On Anselm’s Ontological Argument in *Proslogion* II*

Paul E. Oppenheimer
Philosophy Department, University of Adelaide
CSLI, Stanford University

and

Edward N. Zalta
Center for the Study of Language and Information
Stanford University

Abstract

Formulations of Anselm’s ontological argument have been the subject of a number of recent papers. We make clear what we learned from our computational investigations of Anselm’s Ontological Argument in Proslogion II, identify a better representation of Anselm’s argument given what we learned, and respond to criticisms that have surfaced in reaction to our papers of 1991 and 2011. In connection with (3), we address criticisms about our methodology, about whether our formulation of the argument is question-begging, and about the faithfulness of the representation. In examining these criticisms, we point out how some criticisms insufficiently attend to the analysis and observations we made concerning the simplified version of the argument in 2011.

1 Review

In preparation for the discussion of what we learned from our computational studies, here is a brief summary of our 1991 and 2011 papers. In our 1991 paper, we proposed a reading of the ontological argument on which Anselm needed two nonlogical premises and a meaning postulate about the *greater than* relation. To state these premises we used a first-order free logic with primitive definite descriptions, in which the quantifier ‘∃’ was not assumed to be existentially loaded (it simply means “there is”). To this logic we added an existence predicate ‘E!’, a conceivability predicate ‘C’, and a 2-place *greater than* predicate ‘G’. Let us again use φ₁ to represent the formula:

\[(\phi_1) \ Cx \& \neg\exists y(Gyx \& Cy)\]

This formula asserts: x is conceivable and such that nothing greater is conceivable. We then formulated the two nonlogical premises and meaning postulate as follows:

Premise 1: \(\exists x \phi_1\)

Meaning Postulate: \(\forall x \forall y(Gxy \lor Gyx \lor x = y)\)

Premise 2: \(\neg E! x \phi_1 \rightarrow \exists y(Gyx \phi_1 \& Cy)\)

Premise 1 asserts merely that there is a conceivable object such that nothing greater is conceivable. The Meaning Postulate for *greater than* asserts merely that *greater than* is a connected relation, i.e., for any two

\[\exists x \phi \text{ does not imply } \exists x(\phi \& E!x).\]
distinct objects, either the first is greater than the second or the second is greater than the first. From the Meaning Postulate, we derived a lemma (Lemma 2) that uses the uniqueness quantifier $\exists x \phi$ (defined in the usual way) and that asserts $\exists x \phi_1 \rightarrow \exists x \phi_1$. Given Lemma 2, Premise 1 implies that there exists a unique conceivable object such that nothing greater is conceivable. By the classical principles governing definite descriptions, it follows that the description $\exists x \phi_1$ has a denotation, i.e., that $\exists y (y = \exists x \phi_1)$. This justified Anselm’s use of the definite description that than which nothing greater can be conceived (id quo majus cogitari non potest) in his reasoning in Proslogion II. Moreover, from this conclusion and Premise 2, the ontological argument easily proceeds to the conclusion that God exists, if given the definition that God (‘g’) is, by definition, $\exists x \phi_1$. The proof cites logical theorems governing definite descriptions, which are explained in the 1991 paper.2 We subsequently discovered (2011), by computational means, that Premise 2 alone is sufficient to derive the conclusion that God exists. Again, the proof cites logical theorems governing description, which are explained in the 2011 paper.3

2 In tabular form:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\exists x \phi_1$</td>
<td>Premise 1</td>
</tr>
<tr>
<td>2.</td>
<td>$\exists x \phi_1$</td>
<td>from (1), by Lemma 2 (1991)</td>
</tr>
<tr>
<td>3.</td>
<td>$\exists y (y = \exists x \phi_1)$</td>
<td>from (2), by Description Thm 1 (1991)</td>
</tr>
<tr>
<td>4.</td>
<td>$C \exists x \phi_1 & \neg \exists y (Gy x \phi_1 & Cy)$</td>
<td>from (3), by Description Thm 2 (1991)</td>
</tr>
<tr>
<td>5.</td>
<td>$\neg E \exists x \phi_1$</td>
<td>Assumption, for Reductio</td>
</tr>
<tr>
<td>6.</td>
<td>$\exists y (Gy x \phi_1 & Cy)$</td>
<td>from (5), by Premise 2</td>
</tr>
<tr>
<td>7.</td>
<td>$\neg \exists y (Gy x \phi_1 & Cy)$</td>
<td>from (4), by &E</td>
</tr>
<tr>
<td>8.</td>
<td>$E \exists x \phi_1$</td>
<td>from (6), (5), and (7), by Reductio</td>
</tr>
<tr>
<td>9.</td>
<td>$E g$</td>
<td>from (8), by the definition of ‘g’</td>
</tr>
</tbody>
</table>

