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Abstract

Linsky & Zalta (1994) argued that simplest quantified modal
logic (SQML), with its fixed domain, can be given an actualist inter-
pretation if the Barcan formula is interpreted to conditionally assert
the existence of contingently nonconcrete objects. But SQML itself
doesn’t require the existence of such objects; in interpretations of
SQML in which there is only one possible world, there are no contin-
gent objects, nonconcrete or otherwise. I defend an axiom for SQML
that will provably (a) force the domain to have the relevant objects
and thereby (b) force the existence of more than one possible world,
thereby forestalling modal collapse. I show that the new axiom can
be justified by describing the theorems that can be proved when
it is added to SQML. I further justify the axiom by the reviewing
the theorems the axiom allows us to prove when we assume object
theory (‘OT’), in its latest incarnation, as a background framework.
Finally, I consider the conclusions one can draw when we consider
the new axiom in connection with actualism, as this view has been
(re-)characterized in recent work.

*This paper includes a number of (edited) excerpts from different sections of an unpub-
lished manuscript (cited as Zalta m.s.). These have been woven together here to present a
more unified picture of a useful axiom in object theory.

†I’m grateful to Seyed Mousavian for organizing, and inviting me to contribute to, this
Festschrift for Bernie Linsky. I first met Bernie when he spent his 1989–1990 sabbatical
year at Stanford. We discovered that we were both intrigued by issues in modal logic, in-
cluding the relationship between Lewis’s view (that there exist possible objects that aren’t
actual) and the Meinongians view (that there are possible objects that don’t existent). Our
subsequent collaboration has yielded 6 papers. In several of those works, Bernie suggested
a number of nice ways of defending and extending my theory of abstract objects. That
theory wouldn’t be where it is today if I hadn’t had the benefit of his suggestions for under-
standing the theory’s epistemology and extending its metaphysical application. It is my
great pleasure to be able to contribute to this volume in his honor.
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1 Introduction

In this paper, I discuss several issues in quantified modal logic (QML).
I’ll focus first on (the axioms and rules of) the simplest QML (SQML),
which I take to be quantified S5 under a semantics without an acces-
sibility relation on possible worlds but with a fixed domain of individ-
uals. Later, I’ll focus on object theory, which involves a further exten-
sion of SQML. To set the stage, I must first briefly (and somewhat freely)
summarize the argument in Linsky & Zalta 1994 (hereafter ‘L&Z’). In
that paper, L&Z argued that there are two (incompatible) interpreta-
tions of SQML. Though we called these ‘possibilist’ and ‘actualist’ in-
terpretations, the understanding of these terms have changed since L&Z
was written and so we might more neutrally call the two interpretations
‘Meinongian’ and ‘Quinean’ (cf. Meinong 1904, Quine 1948).1 The key
task of L&Z was to show that the following two theorems of SQML were
unobjectionable no matter which interpretation of the logic one adopted:

• Barcan (1946) Formula: ^∃xϕ→∃x^ϕ (BF^)

• Necessary ‘Existence’: ∀x�∃y(y=x) (NE)

The Meinongian interpretation regards the quantified formula ∃xϕ as
asserting only that there is an x such that ϕ, without implying there ex-
ists an x such that ϕ. (To formally assert there exists an x such that ϕ,
one would add an existence predicate and assert ∃x(E!x&ϕ).) Under the
Meinongian interpretation of the quantifier, BF^ asserts only that if pos-
sibly something is ϕ, then something is possibly ϕ. When the antecedent
is true for a particular formula ϕ, BF doesn’t imply that something pos-
sibly such that ϕ exists. Rather, if one assumes that there are contingently
nonexisting objects, then BF^ implies, given facts such as that b doesn’t
have a sister but might have, only that something (that doesn’t exist)
that might be b’s sister. And NE only asserts that everything is nec-
essarily identical to something, not that everything necessarily exists.
On this interpretation, there are two kinds of contingent objects, those
that contingently exist and those the contingently fail to exist. Using

1By calling the second interpretation ‘Quinean’, I’m not suggesting that Quine would
accept the logic under this interpretation. I’m only invoking Quine’s name because this
interpretation of the logic is based on his understanding of the quantified formula ∃xϕ.
Quine would no doubt reject the two theorems named (BF^) and (NE) below, under this
or any other interpretation.
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this Meinongian interpretation of the quantifier, both Parsons 1980 and
Zalta 1983 provided coherent accounts of nonexistent objects that are
contingently nonexistent.

The Quinean interpretation of SQML required a different understand-
ing of the quantified formula ∃xϕ. By supposing that this formula as-
serts there exists an x such that ϕ, one can interpret BF^ as asserting: if
possiby there exists something that is ϕ, then there exists something that
is possibly ϕ. L&Z then suggested that if one assumes that contingently
nonconcrete objects exist and are actual, then BF^ implies, given the da-
tum that b doesn’t have a sister but might have, only that there exists
something actual that might be b’s sister. Moreover, while NE, under this
interpretation, asserts that everything necessarily exists, it doesn’t assert
that everything is necessarily concrete, for one may suppose that there
are two kinds of actually existing contingent objects, the contingently
concrete and the contingently nonconcrete.2 I offered this alternative
Quinean interpretation of my theory of abstract objects as a kind of Pla-
tonism that avoids Meinongianism, thereby avoiding a commitment to
(contingently and necessarily) nonexistent objects (Zalta 1983, 51–52;
1988, 103).

L&Z found that the SQML was neutral between these two interpreta-
tions. They also argued that the Quinean interpretation was consistent
with the definition of actualism used at the time, namely: everything
there is, i.e., everything that exists, is actual. The existence of actual
nonconcrete, but possibly concrete, objects is consistent with this defi-
nition. So SQML had both a possibilist (Meinongian) and an actualist
(Quinean) interpretation.

Given this context, I’d like to discuss three issues. The first issue
concerns the fact that in both of their interpretations of SQML, L&Z im-
plicitly asserted a semantic principle to the effect that the fixed domain
of individuals contains either contingently nonexisting objects (on the
Meinongian interpretation) or contingently nonconcrete objects (on the
Quinean interpretation). The issue about this is twofold: (a) SQML it-
self doesn’t assert any axiom that requires the domain to include such
objects, and (b) as far as standard modal semantics goes, there are le-
gitimate semantic interpretations of SQML in which there is only one
possible world in the semantic domain of primitive possible worlds, giv-

2See Williamson 1998 for a somewhat different way of positioning this interpretation
of QML.
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ing rise to ‘modal collapse’, where every formula and its necessitation
are equivalent (i.e., where ϕ ≡ �ϕ is true, for every ϕ). Kripke semantics
(1959, 1963) only assumes a non-empty domain of possible worlds and
those semantic interpretations that contain only one world foreclose the
option of having contingently nonexistent or contingently nonconcrete
objects, since they foreclose all contingencies. I address (both compo-
nents of) this first issue in Section 2, where I add to the SQML an ax-
iom that will (a) force the domain to have the relevant objects and (b)
forestall modal collapse. The investigation will, therefore, be primar-
ily proof-theoretic, with semantic principles mentioned only to forestall
ambiguity.

The second issue is connected to the first, namely, an investigation
into the ways in which the new axiom being proposed can be justified.
Later in this investigation, I’ll use object theory (‘OT’), in its more recent
incarnation, as a framework for conducting the investigation. The basic
form of justification is that the new axiom allows one to prove interest-
ing philosophical theorems in OT. For example, it allows us to (a) prove
the existence of at least one contingently true proposition and one con-
tingently false proposition, (b) prove the existence of a property that is
contingently exemplified and contingently unexemplified, (c) prove the
existence of at least two possible worlds, one of which isn’t actual, and
(d) prove the existence of discernible objects (these objects were recently
shown, in Nodelman & Zalta 2024, to be a key to reconstructing Frege’s
Theorem without mathematical primitives or axioms).

The third and final issue I consider is how to think about the new
axiom from the point of view of actualism, as this view has been re-
cently characterized in Menzel 2020 and 2024. Menzel has developed
new characterization of actualism and it would appear that the Quinean
interpretation of SQML no longer satisfies the definition. I consider the
issues this raises and then suggest reasons why one may legitimately
view this conclusion as a positive result.

2 An Axiom That Forestalls Modal Collapse

For the remainder of this paper I shall adopt the Quinean interpretation
of SQML, i.e., I’ll use Quine’s understanding of the formula ∃xϕ as as-
serting that there exists an x such that ϕ. And I’ll use ‘there exists’ and
‘there are’ in the metalanguage interchangeably.
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To talk about the existence of contingently nonconcrete objects within
SQML, I’ll need more expressive power than what’s available in that
logic. In particular, I’ll assume that SQML has been extended to include:

• a distinguished primitive predicate E! (being concrete), for which
formulas of the form E!x are to be read: x exemplifies being con-
crete (or x is concrete); intuitively, this predicate denotes a property
whose extension varies from world to world.

• an actuality operator, A, for which formulas of the form Aϕ are to
be read: it is actually the case that ϕ (or actually, ϕ).

• 2nd-order quantification, for which formulas of the form ∀Fnϕ and
∃Fnϕ (for n ≥ 1) are to be read: every n-ary relation F is such that
ϕ and there exists an n-ary relation F such that ϕ.

Let us call the result of extending SQML with this additional expressive
power SQML+. A few words about these extensions are in order.

