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Abstract

This paper investigates two forms of the Routley star operation,
one in Routley & Routley 1972 and the other in Leitgeb 2019. We
use the background of object theory to define both forms of the
Routley star operation and show how the basic principles govern-
ing both forms become derivable and need not be stipulated. Since
no mathematics is assumed by our background formalism, the exis-
tence of the Routley star image s∗ of a situation s is therefore guar-
anteed not by set theory but by a theory of abstract objects. The
work in the paper integrates Routley star into a more general theory
of (partial) situations that has previously been used to develop the
theory of possible worlds and impossible worlds.

1 Introduction

The Routley ‘star’ operation was introduced in Routley & Routley 1972.
Their study of the semantics of entailment assumed the existence of sit-
uations (‘set-ups’) that are neither consistent nor maximal (ibid., 335–
339).1 In setting up the Routley star operator on situations, they used

*The research in this paper was first sketched for presentation in Hannes Leitgeb’s sem-
inar Logic and Metaphysics, which was held at the Munich Center for Mathematical Philos-
ophy in May 2022. I subsequently developed the results into a section of Principia Logico-
Metaphysica (Zalta, m.s.). I’m indebted to Hannes Leitgeb, Uri Nodelman, Daniel Kirchner,
Daniel West and Graham Priest for their comments about this material, all of which helped
me to refine some of the results.

1Some logicians use the term ‘non-normal worlds’ to describe situations that are nei-
ther maximal (complete) nor consistent. The Routleys, however, used the term ‘world’
for consistent and maximal situations (1972, 339). In what follows, we reserve the term
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‘H ’ to range over set-ups (i.e, “a class of propositions or wff”) and used
‘A’ to range over propositions or wffs (ibid., 337). Then they considered
the following condition (ibid., 338) on the star (∗) operation, which they
label as (iv):

(iv) ∼A is in H iff A is not in H ∗

They subsequently stipulated that a set-up is ∼-normal if it satisfies (iv)
for every A and H =H ∗∗ (ibid., 338).

That was then. Although the Routley star has subsequently been
studied and applied in publications too numerous to mention, it was
recently used in Leitgeb 2019 (321ff) to build a semantics for a system
of hyperintensional logic (‘HYPE’). Leitgeb first builds a propositional
language L that includes propositional letters, with some standard logi-
cal connectives, but with a non-standard conditional. Leitgeb then con-
structs HYPE-models for L in terms of structures whose elements in-
clude a non-empty set of states S and a valuation function V from S to
the power set of the set of literals of the language L, so that each state
s in S is associated with a set of literals V (s). I’ll describe HYPE mod-
els in fuller detail below, but for the purposes of this introduction, it is
important to note that the various elements of HYPE models are simul-
taneously constrained by the requirements of a Routley star operation
having the following properties, among others (Leitgeb 2019, 322):

• V (s∗) = {v |v < V (s) }

• s∗∗ = s

Leitgeb then discusses the properties of the star operation and uses HYPE
models to define various truth conditions for hyperintensional opera-
tors.

These two bookend cases, Routley & Routley 1972 and Leitgeb 2019,
demonstrate how the Routley star operation has been deployed to help
us understand various non-classical, but more fine-grained, semantic
phenomena. But a look at the body of literature inclusive between these
papers, a metaphysician would be hard-pressed to answer the question:
What kind of metaphysics is represented by a semantics making use of
Routley star, and how are we to understand the Routley star operation
given that metaphysics?

‘world’ for maximal situations, some of which are possible worlds and some of which are
impossible worlds.
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Questions about the meaning of the Routley star operation were raised
early on, in Copeland 1979 and van Benthem 1979. Restall 1999 (54)
raises this question when he wrote:

The operator ∗ was introduced to relevant logic by Routley and Rout-
ley [23]. If x , x∗, then certainly we can get both A∧∼A→ B and
A→ B∨∼B to fail, but there is a price. The price is the obligation to
explain the meaning of the operator ∗.

But even though we may now be more comfortable with Routley star and
recognize how interesting and efficacious it is (after all the work that has
been done), there is still an open question about what, exactly, is the
proper metaphysical framework for defining and studying the Routley
star operation.

In our two case studies, and for most studies in between, one typi-
cally finds the Routley star introduced into semantic models constructed
with the help of set theory, domains of primitive entities (set-ups, situ-
ations, states, possible or impossible worlds), and functions defined on
those domains, etc. Most authors don’t spend time considering the meta-
physics of the entities used in their semantic models, and quite rightly,
given their goals. For their purposes, it is sufficient to adopt another
attitude expressed in Restall 1999 (57):

It would be interesting to chart the connections between states as
we have sketched them and other entities like . . . objects, states of
affairs, propositions, and many other things besides. However, this
is neither the time nor the place for that kind of metaphysics. Suffice
it to say that a coherent comprehensive view of states ought to tell
us how these things fit together. For now, we will use states as the
points in our frames for relevant logics.

For example, Leitgeb writes (2019, 323, footnote 9):

I want to leave open in this paper whether states are interpreted (i)
in a metaphysically robust manner, or (ii) in a looser informational
manner. In the first case, states would be “chunks of reality” that
are “located in the world”, while in the second case they might be
some kind of abstract entities corresponding to “pieces of thought”.

A notable exception is Mares 2004 (4.4–4.11), who produces an intuitive
understanding of the background assumptions concerning properties,
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states of affairs, situations, propositions, etc., that are used in the seman-
tic models. But (a) the focus of Mares 2004 is to interpret the ternary re-
lation R used in Routley-Meyer semantics for relevant logic (Routley &
Meyer 1972, 1973), and (b) Mares assumes that some background theory
of situations is available, such as Barwise and Perry 1983, for he takes a
number of principles about situations as given.

By contrast, in what follows, we plan to address the metaphysical
question without any mathematics, set theory, primitive domains of sit-
uations, states, or worlds (possible or impossible), or functions on do-
mains. We won’t identify propositions as sets of possible worlds, as
functions from possible worlds to truth values, as sets of situations, or as
classes of wffs. Nor will we assume any axioms governing primitive set-
ups, situations, possible worlds, or impossible worlds. Instead, we shall
define the Routley star operator metaphysically in a background ontology
in which situations are defined and their first principles derived. And we
employ a theory of propositions (= 0-ary relations) that is part of a larger,
hyperintensional theory of n-ary relations – one on which necessarily
equivalent relations and propositions aren’t identified. We’ll define a
unique Routley star image s∗ for each situation s. Our goal is to show
that, in such a setting, (a) the metaphysical entities needed to formu-
late and understand the Routley star image can be defined and proved
to exist, and (b) that the principles governing Routley star, as formu-
lated in both Routley & Routley 1972 and Leitgeb 2019, can be derived
rather than stipulated. It is not a goal of the paper to study non-classical
negation; we’ll use classical negation throughout. By systematizing the
metaphysics of Routley star in the manner described below, we provide
a precise understanding of the semantics of non-classical negation in
terms of Routley star, in the way it was used in the papers that serve as
the focus of our study.

1.1 The Background Theory

The background theory needed to do all this has been motivated and
published elsewhere and we shall draw on those published results. In
Zalta 1993 and 1997, object theory, henceforth OT, was deployed to study
situations, possible worlds, and impossible worlds. In OT, a second mode
of predication, x encodes F (‘xF’), is added to second-order S5 quantified
modal logic, and utilized in the following definitions:
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• a situation is defined as an abstract object that encodes only proper-
ties of the form being such that p (i.e., properties of the form [λx p],
where x is vacuously bound by the λ, and p is a variable ranging
over propositions):

Situation(x) ≡df A!x&∀F(xF→∃p(F=[λx p])) (1)

• p is true in situation s (‘s |= p’), or s makes p true, is defined as s
encodes the propositional property being such that p:

s |= p ≡df s[λx p] (2)

(Henceforth, ‘|=’ always takes the smallest scope; also, we may some-
times read s |= p as s encodes p, thereby extending the notion of
encoding.)

• a possible world is defined as a situation s that might be such that
all and only true propositions are true in s:

PossibleWorld(s) ≡df ^∀p(s |= p ≡ p) (3)

Given our convention, the subformula s |= p ≡ p is to be parsed as
(s |= p) ≡ p.

