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Abstract

Two recent arguments draw startling and puzzling conclusions
about relations and 2nd-order logic (2OL). The first argument con-
cludes that 2nd-order quantifiers can’t be interpreted as ranging
over relations. This conclusion is puzzling because it calls into ques-
tion the traditional understanding of 2OL as a formalism for quan-
tifying over relations. The second argument, which concludes that
unwelcome consequences arise if relations and relatedness are ana-
lyzed rather than taken as primitive, utilizes premises that imply that
2OL faces the very same consequences. This is puzzling because re-
lations and predication are taken as primitive in 2OL, and so the
latter should be immune to the problems raised for the analysis of
relations. I consider these two arguments in light of a precise the-
ory of relations. In particular, I show that object theory (Zalta 1983,
1988), which is an extension of 2OL, provides systematic existence
and identity conditions for relations, properties, and states of affairs
that forestall the two arguments.
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1 Setting Up the Problems

I take relations to be a fundamental kind of entity and in this paper I in-
vestigate some of the principles needed to characterize them. Recently,
philosophers have raised puzzling questions about converse and non-
symmetric relations, and about the states of affairs in which they play a
role (Williamson 1985, Dorr 2004). In addressing these and other ques-
tions, some philosophers and philosophical logicians have attempted
to analyze relations and the manner in which they relate. Such analy-
ses, which sometimes appeal to other fundamental notions, raise ques-
tions of their own, such as whether or not there are positions (argument
places, slots, or thematic roles) in a relation (Fine 2000, Gilmore 2013,
Dixon 2018, and Orilia 2014, 2019); what it is for the relata to bear or
stand in a relation; and whether there is an order of application or a
manner of completion that connects relations and their relata.

In this paper, however, I take the notions of relation and relation ap-
plication (i.e., predication) to be so fundamental that they can’t be further
analyzed and so must instead be axiomatized. This starting point is anal-
ogous to that of the mathematics of set theory – the notions of set and set
membership are considered so fundamental that the best we can do is
axiomatize them. As with set theory, an axiomatic theory of relations
has to state, at the very least, conditions under which the entities be-
ing axiomatized exist and conditions under which they are identical. In
what follows, I’ll reprise just such a theory. It was first proposed in 1983
and was couched in a relatively simple extension of second-order logic
(‘2OL’). The resulting system gives us the framework we need to address
the most important questions that have been raised about relations, in-
cluding some of the questions that arise when relations are analyzed.

My defense of relations is focused on two recent arguments that draw
rather puzzling conclusions for relations considered as primitive, axiom-
atized entities. The first argument appears in a recent paper by MacBride
(forthcoming, p. 1), where he concludes, by way of a dilemma, that
“we cannot interpret second-order quantifiers as ranging over relations”.
MacBride is not claiming that relations don’t exist or that some other
(e.g., ontologically more neutral) interpretation of 2nd-order quantifiers
is to be preferred, but rather that 2nd-order quantifiers can’t be inter-
preted unproblematically as ranging over relations.1 This conclusion is

1Thus, I am not objecting to other interpretations of the second-order quantifiers, either
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startling because it calls into question the traditional understanding of
2OL as a formalism for quantifying over relations. Philosophers and lo-
gicians since Russell have supposed that relational statements of natural
language of the form ‘a loves b’, ‘a gives b to c’, etc., can be uniformly
rendered in the predicate calculus as statements of the form Ra1 . . . an,
where Ra1 . . . an expresses the claim that a1, . . . , an exemplify (or stand
in or instantiate) n-ary relation R. For example, in his description of
2OL, Väänänen (2020, Section 2) notes that “The intuitive meaning of
X(t1, . . . , tn) is that the elements t1, . . . , tn are in the relation X or are pred-
icated by X”. So it is puzzling to be informed that when we existentially
generalize on the statement ‘Ra1 . . . an’ to derive the claim ‘∃F(Fa1 . . . an)’,
we can’t regard this latter claim as quantifying over relations.

The second argument and puzzling conclusion appear in MacBride
2014. On the one hand, MacBride argues that relations, predication (re-
lation application), and relatedness should be taken as primitive (2014,
pp. 1, 2, 15), on the grounds that any analysis leads to unwelcome conse-
quences. On the other hand, the unwelcome consequences he describes
for the analysis of relations are already present in 2OL with identity
(2OL=), where relations and predication are primitive. He endorses the
primitive nature of relatedness when he writes:

I will argue that the capacity of a non-symmetric relation R to apply
to the objects a and b it relates so that aRb rather than bRa must be
taken as ultimate and irreducible. . . .

It’s a familiar thought that we cannot account for the fact that
one thing bears a relation R to another by appealing to a further
relation relating R to them—that way Bradley’s regress beckons. To
avoid the regress we must recognize that a relation is not related
to the things it relates, however language may mislead us to think
otherwise. We simply have to accept as primitive, in the sense that it
cannot be further explained, the fact that one thing bears a relation
to another [citations omitted]. But it is not only the fact that one
thing bears a (non-symmetric) relation R to another that needs to
be recognized as ultimate and irreducible. How R applies—whether
the aRb way or the bRa way—needs to be taken as primitive too.

(2014, 2; italics in original)

in plural terms (Boolos 1984, 1985), denominalized terms (Rayo & Yablo 2001), or neutral
terms (Wright 2007). Rather, I’m confronting an argument that concludes such quantifiers
can’t be successfully interpreted as ranging over relations.
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While this seems correct, the argument that MacBride gives for this con-
clusion ensnares 2OL=, where relatedness is primitive. His argument
revolves around the following claim (Russell 1903, §218–219):2

Every (binary) non-symmetric relation R has a converse R∗ that is
distinct from R. (1)

MacBride argues that any analysis of relations and relation application
that endorses (1) gives rise to ‘unwelcome consequences’, namely (a) a
multiplicity of converse relations,3 and (b) “the profusion of states that
arise from the application of these relations” (2014, 4). Consequence (a)
is puzzling because 2OL=, in which relations, predication, and related-
ness are primitive, has a formal representation of (1) as a theorem. So it
seems we face a multiplicity of relations no matter whether we endorse
(1) by way of an analysis or by way of 2OL=. As part of our investigation,
we’ll also examine consequence (b) and MacBride’s conclusion that there
is no good analysis of the identity and distinctness of states of affairs. He
says:

What vexes the understanding is . . . an analysis of the fundamental
fact that aRb , bRa for non-symmetric R. . . . Anyone who wishes
to give an analysis of the fact that aRb , bRa faces a dilemma. . . .
Since neither . . . [of the] analyses are satisfactory, this recommends
our taking the fact that aRb , bRa to be primitive. (2014, 8)

[We provide the full quote later in the paper.] When we examine this
(second) dilemma, we’ll see that there is an analysis which is immune to
the dilemma and which MacBride doesn’t consider. One can unproblem-
atically analyze the identity of states of affairs within a theory on which
the fact that a state of affairs obtains is primitive.

My plan is as follows. In Section 2, I lay out the the first puzzling
argument and conclusion, i.e., the dilemma used to establish that the
2nd order quantifiers don’t range over relations. The argument begins
by suggesting that if they do, then pairs of converse predicates either
refer to the same relation or they don’t. Each disjunct leads to a horn

2Russell actually talked about ‘asymmetric’ relations, but we’ll discuss the differences
below, where we formally define non-symmetric relations. I don’t think anything hangs on
the difference.

3For example, ternary non-symmetric relations have 5 converses and quarternary non-
symmetric relations have 23.
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of the dilemma. I then spend the remainder of Section 2 showing that
the first disjunct fails, so that we need not worry about the first horn. In
Section 3, I examine the argument that leads from the second disjunct
to the second horn and narrow our focus to an issue on which the con-
clusion rests, namely, a question about the identity of certain states of
affairs. In Section 4, I examine the second puzzling argument and con-
clusion, from MacBride’s 2014 paper, and connect the argument there
with the issue on which we focused in Section 3. Then in Section 5, I
review a theory of relations and states of affairs that MacBride doesn’t
consider but which has consequences for the issues we’ve developed. In
Sections 6 and 7, I use the theory in Section 5 to develop two alterna-
tive analyses of the issue (about the identity of states of affairs) on which
both of MacBride’s puzzling conclusions rest. I show that these answers
undermine the main lines of argument that MacBride uses to establish
his conclusions.

From this overview, it should be clear that in Sections 2 – 4, we’ll ex-
tend 2OL in known ways that systematize the language that MacBride
uses in his arguments. However, starting in Section 5, I’ll appeal to
the theory of abstract objects developed in Zalta 1983, 1988, and 1993,
which I henceforth refer to as ‘object theory’ (‘OT’).4 OT extends 2OL in
a way that allows us to state unproblematic identity conditions for rela-
tions and states of affairs. So my goal throughout will be to show that
2OL has been deployed and extended to formulate a theory of relations,
predication, and states of affairs that forestalls the puzzling conclusions.

Before we begin, however, it is important to review some terminol-
ogy and notation. ‘2OL’ refers only to the formal, axiomatic system
of second-order logic under an objectual interpretation (i.e., where the
quantifiers range over domains of entities). My arguments don’t require
that we interpret 2OL in terms of full models (where the domain of prop-
erties has to be as large as the full power set of the domain of individu-
als); instead, general models (where the domain of properties are only as
large as some proper subset of the power set of the domain of individu-
als) suffice. The only requirement is that the models validate the axioms
of 2OL. In what follows, I’ll represent a binary atomic predication as
‘Rab’ instead of as ‘aRb’ except when we’re discussing identity, in which

4This theory has been applied and developed in a number of more recent publications,
including Linsky & Zalta 1995, Zalta 2006, Nodelman & Zalta 2014, Menzel & Zalta 2014,
Zalta 2020, and elsewhere. These texts contain useful introductions to the theory.
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case I’ll use ‘a= b’ (i.e., infix notation). As noted earlier, the atomic for-
mulas of 2OL have the form ‘Fnx1 . . .xn’ and can be read as “x1, . . ., and
xn exemplify (or instantiate) Fn”, and we’ll often drop the superscript on
F indicating arity since this can be inferred.

No explicit notion of order is required here; we only require that ‘Rab’
and ‘Rba’ say different things; to say a and b exemplify R is not to say b
and a exemplify R; to say x,y, and z exemplify F is not to say x,z, and
y exemplify F; and so on (more about this later). In these examples, the
predicate can be replaced by any nominalized relation term of the right
arity. Finally, I’ll use F,G,H, . . . as 2nd-order variables; Greek letters will
be used as metavariables. So when MacBride talks about the 2nd-order
quantified sentence ‘∃Φ(aΦb)’, I’ll represent this sentence as ‘∃F(Fab)’.

In the next few sections, we shall extend 2OL in various ways, in part
to systematize the language that MacBride uses in his arguments. We’ll
start with 2OL=, in which identity claims of the form ‘Fn =Gn’ (for any
n) are primitive.5 We’ll also treat states of affairs as 0-ary relations, and
instead of using F0,G0, . . . as 0-ary relation variables, we’ll use p,q, . . . . So
identity claims such as ‘p = q’, asserting the identity of states of affairs,
are well-formed. Moreover, we’ll also make use of n-ary λ-expressions
(n ≥ 0), interpreted relationally; these are complex terms that denote
relations and states of affairs.6 And we’ll let formulas be complex terms
that denote states of affairs, so that when MacBride uses expressions like
‘aRb=bRa’ and ‘aRb,bRa’ (2014, 8), we can represent this talk precisely
as identity and non-identity claims about the states of affairs denoted
by the formulas flanking the identity symbol.7 When we extend 2OL to

5Though logic texts (e.g., Mendelson 1964 [1997], Enderton 1972 [2001]) often formu-
late 2OL instead of 2OL=, Shapiro (1991, 64) and Väänänen (2020, §2) mention that 2OL=,
in which identity is taken as a primitive, is a simple extension of 2OL.

6The definitions of the language of 2OL are easily adapted when we let n = 0, thereby
including constants and variables ranging over states of affairs or propositions (where
these are taken to be 0-ary relations). And there are extensions of 2OL in which n-ary
λ-expressions have been included as complex names for n-ary relations (n ≥ 0). This sug-
gestion appears in Prior 1971 (Chapter 3, 43–44), though Prior subsequently questions the
ontological implications of λ-expressions (1971, 45). More recently, λ-expressions were
adopted in Zalta 1983 (Chapters III, IV), 1993 (407–409); in Menzel 1986 (7, 26) and 1993
(67ff) they are used in an untyped setting. And see Alama & Korbmacher 2021 (Section
9.3) for a discussion of the relational λ-calculus.

7Thus, the language of 2OL= that we’ll need can be specified precisely in terms of a
definition, by simultaneous recursion, of the notions of formula and term:

• Base clause for terms: Every simple constant and variable is a term (i.e., individ-
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OT in Section 5, we’ll add a new, primitive mode of predication and a
primitive modal operator. Using OT, we’ll define the primitive claims
of the form ‘Fn =Gn’ (for n ≥ 1) and ‘p= q’; thus, we’ll provide identity
conditions for relations and states of affairs. We’ll then be in a position
to argue that OT thereby offers an analysis of ‘aRb = bRa’ or ‘aRb , bRa’
without facing any dilemmas.

It is also important to spend some time explaining how we plan to use
the technical term predicate. First, we shall almost always be discussing
the predicates of 2OL that serve to represent the predicates of natural
language sentences. But the predicates of 2OL are not the same kind
of expression as the predicates of natural language. When speaking of
natural language sentences, it is traditional to distinguish the ‘subject’
of a sentence from the ‘predicate’. For example, in the sentence ‘John is
happy’, ‘John’ is the subject and ‘is happy’ is the predicate; and in the
sentence ‘John loves Mary’, ‘John’ is the subject and ‘loves Mary’ is the
predicate. In the case of the latter sentence, one could also say that ‘loves’
is the predicate, while ‘John’ and ‘Mary’ are the subjects (though ‘Mary’
is often called the direct object). Thus, natural language predicates are
not usually thought of as names or as nominalized expressions, for there
is a sense in which these predicates are incomplete expressions.