The concreteness predicate E! allows us to distinguish the following
kinds of objects:

x is contingently concrete ≡df E!x&^¬E!x

x is contingently nonconcrete ≡df ¬E!x&^E!x

x is necessarily concrete ≡df �E!x

Our primary focus in this paper will be on the first two kinds of ob-
jects; we’ll leave necessarily concrete objects, such as Spinoza’s God, if
it exists, for some other occasion. Moreover, we won’t say that noncon-
crete objects are ‘abstract’, but rather reserve ‘abstract’ for those objects
that couldn’t be concrete. Thus, we’ll also sometimes distinguish abstract
from ordinary objects as follows:

x is abstract (‘A!x’) ≡df ¬^E!x

x is ordinary (‘O!x’) ≡df ^E!x

Though being ordinary includes the contingently concrete (because be-
ing concrete implies possibly being concrete), contingently nonconcrete,
and necessarily concrete objects, we’ll focus in this section on ordinary
objects that aren’t necessarily concrete.
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The logic of the operator A plays an important role in what follows,
but it suffices now to mention that the semantic principle governing the
truth of Aϕ is simple: Aϕ is true if and only if ϕ is true at the dis-
tinguished world (of the model). Thus, we’re assuming (a) that (in the
interpretations of modal logic), there is a distinguished actual world wα

(in the domain of possible worlds), and (b) ‘actual’ is not an indexical –
in any (modal) context, the truth of Aϕ is determined by the truth of ϕ
at the actual world. This semantics for A gives rise to an interesting logic
and though we leave the details to a footnote, it does play a role in what
follows.3

The logic of the 2nd-order quantifiers we’ve added to SQML is classi-
cal. We may, for our purposes, assume that for each n, n ≥ 1, the quanti-
fiers ∀Fn and ∃Fn range over a fixed domain of primitive n-ary relations
(n ≥ 1), so that the 2nd-order Barcan formula and its converse are both
valid, i.e., for every n, ∀Fn�ϕ → �∀Fnϕ and �∀Fnϕ → ∀Fn�ϕ. So the
n-ary predicates of SQML+ rigidly denote the primitive relations in the
relevant domain, but at each possible world, these relations may have a

3The logic of actuality has 3 parts: a group of necessary axioms, a contingent axiom,
and a rule of inference. The necessary axioms are: A commutes with ¬, distributes over
→, commutes with ∀α, is idempotent, is necessarily true when true, and applies to every
necessary truth. Formally:

A¬ϕ ≡ ¬Aϕ
A(ϕ→ ψ) ≡ (Aϕ→ Aψ)
A∀αϕ ≡ ∀αAϕ
Aϕ ≡ AAϕ
Aϕ→ �Aϕ
�ϕ ≡ A�ϕ

The contingent axiom is:

Aϕ→ ϕ

The presence of this axiom requires that the Rule of Necessitation (Rule RN) be restricted
– RN may not be applied to any line of a proof that is derived from this axiom. Since the
axioms allow one to derive ϕ → Aϕ from the contingent axiom, ϕ → Aϕ is a contingent
theorem and, thus, so is the further consequence Aϕ ≡ ϕ.

The rule of inference for the logic of actuality is the Rule of Actualization, which in its
simplest form asserts that if ϕ is a theorem, then Aϕ is a theorem. However, if wants to
apply the rule when reasoning under assumptions or premises, then the rule states that
if ϕ is derivable from a set of premises Γ , then Aϕ is derivable from AΓ , i.e., from the set
containing the actualizations of all the premises in Γ .

In thinking about how to best develop the logic of actuality, I’ve benefited from reading
Hazen 1978, 1990, and Hazen, Rin, & Wehmeier 2013. But compare Glazier & Krämer
2024, which offers a different analysis of the actuality operator in QML.
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different exemplification extension (i.e., the set of n-tuples of objects ex-
emplifying the relation at that world). We’ll rely on the fact that classical
2nd-order logic includes a comprehension principle for relations as an
axiom schema.4

With SQML+ as our background logic, we can now introduce, and
discuss interesting consequences of, an axiom that not only forestalls
modal collapse, but that grounds our modal intuitions about contingent
objects and plays a role in proving a variety of other important philo-
sophical claims. The axiom I’m proposing asserts: there might have been
a concrete object that isn’t actually concrete. Formally:

^∃x(E!x&¬AE!x) (1)

This axiom doesn’t assert that there exist concrete objects. A fortiori, it
doesn’t assert that there are concrete objects that exemplify a property
but might not have, or that there are concrete objects that fail to exem-
plify a property but might have. Rather, it is designed to a weak way of
capturing the contingency that the world exhibits with respect to what
is concrete.

Of course, it should be easy to see why this axiom semantically fore-
stalls modal collapse. Let’s suppose, for the moment, that we’ve ex-
tended the standard semantics for SQML to a semantics for SQML+ and
that we can, in the metalanguage, talk about primitive possible worlds
and about the exemplification extensions of properties. Then, for (1) to
be true, the semantics of SQML+ requires there to be at least two possi-
ble worlds, wα and w1, and an object, say a, that is in the exemplification
extension of the property denoted by ‘E!’ at w1, but not in the exempli-
fication extension of this property at wα . So, SQML+ extended with (1)
doesn’t require that there be any concrete objects at the actual world.
That’s a good thing, since otherwise it would hard to call it an a priori
principle of modal logic. (1) asserts only the possibility that there are
concrete objects of a certain sort. Indeed, it implies the possible exis-
tence of contingently concrete objects, for if (1) is added as an axiom to
the logic of SQML+, the following becomes a theorem:

`^∃x(E!x&^¬E!x) (2)

4This schema asserts, for any n ≥ 1:

∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ, provided Fn doesn’t occur free in ϕ.

This guarantees, for example, that every relation has a negation, that every two relations
has a conjunction, etc.
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(The proof is in Appendix A.) Intuitively, at any world w where there
exists a concrete object, say a, that is not actually concrete, it follows
that a is a contingently concrete object at w.

Moreover, it should be clear that (1), if added as an axiom to SQML+,
lets us derive the existence of the contingently nonconcrete objects that
were postulated semantically in L&Z. In other words, given (1) as an
axiom, the following becomes a theorem of SQML+:

` ∃x(¬E!x&^E!x) (3)

(The proof is in Appendix A.)5 By adding (1) as an axiom, we strengthen
SQML+ so that the semantic principle assumed in L&Z becomes deriv-
able in the logic.

Moreover, (1) implies that (4) for some properties F, there are objects
that possibly exemplify F even though they (actually) don’t, and (5) for
some properties F, there are objects that possibly don’t exemplify F even
though they (actually) do. We’ve put ‘(actually)’ in parenthesis to indi-
cate that the theorem holds both with the actuality operator and without,
though one must appeal to the contingent axiom for actuality to prove
the second of the pair. Formally, we have:

` ∃F∃x(^Fx&A¬Fx) (4)
` ∃F∃x(^Fx&¬Fx)

` ∃F∃x(^¬Fx&AFx) (5)
` ∃F∃x(^¬Fx&Fx)

(The proofs are in Appendix A.)
These consequences of (1) allow us formulate, in the language of

SQML+ itself, partial answers to questions about so-called ‘mere pos-
sibilia’ (we will give fuller answers in Section 3). The questions arise in
connection with data that typically involve concreteness-entailing prop-
erties, i.e., properties F such that �∀x(Fx→ E!x). The data has the form
¬∃xFx&^∃xFx and, in SQML+, the second conjunct of such data implies
that ∃x^Fx. For example, since being a diamond and being a donkey are
concreteness-entailing properties, data such as:

5The proof appeals to the contingent axiom Aϕ → ϕ, and so one may not apply Rule
RN and conclude that the theorem is necessarily true. And we shouldn’t be able to derive its
necessity, for (1) doesn’t require that there exist contingently nonconcrete objects at every
possible world! Recall the simple model we developed in the previous paragraph; there
were no contingently nonconcrete objects at w1, but only one contingently concrete object.
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• There are no million carat diamonds but there might have been.

• There are no talking donkeys but there might have been.

imply, respectively that there exist objects that might have been million
carat diamonds and that there exist objects that might have been talking
donkeys. In answer to the question, “What kind of objects serve as a
witness to such existential claims?”, (1) grounds the reply: contingently
nonconcrete objects. In the case of the above data, these would be objects
that aren’t million carat diamonds or talking donkeys but which have the
modal properties possibly being a million carat diamond or possibly being
a talking donkey. Of course, these data don’t definitively imply that the
witnesses are nonconcrete; one might still point to an existing diamond
and claim that though it isn’t a million carats, it could have been, or
point to some particular donkey and claim that though it doesn’t talk it
might have.

But there is more definitive data that implies the existence of con-
tingently nonconcrete objects. For example, if b doesn’t have a sister but
might have, it is reasonable to suggest that one cannot point out an exist-
ing concrete person who might have been b’s sister (Kripke 1972 [1980,
112–114]). Given certain facts about the necessity of one’s origins, there
is no existing, concrete person (not even a first cousin of b) that could
have been b’s sister. Accordingly, the following would constitute data:

• b doesn’t have a sister but might have, and no concrete object could
have been b’s sister.
¬∃xSxb&^∃xSxb&¬∃x(E!x&^Sxb) (6)

Similarly, if there are no aliens but might have been, then one might
legitimately hold the view that there is no concrete object that might
have been an alien. These kinds of cases provide a more definitive rea-
son for adopting (1), since it sets up the response, in the language of
SQML+, that the witnesses to the existential claims of the form ∃x^Fx
(when F is concreteness-entailing) are contingently nonconcrete objects
that exist, fail to be F, but have the modal property possibly being F. In
Section 3.2.2, we’ll see how to give an even fuller answer, by deriving the
world-theoretic truth conditions for these claims in OT itself.

