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Abstract

Works by (Humberstone 1981, 2011), van Benthem (1981, 2016),
Holliday 2014, forthcoming, and Ding & Holliday 2020 attempt to
develop a semantics of modal logic in terms of “possibilities”, i.e.,
“less determinate entities than possible worlds” (Edgington 1985).
These works take possibilities as semantically primitive entities, stip-
ulate a number of semantic principles that govern these entities
(namely, Ordering, Persistence, Refinement, Cofinality, Negation,
and Conjunction), and then interpret a modal language via this se-
mantic structure. In this paper, we define possibilities in object the-
ory (OT), and derive, as theorems, the semantic principles stipulated
in the works cited. We then raise a concern for the semantic inves-
tigation of possibilities without a modal operator, and show that no
such concerns the metaphysics of possibilities as developed in OT.

*Portions of this paper were adapted from a section of Principia Logico-Metaphysica
(Zalta, m.s.). Collaboration led to a number of improvements and refinements to the orig-
inal draft of the content. The ideas also benefited from discussions with Daniel Kirchner,
Daniel West, Hannes Leitgeb, and Chris Menzel. We’re indebted to Steven Kuhn for posing
the question of whether anyone has tried to build a theory of possibilities in object theory,
and to Ioannis Polychronopoulos for pointing out a number of typos in an early draft.
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1 Introduction

The term possibility is often used in philosophy to denote a proposition
that might be true. If we focus solely on the sense of metaphysical pos-
sibility, then where ‘p’ ranges over propositions and ^ represents ‘it is
possible that’, then p is considered a (metaphysical) possibility if ^p is
true. But there is another, technical notion of possibility in the literature.
It has been used instead of possible world to develop a formal semantics
of modality (Humberstone 1981, 2011; van Benthem 1981, 2016; Edg-
ington 1985; Holliday 2014, forthcoming; and Ding & Holliday 2020).
Humberstone introduces this technical notion by considering two ob-
servations by Davies about Lewis’s (1973, 84) conception of a possible
world as a ‘way things might have been’. Davies (1975, 57) observed:
(1) when we specify a way things might have been, we typically do so with
a single sentence (e.g., “I might have had straight hair”); and (2) if Lewis
is to conceive of a way things might have been as a possible world, then
such things cannot be specified by a single sentence. These observations
led Humberstone to write (1981, 314–315):

Here we have a motivation for the pursuit of modal logic against a
semantic background in which less determinate entities than possi-
ble worlds, things which I am inclined for want of a better word to
call simply possibilities, are what sentences (or formulae) are true or
false with respect to.

That is, Humberstone is not conceiving of ways things might have been
as propositions p whose metaphysical possibility implies that there are
possible worlds in which p is true. Instead, he is thinking of possibilities
as partial (i.e., not maximal) entities, such as proper parts of possible
worlds. As Edgington 1985 (564) puts it:

. . . [P]ossibilities differ from possible worlds in leaving many details
unspecified.

In the early developments of this theoretical notion of a possibility, philo-
sophers and modal logicians have been content to regard them as primi-
tive, undefined entities. The notion of a possible world had an analogous
history. But the goal of the present paper is to develop a theory of possi-
bilities in which we define the notion in more general terms and derive
the principles governing possibilities that some of the philosophers cited
above stipulate.
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1.1 What Principles Govern Possibilities?

In one or the other of Humberstone 1981, 318; van Benthem 1981, 3–4;
2016, 3–4; Holliday 2014, 3; forthcoming, 5, 15; and Ding & Holliday
2020, 155), we find the following principles stipulated in their seman-
tics:

• Ordering: a refinement relation (D) partially orders the possibilities.

• Persistence: every proposition true in a possibility is true in every
refinement of that possibility.

• Refinement: if a possibility x doesn’t determine the truth value of a
proposition p, then (a) there is a possibility which is a refinement of
xwhere p is true, and (b) there is a possibility which is a refinement
of x where p is false.1

• Cofinality: if, for every possibility x′ that is a refinement of possi-
bility x there is a possibility x′′ that refines x′ and makes p true,
then x makes p true.

• Negation: the negation of p is true in a possibility x if and only if p
fails to be true in every refinement of x.

• Conjunction: the conjunction p and q is true in x if and only if both
p and q are true in x.

These semantic principles are then used to interpret a propositional (mo-
dal) language.

Our goals, however, are to use object theory (OT) to: (a) define the no-
tion of possibility governed by these principles; (b) derive the above prin-
ciples as theorems from the axioms of OT; and (c) demonstrate that the
purely semantic conception of possibilities governed only by non-modal
principles such as the above doesn’t quite play the role envisioned for
such entities. In pursuing goals (a) and (b), we shall neither assume that
situations are primitive nor stipulate that the domain of situations is par-
tially ordered. Moreover, we shall neither require any of the mathemat-
ics (e.g., set theory) that is typically assumed in the semantic character-
ization of possibilities, nor model possibilities as mathematical objects.

1In what follows it should be remembered that when the condition “x′ is a refinement
of x” is defined, one still has prove that, as defined, it obeys the Refinement principle.
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Instead, our strategy is to use OT (with its primitive modal operator, as
developed in Zalta 1993, 1997, and elsewhere) to identify possibilities
as situations that are consistent and modally closed. We’ll discuss the im-
portance of having a primitive modal operator in the final section. We
hope it will be clear, therefore, that this is not an essay in semantics, but
rather a systematic metaphysical investigation of the principles adopted
in the semantics of modal logic.

2 Object Theory

2.1 Basic Principles

For those unfamiliar with OT, the basics are as follows. OT is formulated
in a 2nd-order, quantified modal language (without identity) extended
with an additional atomic formula ‘x1 . . .xnF

n’ (‘x1, . . . ,xn encode Fn’) for
n ≥ 1; a distinguished unary predicate ‘E!’ (‘being concrete’); an actual-
ity operator (A), complex individual terms (rigid definite descriptions)
of the form ıxϕ; and complex n-ary relation terms (λ-expressions) of
the form [λx1 . . .xn ϕ]. The language includes 0-ary relation variables
(p,p′, . . . , q,q′, . . .) and constants (pi ,qi , . . ., for i ≥ 0) and, in what follows,
we say that 0-ary relations are propositions, whereas unary relations are
properties.

The definitions that partition the domain of individuals into ordinary
objects (O!) and absract objects (A!) are:

• O! =df [λx^E!x]

• A! =df [λx¬^E!x]

The definitions that assert the conditions under which individuals and
n-ary relations exist are:

• x↓ ≡df ∃F(Fx)

• Fn↓ ≡df ∃x1 . . .∃xn(x1 . . .xnF
n)

In what follows, we’ll regard the free variables in definitions as metavari-
ables, so that they can be instanced even by non-denoting, complex terms.
So, for example, ‘ıxT x↓’ is defined by the above and asserts “the-x-such-
that-T x exists”. The definition tells us that this holds if and only if the
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x such that T x exemplifies some property.2 When these conditions hold
for an individual or relation term τ , we often say, in the metalanguage,
that τ has a denotation.

The definitions for identity are:

• x = y ≡df
(O!x&O!y &�∀F(Fx ≡ Fy))∨ (A!x&A!y &�∀F(xF ≡ yF)) (1)

• F = G ≡df �∀x(xF ≡ xG) (2)

• p=q ≡df [λx p]=[λx q] (3)

We omit the definition of n-ary relation identity for n ≥ 2, since it will
play no role in what follows. However, we note that the definition re-
duces n-ary relation identity for n ≥ 2 to property identity. Similarly, in
(3), identity for propositions is defined in terms of identity for proper-
ties. Both the definition of identity for individuals and the definitions of
identity for properties and propositions imply that identity is reflexive,
i.e., one can prove, from these definitions, that x=x, F=F, and p=p. To-
gether with the axiom for the substitution of identicals, this is sufficient
to derive that identity is symmetric and transitive, both w.r.t. identity
for individuals and identity for n-ary relations (n ≥ 0). Moreover, the
necessity of identity, for both individuals and relations, follows from the
definitions.3

Note that �∀x1 . . .∀xn(Fx1 . . .xn ≡ Gx1 . . .xn) doesn’t imply F =G and
�(p ≡ q) doesn’t imply p = q. So OT’s theory of relations is hyperin-
tensional. In particular, properties necessarily exemplified by the same
objects need not be identical, but properties necessarily encoded by the
same objects are.4 And propositions that are necessarily equivalent need
not be identical.

2Though we won’t go into any detail in this paper, note also that the inferential role of
a definition by identity (using the symbol =df , as opposed to ≡df ) can be easily stated as
follows, which can be formulated as a metarule governing OT: if the definiens exists, then
the identity holds, and if the definiens doesn’t exist, then the definiendum doesn’t either.

3Clearly, F=G→ �F=G follows from definition (3), by the 4 principle of modal logic.
The proof that x = y → �x = y goes by way of a disjunctive syllogism, reasoning from
O!x∨A!x, and makes use of S5 theorems.