• an impossible world is defined as a maximal situation (that is, such
that for every proposition p, either s makes p true or s makes the
negation of p true) for which it is not possible that every proposi-
tion true in s is true:

Maximal(s) ≡df ∀p(s |= p∨ s |= ¬p) (4)

ImpossibleWorld(s) ≡df Maximal(s) &¬^∀p(s |= p→ p) (5)

In Zalta 1993, it was shown that the basic principles of situation the-
ory are derivable from the definition of situation given above (410–414).
Indeed, 15 of the 19 principles outlined in Barwise 1989 were derived.
And it was shown that the basic principles of possible world theory are
derivable from the definition of possible world given above (414–419).
These include formal versions of the following principles:

• every possible world is maximal, possible, and modally closed;

• there is a unique actual world;
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• possibly p iff there is a possible world in which p is true; and

• necessarily p iff p is true in every possible world.

And in Zalta 1997 (646–649) it was shown that the basic principles of
impossible world theory can be derived from the definition of impossible
world given above. These include formal versions of:

• if it is not possible that p, then there exists a non-trivial impossible
world in which p is true;2

• there exist impossible worlds where ex contradictione quodlibet fails;
and

• there exist impossible worlds where disjunctive syllogism fails.

The above principles were all shown to be theorems. Familiarity with
these results will be presupposed in what follows, since we now plan to
extend and build upon them.

1.2 The Recent Developments We’ll Need

The only recent developments of OT we’ll need for the analysis of Rout-
ley star are the following definition and theorem schema:

p =df ¬p (6)

` ∃s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (7)

Definition (6) lets us denote the negation of a proposition more simply
as p. As a theorem schema, (7) is in fact a comprehension schema for
situations and is derivable from the comprehension schema for abstract
objects, which asserts that for any condition ϕ with no free xs, there is
an abstract object that encodes all and only the properties such that ϕ.3

A derivation of (7) is given in the Appendix. It is also important to note
that it is provable that situations s and s′ are identical just in case they
make the same propositions true (Zalta 1993, 412):

2Cf. Nolan (1997, 542), who suggests that impossible worlds are governed by the com-
prehension principle: for every proposition that cannot be true, there is an impossible
world where that proposition is true.

3Formally, this comprehension principle can be expressed as:

∃x(A!x&∀F(xF ≡ ϕ)), provided x isn’t free in ϕ

This was the key principle underlying the theorems in Zalta 1993 and 1997.
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` s=s′ ≡ ∀p(s |= p ≡ s′ |= p) (8)

Consequently, it follows immediately from (7) that there is a unique sit-
uation that makes true all and only the propositions satisfying ϕ:

` ∃!s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (9)

Moreover, it is a consequence of (9) that definite descriptions having the
form ıs∀p(s |= p ≡ ϕ) are always well-defined (i.e., provably have a deno-
tation), provided s isn’t free in ϕ. These are, therefore, canonical descrip-
tions for situations.

Though canonical descriptions are always well-defined, one must
take care when deploying them in a modal context, given that formal
definite descriptions of the form ıxϕ in OT rigidly denote the unique ob-
ject, if there is one, that satifies ϕ at the distinguished actual world. It is
worth digressing a moment to understand the issues that arise and why
the present paper will be able ignore them. We conclude the digression
and this section by formulating a theorem schema involving descriptions
that will play an important role in the paper.

Note that in a modal logic with rigid definite descriptions, one can
produce logical theorems that are not necessary. For example, the condi-
tional y= ıxGx→ Gy will be false at a world, say w1, when y (is assigned
an object that) fails to be G at w1 but is the unique G at the actual world
w0 (in such a case, the the antecedent is true at w1 but the consequent
false at w1). More generally, where ϕyx is the result of substituting y for
all the free occurrences of x in ϕ, the claim y = ıxϕ→ ϕ

y
x is not a neces-

sary truth, though it is logically true (i.e., true at the distinguished actual
world of every model, for every assignment to x) given the semantics of
rigid definite descriptions.

In a fuller presentation of OT, we could axiomatize rigid definite de-
scriptions by introducing an actuality operator A and asserting, as an
axiom:

y = ıxϕ ≡ ∀x(Aϕ ≡ x=y) (10)

This is a form of the Hintikka principle (1959); it is a necessary truth
and it immediately implies the following as a necessary truth, in which
Aϕ

y
x = (Aϕ)yx = A(ϕyx ):

` y= ıxϕ→ Aϕ
y
x , provided y is substitutable for x in ϕ (11)
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If we then adjust the original example, it should be easy to see that
y = ıxGx → AGy is a necessary truth. But though (10), (11), and their
instances are necessary truths, the axiomatization of the actuality opera-
tor includes an axiom, namely Aϕ→ ϕ, that is a logical truth which isn’t
necessary (Zalta 1988).4 So the Rule of Necessitation has to be slightly
adjusted; one may not apply the rule to necessitate a theorem whose
proof depends on the axiom Aϕ→ ϕ.

In what follows, though, we won’t need to worry about illicit appli-
cations of the Rule of Necessitation since all of the definite descriptions
we’ll deploy involve a special class of formulas for which we can derive
the conditional y= ıxϕ→ ϕ

y
x without appealing to the contingent axiom

for actuality. The formulas in question are modally collapsed, i.e., any for-
mula ϕ for which it is provable that �(ϕ→ �ϕ). When a formula having
this form is provable, one can prove Aϕ ≡ ϕ without appealing to the
contingent axiom Aϕ→ ϕ.5 If ϕ is modally collapsed, then y= ıxϕ→ ϕ

y
x

is a necessary truth:

` y= ıxϕ→ ϕ
y
x , (12)

provided ϕ is modally collapsed and y is substitutable for x in ϕ

(See the Appendix for the proof.) In this paper, we shall appeal only to
definite descriptions in which the matrix is modally collapsed, and so we
won’t need to worry about mistakenly applying the Rule of Necessitation
to theorems derived from a logical truth that is not necessary.

In particular, we have, as a special case of (12), that whenϕ is modally
collapsed, then if a situation s is identical to the situation that makes true
all and only the propositions satisfying ϕ, then s makes true all and only
the propositions satisfying ϕ, i.e.,

4To see why the formula schema Aϕ → ϕ can’t be necessitated, note that the condi-
tional is true at the actual world: if ϕ is true at the actual world, then the conditional is
true at the actual world (by truth of the consequent), and if ϕ is false at the actual world,
then the conditional is true at the actual world (by failure of the antecedent). However, the
conditional is false at any world w1 whenever ϕ is true at the actual world but false at w1.

5Assume �(ϕ → �ϕ). Then by the K^ principle, i.e., �(ψ → χ) → (^ψ → ^χ), it
follows that ^ϕ → ^�ϕ. But in S5, ^�ϕ → �ϕ. So by hypothetical syllogism, we’ve
established:

(θ) ^ϕ→ �ϕ

Now to see that Aϕ ≡ ϕ, we prove both directions. (→) Assume Aϕ. Then ^ϕ. So by (θ),
�ϕ. Hence ϕ, by the T schema. (←) Assume ϕ. Then ^ϕ. But again by (θ), it follows that
�ϕ. Hence Aϕ.
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` s = ıs′∀p(s′ |= p ≡ ϕ)→∀p(s |= p ≡ ϕ), (13)
provided s′ isn’t free in ϕ and ϕ is modally collapsed

The keys to the proof in the Appendix are the facts that s′ |= p is, by
definition (2), an instance of the formula xF and that the modal logic of
encoding is xF → �xF. So by the Rule of Necessitation, �(xF → �xF)
and, as an instance, �(s′ |= p→ �s′ |= p). This fact, and the fact that ϕ is
modally collapsed, lets us validly infer that the formula ∀p(s′ |= p ≡ ϕ) is
modally collapsed. So the description ıs′∀p(s′ |= p ≡ ϕ) will be governed
by (12).

(13) plays a crucial role in what follows. All of descriptions of the
form ıs′∀p(s′ |= p ≡ ϕ) used in the present work will be constructed in
terms of formulas ϕ that are modally collapsed; it is provable that their
truth necessarily implies their own necessity. This should forestall any
concerns about the fact that we shall be working within a modal context
in which definite descriptions are interpreted rigidly.

