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A! = [λx¬♦E!x]

Hence by Rule =E:

¬[λx ♦E!x]x

¬[λx¬♦E!x]x

But it also follows from [λx ♦E!x]↓ and [λx¬♦E!x]↓, that the following equiva-
lences hold, by β-Conversion (935.26):

[λx ♦E!x]x ≡ ♦E!x

[λx¬♦E!x]x ≡ ¬♦E!x

Hence we can conclude:

¬♦E!x

¬¬♦E!x

But the latter implies ♦E!x. Contradiction. ./

(947.1) Given the four cases of the definition of identity (933.9) – (933.12), we
may prove our theorem by establishing the following four cases:

Case 1: x=x, where x is a variable of type i.

Case 2: F=F, where F is a variable having a type of the form 〈t〉, for some
type t.

Case 3: F = F, where F is a variable having a type of the form 〈t1, . . . , tn〉
(n ≥ 2), for some types t1, . . . , tn.

Case 4: p=p, where p is a variable of type 〈〉.

Case 1: Where x has type i, and where O!, A!, and F have type 〈i〉, we have to
show, by definition (933.9):

O!x&O!x&�∀F(Fx ≡ Fx)) ∨ (A!x&A!x&�∀F(xF ≡ xF))

The proof proceeds by disjunctive syllogism from the fact O!x ∨ A!x (946.3).
(Exercise)

Case 2: Then F has type 〈t〉, for some type t, and so where x has type t, and O!,
A!, and F have type 〈〈t〉〉, we have to show, by definition (933.10):

(O!F &O!F &�∀x(xF ≡ xF))∨ (A!F &A!F &�∀H(FH≡ FH))
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The proof proceeds by disjunctive syllogism from the fact O!F ∨ A!F (946.3).
(Exercise)

Case 3: Then F has type 〈t1, . . . , tn〉 (n ≥ 2), for some types t1, . . . , tn, and so
where x1, . . . ,xn have types t1, . . . , tn, respectively, and O!, A!, and F have type
〈〈t1, . . . , tn〉〉, we have to show, by definition (933.11):

O!F &O!F &∀x2 . . .∀xn([λx1 Fx1 . . .xn]=[λx1 Fx1 . . .xn]) &
∀x1∀x3 . . .∀xn([λx2 Fx1 . . .xn]=[λx2 Fx1 . . .xn]) & . . .&
∀x1 . . .∀xn−1([λxn Fx1 . . .xn]=[λxn Fx1 . . .xn]) ∨

A!F &A!F &�∀H(FH≡ FH)

The proof proceeds by disjunctive syllogism from the fact O!F ∨ A!F (946.3).
(Exercise)

Case 4: Then p has type 〈〉, and so where x has type i, and O!, A!, and F have
type 〈〉, we have to show, by definition (933.12):

(O!p&O!q& [λx p]=[λx q])∨ (A!p&A!q&�∀H(pH≡ qH))

The proof proceeds by disjunctive syllogism from the fact thatO!p∨A!p (946.3).
(Exercise) ./

(947.2) Let t be any type, and let x and y be variables of type t. Assume the
antecedent, x=y. Now by (117.1), we know x=x. Hence by the Variant version
of Rule =E (945), it follows that y=x. ./

(947.3) Let t be any type, and let x, y, and z be variables of type t. Now assume
the antecedent, so that by &E we know both x= y and y = z. Then by Rule =E
(110) it follows that x=z. ./

(947.4) Let t be any type and x, y, and z all be distinct variables of type t. Then
use reasoning analogous to that in (117.4). ./

(948.1) – (948.2) (Exercises)

(949.1) Let t1, . . . , tn be any types. Then, by hypothesis:

(A) τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which the variables
α1, . . . ,αn occur free (n ≥ 0) and have types t1, . . . , tn, respectively,

(B) τ1, . . . , τn are any terms substitutable, respectively, for α1, . . . ,αn in both
definiens and definiendum, and

(C) Γ ` σ (τ1, . . . , τn)↓.

From (A), (B), and the Rule of Definition by Identity (937.9) [73], we know:

` (σ (τ1, . . . , τn)↓ → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)) & (¬σ (τ1, . . . , τn)↓ → ¬τ(τ1, . . . , τn)↓)



Proofs of Theorems and Metarules 1391

By (937.4) [63.3], the above holds for any premise set Γ :

(D) Γ ` (σ (τ1, . . . , τn)↓ → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)) & (¬σ (τ1, . . . , τn)↓ → ¬τ(τ1, . . . , τn)↓)

By Rule &E (938) [86.2.a], it follows from (D) that:

(E) Γ ` σ (τ1, . . . , τn)↓) → τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

Hence, from (E) and (C) it follows by (937.4) [63.5] that:

Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn) ./

(949.2.a) By hypothesis:

(A) τ(α1, . . . ,αn) =df σ (α1, . . . ,αn) is a definition-by-= in which the variables
α1, . . . ,αn occur free (n ≥ 0) and have types t1, . . . , tn, respectively,

(B) τ1, . . . , τn are substitutable for α1, . . . ,αn, respectively, in both definiens
and definiendum,

(C) ϕ contains one or more occurrences of τ(τ1, . . . , τn), and

(D) ϕ′ is the result of replacing zero or more occurrences of τ(τ1, . . . , τn) in ϕ
by σ (τ1, . . . , τn)

Now assume:

(E) Γ ` σ (τ1, . . . , τn)↓

(F) Γ ` ϕ

(A), (B), and (E) imply, by the Rule of Identity by Definition (937) [120.1], that:

(G) Γ ` τ(τ1, . . . , τn)=σ (τ1, . . . , τn)

Then by (C), (D), and Rule =E (945), it follows from (G) and (F) that Γ ` ϕ′. ./

(949.2.b) (Exercise)

(950.1) Assume O!ϕ, where ϕ is any formula. Then ϕ↓, by axiom (935.8.a).
Now let p be a variable of type 〈〉 andO! have type 〈〈〉〉. Note that the following
is a universal closure of an instance of the axiom η-Conversion (935.27) and so
an axiom:

(ϑ) ∀p(O!p→ ([λp] = p))

Note that ϕ is substitutable for p in the matrix of (ϑ) (if ϕ is substituted for p
in O!p→ ([λ p] = p), no free variable in ϕ gets captured) and since ϕ↓, can in-
stantiate (ϑ) to ϕ, to obtain O!ϕ→ ([λϕ]=ϕ). Since O!ϕ holds by assumption,
it follows that [λϕ] = ϕ. ./

(950.2) Let ϕ be any non-basic formula, i.e., any formula not in Base〈〉. Then
by axiom (935.23), it follows that O!ϕ. So by (950.1), [λϕ] = ϕ. ./

(950.3) Let ϕ be any formula. Then by β-Conversion (935.26), we know:
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[λϕ]↓ → ([λϕ] ≡ ϕ)

But by axiom (935.5), [λϕ]↓, since [λϕ] is a core λ-expression. Hence [λϕ] ≡ ϕ.
./

(950.4) It is axiomatic that [λ ϕ]↓, by (935.5). So by α-Conversion (935.25),
[λϕ] = [λϕ]′. ./

(950.5) We prove our theorem by the following cases: (a) ϕ is a constant or
variable of type 〈〉, (b) ϕ is a description of type 〈〉, and (c) ϕ is a non-basic
formula. However, we prove the cases in this order:

Case 1. ϕ is a constant or variable of type 〈〉

Case 2. ϕ is a non-basic formula.