4If we assume primitive possible worlds for the moment and think semantically, then
properties, understood as primitive entities, have two extensions. (The same holds for re-
lations generally but we’re simplifying and focusing only on properties.) Properties whose
exemplification extensions are the same from world to world need not be identical. But if
their encoding extensions are the same from world to world, then they are identical. We’ll
see below that the modal logic of encoding will require that if properties have the same en-
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OT asserts classical axioms for propositional logic; for quantifica-
tional reasoning with primitive constants and variables; for the unre-
stricted substitution of identicals; for S5 modal logic; and for the logic
of actuality.5 However, a negative free logic governs the complex terms
(i.e., descriptions and λ-expressions may fail to denote). The axioms for
λ-expressions are interpreted relationally and are conditional on the λ-
expression having a denotation.6 The distinctive new axioms of OT are
the axioms of encoding:

• Ordinary objects necessarily fail to encode properties:
O!x→ �¬∃FxF

• If x encodes F, then necessarily x encodes F:
xF→ �xF (4)

• For any condition ϕ on properties, there is an abstract object that
encodes just the properties satisfying ϕ:
∃x(A!x&∀F(xF ≡ ϕ)), provided x isn’t free in ϕ (5)

Note that for each appropriate ϕ, any witness to any instance of (5) is
unique: there couldn’t be two distinct abstract objects that encode all

coding extension at any world, then they have the same encoding extension at every world.
(Intuitively, if F is distinct from G, then OT guarantees that there is an abstract object that
encodes one without encoding the other.) But though this suggests we could eliminate the
� from the definiens of F=G given in the text, we’ve kept it in to make it clear that identity
is a modal notion.

5This logic includes one axiom that is not a necessary truth, namely, Aϕ → ϕ (Zalta
1988). Note that in a logic with such an axiom, the Rule of Necessitation has to be re-
stricted – it cannot be applied to any line of a proof that depends on this axiom. See the
digression at the end of Section 2.5 below, for a discussion of an important consequence of
this contingent axiom for the actuality operator.

6To see how the logic of λ-expressions works, note first that it is an axiom of OT that
[λx1 . . .xnϕ]↓, provided none of the xi bound by the λ occur as the arguments of an encod-
ing formula somewhere in ϕ. So the axiom for β-Conversion has the following conditional
formulation:

[λx1 . . .xn ϕ]↓ → ([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)

We’ll see how this yields a comprehension principle for relations shortly. But it is worth
also mentioning now that it is axiomatic that if a λ-expression with matrix ϕ denotes, and
ϕ and ψ are necessarily and universally equivalent, then the λ-expression with ψ as matrix
denotes:

[λx1 . . .xn ϕ]↓ &�∀x1 . . .∀xn(ϕ ≡ ψ)→ [λx1 . . .xn ψ]↓
So even if ψ has encoding formulas in which a free xi occurs in encoding position, one
can embed ψ in a denoting λ-expression if it is provable that ψ necessarily has the same
exemplification extension as ϕ.
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and only the properties satisfying ϕ, since distinct abstract objects have
to differ by one of their encoded properties. So it is a theorem schema of
OT that, for any ϕ without free xs, there is a unique abstract object that
encodes just the properties such that ϕ, i.e.,

` ∃!x(A!x&∀F(xF ≡ ϕ)), provided x isn’t free in ϕ

Thus, definite descriptions of the form ıx(A!x&∀F(xF ≡ ϕ)) are guaran-
teed to have a denotation, for any such formula ϕ; they are canonical.

To supplement these axioms, the theory of hyperintensional relations
is embodied by (a) a comprehension principle for (hyperintensional) n-
ary relations (n ≥ 0), derivable as a theorem schema,7 and (b) the defini-
tions for relation identity described earlier.

2.2 Definitions and Basic Theorems About Situations

In Zalta 1993 (410), situations were defined as abstracta that encode only
propositional properties, i.e., only properties of the form [λy p] (“being
such that p”), where y is vacously bound by the λ:

• Situation(x) ≡df A!x & ∀F(xF→∃p(F=[λy p])) (6)

Given the modal logic of encoding and the necessity of identity, it follows
that situations are necessarily situations:

` Situation(x)→ �Situation(x)

So we may use s, s′, . . . as rigid, restricted variables that range over situa-
tions; we can reason with these variables in any modal context and rest
assured that the objects serving as the values of the variables meet the
restriction condition (i.e., are situations) in that context.

We say that a proposition p is true in s (or makes p true), written s |= p,
just in case s encodes being such that p:

7In footnote 6, we identified a body of λ-expressions that denote, and we formu-
lated a conditional β-Conversion principle. So one can prove from claims of the form
[λx1 . . .xn ϕ]↓ that [λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ. Then by applying Rule GEN n times, the Rule
of Necessitation to the result, and then Existential Introduction, we have a derivation of
the following comprehension principle for n-ary relations (n ≥ 0):

∃F�∀x1 . . .∀xn(Fx1 . . .xn ≡ ϕ), provided F isn’t free in ϕ, and none of the xi occur as
the arguments of an encoding formula somewhere in ϕ

Note that this yields all of the properties, relations, and propositions asserted to exist by
the classical relation comprehension schema of second-order logic, since the classical prin-
ciple doesn’t include any encoding formulas.
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• s |= p ≡df s[λy p] (7)

It now follows from the definition of identity (1) that situations are iden-
tical whenever they make the same propositions true:

` s = s′ ≡ ∀p(s |= p ≡ s′ |= p) (8)

We next say that s is a part of s′ iff s′ makes true every proposition s
makes true:

• sE s′ ≡df ∀p(s |= p→ s′ |= p) (9)

It follows that parthood (E) is a reflexive, anti-symmetric, and transitive
condition on situations:

` sE s′
` (sE s′ & s′, s)→¬s′ E s (10)
` sE s′ & s′ E s′′→ sE s′′

2.3 (Modal) Logic of Situations

In Zalta 1993 (413), a situation was defined to be actual just in case every
proposition true in it is true:

• Actual(s) ≡df ∀p(s |= p→ p) (11)

And a possible situation is one that might be actual:

• Possible(s) ≡df ^Actual(s) (12)

A consistent situation is one in which no proposition and its negation are
both true:

• Consistent(s) ≡df ¬∃p(s |= p & s |= ¬p) (13)

It then follows that possible situations are consistent:

` Possible(s)→ Consistent(s) (14)

Note that the converse doesn’t hold.8

In what follows we deploy the usual definition of necessary implica-
tion:

8For example, consider a situation, say s1, which makes true only the following three
propositions: p, q, and p→¬q, where q , ¬p. Then s1 is consistent (there is no proposition
r such that s |= r and s |= ¬r), but not possible (it is not possible that every proposition true
in s1 is true, for otherwise some contradiction would be possibly true).
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• ϕ⇒ ψ ≡df �(ϕ→ ψ) (15)

Thus, one can prove that true in s is not subject to modal distinctions:

` s |= p⇒ �s |= p (16)

`^s |= p⇒ s |= p (17)

We also say that a formula ϕ is modally collapsed whenever it can be es-
tablished that �(ϕ → �ϕ), i.e., ϕ ⇒ �ϕ. As we’ll see, s |= p and other
modally collapsed formulas will play an important role.

2.4 Possible World Theory

In Zalta 1993 (414), a possible world was defined to be any situation s that
might be such that all and only true propositions are true in s:

• PossibleWorld(s) ≡df ^∀p(s |= p ≡ p) (18)

Given our convention, the s |= p ≡ p is to be parsed as (s |= p) ≡ p, not as
s |= (p ≡ p).

From this definition, the basic principles of possible world theory are
derivable (Zalta 1993, 414–419). These include formal versions of the
following principles:

• Every possible world is maximal, consistent, and possible, where
Maximal(s) ≡df ∀p(s |= p∨ s |= ¬p) (19)

• There is a unique actual world.

• Possibly p iff there is a possible world in which p is true.

• Necessarily p iff p is true in every possible world.

In what follows, we shall appeal to more recent theorems about possi-
ble worlds (developed after the publication of Zalta 1993); these will be
needed for the proofs of the theorems about possibilities. One frequently
cited theorem is that a situation s is possible if and only if it is a part of
some possible world:

Possible(s) ≡ ∃w(sEw) (20)

A proof sketch of this theorem is in the Appendix. Other recent theo-
rems of world theory will be cited (along with where their proofs can be
found) as the need arises.
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2.5 Identifying Situations Uniquely

Our comprehension principle for abstract objects (5) now yields a com-
prehension for situations, namely, for every condition on propositions,
there is a situation that makes true all and only the proposition satisfy-
ing ϕ:

` ∃s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (21)

A proof is provided in the Appendix. Since situations are identical when-
ever they make the same propositions true (8), any witness to the above
will be unique – there couldn’t be two situations that make true exactly
the propositions such that ϕ. So it follows that:

` ∃!s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ

Thus, by the principles of free logic, we know that descriptions for situ-
ations of the form ıs∀p(s |= p ≡ ϕ)) are always well-defined:

` ıs∀p(s |= p ≡ ϕ)↓, provided s isn’t free in ϕ

Since descriptions having this form are guaranteed by the theory to have
a denotation, they are canonical descriptions for situations.