2 Definitions and Theorems

For any situation s, we define the Routley star image of s, written s∗, as
the situation s′ that makes true all and only those propositions having
negations that fail to be true in s:

s∗ =df ıs
′∀p(s′ |= p ≡ ¬s |= p) (14)

Clearly, the definiens has a denotation, since it is a canonical description
(s′ doesn’t occur free in ¬s |= p). So s∗ is well-defined. Since it can be
shown that ¬s |= p is a modally collapsed formula, it follows from (14)
by (13) that p is true in s∗ iff p fails to be true in s:

` ∀p(s∗ |= p ≡ ¬s |= p) (15)

This holds for any situation s. (The first part of the proof in the Appendix
establishes that ¬s |= p is a modally collapsed formula.)

We now establish a number of facts that show (14) and theorem (15)
properly capture the definition of s∗ in Routley & Routley 1972. Since
formulas of the form ϕ ≡ ¬ψ are necessarily equivalent to formulas of
the form ¬ϕ ≡ ψ, (15) implies that, for any proposition p, p is true in s if
and only if p fails to be true in s∗:

` ∀p(s |= p ≡ ¬s∗ |= p) (16)
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Again, this holds for any situation s. (16) is an analogue of the Rout-
leys’ principle (iv), as formulated in the opening paragraph of Section 1
above.

To set up the next confirmation that (14) is correct, let us say that s
has a glut with respect to p, written GlutOn(s,p), if and only if both p and
p are true in s; and that s has a gap with respect to p, written GapOn(s,p),
if and only if neither p nor p is true in s:

GlutOn(s,p) ≡df s |= p & s |= p (17)

GapOn(s,p) ≡df ¬s |= p & ¬s |= p (18)

Then it follows that the condition s= s∗∗ implies that if s has a glut with
respect to p, then s∗ has a gap with respect to p:

` s=s∗∗→ (GlutOn(s,p)→ GapOn(s∗,p)) (19)

And s=s∗∗ also implies that if s=s∗∗, then if s has a gap with respect to p,
then s∗ has a glut with respect to p:

` s=s∗∗→ (GapOn(s,p)→ GlutOn(s∗,p)) (20)

Moreover, it can be shown, without the assumption that s= s∗∗, that if s
neither has a glut nor a gap w.r.t. p, then s∗ makes p true if and only if s
makes p true:

` (¬GlutOn(s,p) &¬GapOn(s,p))→ (s∗ |= p ≡ s |= p) (21)

It then follows that if, for every proposition p, s neither has a glut nor a
gap w.r.t. p, then s∗=s (since they make the same propositions true); and
for every proposition p, s neither has a glut nor a gap w.r.t. p if and only
if for every proposition p, s makes p true if and only if s fails to make p
true:

` ∀p(¬GlutOn(s,p) &¬GapOn(s,p))→ s∗=s (22)

` ∀p(¬GlutOn(s,p) &¬GapOn(s,p)) ≡ ∀p(s |= p ≡ ¬s |= p) (23)

Intuitively, (23) tells us that if s is free of gluts and gaps, then it is coher-
ent with respect to negation.

We conclude this section by deriving three interesting facts, the first
two of which require us to definition the null situation (s∅), in which
no propositions are true, and the trivial situation (sV ), in which every
proposition is true:
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s∅ =df ıs
′∀p(s′ |= p ≡ p,p) (24)

sV =df ıs
′∀p(s′ |= p ≡ p=p) (25)

The facts are that: if s∗∗=s holds universally, then the Routley star image
of the null situation is the trivial situation; if s∗∗ = s holds universally,
then the Routley star image of the trivial situation is the null situation;
and s∗∗ is identical to s if and only if, for every proposition p, p is true in
s iff p is true in s:

` ∀s(s∗∗=s)→ s∅
∗ = sV (26)

` ∀s(s∗∗=s)→ sV
∗ = s∅ (27)

` s∗∗=s ≡ ∀p(s |= p ≡ s |= p) (28)

(28) becomes interesting when we consider the passage in Routley &
Routley 1972 (338) in which they discuss their principle (iv) (noted above
in the preamble to this section):

Requirement (iv) on its own does not suffice for the normality of the
negation, since it does not assume such characteristic negation fea-
tures as double negation features. For these features it is, however,
unnecessary to adopt the over-restrictive condition H =H∗, which
would take us back to (ii); it suffices to require that H =H∗∗.

The Routleys don’t say here exactly which double negation features they
are referring to. But (28) tells us that the condition s∗∗ = s is equiv-
alent to a specific double negation feature. As we’ve seen, the Rout-
leys go on to suggest that a ‘set-up’, i.e., a situation s, is classical (‘nor-
mal’) w.r.t. double negation when s∗∗ = s. Even if the fact expressed by
(28) has been made explicit in the literature, it has now been derived
from general principles that don’t assume any mathematics, in a system
in which propositions have been axiomatized, and situations and their
Routley star images have been defined, in purely logical and metaphysi-
cal terms.6

6See Punc̆ochár̆ & Sedlár 2022 for a discussion of the Routley star operation in
information-based semantics rather than truth-conditional semantics, and Odintsov &
Wansing 2020 for a comparison of the hyperintensional propositional logic in HYPE with
a number of other logics.
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3 An Alternative Definition

In Section 5 below, we investigate a variant definition of the Routley star
image, in which s∗ is defined as the situation that makes true all and only
the negations of propositions that fail to be true in s:

s∗ =df ıs
′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q)) (ϑ)

Since the conditions s |= p and p=q are modally collapsed, the condition
∃q(¬s |= q& p=q) is as well.7 So (ϑ) immediately implies, by (13):

∀p(s∗ |= p ≡ ∃q(¬s |= q& p=q)) (ξ)

(ϑ) and (ξ) are of interest because the key condition ∃q(¬s |= q& p=q) is
not equivalent to the condition ¬s |= p used in (14).8 To see why, consider
a simple situation, say s, in which a single proposition, say p1, is true.
Let’s ignore all other propositions and consider what propositions are
true in s∗ according to (15) vs. what propositions are true s∗ according to
(ξ). According to (15), the following propositions are true in s∗:

• p1 (since ¬s |= p1),

• p1 (since ¬s |= p1),

• p1 (since ¬s |= p1),

• and so on.
7In OT, p=q is defined as the property identity [λxp] = [λxq] (Zalta 1993, 409), where

the identity of properties F = G is defined as �∀x(xF ≡ xG) (ibid., 407). Given the S4
axiom then, it is easy to show F =G→ �F =G. So by the Rule of Necessitation �(F =G→
�F=G). Instantiating F and G to [λx p] and [λx q] and applying the definition of identity
for propositions, we have the instance �(p = q→ �p= q), which holds for any propositions
p and q. Hence �(p = q→ �p= q). And if ϕ and ψ are modally collapsed, it follows that
ϕ & ψ is modally collapsed. From these facts it doesn’t take much more work to show
�(∃q(¬s |= q& p=q)→ �∃q(¬s |= q& p=q)).

8In what follows, it is important to distinguish the following two conditions:

(1) ∃q(¬s |= q& p=q)

(2) ∃q(¬s |= q& q=p)

Condition (2) is equivalent to ¬s |= p, by the following argument:

(→) Assume ∃q(¬s |= q&q=p) and suppose r is such a propositions, so that we know
both ¬s |= r and r=p. Then ¬s |= p. (←) Assume ¬s |= p. Then ¬s |= p& p=p, by the
reflexivity of identity and &I. Hence, ∃q(¬s |= q& q=p).

But we’re now going to focus on condition (1), to see why it isn’t equivalent to ¬s |= p.
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But according to (ξ), neither p1 nor p1 are true in s∗ (neither p1 nor p1 is
the negation of a proposition that s fails to encode). Instead, the follow-
ing propositions are true in s1 according to (ξ):

• p1 (since ¬s |= p1 and p1 is the negation of p1),

• p1 (since ¬s |= p1 and p1 is the negation of p1),

• and so on.

