Object Theory

00000

Observations O Appendices

Bibliography 00

The Metaphysics of Possibility Semantics

Uri Nodelman and Edward N. Zalta

Philosophy Department, Stanford University

{nodelman,zalta}@stanford.edu

MCMP Colloquium June 06, 2024

- 3 New Definitions and Theorems
- 4 Observations

Object TheoryNew Defin000000000000

•00

Observations O

What are Possibilities in Possibility Semantics?

- Normally, a possibility is a proposition p such that $\Diamond p$
- But Humberstone 1981:

Here we have a motivation for the pursuit of modal logic against a semantic background in which less determinate entities than possible worlds, things which I am inclined for want of a better word to call simply *possibilities*, are what sentences (or formulae) are true or false with respect to.

• Edgington 1985:

... we can understand talk about *possibilities*, or *possible situations* ... [P]ossibilities differ from possible worlds in leaving many details unspecified.

• See also: Humberstone 2011; van Benthem 1981, 2016; Holliday 2014, forthcoming; and Ding & Holliday 2020.

Object Theory

00000

New Definitions and Theorems

Observations O

What Principles Govern Possibilities?

- Humberstone 1981, 318; van Benthem 1981, 3–4; 2016, 3–4; Holliday 2014, 3; forthcoming, 5, 15; and Ding & Holliday 2020, 155): [not necessarily independent]
 - Ordering: a refinement relation (≥) partially orders the possibilities.
 - *Persistence*: every proposition true in a possibility is true in every refinement of that possibility.
 - *Refinement*: if a possibility *x* doesn't determine the truth value of a proposition *p*, then (a) there is a possibility which is a refinement of *x* where *p* is true, and (b) there is a possibility which is a refinement of *x* where *p* is false.
 - *Cofinality*: if, for every possibility x' that is a refinement of possibility x there is a possibility x'' that refines x' and makes p true, then x makes p true.
 - *Negation*: the negation of *p* is true in a possibility *x* if and only if *p* fails to be true in every refinement of *x*.
 - *Conjunction*: the conjunction *p* and *q* is true in *x* if and only if both *p* and *q* are true in *x*.

000

00000

Object Theory New Definitions and Theorems

Observations Ο

Appendices

Our Goals

- All of these authors take possibilities to be *primitive* entities *in the semantics* and stipulate that these are semantic principles that govern these entities.
- They then interpret a propositional (modal) language with various connectives in terms of the semantic domain of possibilities and the principles that govern them.
- Our goals: (1) define *possibilities* in OT, (2) *derive* the above principles as theorems, and thereby prove what others stipulate, and (3) develop a limitation for the *purely semantic* conception.
- Desideratum: Achieve (1) and (2) without assuming set theory or modeling possibilities as mathematical objects.
- Strategy: Identify possibilities in OT as *situations* that are consistent and modally closed.
- In OT, situations are not primitive, and we can derive the fact that ٩ they are partially ordered.

●0000

Basic Principles

- OT = 2nd-order, S5 QML (without identity) extended by atomic formula 'xF' ('x encodes F'), 'E!', free logic for ι (rigid) and λ :
 - $O! =_{df} [\lambda x \diamond E!x]$
 - $A! =_{df} [\lambda x \neg \diamondsuit E!x]$
 - $x = y \equiv_{df}$
 - $(O!x \& O!y \& \Box \forall F(Fx \equiv Fy)) \lor (A!x \& A!y \& \Box \forall F(xF \equiv yF))$
 - $F = G \equiv_{df} \Box \forall x (xF \equiv xG)$
- Axiom: Ordinary objects don't encode properties:

• $O!x \to \neg \exists FxF$

• Axiom: If *x* encodes *F*, then necessarily *x* encodes *F*:

• $xF \rightarrow \Box xF$

- Axiom (Theorem): For any condition φ on properties, there is a (unique) abstract object that encodes just the properties satisfying φ:
 - $\exists x(A!x \& \forall F(xF \equiv \varphi))$, provided x isn't free in φ
 - $\vdash \exists ! x (A ! x \& \forall F (xF \equiv \varphi)), \text{ provided } x \text{ isn't free in } \varphi$
- Comprehension for *n*-ary relations is derived and identity for *n*-ary relations is defined.

00000

Observations 0

Definitions and Basic Theorems About Situations

• Zalta 1993: Situations are abstracta that encode only propositional properties:

• Situation(x) $\equiv_{df} A!x \& \forall F(xF \rightarrow \exists p(F = [\lambda y p]))$

- Situations are necessarily situations:
 - \vdash *Situation*(*x*) $\rightarrow \Box$ *Situation*(*x*)
 - We use s, s', \ldots as *rigid*, restricted variables.
- *p* is true in s (i.e., s makes *p* true) iff s encodes being such that *p*:

• $s \models p \equiv_{df} s[\lambda y p]$

• Situations are identical whenever they make the same propositions true:

• $\vdash s = s' \equiv \forall p(s \models p \equiv s' \models p)$

• *s* is a *part of s'* iff *s'* makes true every proposition *s* makes true:

•
$$s \leq s' \equiv_{df} \forall p(s \models p \rightarrow s' \models p)$$

• Parthood (⊴) is provably reflexive, anti-symmetric, and transitive on the situations:

•
$$\vdash s \trianglelefteq s'$$

 $\vdash (s \trianglelefteq s' \& s' \neq s) \rightarrow \neg s' \trianglelefteq s$
 $\vdash s \trianglelefteq s' \& s' \trianglelefteq s'' \rightarrow s \trianglelefteq s''$

00000

New Definitions and Theorems

Observations O Appendices

Bibliography 00

(Modal) Logic of Situations

• Zalta 1993: A situation is *actual* iff every proposition true in it is true:

• $Actual(s) \equiv_{df} \forall p(s \models p \rightarrow p)$

- A *possible* situation is one that might be actual:
 - $Possible(s) \equiv_{df} \Diamond Actual(s)$
- A *consistent* situation is one in which no proposition and its negation are both true:

• Consistent(s) $\equiv_{df} \neg \exists p(s \models p \& s \models \neg p)$

- $\vdash Possible(s) \rightarrow Consistent(s)$, but the converse doesn't hold.
- Usual definition of necessary implication and equivalence:

•
$$\varphi \Rightarrow \psi \equiv_{df} \Box(\varphi \to \psi)$$

- $\varphi \Leftrightarrow \psi \equiv_{df} \varphi \Rightarrow \psi \& \psi \Rightarrow \varphi$
- Truth in *s* not subject to modal distinctions:
 - $\bullet \ \vdash s \models p \Leftrightarrow \Box s \models p$
 - $\vdash \diamondsuit s \models p \Leftrightarrow s \models p$

 Goals
 Object T

 000
 000●0

New Definitions and Theorems

Observations O

Possible World Theory

• Zalta 1993: A *possible world* is any situation *s* that might be such that all and only true propositions are true in *s*:

 $PossibleWorld(s) \equiv_{df} \diamond \forall p(s \models p \equiv p)$

Given our convention, the subformula $s \models p \equiv p$ is to be parsed as $(s \models p) \equiv p$.