In the remainder of this section, we discuss a subtle issue that arises
when rigid definite descriptions are deployed in a modal context. (A
rigid definite description, ıxϕ, semantically denotes a unique object, that
satisfies ϕ at the distinguished actual world, if there is one.) Our di-
gression will conclude with (a) an explanation of why this won’t affect
the present paper and (b) a theorem schema (25) that governs a class of
canonical descriptions for situations.

In a modal logic with rigid definite descriptions, one can produce
logical theorems that are not necessary. For example, the conditional
y = ıxGx → Gy will be false at a world, say w1, when y (is assigned an
object that) fails to be G at w1 but is the unique G at the actual world w0
(in such a case, the the antecedent is true at w1 but the consequent false
at w1). More generally, where ϕyx is the result of substituting y for all
the free occurrences of x in ϕ, the claim y= ıxϕ→ ϕ

y
x is not a necessary

truth, though it is logically true (i.e., true at the distinguished actual
world of every model, for every assignment to y) given the semantics of
rigid definite descriptions (Zalta 1988).

In a fuller presentation of OT, we could axiomatize rigid definite de-
scriptions by introducing an actuality operator A and asserting, as an
axiom:
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y = ıxϕ ≡ ∀x(Aϕ ≡ x=y) (22)

This is a form of the Hintikka principle (1959); it is a necessary truth
and it immediately implies the following as a necessary truth, in which
Aϕ

y
x = (Aϕ)yx = A(ϕyx ):

` y= ıxϕ→ Aϕ
y
x , provided y is substitutable for x in ϕ (23)

So by placing the actuality operator appropriately in our original exam-
ple, we obtain y = ıxGx → AGy, and this is a necessary truth, not con-
tingent. But though (22), (23), and their instances are necessary truths,
the axiomatization of the actuality operator includes an axiom, namely
Aϕ → ϕ, that is a logical truth which isn’t necessary, as noted in foot-
note 5.9 So the Rule of Necessitation has to be applied carefully; one
may not apply the rule to necessitate a theorem whose proof depends on
the axiom Aϕ→ ϕ.

In what follows, though, we won’t need to worry about illicit appli-
cations of the Rule of Necessitation since all of the definite descriptions
we’ll deploy involve a special class of formulas for which we can derive
the conditional y= ıxϕ→ ϕ

y
x without appealing to the contingent axiom

for actuality. The formulas in question are modally collapsed, which we
defined earlier as those ϕ for which (it is provable that) ϕ⇒ �ϕ. When
this condition holds for a formula ϕ, one can prove that Aϕ ≡ ϕ is nec-
essarily true without appealing to the contingent axiom Aϕ→ ϕ.10 If ϕ
is modally collapsed, then y= ıxϕ→ ϕ

y
x is a necessary truth:

` y= ıxϕ→ ϕ
y
x , (24)

provided ϕ is modally collapsed and y is substitutable for x in ϕ

9To see why the formula schema Aϕ → ϕ can’t be necessitated, note that the condi-
tional is true at the actual world: if ϕ is true at the actual world, then the conditional is
true at the actual world (by truth of the consequent), and if ϕ is false at the actual world,
then the conditional is true at the actual world (by failure of the antecedent). However, the
conditional is false at any world w1 whenever ϕ is true at the actual world but false at w1.

10Assume ϕ⇒ �ϕ, i.e., �(ϕ→ �ϕ). Then by the K^ principle, i.e., �(ψ→ χ)→ (^ψ→
^χ), it follows that^ϕ→^�ϕ. But in S5,^�ϕ→ �ϕ. So by hypothetical syllogism, we’ve
established:

(θ) ^ϕ→ �ϕ

Now to see that �(Aϕ ≡ ϕ), we first prove both directions of Aϕ ≡ ϕ. (→) Assume Aϕ.
Then ^ϕ. So by (θ), �ϕ. Hence ϕ, by the T schema. (←) Assume ϕ. Then ^ϕ. But
again by (θ), it follows that �ϕ. Hence Aϕ. Since we’ve now established Aϕ ≡ ϕ without
appealing to any contingencies, it follows by Rule RN that �(Aϕ ≡ ϕ).
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(See the Appendix for the proof.) In this paper, we shall appeal only
to definite descriptions ıxϕ in which ϕ is modally collapsed, and so we
won’t need to worry about mistakenly applying the Rule of Necessitation
to theorems derived from a logical truth that is not necessary.

In particular, when we identify (e.g., introduce by definition) a sit-
uation using a canonical description as definiens, then as a special case
of (24) for modally collapsed ϕ, it is a theorem that if a situation s is
(identical to) the situation s′ such that s′ makes true just the proposi-
tions satisfying ϕ, then s makes true just the propositions satisfying ϕ:

` (s = ıs′∀p(s′ |= p ≡ ϕ))→∀p(s |= p ≡ ϕ) (25)
provided s′ isn’t free in ϕ and ϕ is modally collapsed

The proof in the Appendix appeals to the fact that s′ |= p ⇒ �s′ |= p is
an instance of (16), by definition (15), and the fact that ϕ is modally
collapsed. So we may validly infer that the formula ∀p(s′ |= p ≡ ϕ) is
modally collapsed. To derive (25), then, one can simply instantiate s and
the description ıs′∀p(s′ |= p ≡ ϕ), for y and ıxϕ, respectively, in (24).

(25) is crucial to the theorems that follow. All the descriptions of the
form ıs′∀p(s′ |= p ≡ ϕ) used below will be constructed in terms of for-
mulas ϕ that are modally collapsed. This should forestall any concerns
about the fact that we shall be working within a modal context in which
definite descriptions are interpreted rigidly.

3 New Definitions and Theorems

3.1 Modally Closed Situations

A situation s is modally closed just in case it makes true every proposition
p necessarily implied by s’s being actual:

• ModallyClosed(s) ≡df ∀p((Actual(s)⇒ p)→ s |= p) (26)

It follows that if s is modally closed then if s makes p true and p neces-
sarily implies q, then s makes q true:

`ModallyClosed(s)→∀p∀q(s |= p& (p⇒ q) → s |= q) (27)

Also, if s is modally closed and consistent, then s is possible:

` (ModallyClosed(s) & Consistent(s))→ Possible(s) (28)
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Another fact that will play a role is that if s is modally closed and p is
necessary, then s makes p true:

` (ModallyClosed(s) &�p)→ s |= p (29)

Finally, it should be easy to see that possible worlds are modally closed:

` ∀wModallyClosed(w) (30)

3.2 Definition of a Possibility

We plan to show that the notion of a possibility, as introduced by Hum-
berstone and the other cited theorists, can be defined as a situation that
is consistent and modally closed:

• Possibility(s) ≡df Consistent(s) & ModallyClosed(s) (31)

Be sure in what follows to distinguish this notion from Possible(s), as
the latter is defined in (12). It is now provable that possible worlds are
possibilities:

` Possibility(w) (32)

This follows from the facts that possible worlds are modally closed and
consistent. The former was established above and the latter was estab-
lished in Zalta 1993 (415).

It is also a theorem that possibilities are necessarily possibilities:

` �∀s(Possibility(s)→ �Possibility(s))

Given this fact, we may introduce s,s′, . . . as rigid restricted variables
ranging over possibilities.

It follows from (31) and (28) that possibilities are possible:

` Possible(s), i.e.,
` Possibility(s)→ Possible(s) (33)

Finally, it proves handy to know that possibilities are parts of some pos-
sible world:

` ∃w(sEw)

This follows from (33) and (20). Note that possibilities need not be
proper parts of possible worlds; cf. Humberstone 1981 (315).11

11Humberstone entertains the idea that possible worlds aren’t possibilities, but decides
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3.3 Absolute Necessity, Possibilities, and Gaps

Where p is defined as ¬p, we say a situation s has a gap on p just in case
s doesn’t make p true and doesn’t make p true:

• GapOn(s,p) ≡df ¬s |= p & ¬s |= p (34)

We now introduce a special situation named absolute necessity; it is the
situation that makes true all and only necessary truths:

• s� =df ıs∀p(s |= p ≡ �p)

Since the definiens is a canonical description constructed from a modally
collapsed formula, we therefore know:

∀p(s� |= p ≡ �p) (35)

Absolute necessity has a number of interesting features. The first is that
it has gaps on all and only contingent propositions:

` Contingent(p) ≡ GapOn(s�,p) (36)

Moreover, absolute necessity is a possibility:

` Possibility(s�) (37)

It can also be established that no proper part of absolute necessity is a
possibility:

` ∀s((sE s�& s,s�)→¬Possibility(s)) (38)

Consequently, s� is the smallest possibility. Moreover, if any possibility
has a gap on p, then p is contingent:

` GapOn(s,p)→ Contingent(p) (39)

We’re now in a position to derive the principles governing possibilities
stipulated in the literature. We have to show:

` Ordering Principle ` Persistence Principle
` Refinability Principle ` Cofinality Principle
` Negation Principle ` Conjunction Principle

not to pursue it, though leaving it an open question for consideration. If one wants to re-
quire that possible worlds fail to be possibilities, one could conjoin the definiens of (31)
with the clause ¬Maximal(s). Though that rules out the theorem labeled (32), i.e., that pos-
sible worlds are possibilities, one can still prove the existence of possibilities from theorem
stated in (37), namely, that the particular situation defined later as s� is a possibility.
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3.4 The Ordering Principle

We now say that a situation s′ contains situation s, written s′ D s, just in
case s is a part of s′:

s′ D s ≡df sE s
′ (40)

However, when this definition is instanced by possibilities, we read s′Ds

as: s′ is a refinement of s. So we may now establish that every possibility
is a refinement of absolute necessity:

` ∀s(sD s�) (41)

Since E is reflexive, anti-symmetric, and transitive on the situations (10),
the Ordering Principle becomes a theorem – refinement of is reflexive,
anti-symmetric, and transitive on the possibilities:

Ordering Principle
` sD s
` (s′ D s& s′, s)→¬sD s′
` (s′′ D s′ & s′ D s)→ s′′ D s

Cf. Humberstone 1981 (318); 2011 (899); van Benthem 1981 (3); 2016
(3); Holliday 2014 (3); Ding & Holliday 2020 (155); and Holliday forth-
coming (Definition 2.1 and 2.21).