Moreover, (1) and the theorems we can derive from it provide us with
answers to the puzzle about iterated modalities (McMichael 1983). Con-
sider the claim:
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• Daughterless person c might have a daughter who might become
president.
¬∃yDyc&^∃x(Dxc&^P x) (7)

The second conjunct of (7) implies ∃x^(Dxc &^P x), by BF^. But the
daughter of relation D necessarily implies the concreteness of its relata,
i.e., that �∀x∀y(Dxy → E!x & E!y). So (1) clears the ground for claim-
ing, in the language of SQML+, that the witness to the existential claim
∃x^(Dxc&^P x) is a contingently nonconcrete object that exemplifies the
modal property of possibly: being a sister of c and possibly being president.
We’ll see later that in OT, which includes the resources of the relational
λ-calculus, this property can be formally represented as [λx^(Sxc&^P x)].

The foregoing suggests that (1) extends SQML+ with an axiom that
(a) forestalls modal collapse, (b) asserts the existence of the objects de-
scribed semantically in L&Z’s (Quinean) interpretation of the simplest
QML, and (c) provides a framework for answering questions about the
modal reality underlying natural language data in the language of SQML+

itself. Of course, (1) also works well for those who prefer the Meinongian
interpretation of the quantifier and who accept that there are contin-
gently nonexisting objects, for then (1) asserts that possibly, there exist
objects that don’t actually exist. (Recall that, under the Meinongian in-
terpretation, ∃x(E!x& . . .) may be read as “there exists an x such that ϕ”,
and so I’ve used that to read ^∃x(E!x&¬AE!x).) And so by BF^, there
are objects that possibly exist even though they don’t actually exist.

In what follows, though, I describe other reasons for adopting (1).
I will work within object theory (hereafter ‘OT’), which is an extension
of SQML+. Each interesting philosophical theorem that (1) helps us to
prove in OT provides a reason. Moreover, once we define and prove
the existence of possible worlds, we’ll be able to derive, in the language of
OT, the world-theoretic truth conditions of modal claims and thus derive
that the contingently concrete objects implied by (1) are nonconcrete at
the actual world but concrete at other possible worlds.

3 Applications of the New Axiom in OT

In Section 3.1, I’ll first describe the latest version of OT, as found in
Zalta m.s., and this will make it clear how OT extends SQML+. Then,
in Section 3.2, I’ll describe a number of theorems of OT in which (1)
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plays a central role. I’ll limit myself to just those theorems of OT in
which (1) plays a direct or central role, thereby omitting theorems that
(recursively) depend on them.

3.1 The Latest Development of OT

The most recent and fully developed version of OT, which includes (1),
can be described as follows (Zalta m.s.). However, those already familiar
with earlier versions of OT can skip this subsection, with very little loss
of understanding.

3.1.1 The Language of OT

OT is expressible in a language that extends SQML+ with:

• an additional mode of predication, x1 . . .xnF
n (‘x1, . . . ,xn encode Fn’)

that and leaves the (logic of the) classical mode of predication,
Fnx1 . . .xn (‘x1, . . . ,xn exemplify Fn’) completely intact;

• 0-ary relation variables (p,q, . . .), and relation constants (pi ,qi , . . .)
for i ≥ 1;

• complex individual terms of the form ıνϕ (i.e., definite descrip-
tions, interpreted rigidly), where ν is any individual variable; and

• complex n-ary relation terms (n ≥ 0) of the form [λν1, . . . ,νnϕ] (i.e.,
λ-expressions, where the νi are distinct individual variables), in-
terpreted relationally not functionally.

Both kinds of complex terms may fail to denote and so OT uses a negative
free logic for those terms. Identity is not a primitive of (SQML+ or) OT.

To state the axioms of OT, we need not only the definitions of A!x
and O!x given above in Section 2, but also definitions of the conditions
under which it can be said that an individual or a relation exists (this
is especially important given that there are non-denoting terms in the
language) and definitions of the conditions under which it can be said
that individuals or relations are identical. These definitions reveal that
the existence and identity of objects and relations have been reduced to
predication and quantification in a modal context (Zalta forthcoming).
We use τ↓ to express existence; for example, ıxP x↓ asserts “the x that ex-
emplifies P exists”, and [λx¬P x]↓ asserts “(the property) being an x that
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fails to exemplify P exists”. However, when τ↓ holds, we often say, in the
metalanguage, that τ denotes (or has a denotation), or is logically proper,
or is significant. Though the symbol ↓may be unfamiliar, we will use the
familiar symbol = when defining identity conditions for individuals and
relations.

The definitions for existence and identity are given by cases, infor-
mally as follows (see Appendix B for the formal versions):

• An individual exists just in case it exemplifies a property

• An n-ary (n ≥ 1) relation exists relation exists just in case there are
n objects that encode it.

• A proposition p exists just in case the propositional property being
such that p ([λx p]) exists.

• Individuals are identical just in case they are ordinary objects that
necessarily exemplify the same properties or abstract objects that
necessarily encode the same properties.

• Properties are identical just in case they are necessarily encoded by
the same objects.

• n-ary relations (n ≥ 2) are identical just in case identical proper-
ties result when the relations are plugged up by n−1 objects in the
same way; propositions are identical just in case their correspond-
ing propositional properties are identical.

So relation and proposition identity reduces to property identity.

3.1.2 The Axioms and Rules of OT

The axioms and rules of OT govern the primitive and defined expres-
sions, and are, for the most part, the ones you would expect for those
expressions. Exceptions are noted below, and the axioms for the encod-
ing mode of predication will be made explicit. OT uses:

• classical propositional logic and classical predicate logic for con-
stants, variables, and λ-expressions of the form [λx1 . . .xn ϕ] in
which none of the xi occur as one of the arguments of an encoding
formula somewhere in ϕ. However, a negative free logic applies
to all other λ-expressions and to definite descriptions; true atomic
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formulas imply that all of the primary terms of the formula have a
denotation;

• unrestricted substitution of identicals;

• classical S5 modal logic, extended with the new axiom (1);

• the logic for the actuality operator A described in footnote 3; the
Rule of Necessitation can’t be applied to theorems derived from
the contingent axiom Aϕ→ ϕ;

• a classical axiom for definite descriptions, adjusted only to reflect
that descriptions are interpreted rigidly, namely:

y= ıxϕ ≡ ∀x(Aϕ ≡ x=y),

which asserts that y is identical to the x such that ϕ if and only if
all and only xs actually such that ϕ are identical to y; and

• the free logic of the λ-calculus, interpreted relationally, in which
including α- and β-Conversion are conditioned on [λx1 . . .xn ϕ]↓
(η-Conversion need not be conditioned);6 in addition, an axiom of
OT asserts that if [λx1 . . .xnϕ] denotes and �∀x1 . . .∀xn(ϕ ≡ ψ), then
[λx1 . . .xn ψ] denotes.

The axioms for encoding are as follows (we omit the axiom governing n-
ary encoding formulas since we only plan to make use of unary encoding
formulas):

• O!x→¬∃F xF (8)

• xF→ �xF (9)

• ∃x(A!x&∀F(xF ≡ ϕ)), provided x doesn’t occur free in ϕ (10)

The first asserts that ordinary objects fail to encode properties. The sec-
ond asserts that if x encodes a property, it does so necessarily; i.e., en-
coding is rigid. The third is an unrestricted comprehension principle
abstract objects. For a fuller account of the axioms, see Zalta m.s.

6η-Conversion applies to ‘elementary’ λ-expressions of the form [λx1 . . .xn Fx1 . . .xn]
and asserts simply that [λx1 . . .xn Fx1 . . .xn] = F, for any n ≥ 0. The free variable F can be
instantiated by any n-ary relation constant, variable, or denoting λ-expression.
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The definitions and axioms imply that every formula denotes a propo-
sition, that identity is reflexive, symmetric, and transitive, that identity
(both for individuals and relations) is necessary when it holds, and a
number of other theorems that we won’t pause to describe here. How-
ever, it is important to mention that the principle of β-Conversion gov-
erning λ-expressions, yields a comprehension principle for n-ary rela-
tions (n ≥ 0) as a theorem schema:

∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), provided Fn is not free in ϕ and
none of the xi occur as an argument in an encoding formula some-
where in ϕ

When we combine this theorem schema with the formal definitions for
the identity of relations given in Appendix B, i.e., (28), (29), and (30), the
result is a hyperintensional theory of relations. The claim that relations
F and G are necessarily equivalent doesn’t imply that they are identical,
i.e., �∀x1 . . .∀xn(Fx1 . . .xn ≡ Gx1 . . .xn) doesn’t imply that F=G.

3.2 How the New Axiom Functions in OT

Since OT’s modal logic includes (1), it has all the consequences of this
axiom described in Section 2. Thus, OT forestalls modal collapse and
implies: the possible existence of contingently concrete objects (2); the
existence of contingently nonconcrete objects (3); that there are proper-
ties that some objects contingently exemplify (4); and that there prop-
erties that some objects contingently fail to exemplify (5). It thus pro-
vides a framework for demonstrating how the modal properties of con-
tingently nonconcrete objects explain the various sorts of data about so-
called ‘mere possibilia’.