But in what follows, we will be representing natural language pred-
icates in terms of formal expressions that denote relations, and we’ll be
calling those formal expressions ‘predicates’. Before I give the definition,
however, let me mention that we shall not adopt the definition of predi-

ual constants and variables are individual terms, and n-ary relation constants and
variables (n ≥ 0) are n-ary relation terms).

• Base clauses for formulas: (a) for any n ≥ 0, whenever κ1, . . . ,κn are any individual
terms and Πn is any n-ary relation term, Πnκ1 . . .κn is a formula, and (b) whenever
κ and κ′ are any individual terms, or Π and Π′ are any n-ary relation terms (for
some n), κ=κ′ and Π=Π′ are formulas.

• Recursive clause for formulas: If ϕ and ψ are any formulas, and α is any variable,
¬ϕ, ϕ→ ψ, and ∀αϕ are formulas.

• Recursive clauses for terms: where ν1, . . . ,νn (n ≥ 0) are distinct individual variables
and ϕ is any formula, then [λν1 . . .νn ϕ] is an n-ary relation term and ϕ itself is a
0-ary relation term.

We define ϕ &ψ, ϕ ∨ψ, ϕ ≡ ψ, and ∃αϕ (α any variable) in the usual way. Note that by
these definitions, formulas of the form ∃p(p ≡ ϕ), where ϕ is any formula, are well-formed.
Suitably restricted, this schema will serve as the 0-ary case of the comprehension principle
for relations.
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cate that MacBride introduces in the following passage (citing Dummett
1981, 38–9), in which he gives examples in terms of the expressions in a
formal language:

. . . what is a second-order predicate? A first-order predicate (say
of the form ‘Fξ’) results from the extraction of one or more names
(‘a’) from a closed sentence (‘Fa’) in which it occurs and inserting a
variable in the resulting gap. A second-order predicate (say of the
form ‘∃xΦx’) results from the extraction of a first-order predicate
(‘Fξ’) from a closed sentence (‘∃xFx’) and inserting a variable into
the resulting gap. (forthcoming, pp. 2–3)

In a footnote to this passage, MacBride makes it clear that open formulas,
such as ‘Lax’, ‘¬Rxa’, and ‘P x → Qy’ (in which x and y are the only
variables), qualify as predicates. But in what follows, I shall distinguish
between open formulas and predicates.

I shall use the term ‘predicate’ to refer to a relation term Π (i.e., a
relation constant, a relation variable, or λ-expression) that can occur in
an atomic predication. In classical logic, in which atomic predications
take the form Πκ1 . . .κn, the expression Π is a predicate. So where ‘L’
might be used to represent the loves relation, I’ll disinguish between the
predicate ‘L’ and the open formula ‘Lax’. The open formula is not a
predicate and doesn’t name a property (i.e., unary relation); we can’t
directly infer ‘∃F(Fx)’ or ‘∃F(Fa)’ from ‘Lax’. The open formula ‘Lax’
does have truth conditions and, given an assignment to the variable x,
denotes a state of affairs. By contrast, when we add λ-expressions a bit
later, we regard the complex unary relation term ‘[λxLax]’ as a predicate.
We can combine it with ‘b’ to form the atomic predication ‘[λxLax]b’ (“b
exemplifies being an x such that a and x exemplify the loves relation,” or
more simply, “b exemplifies being loved by a”).8 And ‘[λxy ¬Lxy]’ is a
predicate because we can form the atomic statement ‘[λxy ¬Lxy]ab’.

Thus, the predicates of 2OL and 2OL= denote properties and rela-
tions. Variables such F, G, etc., are also predicates since the expression
‘Fa’, ‘Gxy’, etc. are well-formed atomic formulas; the variables F, G, etc.,

8From Lax, we may directly infer, by the right-to-left direction of λ-Conversion (see
section 2.2 below), that [λy Fyx]a and [λy Fay]x, and from these latter, we can infer ∃F(Fa)
and ∃F(Fx). But these existential claims are immediate consequences of the atomic ex-
emplification predications [λy Fyx]a and [λy Fay]x, in which [λy Fyx] and [λy Fay] are
predicates.
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denote properties and relations relative to an assignment to the vari-
ables. To consider a more complex example, let ‘E’ denote being even and
‘P ’ denote being prime. Then when we replace the constant ‘2’ with ‘x’
in the complex closed sentence ‘E2 & P 2’ (“2 exemplifies being even and
2 exemplifies being prime”), we obtain ‘Ex& P x’. This latter expression
isn’t a predicate – it can’t be predicated of anything since it is a conjunc-
tion of two statements. Relative to any variable assignment, ‘Ex & P x’
has truth conditions and denotes a (complex) state of affairs. Semanti-
cally, one can define a sense in which an individual in the domain can
satisfy this open formula (namely, Tarski’s sense), but this is not to say
that the open formula can be predicated of that individual or predicated
of the individual term ‘a’. By contrast, the complex unary relation term
‘[λx Ex & P x]’ can be combined with an individual constant to form a
predication; that is, we can form the predication ‘[λx Ex& P x]2’, which
predicates the property denoted by the λ-expression of an individual.
And in 2OL and 2OL=, we can infer ‘∃F(F2)’ from ‘[λx Ex & P x]2’. So
whereas we call ‘[λxEx&P x]’ a predicate, we won’t call ‘Ex&P x’ a pred-
icate.

Similarly, we shall not say that the open formulas ‘Fab’ and ‘Fa&Qb’
(where ‘F’ is a free variable and the other letters are constants) are 2nd-
order predicates. These are open formulas that denote states of affairs
relative to an assignment to the free variable F. As such, these expres-
sions are 0-ary relation terms, i.e., terms that denote states of affairs
(relative to any variable assignment). By contrast, the higher-order λ-
expressions ‘[λFFab]’ and ‘[λFFa&Qb]’ are predicates of 3rd-order logic
(3OL); these are expressions constructed from the open formulas ‘Fab’
and ‘Fa&Qb’. The expressions ‘[λF Fab]’ and ‘[λF Fa&Qb]’ are part of
the language of 3OL because they denote properties of relations. These
predicates can be used to form predications in 3OL such as ‘[λF Fab]R’,
i.e., R exemplifies the property of being a relation F such that a and b
exemplify F. We’ll make use of these higher-order predicates later, at
the point in the discussion when they become relevant.9

9It might be thought that such higher-order predicates are expressible in 2OL. One
might point to the following passage in Shapiro 1991, 64–65:

Second-order variables, as well as non-logical predicate, relation, and func-
tion names, may be called ‘higher-order terms’, items that ‘denote’ relations
and functions. By way of analogy, this opens the possibility of relations of
relations, functions on relations, etc. These may be called higher-order non-
logical terms. An example would be a property TWO of properties such that
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2 The First Horn

We can now outline and investigate MacBride’s argument about the in-
terpretation of the 2nd-order quantifiers. It proceeds under the reason-
able assumption that 2nd-order quantification is a straightforward gen-
eralization of 1st-order quantification (forthcoming, p. 2). So let’s sup-
pose that the 1st- and 2nd-order quantifiers range over (mutually exclu-
sive) domains and that the axioms and inference rules of the 2nd-order
quantifiers mirror those of the 1st-order quantifiers. MacBride’s argu-
ment, to the conclusion that we cannot interpret 2nd-order quantifiers
as ranging over relations, goes by way of a dilemma. Let’s call this the
Dilemma for Converses. He presents the dilemma as follows (MacBride
forthcoming, pp. 1–2):

Dilemma for Converses
Either pairs of mutually converse predicates, such as ‘ξ is on top of ζ’
and ‘ξ is underneath ζ’, refer to the same underlying relation or they re-
fer to distinct converse relations. If they refer to the same relation then
we lack the supply of the higher-order predicates required to interpret
second-order quantifiers as ranging over a domain of relations. . . . If, by
contrast, mutually converse predicates refer to distinct converse relations
then whilst we can at least make abstract sense of the higher-order pred-
icates required to interpret quantifiers as ranging over a domain of rela-
tions, the implausible consequences for the content of lower-order con-
structions render this interpretation of higher-order quantifiers a deeply
implausible semantic hypothesis.

We need not state the full argument to each horn of the dilemma now,
because it can be shown that, given the reasonable assumption that non-

TWO(P ) ‘asserts’ that P applies to exactly two things. A relevant ‘definition’
would be:

TWO(P ) ≡ ∃x∃y[x,y &∀z(P z ≡ (z=x∨ z=y))]

But here Shapiro is talking loosely and signals that he is talking loosely by putting the word
‘denote’ (and other terms) in quotation marks. The expression ‘TWO(P )’ can be defined in
2OL but it can’t be interpreted as a denoting term, or as a term that denotes a property
of properties, since there is no domain of properties of properties in the interpretation of
2OL. ‘TWO(P )’ is simply an open formula that some properties satisfy and others don’t.
Moreover, in 2OL, the predicate [λF TWO(F)] isn’t well-formed; the λ can only bind in-
dividual variables. There is no domain of properties of properties that could provide a
denotation for such an expression.
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symmetric relations exist, the condition leading to the first horn of the
Dilemma for Converses doesn’t hold in 2OL=. We spend the remainder
of Section 2 showing this, i.e., that mutually converse predicates do not
refer to the same relation.

Since MacBride’s argument in the Dilemma for Converses involves
claims about converse relations, let us define:

• G is a converse of F if and only if for any objects x and y, x and y
exemplify G iff y and x exemplify F, i.e.,

ConverseOf (G,F) ≡df ∀x∀y(Gxy ≡ Fyx) (2)

In addition, the argument in the Dilemma for Converses concerns the
identity and distinctness of converses and so involves statements of the
form ‘R=S’ and ‘R , S’. Thus, to see that the condition leading to the
first horn of the Dilemma is false, i.e., to see that it is not the case that
mutually converse predicates refer to the same underlying relation, we
only need to show that there are converses F and G that aren’t identical:

∃F∃G(ConverseOf (G,F) &G,F) (3)

Any predicates that witness this claim will show that not all predicates
for converses denote the same underlying relation.

Though (3) is not a theorem of 2OL=, it is implied by a theorem of
2OL= under the assumption that there are non-symmetric relations. To
see how, let us first define:

• F is non-symmetric if and only if it is not the case that for any objects
x and y, if x and y exemplify F then y and x exemplify F, i.e.,10

Non-symmetric(F) ≡df ¬∀x∀y(Fxy→ Fyx) (4)

Given this definition, the assumption and theorem needed to establish
(3) may be represented as follows:

∃F(Non-symmetric(F)) (5)

10This is to be contrasted with:

F is asymmetric if and only if for any objects x and y, if x and y exemplify F, then it
is not the case that y and x exemplify F, i.e.,

Asymmetric(F) ≡df ∀x∀y(Fxy→¬Fyx)

Russell discusses asymmetric relations in 1903, §218. In what follows, however, we discuss
the more general notion of non-symmetric relations now being defined in the main text.
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∀F(Non-symmetric(F)→∃G(ConverseOf (G,F) &G,F)) (6)

As mentioned above, (5) is a reasonable assumption that MacBride adopts
in his paper. So if we can show that (6), i.e., the formal representation of
(1), is a theorem of 2OL=, it then will be a simple matter to show that (3)
follows from (5) and (6).

2.1 The Reasoning

Two facts about 2OL= have to be mentioned before we begin. First,
2OL= includes the standard two axioms that logic texts use to system-
atize identity claims, namely, the reflexivity of identity and the substitu-
tivity of identicals.11

Second, where n ≥ 0, 2OL= includes the following comprehension
axiom schema of 2OL:

Comprehension Principle for Relations (CP)
∃Fn∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), provided Fn doesn’t occur free in ϕ

We may read this as: there exists an n-ary relation F such that any objects
x1, . . . ,xn exemplify F if and only if ϕ. In the case where n = 0 and ‘p’
is used as a 0-ary variable instead of ‘F0’, then CP asserts ∃p(p ≡ ϕ),
i.e., there exists a state of affairs p such that p obtains if and only if ϕ.
Note that we read ‘p’ as it occurs in ‘p ≡ ϕ’ as ‘p obtains’, since (a) ‘p’
occurs as a formula and (b) obtains for states of affairs is the 0-ary case of
exemplification. The 0-ary case of CP will be of service later, but for now
we focus on the cases of CP where n ≥ 1.

11The reflexivity of identity can be expressed by the schema α = α, where α is either
an individual variable or an n-ary relation variable, for some n. So F = F becomes an
instance of the reflexivity of identity, where F is any relation variable of any arity. The
substitutivity of identicals can be expressed by the schema α=β→ (ϕ→ ϕ′), where α and
β are both individual variables or both n-ary relation variables (for some n) and ϕ′ is the
result of substituting the variable β for one or more occurrences of α in ϕ, provided that β
is substitutable for α in ϕ (i.e., doesn’t get ‘captured’ by a variable-binding operator when
substituted). So as instances of the substitutivity of identicals, we have F=G→ (ϕ→ ϕ′),
where ϕ′ is the result of substituting the variable G for one or more occurrences of F in ϕ,
provided G is substitutable for F in ϕ.

From these two principles, one can derive that identity for relations is symmetric and
transitive. For example, to derive symmetry, i.e., F = G → G = F, assume F = G. Then
consider the instance of the substitution of identicals F =G→ (F =F → G=F). From this
instance and our assumption, it follows that F=F→ G=F. But from this and reflexivity, it
follows that G=F. Hence, by conditional proof, F=G→ G=F.
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Before we show how 2OL= yields (6) as a theorem, a few words about
the role CP plays in 2OL= are in order. First, it is often thought that
2OL and 2OL= require a large ontology of relations simply in virtue of
including CP as an axiom. After all, in the unary case, CP has instances
such as the following:

• ∃F∀x(Fx ≡ ¬Gx)
(Any given property) G has a negation.

• ∃F∀x(Fx ≡ Gx&Hx)
(Any given properties) G and H have a conjunction.

• ∃F∀x(Fx ≡ ∃yKyx)
There is a property that objects exemplify whenever a binary rela-
tion K is projected into its first argument place.