- The basic principles of possible world theory are derivable from the definition of *possible world* given above (Zalta 1993, 414–419). These include formal versions of the following principles:
 - Every possible world is maximal, consistent, and modally closed.
 - There is a unique actual world.
 - Possibly *p* iff there is a possible world in which *p* is true.
 - Necessarily *p* iff *p* is true in every possible world.
- $\vdash PossibleWorld(s) \equiv Maximal(s) \& Possible(s)$

Goals		New Definitions and Theorems	Observations	Appendices	Bibliography
000	0000	000000000000000000000000000000000000000	0	000000000000000000000000000000000000000	00

Identifying Situations Uniquely

 Comprehension for situations: for every condition on propositions, there is a unique situation that makes true all and only the proposition satisfying φ:

• $\vdash \exists ! s \forall p(s \models p \equiv \varphi)$, provided s isn't free in φ

• Canonical descriptions for situations are well-defined:

• $\vdash \exists y(y = \iota s \forall p(s \models p \equiv \varphi))$

- If s is the situation that makes true just the propositions satisfying φ, then s makes true just the propositions satisfying φ:
 - $\vdash (s = \iota s' \forall p(s' \models p \equiv \varphi)) \rightarrow \forall p(s \models p \equiv \varphi),$ provided s' isn't free in φ and φ is modally collapsed

Modally Closed Situations

• A situation *s* is modally closed just in case it makes true every proposition *p* necessarily implied by *s*'s being actual:

• $ModallyClosed(s) \equiv_{df} \forall p((Actual(s) \Rightarrow p) \rightarrow s \models p)$

- If *s* is modally closed then if *s* makes *p* true and *p* necessarily implies *q*, then *s* makes *q* true:
 - $\vdash ModallyClosed(s) \rightarrow \forall p \forall q (s \models p \& (p \Rightarrow q) \rightarrow s \models q)$
- If *s* is modally closed and consistent, then *s* is possible:
 - \vdash (*ModallyClosed*(*s*) & *Consistent*(*s*)) \rightarrow *Possible*(*s*)
- If *s* is modally closed and *p* is necessary, then *s* makes *p* true:
 - \vdash (*ModallyClosed*(s) & $\Box p$) \rightarrow s $\models p$

Object Theory

00000

New Definitions and The

Observations O

Definition of a Possibility

- A possibility is a situation that is consistent and modally closed:
 - $Possibility(s) \equiv_{df} Consistent(s) & ModallyClosed(s)$
 - Cf. $Possible(s) \equiv_{df} \diamond Actual(s)$, i.e., $\diamond \forall p(s \models p \rightarrow p)$
- Possible worlds are possibilities:
 - *Possibility(w)* (since *w* is modally closed and consistent)
- A possibility is necessarily a possibility:
 - $\vdash \Box \forall s(Possibility(s) \rightarrow \Box Possibility(s))$
 - In what follows we use $\mathfrak{s}, \mathfrak{s}', \ldots$ as rigid restricted variables ranging over possibilities.
- Possibilities are possible:
 - $\vdash Possible(\mathfrak{s}), \text{ i.e.}, \vdash Possibility(s) \rightarrow Possible(s)$

(Expand the definition and apply a previous theorem.)

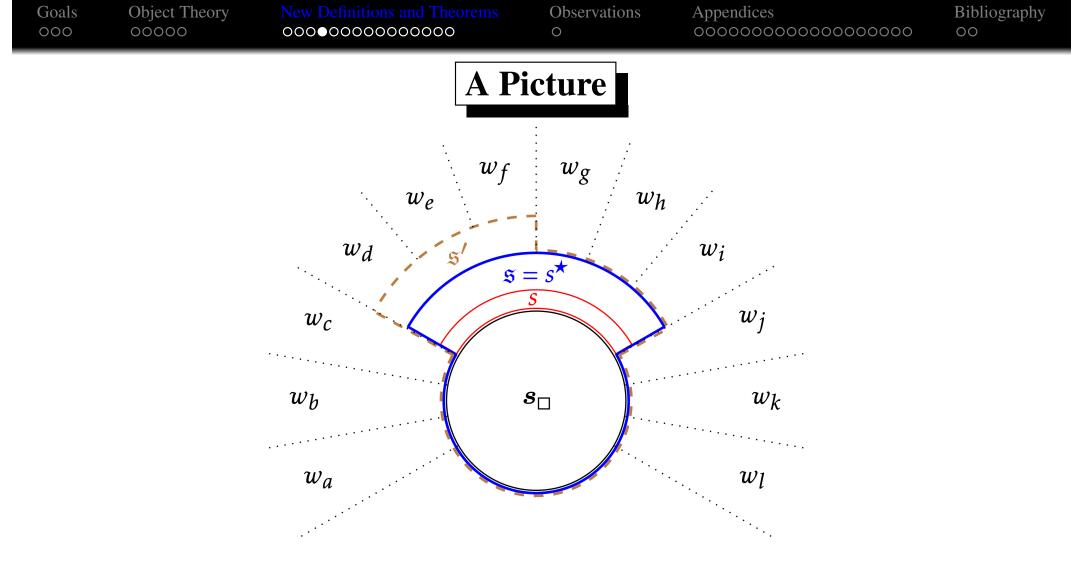
- A situation is possible just in case it is part of some possible world:
 - $\vdash Possible(s) \equiv \exists w(s \leq w)$
- Possibilities are therefore parts of some possible world:
 - $\vdash \exists w(\mathfrak{s} \trianglelefteq w)$