Case 3. ϕ is a description of type 〈〉.

Case 1. ϕ is a constant or variable of type 〈〉. Then ϕ has no alphabetic variants
and so there are no formulas of the form ϕ ↓ → (ϕ = ϕ′) and so nothing to
prove.

Case 2. ϕ is a non-basic formula. Note that if we can directly show ϕ=ϕ′, then
by propositional logic (935.1), follows that ϕ↓ → (ϕ =ϕ′). Now since ϕ is a
non-basic formula, it follows by (950.1) that [λ ϕ] = ϕ. But we also know by
(950.4) that [λ ϕ] = [λ ϕ]′, where [λ ϕ]′ is any alphabetic variant of [λ ϕ]. It
follows from our last two results that ϕ = [λϕ]′, by Rule =E. But by the type-
theoretic definition of alphabetic variant (930) [16], [λ ϕ]′ = [λ ϕ′] and so we
know ϕ = [λ ϕ′]. Note that since ϕ is a non-basic formula, so is ϕ′. So as an
instance of (950.2), we have [λϕ′] = ϕ′. Hence, by Rule =E, ϕ = ϕ′.

Case 3. ϕ is a description of type 〈〉. Assume ϕ↓. By an application of GEN to
the instance of (947.1) that holds for type 〈〉, we know the following, where p
is a variable of type 〈〉:

∀p(p=p)

So by Rule ∀E, it follows that ϕ = ϕ. Note that if ϕ′ is an alphabetic variant of
ϕ, then by the definition of alphabetic variants (930) [16], ϕ = ϕ′ is an alpha-
betic variant of ϕ = ϕ. But ϕ = ϕ is a non-basic formula and so by Case 2, an
identity holds between it and any of its alphabetic variants. Hence, it follows
that:

(ϕ = ϕ) = (ϕ = ϕ′)

From this and theorem (944.2) it follows that �((ϕ = ϕ) ≡ (ϕ = ϕ′)), and so by
the T schema, (ϕ = ϕ) ≡ (ϕ = ϕ′). And since we’ve established that ϕ = ϕ, it
follows by biconditional syllogism that ϕ = ϕ′. ./
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(950.6) Let ϕ be any formula other than a description of type 〈〉. Then by
(940.1), ϕ↓. So if ϕ′ is any alphabetic variable of ϕ, it follows by (950.5) that
ϕ=ϕ′. ./

(950.7) Since ϕ↓ ∨¬(ϕ↓), we prove our theorem by cases, where the two cases
are ϕ↓ and ¬(ϕ↓).
Case 1. ϕ↓. Then by (950.6), ϕ = ϕ′. From this and the tautology ϕ ≡ ϕ, it
follows by Rule =E that ϕ ≡ ϕ′.

Case 2. ¬(ϕ↓). Then by the 0-ary case of axiom (935.8.a), ¬ϕ. Now if we can
show that ¬(ϕ′), then by classical propositional logic, ϕ ≡ ϕ′. But to show
¬(ϕ′), it suffices, by axiom (935.8.a), to show ¬(ϕ′↓). So, for reductio, assume
ϕ′↓. Note that since ϕ′ is an alphabetic variant of ϕ and alphabetic variance
is symmetric, ϕ is an alphabetic variant of ϕ′. So by our reductio assumption
and (950.5), it follows that ϕ′ = ϕ. Hence, ϕ↓, by (943.2), which contradicts
the assumption of the present case. ./

(950.8) By reasoning analogous to that used in (111.6), except citing (950.3)
instead of (111.2). ./

(951) By analogy with the proof in (114). By (950.7), we know ` (ϕ ≡ ϕ′),
where ϕ′ is any alphabetic variant of ϕ. Hence, by (937) [63.3], Γ ` (ϕ ≡ ϕ′). By
definition of ≡ (933.3) and Rule ≡df E of Definiendum Elimination (938) [90.2],
it follows that Γ ` ((ϕ → ϕ′) & (ϕ′ → ϕ)). So by the rules of &E (938) [86], it
follows that:

(A) Γ ` (ϕ→ ϕ′)

(B) Γ ` (ϕ′→ ϕ)

Now to justify the left-to-right direction of the Rule of Alphabetic Variants,
assume Γ ` ϕ. Then from this and (A), it follows by (937) [63.5] that Γ ` ϕ′. By
analogous reasoning from (B), if Γ ` ϕ′, then Γ ` ϕ. ./

(952.1) – (952.4) (Exercises)

(953.1) – (953.2) (Exercises)

(954.1) – (954.3) (Exercises)

(955.1) – (955.4), (955.7) – (955.8) (Exercises)

(956.1) – (956.5) (Exercises)

(957) (Exercises)

(958.1) For reductio, assume ∃F(Fıp(p&¬p)), and suppose P is such a property,
so that we know P ıp(p&¬p), where P has type 〈〈〉〉 and p has type 〈〉. Note that
the modally strict version of Russell’s analysis, which was derived in type-
theoretic form as theorem (957) [151], asserts the following for any type t and
variables x and z of type t:
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ψ
ıxϕ
x ≡ ∃x(Aϕ & ∀z(Aϕzx → z=x) & ψ), provided (a) ψ is either an exem-

plification formula Πnκ1 . . .κn (n ≥ 1) or an encoding formula κ1 . . .κnΠ
n

(n ≥ 1), (b) x occurs in ψ and only as one or more of the κi (1 ≤ i ≤ n), and
(c) z is substitutable for x in ϕ and doesn’t occur free in ϕ

So if we let t be the type 〈〉, x be a variable of this type, and ψ be the formula
P x, then the above theorem has the following instance:

P ıx(p&¬p) ≡ ∃x(A(p&¬p) & ∀z(A(p&¬p)→ z=x) & P x)

So it follows that ∃x(A(p&¬p) & ∀z(A(p&¬p)→ z=x) & P x). Let a be such an
object, so that we know:

A(p&¬p) & ∀z(A(p&¬p)→ z=a) & P a

Then A(p&¬p). But ¬(p&¬p) is a theorem, and so by Rule RA (956.2) [135],
A¬(p&¬p). But then by axiom (935.11), ¬A(p&¬p). Contradiction. ./

(958.2) By definition of ↓ for propositions (933.6.b), we know ıp(p & ¬p)↓ ≡
∃F(Fıp(p & ¬p)). But from this and the previous theorem (958.1), it follows
that ¬(ıp(p&¬p)↓). ./

(958.3) Axiom (935.8.a) asserts Π→ Π↓, where Π is any term of type 〈〉. So,
where p is a variable of type 〈〉, the following is an instance: ıp(p & ¬p) →
ıp(p & ¬p)↓. (This asserts: if the proposition that is both true and not true
is true, then the proposition that is both true and not true exists.) But the
previous theorem is ¬(ıp(p&¬p)↓). Hence ¬ıp(p&¬p). ./

(958.4) Let p be a variable of type 〈〉. Since p is a formula, let ψ be the formula
p and consider the formula ψıpϕp , where ϕ is any formula. As an instance of
the type-theoretic, modally-strict version of Russell’s analysis of descriptions
(957) [151], we know:

ψ
ıpϕ
p ≡ ∃p(Aϕ&∀q(Aϕqp→ q=p) & p)

But ψıpϕp is simply the formula ıpϕ. Hence:

ıpϕ ≡ ∃p(Aϕ&∀q(Aϕqp→ q=p) & p) ./

(959.1) – (959.7) (Exercises)

(960.1) (Exercises)

(960.3) – (960.4) (Exercises)

(961.1) The reasoning is a variant of that used in (189) and (245.1), but typed.
Let t be any type, x be a variable of type t, and F and G be variables of type 〈t〉.
Assume ∀x(xF ≡ xG). By BF, it suffices to show ∀x�(xF ≡ xG), and by GEN, it
suffices to show �(xF ≡ xG). But we know the following:
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(ϑ) xF ≡ �xF instance of (959.7) [179.2]

(ζ) xG ≡ �xG instance of (959.7) [179.2]

(ξ) �(xF ≡ xG) ≡ (�xF ≡ �xG) instance of (959.7) [179.5]

where x, F, and G have the types indicated above. So if we can establish the
right side of (ξ), we’re done. We do this as follows:

�xF ≡ xF by (ϑ)
≡ xG by assumption
≡ �xG by (ζ) ./

(961.2) Assume O!F and O!G. Further assume ∀x(xF ≡ xG). Then by (961.1),
the latter implies �∀x(xF ≡ xG). So by definition (933.10), F=G. ./

(961.3) (Exercise)

(961.4) AssumeA!F, A!G, and ∀H(FH≡ GH). Then by (961.3), the latter implies
�∀H(FH ≡ GH). But our first two assumptions and this last result imply, by
definition (933.10), F=G. ./

(961.5) Let t1, . . . , tn be any types (n ≥ 1), and let:

(A) F be a variable of type 〈t1, . . . , tn〉,

(B) O! be a defined property having type 〈〈t1, . . . , tn〉〉,

(C) x1, . . . ,xn be variables having types t1, . . . , tn, respectively, and

(D) ϕ be any formula such that (a) F doesn’t occur free in ϕ and (b) x1, . . . ,xn
don’t occur in encoding position in ϕ [930] (9.1).

By (C) and (D.b), it follows that [λx1 . . .xn ϕ] is a core λ-expression. Hence
[λx1 . . .xn ϕ]↓. From this it follows, by (935.22) and (B), that:

(ϑ) O![λx1 . . .xn ϕ]

and, by β-Conversion (935.26), that:

[λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ

From the latter it follows by n applications of GEN:

∀x1 . . .∀xn([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)

Since this claim has been established by a modally strict proof, it follows by
RN (68) that:

�∀x1 . . .∀xn([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)
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Conjoining (ϑ) with this last result, we have:

(ξ) O![λx1 . . .xn ϕ] &�∀x1 . . .∀xn([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)

By (D.a) above, F doesn’t occur free in ϕ, and we can use Rule ∃I (939) [101.1]
to existentially generalize and conclude:

∃Fn(O!F &�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ)) ./

(961.7) Let p be a variable of type 〈〉, O! be the defined relation term having
type 〈〈〉〉, and let ϕ be any formula in which p doesn’t occur free. Note that it
is axiomatic that O![λϕ] (935.23). Independently, by applying RN to theorem
(950.3), we know: �([λϕ] ≡ ϕ). Thus, we know:

O![λϕ] &�([λϕ] ≡ ϕ)

But by (935.5), we know [λ ϕ]↓ (this also follows from the previously estab-
lished fact that O![λϕ]). Since p doesn’t occur free in ϕ, we may use Rule ∃I
(939) [101.1] and conclude ∃p(O!p&�(p ≡ ϕ)). ./

(961.8) (Exercises)

(962.1) We use reasoning analogous to that used in (189), (245.1), but typed as
in (961.1). Let t be any type, x and y be variables of type t, and F be a variable
of type 〈t〉. Assume ∀F(xF ≡ yF). By BF, it suffices to show ∀x�(xF ≡ yF), and
by GEN, it suffices to show �(xF ≡ yF). Now we know:

(ϑ) xF ≡ �xF instance of (959.7) [179.2]

(ζ) yF ≡ �yF instance of (959.7) [179.2]

(ξ) �(xF ≡ yF) ≡ (�xF ≡ �yF) instance of (959.7) [179.5]

where x, y, and F have the types indicated above. So if we can establish the
right side of (ξ), we’re done. We do this as follows:

�xF ≡ xF by (ϑ)
≡ yF by assumption
≡ �yF by (ζ) ./

(962.2) Let x and y be variables of the same type. Then we have four cases:

(A) x and y are variables of type i

(B) x and y are variables having a type of the form 〈t〉, for some type t

(C) x and y are variables having a type of the form 〈t1, . . . , tn〉, for some types
t1, . . . , tn (n ≥ 2)
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(D) x and y are variables of type 〈〉

Case (B) has already been established as theorem (961.4). So it remains to show
cases (A), (C), and (D).

(A) Assume A!x, A!y, and ∀F(xF ≡ yF), where A! and F have type 〈i〉. By the
relevant instance of (962.1), the third assumption implies �∀F(xF ≡ yF). But
our first two assumptions and this last result imply, by definition (933.9), x=y.

(C) Assume A!x, A!y, and ∀F(xF ≡ yF), where A! and F have type 〈〈t1, . . . , tn〉〉.
By the relevant instance of (962.1), the third assumption implies �∀F(xF ≡ yF).
But our first two assumptions and this last result imply, by definition (933.11),
x=y.