And in the binary case, CP has the instances like the following:

• ∃F∀x∀y(Fxy ≡ Kyx)
(Any given relation) K has a converse.

Since these claims hold for any relations G, H , and K , it might seem that
CP commits one to a large ontology.

But in fact, the smallest models of 2OL and 2OL= require only that
the domain of n-ary relations contains just two relations, for each n. In
what follows, we’ll focus on 2OL=, though the same reasoning applies to
2OL. So how can it be that 2OL= requires only that the domain of n-ary
relations contains just two relations, for each n? The answer is: the small-
est models of 2OL= make CP true by identifying properties and relations
with the same extension. More specifically, in the smallest models of
2OL=, (i) the domain of individuals contains just a single element, say
b, (ii) the domain of unary relations contains just two properties—one
exemplified by b and one exemplified by nothing; and (iii) the domain
of binary relations contains just two relations—one that relates b to itself
and one that is empty; and so on. For example, if we let P1 be the prop-
erty that is exemplified by b and P2 be the empty property, then P2 is the
negation of P1 and vice versa. Moreover, the conjunction of P1 with itself
is just P1; the conjunction of P2 with itself is just P2; and the conjunction
of P1 with P2 (and the conjunction of P2 with P1) is just P2, since nothing
exemplifies both P1 and P2. And so on, for the other unary instances of
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CP. Now for the case of binary relations, let R1 be the relation that re-
lates b to itself, and R2 be the empty relation. Then R1 is the negation of
R2 and vice versa. Moreover, R1 and R2 both have converses—each has
itself as a converse. R1 is a converse of itself because R1bb ≡ R1bb, and
R2 is a converse of itself for a similar reason, though in this second case,
the biconditional R2bb ≡ R2bb is true because both sides are false. And
so on, for the other binary instances of CP.

So if we don’t add any distinguished, theoretical properties and re-
lations, 2OL= doesn’t commit us to much at all. But though 2OL= does
commit us to the existence of converse relations, it does not commit us
to the existence of non-symmetric relations. In the smallest models of
2OL=, as we just saw, there are only two binary relations; we’ve called
them R1 and R2. Note that both R1 and R2 are symmetric; they both
satisfy the open formula ∀x∀y(Fxy→ Fyx). R1 satisfies this formula be-
cause b is the only object that can instantiate the 1st-order quantifiers
and R1bb→ R1bb is a theorem of logic; it is an instance of the tautology
ϕ→ ϕ (note that the consequent is true and so the whole conditional is
true). R2 is symmetric because, again, b is the only object that can instan-
tiate the 1st-order quantifiers and the tautology R2bb→ R2bb is again a
theorem of logic (note that the antecedent is false, and so the whole con-
ditional is true). We can consider this same point proof-theoretically: the
claim ∃F(Non-symmetric(F)) is not a theorem of this logic.12

Of course, (6) can still be true even if there are no non-symmetric
relations, by failure of the antecedent. But the key fact is not that (6)
is true independently of the existence of non-symmetric relations, but
that it is derivable as a theorem. The proof doesn’t depend on the exis-
tence of non-symmetric relations, doesn’t employ any analysis of predi-
cation, and doesn’t require any particular semantic interpretation of the
domain over which the relation variables range. I’ve put the proof in a

12The claim that there are non-symmetric relations, i.e., ∃F(Non-symmetric(F)), expands
to the following, by definition (4):

∃F¬∀x∀y(Fxy→ Fyx)

Clearly, this claim is not an instance of CP, since it has the wrong form. Moreover, we can’t
derive the existence of non-symmetric relations from instances of CP, such as:

∃F∀x∀y(Fxy ≡Non-symmetric(F))

This is not a well-formed instance of CP either, but in this case, the problem is that the
variable F is free in the formula Non-symmetric(F), violating the axiom’s condition.
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footnote.13 So the formal representation of (1), namely (6), is a theorem
of 2OL=.

But the combination of (6) with the reasonable assumption (5) yields
the conclusion that there are mutually converse predicates that don’t re-
fer to the same underlying relation. For let ‘R’ be a witness to assumption
(5), so that we know Non-symmetric(R). Then by (6), we obtain the con-
clusion ∃G(ConverseOf (G,R) &G,R), which tells us that R has a distinct
converse. But we’re not quite done; the condition leading to the first
horn of the Dilemma for Converses is about predicates, and to show that
it is false, we need a bit more reasoning and semantic ascent. So let ‘S’
be a witness to our last result, so that we know ConverseOf (S,R) & S ,R.
Then, by semantic ascent, we have established that the predicates ‘R’ and
‘S’ denote converse relations that are distinct. Thus, the condition lead-
ing to the first horn of the Dilemma for Converses, namely that pairs of
mutually converse predicates refer to the same underlying relation, fails
in 2OL= under any interpretation. We therefore need consider only the
second horn.

2.2 Simplifying the Reasoning

Before we turn to the second horn of MacBride’s Dilemma for Converses
in Section 3, it is relevant, and of significant interest, that (1) can be
represented, and its proof developed, much more elegantly if we add

13Proof. Pick an arbitrary relation R and assume R is non-symmetric. Then, by definition
(4) and predicate logic, there are objects, say a and b, such that both Rab & ¬Rba. Note
independently that CP implies that every relation has a converse, as follows. If we let ϕ
be Gyx, where G is a free variable, then ∃F∀x∀y(Fxy ≡ Gyx) is a binary instance of CP. It
follows by universal generalization that:

∀G∃F∀x∀y(Fxy ≡ Gyx)

By instantiating to R, it follows that ∃F∀x∀y(Fxy ≡ Ryx). Pick an arbitrary relation as a
witness to this claim, say S, so that we know:

(A) ∀x∀y(Sxy ≡ Ryx)

(A) implies, by definition (2), that ConverseOf (S,R). But we already know Rab, since
it’s the first conjunct of Rab & ¬Rba. Hence, Sba, by instantiating b for x and a for y
in (A). Now for reductio, assume S = R. Then it follows that Rba, by substitution of
identicals. But this contradicts ¬Rba, which is the second conjunct of Rab&¬Rba. Hence
S ,R, by reductio. We’ve therefore established ConverseOf (S,R) & S ,R. So by existential
introduction, ∃G(ConverseOf (G,R) & G , R). By conditional proof, then, it follows that
Non-symmetric(R)→ ∃G(ConverseOf (G,R) &G,R). But since R was arbitrary, universally
generalizing on R yields (6).
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λ-expressions to 2OL=. λ-expressions are complex terms that denote
relations and they will play an important role in what follows. We be-
gin the explanation of how λ-expressions simplify our definitions and
theorems about converses by saying a few words about the logic that re-
sults when we add these expressions.14 Assume, therefore, that we have
added complex, n-ary relation terms of the form [λx1 . . .xn ϕ] to the def-
inition of our language (n ≥ 0) given in footnote 7. When n ≥ 1, we read
[λx1 . . .xn ϕ] as being objects x1, . . . ,xn such that ϕ; when n = 0, we read
[λ ϕ] as that-ϕ. Thus, λ-expressions do not denote functions, as in the
functional λ-calculus, but rather relations and, in the 0-ary case, they
denote states of affairs. A simple predication like ‘[λx ¬P x]y’ asserts: y
exemplifies being an object x that fails to exemplify P; and ‘[λ ¬Rab]’ de-
notes the state of affairs that a and b don’t exemplify R.

By adding λ-expressions to 2nd-order logic, we can replace CP by:

λ-Conversion (λC)
[λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ

This asserts: x1, . . . ,xn exemplify being objects x1, . . . ,xn such that ϕ if and
only if ϕ. For example, [λxy ¬Fxy]xy ≡ ¬Fxy is an instance, and by
universal generalization, it is a theorem of the relational λ-calculus that:

∀F∀x∀y([λxy ¬Fxy]xy ≡ ¬Fxy)

To see how this works, instantiate this theorem to an arbitrary binary re-
lation R, and then to arbitrary objects a and b. The result is the instance:
[λxy ¬Rxy]ab ≡ ¬Rab.15

As previously mentioned, (λC) eliminates the need for CP since the
latter becomes derivable. The proof is left to a footnote.16 This applies
even to the 0-ary case of (λC). When n = 0, (λC) asserts [λ ϕ] ≡ ϕ, i.e.,

14In essence, we will be using the λ-calculus under the interpretation in which λ-
expressions denote relations rather than functions. See again the nice discussion of this
in Section 9.3 of Alama & Korbmacher 2021.

15In what follows, I also assume two other principles of the λ-calculus (understood re-
lationally), namely η-Conversion, which asserts [λx1 . . .xn Π

nx1 . . .xn] =Πn, for any n-ary
relation term Π, and α-Conversion, namely, that alphabetically-variant λ-expressions de-
note the same relation. η-Conversion tells us that a λ-expression such as ‘[λxy Rxy]’, in
which all the free variables in the atomic exemplification formula ‘Rxy’ are bound by the
λ, denotes the same relation that ‘R’ denotes, i.e., the identity ‘[λxy Rxy]=R’ holds. As an
example of α-Conversion, we have ‘[λxy Rxy]=[λyz Ryz]’.

16Just universally generalize on x1, . . . ,xn in (λC) to conclude:

∀x1 . . .∀xn([λx1 . . .xn ϕ]x1 . . .xn ≡ ϕ)
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that-ϕ obtains if and only if ϕ.17 For example, the formula [λ¬Lmj] ≡
¬Lmj might be used to represent the claim: (the state of affairs) that-
Mary-doesn’t-love-John obtains if and only if Mary doesn’t love John.
Note that the 0-ary case of CP immediately follows from the 0-ary case
of (λC), by Existential Introduction.18 Again, the 0-ary case of (λC) will
play a role later, but for now, let’s focus on the cases where n ≥ 1.

We can use λ-expressions to introduce a well-behaved converse oper-
ator ( )∗ on predicates by taking advantage of λ-expressions. Where F is
a binary relation, we may define the converse of F, i.e., F∗, as being an x
and y such that y and x exemplify F, i.e.,

F∗ =df [λxy Fyx] (7)

Note how this definition immediately implies that every relation has a
converse, where this is expressible as ∀F∃G(G = F∗).19 A fortiori, every
non-symmetric relation has a converse. Thus, we can now represent and
prove (1) more elegantly as the claim that for any binary relation F, if F
is non-symmetric, then its converse F∗ is distinct:20

Then, we can existentially generalize on the λ-expression (provided F doesn’t occur free in
ϕ) so that we obtain (CP):

∃F∀x1 . . .∀xn(Fx1 . . .xn ≡ ϕ), provided F doesn’t occur free in ϕ

If F were free in ϕ it would get ‘captured’ by the quantifier ∃F, and the resulting principle
would be invalid, for it would have the contradictory instance ∃F∀x(Fx ≡ ¬Fx).

17See Zalta 2014, for a full discussion of why this reading is justified and shows that the
propositional version of the Tarski T-schema is a tautology.

18We can existentially generalize on the 0-ary relation term [λϕ] in [λϕ] ≡ ϕ to obtain:
∃p(p ≡ ϕ), i.e., there is a state of affairs p such that p obtains if and only if ϕ. Of course, the
usual proviso applies, namely, that p not occur free in ϕ. If p were to occur free in ϕ, then
we could generalize on [λ ϕ] by introducing some other quantified variable that doesn’t
occur free in ϕ.

19Let R be an arbitrary relation. Then, in classical 2OL=, in which every term (including
every λ-expression) has a denotation, we have, as an instance of the reflexivity of identity,
that [λxy Ryx] = [λxy Ryx]. So by Existential Introduction, ∃G(G = [λxy Ryx]). And by
definition of R∗, it then follows that ∃G(G=R∗). Since R was arbitrary, we have established
∀F∃G(G=F∗).

20Of course, one could more strictly represent (1) as follows:

∀F(Non-symmetric(F)→∃G(G=F∗ &G,F))

But the consequent of this quantified conditional, ∃G(G=F∗ &G,F), is just equivalent to
the consequent of claim (8) in the text, namely, F∗ ,F. The proof of both directions of the
equivalence is straightforward. For the left-to-right direction, suppose ∃G(G = F∗ & G ,
F). Then let H be such a relation, so that we know both H = F∗ and H , F. Then by
substitution of identicals, F∗ , F. For the right-to-left direction, assume F∗ , F. Then by
reflexivity of identity, F∗=F∗&F∗,F. Hence by existential introduction, ∃G(G=F∗&G,F).
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∀F(Non-symmetric(F)→ F∗,F) (8)

Again, I’ve put the proof in a footnote,21 and I encourage the reader to
compare the proof of (8) in footnote 21 with the proof of (6) in foot-
note 13, to confirm how λ-expressions simplify the reasoning. Thus,
as soon as we instantiate the reasonable assumption (5) to an arbitrary
predicate, say ‘R’, to conclude Non-symmetric(R), we can immediately in-
stantiate the new predicate ‘R∗’ into (8) and then conclude R,R∗. So by
semantic ascent, the condition leading to the first horn of the Dilemma
for Converses is false.

Thus, when we add λ-expressions to 2OL=, the concepts and claims
simplify and clarify. I’ll therefore use (8) as the clearer representation of
(1) in what follows. But my analysis will apply to (6) as well. Both (6)
and (8) have been established as formal theorems, without any analysis
of predication or any semantic arguments about converses.

3 The Second Horn

MacBride’s Dilemma for Converses concludes that the quantifiers of 2OL
don’t range over relations and we’ve now seen that the first horn of the
dilemma fails in 2OL= (i.e., the logic needed to systematize talk about
the identity or distinctness of relation converses). The argument in the
second horn was sketched at the beginning of Section 2 above. But a
fuller sketch of the argument emerges later in the paper, beginning in
the following passage:

. . . But even if pairs of mutually converse relations are admit-
ted, thus avoiding the difficulties that arose from dispensing with
them, higher-order predicates of the form ‘aΦ b’ are still required
for the intelligibility of quantification into the positions of converse
predicates, i.e. higher-order predicates capable of being true or false
of a relation belonging to the domain independently of how that
relation is specified. . . .