Object Theory

00000

Absolute Necessity, Possibilities, and Gaps

- *s* has a *gap on p* if *s* makes neither *p* nor \overline{p} (i.e., $\neg p$) true:
 - $GapOn(s, p) \equiv_{df} \neg s \models p \& \neg s \models \overline{p},$
- "Absolute necessity": $s_{\Box} =_{df} \iota s \forall p(s \models p \equiv \Box p)$
- Absolute necessity has a gap on contingent propositions:
 ⊢ Contingent(p) ≡ GapOn(s_□, p)
- Absolute necessity is a possibility: $\vdash Possibility(s_{\Box})$
- No proper part of absolute necessity is a possibility: $\vdash \forall s ((s \leq s_{\Box} \& s \neq s_{\Box}) \rightarrow \neg Possibility(s))$
- Every possibility is a refinement of absolute necessity:
 ⊢ ∀𝔅(𝔅 ⊵ 𝑘_□)
- Possibilities and Gaps:
 - If a possibility has a gap on *p*, *p* is contingent:
 - $\vdash GapOn(\mathfrak{s}, p) \rightarrow Contingent(p)$
 - If a possibility has a gap on p, it has a gap on $\neg p$:
 - $\vdash \forall p (GapOn(\mathfrak{s}, p) \to GapOn(\mathfrak{s}, \neg p))$



- s_{\Box} = the smallest possibility ('absolute necessity')
- *s* = a *possible* situation
- s^{\star} = the smallest possibility s that contains s $s' \forall p(s' \models p \equiv (Actual(s) \Rightarrow p))$

$$\mathfrak{s}' = \mathfrak{a}$$
 refinement of \mathfrak{s}

Goals	Object Theory		Observations	Appendices	Bibliography
000	00000	000000000000000000000000000000000000000	0	000000000000000000000000000000000000000	00

What We Have to Show

- We have to show:
 - + Ordering Principle
 - + Persistence Principle
 - F Refinability Principle
 - F Cofinality Principle
 - ⊢ Negation Principle
 - ⊢ Conjunction Principle

Object Theory

00000

New Definitions and The

Observations O Bibliography 00

The Ordering Principle

• Definition: a situation s' contains situation s, written $s' \ge s$, just in case s is a part of s':

 $s' \trianglerighteq s \equiv_{df} s \trianglelefteq s'$

- When the situations are possibilities, we read $\mathfrak{s}' \succeq \mathfrak{s}$ as: \mathfrak{s}' is a *refinement of* \mathfrak{s} .
- Since ≤ is reflexive, anti-symmetric, and transitive on the situations, it follows that *refinement of* is reflexive, anti-symmetric, and transitive on the possibilities:

 $\begin{aligned} (a) \vdash \mathfrak{s} &\unrhd \mathfrak{s} \\ (b) \vdash (\mathfrak{s}' &\trianglerighteq \mathfrak{s} \And \mathfrak{s}' \neq \mathfrak{s}) \to \neg \mathfrak{s} &\trianglerighteq \mathfrak{s}' \\ (c) \vdash (\mathfrak{s}'' &\trianglerighteq \mathfrak{s}' \And \mathfrak{s}' &\trianglerighteq \mathfrak{s}) \to \mathfrak{s}'' &\trianglerighteq \mathfrak{s} \end{aligned}$

These facts validate the principle of *Ordering*; cf. Humberstone 1981 (318); 2011 (899); van Benthem 1981 (3); 2016 (3); Holliday 2014 (3); Ding & Holliday 2020 (155); and Holliday forthcoming (Definition 2.1 and 2.21).

00000

Object Theory Observations Ο

Appendices Bibliography 00

The Persistence Principle

• Humberstone: where π is a proposition, X and Y are possibilities, \geq is the refinement condition corresponding to \geq , and $V(\pi, X)$ is the truth-value of π with respect to X (1981, 318):

• If $V(\pi, X)$ is defined and $Y \ge X$, then $V(\pi, Y) = V(\pi, X)$

"Further delimitation of a possible state of affairs should not reverse truth-values, but only reduce indeterminancies" (1981, 318).

• In OT, this Persistence Principle can be represented as the *theorem* that if a proposition p is true in a possibility \mathfrak{s} and \mathfrak{s}' is a refinement of s, then p is true in s':

• \vdash ($\mathfrak{s} \models p \& \mathfrak{s}' \succeq \mathfrak{s}$) $\rightarrow \mathfrak{s}' \models p$

Cf. van Benthem 1981, 3 ('Heredity'), 2016, 3; Restall 2000, Definition 1.2 (Heredity Condition); Holliday 2014, 315; forthcoming, 15; Berto 2015, 767 (HC); Berto & Restall 2019, 1128 (HC); and Ding & Holliday 2020, 155.

• Cf. Barwise 1989a (265):

$$Persistent(p) \equiv_{df} \forall s(s \models p \rightarrow \forall s'(s \le s' \rightarrow s' \models p))$$

Goals	Object Theory	New Definitions and Theorems	Observations	Appendices	Bibliography
000	00000		O	000000000000000000000000000000000000	00

The Modal Closure of a Situation: I

• The modal closure of *s* is the situation that makes true all and only those propositions *p* such that *s*'s being actual necessarily implies *p*:

• $s^{\star} =_{df} \iota s' \forall p(s' \models p \equiv (Actual(s) \Rightarrow p))$

• The modal closure of *s* makes *p* true iff *s*'s being actual necessarily implies *p*:

• $\vdash \forall p(s^{\star} \models p \equiv (Actual(s) \Rightarrow p))$

• A situation is a part of its modal closure:

•
$$\vdash s \leq s^{\star}$$

Goals	Object Theory		Observations	Appendices	Bibliography
000	00000	00000000000000	0	000000000000000000000000000000000000000	00

Interlude: The *p*-Extension of a Situation

• The *p* extension of a situation *s* is that situation that makes all the propositions in *s* true and also makes *q* true:

• $s^{+p} =_{df} \iota s' \forall q(s' \models q \equiv (s \models q \lor q = p))$

• The *p*-extension of *s* is a part of a possible world *w* iff *s* is a part of *w* and *p* is true in *w*

•
$$\vdash s^{+p} \trianglelefteq w \equiv s \trianglelefteq w \& w \models p$$

- *p* is true in every world of which *s* is a part iff *s*'s being actual necessarily implies *p*
 - $\bullet \vdash \forall w(s \trianglelefteq w \to w \models p) \equiv (Actual(s) \Rightarrow p)$

Goals	Object Theory		Observations	Appendices	Bibliography
000	00000	000000000000000	0	000000000000000000000000000000000000000	00

The Modal Closure of a Situation: II

• A situation is a part of a possible world iff its modal closure is:

• $\vdash s \trianglelefteq w \equiv s^* \trianglelefteq w$

- A situation is possible iff its modal closure is:
 - $\vdash Possible(s) \equiv Possible(s^{\star})$
- The modal closure of a situation is modally closed:
 - \vdash *ModallyClosed*(s^{\star})

The Refinability Principle

- Humberstone (1981, 318) (*T* and *F* are truth-values):
 - For any π and any X, if $V(\pi, X)$ is undefined, then $\exists Y(Y \ge X \text{ with } V(\pi, Y) = T)$ and $\exists Z(Z \ge X \text{ with } V(\pi, Z) = F)$
- Use *p* for π , \mathfrak{s} for *X*, and *GapOn*(\mathfrak{s} , *p*) for *V*(π , *X*) is undefined.
- Refinability: if s has a gap on p, then there is a possibility that refines s in which p is true and there is a possibility that refines s in which ¬p is true:

 $GapOn(\mathfrak{s}, p) \to \exists \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \And \mathfrak{s}' \models p) \And \exists \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \And \mathfrak{s}' \models \neg p)$

Cf. Holliday 2014, 315; forthcoming, 15; and D&H 2020, 155.