(D) Assume A!x, A!y, and ∀F(xF ≡ yF), where A! and F have type 〈〈 〉〉. By
the relevant instance of (962.1), the third assumption implies �∀F(xF ≡ yF).
But our first two assumptions and this last result imply, by definition (933.12),
x=y. ./

(962.3) – (962.8) (Exercises)

(963.1) Let t be any type, x be a variable of type t,A! have type 〈t〉, F be variable
having type 〈t〉, and ϕ be any formula in which x doesn’t occur free. Then by
(935.32):

∃x(A!x&∀F(xF ≡ ϕ))

Let a be a arbitrary such object of type t, so that we know:

(ϑ) A!a&∀F(aF ≡ ϕ)

Then to show that a is a witness to our theorem, it remains, by the definition
of the uniqueness quantifier and Rule EI, only to show that:

∀x(A!x&∀F(xF ≡ ϕ)→ x=a)

So by GEN, assume both A!x and ∀F(xF ≡ ϕ), to show x=a. Given the former,
we now know both a and x are abstract, and from the latter and (ϑ), it follows
that:

∀F(xF ≡ aF)

Now note that the proof of (962.2) goes exactly like the proof of the second-
order version (245.2). As part of the proof of (245.2), we established that
(245.1), i.e., that ∀F(xF ≡ yF) implies �∀F(xF ≡ yF). This holds matter what
type x and y are; the reasoning in (245.1) converts to a proof of (962.1), axiom
(935.30) and the theorems in (959.7) [179]. So, no matter what type x and a
have, it follows from A!x, A!a, and ∀F(xF ≡ aF) that:

(ζ) �∀F(xF ≡ aF)
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It remains to show that (ζ) implies x=a for every type t. But t falls into one of
the following mutually exclusive and jointly exhaustive cases:

• t = i

• t = 〈t′〉, for some type t′

• t = 〈t′1, . . . , t′n〉, for some types t′1, . . . , t
′
n, where n ≥ 2

• t = 〈〉

Note that these four cases correspond to the four cases of the definition of
identity for abstract objects, (933.9) – (933.12). In each of these cases, the
definitions imply that abstract objects x and y, of any type t, which necessarily
encode the same properties are identical. Hence, in each case, it follows from
(ζ) that x=a. ./

(963.3) Let t be any type, α be a variable of type t, A! have type 〈t〉, F be
variable having type 〈t〉, and ϕ be any formula in which α doesn’t occur free.
Then (963.1) holds and by the Rule of Actualization:

A∃!α(A!α&∀F(αF ≡ ϕ))

So by (959.7) [176.2]:

ıα(A!α&∀F(αF ≡ ϕ))↓ ./

(963.4) (Exercise)

(963.5) The proofs of the typed versions of the theorems listed carry over from
second-order object theory.

(964.1) (Exercise)

(964.2) Suppose, for reductio, that ıpϕ↓ → ıpϕ. Then let ψ be any formula in
which p doesn’t occur free and consider the canonical description:

ıp(A!p&∀F(pF ≡ ψ))

Let’s abbreviate this description as ıpχ. By (963.3):

(ϑ) ıpχ↓

It therefore follows from our reductio hypothesis that ıpχ. But when t is the
type 〈 〉, A!p→¬p is an instance of axiom (935.24), and since ∀p(A!p→¬p) is
a closure, it is also an axiom. Since (ϑ) tells us that ıpχ is significant, we may
instantiate it into ∀p(A!p → ¬p) to obtain A!ıpχ → ¬ıpχ. But since ıpχ↓, the
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antecedent is derivable (a) by setting ϕ to ψ in (963.4), (b) universally general-
izing the result, (c) instantiating to ıpχ to obtain ıpχ = ıpχ→ A!ıpχ, and then
(d) deriving A!ıpχ from the fact that ıpχ = ıpχ. Hence ¬ıpχ. Contradiction. ./

(965.1) The typed versions of the proofs of (268.1) – (268.3) remain proofs in
typed object theory. ./

(965.2) By a proof analogous to (269). ./

(965.3) – (965.4) By proofs analogous to (271.2) and (272.2), respectively. ./

(965.5) Let w,x,y be variables of type t, z be a variable of type t′, and F be a
variable of type 〈t〉. Assume [λz ϕ]↓, where no free occurrence of x in ϕ is in
encoding position [930] (9.1). Note that the condition on x in ϕ implies that
the term [λx w[λz ϕ]] is a core λ-expression [930] (9.2). So [λx w[λz ϕ]]↓ is an
instance of axiom (935.5). Now consider the unary instance of the Corollary to
Kirchner Theorem (965.4):

[λx w[λz ϕ]]↓ → ∀x∀y(∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ]))

Since the antecedent is axiomatic, we may infer:

∀x∀y(∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ]))

So for an arbitrary x and y, it follows that:

∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ])

Since we derived the above from no assumptions with w free, it follows by
GEN:

∀w(∀F(Fx ≡ Fy)→ �(w[λz ϕ] ≡ w[λz ϕyx ]))

So by (95.2):

∀F(Fx ≡ Fy)→∀w�(w[λz ϕ] ≡ w[λz ϕyx ])

By a Rule of Substitution and the modally strict equivalence of the Barcan
Formulas (167.1) and (167.2):

(ϑ) ∀F(Fx ≡ Fy)→ �∀w(w[λz ϕ] ≡ w[λz ϕyx ])

Now our goal is to show that we can derive the following from our initial as-
sumption:

∀F(Fx ≡ Fy)→ [λz ϕ]=[λz ϕyx ]

So assume ∀F(Fx ≡ Fy) (as a local assumption). It then follows from (ϑ) that
�∀w(w[λzϕ] ≡ w[λzϕyx ]). Now let O! be a defined constant of type 〈〈t′〉〉. Then
it is straightforward to derive, from definition (933.10):
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(ξ) (O![λz ϕ] &O![λz ϕyx ])→ ([λz ϕ]=[λz ϕyx ] ≡ �∀w(w[λz ϕ] ≡ w[λz ϕyx ]))

But the first conjunct of the antecedent follows from our initial assumption,
for [λz ϕ]↓ → O![λz ϕ] is an instance of axiom (935.22). And we can derive the
second conjunct of the antecedent from what we know:

By our initial assumption, [λz ϕ]↓. But given the condition on x in ϕ,
we also know that [λx [λz ϕ]↓]↓. So we can instantiate [λx [λz ϕ]↓] into
our local assumption ∀F(Fx ≡ Fy), to obtain [λx [λzϕ]↓]x ≡ [λx [λzϕ]↓]y.
Applying β-Conversion to both sides, this reduces to [λz ϕ]↓ ≡ [λz ϕ]↓yx.
Hence, [λz ϕ] ↓yx, i.e., [λz ϕyx ] ↓. So by the relevant instance of axiom
(935.22), O![λz ϕyx ].