However, as noted earlier, the addition of (1) to OT yields a proof
of a number of interesting philosophical theorems. We discuss these
below. Once possible worlds are defined and their existence proved, we
show that one can derive the world-theoretic truth conditions of modal
claims and derive that the contingently concrete objects implied by (1)
are nonconcrete at the actual world but concrete at other possible worlds.

3.2.1 Theorems Provable With the New Axiom

There are three groups of new theorems provable in OT with the help
of (1). The first group extends the theory of properties and propositions
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(we’re ignoring n-ary relations, n ≥ 2, for simplicity). A second group
extends the theory of possible worlds. And a third group extends the
theory of natural numbers.

To see how (1) in OT extends the theory of properties and proposi-
tions, a word of motivation is in order. Of course it is easy to apply OT
by adding particular assertions such as “Aristotle is a philosopher but
might not have been” (P a&^¬P a). This would guarantee that there is
continently true proposition, namely, P a, and guarantee that there is a
contingently false proposition, namely, ¬P a. But the question of deeper
interest is, how can one prove the existence of a contingently true propo-
sition and a contingently false proposition from first principles, without
applying OT by adding the data? This is of interest because 2nd-order
SQML (i.e., SQML with comprehension for relations), doesn’t imply that
there are any contingent propositions, given that it has interpretations
under which there is modal collapse. Nor does it imply the existence of
any contingently exemplified and contingently unexemplified properties
(or relations).

But SQML+ and OT both do, since they include (1). We’ll focus just
on OT, in which both of the following are theorems:

• There exists a contingently true and a contingently false proposi-
tion.
` ∃p(p&^¬p) &∃p(¬p&^p) (11)

• There exists a property that some object contingently exemplifies
and there exists a property that some object contingently fails to
exemplify.
` ∃F∃x(Fx&^¬Fx) &∃F∃x(¬Fx&^Fx) (12)

Appendix C contains formalizations and proof sketches.
The second group of new theorems extends the theory of possible

worlds previously developed within OT (Zalta 1993). The new theorems
presuppose familiarity with that earlier work, for it includes the object-
language definitions needed to derive the basic axioms of possible world
theory as theorems. So, before we describe the new theorems—presented
in (16) – (19) below—here is a brief sketch of the earlier work. A situation
is defined as any abstract object that encodes only propositional proper-
ties of the form being such that p (‘[λy p]’); s makes p true, or p is true in s
(‘s |= p’) whenever s encodes [λyp]; a possible world is any situation s such
that might be such that all and only true propositions are true in s, and
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a situation s is actual just in case every proposition true in s is true. The
formal definitions are provided in a footnote.7 Since possible worlds are
defined as situations, the formal expression ‘w |= p’ becomes an instance
of the definition s |= p; we may therefore read w |= p as p is true at w. In
what follows, |= always takes the smallest scope, so that s |= p ≡ p is to be
parsed as (s |= p) ≡ p and not as s |= (p ≡ p).

From these definitions, the basic theorems of world theory were de-
rived (Zalta 1993, 414–419). Here are some of the basic theorems that
will play a role in what follows:

• There is a unique possible world that is actual.
` ∃!s(PossibleWorld(s) & Actual(s)) ‘wα’

• A proposition is true if and only if it is true at the actual world.
` p ≡wα |= p (13)

• A proposition is possibly true iff there exists a possible world at
which p is true.
`^p ≡ ∃w(w |= p) (14)

• A proposition is necessarily true iff it is true at all possible worlds.
` �p ≡ ∀w(w |= p) (15)

7Formally:

Situation(x) ≡df A!x&∀F(xF→∃p(F=[λy p]))

s |= p ≡df s[λx p]

PossibleWorld(s) ≡df ^∀p(s |= p ≡ p)

Actual(s) ≡df ∀p(s |= p→ p)

See Zalta 1993, 410–411, 413–414, for additional details.
Note that we didn’t make use of an actuality operator in the definition of Actual(s). So

on the above definition, Actual(s) doesn’t imply �Actual(s). To see why, intuitively consider
an actual situation s at some other possible world w and consider the fact that it encodes
the same propositions no matter what world you consider (by (9)). Then, s makes p true
and p is false at w, then it is not the case that every proposition s makes true is true at w.
But with an actuality operator, one could define Actual(s) as ∀p(s |= p → Ap). Under this
definition, any actual situation s will be actual no matter what the modal context, by the
rigidity of encoding axiom (9 and facts about the actuality operator).

We’ve chosen to keep the original definition in this paper, but as we’ll see below, one
does have to make some allowances – certain facts about the actual world will not be ne-
cessitatable, and this should be expected. See, for example, (13) below and the discussion
that follows.
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In more recent work, it is shown that possible worlds are closed under
the connectives and quantifiers, and modally closed (Zalta m.s.).8

Note that since wα is defined in terms of a rigid definite description,
(13) is derived with the help of the contingent axiom Aϕ→ ϕ. This is not
a flaw: clearly we don’t want to be able to necessitate (13), since if p is,
say, true at the actual world and we then consider a world, say w1, where
p is false, the biconditional claim p ≡ wα |= p is false at w1 (the left side
is false while the right side is true). If one wants a version of (13) that is
necessitatable, then one need only consider the theorem Ap ≡wα |= p.

The addition of (1) to OT let’s us extend this theory of possible worlds
with the following important theorems:

• If there is a contingently true proposition, then there exists a non-
actual possible world.
` ∃p(p&^¬p)→∃w(¬Actual(w)) (16)

• If there is a contingently false proposition, then there exists a non-
actual possible world.
` ∃p(¬p&^p)→∃w(¬Actual(w)) (17)

• There is at least one non-actual possible world.
` ∃w¬Actual(w) (18)

• At least two possible worlds exist.
` ∃w∃w′(w, w′) (19)

Given these theorems, we don’t have to apply OT by adding specific data
of the form ¬p&^p or p&^¬p in order to prove the existence of non-
actual possible worlds. Theorem (14) already guarantees that the addi-
tion of such data requires the existence of worlds that are distinct from
the actual world (exercise). But by extending OT with (1), we have a the-
oretical justification for the existence of non-actual possible worlds with-

8For closure under the primitive connectives and quantifiers, the theorems are:

w |= ¬p ≡ ¬w |= p

w |= (p→ q) ≡ w |= p→ w |= q

w |= ∀αϕ ≡ ∀α(w |= ϕ)

And for modal closure, OT implies that possible worlds satisfy the definition:

ModallyClosed(s) ≡df ∀p((Actual(s)⇒ p)→ s |= p)

whereϕ⇒ ψ is defined as �(ϕ→ ψ). This definition, contributed by Uri Nodelman, differs
from the one used in Zalta 1993; it is more general.
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out having to appeal to any specific contingent truth, or specific contin-
gent falsehood, and thus no need to add additional, applied predicates.
From the possibility that there are concrete objects that aren’t actually
concrete, the existence of non-actual possible worlds is guaranteed and
the fact that there are at least two possible worlds can be derived in the
metaphysics. This doesn’t have to be stipulated in the semantics.

Finally, there is a third group of theorems that become provable with
(1), indeed, ones that are essential to the derivation of second-order
Peano Arithemtic in OT. I shall not go into great detail here, but rather
summarize recently published work in Nodelman & Zalta 2024. In that
paper, we noted that Frege’s theory of natural numbers doesn’t gener-
alize well when formulated in a modal context, since it yields different
natural numbers at different possible worlds.9 To avoid this result, we
adapted Frege’s methods by introducing an actuality operator into the
definition of Numbers(x,G) so that the same group of natural cardinals
constitute the natural numbers at every possible world. We then used
(1) as a replacement for the modal axiom adopted in Zalta 1999.10 Using
(1), we established that OT implies that discernible objects exist, where
we defined a discernible object x (‘D!x’) to be one such such that, for
every object y distinct from x, some property distinguishes y from x.11

Some of the key theorems proved with the help of (1) are:

9At each possible world, the equivalence classes of equinumerous properties will differ,
and since Frege abstracts the numbers from such equivalence classes, his methods would
yield different natural numbers at different possible worlds.

10The modal axiom used in Zalta 1999 asserted: if there is a natural number n that
numbers the Gs, then there might have been a concrete object distinct from all the actual
Gs. Axiom (1) is considerably weaker than this.

11Formally, using D! to represent the property of being discernible, we define:

D!x ≡df ∀y(y,x→∃F¬(Fx ≡ Fy))

It may be of some interest to know that in OT, it is a theorem that there are distinct abstract
objects that are indiscernible; i.e.,

∃x∃y(A!x&A!y & x,y &∀F(Fx ≡ Fy)

The existence of such objects implies that the standard definition of equinumerosity fails
to be an equivalence relation. In Zalta 1999, the workaround was to develop a theory of
Frege numbers as objects that can count only ordinary objects, all of which are discernible.
However, since Frege’s theory assumes that there aren’t indiscernibles in the domain, one
can fully preserve Frege’s number theory in OT by defining the equinumerosity of F and
G with respect to the discernible objects. Then one can recapture Frege’s number theory
so that numbers can count any discernible objects, whether ordinary or abstract, that fall
under a property.
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• Discernible objects exist.
` ∃xD!x

• The predecessor relation P is not an empty relation.
` ∃x∃yPxy

• Natural cardinals are discernible.
`NaturalCardinal(x)→D!x

• Every natural number has a successor.
`Nx→∃y(Ny &Pxy)

See Nodelman & Zalta 2024 for the details.