• But this can be strengthened to a biconditional:

 $GapOn(\mathfrak{s},p) \equiv \exists \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \And \mathfrak{s}' \models p) \And \exists \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \And \mathfrak{s}' \models \neg p)$

Observations Goals **Object** Theory 00000 Ο

Appendices

Proof Sketch of Refinability

Proof Sketch: Let *r* be an arbitrary, but fixed, proposition. (\rightarrow) Since $GapOn(\mathfrak{s}, r)$ implies $GapOn(\mathfrak{s}, \neg r)$, it suffices to show only:

 $GapOn(\mathfrak{s}, r) \to \exists \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \And \mathfrak{s}' \models r)$

So assume $GapOn(\mathfrak{s}, r)$ and find a witness to $\exists \mathfrak{s}'(\mathfrak{s}' \succeq \mathfrak{s} \& \mathfrak{s}' \models r)$. Consider $(\mathfrak{s}^{+r})^{\star}$; abbreviate this as $\mathfrak{s}^{+r\star}$. We have to show all of the following: (a) $\mathfrak{s}^{+r\star} \succeq \mathfrak{s}$, (b) $\mathfrak{s}^{+r\star} \models r$, and (c) *Possibility*($\mathfrak{s}^{+r\star}$). And by definition, the last of the above requires us to show (d) Consistent($\mathfrak{s}^{+r\star}$) and (e) ModallyClosed($\mathfrak{s}^{+r\star}$)....

 $(\leftarrow) \text{ Assume: } \exists \mathfrak{s}'(\mathfrak{s}' \succeq \mathfrak{s} \And \mathfrak{s}' \models r) \And \exists \mathfrak{s}'(\mathfrak{s}' \succeq \mathfrak{s} \And \mathfrak{s}' \models \neg r)$ (ϑ) For reductio, suppose $\neg GapOn(\mathfrak{s}, r)$. Then either $\mathfrak{s} \models r$ or $\mathfrak{s} \models \neg r$. Wlog, suppose $\mathfrak{s} \models r$. By Persistence Principle, every refinement of s makes r true. So there can't be a refinement that makes $\neg r$ true, contradicting the right conjunct of (ϑ) .

000

Object Theory

00000

New Definitions and The

Observations O Appendices

Bibliography 00

The Cofinality Principle

- Van Benthem (1981, 4; 2016, 3) adds the principle labeled *Cofinality*. In 2016, he formulates this principle as follows, where $P\mathbf{d}$ is any atomic fact and \geq is the the partial order on possibilities:
 - If for all $v \ge w$, there exists a $u \ge v$ with $P\mathbf{d}$ true at u, then $P\mathbf{d}$ is already true at w.
- This can be derived, without restriction to 'atomic facts', as the theorem: if, for every possibility \$\sigma'\$ that refines \$\sigma\$, there is a possibility \$\sigma'\$ that refines \$\sigma'\$ in which \$p\$ is true, then \$p\$ is true in \$\sigma\$: \[\theta\sigma'(\$\sigma'\beta\sigma) \rightarrow \$\sigma'\beta\sigma\sigma'\beta\sigma'\beta\sigma'\beta\sigma'\beta\sigma'\beta
- Cf. Humberstone's (2011, 900) restatement of the Refinement Principle.
- The proof appeals to Refinability. But Refinability isn't implied by Cofinality unless the notion of *possibility* obeys the Negation Constraint:

 $\mathfrak{s} \models \neg p \equiv \neg \exists \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \And \mathfrak{s}' \models p)$

Ours does (next slide); others have to stipulate it.

Negation, Conjunction and Fundamental Theorems

- Humberstone 1981 (319–320) and 2011 (900) adds the Negation and Conjunction Principles.
- Negation Principle: the negation of *p* is true in *s* if and only if *p* fails to be true in every refinement of *s*:

 $\vdash \mathfrak{s} \models \neg p \equiv \forall \mathfrak{s}'(\mathfrak{s}' \trianglerighteq \mathfrak{s} \to \neg \mathfrak{s}' \models p)$

 Conjunction Principle: the conjunction p and q is true in s if and only if both p and q are true in s:

 $\vdash \mathfrak{s} \models (p \And q) \equiv (\mathfrak{s} \models p \And \mathfrak{s} \models q)$

- Fundamental Theorems:
 - *p* is possibly true if and only if there is a possibility in which *p* is true:

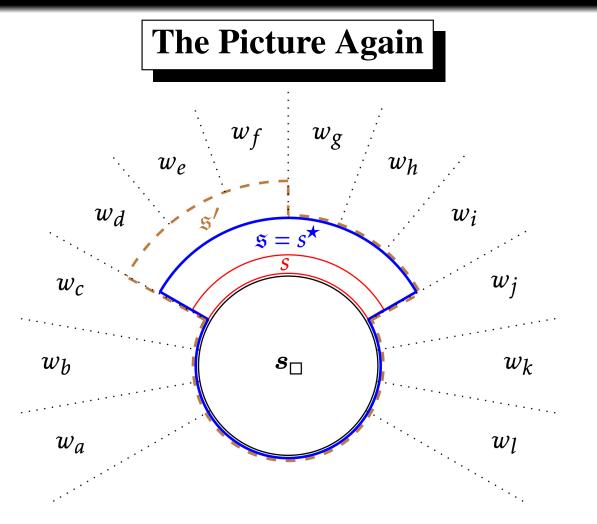
 $\vdash \Diamond p \equiv \exists \mathfrak{s}(\mathfrak{s} \models p)$

• *p* is necessarily true if and only if *p* is true in every possibility: $\Box p \equiv \forall \mathfrak{s}(\mathfrak{s} \models p)$