Since we’ve established both conjuncts of the antecedent of (ξ), it follows that:

[λz ϕ]=[λz ϕyx ] ≡ �∀w(w[λz ϕ] ≡ w[λz ϕyx ])

And since we’ve established the right-hand side, it follows that [λzϕ]=[λzϕyx ].
./

(965.6) Let t be any type, x be a variable of type t and F a variable of type 〈t〉.
Assume ∀x([λF xF]↓), for reductio. Now consider the type 〈t〉. Since we can
form an instance of theorem (965.2) in which the x and y are variables of type
〈t〉, we can express such an instance by using F and G as variables of 〈t〉, A! as
a constant of type 〈〈t〉〉 and H as a variable of type 〈〈t〉〉, thereby obtaining the
following:

∃F∃G(A!F &A!G &F,G&∀H(HF ≡HG))

Let P and Q be such properties, so that we know:

A!P &A!Q & P ,Q&∀H(HP ≡HQ)

So, by comprehension for abstract objects of type t, there is an abstract object
of type t that encodes just P . Suppose a is such an object, so that we know:

(ϑ) aP &¬aQ

Then by our reductio assumption, [λF aF]↓. So where ϕ is aF, we have the
following unary instance of the Corollary to the Kirchner Theorem (965.4):

[λF aF]↓ → ∀F∀G(∀H(HF ≡HG)→ �(aF ≡ aG))

Since we know the antecedent, it follows that:

∀F∀G(∀H(HF ≡HG)→ �(aF ≡ aG))

By instantiating the above to P and Q, we obtain:
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∀H(HP ≡HQ)→ �(aP ≡ aQ))

But we know the antecedent, and so:

�(aP ≡ aQ)

Hence aP ≡ aQ, which contradicts (ϑ). ./

(966.1) Let x, F, and O! have the types indicated by the statement of the the-
orem. By the Observation in (930), we know that [λFO!F & x[λz Fz]] is a core
λ-expression. So as an instance of axiom (935.5), we know:

[λFO!F & x[λz Fz]]↓

We can’t directly infer from this that [λFO!F & xF]↓ since η-Conversion yields
that [λz Fz] = F only under the condition that O!F. But we can establish that
[λFO!F & xF]↓ by appealing to the following instance of axiom (935.28):

([λFO!F & x[λz Fz]]↓&�∀F((O!F & x[λz Fz]) ≡ (O!F & xF)))→
[λFO!F & xF]↓

So to prove our theorem, it remains only to show:

�∀F((O!F & x[λz Fz]) ≡ (O!F & xF))

By GEN and RN, it suffices to show:

(O!F & x[λz Fz]) ≡ (O!F & xF)

So by propositional logic, we have to show:

O!F→ (x[λz Fz] ≡ xF)

So assume O!F. Then by η-Conversion (935.27), [λz Fz] =F. But then from the
tautology x[λz Fz] ≡ x[λz Fz], it follows that x[λz Fz] ≡ xF. ./

(966.2) Let x be a variable of type t, F and G be variables of type 〈t〉, O! be a
defined constant of type 〈〈t〉〉, and H be a variable of type 〈〈t〉〉. Now take O!F
and O!G as global assumptions.

(→) As a local assumption, suppose:

(ϑ) �∀x(xF ≡ xG)

It then follows from our global assumptions and local assumption that F =G,
by definition (933.10). Hence from the logical theorem that �∀H(HF ≡ HF), it
follows that �∀H(HF ≡HG), by Rule =E.484

(←) Now let �∀H(HF ≡ HG) be our local assumption. To show �∀x(xF ≡ xG),
first note that the following is an instance of Kirchner’s Theorem (965.2), raised
to the type 〈t〉:
484There is also a proof of this direction that doesn’t use either definition of of F =G (933.10) or

the fact that F and G are ordinary. That is, (ϑ) is sufficient to derive �∀H(HF ≡HG). Consider the
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[λFO!F & xF]↓ ≡ �∀F∀G(∀H(HF ≡HG)→ ((O!F & xF) ≡ (O!G & xG)))

By (966.1), the left condition is a theorem, and so:

(ζ) �∀F∀G(∀H(HF ≡HG)→ ((O!F & xF) ≡ (O!G & xG)))

By now familiar modal reasoning using the Converse Barcan Formula, it fol-
lows that:

∀F∀G�(∀H(HF ≡HG)→ ((O!F & xF) ≡ (O!G & xG)))

Hence by ∀E:

�(∀H(HF ≡HG)→ ((O!F & xF) ≡ (O!G & xG)))

By the K axiom, this implies:

�∀H(HF ≡HG)→ �((O!F & xF) ≡ (O!G & xG))

From this and our local assumption, it follows that:

�((O!F & xF) ≡ (O!G & xG))

Now the derivation �((ϕ&ψ) ≡ (χ&θ)) ` �((ϕ&χ)→ (ψ ≡ θ)) is valid:

Proof. We leave it as an exercise to show that there is a modally strict
derivation of (ϕ&χ)→ (ψ ≡ θ) from the premise (ϕ&ψ) ≡ (χ&θ). Hence
by RN, there is a derivation of necessitation of the conclusion from the
necessitation of the premise.

So from our last result, it follows that:

�((O!F &O!G)→ (xF ≡ xG))

So by the K axiom:

(ξ) �(O!F &O!G)→ �(xF ≡ xG)

But both O!F and O!G are global assumptions. And it is easy to show both:

following instance of Comprehension for Abstract Objects:

∃x(A!x&∀K(xK ≡ �∀H(HK ≡HG)))

Let a be such an object, so that we know:

(ξ) A!a&∀K(aK ≡ �∀H(HK ≡HG))

If we instantiate the second conjunct to G, we therefore know:

aG ≡ �∀H(HG ≡HG)

But it easy to establish the right side as a theorem – it follows by GEN and RN from the tautology
HG ≡ HG. Hence, aG. But (ϑ) implies, by the T schema, ∀x(xF ≡ xG), and so implies aF ≡ aG, by
∀E. Hence aF, by biconditional syllogism. But if we instantiate the second conjunct of (ξ) to F, we
have aF ≡ �∀H(HF ≡HG). Hence �∀H(HF ≡HG).
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O!F ≡ �O!F

O!G ≡ �O!G

Proof. The left-to-right direction of each of the above follows by (959.7)
[180.1], and the right-to-left direction is an intance of the T schema.

