In Defense of the Simplest Quantified Modal Logic


Bernard Linsky and Edward N. Zalta


Philosophical Perspectives, 8, 1994, 431-458


The simplest quantified modal logic combines classical quantification theory with the propositional modal logic K. The models of simple QML relativize predication to possible worlds and treat the quantifier as ranging over a single fixed domain of objects. But this simple QML has features that are objectionable to actualists. By contrast, Kripke-models, with their varying domains and restricted quantifiers, seem to eliminate these features. But in fact, Kripke-models also have features to which actualists object. Though these philosophers have introduced variations on Kripke-models to eliminate their objectionable features, the most well-known variations all have difficulties of their own. The present authors reexamine simple QML and discover that, in addition to having a possibilist interpretation, it has an actualist interpretation as well. By introducing a new sort of existing abstract entity, the contingently nonconcrete, they show that the seeming drawbacks of the simplest QML are not drawbacks at all. Thus, simple QML is independent of certain metaphysical questions.

[Preprint available online in PDF]