New Definitions and Theor

Observations 0 Appendices

Bibliography 00



- s_{\Box} = the smallest possibility ('absolute necessity')
- *s* = a *possible* situation
- s^{\star} = the smallest possibility s that contains s $\iota s' \forall p(s' \models p \equiv (Actual(s) \Rightarrow p))$

$$\mathfrak{s}' = \mathfrak{a}$$
 refinement of \mathfrak{s}

Object Theory

00000

New Definitions and Theorems

Observation

Consistency Doesn't Imply Possibility

- Fundamental Theorems guarantee that technically-conceived possibilities line up with the possibly true propositions:
 ◇p ≡ ∃\$(\$ ⊨ p)
- The right-to-left direction doesn't necessarily hold in Humberstone, van Benthem, Holliday, Ding & Holliday, and others (putting aside the fact that they don't have modal operators in the semantics).
- What is going wrong in the pure semantic study of possibilities: without a primitive modal operator, the closures of possibilities are deductive closures and not modal closures.
- $\vdash Possible(s) \equiv Consistent(s^{\star})$
- Maximal(s) & Consistent(s) ¥ Possible(s)
- \vdash Maximal(s) & Consistent(s^{*}) \rightarrow PossibleWorld(s)
- Absolute necessity makes true (encodes) more than just logical truths it encodes all the metaphysically necessary truths.

Object Theory

00000

New Definitions and Theorems

Observations O Bibliography 00

Appendix: Proof of Situation Comprehension

 $\vdash \exists s \forall p(s \models p \equiv \varphi), \text{ provided } s \text{ isn't free in } \varphi$ Proof: We have to show: $\exists x(Situation(x) \& \forall p(x \models p \equiv \varphi)),$ provided x isn't free in φ . Pick φ where x isn't free, and consider a property variable that isn't free in φ , say G. Let ψ be $\exists p(\varphi \& G = [\lambda z p]). \text{ Then } \exists x(A!x \& \forall G(xG \equiv \psi)), \text{ i.e.},$ $\exists x(A!x \& \forall G(xG \equiv \exists p(\varphi \& G = [\lambda z p])))$

Suppose it is *a*. Then A!*a* and $\forall G(aG \equiv \exists p(\varphi \& G = [\lambda z p]))$ (A) Clearly, *Situation(a)*. So, by GEN, we only have to show $a \models p \equiv \varphi$. Instantiate $a[\lambda z p]$ into the following alphabetic variant of (A), where q is a variable that is substitutable for p, and doesn't occur free, in φ : $\forall G(aG \equiv \exists q(\varphi_p^q \& G = [\lambda z q]))$ (A') to obtain $a[\lambda z p] \equiv \exists q((\varphi_p^q)_G^{[\lambda z p]} \& [\lambda z p] = [\lambda z q])$. But since G isn't free in φ , $(\varphi_p^q)_C^{[\lambda z p]}$ is just φ_p^q . (B) $a[\lambda z p] \equiv \exists q(\varphi_p^q \& [\lambda z p] = [\lambda z q])$ Now prove $a \models p \equiv \varphi$, using $p = q \equiv_{df} [\lambda z p] = [\lambda z q]$. (See Zalta m.s., (484).)

Object Theory

00000

New Definitions and Theorems

Observations 0 Appendices ••••••••••• Bibliography 00

Proof of Fact About Modally Closed Situations

 $\vdash ModallyClosed(s) \rightarrow \forall p \forall q (s \models p \& (p \Rightarrow q) \rightarrow s \models q)$ *Proof*: Assume *ModallyClosed(s)*. So (ϑ) $\forall q((Actual(s) \Rightarrow q) \rightarrow s \models q)$ We want to show: $(s \models p \& (p \Rightarrow q)) \rightarrow s \models q$. So assume: (ξ) $s \models p \& p \Rightarrow q$ If we instantiate (ϑ) to q, it follows that: $(\zeta) (Actual(s) \Rightarrow q) \rightarrow s \models q$ So to show $s \models q$, it remains only to show $Actual(s) \Rightarrow q$. Use the Lemma: $\forall r(\Box s \models r \rightarrow \Box(Actual(s) \rightarrow r))$. Instantiate this to p: $\Box s \models p \rightarrow \Box(Actual(s) \rightarrow p)$ But the first conjunct of (ξ) implies its own necessity, and $\Box s \models p$. Hence: $\Box(Actual(s) \to p)$ So by definition of \Rightarrow : (θ) Actual(s) $\Rightarrow p$ But (θ) and the second conjunct of (ξ) jointly imply

 $Actual(s) \Rightarrow q. \bowtie$

Object Theory

00000

Observations O Bibliography 00

Proof of: ModallyClosed & Consistent Implies Possible

 $\vdash (ModallyClosed(s) \& Consistent(s)) \rightarrow Possible(s)$ Proof: Assume ModallyClosed(s) and Consistent(s). Then we know, respectively:

$$(\vartheta) \quad \forall q ((Actual(s) \Rightarrow q) \rightarrow s \models q)$$

 $(\xi) \ \neg \exists p(s \models p \& s \models \neg p)$

For reductio, assume $\neg Possible(s)$. By definition and a Rule of Substitution, this entails $\neg \diamondsuit Actual(s)$. So $\Box \neg Actual(s)$ and, hence, $\neg Actual(s)$. By the definition of Actual(s), this implies $\exists p(s \models p \And \neg p)$. Suppose p_1 is such a proposition, so that we know both $s \models p_1$ and $\neg p_1$. The former implies $\neg s \models \neg p_1$, by (ξ). Now, separately, if we instantiate (ϑ) to $\neg p_1$, then we also know: (ζ) ($Actual(s) \Rightarrow \neg p_1$) $\rightarrow s \models \neg p_1$

But we've established $\neg s \models \neg p_1$, and so by (ζ) , $\neg(Actual(s) \Rightarrow \neg p_1)$. By definition of (\Rightarrow) and a Rule of Substitution, it follows that $\neg \Box(Actual(s) \rightarrow \neg p_1)$. This implies $\Diamond \neg (Actual(s) \rightarrow \neg p_1)$, which in turn implies $\Diamond (Actual(s) \& p_1)$. But this last result implies $\Diamond Actual(s)$. Contradiction.

Goals	Object Theory	New Definitions and Theorems	Observations		Bibliography
000	00000	000000000000000	0	000000000000000000000000000000000000000	00

Proof: Modally Closed *s* Make Necessary Truths True

- \vdash (*ModallyClosed*(s) & $\Box p$) \rightarrow s $\models p$
- Assume *ModallyClosed*(*s*) and $\Box p$. The second implies $\Box(Actual(s) \rightarrow p)$. So $Actual(s) \Rightarrow p$, by definition. Then by definition of *ModallyClosed*(*s*), $s \models p$.