Interestingly, however, the conditions ∃q(¬s |= q& p= q) and ¬s |= p are
equivalent under the assumption that propositions are identical to their
double negations, i.e., under the assumption that:

∀p(p = p) (ζ)

To see this, note how (ζ) plays a role in the proof of both directions of
the biconditional asserting the equivalence:

∃q(¬s |= q& p=q) ≡ ¬s |= p (ω)

Proof : (→) Assume ∃q(¬s |= q& p= q) and let r be such a proposi-
tion, so that we know both ¬s |= r and p= r. The latter implies that
p = r, for if propositions are identical, so are their negations. But
by (ζ), r = r. Hence, p= r and so ¬s |= p. (←) Assume ¬s |= p. Then
by (ζ), ¬s |= p& p= p. By existentially generalizing on p we have:
∃q(¬s |= q& p = q). ./

Of course, OT doesn’t imply (ζ) since the identity conditions of rela-
tions and propositions are hyperintensional; one may consistently claim
that propositions and their double negations are distinct despite being
necessarily equivalent. That’s because in OT, propositions p and q are
identical just in case the corresponding propositional properties [λx p]
and [λx q] are identical, as explained in footnote 7. Property identity
is, in turn, defined in terms of being necessarily encoded by the same
objects, not in terms of being necessarily exemplified by the same ob-
jects. Consequently, necessarily equivalent properties and propositions
are not identified; properties and propositions are more fine-grained.

So one can’t simply replace the definiens of (14) with the definiens:

ıs′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q))
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This won’t preserve the results we’ve established thus far. But we could
define a group of propositions that are identical with their double nega-
tions, and in the next section, we investigate the Routley star image s∗ of
situations s that are constructed out of such propositions.

4 HYPE

Leitgeb (2019, 321ff) builds a semantics for a system of hyperintensional
propositional logic (‘HYPE’). He first builds a propositional language L
by starting with atomic propositional letters p1,p2, . . ., and logical sym-
bols ¬, ∧, ∨, →, and > (where → does not express the material condi-
tional). He writes pi for ¬pi , and uses pi as an abbreviation for pi . The
proposition letters and their negations constitute the literals. Leitgeb
then constructs HYPE-models for L in terms of structures 〈S,V ,◦,⊥〉,
where the elements of the models are simultaneously constrained by the
requirements of a Routley star operation ∗. He describes the elements of
the models as follows (Leitgeb 2019, 321–22):

• S is a non-empty set of states.

• V is a function (the valuation function) from S to the power set
of the set of literals of the language L, so that each state s in S is
associated with a set of literals V (s).

• ◦ is a partial fusion function on states that is idempotent and, when
defined, commutative and partially associative.

• ⊥ is a relation of incompatibility that relates states s and s′ when
some proposition p is true at one and its negation p is true at the
other.

The Routley star operation that constrains these models will be discussed
and defined later, in Section 5.

Consequently, in the remainder of this paper, we use OT to recon-
struct the above elements of HYPE models and we’ll see that the re-
construction comports with both of the suggestions for understanding
HYPE states quoted above in Leitgeb 2019 (323, footnote 9). In Sec-
tion 4.1 we develop basic definitions and show how to interpret the
HYPE V function; in Section 4.2 we show how to interpret the HYPE fu-
sion operation ◦; and in Section 4.3, we show how to interpret the HYPE
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incompatibility relation ⊥. Finally, in Section 5, we define the HYPE
version of Routley star and prove that it has the expected features.

4.1 HYPE Propositions and HYPE States

First, we work our way towards a definition of a Hype-state by defining
Hype-propositions. We say that (29) a Hype-proposition is any proposi-
tion p that is identical to its double negation:

Hype(p) ≡df p=p (29)

Clearly, then it follows that (30) if p is a Hype-proposition, then so is its
negation p:

`Hype(p)→Hype(p) (30)

Though OT guarantees the existence of propositions (by 0-ary relation
comprehension) and provides identity conditions for them (footnote 7),
it doesn’t guarantee the existence of Hype-propositions. The identity
conditions for propositions in OT leave one free to assert the existence of
Hype-propositions and the existence of propositions that are more fine-
grained, e.g., by asserting ∃p(p , p). Though �(p ≡ p) is a theorem, it
doesn’t follow that p = p.

Consequently, for the remainder of this section, let us work under the
assumption that there are Hype-propositions:

Assumption: ∃pHype(p) (31)

Now we may define x is a HypeState just in case x is a situation such that
every proposition true in x is a Hype-proposition:

HypeState(x) ≡df Situation(x) &∀p(x |= p→Hype(p)) (32)

So we’re identifying HypeStates not as primitive entities but as situations.
Thus when Leitgeb speaks of the members of V (s) as the facts or states
of affairs obtaining at s (2019, 322), we may interpret this in terms of our
defined notion, p is true in s, as follows:

• p ∈ V (s) ≡df s |= p

Now it is easy to prove the existence of HypeStates; (31) guarantees there
are Hype-propositions and (7) guarantees that for any condition on Hype-
propositions, there are situations that make true all and only such propo-
sitions. Clearly, any such situation is a HypeState.
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Indeed, we now derive, from (7), comprehension conditions for Hy-
peStates with the help of some new variables. Note that the conditions
Hype(p) and HypeState(x), defined respectively in (29) and (32), are mo-
dally collapsed conditions. So may use introduce restricted variables to
range over them. For clarity, we use a special new variables in a distin-
guished, new font:

• p,q, . . . are restricted variables ranging over Hype-propositions.

• s,s′, . . . be are restricted variables ranging over HypeStates.

Using these variables we may formulate Simplified Comprehension for
HypeStates as follows:

` ∃s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (33)

Clearly, in the usual way, it is provable that there is a unique such Hype-
State for each such instance:

` ∃!s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (34)

4.2 The HYPE Fusion Operation

If we put aside, for the moment, the fact that the fusion function ◦ in
HYPE is a partial binary operation on HypeStates and instead take it to
be a total fusion operation, then we can represent the HYPE ◦ operation
as the following summation operation (⊕) on situations generally:

s⊕ s′ =df ıs
′′∀p(s′′ |= p ≡ (s |= p∨ s′ |= p)) (35)

In other words, s⊕ s′ is the situation that makes a proposition p true just
in case either s makes p true or s′ makes p true. Since s |= p ∨ s′ |= p is
modally collapsed, it follows that a proposition p is true in s ⊕ s′ just in
case either p is true in s or p is true in s′:

` ∀p(s⊕ s′ |= p ≡ (s |= p∨ s′ |= p)) (36)

To see that ⊕ captures additional features about the partial nature of sit-
uations generally, let us say that s is a part of s′ just in case every propo-
sition true in s is true in s′:9

9The definition that follows was derived as a theorem in Zalta 1993 (412), as a conse-
quence of the more general definition x E y ≡df ∀F(xF → yF) and the fact that situations
encode only propositional properties. But for the present investigation, we may simply
take the following as a definition.



17 The Metaphysics of Routley Star

sE s′ ≡df ∀p(s |= p→ s′ |= p) (37)

It follows relatively straightforwardly that s is a part of s′ if and only if
the sum of s and s′ just is s′:

` sE s′ ≡ s⊕ s′ = s′ (38)

A further consequence of these definitions and theorems is that ⊕ is
idempotent, commutative, and associative with respect to situations gen-
erally. Since HypeStates are situations, it follows that:

` ⊕ is idempotent, commutative, and associative on HypeStates. (39)

Formally:

` s⊕ s
` s⊕ s′ = s′ ⊕ s
` s⊕ (s′ ⊕ s′′) = (s⊕ s′)⊕ s′′

Consequently, we may interpret s ◦ s′ in Leitgeb 2019 as s⊕ s′.
Though s⊕s′ is defined for any HypeStates s and s′, we could instead

model the partiality of ◦ in Leitgeb 2019 by introducing a partial ternary
relation R3 (not the ternary relation R of Routley-Meyer 1972, 1973) that
may or may not relate a pair of HypeStates s and s′ to a unique third
HypeState.10 But we shall leave further details for some other occasion
and continue with our total fusion operation ⊕.

4.3 The HYPE Explicit Incompatibility Relation

Next, we define HYPE’s explicit incompatibility condition ⊥ in object-
theoretic terms. First, we define the explicit incompatibility of situations
generally. We say s is explicitly incompatible with s′ just in case there is
a proposition p such that s makes p true and s′ makes the negation of p
true:

10Intuitively, R would be a partial relation that is idempotent and commutative when
ıs0Rss

′s0 exists. Then we could re-define ◦ for HypeStates so that it meets the following
condition:

s ◦ s′ =df ıs
′′∀p(s′′ |= p ≡ s |= p ∨ s′ |= p ∨ ıs0(Rss′s0) |= p)

The intuition here is that R ensures that s◦s′ makes true Hype-propositions other than the
ones true in s and s′. Moreover, we must also require:

ıs0Rs1((s1 ◦ s2) ◦ s3)s0 E (s1 ◦ s2) ◦ s3

The extra constraint on R guarantees partial associativity. Thus, constraints on R validate
idempotence, commutativity when defined, and partial associativity when defined.