3 In tabular form:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\neg E \exists x \phi_1$</td>
<td>Assumption, for Reductio</td>
</tr>
<tr>
<td>2.</td>
<td>$\exists y (Gy x \phi_1 & Cy)$</td>
<td>from (1), by Premise 2 and MP</td>
</tr>
<tr>
<td>3.</td>
<td>Gy x \phi_1 & Ch</td>
<td>from (2), by $\exists E$, ‘h’ arbitrary</td>
</tr>
<tr>
<td>4.</td>
<td>Gy x \phi_1</td>
<td>from (3), &E</td>
</tr>
<tr>
<td>5.</td>
<td>$\exists y (y = \exists x \phi_1)$</td>
<td>from (4), by Desc. Thm. 3 (2011)</td>
</tr>
<tr>
<td>6.</td>
<td>$C \exists x \phi_1 & \neg \exists y (Gy x \phi_1 & Cy)$</td>
<td>from (5), by Desc. Thm. 2 (1991)</td>
</tr>
<tr>
<td>7.</td>
<td>$\neg \exists y (Gy x \phi_1 & Cy)$</td>
<td>from (6), by &E</td>
</tr>
<tr>
<td>8.</td>
<td>$E \exists x \phi_1$</td>
<td>from (1), (2), (7), by Reductio</td>
</tr>
<tr>
<td>9.</td>
<td>$E g$</td>
<td>from (8), by the definition of ‘g’</td>
</tr>
</tbody>
</table>

2 What We Learned From the Computational Studies

From this brief review, it is clear why the title and focus of our 2011 paper had to be on (a) how Premise 1 and the Meaning Postulate for greater than are redundant given the strength of Premise 2, and (b) the discovery of this redundancy by computational means. But our paper contained in addition a number of observations and some discussion of the soundness of the argument; this analysis, and in particular, our doubts about Premise 2 and our view about how one might tweak the 1991 argument to avoid the redundancies, seem to have been overlooked by the critics. In particular, in Section 4 of our 2011 paper, we compared the original 1991 version with the simplified 2011 version and in Section 5, we concluded our paper with reasons for objecting to Premise 2.

We show, in what follows, that these observations and reasons already anticipate and address the criticisms that have been raised about our work.4 For example, a paper by Garbacz (2012) develops two main criticisms of our work in 2011: (A) a criticism of Premise 2, and (B) a criticism of the methodology by which we used Prover9 to represent the 1991 argument.

As to (B), we basically agree with the section of Garbacz’s paper (Section 3), where he raises some genuine methodological issues about our translation of the 1991 argument into Prover9 notation. He noted, for example, that our use of the constant ‘g’ implicitly validated Premise 1 simply by representing the definition that g is identical to the conceivable x such that none greater can be conceived.

We are happy to acknowledge these points from Section 3 of Garbacz’s paper. In 2009–2010, while doing research for our 2011 paper, we were in the early stages of learning how to use resolution-based automated reasoning systems to represent schematic statements that were cast in a first-order, natural deduction logic extended with definite descriptions. There are a number of subtleties that we had not recognized and so our methodology was not as refined as it might have been. We’ve therefore revised our webpage on the computational investigation of the ontological argument to reflect our enhanced understanding of how to implement the 1991 premises in a first-order reasoning environment. The

4 A notable exception is Parent 2015, who recognized that we were suspicious and, indeed, critical of the strength of Premise 2 in our 2011 paper.
new representation no longer defines ‘g’ in terms of a creative definition. We’ve acknowledged Garbacz’s concerns on that webpage. Nevertheless, despite these flaws, we deployed the automated reasoning engine with enough sophistication to discover the redundancy of Premise 1 and the Meaning Postulate in the presence of Premise 2.