New Definitions and Theorems

Observations 0

Possible Situations are Parts of Worlds

 $\vdash Possible(s) \equiv \exists w(s \trianglelefteq w)$

Proof: (\rightarrow) Assume *Possible*(*s*). Then by definition, $\Diamond \forall p(s \models p \rightarrow p)$. By Fund. Thm., $\exists w(w \models \forall p(s \models p \rightarrow p))$. Suppose w_1 is such that $w_1 \models \forall p(s \models p \rightarrow p)$. Then by a theorem of world theory, we can export the quantifier:

$$\forall p(w_1 \models (s \models p \to p)) \tag{9}$$

But since:

Object Theory

00000

 $w_1 \models (s \models p \rightarrow p)$ is necessarily equivalent to $w_1 \models (s \models p) \rightarrow (w_1 \models p)$ it follows that:

$$\forall p(w_1 \models (s \models p) \to (w_1 \models p)) \tag{\xi}$$

It remains to show that w_1 is a witness to $\exists w(s \leq w)$, and so we have to show that $\forall p(s \models p \rightarrow w_1 \models p)$. By GEN, assume $s \models p$. Then $\Box s \models p$. So by Fund. Thm., $\forall w(w \models (s \models p))$. Hence $w_1 \models (s \models p)$. Instantiating p into (ξ) , it follows that $w_1 \models p$. (\leftarrow) Assume $\exists w(s \leq w)$ and suppose w_1 is a witness, so that we know $s \leq w_1$:

$$\forall p(s \models p \to w_1 \models p) \tag{(\zeta)}$$

It suffices to show $w_1 \models Actual(s)$, since we can then conclude $\exists w(w \models Actual(s))$, then $\diamond Actual(s)$, and then conclude *Possible*(s), by definition. Since worlds are modally closed, it suffices to show $w_1 \models \forall p(s \models p \rightarrow p)$. But now it suffices to show $\forall p(w_1 \models (s \models p \rightarrow p))$. So by GEN, we show: $w_1 \models (s \models p \rightarrow p)$. Now it suffices to show $(w_1 \models (s \models p)) \rightarrow (w_1 \models p)$. So assume $w_1 \models (s \models p)$. Then by Fund. Thm., $\diamond s \models p$. Hence, $s \models p$. So $w_1 \models p$, by (ζ) .

Absolute Necessity Has Gaps on Contingencies

 $\vdash Contingent(p) \equiv GapOn(s_{\Box}, p)$

Proof: (\rightarrow) Assume *Contingent*(*p*). Then $\Diamond p$ and $\Diamond \neg p$. Independently, by definition:

 $(\boldsymbol{\vartheta}) \ \forall p(\boldsymbol{s}_{\Box} \models p \equiv \Box p)$

To show $GapOn(s_{\Box}, p)$, we have to show both $\neg s_{\Box} \models p$ and $\neg s_{\Box} \models \overline{p}$. Since we know $\Diamond \neg p$, we know $\neg \Box p$. So if we instantiate (ϑ) to p, then it follows that $\neg s_{\Box} \models p$. Since we also know $\Diamond p$, we know $\neg \Box \neg p$. So if we instantiate (ϑ) to $\neg p$, then it follows that $\neg s_{\Box} \models \neg p$. So by logic, $\neg s_{\Box} \models \overline{p}$. (\leftarrow) (Exercise) \bowtie

Observations O

Absolute Necessity is a Possibility

 $\vdash Possibility(\boldsymbol{s}_{\Box})$

Object Theory

00000

 \boldsymbol{s}_{\Box} is a canonically defined situation. So we have to show:

$$Consistent(\boldsymbol{s}_{\Box}) \tag{A}$$

$$ModallyClosed(\mathbf{s}_{\Box}) \tag{B}$$

Now we know:

(A) For reductio, suppose $\neg Consistent(s_{\Box})$, i.e., $\exists p(s_{\Box} \models p \& s_{\Box} \models \neg p)$. Let q_1 be such a proposition, so that we know $s_{\Box} \models q_1$ and $s_{\Box} \models \neg q_1$. By (ϑ) , these imply, respectively, $\Box q_1$ and $\Box \neg q_1$. Contradiction, once the T schema is applied to both results.

(B) We have to show: (Actual(s_□) ⇒ p) → s_□ ⊨ p, for arbitrary p. So assume: Actual(s_□) ⇒ p (ξ) To show s_□ ⊨ p, it suffices, by (ϑ), to show □p. For reductio, suppose ¬□p, i.e., ◊¬p. But our assumption (ξ) implies □(Actual(s_□) → p). So □(¬p → ¬Actual(s_□)). But from this and ◊¬p, it follows by K◊ that ◊¬Actual(s_□). By definition this implies ◊¬∀q(s_□ ⊨ q → q). So ◊∃q¬(s_□ ⊨ q → q), i.e., ◊∃q(s_□ ⊨ q & ¬q). By BF◊, ∃q◊(s_□ ⊨ q & ¬q). Suppose p₁ is such a proposition, so that we know ◊(s_□ ⊨ p₁ & ¬p₁). Then ◊(s_□ ⊨ p₁) and ◊¬p₁. The latter implies ¬□p₁. The former implies s_□ ⊨ p₁. So by (ϑ), □p₁. Contradiction. ⋈

Object Theory

00000

Observations O Appendices

No Proper Part of Absolute Necessity Is a Possibility

 $\vdash \forall s((s \leq s_{\Box} \& s \neq s_{\Box}) \rightarrow \neg Possibility(s))$

Proof: We have to show $(s \leq s_{\Box} \& s \neq s_{\Box}) \rightarrow \neg Possibility(s)$. So assume $s \leq s_{\Box}$ and $s \neq s_{\Box}$. The second implies $\neg \forall p(s \models p \equiv s_{\Box} \models p)$, i.e.,

 $\exists p((s \models p \& \neg s_{\Box} \models p) \lor (s_{\Box} \models p \& \neg s \models p))$

Suppose q_1 is such a proposition, so that we know:

 $(s \models q_1 \& \neg s_{\Box} \models q_1) \lor (s_{\Box} \models q_1 \& \neg s \models q_1)$ The left disjunct contradicts $s \trianglelefteq s_{\Box}$ (exercise). So we know $s_{\Box} \models q_1$ and $\neg s \models q_1$. The first implies $\Box q_1$, by a modally strict, immediate consequence of the definition of s_{\Box} . Now, for reductio, suppose *Possibility*(*s*). Then, *s* is modally closed, by definition. So by a previous theorem (modally closed situations make necessary truths true), this last fact and $\Box q_1$ imply $s \models q_1$. Contradiction.