Edward N. Zalta 18

s !s′ ≡df ∃p(s |= p & s′ |= p) (40)

Since explicit incompatibility is now defined for all situations, it is de-
fined on HypeStates, i.e., we may henceforth write s !s′ when HypeStates
are explicitly incompatible.

Now the first principle governing ⊥ in HYPE is (Leitgeb 2019, 322):

• If there is a v with v ∈ V (s) and v ∈ V (s′), then s ⊥ s′.

Given our interpretation of ⊥ in terms of !, this becomes represented
and derived as the following theorem governing HypeStates and Hype-
propositions:

` (s |= p& s′ |= p)→ s !s′ (41)

And the second principle governing ⊥ in HYPE is (Leitgeb 2019, 322):

• If s ⊥ s′ and both s ◦ s′′ and s′ ◦ s′′′ are defined, then s ◦ s′′ ⊥ s′ ◦ s′′′.

Given our interpretation of ◦ as ⊕ and the fact that s⊕s′ is always defined
for any situations s and s′, this becomes represented and derived as the
following theorem regarding HypeStates:

` s !s′→ (s⊕ s′′) ! (s′ ⊕ s′′′) (42)

The proofs of both theorems are in the Appendix.

5 Routley Star in HYPE

We continue to use our restricted variables ‘p’ and ‘s’ to range over Hype-
propositions and HypeStates, respectively. Our next goal, then, is to re-
construct and derive the principles that govern the HYPE Routley star
operator. So the goal is to reconstruct and derive the following condi-
tions laid down in Leitgeb 2019 (322), in which we’ve replaced Leitgeb’s
variable ‘s’ by our restricted variable ‘s’:

For every s in S,

(A) there is a unique s∗ ∈ S (the star image of s) such that:

(B) V (s∗) = {v |v < V (s) },
(C) s∗∗ = s,

(D) s and s∗ are not incompatible, i.e., ¬(s⊥ s∗), and
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(E) s∗ is the largest state compatible with s, i.e., if s is not incom-
patible with s′, then the fusion of s′ and s∗ is defined and the
fusion of s′ ◦ s∗ = s∗.

Note that s∗ is defined in HYPE as V (s∗) = {v |v < V (s) }, instead of as
V (s∗) = {v |v < V (s) }. However, as we saw in Section 3, these two def-
initions become equivalent if propositions and their double negations
are generally identified. And as we saw in Section 4, Leitgeb does iden-
tify p and p in his propositional language L. Since we’ve defined Hype-
propositions as ones that exhibit this behavior, let us examine how the
HYPE Routley star and the principles governing it can be defined or de-
rived given our analysis of Hype-propositions and HypeStates.

For any HypeState s, we may define the HYPE Routley star image of
s, written s∗, as the HypeState s′ that makes a Hype-proposition p true
just in case p is the negation of a proposition not true in s:11

s∗ =df ıs
′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q)) (43)

We take (43) to be a reconstruction of principle (B) above. Now although
the HYPE principle (A) requires that there be a unique s∗ satisfying (B)
– (E), it should be clear that s∗ is already uniquely defined; for any s,
exactly one s∗ has been identified by a canonical description.

So we may immediately conclude that s∗ exists, for any s. Before we
show that s’s unique star image s∗ also satisfies constraints (C) – (E), it
proves useful to first confirm a few facts that follow from (43).

By now familiar reasoning, we may infer that for any Hype-proposition
p, p is true in s∗ just in case p is the negation of a Hype-proposition that
fails to be true in s:

` ∀p(s∗ |= p ≡ ∃q(¬s |= q& p=q)) (44)

Moreover, we may verify that the principle proved in Section 3 holds for
HypeStates, namely that p is the negation of some proposition that s fails
to make true if and only if s fails to make p true:

` ∃q(¬s |= q& p=q) ≡ ¬s |= p (45)

11The following should be considered a redefinition of the Routley star image. That’s
because HypeStates are situations and, in Section 2, (14) defines the Routley star on situ-
ations. So to avoid conflicting definitions, just consider the following as a redefinition of
this operator.
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Clearly, then, (44) and (45) imply that s∗ makes p true if and only if s
fails to make p true; and by simple logical consequence of this fact, it
follows that p is true in a HypeState s if and only if it is not the case that
p is true in s∗:

` ∀p(s∗ |= p ≡ ¬s |= p) (46)

` ∀p(s |= p ≡ ¬s∗ |= p) (47)

(46) is a direct analogue of the Routley & Routley condition (iv) de-
scribed in the Introduction above, and so corresponds directly to (15).

Note next that we can make use of the definitions of gaps and gluts
in (17) and (18), respectively; these notions were defined generally for
any situations and propositions and so apply to HypeStates and Hype-
propositions. We may then further confirm that (43) is correct by estab-
lishing that if s has a glut w.r.t. p, then s∗ has a gap w.r.t. p; if s has a gap
w.r.t. p, then s∗ has a glut w.r.t. p; and if s has neither a glut nor a gap
w.r.t. p, then s∗ agrees with s∗ on p:

` GlutOn(s,p)→ GapOn(s∗,p) (48)

` GapOn(s,p)→ GlutOn(s∗,p) (49)

` (¬GlutOn(s,p) &¬GapOn(s,p))→ (s∗ |= p ≡ s |= p) (50)

Now that we have confirmed that (43) is a definition of s∗ that yields the
latter’s desired characteristics, we turn to the derivation of principle (C)
governing HYPE s∗, namely, that s∗∗ is identical to s:

` s∗∗= s (51)

Cf. Leitgeb 2019 (322). So, whereas (28) establishes that the stipulation
s∗∗ = s in Routley & Routley 1973 is equivalent to the double-negation
condition ∀p(s |= p ≡ s |= p), (22) establishes that the analogous stipu-
lation s∗∗ = s in Leitgeb 2019 can be derived from the double-negation
fact that ∀p(p= p). These results give us a deeper understanding of the
connection between the two ways of defining the Routley star image of a
situation.

Principles (D) and (E) of HYPE s∗ may be derived as follows. (D)
asserts that s is not explicitly incompatible with s∗:

` ¬s!s∗ (52)
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And since s′ ⊕ s∗ is always defined in our reconstruction, we can recon-
struct and derive (E) as the simpler claim if s is not incompatible with
s′, then the sum/fusion of s′ and s∗ just is s∗:

` ¬s!s′→ (s′ ⊕ s∗ = s∗) (53)

(53) guarantees that s∗ is the largest state compatible with s.
Finally, if we recall the definition s E s′ (37) and the fact that s E s′ ≡

∀p(s |= p → s′ |= p) (38), we may prove that the Routley star operation
reverses E:

` sE s′→ s′∗ E s∗ (54)

Cf. Observation 3, Leitgeb 2019 (325). This completes the derivation of
the principles stipulated in HYPE for the Routley star operation, modulo
the partiality of the HYPE fusion operation.

6 Conclusion

We’ve now answered the question: What kind of metaphysics is repre-
sented by a semantics making use of Routley star? Without assuming
any mathematical entities or theory of sets and functions, we’ve used OT
to define two forms of the Routley star operation and derive the princi-
ples that govern these forms. And the better we understand the theorems
that are implied by the two ways of defining it, the better we understand
how the star operation might be used. The existence of the Routley star
image s∗ of a situation s is guaranteed not by set theory but by a theory
of abstract objects. And out reconstruction shows that situations have
both a metaphysical character and an informational character, at least as
these are described in the quote above from Leitgeb 2019 (footnote 9).
One can view situations in OT as “chunks of reality” that are “located in
the world”, especially if one takes an Aristotelian view of abstract objects
as forms that are part of reality. Alternatively, one can view situations in-
formationally, as abstract entities corresponding to “pieces of thought”.
But these metaphilosophical considerations about how to interpret OT
as a theory shouldn’t divert attention away from the tight conceptual
framework that OT provides for defining Routley star.