Given the equivalence just established, we use the simpler F∗ ,F as the consequent when
representing (1) as (8).

21Proof. Assume Non-symmetric(R), where R is arbitrary. Then, ¬∀x∀y(Rxy→ Ryx), i.e.,
for some objects, say a and b, we know Rab & ¬Rba. Now for reductio, assume R∗ = R.
Then by symmetry of identity, R=R∗, and from Rab, if follows that R∗ab, by substitution of
identicals. So by definition (7) of R∗, we know [λxy Ryx]ab. But by (λC), this implies Rba.
Contradiction. Hence R∗ , R. So by conditional proof, Non-symmetric(R)→ R∗ , R. Since
R was arbitrary, we may universally generalize to get (8).
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. . . do we have an understanding of higher-order predicates of
the form ‘aΦb’ which will enable us to interpret second-order quan-
tification as quantification over a domain of relations? I will argue
that we don’t. (forthcoming, p. 16)

Before we look at the specific way in which MacBride argues for this
conclusion, let’s first make the language that MacBride needs to present
his argument a bit more precise.

3.1 Third-Order Language and Logic (3OL)

I shall suppose that MacBride’s language is 3rd-order, since he wants
to formulate higher-order predicates capable of being true or false of
relations. If we use λ-expressions, we can formally represent the higher-
order property connected with the open formula ‘Fab’ as [λF Fab]. We
read this λ-expression as: being a relation F such that a and b exemplify
F. So let us take on board the resources of a 3rd-order language and
logic (3OL), including monadic, higher-order λ-expressions of the form
[λFϕ] for denoting complex properties of relations. 3OL lets us quantify
over, and denote, properties of relations such as [λF ∀xFxx] (“being a
relation F that is reflexive”) and such as [λF ¬∀x∀y(Fxy→ Fyx)] (“being
a relation that is non-symmetric”), etc.

In 3OL, λ-expressions of the form [λFϕ] are governed by the follow-
ing schema:

(Monadic) Third-Order λ-Conversion (3λC)
[λF ϕ]F ≡ ϕ

I.e., F exemplifies being a relation such that ϕ if and only if F is such that
ϕ. So by Universal Generalization, the following is a theorem schema of
3OL:

∀F([λF ϕ]F ≡ ϕ) (9)

With this formalization in mind, we can return to MacBride’s argument.
MacBride argues that in order for ‘∃F(Fab)’ to be interpreted as quan-

tifying over relations, we have to be able to grasp the higher-order pred-
icate associated with the expression ‘Fab’ as being true or false of rela-
tions independently of how such relations are named or picked out. He
then proceeds to consider and reject a number of proposals for so under-
standing ‘Fab’.
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3.2 The First Argument for the Second Horn

The first proposal that MacBride considers, and rejects, appeals to the
determinate-determinable distinction. Earlier in his paper, he defined
‘Fab’ has a determinable significance when it is true of the referent R of a
first-level predicate . . . just in case R relates a to b in some manner or other
but without settling any determinate arrangement for them” (forthcom-
ing, pp. 10). He now argues that the suggestion, that ‘Fab has a deter-
minable significance, gets the truth conditions wrong for non-symmetric
relations. Let us use sentences numbered in square brackets to reference
the numbered sentences in MacBride’s paper and consider these two sen-
tences:

[1] Alexander is on top of Bucephalus.

[8] ¬Bucephalus is on top of Alexander.

He says, in connection with these sentences:

If ‘Alexander Φ Bucephalus’ has purely determinable significance
then ‘Bucephalus Φ Alexander’ does too but they will mean the
same. The latter will stand for a property that a relation has if it
relates Bucephalus and Alexander in some manner or other. But a
relation has the property of relating Bucephalus and Alexander in
some manner or other iff it has the property of relating Alexander
and Bucephalus in some manner or other—because the property of
relating some things in some manner or other is order-indifferent.

(forthcoming, p. 17)

He then draws the conclusion that we can’t explain the valid inference
from [1] to [8] given this analysis, for whereas [1] says that on top of
has the order-indifferent property of relating Alexander and Bucephalus
in some manner or other, [8] says that this relation doesn’t have that
property.

MacBride quite rightly rejects the suggestion that ‘Fab’ has a deter-
minable significance, but for the wrong reasons. MacBride rejects the
suggestion on the grounds that it can’t explain the valid inference from
[1] to [8], but I think we can reject the suggestion because, as we’ll see
below, 3λC already shows that ‘Fab’, ‘Fba’, and ‘¬Fba’ have a determinate
rather than a determinable significance. Before we examine this claim in
more detail, let me first put one issue aside, to be revisited later (in the
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context of the next suggestion), namely, whether [1] and [8] say what
MacBride claims that they say. I don’t think they do, but we need not
develop the issue at this point.

Instead, we can see that ‘Fab’, ‘Fba’, and ‘¬Fba’ have a determinate
significance by considering the higher-order predicates of relations that
can be constructed with the help of these formulas. We may represent
the higher-order properties signified as [λFFab], [λFFba], and [λF¬Fba].
These higher-order properties are all well-defined. To see why, let ϕ in
(9) be, successively, Fab, Fba, and ¬Fba, and instantiate the quantifier
∀F to the relation R in each case. Then all of the following are theorems
of 3OL derivable from (3λC):

[λF Fab]R ≡ Rab (10)

[λF Fba]R ≡ Rba (11)

[λF ¬Fba]R ≡ ¬Rba (12)

These are not schemata. (10) says: relation R exemplifies being a relation
F such that a and b exemplify F just in case a and b exemplify R. (11) says:
R exemplifies being a relation F such that b and a exemplify F just in case b
and a exemplify R. And (12) says: R exemplifies being a relation F that b
and a fail to exemplify just in case b and a fail to exemplify R.

Thus ‘Alexander Φ Bucephalus’ (‘Fab’) and ‘Bucephalus Φ Alexan-
der’ (‘Fba’) have a determinate significance represented, respectively, by
the higher-order properties [λFFab] and [λFFba]. Moreover, they clearly
don’t mean the same; they aren’t even materially equivalent. [λF Fab] is
exemplified by R, given the fact that Rab and (10), and [λF Fba] fails to
be exemplified by R, given the fact that ¬Rba and (11). So we need not
accept the proposal that ‘Alexander Φ Bucephalus’ has a determinable
significance nor the premise about what that hypothesis implies for un-
derstanding [1] and [8]. The fact is, expressions of the form ‘Fab’ can be
interpreted in terms of determinate higher-order properties as we have
just done, and so (10) gives us the philosophical means for understand-
ing the open formula ‘Fab’ for an arbitrary relation R.

3.3 The Second Argument for the Second Horn

The next proposal that MacBride considers and rejects is the suggestion
that we understand ‘Fab’ in terms of a higher-order property of relations

Edward N. Zalta 22

in which ordinal notions (‘first’, ‘second’) play some role. In particu-
lar, the proposal under consideration is that ‘Fab’ is to be understood in
terms of the higher-order property that a relation has if it applies to a
first and b second. MacBride develops an extended argument (pp. 16–
28) against this proposal, by advancing a number of considerations. At
the end, he concludes:

. . . we lack a grasp of the higher-order predicates required to char-
acterize relations in a higher-order setting, a grasp which is appro-
priately rooted in our understanding of atomic statements.

(forthcoming, p. 28)

This conclusion is then supposed to entail that we can’t understand the
quantified formula ‘∃F(Fab)’ as quantifying over relations.

Let’s grant that the entailment holds. Then we can respond to the
argument by showing that we do have a grasp of the higher-order pred-
icates required to understand quantification over relations. Fortunately,
we don’t have to go through the extended argument in detail because we
can demonstrate that our grasp of these higher-order predicates is em-
bodied by (3λC). Over the next few paragraphs, I (a) show why (3λC)
is the right principle, (b) defuse some reasons that might be offered as
to why it isn’t, (c) show how (3λC) helps us to undermine some of the
claims MacBride makes during the course of his argument for the sec-
ond horn, and (d) narrow our focus to a question that is, at least in part,
driving MacBride’s concern about quantification over relations.

Clearly, (3λC) is a logical principle and it states exemplification (i.e.,
‘application’) conditions for the higher-order properties denoted by pred-
icates of the form [λF ϕ]. So, clearly, we do not lack a principled grasp
of the higher-order predicate ‘[λF Fab]’ that is formulable from the open
formula ‘Fab’. We saw that (10) is an instance of (3λC) and so offers a
principled statement of the application conditions of the higher-order
property [λF Fab]. Clearly, one must distinguish the open formula ‘Fab’
from the closed predicate ‘[λF Fab]’ to even formulate (3λC).

MacBride does seem to recognize that (3λC) forms the basis of a gen-
uine response to his argument, for he subsequently considers an informal
version of (3λC). He writes:

Might there be an alternative interpretation of higher-order predi-
cates of the form ‘aΦb’ over which we have more control and which
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will facilitate an interpretation of second-order quantifiers as rang-
ing over a domain of relations? The ordinary language construction
‘— bears - - - to ’ as it figures in,

[14] Alexander bears a great resemblance to Philip,

might appear to be a promising candidate for a construction in which
our understanding of a predicate of the form ‘aΦb’ might be rooted.
Roughly speaking, the idea is that a relation R satisfies the predicate
‘aΦb’ just in case a bears R to b whereas R satisfies ‘bΦa’ just in case
b bears R to a. (forthcoming, pp. 25–26).

MacBride then argues against this idea (pp. 26–27). But I will not exam-
ine the details of this particular argument, for it appears to challenge the
intelligibility of a well-known logical principle, namely λ-Conversion
(λC), in its higher-order guise as (3λC). I take both principles to be
perfectly intelligible; they axiomatize complex predicates of the form
[λαϕ] by precisely identifying their exemplification (or application) con-
ditions. To my mind, the discussion on pp. 26–27 doesn’t clearly separate
the logic from the way natural language is to be represented in that logic.

Note that one can’t reject (3λC) on the grounds that it is trivial. One
might argue that (3λC) trivially recasts the open formula as a higher-
order predicate and so doesn’t help us understand ‘Fab’ or the higher-
order property in question. But neither (λC) in 2OL nor (3λC) in 3OL are
trivial. (λC) in 2OL is a significant principle that is an integral part of the
λ-calculus of relations and thus one of the key axioms for axiomatizing
relations (see Zalta 1983 (69), Menzel 1986 (38), Zalta 1993 (406), and
Menzel 1993 (84)). It is stronger than CP (it implies CP, as we’ve seen,
but CP doesn’t imply it), and it is not plausible to suggest that CP is a
trivial principle. (3λC) has a similar significance in 3OL.22

22One referee for this journal suggested that MacBride would say:

Schematic principles do not address these worries about relations . . . pre-
cisely because these principles are schematic, i.e., because they contain
schematic letters which show what happens when a schematic letter is re-
placed with a predicate, in this case R. This means that schematic princi-
ples only speak to cases where relations are picked out by a predicate, but
MacBride’s point is that to grasp ‘∃Φ(aΦb)’ as incorporating quantification,
we need to grasp ‘aΦb’ as being true or false of a relation in the domain even
if no predicate can pick it out.

But this doesn’t undermine (3λC) as a principle that yields an intelligble understanding
of ‘Fab’. The instances of (3λC) don’t involve schematic letters. For example, ‘[λF Fab]F ≡
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By systematizing the distinction between an open formula such as
‘Fab’ and the higher-order predicate ‘[λF Fab]’, it becomes clear that
(3λC) may even be an assumption of MacBride’s paper that addresses
the concern he raises, since the right-to-left direction of (3λC) tells us
that if a relation R satisfies the open formula ‘Fab’, then R exemplifies
the higher-order property [λF Fab]. And since (3λC) is a biconditional
that implies the converse of this last claim, we forestall MacBride’s con-
clusion that we lack a principled understanding of the application con-
ditions of ‘Fab’.23

So if (3λC) gives a principled account of the significance of open for-
mulas and the higher-order predicates we can build with such formulas,
what then is really driving the concerns that MacBride has about quan-
tifying over relations? To understand the root of the concerns, we have
to consider one of the specific arguments that MacBride presents. He
spends all of Section 7 considering the consequences of supposing that
relations hold between the objects they relate in an order. The underly-
ing root of his concerns emerges when we consider the ‘untoward con-
sequences’ that allegedly result if we were to understand ‘Fab’ in terms
of a higher-order property that a relation has if it applies to a first and b
second (forthcoming, 18).

Now in the present paper, we’re not committed to reading the for-
mula ‘Fab’ as “F applies to a first and b second”. The notion of applying

Fab’ directly governs the open formula ‘Fab’, with free variable F. No 1st-order predicate
constant appears in this instance and so no 1st-order relation has been specified by this
instance. The two free occurrences of ‘F’ in this instance refer to an arbitrary relation
(i.e., whatever is assigned to the free variable ‘F’), independent of how that relation is
specified (‘F’ is a variable, after all). Any relation in the domain could be assigned as
a value for ‘F’. Moreover, as we saw earlier, the universally quantified formula (9), i.e.,
∀F([λF Fab]F ≡ Fab), is an immediate consequent of (3λC). It quantifies over every entity
in the domain of the quantifier ‘∀F’, independently of how those entities are specified. So
(3λC) is just the right principle to explain the higher-order property that MacBride says
might be in play in our understanding of the open formula ‘Fab’.