Goals 000	Object Theory 00000	New Definitions and Theorems	Observations O	Appendices 000000000000000000000000000000000000	Bibliography 00

Every Possibility Refines Absolute Necessity

 $\vdash \forall \mathfrak{s}(\mathfrak{s} \trianglerighteq s_{\Box})$

By GEN, it suffices to show $s \ge s_{\Box}$. So we have to show $\forall p(s_{\Box} \models p \rightarrow s \models p)$. So, again, by GEN, we show $s_{\Box} \models p \rightarrow s \models p$. Assume $s_{\Box} \models p$. Then by definition of s_{\Box} , it follows that $\Box p$. But since possibilities are modally closed and modally closed situations make necessary truths true, it follows that $s \models p$.

Goals 000	Object Theory 00000	New Definitions and Theorems	Observations O	Appendices 000000000000000000000000000000000000	Bibliography 00

Proof of: *p* is Contingent if *s* has a Gap on *p*

 $\vdash GapOn(\mathfrak{s}, p) \rightarrow Contingent(p)$

Assume $GapOn(\mathfrak{s}, p)$, i.e., both $\neg \mathfrak{s} \models p$ and $\neg \mathfrak{s} \models \overline{p}$. The latter implies $\neg \mathfrak{s} \models \neg p$. Now suppose $\neg Contingent(p)$, for reductio. Then by $\neg(\diamond p \& \diamond \neg p)$, i.e., $\Box \neg p \lor \Box p$. But both disjuncts lead to contradiction. If $\Box \neg p$, then $\mathfrak{s} \models \neg p$ (by a now familiar fact), which contadicts $\neg \mathfrak{s} \models \neg p$; if $\Box p$, then again by familiar reasoning, $\mathfrak{s} \models p$, which contradicts $\neg \mathfrak{s} \models p$. Contradiction full stop. \bowtie

Goals	Object Theory	New Definitions and Theorems	Observations		Bibliography
000	00000	000000000000000000000000000000000000000	0	000000000000000000000000000000000000000	00

Gap on *p* **implies Gap on** $\neg p$

 $\forall p(GapOn(\mathfrak{s}, p) \to GapOn(\mathfrak{s}, \neg p))$

Proof. Assume $GapOn(\mathfrak{s}, p)$ and for reductio, $\neg GapOn(\mathfrak{s}, \neg p)$. Then, by definition, either $\mathfrak{s} \models \neg p$ or $\mathfrak{s} \models \neg \overline{p}$, i.e., either $\mathfrak{s} \models \neg p$ or $\mathfrak{s} \models \neg \neg p$. But the former contradicts $GapOn(\mathfrak{s}, p)$. The latter, by a consequence of the fact that \mathfrak{s} is modally closed, implies $\mathfrak{s} \models p$, which also contradicts $GapOn(\mathfrak{s}, p)$. Contradiction.

Proof of: *s* is a Part of its Modal Closure

 $\vdash s \trianglelefteq s^{\star}$

Object Theory

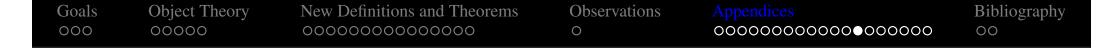
00000

Proof. s^* is clearly a situation and so it remains to show $\forall p(s \models p \rightarrow s^* \models p)$. Proof strategy:

- (A) Independently show $s \models p \rightarrow (Actual(s) \rightarrow p)$ is a modally strict theorem.
- (B) Conclude from (A) that $\Box s \models p \rightarrow \Box(Actual(s) \rightarrow p)$, by Rule RM.
- (C) Assume $s \models p$, for conditional proof. To show $s^* \models p$, we have to show $Actual(s) \Rightarrow p$, by definition.
- (D) Our assumption in (C) implies $\Box s \models p$.
- (E) From (D) and (B) it follows that $\Box(Actual(s) \rightarrow p)$.

(F) Conclude $Actual(s) \Rightarrow p$, by definition of \Rightarrow .

Since (B) – (F) are straightforward, it remains to show (A). So assume both $s \models p$ and Actual(s). The latter implies $\forall q(s \models q \rightarrow q)$, by definition. Instantiating this to p yields $s \models p \rightarrow p$. But then p, since $s \models p$ by assumption. \bowtie



Proof of Theorem

The *p*-extension of *s* is a part of *w* iff *s* is a part of *w* and *w* makes *p* true.

$$\vdash s^{+p} \trianglelefteq w \equiv s \trianglelefteq w \& w \models p$$

Proof. Clearly, s^{+p} and *w* are both situations. Then:

$$s^{+p} \leq w$$

$$\equiv \forall q(s^{+p} \models q \rightarrow w \models q) \qquad \text{by definition } \leq \forall q((s \models q \lor q = p) \rightarrow w \models q) \qquad \text{by definition of } s^+p$$

$$\equiv \forall q((s \models q \rightarrow w \models q) \& (q = p \rightarrow w \models q)) \qquad \text{by logic}$$

$$\equiv \forall q(s \models q \rightarrow w \models q) \& \forall q(q = p \rightarrow w \models q) \qquad \text{by logic}$$

$$\equiv \forall q(s \models q \rightarrow w \models q) \& w \models p \qquad \text{by logic}$$

$$\equiv s \leq w \& w \models p \qquad \text{by definition } \leq \forall q \in p \rightarrow w \models q$$

 \bowtie

Observations 0

Proof of Theorem

• *p* is true in every world of which *s* is a part iff *s*'s being actual necessarily implies *p*:

$$\vdash \forall w(s \leq w \rightarrow w \models p) \equiv (Actual(s) \Rightarrow p)$$