We turn then to (A), i.e., Garbacz’s main criticism, in Section 2 of his paper, which raises concerns about Premise 2. His criticism is developed on the basis of a certain understanding of our paper that he puts forward, namely, “The main contribution of Oppenheimer and Zalta 2011 is a discovery that premises Premise 1 and Connectedness are obsolete, i.e., that you can reach the same conclusion assuming only Premise 2” (Garbacz 2012, 586). We hope to show that by focusing on this result, his attention was distracted from points we made that address the concerns he raises in Section 2 of his paper.

To begin our discussion, we note that the second observation in Section 4 (2011, 346) explained how the simpler version of the argument doesn’t use the Meaning Postulate for greater than to justify the use of the definite description in the way that the 1991 version does. And the fourth observation in Section 4 (2011, 346) included the lines:

... it is interesting to note that one can (i) abandon the definition of God as $xφ_1$, (ii) generalize Premise 2 to the claim that $¬E!x \rightarrow ∃y(Gyx & C_y)$, and still (iii) develop a valid argument to the conclusion that anything that satisfies $φ_1$ exemplifies existence.

And in Section 5 (2011, 348), we gave an extended argument against Premise 2. The last paragraph of our paper (2011, 348–349) included the following lines:

Thus, arguments ... above show that the defender of the ontological argument needs independent support for two claims: that the definite description denotes and that Premise 2 is true. Our 1991 analysis of the argument is still relevant, since it shows how the ontological arguer could justify Anselm’s use of the definite description. [Footnote 14: Given the argument outlined above against Premise 2, a defender of Anselm might consider whether the ontological argument can be strengthened by using our original formulation as in 1991, but with the general form of Premise 2 discussed earlier: $¬E!x \rightarrow ∃y(Gyx & C_y)$. The justification of this more general premise may not be subject to the same circularity that infects the justification of Premise 2 (though, of course, it may have problems of its own).] The present analysis shows why the use of the definite description needs independent justification. Consequently, though the simplified ontological argument is valid, Premise 2 is questionable and to the extent that it lacks independent justification, the simplified argument fails to demonstrate that God exists.

It is clear from these passages not only that we gave reasons why Premise 1 and the connectedness of greater than are not obsolete, but also that we questioned Premise 2. Thus, we anticipated the conclusion of the extended argument that Garbacz develops in Section 2 of his paper. In that section he argues:

Premise 2 cannot be used in any proper argument for the existence of God for the following three reasons ...

... Thus, it is little wonder that one can dispense with Premise 1 and Connectedness in Oppenheimer and Zalta’s [1991] ontological argument as their logical contribution (to this argument) is covered by Premise 2. Alas, this third premise seems to be too strong to be an acceptable basis for any argument for the existence of God.

Garbacz here makes it seem that we were advocating for Premise 2 in our paper. While the specific criticisms he puts forward do offer some additional reasons for not accepting Premise 2 (though see below), we did not argue in our paper that, in a proper reconstruction of the argument, Premise 2 should replace Premise 1 and the Meaning Postulate.

Indeed, in the fourth observation and the final paragraph (footnote 14) quoted above from our 2011 paper, we suggested that the 1991 paper should have weakened Premise 2 so that it becomes the following universal claim:

Premise 2': $∀x(¬E!x \rightarrow ∃y(Gyx & C_y))$
This asserts, in essence, that if a thing fails to exist then something greater than it can be conceived. We were pointing out here that Premise 1, the Meaning Postulate, and Premise 2′ yield a perfectly good argument for God’s existence without appealing to Premise 2. The resulting argument is a variant of the argument in the 1991 paper—once one establishes that the description $ixφ_1$ denotes, one can instantiate it into Premise 2′ to obtain the original Premise 2. And then the reductio proceeds in the same manner as in the 1991 paper. We lay out the revised argument with the weaker Premise 2′ in a footnote. This revised version of the argument goes exactly like the original 1991 argument except at the point where Premise 2 is invoked.

We think it is easy to see that Premise 2′ alone does not yield the intermediate conclusion that $E lxφ_1$, nor does any pairwise combination of Premise 1, Premise 2′ and the Meaning Postulate for greater than. We invite the reader to use automated reasoning tools to establish these last claims, as we shall not argue for them further here.