23There is another way to forestall MacBride’s conclusion, without appealing to 3OL,
namely by developing a precise semantics for the (open) formulas of 2OL that is grounded
in a theory of relations and states of affairs. For example, the language in Zalta 1983
provides truth conditions, relative to an assignment to the variables, for the open formula
‘Fab’. These are stated in terms of the relation that serves as the denotation of ‘F’ relative
to a variable assignment (the denotation of ‘F’ relative to a variable assignment f is just
the entity assigned to ‘F’ by f ). This semantics is grounded in the theory of relations that
is expressible in the extended 2OL formalism developed in Zalta 1983. We’ll discuss this
theory later in the paper.
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to . . . in an order isn’t a primitive of our logic; of course, one is tempted
to say it is the position or place in the relation that a and b have to oc-
cupy, rather than the order of application. But our logic isn’t even com-
mitted to that much; it isn’t committed to the existence of positions or
places in a relation as entities (see Fine 2000, 16, for a defense of anti-
positionalism). Our reading of ‘Fab’ as “a and b exemplify F” doesn’t
explicitly say that a occupies the first position (or place) of F and b the
second.24 Similarly, when we read the predicate ‘[λF Fab]’ as “being an
F such that a and b exemplify F”, this doesn’t require us to say further
that F is such that a occupies its first position (or place) and b its second.
But, let’s grant, for the sake of argument, that the higher-order predi-
cate involves ordinal notions in the way MacBride suggests and read it
as “being an F such that F applies to a first and b second”. Under this
reading, (3λC) remains true. MacBride then considers symmetric and
non-symmetric relational statements and, in each case, finds reasons to
question the understanding of ‘Fab’ in terms of ordinal notions. For ex-
ample, with respect to the symmetric relation differs from, he argues that
‘Darius differs from Alexander’ and ‘Alexander differs from Darius’ in-
tuitively say the same thing, but given the understanding of the open
formula ‘Fda’ and ‘Fad’ that we’re now considering, these formulas say
different things. He argues:

Since second-order logic permits existential quantification into the
positions of symmetric predicates, it follows—assuming the pro-
posed interpretation of higher-order predicates—that atomic state-
ments in which symmetric predicates occur attribute to symmetric
relations the property of applying to the things they relate in an or-

24Are the ordinal concepts first, second, etc., assumed by the primitive notion of a re-
lation? This is by no means clear. The numerals that serve as subscripts on ‘x1’,. . . ,‘xn’
provide a way to have distinct variables; we could have used distinct letters instead. More-
over, the numeral ‘n’, which serves as a superscript in ‘Fn’ and as a subscript in ‘xn’ in
atomic formulas of the general form Fnx1 . . .xn, is not is a variable that can be bound by a
quantifier in 2OL. Instead of numerals, we could have placed a series of ticks on the pred-
icate to indicate arity, so that a well-formed atomic formula includes as many arguments
to the predicate as ticks. So, it looks like neither the ordinal concepts first, second, etc., nor
the concept of number are primitives of the predicate calculus.

Thus, the expressions denoting relations have, at best, only an implicit notion of order
that does little more than preserve the idea that ‘Fab’ says something different from ‘Fba’,
and so on for relations of greater arity. That is, at a minimum, we require only that “a and b
exemplify F” says something different than “b and a exemplify F”. That may be the extent
to which the theory of relations assumes ordinal notions.
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der. But it is far from plausible that they do. Consider, for example,

[9] Darius differs from Alexander.

[10] Alexander differs from Darius.

If predicates of the form ‘aΦb’ mean what they’re proposed to mean
then [9] says that the relation picked out by ‘ξ differs from ζ’ ap-
plies to Darius first and Alexander second, whereas [10] says that it
applies to Alexander first and Darius second. But, as both linguists
and philosophers have reflected, prima facie statements like [9] and
[10] don’t say different things but are distinguished solely by the lin-
guistic arrangements of their terms. (forthcoming, pp. 19–20)

Although MacBride cites a number of authorities for his last claim, he
also mentions that Russell (1903, §94) argued against it and for the view
that statements like [9] and [10] express distinct propositions.

Before I examine this argument, let me return to one issue. I don’t
accept that [9] says what MacBride claims that it says. [9] does not say,
nor can one derive in 2OL or 3OL that it says, “the relation picked out
by ‘ξ differs from ζ’ applies to Darius first and Alexander second”, as
MacBride suggests. For one thing, [9] doesn’t say anything about predi-
cates picking out, or denoting, relations. Instead, [9] simply says Darius
differs from Alexander (or, when regimented as d,a, [9] says ‘d and a ex-
emplify being non-identical’). Of course, when we regiment [9] as ‘d,a’
and use 3OL, we can also instantiate our sentence (9) in Section 3.1 to the
non-identity relation , to obtain [λF Fda], ≡ d , a, and infer from this
last fact and the representation of [9] that [λFFda],, i.e., that the relation
differs from exemplifies the higher-order property of being a relation Dar-
ius and Alexander exemplify. So, in what follows, I’ll treat MacBride’s
reading of [9] not as what [9] says, but as what [9] semantically implies
in 3OL. And something similar applies MacBride’s sentence [10].

Clearly, the crux of MacBride’s argument in the above passage is his
view that [9] and [10] don’t say different things. But surely there is at
least a sense of ‘says’ on which [9] and [10] do say different things. If we
ignore the particular symmetric relation involved and consider a non-
symmetric relation, then to say ‘John loves Mary’ is not to say ‘Mary
loves John’. So MacBride’s argument must turn on a notion of ‘says’ on
which [9] and [10] say the same thing. For the purposes of discussion,
the notion in question has to be something like “denote the same state
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of affairs”. He is convinced that they do, whereas I think this isn’t at all
clear. The point at issue concerns the identity of states of affairs; if one
allows, for example, that necessarily equivalent states of affairs may be
distinct, it is by no means a fact that [9] and [10] say the same thing.25

Indeed, I hope to show in what follows that as long as we have a clear
theory of relations and states of affairs (something that can be developed
without the resources of 3OL), one can both (a) challenge the suggestion
that [9] and [10] denote the same state of affairs and (b) argue that even if
we leave the question open, we can still understand the application con-
ditions of ‘Fab’ and conclude that ‘∃F(Fab)’ quantifies over relations.26

But before we turn to the theory of relations and states of affairs that
support this position, the second puzzling conclusion mentioned at the
outset of the paper, namely the conclusion in MacBride 2014, becomes
relevant. For the argument in that paper also turns, at least in part, on
the question of the identity of states of affairs.

25I don’t think MacBride here is claiming that the state of affairs d,a is identical to a,d
on the grounds that they are necessarily equivalent. That is, he does not give the following
argument:

Given the necessity of identity and a modal logic with the K and B axioms,
it follows not only that ∀x∀y(x = y → �x = y), but also that ∀x∀y(x , y →
�x , y). So from [9] (d , a) and [10] (a, d) it would follow that �d , a and
�a , d, respectively. But (�ϕ&�ψ)→ �(ϕ ≡ ψ) and so it would follow that
�(d , a ≡ a , d). Since necessarily equivalent states of affairs are identical,
it would follow that (d , a) = (a , d), thereby identifying the two states of
affairs in question. This argument would hold for any symmetric relation
like differs from that holds necessarily whenever it holds.

But MacBride doesn’t argue this way and even if he were to so argue, we do not suppose, in
what follows, that necessarily equivalent states are identical. There are well-known coun-
terexamples to the proposal that necessarily equivalent relations, properties, and states of
affairs are identical. In what follows, we take such entities to be hyperintensional, i.e.,
entities that may be distinct even if necessarily equivalent.

26I note another reason for not accepting MacBride’s reading of [9] as ‘what it says’. If
we were to accept his reading, then ‘∃F(Fab)’ would say that some relation has the higher-
order property that a relation has when it applies to a first and b second. But ‘∃F(Fab)’
doesn’t say this, not even semantically, for it says nothing about higher-order properties.
The claim that MacBride attributes to ‘∃F(Fab)’ is representable in 3OL by the formula:
∃G([λF Fab]G). This does indeed say, given MacBride’s hypothesis about the ordinal no-
tions involved: some relation G exemplifies the property of being a relation F that applies
to a first and b second. But the semantics of 2OL doesn’t explicitly require quantification
over properties of relations when it assigns truth conditions to ‘∃F(Fab)’ and so one can in-
terpret this claim in 2OL without invoking properties of relations. Of course, one needs
Tarski’s notion of satisfaction instead.
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4 The Second Puzzling Conclusion
To state the second puzzling conclusion, which occurs in MacBride 2014,
we have to recall the second of the three degrees of relatedness that
MacBride distinguishes in that paper. He says, where R∗ signifies the
converse of R, that “to embrace the second degree is to make the exis-
tential assumption that every non-symmetric relation has a distinct con-
verse (R , R∗)” (2014, 3). He then argues that relatedness in the second
degree ‘spells trouble’ and has ‘unwelcome consequences’, namely, that
it commits us to a “superfluity of converse relations and states” (2014,
4). Let’s consider these claims in turn, i.e., by focusing first on the super-
fluity of relations and then on the superfluity of states.

Let me begin by suggesting that the superfluity of converse relations
is not the main objection of the two, for recall that the conclusion in
MacBride 2014 is that we should take relations and relation application
as primitive. Since these notions are primitive in 2OL=, the conclusion
MacBride draws in 2014 doesn’t eliminate the multiplicity of relations.
For when (1) is represented as (6), it becomes a theorem of 2OL=, as
we saw in Section 2.1. So the multiplicity of converse relations arises
even when relations and relation application are primitive (given the as-
sumption that non-symmetric relations exist). And this holds not only
for binary non-symmetric relations but also non-symmetric relations of
higher arity.27 Though MacBride also suggests that we can’t name the

27To see that the generalization of (6) remains a theorem for relations of higher arity, let
F be any n-ary relation (n ≥ 3) and let i and j be such that 1 ≤ i < j ≤ n. Then we may define
the i, jth-converse of F, written F∗i,j , as follows:

F∗i,j =df [λx1 . . .xi . . .xj . . .xn Fx1 . . .xj . . .xi . . .xn] (ϑ)

And we can define F is non-symmetric with respect to its ith and jth places:

Non-symmetrici,j (F) ≡df ¬∀x1 . . .∀xi . . .∀xj . . .∀xn(Fx1 . . .xi . . .xj . . .xn→
Fx1 . . .xj . . .xi . . .xn) (ξ)

Then for any n-ary relation F (n ≥ 3) and i, j (1 ≤ i < j ≤ n), it is provable that:

∀F(Non-symmetrici,j (F)→ F,F∗i,j )

The proof is just a generalization of the one given for (8) and goes as follows. Fix n,
i, and j. Assume Non-symmetrici,j (F). Then by (ξ) there are objects x1, . . . ,xi , . . . ,xj , . . . ,
xn, say a1, . . . , ai , . . . , aj , . . . , an, such that Fa1 . . . ai . . . aj . . . an and ¬Fa1 . . . aj . . . ai . . . an. As-
sume, for reductio, that F = F∗i,j . Then it follows by the substitution of identicals that

F∗i,ja1 . . . ai . . . aj . . . an. So by definition (ϑ), it follows that:

[λx1 . . .xi . . .xj . . .xn Fx1 . . .xj . . .xi . . .xn]a1 . . . ai . . . aj . . . an

Hence, by (λC): Fa1 . . . aj . . . ai . . . an. Contradiction.
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relations given such a multiplicity, in fact we can denote them using
λ-expressions.28 In any case, MacBride’s argument that relations and
relation application should be taken as primitive doesn’t avoid the con-
clusion that there are a multiplicity of converse relations.

So the real problem about the fact that non-symmetric relations have
distinct converses concerns the ‘profusion’ of states of affairs. MacBride
rehearses this problem by considering on and under, both of which are
asymmetric (and hence non-symmetric if there are objects that stand in
those relations):

It’s one kind of undertaking to put the cat on the mat, something
else to put the mat under the cat, but however we go about it we
end up with the same state. To bring the cat to the forefront of our
audience’s attention we describe this state by saying that the cat is
on the mat; to bring the mat into the conversational foreground we
say that the mat is under the cat. But whether it’s the cat we men-
tion first, or the mat, what we succeed in describing is the very same
cat-mat orientation. That’s intuitive but if—as the second degree
describes—a non-symmetric relation and its converse are distinct,
we must be demanding something different from the world, a dif-
ferent state, when we describe the application of the above relation
to the cat and the mat from when we describe the application of the
below relation to the mat and the cat. (2014, 4)

The worry is that converse relations commit us to the principle that if R
is non-symmetric, then for any x and y, the state of affairs Rxy is distinct
from the state of affairs R∗yx. We can formally represent the allegedly
problematic principle as follows:

∀F�(Non-symmetric(F)→∀x∀y(Fxy,F∗yx)) (13)

This, it is claimed, is counterintuitive, and MacBride cites Fine 2000 in
support of his claim.29 If this is the concern, why not adopt the following
principle instead:

28MacBride says “Each ternary non-symmetric relation has five mutual converses, and
we don’t have names for any of them” (2014, 4). But if S is a ternary non-symmetric
relation, we can denote its converses as follows: [λxyz Sxzy], [λxyz Syxz], [λxyz Syzx],
[λxyz Szxy], and [λxyz Szyx]. The first of these can be read: being objects x, y, and z such
that x, z, and y exemplify S; the second as: being objects x, y, and z such that y, x, and z
exemplify S; etc. Van Inwagen (2006) would demur, but his argument doesn’t engage (the
coherency of) a precise theory of relations of the kind presented Section 5 below.

29In Fine (2000, 3), we find:
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• For any binary relation F, necessarily, if F is non-symmetric, then
for any x and y, the state of affairs x and y exemplify F is identical
to the state of affairs y and x exemplify F∗, i.e.,

∀F�(Non-symmetric(F)→∀x∀y(Fxy = F∗yx)) (14)

The answer MacBride gives is (2014, 4):

We might attempt to defend the second degree by maintaining that
the application of R and R∗ does not give rise to different states with
respect to the same relata but different decompositions of the same
state. So whilst above and below are distinct, the relational configu-
ration cat-above-mat is a decomposition of the same state as the con-
figuration mat-below-cat. But these decompositions comprise what
are ultimately different constituents—a non-symmetric relation and
its converse are supposed to be distinct existences. But now we have
the difficulty of explaining how such different decompositions can
give rise to a single state.

So, again, the problem being raised is about the identity of states of af-
fairs. In these cases, MacBride is confident that there is a single state
involved.