3.5 The Persistence Principle

Humberstone (1981, 318) introduces the Persistence Principle as follows.
Where π is a proposition, X and Y are possibilities, ≥ is the refinement
relation on possibilities, and V (π,X) is the truth-value of π with respect
to X:

• If V (π,X) is defined and Y ≥ X, then V (π,Y ) = V (π,X)

He takes this to intuitively assert that “[f]urther delimitation of a possi-
ble state of affairs should not reverse truth-values, but only reduce inde-
terminancies” (1981, 318).

In OT, the Persistence Principle can be represented as the theorem
that if a proposition p is true in a possibility s and s′ is a refinement of
s, then p is true in s′:

Persistence Principle
` (s |= p& s′ D s)→ s′ |= p
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Cf. van Benthem 1981, 3 (‘Heredity’), 2016, 3; Restall 2000, Definition
1.2 (Heredity Condition); Holliday 2014, 315; forthcoming, 15; Berto
2015, 767 (HC); Berto & Restall 2019, 1128 (HC); and Ding & Holliday
2020, 155.12 (We have omitted the proof from the Appendix since it is
an immediate consequence of definition (9).)

3.6 The Refinability Principle

To formulate and prove the Refinability Principle, we have to introduce
a number of definitions and prove a number of theorems.

3.6.1 The Modal Closure of a Situation: I

We begin with a definition of the modal closure s? of a situation s. The
modal closure of s is the situation that makes true all and only those
propositions p such that s’s being actual necessarily implies p:

• s? =df ıs
′∀p(s′ |= p ≡ (Actual(s)⇒ p))

So in what follows, we shall carefully distinguish the formula express-
ing the condition that s is modally closed, i.e., ModallyClosed(s), from the
term that denotes the modal closure of a situation s, i.e., s? . By (25) and
the fact that the formula Actual(s)⇒ p is modally collapsed, it follows
that s? makes p true iff s’s being actual necessarily implies p:

` ∀p(s? |= p ≡ (Actual(s)⇒ p)) (42)

It also follows that a situation is a part of its modal closure:

` sE s? (43)

To better understand the foregoing definitions, think about s�. It is the
modal closure of the empty situation (i.e., the situation that makes no
propositions true, which one might define as ıs∀p(s |= p ≡ p , p)). Also,
for a picture of the main constructions defined thus far, see Figure 1.

12A version of this principle also appeared in Barwise 1989a (265), prefaced by the
definition:

Persistent(p) ≡df ∀s(s |= p→∀s′(sE s′→ s′ |= p))

In Zalta 1993 (Theorem 8), it was noted that OT implies ∀pPersistent(p), which settled
Alternative 6.1 at choice point 6 in Barwise 1989a, 265.
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s = s?

s′
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wa – wl = possible worlds
s� = absolute necessity

= the smallest possibility
= ıs′∀p(s |= p ≡ �p)

s = a possible situation
s? = the modal closure of s

= the smallest possibility s that contains s
= ıs′∀p(s′ |= p ≡ (Actual(s)⇒ p))

s′ = a refinement of s

Figure 1: In this figure, s� (‘absolute necessity’) is the smallest possibil-
ity. The regions labeled as possible worlds wa – wl all overlap with s�.
The region s is some possible situation that is a part of possible worlds
wd – wi , but it need not be a possibility. The modal closure of s, namely
s? , will provably be a possibility (i.e., consistent and modally closed): it
makes true all of the necessary consequences of propositions true in s,
including all of the necessary propositions true in s�. s? will therefore
be a refinement of absolute necessity. Note that s? is part of the same
possible worlds as s. However, any refinement s′ of possibility s will not
be a part of all the possible worlds of which s is a part.
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3.6.2 Interlude: The p-Extension of a Situation

We define the p extension of a situation s to be that situation that makes
all the propositions in s true and also makes p true:

• s+p =df ıs
′∀q(s′ |= q ≡ (s |=q ∨ q=p))

Since the definiens is a canonical description with a modally collapsed
formula, we know:

` ∀q(s+p |= q ≡ (s |=q ∨ q=p)) (44)

It follows that the p-extension of s is a part of a possible world w iff s is
a part of w and p is true in w:

` s+p Ew ≡ sEw&w |= p (45)

Theorems (44) and (45) also help us to prove that p is true in every world
of which s is a part iff s’s being actual necessarily implies p:

` ∀w(sEw→ w |= p) ≡ (Actual(s)⇒ p) (46)

Consider Figure 2. In Figure 2, the p-extension of the situation s� makes
true everything in s� and makes p true as well. However, the modal
closure of the p-extension of s� will be a possibility that refines s�, as
will the modal closure of the p-extension of s�. So if p is contingent,
then the modal closure of the p-extension of s� will be a possibility, as
will the modal closure of the p-extension of s�.

3.6.3 The Modal Closure of a Situation: II

A few final facts about the modal closure of a situation will put us in po-
sition to prove the Refinability Principle. First is the fact that a situation
is a part of a possible world if and only if its modal closure is:

` sEw ≡ s? Ew (47)

Moreover, a situation is possible iff its modal closure is:

` Possible(s) ≡ Possible(s?) (48)

Finally, the modal closure of a situation is modally closed:

`ModallyClosed(s?) (49)
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wa – wr = possible worlds

s� = absolute necessity

= ıs∀p(s |= p ≡ �p)

s
+p
� = the p extension of absolute necessity

= ıs∀q(s |= q ≡ s� |= q∨ q=p)

s
+p?
� = the modal closure of s

+p
�

= ıs∀q(s |= q ≡ (Actual(s
+p
� )⇒ q))

s = a refinement of s� = s
+p?
�

Figure 2: In this figure, absolute necessity (= s�) makes true all and only
necessary truths. But proposition p is a contingent truth; it is true in
some worlds (wa – wi) and not in others (wj – wr ). The p-extension of s�
makes true the propositions that are true in s� and also makes p true.
But that is not yet a possibility or a refinement of s�. Instead the modal
closure of the p-extension of s� is a possibility and is a refinement of s�;
it makes true all of the necessary consequences of propositions true in
the p-extension of s�.
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3.6.4 The Refinability Principle and its Proof

Humberstone (1981, 318) formulates the Refinability Principle as fol-
lows, where π ranges over propositional variables, X,Y range over pos-
sibilities, and T ,F are truth-values:

• For any π and any X, if V (π,X) is undefined, then
∃Y (Y ≥ X with V (π,Y ) = T ) and ∃Z(Z ≥ X with V (π,Z) = F)

If we use p for π, s for X, and GapOn(s,p) for V (π,X) is undefined, then
we may formulate the above in OT as the claim: if s has a gap on p,
then there is a possibility that refines s in which p is true and there is a
possibility that refines s in which ¬p is true. Formally:

• GapOn(s,p)→∃s′(s′ D s& s′ |= p) &∃s′(s′ D s& s′ |= ¬p)

Cf. Holliday 2014, 315; forthcoming, 15; and D&H 2020, 155.
However, this principle can be derived even when strengthened to a

biconditional:

Refinability Principle
` GapOn(s,p) ≡ ∃s′(s′ D s& s′ |= p) &∃s′(s′ D s& s′ |= ¬p) (50)

Here is proof sketch, where r is a arbitrary, but fixed, proposition.

(→) Since GapOn(s, r) implies GapOn(s,¬r),13 it suffices to show only:

GapOn(s, r)→∃s′(s′ D s& s′ |= r)

So assume GapOn(s, r). As our witness to ∃s′(s′ D s & s′ |= r), con-
sider (s+r )? , i.e., the modal closure of the r extension of s, which
we may write more simply as s+r? . We have to show all of the fol-
lowing: (a) s+r? D s, (b) s+r? |= r, and (c) Possibility(s+r?). Since, by
definition, s+r? must contain s+r , the proof of (a) and (b) are triv-
ial. The proof of (c) requires us to show (d) ModallyClosed(s+r?)
and (e) Consistent(s+r?). But (d) follows from the fact that s+r? is
a modal closure and, hence, modally closed. To show (e), we start
by showing Possible(s+r ). That just means there must be a world
containing s that makes r true. But if no such world were to exist,

13Assume GapOn(s,p) and for reductio, ¬GapOn(s,¬p). Then, by definition of GapOn
(34), either s |= ¬p or s |= ¬p, i.e., either s |= ¬p or s |= ¬¬p. But the former contradicts
GapOn(s,p). The latter, by a consequence (27) of the fact that s is modally closed, implies
s |= p, which also contradicts GapOn(s,p).