Indeed, to forestall an objection to Premise 2′, we can weaken it even further, so that it asserts: for any x, if x is a conceivable thing such that nothing greater is conceivable and x fails to exist, then something greater than x can be conceived. Formally:

Premise 2′′: $∀x(∃xφ_1 \& ¬E lxφ \rightarrow ∃y(Gyx \& Cy))$

This would forestall the objection that Premise 2′ is consistent with, and even licenses, the view that an existing conceivable evil thing is greater than a nonexisting one. A variant of the 1991 ontological argument still goes through with Premise 2′′:

1. $∃xφ_1$
 Premise 1

2. $∃xφ_1$ from (1), by Lemma 2 (1991)
3. $∃y(y = ixφ_1)$ from (2), by Desc. Thm. 1 (1991)
4. $Cixφ_1 \& ¬∃y(Gyxφ_1 \& Cy)$ from (3), by Desc. Thm. 2 (1991)
5. $¬E lxφ_1 \rightarrow ∃y(Gyxφ_1 \& Cy)$ from (3) and Premise 2′, by $∀E$
6. $¬E lxφ_1$ Assumption, for Reductio
7. $Cixφ_1 \& ¬∃y(Gyxφ_1 \& Cy) \& ¬E lxφ_1$ from (4), (6)
8. $∃y(Gyxφ_1 \& Cy)$ from (4), by $∀E$
9. $¬∃y(Gyxφ_1 \& Cy)$ from (4), by $∀E$
10. $E lxφ_1$ from (6), (7), and (8), by Reductio
11. $E lxφ_1$ from (9), by the definition of g

This represents our best analysis of the argument: had we seen the issue with Premise 2 in 1991, we would have eliminated Premise 2 in favor of Premise 2′. Note here how Premise 1 and the Meaning Postulate for greater than still play a role. The latter is needed for the derivation of Lemma 2, which moves us from the former to the claim that there is a unique x such that $φ_1$. These are key to the justification of the use of the description $ixφ_1$, which is, in turn, needed to instantiate Premise 2′′ to obtain line 5. In free logic, one may not instantiate a term into a universal claim until one has established that the term has a denotation.

Consequently, by substituting either Premise 2′ or, preferably, Premise 2′′ for Premise 2 in the 1991 argument, we obtain a valid argument in which all of the premises are needed to derive the intermediate conclusion $E lxφ_1$.\(^9\) In either case, none of the premises are redundant.\(^10\)

\(^9\)Note how our reconstruction using Premise 2′ differs from Garbacz’s proposed weakening of Premise 2 (2012, 591). His proposed weakening asserts that, for any x, if it is not the case that both $φ_1$ and $E lx$, then there is something y such that (a) y is greater than x, (b) $φ_1$, and (c) x is conceivable. Formally, $∀x(¬(φ_1 \& E lx) \rightarrow ∃y(Gyx \& φ_1 \& Cy))$. We think Premise 2′ is a more elegant weakening of Premise 2; $φ_1$ is not required in both the antecedent and the consequent to derive the desired conclusion. And the antecedent of Premise 2′′ considers only the case of a $φ_1$ object that doesn’t exist (the antecedent of Garbacz’s proposed weakening considers the cases where either x isn’t such that none greater can be conceived or x doesn’t exist). Modulo the definition of God (see below), Premise 2′′ is sufficient to yield the existence of God given Premise 1 and the connectedness of greater than.

\(^10\)To see this with respect to the argument that cites Premise 2′′, notice two things: (1) line 5 depends on Premise 1 and the Meaning Postulate for greater than even though those weren’t cited as the justification. But these two principles are needed to conclude that the description has a denotation and can thereby be instantiated, via the free logic version of $∀E$, into Premise 2′′. (2) When one assumes, for reductio, at
3 Does the Argument Beg the Question?

One of the other criticisms of Premise 2 that Garbacz raises in Section 2 of his paper is that it is equivalent to the conclusion that God exists and so using it in this argument is ‘epistemically inefficient’ (2012, 588). Rushby (2018) amplifies and extends this criticism to suggest that Premise 2 is a clear case of begging the question (1475–78, 1484).