Note that we’ve now connected up the issue on which MacBride’s
forthcoming paper turns with the issue on which his 2014 paper turns,
namely, the identity of states of affairs. What gives rise to this problem is
that 2OL and 2OL= don’t have the resources to supply a good definition
of the conditions under which states of affairs are identical, even if we
add modality to the logic. For neither of the following definitions is a
good one:

p=q ≡df p ≡ q

What makes this consequence so objectionable, from a metaphysical stand-
point, is a certain view of how relations are implicated in states or facts.
Suppose that a given block a is on top of another block b. Then there is a cer-
tain state of affairs s1, that we may describe as the state of a’s being on top of
b. There is also a certain state of affairs s2 that may be described as the state
of b’s being beneath a. Yet surely the states s1 and s2 are the same. There is a
single state of affairs s “out there” in reality, consisting of the blocks a and b
having the relative positions that they do; and the different descriptions as-
sociated with s1 and s2 would merely appear to provide two different ways
at getting at this single state of affairs.
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p=q ≡df �(p ≡ q)

It is reasonable to suppose that the state of affairs there is a barber who
shaves all and only those who don’t shave themselves (∃x(Bx & ∀y(Sxy ≡
¬Syy))) is distinct from the state of affairs there is a brown and colorless
dog (∃x(Dx&Bx&¬Cx)), yet these are not just equivalent but necessarily
equivalent (since both are necessarily false).

So whereas both of the above definitions might be used to explain
why Fxy = F∗yx (e.g., “they are identical because necessarily equiva-
lent”), the definitions fail when states of affairs (or propositions) are re-
garded as hyperintensional entities. The identity conditions for states
of affairs are more fine-grained than material or necessary equivalence.
Furthermore, when F is non-symmetric, there is no obvious way to ac-
count for the identity of Fab and F∗ba by appealing to some notion of
‘constituents’. On what grounds, expressible in 2OL, would one claim
that the distinct constituents F, F∗, a and b can be combined so that the
identity Fab = F∗ba holds?30 And how can one state hyperintensional
identity conditions for states of affairs that also allow us to assert, in the
case of a non-symmetric relation F, that Fab=F∗ba?

MacBride, as noted at the outset, finalizes this problem for any anal-
ysis of the identity (or non-identity) of states of affairs as a dilemma. We
earlier provided an edited version of the argument, to give the reader
the general idea. But the passage posing the dilemma goes as follows, in
full:

What vexes the understanding is the difficulty of disentangling one
degree of relatedness from another when we try to provide an analy-
sis of the fundamental fact that aRb , bRa for non-symmetric R. We
can usefully distinguish, albeit in a rough and ready sense, between
two analytic strategies for explaining this fundamental fact—that
the world exhibits relatedness in the first degree. Intrinsic analy-
ses aim to account for the fact that aRb , bRa by appealing to fea-
tures of those states themselves; extrinsic analyses attempt to ac-
count for their difference by appealing to features that aren’t wholly

30You can’t assert the principle Fxy =Gzw ≡ (F =G& x = z& y =w), for the scenario in
which cat-on-mat (Ocm) and mat-under-cat (O∗mc) are identical constitutes a counterex-
ample. For the principle would imply the instance Ocm=O∗mc ≡ (O=O∗ & c=m&m= c).
And from the fact that O,O∗, or the fact that c,m, it would follow that Ocm,O∗mc. So
this is no help, since we’re trying to explain how we can have, simultaneously, O,O∗ and
c,m and yet Ocm=O∗mc.
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local to them. Anyone who wishes to give an analysis of the fact that
aRb , bRa faces a dilemma. If they adopt the intrinsic strategy then
they will find it difficult to avoid a commitment to either R’s con-
verse or an inherent order in which R applies to the things it relates.
Alternatively our would-be analyst can avoid entangling the first
degree with the second and third by adopting the extrinsic strategy.
But this approach embroils us in other unwelcome consequences.
Since neither intrinsic nor extrinsic analyses are satisfactory, this
recommends our taking the fact that aRb , bRa to be primitive.

(2014, 8)

I think MacBride reaches this conclusion because he doesn’t have a pre-
cise theory of relations and states of affairs to provide an answer. In
the remainder of the paper, I show how object theory (OT) takes n-ary
relations as primitive (including states of affairs, understood as 0-ary
relations), takes relation application (predication) as primitive, but de-
fines identity for relations and states of affairs. These identity conditions
don’t appeal to ‘decompositions’ or ‘constituents’. Nevertheless, they al-
low one to consistently assert that (some) necessarily equivalent relations
and states may be distinct. Using this theory of relations and states, we
can address the ‘profusion of states’ problem (in MacBride 2014) in ei-
ther of two ways, and address the problem underlying the first puzzling
conclusion (in MacBride forthcoming) as well. As we shall see, a precise
theory of relations and states may leave certain identity questions open,
just as the precise theory of sets ZFC leaves open certain identity ques-
tions. The solution in ZFC is not to conclude that its quantifiers can’t
range over sets, but to find and justify axioms that help decide the open
questions within the precise, but extendable, framework ZFC provides
(i.e., one which clearly quantifies over sets). Something similar happens
in OT.

5 The Theory of Relations and States of Affairs

This section can be skipped by those familiar with OT, since the material
contained herein has been outlined and explained in a number of publi-
cations (e.g., 1983, 1988, 1993, Bueno, Menzel, & Zalta 2014, Menzel &
Zalta 2014, and others). For those completely unfamiliar with it, OT may
be sketched briefly by saying that it extends 2OL, not 2OL=, since iden-
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tity isn’t taken as a primtive. OT adds to 2OL new atomic formulas of the
form ‘xF’, which represent a new mode of predication that can be read
as “x encodes F”, where ‘F’ can be replaced by any unary predicate. In-
tuitively, ‘xF’ expresses the idea that F is one of the properties by which
we conceive and characterize an abstract, intentional object x.31 OT also
includes a distinguished unary relation constant ‘E!’ for being concrete, a
primitive necessity operator (�), and a defined possibility operator (^).
OT then defines ordinary objects (‘O!x’) as objects x that might exemplify
concreteness, and defines abstract objects (‘A!x’) as objects x that couldn’t
exemplify concreteness. It is axiomatic that ordinary objects necessarily
fail to encode properties (O!x→ �¬∃FxF), though the theory allows that
abstract objects can both exemplify and encode properties. It is also ax-
iomatic that if x encodes a property, it necessarily does so (xF→ �xF).

But the key principle for abstract objects is the comprehension sche-
ma that asserts, for any condition (formula) ϕ in which x doesn’t occur
free, that there exists an abstract object that encodes all and only the
properties such that ϕ:

∃x(A!x&∀F(xF ≡ ϕ)) (15)

Here are some instances, expressed in technical English:

• There exists an abstract object that encodes all and only the prop-
erties that y exemplifies. ∃x(A!x&∀F(xF ≡ Fy))

• There exists an abstract object that encodes just the property G.
∃x(A!x&∀F(xF ≡ F=G))

• There is an abstract object that encodes all the properties necessar-
ily implied by G. ∃x(A!x&∀F(xF ≡ �∀x(Gx→ Fx)))

• There is an an abstract object that encodes all and only the propo-
sitional properties constructed out of true propositions.

∃x(A!x&∀F(xF ≡ ∃p(p&F=[λx p])))

31For example, consider the content of the mental image we have of Mark Twain, and
ask, how does the property of having a walrus mustache characterize that content? The
content of the image is characterized by the property, but the content doesn’t exemplify the
property – Mark Twain exemplifies the property. But I would say that the content encodes
the property, and since encoding is a mode of predication, the property characterizes the
content.
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And so on. Intuitively, for any group of properties you can specify to
describe an abstract object, there is an abstract object that encodes just
those properties and no others.

The other principles of this theory that will play an important role in
what follows are the definitions of identity for individuals and the prin-
ciples (existence and identity conditions) for relations. First, the theory
of identity for individuals includes a definition stipulating that x and y
are identical if and only if they are both ordinary objects that necessar-
ily exemplify the same properties or they are both abstract objects that
necessarily encode the same properties:

x=y ≡df
(O!x&O!y &�∀F(Fx ≡ Fy))∨ (A!x&A!y &�∀F(xF ≡ yF)) (16)

Second, the theory of relations consists of existence and identity condi-
tions for relations. The existence conditions are derived, since OT in-
cludes the resources of the relational λ-calculus; λ-expressions of the
form [λx1 . . .xn ϕ] are well-formed, but only if ϕ doesn’t have any en-
coding subformulas.32 So (λC), as stated above, is the main axiom gov-
erning λ-expressions. One can derive from (λC) a modal version of CP.
This theorem schema, �CP, asserts existence conditions for relations as
follows:33

Modal Comprehension for Relations (�CP)
∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), provided F doesn’t occur free in ϕ
and ϕ doesn’t contain any encoding subformulas.

When n=1 and n=0, respectively, this principle asserts existence condi-
tions for properties and states of affairs:

∃F�∀x(Fx ≡ ϕ), provided F doesn’t occur free in ϕ and ϕ doesn’t
contain any encoding subformulas.

32In the latest version of OT, currently under development (Zalta m.s.), every formula ϕ
becomes a permissible matrix of a λ-expression, but not every λ-expression has a denota-
tion. If the variables bound by the λ don’t occur as primary terms in an encoding formula
in ϕ, the resulting λ-expression is stipulated to denote a relation. So in the latest versions
of the theory, λ-expressions are governed by a free logic. But for this paper, the published
versions of the theory suffice; the logic of well-formed λ-expressions is classical.

33The proof of this principle from (λC) is analogous to the proof in footnote 16, except
that you use the Rule of Necessitation after universally generalizing on x1, . . . ,xn, and just
before existentially generalizing on the λ-expression.
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∃p�(p ≡ ϕ), provided p doesn’t occur free in ϕ and ϕ doesn’t con-
tain any encoding subformulas.

In other words, any formula free of encoding conditions can be used
to produce a well-formed instance of �CP. It is of some interest that
there are still very small models of OT; for example, the smallest model
involves one possible world, one ordinary object, two 0-ary relations,
two unary relations, two binary relations, etc., and four abstract objects.
Though the models grow when OT is applied, minimal models show
that without further axioms, the theory doesn’t commit one to much.
Thus, relations, properties, and states of affairs exist under conditions
analogous to those in classical, modal 2OL.34

The identity conditions for relations are stated by cases: (a) for prop-
erties F and G, (b) for n-ary relations F and G (n ≥ 2), and (c) for states
of affairs p and q. Identity for relations and states of affairs is defined in
terms of identity for properties. The definitions are as follows:

• Properties F and G are identical if and only if F and G are neces-
sarily encoded by the same objects, i.e.,

F=G ≡df �∀x(xF ≡ xG) (17)

• n-ary relations F and G (n ≥ 2) are identical just in case, for any
n − 1 objects, every way of applying F and G to those n − 1 objects
results in identical properties, i.e.,

F=G ≡df
∀y1 . . .∀yn−1([λx Fxy1 . . . yn−1]=[λx Gxy1 . . . yn−1] &

[λx Fy1xy2 . . . yn−1]=[λx Gy1xy2 . . . yn−1] & . . .&
[λx Fy1 . . . yn−1x]=[λx Gy1 . . . yn−1x]) (18)

• States of affairs p and q are identical whenever (the property) being
an individual z such that p is identical to (the property) being an
individual z such that q, i.e.,

p=q ≡df [λz p]=[λz q] (19)

34Again, in the latest version of OT, under development in Zalta m.s., one can derive that
every formula denotes a state of affairs – even formulas containing encoding subformulas.
But this doesn’t hold for property and relation comprehension though; not every formula
with free variables x1, . . . ,xn can be turned into λ-expression that is guaranteed to denote.
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From these definitions, it can be shown that the reflexivity of identity
holds universally, i.e., that x=x is derivable from (16), that F=F is deriv-
able from each of (17) and (18), and that p = p is derivable from (19).
So OT asserts only the substitution of identicals as an axiom governing
identity. It therefore has all the theorems about identity that are deriv-
able in 2OL=. Identity is provably symmetric, transitive, etc., and since
every term of the theory is interpreted rigidly, substitution of identicals
holds in any (modal) context whatsoever.

Since (λC) is an axiom of OT, the foregoing facts make it clear that
(8) is also a theorem of OT, by the same reasoning used in the proofs
given earlier in the paper. So as soon as one adds the hypothesis that a
particular binary relation, say R, is non-symmetric, OT also implies that
R∗ ,R. And so on for ternary relations. The multiplicity of relations is
just a fact about both 2OL= and OT when these systems are extended
with the claim that non-symmetric relations exist. So taking relations
and relation application as primitive still yields multiple converse rela-
tions for n-ary relations (n ≥ 2). This is a consequence one should accept
if we take relations and relation application as primitive and treat them
as hyperintensional entities.35 This multiplicity isn’t egregious, in any
case, for as we’ve seen, λ-expressions give us the expressive power to
distinguish among the converses of (non-symmetric) relations. So let’s
return to the questions about the identity of states of affairs, to see how
they fare with a precise theory of relations and states of affairs in hand.

6 Asserting the Identity of States

Recall that the puzzling conclusion reached in MacBride’s forthcoming
paper turned on the question of whether the states of affairs denoted
by [9] and [10] are the same or distinct. This question can now be posed
without discussing the converses of relations and without invoking 3OL.
Let R be any symmetric relation, and let a and b be two particular and
distinct objects. Then consider the states of affairs Rab and Rba (or if

35Recall the passages in MacBride 2014, where he says “We simply have to accept as
primitive, in the sense that it cannot be further explained, the fact that one thing bears
a relation to another” (2); “. . . we should just take the difference between aRb and bRa as
primitive” (14); and “The difficulties that result from attempting to analyse the first degree
suggest that that the operation of relational application should itself be taken as primitive”
(15).
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you prefer [λRab] and [λRba]). MacBride apparently has no doubt they
are the same state. So let’s suppose they are, i.e., that Rab =Rba. And
let’s again grant him the ordinalized readings of relational claims. What
happens to the argument in which he concludes that if we understand
‘Fab’ in terms of ordinalized, higher-order properties, then ‘Rab’ and
‘Rba’ don’t express the same state of affairs? Answer: it has no force
against the theory of states of affairs in OT. For in OT, all that is relevant
to the truth of ‘Rab=Rba’ is principle (19), i.e., the question of whether
the properties [λz Rab] and [λz Rba] are identical, i.e., by (17), whether
there might be objects that encode [λz Rab] without encoding [λz Rba]
(or vice versa). Given these definitions, one could, should one wish to
do so, simply use OT to assert, as an axiom, that when R is symmetric,
[λz Rab] and [λz Rba] are identical, i.e., that no abstract object encodes
[λz Rab] without also encoding [λz Rba], and vice versa.