21 The Metaphysics of Possibility Semantics

then ¬r would necessarily follow from Actual(s) which means s

(being modally closed) would make ¬r true and GapOn(s, r) would
be false (contradiction). Now, any world containing s+r already
contains the modal closure of s+r so it follows that Possible(s+r?).
But then we are done because, as noted above, every possible situ-
ation is consistent.14

(←) Assume:

(ϑ) ∃s′(s′ D s& s′ |= r) &∃s′(s′ D s& s′ |= ¬r)

For reductio, suppose ¬GapOn(s, r). Then either s |= r or s |= ¬r.
Without loss of generality, suppose s |= r. By the Persistence Prin-
ciple, every refinement of s makes r true. So there can’t be a refine-
ment that makes ¬r true, contradicting the right conjunct of (ϑ).
./

A full proof is in the Appendix.

3.7 The Cofinality Principle

In van Benthem (1981, 4; 2016, 3), we find the principle labeled Cofi-
nality. In 2016, he formulates this principle as follows, where Pd is any
atomic fact and ≥ is the the partial order on possibilities:

• If for all v ≥ w, there exists a u ≥ v with Pd true at u, then Pd is
already true at w.

This can be derived, without restriction to atomic facts, as the theorem:
if, for every possibility s′ that refines s, there is a possibility s′′ that
refines s′ in which p is true, then p is true in s:

Cofinality Principle
` ∀s′(s′ D s→∃s′′(s′′ D s′ & s′′ |= p))→ s |= p (51)

Cf. Humberstone’s (2011, 900) restatement of the Refinement Principle.
Note that the proof appeals to Refinability. But Refinability isn’t im-

plied by Cofinality unless the notion of possibility obeys the Negation
Constraint, to which we now turn.

14The proof of (a) appeals to (40), (43), and (44); the proof of (b) appeals to (43) and
(44); the proof of (d) is that it is an instance of (49); and the proof of (e) appeals to (14),
(20), (26), (31), (45), (46), and (48).
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3.8 Negation, Conjunction, and Fundamental Theorems

Humberstone 1981 (319–320) and 2011 (900) include the Negation and
Conjunction Principles. It is straightforward to translate these principles
into the language of OT and derive them. The Negation Principle asserts
that the negation of p is true in s if and only if p fails to be true in every
refinement of s:

Negation Principle
` s |=¬p ≡ ∀s′(s′ D s→¬s′ |= p)

The Conjunction Principle asserts that the conjunction p and q is true in
s if and only if both p and q are true in s:

Conjunction Principle
` s |= (p& q) ≡ (s |= p& s |= q)

We omit the proofs of the Negation and Conjunction Principles since
they are straightforward.

Finally, we note that there is a fundamental theorem and corollary
that are analogous to the fundamental theorem and corollary governing
possible worlds. Just as one can prove that p is possibly true iff there is
a possible world in which p is true (Zalta 1993, Theorem 25), one can
prove that p is possibly true if and only if there is a possibility in which
p is true:

Fundamental Theorem
`^p ≡ ∃s(s |= p) (52)

And just as one can prove that p is necessarily true iff true in all possible
worlds (Zalta 1993, Theorem 24), one can prove that p is necessarily true
if and only if p is true in every possibility:

Corollary to the Fundamental Theorem
` �p ≡ ∀s(s |= p) (53)

These last two theorems validate the intuition (shared by Humberstone,
Holliday, and others) that the primitive modal operators can indeed be
understood as quantifiers over possibilities. We have shown that that
this intuition can be derived as a theorem in OT. But, as we shall see in
the next section, it cannot be derived (and arguably does not hold) in a
context where the modal operators are governed by semantics that are
characterized purely by non-modal semantic principles.
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4 Observations

The fundamental theorem (52) guarantees that object-theoretic possibili-
ties line up exactly with the possibly true propositions. Of course, people
may disagree about what propositions are possibly true, but we are oper-
ating under the assumption that there are at least some propositions that
are possibily true. Thus, (52) serves as a kind of representation theorem.
But the question arises whether such a theorem can be proved in systems
that take possibilities as semantically-primitive and don’t include modal
operators in the semantics. One might suggest that the question is ir-
relevant since the semantically-primitive possibilities will delineate the
propositions that, in the object language, are ‘metaphysically possible’.

But such a response is too fast. First, note that no such theorem can
be developed in those systems, either wholly within the object language
or wholly within the semantics, given that there is no modal operator
present in the semantics and there are no possibilities present in the ob-
ject language. At best, any such theorem would have to be a metatheo-
rem that establishes that the object language claims ^p holds if and only
if the semantic claim ∃s(s |= p) holds.

But we suggest that even if these systems of possibility semantics
stipulate that the propositions that are possibly true in the object lan-
guage are given by the existence of semantically-primitive possibilities,
then they overgenerate metaphysical possibilities. That is, the models
described in the works of Humberstone, van Benthem, Holliday, and
Ding & Holliday allow the semantic claim ∃s(s |= p) to be true even
when, intuitively, the object-language claim ^p is not. For example, one
might hold one of the following, reasonable metaphysical views, the first
two of which are discussed in Kripke (1972 [1980, 112–114]):

• No (existing, concrete) object could have been the (biological) sister
of sisterless person b.

• Aristotle could not have had different parents,

• Aristotle couldn’t have been a rock.

For simplicity, let’s use the last of these as a typical example (though, if
you think this particular example is not persuasive, switch to one of the
other examples or your own). We may represent this as ¬^Ra. Nothing
in possibility semantics (formulated with primitive possibilities, without
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a modal operator) prevents a model in which ∃s(s |= Ra) holds semanti-
cally (where |= here denotes the semantically defined notion of truth in
a situation used in possibility semantics). But if Ra is taken to express
that Aristotle is a rock and there are strong metaphysical reasons for be-
lieving that he couldn’t have been a rock, then there will be a model in
which a proposition is true at a semantically-primitive possibility but
not in fact possibly true. Since the model just is the theory of possibil-
ities for those who take possibilities as primitive in the semantics, the
theory overgenerates possibilities.15

By contrast, the metaphysics of possibilities as developed in OT does
not overgenerate possibilities. If Aristotle couldn’t have been a rock
holds, or couldn’t have had different parents, or if no existing, concrete
object could have been a sister of sisterless person b, or if any of a num-
ber of other modal claims about metaphysical impossibilities hold, then
the fundamental theorem of OT ensures that there are no metaphysical
possibilties where those claims are true.

The concern here is that the pure semantic study of possibilities seems
to be based on the assumption that absence of contradiction implies pos-
sibility. But without a primitive modal operator, the refinements of a
semantically primitive possibility are only deductively closed and not
modally closed. In OT, however, the smallest possibility, absolute neces-
sity, makes true (encodes) more than just logical truths – it encodes all
the metaphysically necessary truths.

Some final theorems of OT shed light on this issue. We already know
that Consistent(s) doesn’t imply Possible(s). However, it is provable that s
is possible if and only if the modal closure of s is consistent:

` Possible(s) ≡ Consistent(s?) (54)

These considerations help to explain why a maximal and consistent sit-
uation need not satisfy the definition of a possible world, for one can
show:

• Maximal(s) & Consistent(s) /̀ Possible(s)

15One might suggest, as a response, that possibility semanticists could simply add con-
straints to their models, but then the data that is the source of the constraints would be-
come part of the meaning of modality. By contrast, in OT, the data in the bulleted list above
simply become expressed as hypotheses or axioms of the object language, not as meaning
postulates governing the modal operators.
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Proof. Consider the following instance of theorem schema (21),
which asserts the existence of a situation that makes true all and
only the propositions that are not true:

∃s∀p(s |= p ≡ ¬p)

Let s0 be such a situation. Then, clearly, s0 is maximal: since
the negation of every true proposition is true in s0, then for ev-
ery proposition, either p or its negation is true in s0. Moreover,
Consistent(s0) since there is no proposition p such that s0 makes p
and ¬p true. Otherwise, both ¬p and ¬¬p would be true, which is
a contradiction. But, clearly, ¬Possible(s0), since s0 makes true the
negations of necessary truths. It is not possible that every proposi-
tion true in s0 is true.

Indeed, as constructed in the proof, s0 is an impossible world that is
consistent, though it isn’t deductively closed. But beyond s0, OT allows
for deductively-closed impossible worlds (i.e., situations that are deduc-
tively closed, maximal, and consistent, but not possible).