3.2.2 The Truth Conditions for Modal Claims Derived

To prepare us for the discussion of the possibilism-actualism debate in
the next section, note that we can easily derive, in OT itself, the world-
theoretic facts implied by a datum such as (6). (These facts were de-
scribed semantically in L&Z, not derived from general principles and
primitive modal facts.) By the theorems of world theory described ear-
lier, the three conjuncts of (6) respectively imply:

wα |= ¬∃ySyb

∃w(w |= ∃xSxb)

wα |= ¬∃x(E!x&^Sxb)

The first and third follow from (6) by (13) and the second follows from
(6) by (14).

Given the further assumption that, necessarily, the relata of the sister
of relation S are concrete, it then becomes relatively straightforward to
derive from (6) and this further assumption that:

There is, at the actual world, a contingently non-concrete object
that isn’t a sister of b but which is, at some other possible world,
concrete and a sister of b.

That is, where the further assumption is represented as:

�∀x∀y(Sxy→ E!x&E!y) (20)
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there is a derivation that serves as a witness to the following derivability
claim:

(6), (20) ` ∃x(wα |= (¬E!x&^E!x&¬Sxb) &
∃w(w,wα &w |= (E!x& Sxb))) (21)

(The derivation is in Appendix C.)
Moreover, one can derive, as a theorem (in the language) of OT, the

possible-worlds truth conditions of iterated modalities. Earlier, we con-
sidered the datum that daughterless person cmight have a daughter who
might become President. Where D represents the daughter of relation,
we represented the fact that c might have a daughter who might become
president as:

(ϕ1) ^∃x(Dxc&^P x)

The possible world analysis of this claim is expressible in OT as:

(ψ1) ∃w∃x((w |=Dxc) &∃w′(w′ |= P x))

That is, for some possible world w, there is an object x such that (i) x is a
daughter of c at w and (ii) at some possible world w′, x is president. Now
it is straightforward to show, in OT, that:

` ϕ1 ≡ ψ1 (22)

(The proof is in Appendix C.) Note also that since it follows from ϕ1 that
∃x^(Dxc&^P x), we may infer, for an arbitrary witness to this claim, say
d, that d has the modal property [λx^(Dxc&^P x)]d, by β-Conversion.
And by establishing, in the usual way, that d is a contingently noncon-
crete object, it becomes clear that contingently nonconcrete objects have
modal properties that make them suitable as truthmakers for iterated
modality claims.

If a further argument is needed to show that ψ1 provides truth condi-
tions for ϕ1 without our having to postulate any semantically primitive
possible worlds, then first consider the fact that, in OT, the principle of
β-Conversion is:

[λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]y1 . . . yn ≡ ϕ
y1,...,yn
x1,...,xn ) (n ≥ 0)

This asserts: if being x1, . . . ,xn such that ϕ exists, then objects y1, . . . , yn
exemplify this property if and only if y1, . . . , yn are such that ϕ. Now the
0-ary case of β-Conversion is:
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[λϕ]↓ → ([λϕ] ≡ ϕ])

But since it is a theorem of OT that [λ ϕ]↓ for every ϕ, the following
claim becomes provable:

[λϕ] ≡ ϕ (23)

In Zalta 2014, it was argued that this theorem constitutes a theory of
truth, since it has the natural reading: that-ϕ is true if and only if ϕ. That
is, the notion of exemplification used in the reading of n-ary β-Conversion
becomes the notion of truth in the reading of 0-ary λ-Conversion.12

Now, given (23) as a theory of truth, we know [λϕ1] ≡ ϕ1, i.e., that-ϕ1
is true if and only if ϕ1. Moreover, we’ve established ϕ1 ≡ ψ1 as theorem
(22). So it follows that [λϕ1] ≡ ψ1, which we may faithfully read as:

That possibly c has a daughter who possibly become president is true
if and only if for some possible world w, there is an object x such
that (a) x is a daughter of c at w and (b) for some possible world w′,
x is president at w′.

These are clearly truth conditions even though we aren’t using Tarski’s
semantic account of truth. Tarski’s semantic account still requires an
account of truth for propositions and it is the account of truth in OT
that we are using to state metaphysical, not semantic, truth conditions
for modal claims. By identifying truth as 0-ary predication and giving a
theory of possible worlds, our theory of truth is a metaphysical one, and
doesn’t rest on any semantic notions or the mathematical notions typi-
cally assumed when doing semantics. This point will become relevant in
the final section.

12When producing a reading of the biconditional [λϕ] ≡ ϕ in Zalta 1988 (59) and 1993
(408), I had not yet realized that the condition on the left of the biconditional sign had be
read as a sentence and that ‘exemplifies’ reduces to ‘is true’ in the 0-ary case. Menzel 1993
(117) nearly expresses the point; he doesn’t explicitly read the 0-ary case of β-Conversion as
“[λϕ] is true if and only if ϕ”, but he does say, speaking semantically about β-Conversion,
that “[i]n the limiting case where n = 0, a 0-place term standing alone will suffice: The
0-place predication [λϕ] is true iff the proposition P is denotes is true”. I want to be ex-
plicit, however, that 0-ary β-Conversion, [λϕ] ≡ ϕ, expresses a theory of truth in the object
language. The point was extended in Zalta 2014 to suggest that the Tarski T-schema, un-
derstood propositionally, is in fact a tautology; one simply gives a truth-functional reading
of λ-expressions in which the λ doesn’t bind any variables. This yields a new class of
tautologies, as these are defined classically, of which the Tarski T-schema is one.
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4 The Possibilism-Actualism Debate

4.1 Menzel’s Definition of Possibilism and Actualism

Menzel (2024, Section 2.2) distinguishes possibilism and actualism on
the basis of the work in Menzel 2020. The claim we’ve labeled above
as (3) plays a central role in his discussion. If we use the predicate E!
instead of Menzel’s predicate C! for being concrete, then he defines:

Possibilism
There exist contingently nonconcrete objects.
∃x(¬E!x&^E!x) (3)

Actualism
Contingently nonconcrete objects couldn’t possibly exist.
¬^∃x(¬E!x&^E!x).

This seems correct – the original actualists eschewed “mere possibilia”
and a careful reading of their work suggests that they had intended
to avoid any commitment to even the possibility of contingently non-
concrete objects. Unfortunately, their definition of actualism as “Every-
thing there is, i.e., everything that exists, is actual” didn’t do the job,
since one could assert the actual existence of contingently nonconcrete
objects and comply with the demands of actualism as they had defined
it. But Menzel’s new definition of actualism directly excludes even the
possibility of the contingently nonconcrete.

Given this new definition of possibilism, both SQML+ and OT qualify
as possibilist. When (1) is added to SQML+ and OT, both imply (3) as
a theorem and, as such, are possibilist as defined above. Interestingly,
though, the theorem isn’t necessitatable, as noted in footnote 5 and as
evident in the proof of (3) in Appendix A.13

Now in contexts such as SQML+ and OT, where we have the expres-
sive power provided by an actuality operator, possibilism, i.e., (3), im-
plies, by the logic of actuality (Aϕ ≡ ϕ), that:

13This raises an interesting difference between the present conception of possi-
bilism and Menzel’s (2020, p. 1987) characterization of Williamson’s possibilism as
^∃x(¬E!x &^E!x) (again using E! instead of C for being nonconcrete). Williamson’s ver-
sion, i.e., ^(3), follows immediately from (3) by the T^ principle. And by the 5 principle,
we can infer �^(3). But as we’ve seen, the derivation of (3) from (1) relies on the contin-
gent axiom for actuality Aϕ→ ϕ. So the conclusions that ^(3) and �^(3) both have to be
marked as claims derived from a contingency. So, in SQML+ and OT, both (3), ^(3), and
�^(3) are all derivable, though all are derived using the contingent axiom schema Aϕ→ ϕ.
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A∃x(¬E!x&^E!x)
It is actually the case that there exists something that’s both non-
concrete and possibly concrete.

Even though this asserts the actual existence of contingently noncon-
crete objects, anyone who takes on board Menzel’s definition of possi-
bilism would reject the suggestion that this result turns the theory into
an actualist one. So it now becomes clear where the focus of the debate
has to be, namely, on philosophical merits of possibilism v. actualism.
And the foregoing work shows that, in evaluating possibilism, one has to
evaluate the merits of the modal axiom (1) that implies (3). We’ve seen
that by adding (1) as an axiom to OT, there are a number of interesting,
philosophical consequences. In the remainder of this paper, I don’t plan
to argue against the reasons that philosophers have put forward in de-
fense of actualism, but will instead spend some time arguing that (1) and
(3) have an additional, important feature that can’t be easily preserved
by an understanding of modality that doesn’t endorse the contingently
nonconcrete.