These claims can be undermined once they are examined in detail. Let’s first look at exactly what Garbacz says. On pp. 586–587, we find the following extended passage:

Premise 2 cannot be used in any proper argument for the existence of God for the following three reasons:

I. It not only implies that God exists but it is (logically) equivalent to the latter claim:

\[\vdash E(\text{Sup}_G(x)) \leftrightarrow \{\neg E(\text{Sup}_G(x)) \rightarrow \exists y [G(y, \text{Sup}_G(x)) \land C(y)]\} \quad (2) \]

\textit{Proof.}
\[\rightarrow \text{ part:} \]
\[\text{It follows from } p \rightarrow (\neg p \rightarrow q). \]
\[\leftarrow \text{ part:} \]
\[\text{The reader may find the proof of this fact in Oppenheimer and Zalta [2011: 345].} \]
\[\text{QED} \]

Focus on claim (I). Garbacz says “It [Premise 2] not only implies that God exists but it is (logically) equivalent to the latter claim”. Here the ‘latter claim’ has to be referring to ‘God exists’. But from the line labeled (2) (in the right margin of the above quote), you cannot infer that Premise 2 is logically equivalent to the claim that God exists. While Garbacz’s proof that line (2) is derivable by logic alone is correct, this proof doesn’t show what Garbacz says it shows. Line (2) only says that the claim ‘the x such that \(\phi_1 \) exists’ is equivalent to Premise 2. For Garbacz’s claim (I) to be true, Premise 2 would have to be logically equivalent to the claim \(E\!l\!g \). It is not; that is, the claim \(E\!l\!g \) is not equivalent to the claim on the left side of sentence (2): it is not equivalent to ‘the x such that \(\phi_1 \) exists’. Rather, for \(E\!l\!g \) and \(E\!l\!x\!\phi_1 \) to be equivalent, you need the \textit{definition} \(g =df \, \iota x \phi_1 \). And this is a non-trivial part of the argument. One can’t introduce this definition into the argument until it is justified. And the justification can be given by noting that the intermediate conclusion \(E\!l\!x\!\phi_1 \) implies that the definite description is well-defined. Specifically, if you examine the 2011 argument reproduced in footnote 3 above, you will see that the intermediate conclusion \(E\!l\!x\!\phi_1 \) occurs on line 8; this implies, by Russell’s theory of descriptions, that the definite description is well-defined (i.e., has a unique denotation). So to reach the conclusion that God exists from Premise 2, you need the non-trivial step of justifying and introducing the definition of God as the \(x \) such that \(\phi_1 \).

So, it is just a mistake to claim that Premise 2 is (logically) equivalent to the claim that God exists. We’ve shown, though, only that Premise 2 doesn’t imply that God exists. But the ‘converse’ holds as well: the claim that God exists doesn’t imply Premise 2. Again, to draw the inference from the claim that God exists to Premise 2, one must first convert \(E\!l\!g \) to \(E\!l\!x\!\phi_1 \) by the definition of God. Then one can correctly claim, as Garbacz does, that the latter is equivalent to Premise 2. But you can’t thereby conclude that \textit{God exists} \((E\!l\!g) \) implies Premise 2 without appealing to, and justifying, the definition of God. And that can’t be done in this direction; there is no justification for stipulating that \(g =df \, \iota x \phi_1 \) simply on the basis of \(E\!l\!g \). This observation undermines Garbacz’s argument in Section 2 of his paper. Moreover, it forestalls the attempt to claim that Premise 2 is logically equivalent to the conclusion of the ontological argument and so begs the question. For if the question is ‘Does God exist?’, and the formal representation of the claim in question is \(E\!l\!g \), then Premise 2, despite its power, does not imply \(E\!l\!g \) without the definition of God. Since Premise 2 alone doesn’t yield the conclusion that God exists, the argument we proposed doesn’t beg the question, even in a context of persuasion.

There is, however, an argument in the literature which implies that our latest version of the argument, involving Premise 2”, does beg the question. This is an argument in Rushby 2018 (1476–1478).11 The argu-

11 Rushby sets up the argument by saying (p. 1475): In the next section, I introduce a strict definition of “begging the question” and show that a rendition of the Argument due to Oppenheimer and Zalta19 is vulnerable to this charge. In what follows we spell out the charge he makes.
ment has two parts: first there is a definition of \textit{begging the question} and then there is the claim that an analogue of Premise 2′ begs the question according to that definition. We challenge both the definition and the claim that the argument with either Premise 2′ or even Premise 2 begs the question, given some reasonable definition of this fallacy.