The new insight that we can derive from these observations can be
developed as follows. In Zalta 1993 (Theorems 15, 17), it was established
that possible worlds are both maximal and possible, and with a bit more
work, one can show that s is a possible world if and only if s is both
maximal and possible, i.e.,16

16Given Theorems 15 and 17 in Zalta 1993, it suffices to prove just the right-to-left
direction. So assume Maximal(s) and Possible(s). Then by definitions (19), (12), and (11),
we know both:

(ϑ) ∀p(s |= p∨ s |= ¬p)

(ξ) ^∀p(s |= p→ p)

By definition (18), we have to show ^∀p(s |= p ≡ p). Our strategy is to show:

• show ∀p(s |= p→ p)→∀p(s |= p ≡ p) without appealing to contingencies,

• apply the Rule of Necessitation to obtain �(∀p(s |= p→ p)→∀p(s |= p ≡ p)), and

• use this last result and (ξ) to infer, by the K^ principle, that ^∀p(s |= p ≡ p).

Since the final two steps are straightforward, it only remains to show ∀p(s |= p → p) →
∀p(s |= p ≡ p). So assume:

(ζ) ∀p(s |= p→ p)

Then it suffices to show that ∀p(p→ s |= p). To avoid a clash of variables, we show q→ s |= q,
where q is arbitrary. So assume q and, for reductio, that ¬s |= q. Then by (ϑ), it follows that
s |= ¬q. Then by (ζ), ¬q. Contradiction.
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` PossibleWorld(s) ≡Maximal(s) & Possible(s)

But from this and (54) above, it follows that s is a possible world if and
only if s is maximal and its modal closure is consistent:

` PossibleWorld(s) ≡Maximal(s) & Consistent(s?)

So whereas the maximality and consistency of s are not sufficient for s
to be a possible world, the maximality of s and the consistency of its
modal closure are. These theorems offer further reasons why one should
not assume that absence of contradiction implies possibility. And they
take on further significance when it is observed that the propositions
of OT have predicational and quantificational structure and that there
are OT-situations that make true such propositions. (The metaphysics
of possibilities in OT has been built on top of a quantified modal logic,
with propositions as 0-ary relations.) We claim, therefore, that in the
wider domain of situations that make propositions with predicational
and quantification structure true, absence of contradiction doesn’t imply
possibility.

5 Appendix: Proofs of Selected Theorems

(20)17 (→) Assume Possible(s). Then by definition, ^∀p(s |= p → p). By
the fundamental theorem of possible world Theory, ∃w(w |= ∀p(s |= p→
p)) (Zalta 1993, 418, Theorem 25). Suppose w1 is such that w1 |= ∀p(s |=
p→ p). Then by another theorem of world theory (Zalta m.s., currently
item (547.5)), we can export the quantifier:

(ϑ) ∀p(w1 |= (s |= p→ p))

But since w1 |= (s |= p → p) is necessarily equivalent to w1 |= (s |= p) →
(w1 |= p) (Zalta m.s., item (547.2)), it follows that:

(ξ) ∀p(w1 |= (s |= p)→ (w1 |= p))

It remains to show that w1 is a witness to ∃w(s Ew), and so we have to
show that ∀p(s |= p → w1 |= p). By GEN, assume s |= p. Then �s |= p,
by (16). So by the fundamental theorem cited above, ∀w(w |= (s |= p)).
Hence w1 |= (s |= p). Instantiating p into (ξ), it follows that w1 |= p.

17The following proof is by Daniel Kirchner; he reviewed the original proof by Zalta,
simplified it, and verified his proof using his implementation of OT in Isabelle/HOL.
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(←) Assume ∃w(sEw) and suppose w1 is a witness, so that we know
sEw1. Then by (9):

(ζ) ∀p(s |= p→ w1 |= p)

Note that it suffices to show w1 |= Actual(s), since from this we can then
conclude ∃w(w |= Actual(s)), then ^Actual(s), and then Possible(s). But by
definition (11) and the fact that possible worlds are modally closed (30),
it suffices in turn to show w1 |= ∀p(s |= p → p). But again by exporting
the quantifier, it suffices to show ∀p(w1 |= (s |= p→ p)). So by GEN, we
only need to show: w1 |= (s |= p → p). But by a theorem cited earlier, it
now suffices to show (w1 |= (s |= p))→ (w1 |= p). So assume w1 |= (s |= p).
Then by the fundamental theorem of world theory, ^s |= p. Hence, s |= p.
So w1 |= p, by (ζ). ./

(21) Consider any formula ϕ in which x isn’t free. Then if we eliminate
the restricted variable from the claim to be established, we have to show:

∃x(Situation(x) &∀p(x |= p ≡ ϕ))

Pick some property variable that isn’t free in ϕ, say G, and let ψ be the
formula ∃p(ϕ & G = [λz p]). Then by the comprehension principle for
abstract objects (5), we know ∃x(A!x&∀G(xG ≡ ψ)), i.e.,

∃x(A!x&∀G(xG ≡ ∃p(ϕ&G=[λz p])))

Suppose it is a. Then A!a and:

(A) ∀G(aG ≡ ∃p(ϕ&G=[λz p]))

Clearly, Situation(a), by definition (6). So, by GEN, we only have to show
a |= p ≡ ϕ. Note that we can’t instantiate [λz p] into (A); the variable p
would get captured by the quantifier ∃p. But we can instantiate [λz p]
into the following alphabetic variant of (A):

(A′) ∀G(aG ≡ ∃q(ϕqp &G=[λz q]))

So if we instantiate [λz p] into (A′) remembering that G isn’t free in ϕ,
we obtain:

a[λz p] ≡ ∃q(ϕqp & [λz p]=[λz q])

From this, one can establish a |= p ≡ ϕ using definitions (7) and (3).18 ./

(25) Suppose s′ isn’t free in ϕ and ϕ is modally collapsed. To show:

18For the full proof, see Zalta m.s., (484)..
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s = ıs′∀p(s′ |= p ≡ ϕ)→∀p(s |= p ≡ ϕ)

it suffices to show that the formula ∀p(s′ |= p ≡ ϕ) is modally collapsed,
for then our theorem becomes an instance of (24). So we have to prove:

�(∀p(s′ |= p ≡ ϕ)→ �∀p(s′ |= p ≡ ϕ))

By the Rule of Necessitation, it suffices to prove:

∀p(s′ |= p ≡ ϕ)→ �∀p(s′ |= p ≡ ϕ)

So assume ∀p(s′ |= p ≡ ϕ), to show �∀p(s′ |= p ≡ ϕ). By the Barcan For-
mula, it suffices to show ∀p�(s′ |= p ≡ p). Since p isn’t free in our as-
sumption, it remains, by GEN, to show �(s′ |= p ≡ p). So p is a fixed, but
arbitrary proposition, and so our assumption that ∀p(s′ |= p ≡ ϕ) implies:

(A) s′ |= p ≡ ϕ

By hypothesis,ϕ is modally collapsed, and so we know that the following
is a theorem:

(B) �(ϕ→ �ϕ)

Moreover, the following is an instance of (16):

(C) �(s′ |= p→ �s′ |= p)

But it is a theorem of modal logic that if formulas ψ and χ necessar-
ily imply their own necessity, then the material equivalence of ψ and χ
necessarily implies their necessary equivalence:

(�(ψ→ �ψ) &�(χ→ �χ))→ �((ψ ≡ χ)→ �(ψ ≡ χ))

Given this theorem and setting ψ to s |= p and χ to ϕ, (C) and (B) jointly
imply:

�((s′ |= p ≡ ϕ)→ �(s′ |= p ≡ ϕ))

So by the T schema,

(s′ |= p ≡ ϕ)→ �(s′ |= p ≡ ϕ)

Hence, by (A), �(s′ |= p ≡ ϕ), which is what it remained to show. ./

(27) Assume ModallyClosed(s). Then by definition (26):

(ϑ) ∀q
(
(Actual(s)⇒ q)→ s |= q

)

https://mally.stanford.edu/principia.pdf


29 The Metaphysics of Possibility Semantics

We want to show:
(
s |= p & (p⇒ q)

)
→ s |= q. So assume:

(ξ) s |= p & p⇒ q

If we instantiate (ϑ) to q, it follows that:

(ζ) (Actual(s)⇒ q)→ s |= q

So to show s |= q, it remains only to show Actual(s)⇒ q. But consider the
following lemma:

Lemma: ∀r(�s |= r→ �(Actual(s)→ r))

Proof. By GEN, we have to show �s |= r → �(Actual(s) → r). But
by Rule RM, it suffices to show s |= r → (Actual(s) → r) without
appealing to any contingencies. So assume s |= r and further as-
sume Actual(s). By definition (11), the latter implies ∀p(s |= p→ p).
Instantiating this last fact to r yields s |= r→ r. Hence r.