Hence, we know both �O!F and �O!G, from which we may infer �(O!F &O!G)
by familiar modal reasoning. Then by (ξ), �(xF ≡ xG). Since x isn’t free in any
assumption, we may infer by GEN:

∀x�(xF ≡ xG)

So by the Barcan formula, �∀x(xF ≡ xG). ./

(966.3) Let t be any type, F and G be variables of type 〈t〉, O! be a defined
constant of type 〈〈t〉〉, andH be a variable of type 〈〈t〉〉. Then assumeO!F,O!G),
and �∀H(HF ≡ HG). Then where x is a variable of type t, it follows By (966.2)
that �∀x(xF ≡ xG). Hence, we’ve established the left disjunct of the definiens
of the definition of F=G (933.10). ./

(967.2) Let t be any type, and F and G be variables of type 〈t〉, O! be a defined
constant of type 〈〈t〉〉, and H a variable of type 〈〈t〉〉. Then we derive our theo-
rem from an instance of the safe extension axiom (935.28), by establishing the
antecedent of that instance. The following is an instance of axiom (935.28):

([λFGO!F &O!G &�∀H(HF ≡HG)]↓ &
�∀F∀G((O!F &O!G &�∀H(HF ≡HG)) ≡ (O!F &O!G &�∀x(xF ≡ xG))))→
[λFGO!F &O!G &∀x(xF ≡ xG)]↓

So to prove our theorem, it suffices to show both conjuncts of the antecedent.
But in the first conjunct, the term:

[λFGO!F &O!G &�∀H(HF ≡HG)]

is a core λ-expression. So the first conjunct is axiomatic. It therefore remains
only to show the second conjunct, i.e.,

�∀F∀G((O!F &O!G &�∀H(HF ≡HG)) ≡ (O!F &O!G &�∀x(xF ≡ xG)))

By GEN and RN, it suffices to show:

(O!F &O!G &�∀H(HF ≡HG)) ≡ (O!F &O!G &�∀x(xF ≡ xG))

So by propositional logic, we have to show:

(O!F &O!G)→ (�∀H(HF ≡HG) ≡ �∀x(xF ≡ xG))
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But this is an immediate consequence of (966.2). ./

(967.2) [Alternative Proof:] We derive our theorem from an instance of the safe
extension axiom (935.28), by establishing the antecedent of that instance. The
following is an instance of axiom (935.28):

([λFGO!F &O!G &�∀x(x[λz Fz] ≡ x[λzGz])]↓ &
�∀F∀G((O!F &O!G &�∀x(x[λz Fz] ≡ x[λzGz])) ≡ (O!F &O!G &�∀x(xF ≡ xG))))→

[λFGO!F &O!G &∀x(xF ≡ xG)]↓

So to prove our theorem, it suffices to show both conjuncts of the antecedent.
But in the first conjunct, the term:

[λFGO!F &O!G &�∀x(x[λz Fz] ≡ x[λzGz])]

is a core λ-expression. So the first conjunct is axiomatic. It therefore remains
only to show the second conjunct, i.e.,

�∀F∀G((O!F &O!G &�∀x(x[λz Fz] ≡ x[λzGz])) ≡ (O!F &O!G &�∀x(xF ≡ xG)))

By GEN and RN, it suffices to show:

(O!F &O!G &�∀x(x[λz Fz] ≡ x[λzGz])) ≡ (O!F &O!G &�∀x(xF ≡ xG))

So by propositional logic, we have to show:

(O!F &O!G)→ (�∀x(x[λz Fz] ≡ x[λzGz]) ≡ �∀x(xF ≡ xG))

So assumeO!F andO!G. Then by η-Conversion (935.27), we know both [λzFz]=
F and [λzGz]=G. (→) Assume �∀x(x[λz Fz] ≡ x[λzGz]). Then by two applica-
tions of Rule =E, �∀x(xF ≡ xG). (←) Assume �∀x(xF ≡ xG). Then by the sym-
metry of identity and two applications of Rule =E, �∀x(x[λz Fz] ≡ x[λz Gz]).
./

(967.4) (Exercise)

(967.6) (Exercise)

(967.8) (Exercise)

(968.1) We prove our theorem by cases:

• O!x→ x =E x, where x has type i and O! has type 〈i〉

• O!F→ F=E F, where F has type 〈t〉, for any type t, and O! has type 〈〈t〉〉

• O!F→ F =E F, where F has type 〈t1, . . . , tn〉 (n ≥ 2), for any types t1, . . . , tn,
and O! has type 〈〈t1, . . . , tn〉〉

• O!p→ p=E p, where p has type 〈〉 and O! has type 〈〈〉〉.
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Case 1. Show O!x → x =E x, where x has type i and O! has type 〈i〉. Assume
O!x. Then by the idempotence of & (938) [85.6], O!x & O!x. Now where F
is a variable type 〈t〉, it is a tautology that Fx ≡ Fx. Hence by GEN and RN,
�∀x(Fx ≡ Fx). So by &I (938) [86.1], O!x&O!x&�∀x(Fx ≡ Fx). Independently,
[λxy O!x & O!y & �∀F(Fx ≡ Fy)] is a core λ-expression, we know by axiom
(935.5) that:

[λxy O!x&O!y &�∀F(Fx ≡ Fy)]↓

So, independently, by β-Conversion (935.26), it is a theorem that:

[λxy O!x&O!y &�∀F(Fx ≡ Fy)]xy ≡ (O!x&O!y &�∀F(Fx ≡ Fy))

So by GEN:

∀x∀y([λxy O!x&O!y &�∀F(Fx ≡ Fy)]xy ≡ (O!x&O!y &�∀F(Fx ≡ Fy)))

Instantiating both universal quantifiers to x:

[λxy O!x&O!y &�∀F(Fx ≡ Fy)]xx ≡ (O!x&O!x&�∀F(Fx ≡ Fx))

Since we’ve established the right side, it follows that:

[λxy O!x&O!y &�∀F(Fx ≡ Fy)]xx

Hence by definition (967.1) and infix notation, x=E x. ./

Case 2. Show O!F→ F=E F, where F has type t, for any type t, and O! has type
〈t〉. Assume O!F. Then by the idempotence of & (938) [85.6], O!F &O!F. Now
where x is a variable type t′, it is a tautology that xF ≡ xF. Hence by GEN and
RN, �∀x(xF ≡ xF). So O!F &O!F &�∀x(xF ≡ xF). Independently, by (967.2), it
is a theorem that:

[λFGO!F &O!G &�∀x(xF ≡ xG)]↓

We leave it as an exercise to show, by an appeal to β-Conversion (935.26), that
it is a theorem that:

[λFGO!F &O!G &�∀x(xF ≡ xG)]FF ≡ (O!F &O!F &�∀x(xF ≡ xF))

Since we’ve established the right side, it follows that:

[λFGO!F &O!G &�∀x(xF ≡ xG)]FF

Hence by definition (967.3) and infix notation, F=E F. ./

Case 3. (Exercise)

Case 4. Show O!p → p =E p, where p has type 〈〉 and O! has type 〈〈〉〉. So
assumeO!p, whereO! has type 〈〈〉〉. Then by the idempotence of & (938) [85.6],
O!p&O!p. But now consider the property [λx p], where x is a variable of type
i. By axiom (935.22), we know O![λx p], where O! has type 〈〈i〉〉. Then by Case
2, we’ve established [λxp]=E [λxp]. Hence, O!p&O!p&[λxp]=E [λxp]. By now
familiar reasoning, we independently know:
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[λpqO!p&O!q& [λx p]=E [λx q]]↓

Hence, by β-Conversion:

[λpqO!p&O!q& [λx p]=E [λx q]]pp ≡ (O!p&O!p& [λx p]=E [λx p])

Since we’ve established the right side:

[λpqO!p&O!q& [λx p]=E [λx q]]pp

Hence by definition (967.7) and infix notation, p=E p ./

(968.3) – (968.5) (Exercises)

(971.5) Follow the proof in (486.1), but first (a) formulate a type-theoretic
version of the notion of a condition on propositional properties, as defined
in (480), (b) prove a type-theoretic version of theorem (482.1), which asserts
∃x(Situation(x)&∀F(xF ≡ ϕ)), provided ϕ is a condition on propositional prop-
erties in which x doesn’t occur free, and (c) prove a type-theoretic version of
theorem (471), which asserts Situation(x)→ ((x |= p) ≡ x[λy p]). We leave these
as simple exercises. ./

(971.6) (Exercise)

(971.7) From the assumption that ϕ↓, the proof now follows that of (511.3). ./

(971.9) – (971.11) (Exercises)

(971.12) From the assumption that ϕ↓, the proof now follows that of (545.5).
./

(971.13) (Exercise)

(972.1) Since [λx1 . . .xn w |= Fnx1 . . .xn] is a core λ-expression (i.e., none of
the variables bound by the λ occur in encoding position), it is axiomatic that
[λx1 . . .xnw |= Fnx1 . . .xn]↓, by (935.5). ./

(972.3) (Exercise)

(972.4) Our proof strategy is by conditional proof, outlined as follows:

(A) Assume A!G.

(B) Infer �¬∃x1 . . .∀xnGx1 . . .xn from (A).

(C) Show: �¬∃x1 . . .∀xnGx1 . . .xn ` ∀x1 . . .∀xn¬Gwx1 . . .xn.
(Note that G is in the premise and Gw is in the conclusion.)

(D) Apply Rule RN to (C) to conclude:
��¬∃x1 . . .∀xnGx1 . . .xn ` �∀x1 . . .∀xn¬Gwx1 . . .xn.

(E) Apply the 4 schema to (B) to derive ��¬∃x1 . . .∀xnGx1 . . .xn.
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(F) Conclude, from (D) and (E) that �∀x1 . . .∀xn¬Gwx1 . . .xn.

So it remains to show only steps (B) and (C).

(B) Assumption (A) implies �A!G, since A! is a rigid property (959.7) [180.2].
Independently, the application of Rule RM to axiom (935.24) yields:

�A!G→ �¬∃x1 . . .∀xnGx1 . . .xn

Hence, �¬∃x1 . . .∀xnGx1 . . .xn.

(C) We show this by first establishing:

�¬∃x1 . . .∀xnGx1 . . .xn→∀x1 . . .∀xn¬Gwx1 . . .xn

and then applying (937.4) [63.10]. So assume �¬∃x1 . . .∀xnGx1 . . .xn. It fol-
lows by quantified modal logic that �∀x1 . . .∀xn¬Gx1 . . .xn. By n applications
of CBF, we therefore know ∀x1 . . .∀xn�¬Gx1 . . .xn. Instantiate to arbitrarily
chosen objects x1, . . .xn, having types t1, . . . , tn, respectively, so that we have
�¬Gx1 . . .xn. So by a fundamental theorem of possible worlds (971.9), it fol-
lows that ∀w′(w′ |= ¬Gx1 . . .xn). Instantiate to w, to obtain w |= ¬Gx1 . . .xn. Then
since possible worlds are coherent (971.8), it follows that:

¬w |= Gx1 . . .xn

But the following is an instance of λ-Conversion:

[λx1 . . .xnw |= Gx1 . . .xn]x1 . . .xn ≡ w |= Gx1 . . .xn

Our last two results imply:

¬[λx1 . . .xnw |= Gx1 . . .xn]x1 . . .xn

which by definition (972.2) yields ¬Gwx1 . . .xn. Since x1, . . . ,xn were arbitrarily
chosen, it follows that:

∀x1 . . .∀xn¬Gwx1 . . .xn ./

(973.2) Assume ∃zGz and ExtensionOf (x,G). By GEN, we have to show xF →
O!F. So sssume xF. Then by definition (973.1), ∀z(Fz ≡ Gz). Hence ∃zFz.
But then by axiom (935.24), ¬A!F. Then by the type-theoretic counterpart of
theorem (222.2) (exercise), O!F. ./

(973.3) Assume ¬∃zGz and ExtensionOf (x,G). By GEN, we have to show A!F→
xF. So assume A!F. Then by axiom (935.24), ¬∃zFz. From this and the assump-
tion that¬∃zGz it follows, by the type-theoretic counterpart of theorem (103.9)
(exercise), that ∀z(Fz ≡ Gz). From this, the assumption that ExtensionOf (x,G),
and definition (973.1), it follows that xF. ./
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(973.4) Assume (A) O!G, (B) ¬∃zGz, (C) ExtensionOf (x,G), (D) A!H, and (E)
ExtensionOf (y,H). By (C), (E), and definition (973.1), we know that A!x and
A!y. Moreover, sinceH is abstract (D), we know by axiom (935.24) that ¬∃zHz.
From this and (B) it follows that ∀z(Gz ≡ Hz). From this last fact, and the
facts that ∀F(xF ≡ ∀z(Fz ≡ Gz)) (by (C) and definition 973.1) and ∀F(yF ≡
∀z(Fz ≡ Hz)) (by (E) and definition 973.1), it follows that ∀F(xF ≡ yF). From
this fact and the previously established facts A!x and A!y, it follows that x=y,
by (962.2). ./

(973.5) (Exercise)

(974.1) – (974.2) (Exercises)

(975.3) – (974.5) (Exercises)

(978.12) – (978.16) (Exercises)

(978.17) Assume Fictional-R(F). Then if we take the variable x in (978.13) to
have type 〈i〉 and instantiate that variable to F, then where A! has type 〈〈i〉〉,
it follows that A!F. Note independently that by applying Rule RN to axiom
(935.24), we know:

�(A!F→¬∃xFx)

So by the K schema, �A!F→ �¬∃xFx). But we’ve established A!F. So �A!F, by
(959.7) [180.2]. Hence, �¬∃xFx, i.e., ¬♦∃xFx. ./

(978.19) (Exercise)

(980.3) We want to show:

T = ıx(A!x&∀F(xF ≡ ∃p(T |= p&F=[λy p])))

Since both terms flanking the identity sign denote situations and thus abstract
objects, it suffices to show, by (962.2) and GEN:

TG ≡ ıx(A!x&∀F(xF ≡ ∃p(T |= p&F=[λy p])))G

So, we prove both directions of the biconditional.