Does this mean we don’t understand the open formula ‘Fab’ or the
quantified claim ‘∃F(Fab)’? Not at all. First, the semantics of OT is per-
fectly precise on this score. Let ‘a’ and ‘b’ be the semantic names of the
objects assigned to ‘a’ and ‘b’. Now consider some assignment f to the
variables of the language and suppose that ‘R’ is the semantic name of
the relation assigned to the variable ‘F’ by f . Then the open formula
‘Fab’ is true relative to f if and only if the state of affairs Rab obtains.36

And ‘∃F(Fab)’ is true just in case some relation in the domain satisfies
the open formula ‘Fab’, no matter how that relation is specified.

Second, OT doesn’t require a formal semantics to be intelligible, just
as ZF is intelligible when we express its primitive notions and axioms
within first-order logic. The axioms and theorems of OT give us an un-
derstanding of the open formula ‘xF’ and, in turn, give us an under-
standing of the identity conditions for states of affairs expressed in (19).
To suggest otherwise would be like suggesting that we don’t understand
‘x ∈ y’. This is a primitive of set theory; set identity is stated in terms of
this primitive, in the form of the principle of extensionality. The more
we work through the consequences of the axioms (i.e., the more theorems

36OT does have a formal semantics, but its primary purpose is to establish that the theory
has a set-theoretic model. Given the assignments to ‘a’, ‘b’, and ‘F’ mentioned in the text,
the formal semantics implies that ‘Fab’ is true relative to f if and only if the ordered pair
〈a,b〉 is in the exemplification extension of the relation R. And this latter holds if and only
if the extension of the 0-ary relation Rab is The True. But these semantic conditions only
give us a set-theoretic representation of the truth conditions; they are not a substitute for
the metaphysics of relations, predication, and states of affairs.
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we prove in set theory), the better we understand ‘x ∈ y’. Analogous ob-
servations hold with respect to OT. The formula ‘xF’ is a primitive mode
of predication, and the identity conditions for properties and relations
are stated in terms of this primitive. The more we work through the
consequences of the axioms, the better we understand this form of pred-
ication.

So if one is inclined to accept MacBride’s view that the states of affairs
expressed by [9] and [10] are identical, one should then be inclined to
accept the following general principle:

∀F�(Symmetric(F)→∀x∀y(Fxy = Fyx)) (20)

(20) is consistent with OT. We need not conclude that the open formula
‘Fab’ is unintelligble or that the second-order quantifiers don’t range
over relations. Instead, we make use of a theory of relations and states of
affairs in which relation application is primitive but identity is defined.
And we address the problem by asserting a principle, not concluding
the language is unintelligible; indeed, it seems to be the principle that
MacBride is relying upon to make his case.

This generalizes to non-symmetric relations. For recall the objection
to (14), which is the claim:

∀F�(Non-symmetric(F)→∀x∀y(Fxy = F∗yx)) (14)

The problem with (14), according to MacBride, is to explain how dif-
ferent decompositions can give rise to the same state (2014, 4, quoted
above). But no such explanation is needed, since the identity of states
of affairs is not a matter of decompositions and constituents. If F is
non-symmetric, then the above principle implies, by definition (19), that
[λz Fxy] = [λz F∗yx], for any objects x and y. That is consistent with OT.

Why does this address the difficulty in MacBride 2014 (p. 4)? The
answer: because we’re not attempting to explain how ‘distinct existences’
(i.e., a non-symmetric relation F, its converse F∗, and objects x and y)
can ‘give rise’ to the same state; we’re instead proposing that one adopt a
principle (indeed, a principle on which MacBride relies) that asserts that
they do, without appealing to ‘decompositions’, ‘constituents’, etc. The
definitions of identity for abstract objects (16) and for properties (17)
place reciprocal bounds on the existence of these entities. The theory’s
comprehension principle and identity conditions for abstract objects tell
us that any (expressible) condition on properties can be used to define
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an abstract object. If we think of abstract objects as objects of thought or
as logical objects, then the theory implies that if properties F and G are
distinct, then there is a logical, abstract object of thought that encodes
F and not G (and vice versa). And if F and G are identical, then no
logical, abstract object of thought encodes F without encoding G. So
if the properties [λz Fxy] and [λz F∗yx] are identical, then no logical,
abstract object of thought encodes the one without encoding the other.37

By adopting (14), one can use OT’s theory of identity for states of
affairs to give a precise, theoretical answer to a philosophical question
(“Under what conditions are states of affairs identical?”) which, if left
unanswered, would leave one open to MacBride’s concerns about the in-
telligibility of 2OL and 2OL=.38

Before we turn, finally, to the intuition that states of affairs like those
expressed by [9] and [10] are distinct, there is one final way to formulate
the concern that MacBride has raised, given his understanding of the
identity of states of affairs. Consider the property [λz Fzy], i.e., being an
object z such that z and y exemplify F. Now predicate that property of
x, to obtain the state of affairs [λz Fzy]x, i.e., x exemplifies the property
of being a z such that z and y exemplify F. Put this aside for the moment
and now consider the property [λzFxz], i.e., being an object z such that x
and z exemplify F. Now predicate that property of y, to obtain the state
of affairs [λz Fxz]y, i.e., y exemplifies the property of being a z such that
x and z exemplify F. Now, we might ask:

37One practical consequence of this identification is this: it prevents one from telling a
consistent story about a fictional object, say c, in which Fxy is true in the story but F∗yx
is not, for some relation F and objects x and y. For example, if you believe cat-on-mat is
identical to mat-under-cat, then you can’t tell a consistent story in which one is true and
the other is not, or consistently describe a fictional object such that the one is true while
the other is not. I’m not ruling out stories where some fictional character believes that Rab
and doesn’t believe that R∗ba, for in that case, we’re not talking about the states denoted
by ‘Rab’ and ‘R∗ba’, but about the senses of these expressions. And OT represents these as
abstract states of affairs, which requires the typed-version of OT. See Zalta 1988, 2020.

38This answer, if adopted, would put to rest another of MacBride’s concerns, namely,
that endorsing distinct converses for non-symmetric relations requires a commitment to a
‘substantive linguistic doctrine’, namely, that when we switch from the active ‘Antony loves
Cleopatra’ to the passive ‘Cleopatra is loved by Antony’, we “introduce a novel subject
matter” (MacBride 2014, 5). But our solution allows one to agree with MacBride that if
the subject matter is defined by the state of affairs being referenced, there is no change
– one can move from ‘Antony loves Cleopatra’ to ‘Cleopatra is loved by Antony’ without
changing the subject matter, since those sentences designate, on this view, the same state
of affairs.
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What is the relationship between the states of affairs Fxy, [λzFzy]x,
and [λz Fxz]y — are they all the same or are they all pairwise dis-
tinct? (A)

If you accept MacBride’s view about the identity of states of affairs, then
you would answer (A) by adopting the following principles:

∀F�(Fxy = [λz Fzy]x) (21)

∀F�([λz Fzy]x = [λz Fxz]y) (22)

From these principles it also follows, by the transitivity of identity, that
∀F�(Fxy = [λz Fxz]y).

I’m not suggesting that this is the only or best answer to (A) because
there may be contexts where one might wish to distinguish these states of
affairs (see the next section). But the general point is clear. Some precise,
axiomatized theories leave open certain questions of identity and those
questions can be answered by looking for principles rather than ques-
tioning whether the quantifiers of the theory range over the entities be-
ing axiomatized. ZFC has precise identity conditions for sets but leaves
open the Continuum Hypothesis (‘CH’), and yet we can still interpret
the quantifiers in set theory as ranging over sets. CH can be formulated
as the claim 2ℵ0 = ℵ1, and though CH and its negation are consistent
with ZFC, we don’t give up the interpretation of the quantifiers of ZFC
as ranging over sets just because CH is an open question; instead, we
look for axioms that will help decide the issue. The same applies to the
theory of relations.39

As it turns out, there is an alternative way to respond to the prob-
lems MacBride has raised. It may be of interest to some readers to con-
sider what happens to his arguments if one instead asserts that Fxy ,
Fyx when F is symmetric, or accepts that Fxy , F∗yx when F is non-
symmetric, or generally accepts that Fxy , [λz Fxz]y , [λz Fzy]x. In the
final section, then, I show that, with OT’s theory of states of affairs:

• one may alternatively assert these non-identities,

• one can account for the intuition that there is one part of the world
that makes these distinct states true when they are true and, con-
sequently,

39I’m indebted to Daniel Kirchner, who was able to use his implementation of OT in
Isabelle/HOL (Kirchner 2017 [2021]) to confirm the consistency of separately adding (14),
(20), (21), and (22) to OT.
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• one can disarm the worry about a ‘profusion’ of states of affairs and
clear the path for understanding the quantifiers of 2OL and 2OL=

as quantifying over relations.

7 Distinct States, One Situation

What is driving MacBride’s certainty that (a) Fxy =Fyx when F is sym-
metric, (b) Fxy=F∗yx when F is non-symmetric, and (c) Fxy=[λzFxz]y=
[λz Fzy]x generally? The argument is most clearly stated for the case of
non-symmetric relations, where he argues that if non-symmetric rela-
tions have distinct converses, then we end up with ‘a profusion of states
of affairs’. We laid out the argument in Section 4, in the quote from
2014 (p. 4), about there being one state of affairs (i.e., one cat-mat ori-
entation) despite there being two kinds of undertakings (putting the cat
on the mat and putting the mat under the cat). Since to undertake to
do something is to attempt to bring about a state of affairs, one might
then conclude that there are two distinct undertakings precisely because
there are two distinct states of affairs to be brought about. But, as we
saw earlier, MacBride and Fine both conclude that there is only one state
and that to claim otherwise is counterintuitive. And we saw that the
concern is that converse relations commit us to the principle that if F is
non-symmetric, then the state of affairs Fxy is distinct from the state of
affairs F∗yx. We have formally represented the principle that concerns
them as follows:

∀F�(Non-symmetric(F)→∀x∀y(Fxy,F∗yx)) (13)

But notice that the cases MacBride (and Fine) discuss involve necessarily
non-symmetric relations, such as on, on top of, above, etc. So when we
instantiate (13) to a necessarily non-symmetric relation, say R, it would
follow by the K axiom of modal logic that �∀x∀y(Rxy , R∗yx). But of
course, we can also infer, from the fact that (λC) is a universal, necessary
truth, that �∀x∀y(Rxy ≡ R∗yx).40 So we can generalize to conclude that
whenever we assert that R is a necessarily non-symmetric relation, (λC)

40This holds for any binary relation F. As an instance of (λC), we know [λxy Fyx]xy ≡
Fyx. So by definition (7), F∗xy ≡ Fyx, which by the commutativity of the biconditional
implies Fyx ≡ F∗xy. So by applying, in order, the Rule of Generalization (2×) and the
Rule of Necessitation, we obtain �∀y∀x(Fyx ≡ F∗xy), which is an alphabetic variant of
�∀x∀y(Fxy ≡ F∗yx).
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and (13) combine to ensure that Rxy and R∗yx are necessarily equivalent
but distinct states of affairs, for any values of the variables x and y.

The real problem is now laid bare: the hyperintensionality of states
of affairs appears to undermine the intuition that in these cases, there is
only one piece of the world (e.g., one cat-mat orientation) that accounts
for the truth of the relational claims ‘Rab’ and ‘R∗ba’ when they are true.
Note that this same problem arises for the other cases we’re consider-
ing. I take it MacBride would similarly be concerned about the following
principle regarding symmetric relations:

∀F�(Symmetric(F)→∀x∀y(Fxy,Fyx)) (23)

And the concern extends generally to principles such as the following,
which would govern every binary relation:

∀F�∀x∀y(Fxy, [λz Fzy]x) (24)

∀F�∀x∀y([λz Fzy]x, [λz Fxz]y) (25)

In each case, a ‘profusion’ of states of affairs will arise, for it can be
shown (a) that (λC) and (23) imply that for any necessarily symmetric
relation R, Rxy and Ryx are necessarily equivalent but distinct,41 and
(b) that (λC), (24), and (25) imply that for any relation R, the states Rxy,
[λz Rxz]y, and [λz Rzy]x are all pairwise necessarily equivalent but all
pairwise distinct.42

41Suppose �Symmetric(R). Then by the definition of a symmetric relation, both
�∀x∀y(Rxy→ Ryx) and �∀x∀y(Ryx→ Rxy), where the latter follows by universal quanti-
fier commutativity and substitution from �∀y∀x(Ryx→ Rxy), which is an alphabetic vari-
ant of the former. So �∀x∀y(Rxy ≡ Ryx). But by (23) and the K axiom, �∀x∀y(Rxy ,Ryx).
So again we have that Rxy and Ryx are necessarily equivalent, but distinct.

42The states Fxy, [λz Fzy]x, and [λz Fxz]y are all necessarily equivalent, by (λC) and the
Rule of Necessitation, but they are pairwise distinct by (24) and (25). Note that philoso-
phers have argued for (24) and (25); Menzel 1993 (81–83) considers the case of:

[17] 100 is less than 1000.

[3] 100 is submillenial.