Indeed, if you look at how situations and the Routley star operation
are defined in (1), (14), and (43) within this conceptual framework, one
might even suggest that the star operation is a logical one. Propositions
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are axiomatized as 0-ary relations and can be considered part of logic.
Situations are defined in (1) as abstract objects that encode only propo-
sitional properties. And the ∗ operation is then defined on situations in
terms of the notions the, truth in (which is in turn defined in terms of the
encoding mode of predication), every and some, if and only if, and not. If
the star operation is logical, then we can explain why some have thought
that it helps us to capture semantically a more general and flexible logi-
cal concept of negation.12

Finally, we’ve shown that the basic principles governing Routley star
need not be stipulated but can be derived from its definition. This inte-
grates Routley star into a more general theory of (partial) situations that
has been shown, in previous work, to ground the theory of both possible
worlds and impossible worlds. This analysis of the Routley star oper-
ation clarifies our understanding of the Routley-Meyer ternary relation
R (Routley-Meyer 1972, 1973) on ‘set-ups’, by systematically validating
many of the assumptions of situation theory used in Mares’ (2004) mo-
tivation and justification for R.

Appendix: Proofs of the Theorems

(7)13 If we eliminate the restricted variable, then the theorem we have
to prove becomes:

∃x(Situation(x) &∀p(x |= p ≡ ϕ)), provided x isn’t free in ϕ

So let ϕ be any formula in which x doesn’t occur free. (Note that the vari-
able p may or may not be free in ϕ.) Now, pick a property variable that
doesn’t occur free in ϕ. Without loss of generality, suppose it is G. Then
let ψ be the formula ∃p(ϕ&G=[λzp]). Clearly, since x doesn’t occur free
in ψ, and so the following is a schematic instance of (an alphabetic vari-
ant of) the comprehension principle for abstract objects formally stated
in footnote 3:

∃x(A!x&∀G(xG ≡ ψ))

But given our choice of ψ, this amounts to:

∃x(A!x&∀G(xG ≡ ∃p(ϕ&G=[λz p])))
12I’m indebted to Hannes Leitgeb for suggesting this point.
13I’m indebted to Uri Nodelman for spotting a flaw in the original proof of this theorem.



23 The Metaphysics of Routley Star

Let a be such an object, so that we know both A!a and:

(A) ∀G(aG ≡ ∃p(ϕ&G=[λz p]))

It follow a fortiori that ∀G(aG→ ∃p(G= [λz p])). Hence Situation(a), by
definition (1). So it remains to show ∀p(a |= p ≡ ϕ). By GEN, it suffices to
show a |= p ≡ ϕ, since we’ve made no special assumptions about p.

To prove this biconditional, we’ll rely on the fact that a |= p is defined
as a[λz p], by (2), given that a is a situation. We’ll therefore want to
instantiate a[λz p] into (A). But there is a clash of variables and, to avoid
this, we use the following alphabetic variant of (A), where q is a variable
that is substitutable for p, and doesn’t occur free, in ϕ:

(A′) ∀G(aG ≡ ∃q(ϕqp &G=[λz q]))

Now we can properly instantiate [λz p] into (θ′), and if we remember
that G doesn’t occur free in ϕ, we obtain:14

(B) a[λz p] ≡ ∃q(ϕqp & [λz p]=[λz q])

With these facts we can prove a |= p ≡ ϕ.
(→) Assume a |= p, to show ϕ. Then a[λz p], by (2). So by (B), it

follows that:

∃q(ϕqp & [λz p]=[λz q])

Now suppose q1 is such a proposition, so that we know:

(C) (ϕqp)q1
q & [λz p]=[λz q1]

In OT, propositions are identical whenever the propositional properties
constructed from them are identical (Zalta 1993, 409). So by the second
conjunct of (C), it follows that p = q1. Hence, by the first conjunct of
(C), it follows that (ϕqp)pq . But since the conditions of the Re-replacement
Lemma are met (Enderton 2001, 130), this latter is just ϕ.

(←) Assume ϕ. Then ϕ& [λz p]=[λz p], by the reflexivity of identity.
Hence, by existential introduction:

∃q(ϕqp & [λz p]=[λz q])

14Strictly speaking, when we instantiate [λz p] into (A′), we obtain:

a[λz p] ≡ ∃q((ϕ
q
p)

[λz p]
G & [λz p]=[λz q])

But since G isn’t free in ϕ, (ϕ
q
p)

[λz p]
G is just ϕ

q
p .
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Then by (B), a[λz p]. So by (2) and the fact that a is a situation, a |= p. ./

(8) This is Theorem 2 in Zalta 1993. The proof was given in Zalta 1991
(Appendix A), which served as a precursor to Zalta 1993.

(9) This follows from (7) and (8) by the standard definition of the unique-
ness quantifier ∃!sψ.

(11) Suppose y is substitutable for x in ϕ and assume y = ıxϕ. Then by
axiom (10), ∀x(Aϕ ≡ x = y). But since y is substitutable for x in ϕ, we
can instantiate this last fact to y and we obtain Aϕ

y
x ≡ y = y. So by the

reflexivity of identity, Aϕyx . ./

(12) By hypothesis, ϕ is modally collapsed and y is substitutable for x
in ϕ. Now assume y = ıxϕ, to show ϕ

y
x . It follows from this assumption

by theorem (11) that Aϕyx . But since ϕ is modally collapsed, there is a
proof of �(ϕ → �ϕ). Since this latter is a theorem, it follows by GEN
that ∀x�(ϕ→ �ϕ). Instantianting to y it follows that �(ϕyx → �ϕ

y
x ). But

as we saw in footnote 5, a formula of this form implies Aϕyx ≡ ϕ
y
x . Hence,

ϕ
y
x . ./

(13) Suppose s′ isn’t free in ϕ and ϕ is modally collapsed. To show:

(s = ıs′∀p(s′ |= p ≡ ϕ))→∀p(s |= p ≡ ϕ)

it suffices to show that the formula ∀p(s′ |= p ≡ ϕ) is modally collapsed,
for then our theorem becomes an instance of (12). So we have to prove:

�(∀p(s′ |= p ≡ ϕ)→ �∀p(s′ |= p ≡ ϕ))

By the Rule of Necessitation, it suffices to prove:

∀p(s′ |= p ≡ ϕ)→ �∀p(s′ |= p ≡ ϕ)

So assume ∀p(s′ |= p ≡ ϕ), to show �∀p(s′ |= p ≡ ϕ). By the Barcan For-
mula, it suffices to show ∀p�(s′ |= p ≡ p). Since p isn’t free in our as-
sumption, it remains, by GEN, to show �(s′ |= p ≡ p). So p is a fixed, but
arbitrary proposition, and so our assumption that ∀p(s′ |= p ≡ ϕ) implies:

(A) s′ |= p ≡ ϕ

By hypothesis,ϕ is modally collapsed, and so we know that the following
is a theorem:

(B) �(ϕ→ �ϕ)
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But independently, note that s′ |= p is defined in (2) as s′[λyp] , and so it is
a formula of the form xF. Since the modal logic of encoding is expressed
by the principle xF → �xF (Zalta 1993, 403), it follows by the Rule of
Necessitation that �(xF→ �xF). Hence as an instance, we know:

(C) �(s′ |= p→ �s′ |= p)

But it is a theorem of modal logic that if formulas ψ and χ necessar-
ily imply their own necessity, then the material equivalence of ψ and χ
necessarily implies their necessary equivalence:

(�(ψ→ �ψ) &�(χ→ �χ))→ �((ψ ≡ χ)→ �(ψ ≡ χ))

Given this theorem and setting ψ to s |= p and χ to ϕ, (C) and (B) jointly
imply:

�((s′ |= p ≡ ϕ)→ �(s′ |= p ≡ ϕ))

So by the T schema,

(s′ |= p ≡ ϕ)→ �(s′ |= p ≡ ϕ)

Hence, by (A), �(s′ |= p ≡ ϕ), which is what it remained to show. ./

(15) First, we show that ¬s |= p is a modally collapsed formula:

Lemma: �(¬s |= p→ �¬s |= p)

Proof. By the Rule of Necessitation, it suffices to prove ¬s |= p →
�¬s |= p. So assume ¬s |= p, to show �¬s |= p. Now, as previously
noted in the text, the modal logic of encoding is xF→ �xF. So, by
the T schema and the Rule of Necessitation, we know �(xF ≡ �xF).
This implies �(^xF ≡ xF). As an instance of this latter, �(^s |= p ≡
s |= p). Then by the T schema, ^s |= p ≡ s |= p. So, negating both
sides, ¬^s |= p ≡ ¬s |= p. Then by our assumption, it follows that
¬^s |= p, which is equivalent to �¬s |= p, which is what we had to
show.