Here is Rushby’s definition of \textit{begging the question}, where he uses the equality sign = as a biconditional sign (2018, 1476):

\[
\ldots \text{ if } C \text{ is our conclusion, } Q \text{ our “questionable” premise (which may be a conjunction of simpler premises) and } P \text{ our other premises, then } Q \text{ begs the question if } C \text{ is equivalent to } Q, \text{ assuming } P: \text{i.e., } P \vdash C = Q.
\]

Note here that Rushby has defined what it is for a \textit{premise} to beg the question. Rushby then says (2018, 1478):

\[
\ldots \text{the premise Greater1 begs the question under the other assumptions of the formalization} \ldots . \text{ Given that we have proved God\textsubscript{re} from Greater1 and vice-versa, we can easily prove they are equivalent. Thus, in the definition of “begging the question” given earlier, } C \text{ here is God\textsubscript{re}, } Q \text{ is Greater1 and } P \text{ is the rest of the formalization (i.e., ExUnd, the definition of God?, and the predicate subtype trichotomous? asserted for >).}
\]

In this passage Greater1 refers to the sentence (2018, 1477):

\begin{align*}
\text{Greater1: } & \text{ AXIOM FORALL } x: \ (\text{NOT re?}(x) \Rightarrow \text{EXISTS } y: \ y > x) \\
\end{align*}

where “The uninterpreted predicate re? identifies those beings that exist ‘in reality’” (2018, 1477). This is clearly an analogue of our Premise 2′, which asserts that for any \(x\), if \(x\) doesn’t exist, then an object greater than \(x\) is conceivable. So Rushby’s argument, if good, would imply that Premise 2′ is question-begging.

Let’s turn first to his definition of begging the question. Of course, it should be observed that the fallacy of begging the question traditionally applies to \textit{arguments}, not to \textit{premises}, yet for some reason, Rushby takes it to apply to premises.\footnote{Parent (2015, 477) suggests that we \textit{would} accept that Premise 2 is question-begging, for he says “Nevertheless, O&Z go on to give an independent case that (P) is either false or question-begging, and as things currently stand, their verdict strikes me as correct”. We don’t argue that Premise 2 in and of itself is question-begging, or that the argument with Premise 2 is.}

we’ll discuss it at greater length below. And let’s put aside the fact that we shall later argue that \textit{begging the question} is a charge that can be leveled only relative to a dialogical context. Let’s focus for now solely on Rushby’s definition of \textit{begging the question}. We think it is easy to show that his definition categorizes premises that clearly don’t beg the question as ones that do. We can undermine this definition using a purely formal example. For consider the following valid argument:

\begin{align*}
F_a & \equiv G_b \\
G_b & \equiv R_d \\
\therefore F_a & \equiv R_d
\end{align*}

In this argument a biconditional conclusion follows from two biconditional premises. The argument is non-question begging—both premises play a role in the derivation of the conclusion. Moreover, the following, related argument is also valid and non-question begging:

\begin{align*}
F_a & \equiv G_b \\
G_b & \equiv R_d \\
F_a & \\
\therefore R_d
\end{align*}

But according to Rushby’s definition, the premise \(F_a\) is question-begging in this last argument. That’s because from the first two premises \(F_a \equiv G_b\) and \(G_b \equiv R_d\), we can derive \(F_a \equiv R_d\). That is, \(F_a \equiv G_b, G_b \equiv R_d \vdash F_a \equiv R_d\). Now, in Rushby’s definition, let \(C\) be the conclusion \(R_d\), \(Q\) be the premise \(F_a\), and \(P\) (the other premises) stand for the first two premises. Then the derivation that we just identified, namely, \(F_a \equiv G_b, G_b \equiv R_d \vdash F_a \equiv R_d\), would become represented in Rushby’s notation as \(P \vdash C \equiv Q\). Thus, according to Rushby, \(F_a\) begs the question. But it clearly doesn’t. Nor does \(R_d\) beg the question in the argument:

\begin{align*}
F_a & \equiv G_b \\
R_d & \\
\therefore F_a
\end{align*}

This is not question-begging even though \(F_a \equiv G_b, G_b \equiv R_d \vdash F_a \equiv R_d\). Again, Rushby’s schema, when applied, wrongly entails that the premise \(R_d\) begs the question. One doesn’t require an interpretation of the formal
claims to see that they constitute a counterexample to Rushby’s definition – any interpretation will do.