4.2 The Challenges for Actualism as Now Defined

The additional, important feature of (1) and (3) is that they provide a
foundation for, and theory of, modal truth and not just a representation
of modal truth. I will spell out this first by contrasting actualist theo-
ries that accept possible worlds but eschew the existence of contingently
nonconcrete objects, and then by constrasting actualist theories that ad-
ditionally eschew the existence of possible worlds.14

Axiom (1) and its consequence (3) set the stage for arguing that the
truth of the modal data we’ve been discussing is grounded in the nature
of contingently nonconcrete objects and that the logical relationships be-
tween possible worlds and propositions depend on this fact. To see why,
consider that the second conjunct of (6) implies ∃x^Sxb, and if we con-
sider an arbitrary witness to this claim, say, e, then from the fact that
^Seb, it follows that [λx^Sxb]e, i.e., e has the modal property of possi-

14It should be clear that there are actualists who accept possible worlds, when the latter
are understood as abstract objects of a certain sort (e.g., Prior 1967 , Plantinga 1974, Fine
1977, Adams 1974, Stalnaker 2012, Williamson 2013. Indeed, one could accept OT and its
theory of possible worlds (Zalta 1993) without accepting (1. For an argument to this effect,
see Menzel and Zalta 2014.
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bly being b’s sister. Since we’ve seen how to use (1) and its consequence
(3) to establish that e is contingently nonconcrete, we can derive from (6)
that a contingently nonconcrete object has a modal property. Similarly,
with (7). We saw that any witness to the second conjunct of (7) has the
property possibly: being a daughter of c and possibly being president. In OT,
we can formulate this property as [λx^(Sxc&^P x)]. If d is such a wit-
ness and thereby exemplifies this property, then we can derive from (7)
that a contingently nonconcrete object has a ‘iterated’ or ‘nested’ modal
property.

Moreover, we have seen that having these modal properties is prov-
ably equivalent to world-theoretic facts that can be specified object-theo-
retically instead of semantically. We saw this in our discussion of the
truth conditions of (ϕ1) as (ψ1). Thus, the contingently nonconcrete
provably have the right nature: exemplifying the modal properties at-
tributed to them in primitive modal facts is equivalent to the right world-
theoretic truth conditions for those modal facts.

By contrast, any semantic representation of contingently nonconcrete
objects by way of mathematical objects, e.g., as primitive set-theoretic
elements of the domain of Tarski models or as nodes in a mathematical
graph, don’t have the modal properties that contingently nonconcrete
objects have. Metaphysically, such mathematical objects as set-theoretic
elements and nodes in a graph, don’t have such modal properties as pos-
sibly having a sister or possibly: being someone’s daughter and possibly being
president. The only relevant modal properties that such mathematical
objects exemplify are that they might represent or model some part of
modal reality. But that is not the same as giving us a theory of modal
reality or a theory of the truth conditions of modal facts. Modal possi-
bility claims such as (6) and (7) are not about nodes in a graph, but about
the properties that ordinary things like you and me have in other possi-
ble worlds. Models of modal reality are not theories of modal reality.

Furthermore, if an actualist additionally denies the existence of pos-
sible worlds, even as abstract entities, and instead rests only with math-
ematical points in a semantics, then again we are presented with a repre-
sentation or model of the truth conditions of modal facts, not a theory of
those truth conditions. Mathematical points aren’t possible worlds; they
don’t have the right (modal) properties. But in OT, possible worlds have
in the encoding sense the right properties: some worlds are (i.e., encode
being) such that there are talking donkeys; some worlds are (i.e., encode
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being) such that there are million carat diamonds; some worlds are (i.e.,
encode being) such that there is an x that is b’s sister; and some worlds
w are (i.e., encode being) such that there is an x who is a daughter of c
and such that at some world w′, x is president of c at w′. The possible
worlds of this general theory are not otiose: they have, in an important
sense, the exactly the right properties.

I therefore suggest that we reject the idea that Tarski’s semantic con-
ception of truth provides any metaphysical insight about the truth of
modal facts. Only a properly formulated modal metaphysics can do
that. The alethic properties of atomic propositions aren’t explained by
a model, but rather by a theory that offers a conceptual framework that
integates truth, modality, and possible worlds. Our understanding of
modal claims and the theory of possible worlds have to be developed to-
gether, and each nourishes the other, as captured by the Fundamental
Theorem (14).

If we are to have a genuine theory of modal truth, then we can’t sim-
ply rest with a representation of modal truth that consists of mathemat-
ical objects standing in some abstract relations. And this point becomes
intensified when we consider iterated modality claims, for to represent
such claims without possible worlds and contingently nonconcrete ob-
jects, one has to postulate a number of interrelated set-theoretical or
graph structures, and elements or nodes of those structures, so as to
structurally mirror the modal properties being asserted by the data. If
this is intended to be a genuine theory of modal truth, then such an ac-
tualist view becomes Pythagorean, i.e., it requires that: (a) modal reality
consist of primitive mathematical objects, (b) that mathematical axioms
are among the fundamental truths of metaphysics, and (c) that mathe-
matical objects have modal properties that account for our modal beliefs.
OT avoids these results; it recognizes that there are objects (contingently
concrete and contingently nonconcrete) which are characterized by their
modal properties, and that these modal properties can be given a world-
theoretic understanding as part of general theory of possible worlds that
makes use of a primitive modal operator.

So the benefits of (1) don’t include just the facts that it yields both
bona fide truth makers for (arbitrarily nested) modal claims and proofs
of important philosophical theorems. It also avoids the concern that a
semantic representation of modal truth in terms of mathematical objects
is not a theory of modal truth.

Edward N. Zalta 26

Appendix A: Proofs in SQML+

(2) By the laws of actuality (see footnote 3), it is a theorem that �(A¬ϕ ≡
¬Aϕ). So by the Rule of Substitution, we can infer ^∃x(E!x & A¬E!x)
from (1). But it is also a theorem of actuality that Aϕ→^ϕ.15 So by clas-
sical modal reasoning, we can infer from our last result that ^∃x(E!x&
^¬E!x).16

(3) By BF^, it follows from (1) that ∃x^(E!x & ¬AE!x). Suppose a is
such an object, so that we know ^(E!a & ¬AE!a). Then since a possi-
bly true conjunction implies that each conjunct is possible, we know
both ^E!a and ^¬AE!a. Now independently, the laws of actuality imply
�(A¬ϕ ≡ ¬Aϕ). So by the Rule of Substitution,^¬AE!a implies^A¬E!a.
But by the logic of actuality, it is a theorem that ^A¬E!a→ A¬E!a.17 So
A¬E!a. Then by the (contingent) axiom for the logic of actuality, it fol-
lows that ¬E!a. So we’ve established ¬E!a&^E!a, i.e., a is contingently
nonconcrete. ./

(4) We start with the first form of the theorem. By BF^, it follows
from (1) that ∃x^(E!x & ¬AE!x). Suppose a is such an object, so that
we know ^(E!a& ¬AE!a). It follows that both ^E!a and ^¬AE!a. But
since �(¬Aϕ ≡ A¬ϕ), we can infer ^A¬E!a from ^¬AE!a. But ^A¬E!a

15To see this, first establish the following fact about the actuality operator:

Lemma. �ϕ→ Aϕ

Proof. The T schema �ϕ→ ϕ is an axiom, and so are its closures. Hence, A(�ϕ→
ϕ) is an axiom. Since A distributes over the conditional, it follows that A�ϕ →
Aϕ. Independently, the axiom �ϕ ≡ A�ϕ implies �ϕ → A�ϕ. So by hypothetical
syllogism, �ϕ→ Aϕ.

So, as an instance of our Lemma, we know �¬ϕ → A¬ϕ. By contraposition, ¬A¬ϕ →
¬�¬ϕ. But it is a theorem that Aϕ→¬A¬ϕ. So by biconditional syllogism, Aϕ→¬�¬ϕ.
Hence, by definition of ^, Aϕ→^ϕ.

16The reasoning involves the K^ principle: if we prove that ∃x(E!x & A¬E!x) (= ϕ)
necessarily implies ∃x(E!x&^¬E!x) (= ψ), then from the K^ principle, i.e., �(ϕ → ψ)→
(^ϕ→^ψ), we obtain the desired conclusion ^∃x(E!x&^¬E!x). And it is easy to see that
�(ϕ → ψ). Assume ϕ, and suppose a is a witness, so that we know E!a& A¬E!a. Then
since the laws of actuality include Aϕ→ ^ϕ, we may conclude E!a&^¬E!a, i.e., ψ. So by
conditional proof, ϕ→ ψ, and by Rule RN, �(ϕ→ ψ).