He then suggests that the proposition expressed by [17] (Lht) differs (structurally) from
the proposition expressed by [3] ([λx Lxt]h) – the former is a binary predication, whereas
the latter is a unary or monadic predication. It is of interest to note that Menzel’s system
rejects η-Conversion – it doesn’t endorse, for example, [λxy Fxy] = F (1993, 82). Daniel
Kirchner notes (personal communication) that it would be easier to model (24) and (25) in
the Isabelle/HOL implementation of OT if one were to generally drop η-Conversion. This
is an interesting avenue of research.
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So if one accepts (13) and (23) – (25), can we account for the intu-
ition that there is only one piece of the world in virtue of which the
necessarily-equivalent-but-distinct states of affairs are true when they
are true? To answer this question, we shall not invoke ‘decompositions’
and ‘constituents’, for the identity for states of affairs is given by (19).
But we can address the intuition driving MacBride, Fine, and no doubt
others, by appealing to the notion of a situation and defining the condi-
tions under which a state of affairs p obtains in a situation s (i.e., the con-
ditions under which s makes p true). Once these notions are defined, we
can identify, for any state of affairs p, a canonical situation s in which ob-
tain all and only the states of affairs necessarily implied by p. Then, the
canonical situation in which obtain the states necessarily implied by Rab
will be identical to the canonical situation in which obtain the states nec-
essarily implied by R∗ba; this will follow from the fact that Rab and R∗ba
are necessarily equivalent. And similar results follow for states arising
from necessarily symmetric relations and for the states Rab, [λx Rxb]a,
and [λxRax]b. As I develop this response, I’ll use R as an arbitrary binary
relation, which is necessarily non-symmetric, or symmetric, or unspeci-
fied, as the case may be.

In OT (Zalta 1993, 410), situations are defined as abstract objects that
encode only properties constructed out of states of affairs, i.e., encode
only properties F of the form [λzp], where p ranges over states of affairs:

Situation(x) =df A!x&∀F(xF→∃p(F=[λz p])) (26)

A situation, thus defined, is not a mere mereological sum because encod-
ing is a mode of predication; a situation is therefore characterized by the
state-of-affairs properties of the form [λz p] that it encodes. In addition,
a state of affairs p obtains in a situation s (‘s |= p’) just in case s encodes
being a z such that p (1993, 411):

s |= p =df s[λz p] (27)

In what follows, therefore, we sometimes extend the notion of encoding
by saying that s encodes a state of affairs p, or that s makes p true, when-
ever p obtains in s. That is, when s |= p, we can say either s encodes [λzp],
or s encodes p, or s makes p true.

Now consider some state of affairs, say Rab. Given the foregoing def-
initions, OT implies that there exists a situation s such that a state of
affairs p obtains in s if and only if p is necessarily implied by Rab. To see
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this, note that the comprehension principle for abstract objects asserts
that there is an abstract object that encodes exactly those properties F
such that F is a property of the form [λzp] when p is some state of affairs
necessarily implied by Rab:

∃x(A!x&∀F(xF ≡ ∃p(�(Rab→ p) &F=[λz p]))) (28)

Let s1 be such an object, so that we know:

A!s1 &∀F(s1F ≡ ∃p(�(Rab→ p) &F=[λz p])) (29)

Since s1 is abstract and every property it encodes is a property of the
form [λz p], it follows that s1 is a situation, by definition (26). More-
over, the theory implies that s1 is unique, i.e., that any abstract object
that encodes all and only those states of affairs necessarily implied by
Rab is identical to s1. Since situations are abstract objects, they are iden-
tical whenever they encode the same properties.43 And since situations,
by (26), encode only properties F such that ∃p(F= [λz p]), they obey the
principle: s and s′ are identical just in case the same states of affairs
obtain in s and s′ (Zalta 1993, 412, Theorem 2). So there can’t be two
distinct abstract objects that encode all and only the states of affairs nec-
essarily implied by Rab. Since (28) has a unique witness, we may treat
s1 as a name of this witness (introduced by definition) and treat (29) as a
fact about s1 implied by the definition.

Two modal facts about s1 become immediately relevant:

• A state of affairs obtains in s1 if and only if it is necessarily implied
by Rab, i.e.,

∀p(s1 |=p ≡ �(Rab→ p)). (30)

• s1 is modally closed in the following sense: for any states of affairs p
and q, if p obtains in s1 and p necessarily implies q, then q obtains
in s1., i.e.,

∀p∀q((s1 |= p) &�(p→ q)→ (s1 |= q)). (31)

43Strictly speaking, the definition of identity (16) implies that abstract objects x and y
are identical if and only if necessarily, they encode the same properties. But since xF→ �xF
is an axiom of OT, it follows that if x and y encode the same properties, they necessarily
encode the same properties, and so it is sufficient to show ∀F(xF ≡ yF) to establish that
x=y, for abstract x and y.
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The proof of (30) is straightforward and, interestingly, relies on the object-
theoretic definition for the identity for states of affairs (19).44 Note that it
immediately follows from (30) that Rab obtains in s1, since �(Rab→ Rab)
is an instance of the modal principle ∀p�(p→ p). The proof of (31) re-
lies on both the definition of identity for states of affairs (19) and the fact
that necessary implication is transitive, i.e., the fact that:

• ∀p∀q∀r(�(p→ q) &�(q→ r)→ �(p→ r))

The proof of (31) is left to a footnote.45

It is an immediate consequence of (30) that:

• if R is necessarily non-symmetric, then R∗ba obtains in s1, for it is
necessarily equivalent to, and so necessarily implied by, Rab,

• if R is necessarily symmetric, then Rba obtains in s1, for it is neces-
sarily equivalent to, and so necessarily implied by, Rab, and

• if R is any binary relation whatsoever, then [λxRxb]a and [λxRax]b
both obtain in s1, since these are both necessarily equivalent to,
and so necessarily implied by, Rab.

44We prove the universal claim by showing that the biconditional holds for an arbitrary
state of affairs, say q1. To show the left-to-right direction, assume s1 |= q1, to show �(Rab→
q1). Then by definition of obtains in (27), s1[λzq1]. So by a fact about s1, namely the second
conjunct of (29), it follows that ∃p(�(Rab→ p) & [λz q1] = [λz p]). Let q2 be such a state of
affairs, so that we know �(Rab → q2) & [λz q1] = [λz q2]. By the definition of identity for
states of affairs (19), the second conjunct implies q1 =q2. But then, substituting identicals
into the first conjunct, we obtain �(Rab→ q1).

For the right-to-left direction, assume �(Rab → q1). By the reflexivity of identity,
[λz q1]=[λz q1]. Hence �(Rab→ q1) & [λz q1]=[λz q1]. So ∃p(�(Rab→ p) & [λz q1]=[λz p]).
Then by a fact about s1, namely the second conjunct of (29), s1[λz q1], and by definition of
obtains in (27), s1 |= q1.

45We prove the doubly-universal claim by showing that it holds for arbitrary states of
affairs p1 and q1. So assume:

(a) s1 |= p1

(b) �(p1→ q1)

to show s1 |= q. By definition (27), (a) implies s1[λz p1]. From this fact and the second
conjunct of (29), it follows that ∃p(�(Rab→ p)&[λzp1]=[λzp]). Suppose r1 is an arbitrary
such state of affairs, so that we know �(Rab→ r1) & [λz p1] = [λz r1]. The second conjunct
of this last result implies, by the identity of states of affairs (19), that p1 = r1. Hence
�(Rab → p1). But this last fact and (b) jointly imply �(Rab → q1), by the transitivity of
necessary implication. Hence �(Rab→ q1) & [λz q1]=[λz q1], by reflexivity of identity and
conjunction introduction. So ∃p(�(Rab → p) & [λz q1] = [λz p]). But this implies, by the
second conjunct of (29), that s1[λz q1]. Hence s1 |= q1, by definition of obtains in (27).
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Moreover, when R is necessarily non-symmetric, it follows that neither
Rba nor R∗ab obtain in s1, since neither is necessarily implied by Rab in
that case.

It is interesting to observe that in each of the above scenarios, any
one of the necessarily equivalent states of affairs in question can be used
to define the unique situation in which they all obtain. The resulting
situations become identified, since it is a theorem of modal logic that
necessarily equivalent states of affairs necessarily imply the same states
of affairs:

∀p∀q(�(p ≡ q)→∀r(�(p→ r) ≡ �(q→ r))) (32)

To see why this fact helps us to show that the resulting situations are
all identified, consider the case of necessarily non-symmetric R and con-
sider the situation that can be introduced in a manner similar to s1 but
with R∗ba instead of Rab:

∃x(A!x&∀F(xF ≡ ∃p(�(R∗ba→ p) &F=[λz p])))

This is the (provably unique) situation that makes true all and only the
states of affairs necessarily implied by R∗ba. Call this s2. Clearly, facts
analogous to (30) and (31) hold for s2: a state of affairs p obtains in s2 if
and only if R∗ba necessarily implies p, and s2 is modally closed.

But OT implies that s1 = s2.46 Moreover, the reasoning in the proof
applies to all the other canonical situations definable in terms of the

46Proof. To show s1 = s2, it suffices to show that they encode the same properties, for as
we noted earlier in footnote 43, the object-theoretic principle xF → �xF implies that if s1
and s2 encode the same properties, then necessarily they encode the same properties. To
show s1 and s2 encode the same properties, we show, for an arbitrarily chosen property,
say P , that s1P ≡ s2P . Without loss of generality, we show only s1P → s2P , since the proof
of the converse is analogous. So, assume s1P . Then, by definition of s1,

∃p(�(Rab→ p) & P =[λy p])

Let q1 be such a state of affairs, so that we know �(Rab → q1) and P = [λy q1]. Now
earlier we saw that when R is necessarily non-symmetric, �(Rxy ≡ R∗yx). Hence �(R∗ba ≡
Rab). So by an appropriate instance of (32), it follows that ∀r(�(R∗ba→ r) ≡ �(Rab→ r)).
Instantiating this last result to q1, it follows that �(R∗ba → q1) ≡ �(Rab → q1). But we
already know �(Rab→ q1). Hence �(R∗ba→ q1). So we have established:

�(R∗ba→ q1) & P =[λy q1]

By existential generalization:

∃p(�(R∗ba→ p) & P =[λy p])

But then, by definition of s2, it follows that s2P .
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necessarily equivalent states of affairs mentioned above: these canonical
situations are pairwise identical. Thus, in each example, there is a single
canonical situation in which all of the states of affairs mentioned in the
example obtain.

Finally, to account for the intuition that the situation in which the
necessarily equivalent states obtain is part of the actual world, we turn to
the principles (theorems and definitions) governing part of, actual situa-
tions, and possible worlds. Since x is a part of y is defined as ∀F(xF→ yF),
it follows that a situation s is part of a situation s′ (sEs′) just in case every
state of affairs that obtains in s also obtains in s′ (Zalta 1993, 412, Theo-
rem 4). Moreover, an actual situation is a situation s such that every state
of affairs that obtains in s obtains simpliciter (1993, 413). And a possible
world is a situation s that might be such that it makes true all and only
the truths (1993, 414). Formally:

sE s′ ≡ ∀p(s |= p→ s′ |= p)

Actual(s) =df ∀p(s |= p → p)

PossibleWorld(s) =df ^∀p(s |= p ≡ p)

OT then yields, as theorems (1993, Theorem 18 and 19):

There is a unique actual world, i.e.,
∃!s(PossibleWorld(s) & Actual(s)) (‘wα’)

Every actual situation is a part of the actual world, i.e.,
∀s(Actual(s)→ sEwα)

The proof of the first theorem rests on the fact that there is a unique
situation that encodes all and only the states of affairs that obtain, i.e.,
there is a unique situation s such that all and only the states that obtain
in s are states that obtain simpliciter.47

So the canonical situations that exist in each of the examples validate
the following claims:

47The proof goes by way of an instance of comprehension that asserts:

∃x(A!x&∀F(xF ≡ ∃p(p&F=[λy p]))),

One can then prove that any such object, call it a, is a possible world, is actual (i.e., every
state of affairs that obtains in a obtains simpliciter), and that any other situation that is
a possible world and actual is identical to a. So one can then legitimately introduce the
name wα in terms of the description: the actual world.
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• when R is necessarily non-symmetric and Rab obtains, there is a
unique situation that (a) encodes all and only the states of affairs
necessarily implied by Rab, (b) is actual, (c) is a part of the actual
world, and (d) makes both Rab and R∗ba true.

• when R is necessarily symmetric and Rab obtains, there is a unique
situation that (a) encodes all and only the states of affairs necessar-
ily implied by Rab, (b) is actual, (c) is a part of the actual world,
and (d) makes both Rab and Rba true.

• when R is any binary relation and Rab obtains, there is a unique
situation that (a) encodes all and only the states of affairs necessar-
ily implied by Rab, (b) is actual, (c) is a part of the actual world,
and (d) makes Rab, [λx Rxb]a, and [λx Rax]b true.

This addresses the intuition that served as the obstacle to treating states
of affairs as hyperintensional entities. It lays to rest the claim that we
don’t understand the open formula ‘Fab’ and the claim that we can’t
interpret the quantifier in ‘∃F(Fab)’ as ranging over relations.

The foregoing analysis therefore preserves the conclusion that Rus-
sell developed concerning non-symmetric relations, when he said (1903,
§219) regarding the terms greater and less:

These two words have certainly each a meaning, even when no terms
are mentioned as related by them. And they certainly have different
meanings, and are certainly relations. Hence if we are to hold that
“a is greater than b” and “b is less than a” are the same proposition,
we shall have to maintain that both greater and less enter into each
of these propositions, which seems obviously false.

One might reframe Russell’s point by noting that if non-synonymous re-
lational expressions signify or denote different relations, then the simple
statements we can make using those expressions signify different states
of affairs. That principle has been preserved, without sacrificing any
contrary intuitions.

8 Conclusion

I think relations and predication are so fundamental that they cannot
be analyzed in more basic terms. They can only be axiomatized, and the
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most elegant formalism we have for doing so is the language of 2OL. The
suggestion that the quantifiers of 2OL can’t range over relations doesn’t
get any purchase against OT. The latter is a friendly extension of 2OL,
and provides 2OL with the additional expressive power needed to assert
a precise theory of relations and states of affairs that includes plausible
existence and identity conditions for these entities. OT therefore offers a
natural formalism for intelligibly quantifying over relations and states of
affairs, and thus provides a deeper understanding of the open and quan-
tified formulas of 2OL. So the suggestion that the quantifiers of 2OL can’t
be interpreted as ranging over relations fails to engage with at least one
theory that shows that they can and, without any heroic measures, do.
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