(→) Assume TG, to show:

(ϑ) ıx(A!x&∀F(xF ≡ ∃p(T |= p&F=[λy p])))G

But note that the description in (ϑ) is strictly canonical (963.5) [260.2]. For if
we let ϕ be the formula ∃p(T |=p&F=[λyp]), then it is straightforward to show
that:

`� ∀F(ϕ→ �ϕ)
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We leave this as an exercise. Then by the modally strict Abstraction Principle
proved in (963.5) [261.3], we know that:

(ξ) ıx(A!x&∀F(xF ≡ ∃p(T |= p&F=[λy p])))G ≡ ∃p(T |= p&G=[λy p])

So to show (ϑ), it suffices to show ∃p(T |= p &G = [λy p]). Since T is a situa-
tion, every property T encodes is propositional (971.2). So G is a propositional
property. It follows by (970) that ∃p(G= [λy p]). Let q be such a proposition,
so that we know G=[λy q]. Since TG by hypothesis, it follows that T[λy q]. But
since T is a situation, this last result implies T |= q, by (971.1) and (971.3). So
we have established T |= q&G=[λy q]. Hence ∃p(T |= p&G=[λy p]).

(←) Assume ∃p(T |= p&G=[λyp]). Let q be such a proposition, so that we know
T |= q&G= [λy q]. Since T is a situation, the first conjunct implies T [λy q], by
(971.1) and (971.3). But, then by the second conjunct and Rule =E, TG. ./

(980.4) (Exercise)

(981.5) To prove contrapositive, i.e., if ` T |= ϕ∗, then `T ϕ, we first prove a
metalemma:

Metalemma: (Contributed by Uri Nodelman): Let T be an imported math-
ematical theory and let the following be an enumeration of the new ax-
ioms introduced by the Importation Principle (981.3):

T |= χ∗1
T |= χ∗2

...

Then there are no theorems of the form T |= ϕ∗ in which ϕ∗ is distinct
from every χ∗i . That is, for every theorem of the form T |= ϕ∗, there must
be an i such that ϕ∗ = χ∗i .

Proof: It suffices to show that there is a situation Tmin such that Tmin |= χ∗i
for all i and such that ¬Tmin |= ϕ∗ for any ϕ∗ distinct from every χi . For
if such an object can be constructed consistently by comprehension, then
nothing forces additional theorems of the form T |= ϕ∗, for ϕ∗ distinct
from every χ∗i . (If the system were to imply additional theorems of that
form, then Tmin can’t be constructed.)

But we can construct such a Tmin. First, extend object theory with a new
statements of the form:

ClosedTheoremT (ψ∗)

to signify that ψ is a closed theorem of T . Do a parallel importation so
that:
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ClosedTheoremT (ψ∗) is an axiom if and only if `T ψ.

Note that there are no axioms or theorems of our system that allow in-
ferences to new theorems of the form ClosedTheoremT (ϕ∗) and nothing
follows from any statement of this form.

Now, consider the abstract object Tmin:

Tmin = ιx(A!x&∀F(xF ≡ ∃p(ClosedTheoremT (p) &F=[λyp])))

Note that the axioms imported with the theory T (in the statement of the
Lemma) are also true in Tmin, i.e., we know:

Tmin |= χ∗1
Tmin |= χ∗2

...

But since there are no new theorems of the form ClosedTheoremT (ϕ∗),
there are no theorems of the form Tmin |= ϕ∗, where ϕ∗ is distinct from
every χ∗i .

Given the existence of Tmin, it follows that if a set of truths of the form
T |= χ∗i are axioms in OT and there are no additional axioms of this form,
then no additional truth of the form T |= ϕ∗, for any ϕ∗ distinct from
every χ∗i , is derivable.

Given this Metalemma, we can now show that `T ϕ follows from ` T |= ϕ∗. For
if the enumerated list of axioms that result by importing T is T |= χ∗1, T |= χ∗2,
. . . , then by the Metalemma, there are no theorems of the form T |= ϕ∗ where
ϕ∗ is distinct from every χ∗i . So there is an i such that ϕ∗ = χ∗i . Suppose k is
such an i, so that we know ϕ∗ = χ∗k . Since T |= χ∗k is one of the imported axioms,
we know that `T χk . But, then, `T ϕ. ./

(981.6) Assume:

(ϑ) ϕ1, . . . ,ϕn `T ψ

(ξ1) ` T |= ϕ∗1
...

(ξn) ` T |= ϕ∗n

By (ϑ) and n applications of the Deduction Theorem, we know:

(ω) `T ϕ1→ (. . .→ (ϕn→ ψ) . . .)

Note separately that from (ξ1) – (ξn) we may infer, respectively, by Metarule
(981.5), that:
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(ζ1) `T ϕ1

...

(ζn) `T ϕn

Then by n applications of Modus Ponens in T to (ω) and (ζ1), . . . , (ζn), it follows
that `T ψ. So by the Importation Principle (981.3), T |= ψ∗. ./

(984.1) We first prove that the condition T |= FτT is a rigid condition on prop-
erties F:

Assume T |= FτT . Since T is, by hypothesis, a situation, it follows from
(971.3) that TΣFτT , and by (971.1) that T[λy FτT ]. Hence by the axiom
for the rigidity of encoding (935.30), �T[λy FτT ], i.e., by reversing our
definitions, �T |= FτT . So by conditional proof, T |= FτT → �T |= FτT .
Since this is a theorem, it follows by GEN that ∀F(T |= FτT → �T |= FτT ).
But we’ve established this last result by modally strict reasoning. Hence
`� ∀F(T |= FτT → �T |= FτT ), by RN. So T |= FτT is a rigid condition on
properties.

It follows by (963.5) [261.3] that:

ıx(A!x&∀F(xF ≡ T |= FτT ))F ≡ T |= FτT

So by the identification of τT in (983.1), it follows by Rule =E that:

τT F ≡ T |= FτT ./
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