17Recall from footnote 3 that it is axiomatic that Aϕ→ �Aϕ. So, take a negated formula
as an instance, and we obtain A¬ϕ→ �A¬ϕ as a valid schema. By contraposition, this be-
comes ¬�A¬ϕ→¬A¬ϕ, i.e., ^¬A¬ϕ→¬A¬ϕ. But since ¬A¬ϕ is necessarily equivalent
to Aϕ, our conditional reduces to ^Aϕ → Aϕ. The conditional in the text is therefore a
valid instance of this theorem: ^A¬E!a→ A¬E!a.
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implies A¬E!a. And by the contingent axiom governing A, it follows that
¬E!a. So we’ve established, without appealing to a contingent axiom:

(ϑ) ^E!a&A¬E!a

However, if apply an appropriate instance of the contingent theorem
Aϕ→ ϕ to the second conjunct, then we can also conclude:

(ξ) ^E!a&¬E!a

From (ϑ), we can infer, by ∃I, ∃F∃x(^E!x&A¬E!x). This can be necessi-
tated. However, from (ξ), though we can infer ∃F∃x(^E!x&¬E!x), this
result can’t be necessitated, since it was derived from a contingency. ./

(5) We start with the first form of the theorem. Consider the negation
of E!, i.e., E!, and the fact that E! obeys the law �∀x(E!x ≡ ¬E!x), i.e.,
�∀x(¬E!x ≡ E!x). Now again apply BF^ to (1), to obtain ∃x^(E!x&¬AE!x).
Then by the Rule of Substitution, we may infer:

∃x^(¬E!x&¬A¬E!x)

Suppose a is such an object, so that we know ^(¬E!a&¬A¬E!a). Then
we know both ^¬E!a and ^¬A¬E!a. But the second of these implies, by
the fact that �(¬A¬ϕ ≡ Aϕ) and the Rule of Substitution, that ^AE!a.
But this last result implies AE!a, since ^Aϕ → Aϕ. Note that if we ap-
peal to the contingent axiom for actuality, it follows that E!a. But with-
out appealing to the contingent axiom, we’ve established ^¬E!a&AE!a.
Hence, ∃F∃x(^¬Fx&AFx). This result is necessitable. But we’ve also es-
tablished ^¬E!a&E!a by contingent means. So though we can conclude
∃F∃x(^¬Fx&Fx), we can’t necessitate this result. ./

Appendix B: Existence and Identity Defined

In the definitions below, the free object-language variables in the defini-
entia and definienda are to be regarded as metavariables. The use of
object-language variables facilitates readability. But they must be re-
garded as metavariables given the presence of non-denoting complex
terms (descriptions and λ-expressions) in OT, so that the definitions can
be instantiated even by non-denoting terms.

The following definitions capture the ones stated in the text. We use
↓ to assert existence:
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x↓ ≡df ∃FFx (24)

Fn↓ (n ≥ 1) ≡df ∃x1 . . .∃xn(x1 . . .xnF
n) (25)

p↓ ≡df [λx p]↓ (26)

x=y ≡df
(O!x&O!y &�∀F(Fx ≡ Fy)) ∨ (A!x&A!y &�∀F(xF ≡ yF)) (27)

F1 =G1 ≡df F↓ &G↓&�∀x(xF ≡ xG) (28)

Fn=Gn ≡df F↓&G↓&
∀y1 . . .∀yn−1([λx Fxy1 . . . yn−1]=[λx Gxy1 . . . yn−1] &

[λx Fy1xy2 . . . yn−1]=[λx Gy1xy2 . . . yn−1] & . . .&
[λx Fy1 . . . yn−1x]=[λx Gy1 . . . yn−1x]) (29)

p=q ≡df p↓& q↓& [λx p]=[λx q] (30)

See Zalta forthcoming and the chapter titled “The Language” in Zalta
m.s., for further discussion of these definitions.

Appendix C: Proofs in OT

(11) First we prove the existence of a contingent proposition, i.e., a propo-
sition p such that ^p &^¬p. Then we use that fact to prove the exis-
tence of a contingently true and a contingently false proposition. Let
q0 be the proposition ∃x(E!x & ¬AE!x). We already know ^q0 by the
new axiom (1). And to see ^¬q0, note that we can easily establish that
¬A∃x(E!x&¬AE!x), by the following argument:

Assume, for reductio, A∃x(E!x&¬AE!x). Then by the logic of ac-
tuality, ∃xA(E!x & ¬AE!x). Suppose a is such an object, so that
we know A(E!a & ¬AE!a). Then again by the logic of actuality,
AE!a&A¬AE!a). But the second conjunct is necessarily equivalent
to ¬AAE!a, which is necessarily equivalent to ¬AE!a. Contradic-
tion.

But, it then follows from ¬A∃x(E!x & ¬AE!x) that A¬∃x(E!x & ¬AE!x).
And since Aϕ→^ϕ, we may infer ^¬∃x(E!x&¬AE!x), i.e., ^¬q0.

Now that we know that contingent propositions exist, we prove that
there is a contingently true proposition, i.e., ∃p(p&^¬p), and a contin-
gently false one, i.e., ∃p(¬p&^p). Without loss of generality, it suffices
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to show that there is a contingently true proposition, since the negation
of any witness will provably be contingently false. We’ve just established
there is a contingent proposition, and so again let q0 be such, so that we
know:

(ϑ) ^q0 &^¬q0

Then we establish that ∃p(p&^¬p) by cases from the tautology q0∨¬q0.
Assume q0. From this and the second conjunct of (ϑ), we have q0 &^¬q0.
So, ∃p(p&^¬p). Now assume ¬q0. From this and the first conjunct of
(ϑ), we have ¬q0 &^q0. But now consider the negation of q0 (‘q0’), where
this is defined to be ¬q0. Then since it is provable from this definition,
without appeal to contingencies, that ¬q0 ≡ q0 and that q0 ≡ ¬q0, these
biconditionals are necessary and so the two sides of each biconditional
are substitutable for one another. If we perform the substitutions simul-
taneously, then ¬q0 & ^q0 becomes q0 & ^¬q0. Generalizing on q0, it
follows that ∃p(p&^¬p). ./

(12) Again, we show only that there exists a property that is exempli-
fied but possibly not, since the negation of the witness to this claim can
be straightforwardly used to prove that there exists a property that is
unexemplified but possibly exemplified. In the following, let Qp be the
property of being such that p, where p is a variable ranging over propo-
sitions:

Qp =df [λz p]

In OT, Qp↓, since the variable bound by the λ doesn’t occur in encoding
position in the matrix. So, by the definition of Qp, β-Conversion, Rule
RN, and GEN we know:

(ϑ) ∀p∀x�(Qpx ≡ p)

Now by (11), we know that there are contingently true propositions. Let
p1 be such a proposition, so that we know p1 &^¬p1. Then considerQp1

,
which we know exists. Here is a sketch of the remainder of the proof:

(A) Show: p1 ` Qp1
y. For this, however, it suffices to show p1 → Qp1

y.
So assume p1. Then by (ϑ), ∀x�(Qp1

x ≡ p1). Hence �(Qp1
y ≡ p1),

and by the T schema, Qp1
y ≡ p1. So Qp1

y.

(B) Show: ^¬p1 ` ^¬Qp1
y. Similarly, it suffices to show ^¬p1 →

^¬Qp1
y. By instantiating p1 and y into (ϑ), we know �(Qp1

y ≡ p1).
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A fortiori, �(Qp1
y → p1). This implies �(¬p1 → ¬Qp1

). Hence by
K^, ^¬p1→^¬Qp1

.

(C) Infer from (A) and (B):

p1 &^¬p1 `Qy &^¬Qy

by using the principle:

If ϕ ` ψ and χ ` θ, then ϕ&ψ ` χ&θ

(D) By ∃I, we independently know: Qy &^¬Qy ` ∃F∃x(Fx&^¬Fx)

(E) Hence from (C) and (D) it follows by hypothetical syllogism that:

p1 &^¬p1 ` ∃F∃x(Fx&^¬Fx)

(F) It follows by ∃E that:

∃p(p&^¬p) ` ∃F∃x(Fx&^¬Fx)

(G) But by (11), we’ve established ∃p(p&^¬p), and so it follows from
(F) that ∃F∃x(Fx&^¬Fx). ./

(16) Assume ∃p(p&^¬p) and let p1 be an arbitrary such proposition, so
that we know both p1 and ^¬p1. If we then instantiate (14) to ¬p1, we
know^¬p1 ≡ ∃w(w |= ¬p1). From this and the second conjunct of our as-
sumption, it follows that ∃w(w |= ¬p1). Let w1 be such a possible world,
so that we know w1 |= ¬p1. Now suppose, for reductio, that Actual(w1).
Then by definition of Actual, every proposition true at w1 is true. Hence
¬p1. Contradiction. So ¬Actual(w1) and, hence, ∃w¬Actual(w). ./

(17) (Exercise)

(18) This follows from (11) and either (16) or (17). ./

(19) Since ∃!wActual(w), suppose w1 is such a possible world, so that
we know Actual(w1), among other things. Independently, by (18), we
know ∃w¬Actual(w). Let w2 be such a possible world, so that we know
¬Actual(w2). Since w1 is actual and w2 is not, it follows that w1 , w2.
Hence ∃w∃w′(w , w′). ./

(21) Our assumptions are:

(6) ¬∃xDxb&^∃xDxb&¬∃x(E!x&^Dxb)
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(20) �∀x∀y(Sxy→ E!x&E!y)

We have to show:

(ϑ) ∃x(wα |= (¬E!x&^E!x&¬Dxb) &
∃w(w,wα &w |= (E!x&Dxb)))

From the second conjunct of (6), we know ∃x^Dxb. Suppose a is such
an object, so that we know ^Dab. By the third conjunct of (6), it then
follows that ¬E!a, since the third conjunct tells us that no concrete object
is possibly a sister of b. Now by applying CBF to (20) and instantiating
the result, we know:

(ξ) �(Dab→ E!a&E!b)

Two important things follow from (ξ). First, by the K^ schema, (ξ) im-
plies ^Dab → ^(E!a& E!b) and since the antecedent holds by the def-
inition of a, it follows a fortiori that ^E!a. Second, by applying the T
schema to (ξ), then the already established fact that ¬E!a implies ¬Dab.
So we’ve established ¬E!a&^E!a&¬Dab. Hence, by a (contingent) theo-
rem of world theory (13), this conjunction holds at the actual world and
so it follows that:

(ω) wα |= (¬E!a&^E!a&¬Dab)

Since a will be our witness to it (ϑ), we need only show ∃w(w ,wα &
w |= (E!a&Dab)). We know ^Dab by the definition of a, and so it follows
by a fundamental theorem of world-theory (14) that ∃w(w |= Dab). Sup-
pose w1 is such a possible world, so that we know w1 |= Dab. Indepen-
dently, by the dual of (14), i.e., (15), (ξ) implies ∀w(w |=Dab→ E!a&E!b).
Hence:

(ζ) w1 |= (Dab→ E!a&E!b)

Since worlds are closed under the connectives (see footnote 8), it follows
a fortiori from w1 |= Dab and (ζ) that w1 |= E!a. Again since worlds are
closed under the connectives, it follows that w1 |= (E!a&Dab). Moreover,
since we know both wα |= ¬E!a and w1 |= E!a, it follows by a theorem of
world theory that w1 ,wα . Hence ∃w(w,wα &w |= (E!a&Dab)), which
is all that it remained to show. ./

(22) The following, ‘modally strict’ proof includes no appeals to a con-
tingency:
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^∃x(Dxc&^P x)
≡ ∃x^(Dxc&^P x) BF (→), CBF (←)
≡ ^(Dbc&^P b) witness (→), ∃I (←)
≡ ∃w(w |= (Dbc&^P b)) by (14)
≡ w1 |= (Dbc&^P b) witness (→), ∃I (←)
≡ w1 |=Dbc & w1 |=^P b w closed under &
≡ w1 |=Dbc & ∃w(w |=^P b) by ∃I (→), witness (←)
≡ w1 |=Dbc &^^P b by (14)
≡ w1 |=Dbc &^P b by 4^ (→), T^ (←)
≡ w1 |=Dbc & ∃w′(w′ |= P b) by (14)
≡ ∃x((w1 |=Dxc) &∃w′(w′ |= P x)) ∃I (→), witness (←)
≡ ∃w∃x((w |=Dxc) &∃w′(w′ |= P x)) by ∃I (→), witness (←)

Bibliography

Adams, R., 1974, “Theories of Actuality”, Noûs, 8: 211–231.

Barcan, R.C., 1946, “A Functional Calculus of First Order Based on
Strict Implication”, Journal of Symbolic Logic 11(1): 1–16.
doi:10.2307/2269159

Fine, K., 1977, “Prior on the Construction of Possible Worlds and In-
stants”, Postscript to A. Prior, Worlds, Times, and Selves, London:
University Duckworth, 116–168.

Glazier, M., and S. Krämer, 2024, “The Logic of Contingent Actuality”,
Ergo: An Open Access Journal of Philosophy, 11(8).
doi:10.3998/ergo.5713

Hazen, A., 1978, “The Eliminability of the Actuality Operator in Propo-
sitional Modal Logic”, Notre Dame Journal of Formal Logic, 19(4):
617–622.

———, 1990, “Actuality and Quantification”, Notre Dame Journal of For-
mal Logic, 31(4): 498–508.

Hazen, A., B. Rin, and K. Wehmeier, 2013, “Actuality in Propositional
Modal Logic”, Studia Logica, 101: 487–503.
doi:10.1007/s11225-012-9395-x

https://doi.org/10.2307/2269159
https://doi.org/10.3998/ergo.5713
https://doi.org/10.1007/s11225-012-9395-x


33 An Axiom Forestalling Modal Collapse

Kripke, S., 1959, “A Completeness Theorem in Modal Logic”, The Jour-
nal of Symbolic Logic, 24(1): 1–14.
doi:10.2307/2964568

———, 1963a, “Semantical Considerations on Modal Logic”, Acta Philo-
sophica Fennica, 16: 83–94.

———, 1972 [1980], Naming and Necessity, Cambridge, MA: Harvard
University Press, 1980.

Linsky, B. and E. Zalta, 1994, “In Defense of the Simplest Quantified
Modal Logic”, Philosophical Perspectives (Volume 8: Logic and Lan-
guage), J. Tomberlin (ed.), Atascadero, CA: Ridgeview, 431–58.
doi:10.2307/2214181

———, 1996, “In Defense of the Contingently Nonconcrete”, Philo-
sophical Studies (Special Issue entitled ‘Possibilism and Actualism’),
84(2-3): 283–294.
doi:10.1007/BF00354491

McMichael, A., 1983, “A Problem for Actualism about Possible Worlds”,
Philosophical Review, 92: 49–66.
doi:10.2307/2184521

Meinong, A., 1904, “Über Gegenstandstheorie”, in A. Meinong (ed.),
Untersuchungen Zur Gegenstandstheorie Und Psychologie, Leipzig:
Barth, 1904, 1–50; translated as “The Theory of Objects”, I. Levi,
D.B. Terrell, and R.M. Chisholm (trans.), in Realism and the Back-
ground of Phenomenology, R.M. Chisholm (ed.), Glencoe: Free Press,
76–117.

Menzel, C., 1990, “Actualism, Ontological Commitment, and Possible
Worlds Semantics,” Synthese, 85: 355–89.

Menzel, C., 1993, “Singular Propositions and Modal Logic”, Philosoph-
ical Topics, 21(2): 113–148.

———, 2020, “In Defense of the Possibilism-Actualism Distinction”,
Philosophical Studies, 177(7): 1971–1997.
doi:10.1007/s11098-019-01294-0

Edward N. Zalta 34

———, 2024, “The Possibilism-Actualism Debate”, The Stanford Ency-
clopedia of Philosophy (Summer 2024 Edition), Edward N. Zalta &
Uri Nodelman (eds.), URL =
https://plato.stanford.edu/archives/sum2024/entries/possibilism-actualism/.

Menzel, C., and E. Zalta, 2014, “The Fundamental Theorem of World
Theory”, Journal of Philosophical Logic, 43(2): 333–363.
doi:10.1007/s10992-012-9265-z

Nodelman, U., and E. Zalta, 2024, “Number Theory and Infinity With-
out Mathematics”, Journal of Philosophical Logic, first published on-
line 08 August 2024.
doi:10.1007/s10992-024-09762-7

Parsons, T., 1980, Nonexistent Objects, New Haven, Yale University Press.

Plantinga, A., 1974, The Nature of Necessity, New York: Oxford Univer-
sity Press.

Prior, Arthur, 1967, Past, Present and Future, Oxford: Oxford University
Press, 1st edition.

Quine, W.V.O., 1948, “On What There Is”, The Review of Metaphysics,
2(5): 21–38.
https://www.jstor.org/stable/20123117

Stalnaker, R., 2012, Mere Possibilities: Metaphysical Foundations of Modal
Semantics, Princeton, NJ: Princeton University Press.

Williamson, T., 1998, “Bare Possibilia”, Erkenntnis, 48(2/3): 257–273.
doi:10.1023/A:1005331819843

———, 2013, Modal Logic as Metaphysics, Oxford: Oxford University
Press.

Zalta, E., 1983, Abstract Objects: An Introduction to Axiomatic Meta-
physics, Dordrecht: D. Reidel.

———, 1988, Intensional Logic and the Metaphysics of Intentionality, Cam-
bridge, MA: MIT Press.

———, 1993, “Twenty-five Basic Theorems in Situation and World The-
ory”, Journal of Philosophical Logic, 22(4): 385–428.
doi:10.1007/BF01052533

https://doi.org/10.2307/2964568
https://doi.org/10.2307/2214181
https://doi.org/10.1007/BF00354491
https://doi.org/10.2307/2184521
https://doi.org/10.1007/s11098-019-01294-0
https://plato.stanford.edu/archives/sum2024/entries/possibilism-actualism/
https://doi.org/10.1007/s10992-012-9265-z
https://doi.org/10.1007/s10992-024-09762-7
https://www.jstor.org/stable/20123117
https://doi.org/10.1023/A:1005331819843
https://doi.org/10.1007/BF01052533


35 An Axiom Forestalling Modal Collapse

———, 1999, “Natural Numbers and Natural Cardinals as Abstract Ob-
jects: A Partial Reconstruction of Frege’s Grundgesetze in Object
Theory”, Journal of Philosophical Logic, 28(6): 619–660.
doi:10.1023/A:1004330128910

———, 2014, “The Tarski T-Schema is a Tautalogy (Literally)”, Analysis,
74(1): 5–11.
doi:10.1093/analys/ant099

———, forthcoming, “The Power of Predication and Quantification”, in
C. Normore, G.S. Ciola, and M. Crimi (eds.), Existence and Nonexis-
tence (Proceedings from the 2nd Pan-American Symposium on the
History of Logic), Open Philosophy.

———, m.s., Principia Logico-Metaphysica, URL =
https://mally.stanford.edu/principia.pdf.

https://doi.org/10.1023/A:1004330128910
https://doi.org/10.1093/analys/ant099
https://mally.stanford.edu/principia.pdf

	Introduction
	An Axiom That Forestalls Modal Collapse
	Applications of the New Axiom in OT
	The Latest Development of OT
	The Language of OT
	The Axioms and Rules of OT

	How the New Axiom Functions in OT
	Theorems Provable With the New Axiom
	The Truth Conditions for Modal Claims Derived


	The Possibilism-Actualism Debate
	Menzel's Definition of Possibilism and Actualism
	The Challenges for Actualism as Now Defined