A better definition of question-begging is one that applies to arguments as a whole. Indeed, it applies to arguments relative to a dialogical situation. They say (2015, fn 4, 2797):

\[\text{id quo} \text{ abbreviates ‘id quo maior cogitari non potest’} \] (‘that than which nothing greater can be conceived’), and \(\text{aliquid quo} \text{ abbreviates ‘aliquid quo nihil maius cogitari potest’} \] (‘something than which nothing greater can be conceived’).

This, therefore, advances the debate, since we now have a formulation immune to the question-begging charge. Moreover, it should be noted that even though definition \(g =_{df} \exists \phi \) introduces a conservative extension of the other premises, the fact that the definition is conservative is justified by the other premises—and requires such justification. Without such a justification, the definition would either be empty (in a free logic for individual constants) or creative (in a logic free for definite descriptions but not for individual constants)! These points have been insufficiently appreciated in the debate surrounding the argument and they are key to the understanding of the logic underlying the argument.

Moreover, it is unlikely that Anselm was presenting the ontological argument in a dialogical situation in which he was confronting an atheist. So, if we were to suppose that the interlocutor is a theist, there is reason to think that the arguer would be entitled to all the premises in all the versions of the argument we’ve presented. We emphasize here that we are not defending the soundness of the argument. Let’s suppose, for the purposes of this paper, that the argument is being presented in a dialogical situation where the interlocutor is an atheist or agnostic. We still think that one is entitled to use the premises of all the versions of the argument we’ve put forward, if only for the sake of the argument. This doesn’t require that the premises be true, but only that it doesn’t defeat the arguer’s purpose in the situation of arguing for a conclusion. So, one can continue the debate after the argument is presented by considering whether the premises are true or false. And that is where we think the focus should be with respect to the ontological argument as we’ve presented it, not on whether the argument begs the question. Indeed, we think that this way of looking at the matter acknowledges that there is, in the background, a question about the significance of the definition of God \((g =_{df} \exists \phi) \) in the argument. This is crucial to the conclusion, and really has the status of a premise, since it stands in need of justification. In all the criticisms of our versions of the argument discussed above, the critics simply consider whether the argument in absence of the definition of God begs the question. We take this to be a mistake.

4 Does Anselm Use a Definite Description?

Eder & Ramharter (2015) recognize that question-begging is not an accurate charge to bring against any of the versions of the ontological argument of the kind that we’ve been discussing. They agree that the argument is valid but suggest that the regimentation of the argument using a definite description doesn’t properly capture the reasoning in \textit{Proslogion}. They introduce two abbreviations which they put in boldface: \(\text{id quo} \) abbreviates ‘id quo maior cogitari non potest’ (‘that than which nothing greater can be conceived’), and \(\text{aliquid quo} \) abbreviates ‘aliquid quo nihil maius cogitari potest’ (‘something than which nothing greater can be conceived’).
conceived’). Then they say (p. 2802):

Whether or not a reconstruction of Anselm’s argument is valid may crucially depend on whether id quo has to be understood as a definite description. But we think that it is not just that we do not have to understand id quo as a definite description, but that we should not. For one thing, if id quo had to be read as a definite description, Anselm would be committed to presupposing the uniqueness of aliquid quo already in Chap. II, which seems to be in conflict with the fact that only in Chap. III does Anselm mention God’s uniqueness for the first time. Rather, it seems to us that Anselm is using this diction only as a device to refer back to something ‘than which nothing greater can be conceived’. In other words, we think that Anselm’s id quo is best understood as an auxiliary name, which is used to prove something from an existence assumption.

[In this quote, footnote number marks are preserved in square brackets.]

Eder and Ramharter are suggesting here that the use of “id quo maius cogitari non potest” is not a definite description, but rather an arbitrary name. So, even though id quo appears to be a definite description, they prefer to interpret this location in terms of a somewhat sophisticated logical notion. In contemporary logic, an arbitrary name is a simple constant and has no descriptive content, but the phrase “id quo maius cogitari non potest” is not a simple expression and has descriptive content. Rather, “id quo maius cogitari non potest” is a complex expression that has a content expressed by the arrangement of the negation and quantifier (nothing = not something), conjunction, and the predicates greater than and conceives.