Now note that we can apply GEN to (13), since s is a free variable, to
conclude:

∀s(s = ıs′∀p(s′ |= p ≡ ϕ))→∀p(s |= p ≡ ϕ),
provided s′ isn’t free in ϕ and ϕ is modally collapsed
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Now since s′ isn’t free in ¬s |= p and this formula is modally collapsed,
we can let ϕ be ¬s |= p, so that as an instance of the foregoing, we know:

∀s(s = ıs′∀p(s′ |= p ≡ ϕ))→∀p(s |= p ≡ ¬s |= p)

So we may instantiate s∗ into this universal claim and the result is:

s∗ = ıs′∀p(s′ |= p ≡ ¬s |= p)→∀p(s∗ |= p ≡ ¬s |= p)

So by definition (14), ∀p(s∗ |= p ≡ ¬s |= p). ./

(16) By (15) we know:

(A) ∀p(s∗ |= p ≡ ¬s |= p)

Since ϕ ≡ ¬ψ is necessarily equivalent to ¬ϕ ≡ ψ, it follows from (A) by
the Rule of Substitution that:

(B) ∀p(¬s∗ |= p ≡ s |= p)

And since ϕ ≡ ψ is necessarily equivalent to ψ ≡ ϕ, it follows from (B)
by the Rule of Substitution that:

∀p(s |= p ≡ ¬s∗ |= p) ./

(19) Take the following as a global assumption:

(A) s=s∗∗

We want to prove that if GlutOn(s,p), then GapOn(s∗,p). So assume
GlutOn(s,p), i.e., by (17), that:

(B) s |= p& s |= p

To show GapOn(s∗,p), we have to show both (a) ¬s∗ |= p and (b) ¬s∗ |= p,
by (18).

(a) If we instantiate (16) to s and p, we obtain:

s |= p ≡ ¬s∗ |= p

So by the 2nd conjunct of (B), ¬s∗ |= p.

(b) If we instantiate (16) to s∗ and p, we obtain:

(C) s∗ |= p ≡ ¬s∗∗ |= p
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But the 1st conjunct of (B) implies, under our global assumption s= s∗∗

(A), that s∗∗ |= p. But this fact and (C) jointly imply ¬s∗ |= p. ./

(20) Take the following as a global assumption:

(A) s=s∗∗

We want to prove that if GapOn(s,p), then GlutOn(s∗,p). So assume
GapOn(s,p), i.e., by (18), that:

(B) ¬s |= p&¬s |= p

Then to show GlutOn(s∗,p), we show both (a) s∗ |= p and (b) s∗ |= p, by
(17).

(a) If we instantiate (15) to s and p, we obtain:

s∗ |= p ≡ ¬s |= p

This result and the second conjunct of (B) imply s∗ |= p.

(b) If we instantiate (16) to s∗ and p, we obtain:

(C) s∗ |= p ≡ ¬s∗∗ |= p

But given our global assumption (A) that s= s∗∗, it follows from the first
conjunct of (B) that ¬s∗∗ |= p. But from this fact and (C), it follows that
s∗ |= p. ./

(21) Assume both ¬GlutOn(s,p) and ¬GapOn(s,p). Then by definitions
(17) and (18), we know:

¬(s |= p & s |= p)

¬(¬s |= p & ¬s |= p)

These are, respectively, equivalent to:

(A) ¬s |= p∨¬s |= p

(B) s |= p∨ s |= p

We may then prove both directions of s∗ |= p ≡ s |= p. (→) Assume s∗ |= p.
Then by (15), ¬s |= p. It follows from this and (B) that s |= p. (←) Assume
s |= p. This and (A) imply ¬s |= p. So by (15), s∗ |= p. ./

(22) Assume:
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∀p(¬GlutOn(s,p) &¬GapOn(s,p))

To show s∗= s, we have to show ∀p(s∗ |= p ≡ ¬s |= p), by (8). By GEN, we
show s∗ |= p ≡ s |= p. But if we instantiate our assumption to p, we obtain
¬GlutOn(s,p) &¬GapOn(s,p), and so s∗ |= p ≡ s |= p follows by (21). ./

(23) (→) Our (global) assumption is:

∀p(¬GlutOn(s,p) &¬GapOn(s,p))

We want to show ∀p(s |= p ≡ ¬s |= p). By GEN, it suffices to show s |= p ≡
¬s |= p. But it is an immediate consequence of our global assumption
that:

(A) ¬GlutOn(s,p) &¬GapOn(s,p)

We use this to prove both directions of our biconditional:

(→) Assume (locally) s |= p. The first conjunct of (A) and definition (17)
imply ¬(s |= p & s |= p), i.e., ¬s |= p ∨¬s |= p. This last fact and our
local assumption jointly imply ¬s |= p.

(←) Assume (locally) ¬s |= p. The second conjunct of (A) and definition
(18) imply ¬(¬s |= p&¬s |= p), i.e., s |= p∨s |= p. But his last fact and
our local assumption jointly imply s |= p.

(←) Our (global) assumption is:

∀p(s |= p ≡ ¬s |= p)

To show ∀p(¬GlutOn(s,p)&¬GapOn(s,p)), it suffices by &I and GEN and
to show both (a) ¬GlutOn(s,p) and (b) ¬GapOn(s,p). But it is an imme-
diate consequence of our global assumption that:

(B) s |= p ≡ ¬s |= p

We use this to show both directions of our biconditional:

(→) Assume, for reductio, that GlutOn(s,p). Then by definition (17), we
know both s |= p and s |= p. But the former implies the negation of
the latter, by (B). Contradiction.

(←) Assume, for reductio, that GapOn(s,p). Then by (18), we know both
¬s |= p and ¬s |= p. But again, the former implies the negation of
the latter, by (B). Contradiction. ./
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(26) Take as our global assumption that ∀s(s∗∗= s). From definition (24)
and the fact that the condition p,p is modally collapsed (by the neces-
sity of identity), it follows that ∀p(s∅ |= p ≡ p , p), by (13). But since
no proposition fails to be self-identical, it follows from this last fact that
¬∃p(s∅ |= p). This implies ∀p¬(s∅ |= p). Now let q be an arbitrarily cho-
sen proposition, so that we know both ¬s∅ |= q and ¬s∅ |= q. Then by
definition (18), GapOn(s∅,q). But given our global assumption, we know
s∅
∗∗= s∅. So by the relevant instance of (20), it follows from GapOn(s∅,q)

that GlutOn(s∅∗,q). From this, it follows a fortiori by definition (17) that
s∅
∗ |= q. Since q was arbitrary, we have established:

(A) ∀p(s∅∗ |= p)

But, independently, we also know, given definition (25) and the fact that
the condition p = p is modally collapsed (by the necessity of identity),
that ∀p(sV |= p ≡ p= p). Since every proposition is self-identical, it fol-
lows from this last fact that:

(B) ∀p(sV |= p)

Now ∀pϕ & ∀pψ implies ∀p(ϕ ≡ ψ). So we may conclude from (A) and
(B) that:

∀p(s∅∗ |= p ≡ sV |= p)

Since s∅
∗ and sV are situations that make the same propositions true, it

follows by (8) that s∅∗=sV . ./

(27) (Exercise)

(28) (→) Assume s∗∗ = s. By GEN, it suffices to show s |= p ≡ s |= p.
The identity of s∗∗ and s implies, by (8), that ∀p(s∗∗ |= p ≡ s |= p). Hence
s∗∗ |= p ≡ s |= p, which commutes to:

(A) s |= p ≡ s∗∗ |= p

Now, independently, if we instantiate (15) to s∗ and p, we also know:

(B) s∗∗ |= p ≡ ¬s∗ |= p

Moreover, independently, we know s∗ |= p ≡ ¬s |= p, by instantiating (15)
to s and p. By negating both sides and eliminating the double negation,
we have:
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(C) ¬s∗ |= p ≡ s |= p

So s |= p ≡ s |= p, by biconditional syllogism from (A), (B), and (C).