If we instantiate this Lemma to p, we have �s |= p → �(Actual(s)→ p).
But we know the antecedent of this last claim, since the first conjunct of
(ξ) implies �s |= p, by (16). Hence, �(Actual(s)→ p). So by definition of
⇒ (15), Actual(s)⇒ p. But this fact and the second conjunct of (ξ) jointly
imply Actual(s)⇒ q. ./

(28) Assume ModallyClosed(s) and Consistent(s). Then by definitions (26)
and (13), we know, respectively:

(ϑ) ∀q((Actual(s)⇒ q)→ s |= q)

(ξ) ¬∃p(s |= p& s |= ¬p)

For reductio, assume ¬Possible(s). By definition (12) and a Rule of Sub-
stitution, this entails ¬^Actual(s). So �¬Actual(s) and, hence, ¬Actual(s).
By the definition of Actual(s) (11), this implies ∃p(s |=p & ¬p). Suppose
p1 is such a proposition, so that we know both s |= p1 and ¬p1. The for-
mer implies ¬s |= ¬p1, by (ξ). Now, separately, if we instantiate (ϑ) to
¬p1, then we also know:

(ζ) (Actual(s)⇒¬p1)→ s |= ¬p1

But we’ve established ¬s |= ¬p1, and so by (ζ), ¬(Actual(s) ⇒ ¬p1). By
definition of (⇒) and a Rule of Substitution, it follows that¬�(Actual(s)→
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¬p1). By modal logic, this is equivalent to ^(Actual(s) &p1). But this last
result implies ^Actual(s). Contradiction. ./

(29) Assume ModallyClosed(s) and �p. The second implies �(Actual(s)→
p), since necessarily every proposition implies a necessary truth. So
Actual(s)⇒ p, by definition (15). Then by definition of ModallyClosed(s)
(26), s |= p. ./

(30) We first prove the following Lemma:

Lemma: ∀s∀q((Actual(s)⇒ q)→ �(∀p(s |= p ≡ p)→ s |= q))

Proof. By GEN, it suffices to prove:

(Actual(s)⇒ q)→ �(∀p(s |= p ≡ p)→ s |= q)

To prove this, our strategy is to first prove and then apply Rule RM:

(ϑ) (Actual(s)→ q)→ (∀p(s |= p ≡ p)→ s |= q)

So assume:

(ξ) Actual(s)→ q

(ζ) ∀p(s |= p ≡ p)

Now (ζ) implies, a fortiori, ∀p(s |= p→ p). Hence Actual(s), by (11).
So by (ξ), q. But q and (ζ) imply s |= q. Since we’ve established (ϑ),
we may conclude, by RM:

�(Actual(s)→ q)→ �(∀p(s |= p ≡ p)→ s |= q)

By definition of⇒ (15), this becomes:

(Actual(s)⇒ q)→ �(∀p(s |= p ≡ p)→ s |= q) �

Now to establish ModallyClosed(w), we have to show, by (26):

∀q((Actual(w)⇒ q)→ w |= q)

By GEN, assume Actual(w) ⇒ q. Since w is, by hypothesis, a possible
world, w is a situation, and so we can instantiate w for s in the above
Lemma, to obtain:

∀q((Actual(w)⇒ q)→ �(∀p(w |= p ≡ p)→ s |= q))
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And if we also instantiate this last fact to q and apply our assumption,
we may infer �(∀p(w |= p ≡ p)→ w |= q). But since w is a possible world,
we also know ^∀p(w |= p ≡ p), by (18). The last two results then imply
^w |= q, by the K^ principle. So by (17), w |= q. ./

(36) (→) Assume Contingent(p). Then^p and^¬p. To show GapOn(s�,p),
we have to show both ¬s� |= p and ¬s� |= p, by (34). Since we know^¬p,
we know¬�p. So if we instantiate a fact about absolute necessity, namely
(35), to p, then it follows that ¬s� |= p. Since we also know ^p, we know
¬�¬p. So if we instantiate (35) to ¬p, then it follows that ¬s� |= ¬p. So
by definition, ¬s� |= p.

(←) (Exercise) ./

(37) By definition (31), we have to show:

(A) Consistent(s�)

(B) ModallyClosed(s�)

(A) For reductio, suppose¬Consistent(s�), i.e., by definition (13), ∃p(s� |=
p& s� |= ¬p). Let q1 be such a proposition, so that we know s� |= q1 and
s� |= ¬q1. By (35), these imply, respectively, �q1 and �¬q1. Contradic-
tion, once the T schema is applied to both results.

(B) We have to show: (Actual(s�) ⇒ p) → s� |= p, for arbitrary p. So
assume:

(ξ) Actual(s�)⇒ p

To show s� |= p, it suffices, by (35), to show �p. For reductio, suppose
¬�p, i.e., ^¬p. But our assumption (ξ) implies �(Actual(s�) → p). So
�(¬p → ¬Actual(s�)). But from this and ^¬p, it follows by K^ that
^¬Actual(s�). By definition (11) this implies ^¬∀q(s� |= q → q). So
^∃q¬(s� |= q → q), i.e., ^∃q(s� |= q & ¬q). By BF^, ∃q^(s� |= q & ¬q).
Suppose p1 is such a proposition, so that we know ^(s� |= p1 & ¬p1).
Then ^(s� |= p1) and ^¬p1. The latter implies ¬�p1. The former implies
s� |= p1. So by (35), �p1. Contradiction. ./

(38) Assume s E s� and s , s�. The second implies, by the definition of
identity for situations (8), ¬∀p(s |= p ≡ s� |= p), i.e.,

∃p((s |= p&¬s� |= p)∨ (s� |= p&¬s |= p))

Suppose q1 is such a proposition, so that we know:

Uri Nodelman and Edward N. Zalta 32

(s |= q1 &¬s� |= q1)∨ (s� |= q1 &¬s |= q1)

The left disjunct contradicts our first assumption sEs�, by the definition
of E (9). So we know s� |= q1 and ¬s |= q1. The first of these implies �q1,
by a a fact about s� (35). Now, for reductio, suppose Possibility(s). Then,
by definition (31), s is modally closed and so, by a previous theorem (29),
this last fact and �q1 imply s |= q1. Contradiction. ./

(41) By GEN, it suffices to show sD s�. So by definition (9), we have to
show ∀p(s� |= p→ s |= p). So, again, by GEN, we show s� |= p→ s |= p.
Assume s� |= p. Then by a fact about s� (35), it follows that �p. But
since possibilities are modally closed (31) and modally closed situations
make necessary truths true (29), it follows that s |= p. ./

(39) GapOn(s,p), i.e., both ¬s |= p and ¬s |= p. By definition of p, the
latter implies ¬s |= ¬p. Now suppose ¬Contingent(p), for reductio. Then
by ¬(^p&^¬p), i.e., �¬p∨�p. But both disjuncts lead to contradiction.
If �¬p, then s |= ¬p (), which contadicts ¬s |= ¬p; if �p, then again by
familiar reasoning, s |= p, which contradicts ¬s |= p. Contradiction full
stop. ./

(43) s? is clearly a situation and so it remains to show ∀p(s |= p→ s? |= p).
Proof strategy:

(A) Independently show s |= p→ (Actual(s)→ p) without appealing to
any contingencies.

(B) Conclude from (A) that �s |= p→ �(Actual(s)→ p), by Rule RM.

(C) Assume s |= p, for conditional proof. To show s? |= p, we have to
show Actual(s)⇒ p, by (42)

(D) Our assumption in (C) implies �s |= p.

(E) From (D) and (B) it follows that �(Actual(s)→ p).

(F) Conclude Actual(s)⇒ p, by definition of⇒.

Since (B) – (F) are straightforward, it remains to show (A). So assume
both s |= p and Actual(s). The latter implies ∀q(s |= q → q), by defini-
tion. Instantiating this to p yields s |= p→ p. But then p, since s |= p by
assumption. ./

(45) Clearly, s+p and w are both situations. Then we can establish our
theorem via the following biconditional chain:
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s+p Ew ≡ ∀q(s+p |= q→ w |= q) by definition (9)
≡ ∀q((s |= q∨ q=p)→ w |= q) by (44)
≡ ∀q((s |= q→ w |= q) & (q=p→ w |= q)) by logic
≡ ∀q(s |= q→ w |= q) &∀q(q=p→ w |= q) by logic
≡ ∀q(s |= q→ w |= q) &w |= p by logic
≡ sEw&w |= p by definition (9)

./

(46) By the following biconditional chain:
∀w(sEw→ w |= p)

≡ ∀w¬(sEw&¬w |= p) by logic
≡ ¬∃w(sEw&¬w |= p) by logic
≡ ¬∃w(sEw&w |= ¬p) by maximality of w
≡ ¬∃w(sEw&w |= p) by logic
≡ ¬∃w(s+p Ew) by (45)
≡ ¬Possible(s+p) by (20)
≡ ¬^Actual(s+p) by definition (12)
≡ ¬^∀q(s+p |= q→ q) by definition (11)
≡ ¬^∀q((s |= q∨ q= p)→ q) by (44)
≡ ¬^∀q((s |= q→ q) & (q=p→ q)) by logic
≡ ¬^(∀q(s |= q→ q) &∀q(q=p→ q)) by logic
≡ ¬^(∀q(s |= q→ q) & p) by logic
≡ ¬^(∀q(s |= q→ q) &¬p) by logic
≡ ¬^(Actual(s) &¬p) by definition (11)
≡ �¬(Actual(s) &¬p) by modal logic
≡ �(Actual(s)→ p) by logic
≡ Actual(s)⇒ p by definition (15)

./

(47) (→) Assume sEw. For reductio, suppose ¬s? Ew. Then ∃p(s? |= p&
¬w |= p). Let p1 be such a proposition, so that we know both s? |= p1
and ¬w |= p1. Independently, from the fact that s? |= p1 it follows that
Actual(s)⇒ p1, by (42). But the following is an instance of (46):

(sEw→ w |= p1) ≡ (Actual(s)⇒ p1)

It follows that sEw→ w |= p1. Hence, w |= p1. Contradiction.