But for the sake of argument, let’s grant them that it is an arbitrary name and look at their representation of the argument for the existence of God in Prosligion II. Their formal reconstruction of the non-modal argument (p. 2813) uses a constant ‘g’ that they introduce as an arbitrary name. They also introduce (p. 2808) the name God! to stand for the formal claim Ex(Gx & E!x) (“there is a x such that x is a God and x exists”). Then on p. 2813, they say “Now that everything is in place, we are in a position to prove God! as follows.” We’ve put their proof in a footnote. Note that the proof uses not only the machinery of arbitrary names, but also both second-order quantifiers and third-order logic. The second-order quantifiers appear in (*) and (**), and third-order logic is used in the statement of Realization. We doubt that this machinery is needed to formally represent Anselm’s argument. But, again, let us grant them the machinery, for the sake of argument. The problem is that the formal representation doesn’t show that Prosligion II has an argument for the existence of God. They’ve used the expression God! to label a premise, but nowhere is the name of God tied to the argument. If you look closely at their argument (again, see footnote 16), it is clear that the constant g is not a name of God, but rather an arbitrary name which they think represents ‘id quo maius cogitari non potest’. Thus, the conclusion of their argument, E!g, uses an arbitrary name, not a name of God. So once you grant them that the phrase ‘than which nothing greater can be conceived’ is an arbitrary name and not a description, they have only established a fact about an arbitrarily chosen object of the kind nothing greater is conceivable, namely, that such an object exists.

But this not only conflicts with what Anselm says in Prosligion II, but with Eder & Ramharter’s own description of what Anselm has done. In the opening of Prosligion II, Anselm directly uses the name ‘God’ (= ‘Deus’) and the vocative case for ‘Lord’ (= ‘Domine’ = vocative case of ‘Dominus’). So Anselm clearly takes the conclusion of the argument to apply to God. And that is how Eder & Ramharter understand Prosligion II. They say (2015, 2800):

Having established in Chap. II that God exists in reality from the

\begin{footnote}

15 Their position has recently been endorsed in Campbell 2018 (55).

\end{footnote}
On Anselm’s Ontological Argument in *Proslogion* II

assumption that God exists at least in the understanding, Anselm proceeds in Chap. III by proving it is inconceivable that God does not exist.\[10\]

So Eder & Ramharter themselves agree that in *Proslogion* II, there is an argument that establishes something about God, and not just about some arbitrarily chosen object such that nothing greater can be conceived.

We conclude that one can not so easily dismiss the suggestion that ‘id quo maior cogitari non potest’ is used as a definite description in *Proslogion* II. At present, Eder & Ramharter’s suggestion that id quo is being used as an arbitrary name leads to the conclusion that Anselm didn’t argue for the existence of God in *Proslogion* II. They would have to make a much stronger case before we would be willing to accept this analysis.

5 Conclusion

The work we’ve examined leads us to conclude that the analysis of *Proslogion* II using a definite description still has a lot to offer those trying to understand Anselm’s ontological argument for the existence of God. To our way of thinking, the interesting question turns on the truth of the premises and justification of the definition of God. Given our work above, the premises in question are Premise 1, Premise 2′′, the Meaning Postulate for greater than, and the definition of God: $g =_{df} \exists x \phi_1$.

In our paper of 2007, we argued that Premise 1 is the real culprit in the argument. We tried to show that Premise 1 is too strong because it yields the existence of an object that exemplifies the property of being a conceivable thing such that nothing greater is conceivable. We argued that Anselm’s subsidiary argument for Premise 1 involves two assumptions: (1) that the mere understanding of the phrase ‘conceivable thing such that nothing greater is conceivable’ requires one to grasp an intensional object, and (2) any such intensional object has to exemplify the property being a conceivable thing such that nothing greater is conceivable. We then challenged the second assumption, on the grounds that the intentional [with-a-t] involved in understanding the phrase only requires that the intensional [with-an-s] object which is thereby grasped encode the property being a conceivable thing such that nothing greater is conceivable. Here we appealed to the notion of encoding used in the theory of abstract objects (Zalta 1983, 1988). Interestingly, this is a point of contact with the work of Eder & Ramharter’s paper, since their principle Realization is a kind of comprehension principle that underlies Anselm’s assertion that there is something in the understanding such that nothing greater is conceivable. So one recommendation for further study is to focus on Premise 1 and the implicit comprehension principle that Anselm must be relying upon to conclude that it is true.

References