(←) Assume:

(D) ∀p(s |= p ≡ s |= p)

To establish s∗∗ = s, we appeal to (8) and show ∀p(s∗∗ |= p ≡ s |= p). By
GEN, it suffices to show s∗∗ |= p ≡ s |= p. First note that, by GEN, (15)
holds for all s and so if we instantiate the resulting universal claim to s∗

and p, we obtain:

(E) s∗∗ |= p ≡ ¬s∗ |= p

Independently, we obtain s∗ |= p ≡ ¬s |= p by instanstiating (15) to s and
p. This is equivalent to:

(F) ¬s∗ |= p ≡ s |= p

Moreover, if instantiate (D) to p and commute the result, we know:

(G) s |= p ≡ s |= p

But now, (E), (F), and (G) jointly imply:

s∗∗ |= p ≡ s |= p ./

(30) Assume Hype(p). Then by (29), p = p. So we may substitute p for

the first occurrence of p in the identity p = p, to obtain p = p. So by
definition (29), Hype(p). ./

(33) By reasoning analogous to (7).

(34) By (33) and the definition of identity for situations (8).

(36) This is a consequence of (35) and (13), and the fact that s |= p∨s′ |= p
is modally collapsed. ./

(38) We prove both directions.
(→) Assume s E s′. It follows that ∀p(s |= p → s′ |= p), by definition

(37). Now to show s⊕ s′ = s′, we have to show that s⊕ s′ and s′ make the
same propositions true, by (8). That is, we have to show, for an arbitrary
p, that s ⊕ s′ |= p ≡ s′ |= p. But both directions of this biconditional hold.
If s ⊕ s′ |= p then either s |= p or s′ |= p, by (36). But in either case, s′ |= p,
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given that every proposition true in s is true in s′. And if s′ |= p, then
clearly, by a fact about ⊕ (36), it follows that s⊕ s′ |= p.

(←) Assume s⊕s′ = s′. It follows by (8) that s⊕s′ and s′ make the same
propositions true. Now to show sE s′, we need to show, for an arbitrary
proposition p, that s |= p→ s′ |= p. So assume s |= p, to show s′ |= p. But
since s ⊕ s′ and s′ make the same propositions true, it suffices to show
s⊕ s′ |= p. But this follows from our assumption that s |= p, by (36). ./

(39) The idempotence, commutativity, and associativity of ⊕ with re-
spect to situations and, a fortiori, HypeStates, follows from (36) and the
the facts that ∨ is idempotent, commutative, and associative. ./

(41) This follows from the definition of s !s′ (40) once it is instantiated
when to HypeStates s and s′.

(42) Assume s !s′. Then by definition (40), we know ∃p(s |= p & s′ |= p).
Suppose p1 is such a proposition, so that we know s |= p1 and s′ |= p1. But
since s |= p1, so does s⊕s′′, by theorem (36). And by that same theorem,
since s′ |= p1, so does s′ ⊕ s′′′. Hence:

∃p((s⊕ s′′ |= p) & (s′ ⊕ s′′′ |= p))

So by definition (40), (s⊕ s′′) ! (s′ ⊕ s′′′). ./

(44) (Exercise)

(45) By reasoning analogous to the proof of (ω) in Section 3, though
stated in terms of Hype-propositions and HypeStates. ./

(46) This follows from (44) by (45) and the Rule of Substitution. ./

(47) (Exercise)

(48) Assume GlutOn(s,p), i.e., by (17) that:

(A) s |= p

(B) s |= p

We want to to show GapOn(s∗,p), i.e., by (18), that both (a) ¬s∗ |= p and
(b) ¬s∗ |= p. (a) This follows from (B) by (47). (b) If we instantiate (46)
to p, we have s∗ |= p ≡ ¬s |= p. But this is equivalent to ¬s∗ |= p ≡ s |= p.
Since Hype-propositions are identical to their double-negations (29), it
follows that ¬s∗ |= p ≡ s |= p. Then by (A), we may infer ¬s∗ |= p. ./

(49) Assume GapOn(s,p), i.e., by (18):
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(A) ¬s |= p

(B) ¬s |= p

We want to show GlutOn(s∗,p), i.e., by (17), that both (a) s∗ |= p and (b)
s∗ |= p. (a) This follows from (B) by (46). (b) If we instantiate (46) to p,
we have s∗ |= p ≡ ¬s |= p. Since Hype-propositions are identical to their
double-negations (29), it follows that s∗ |= p ≡ ¬s |= p. From this and (A)
it follows that s∗ |= p. ./

(50) This follows by applying the reasoning in (21) to HypeStates and
Hype-propositions. ./

(51) To establish s∗∗ = s, we note that since HypeStates encode only Hype-
propositions (32), it suffices by (8) to show ∀p(s∗∗ |= p ≡ s |= p). By GEN,
it then suffices to show s∗∗ |= p ≡ s |= p. Now if we instantiate (46) to s∗,
we obtain:

(A) s∗∗ |= p ≡ ¬s∗ |= p

Independently, if instantiate (47) to p, we obtain s |= p ≡ ¬s∗ |= p, which
by the commutativity of the biconditional, implies:

¬s∗ |= p ≡ s |= p

And since Hype-propositions are identical with their double negations,
it follows from this last result that:

(B) ¬s∗ |= p ≡ s |= p

But (A) and (B) imply s∗∗ |= p ≡ s |= p. ./

(52) Assume, for reductio, that s !s∗. So by definition (40), ∃p(s |= p &
s∗ |= p). Let q1 be such a proposition, so that we know s |= q1 and s∗ |= q1.
By a key fact about s∗ (46), the latter implies ¬s |= q1. But since Hype-
propositions are identical with their double negations, it follows that
¬s |= q1. Contradiction. ./

(53) Assume ¬s !s′. So by definition (40):

(A) ¬∃p(s |= p& s′ |= p)

We want to show s′ ⊕ s∗ = s∗. By (8) and the fact that HypeStates encode
only Hype-propositions (32), it suffices to show that ∀p((s′ ⊕ s∗) |= p ≡
s∗ |= p). So, by GEN, we show (s′ ⊕ s∗) |= p ≡ s∗ |= p.

(→) Assume (s′ ⊕ s∗) |= p. Independently, by (36), we know:
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∀p((s′ ⊕ s∗) |= p ≡ s′ |= p∨ s∗ |= p)

Hence, s′ |= p∨ s∗ |= p. Assume, for reductio, that ¬s∗ |= p. Then s′ |= p,
and since Hype-propositions are identical to their double negations (29),
we know s′ |= p. But it also follows from our reductio assumption, by
(47), that s |= p. So we’ve established s |= p& s′ |= p. Existentially gener-
alizing on p, it follows that ∃q(s |= q& s′ |= q), which contradicts (A).

(←) Exercise. ./

(54) Assume sE s′. Since theorem (38) holds for any situations, it holds
for HypeStates. So it follows that:

(A) s⊕ s′ = s′

Now independently, by (52), we know that s′ is not incompatible with its
Routley star image s′∗, i.e., ¬s′ !s′∗. From this and (A), it follows that the
fusion of s and s′ is not incompatible with with the Routley star image
of s′, i.e., that:

(B) ¬(s⊕ s′) !s′∗

Now consider the following Lemma, which holds for any situations s, s′,
and s′′:

Lemma: ¬(s⊕ s′) !s′′→¬s !s′′

Proof : Assume ¬(s ⊕ s′) !s′′. Then by definition of ! (40), we know
¬∃p((s ⊕ s′) |= p & s′′ |= p). Now suppose, for reductio, that s !s′′.
Then ∃p(s |= p& s′′ |= p). Suppose q1 is such a proposition, so that
we know both s |= q1 and s′′ |= q1. But the former implies s⊕s′ |= q1,
by definition of s⊕s′ (35). So we know (s⊕s′) |= q1 &s′′ |= q1. Hence,
∃p((s⊕ s′) |= p& s′′ |= p). Contradiction.

Given this Lemma, it follows from (B) that s is not incompatible with s′∗,
i.e., ¬s !s′∗. But by (53), this last result implies s′∗ ⊕ s∗ = s∗. Hence, by
(38), s′∗ E s∗. ./
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