(←) Assume s? Ew. But we just established s E s? . Since s? and w are
situations, it follows by the transitivity of E that sEw. ./

(48) By the following biconditional chain:
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Possible(s) ≡ ∃w(sEw) by (20)
≡ ∃w(s? Ew) by (47)
≡ Possible(s?) by (20) ./

(49) We have to show: ∀p
(
(Actual(s?)⇒ p)→ s? |= p). We prove this by

hypothetical syllogism, from:

(A) (Actual(s?)⇒ p)→ (Actual(s)⇒ p)

(B) (Actual(s)⇒ p)→ s? |= p

(B) is just the right-to-left direction of (42). For (A), assume the an-
tecedent:

(ϑ) Actual(s?)⇒ p

Now, for reductio, assume ¬(Actual(s) ⇒ p). Then, ¬�(Actual(s) → p).
Since p =¬p, we have ^(Actual(s) & p). But this contradicts (ϑ), by the
following biconditional chain:
^(Actual(s) & p)
≡ ^(∀q(s |= q→ q) & p) by definition (11)
≡ ^(∀q(s |= q→ q) &∀q(q=p→ q)) by logic
≡ ^∀q((s |= q→ q) & (q=p→ q)) by logic
≡ ^∀q((s |= q∨ q=p)→ q) by logic
≡ ^∀q(s+p |= q→ q) by (44)
≡ ^Actual(s+p) by definition (11)
≡ Possible(s+p) by definition (12)
≡ ∃w(s+p Ew) by (20)
≡ ∃w(sEw&w |= p) by (45)
≡ ∃w(s? Ew&w |= p) by (47)
≡ ∃w(s? Ew&w |= ¬p) by logic
≡ ∃w(s? Ew&¬w |= p) by coherency of worlds
≡ ∃w¬(s? Ew→ w |= p) by logic
≡ ¬∀w(s? Ew→ w |= p) by logic
≡ ¬(Actual(s?)⇒ p) by (46)

This last line contradicts (ϑ). ./

(50) To avoid clash of variables, we show that the theorem holds for an
arbitrarily chosen proposition. Let r be an arbitrary, but fixed, proposi-
tion. (→) Then we have to show:
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GapOn(s, r)→∃s′(s′ D s& s′ |= r) &∃s′(s′ D s& s′ |= ¬r)

In fact, however, it suffices to show only:

(ξ) GapOn(s, r)→∃s′(s′ D s& s′ |= r)

To see why, note that GapOn(s, r) implies GapOn(s,¬r).19 By universally
generalizing (ξ) to every proposition, we can simply instantiate (ξ) to
¬r and conclude GapOn(s,¬r)→ ∃s′(s′ D s & s′ |= ¬r). By hypothetical
syllogism, then, GapOn(s, r)→∃s′(s′Ds&s′ |= ¬r). So it suffices to show
(ξ).

Then assume GapOn(s, r). Now we have to find a witness to the claim
∃s′(s′ D s& s′ |= r). But consider the modal closure of the r-extension of
s, i.e., consider (s+r )? , which we henceforth write more simply as s+r? .
(We leave it as an exercise to show s+r?↓.) To show that s+r? is a witness
to ∃s′(s′ D s& s′ |= r), we have to show all of the following:

(a) s+r? D s

(b) s+r? |= r

(c) Possibility(s+r?)

And by definition (31), the last of the above requires us to show that:

(d) ModallyClosed(s+r?)

(e) Consistent(s+r?)

We prove these in turn, though with the help of a consequence of the fact
that s+r E s+r? (43), namely:

(ϑ) ∀p(s+r |= p→ s+r? |= p)

(a) To show that s+r? Ds, we have to show sEs+r? (40), i.e., by definition
(9), that ∀p(s |= p→ s+r? |= p) . So by GEN, take s |= p as a local assump-
tion. But if we instantiate s for s, r for p, and p for q in (44), our local
assumption implies s+r |= p. Hence, by (ϑ), s+r? |= p.

19Here is the Lemma that shows this:

Lemma: ∀p
(
GapOn(s,p)→ GapOn(s,¬p)

)
Proof. Assume GapOn(s,p) and for reductio, ¬GapOn(s,¬p). Then, by definition of
GapOn (34, either s |= ¬p or s |= ¬p, i.e., either s |= ¬p or s |= ¬¬p, by definition.
But the former contradicts GapOn(s,p). The latter, by a consequence (27) of the fact
that s is modally closed, implies s |= p, which also contradicts GapOn(s,p).
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(b) To establish that s+r? |= r, note that if we instantiate s for s and r for
p in (44), then we also know s+r |= r. From this, (ϑ) implies s+r? |= r.
(d) To show that s+r? is modally closed, we simply note that this is an
instance of theorem (49).

(e) To show that Consistent(s+r?), our proof strategy is to derive this con-
clusion by way of the following syllogism:

• Possible(s+r )

• Possible(s+r )→ Possible(s+r?)

• Possible(s+r?)→ Consistent(s+r?)

Note that the second is an instance of the left-to-right direction of (48)
and that the third is an instance of (14). So it remains only to show
the first. For reductio, suppose ¬Possible(s+r ). But this implies that
Actual(s)⇒¬r, by the following biconditional chain, in which citations
to a Rule of Substitution have been suppressed:

¬Possible(s+r ) ≡ ¬∃w(s+r Ew) by (20)
≡ ¬∃w(sEw&w |= r) by (45)
≡ ∀w¬(sEw&w |= r) by quantification theory
≡ ∀w(sEw→¬w |= r) by propositional logic
≡ ∀w(sEw→ w |= ¬r) by coherency of worlds
≡ Actual(s)⇒¬r by (46)

Now since s is a possibility and, hence, modally closed (31), it follows
from the last fact in the biconditional chain that s |= ¬r, by the defini-
tion of modally closed situations (26). But this contradicts our initial
assumption that GapOn(s, r), for that implies, a fortiori, that ¬s |= ¬r. ./
(←) Assume:

(ζ) ∃s′(s′ D s& s′ |= r) &∃s′(s′ D s& s′ |= ¬r)

For reductio, suppose ¬GapOn(s, r). Then either s |= r or s |= ¬r. With-
out loss of generality, suppose s |= r. By the Persistence Principle, every
refinement of s makes r true. So there can’t be a refinement that makes
¬r true, contradicting the right conjunct of (ζ). ./

(51) Assume:

(ϑ) ∀s′(s′ D s→∃s′′(s′′ D s′ & s′′ |= p))
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For reductio, assume ¬s |= p. Now s |= ¬p or ¬s |= ¬p, by excluded
middle. But both lead to contradiction. For suppose s |= ¬p. By the
Ordering Principle, D is reflexive and so we independently know sD s.
Instantiating s for ∀s′ in (ϑ), it follows that ∃s′′(s′′Ds&s′′ |= p). Suppose
s1 is such a possibility, so that we know both (a) s1 D s and (b) s1 |= p.
But (a) and the assumption s |= ¬p imply s1 |= ¬p, by the Persistence
Principle. But this and (b) contradict the consistency of s1.

Alternatively, suppose ¬s |= ¬p. From this and our reductio assumption
that ¬s |= p, it follows that GapOn(s,p), by (34). So, by the Refinability
Principle, it follows a fortiori that there is a refinement of s in which ¬p
is true: ∃s′(s′ D s& s′ |= ¬p). Suppose s2 is such a possibility, so that we
know both s2 D s and s2 |= ¬p. The former and (ϑ) imply ∃s′′(s′′ D s2 &
s′′ |= p). Suppose s3 is such a possibility, so that we know both s3Ds2 and
s3 |= p. But s3Ds2 and the assumption that s2 |= ¬p jointly imply s3 |= ¬p,
by the Persistence Principle. But this contradicts the consistencty of s3.
./

(52) (→)20 Assume ^p. Then by the fundamental theorem of world the-
ory (Zalta 1993, Theorem 25), we know ∃w(w |= p). Let w1 be such a
possible world, so that we know w1 |= p. But by (32), possible worlds are
possibilities i.e., Possibility(w1). Hence ∃s(s |= p). (←) Assume ∃s(s |= p).
Suppose s1 is such a possibility, so that we know s1 |= p. Suppose, for re-
ductio, that ¬^p. Then �¬p. So s� |= ¬p, by (35). But by (41), we know
that s1 is a refinement of s�. So by by the Persistence Principle, s1 |= ¬p,
which contradicts the consistency of s1. ./

(54) (→) Assume Possible(s). Then by (48), Possible(s?). Hence by (14),
Consistent(s?). (←) Assume Consistent(s?). But independently, by (49),
we know ModallyClosed(s?). From this and our assumption, it follows by
(28) that Possible(s?). But then by (48), Possible(s). ./
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