00000

$$\forall w(s \leq w \rightarrow w \models p)$$

$$\equiv \forall w \neg (s \leq w \& \neg w \models p)$$

$$\equiv \neg \exists w(s \leq w \& w \Rightarrow \neg w \models p)$$

$$\equiv \neg \exists w(s \leq w \& w \models \neg p)$$

$$\equiv \neg \exists w(s \leq w \& w \models \overline{p})$$

$$\equiv \neg \exists w(s^{+\overline{p}} \leq w)$$

$$\equiv \neg Possible(s^{+\overline{p}})$$

$$\equiv \neg \diamond Actual(s^{+\overline{p}})$$

$$\equiv \neg \diamond \forall q((s \models q \rightarrow q) = \overline{p}) \rightarrow q)$$

$$\equiv \neg \diamond \forall q((s \models q \rightarrow q) \& (q = \overline{p} \rightarrow q))$$

$$\equiv \neg \diamond (\forall q(s \models q \rightarrow q) \& \forall q(q = \overline{p} \rightarrow q))$$

$$\equiv \neg \diamond (\forall q(s \models q \rightarrow q) \& \forall q(q = \overline{p} \rightarrow q))$$

$$\equiv \neg \diamond (\forall q(s \models q \rightarrow q) \& \forall q(q = \overline{p} \rightarrow q))$$

$$\equiv \neg \diamond (\forall q(s \models q \rightarrow q) \& \neg p)$$

$$\equiv \neg \diamond (Actual(s) \& \neg p)$$

$$\equiv \Box \neg (Actual(s) \& \neg p)$$

$$\equiv \Box(Actual(s) \to p)$$
$$\equiv Actual(s) \Rightarrow p$$

by logic by logic by coherency of worlds by logic by previous theorem by by previous theorem by definition by definition by definition $s^{+\overline{p}}$ by logic by logic by logic by logic by definition by modal logic by logic by definition

 \bowtie

s is part of w iff s^* is part of w

 $\vdash s \trianglelefteq w \equiv s^{\star} \trianglelefteq w$

Proof. (\rightarrow) Assume $s \leq w$, and for reductio, suppose $\neg s^* \leq w$. Then $\exists p(s^* \models p \& \neg w \models p)$. Let p_1 be such a proposition, so that we know both $s^* \models p_1$ and $\neg w \models p_1$. Independently, from the fact that $s^* \models p_1$ it follows that $Actual(s) \Rightarrow p_1$, by definition. But the following is an instance of a previous theorem:

 $(s \leq w \rightarrow w \models p_1) \equiv (Actual(s) \Rightarrow p_1)$

It follows that $s \leq w \rightarrow w \models p_1$. Hence, $w \models p_1$. Contradiction.

(←) Assume $s^* \leq w$. But we just established $s \leq s^*$. Since s^* and *w* are situations, it follows by transitivity of \leq that $s \leq w$.

000 000000000000 0 0000000000 00	Goals	Object Theory	New Definitions and Theorems	Observations		Bibliography
	000	00000	000000000000000000	0	000000000000000000000000000000000000000	00

A Situation is Possible iff its Modal Closure Is

$$\vdash Possible(s) \equiv Possible(s^{\star})$$

Proof. Possible(s) $\equiv \exists w(s \leq w)$ $\equiv \exists w(s^* \leq w)$ $\equiv Possible(s^*)$

by previous theorem by previous theorem by previous theorem

 \bowtie

Object Theory

00000

The Modal Closure of *s* is Modally Closed

 \vdash ModallyClosed(s^{*}) *Proof.* We have to show: $\forall p((Actual(s^{\star}) \Rightarrow p) \rightarrow s^{\star} \models p)$. Our strategy: $(Actual(s^{\star}) \Rightarrow p) \rightarrow (Actual(s) \Rightarrow p)$ (A) $(Actual(s) \Rightarrow p) \rightarrow s^{\star} \models p$ **(B)** Since (B) is just an instance of a previous theorem. For (A), assume the antecedent: $Actual(s^{\star}) \Rightarrow p$ (ϑ) Now, for reductio, assume $\neg(Actual(s) \Rightarrow p)$. Then, $\neg \Box(Actual(s) \rightarrow p)$. Since $\overline{p} = \neg p$, we have $(Actual(s) \& \overline{p})$. But this contradicts (ϑ): $\Diamond(Actual(s) \& \overline{p})$ $\equiv \diamondsuit(\forall q(s \models q \rightarrow q) \& \overline{p})$ by definition $\equiv \diamondsuit(\forall q(s \models q \rightarrow q) \& \forall q(q = \overline{p} \rightarrow q))$ by logic $\equiv \Diamond \forall q ((s \models q \rightarrow q) \& (q = \overline{p} \rightarrow q))$ by logic $\equiv \diamondsuit \forall q ((s \models q \lor q = \overline{p}) \to q)$ by logic $\equiv \diamondsuit \forall q(s^{+\overline{p}} \models q \rightarrow q)$ by definition $\equiv \diamondsuit Actual(s^{+\overline{p}})$ by definition $\equiv Possible(s^{+\overline{p}})$ by definition $\equiv \exists w(s^{+\overline{p}} \triangleleft w)$ by previous theorem $\equiv \exists w(s \leq w \& w \models \overline{p})$ by previous theorem $\equiv \exists w(s^{\star} \trianglelefteq w \& w \models \overline{p})$ by previous theorem $\equiv \exists w(s^{\star} \leq w \& w \models \neg p)$ by logic $\equiv \exists w (s^{\star} \trianglelefteq w \& \neg w \models p)$ by coherency of worlds $\equiv \exists w \neg (s^{\star} \trianglelefteq w \to w \models p)$ by logic $\equiv \neg \forall w(s^{\star} \leq w \rightarrow w \models p)$ by logic $\equiv \neg(Actual(s^{\star}) \Rightarrow p)$ by previous theorem This last line contradicts (ϑ).

The Metaphysics of Possibility Semantics

Observations O Appendices

Proof of Cofinality

$$\vdash \forall \mathfrak{s}' \big(\mathfrak{s}' \trianglerighteq \mathfrak{s} \to \exists \mathfrak{s}'' (\mathfrak{s}'' \trianglerighteq \mathfrak{s}' \And \mathfrak{s}'' \models p) \big) \to \mathfrak{s} \models p$$

Proof. Assume:

Object Theory

00000

$$\forall \mathfrak{s}' (\mathfrak{s}' \succeq \mathfrak{s} \to \exists \mathfrak{s}'' (\mathfrak{s}'' \succeq \mathfrak{s}' \And \mathfrak{s}'' \models p)) \tag{\vartheta}$$

For reductio, assume $\neg \mathfrak{s} \models p$. Now by excluded middle, $\mathfrak{s} \models \neg p$ or $\neg \mathfrak{s} \models \neg p$. But both lead to contradiction. For suppose $\mathfrak{s} \models \neg p$. Since \succeq is reflexive, we independently know $\mathfrak{s} \succeq \mathfrak{s}$. Then by (ϑ) it follows that $\exists \mathfrak{s}''(\mathfrak{s}'' \succeq \mathfrak{s} \& \mathfrak{s}'' \models p)$. Suppose \mathfrak{s}_1 is such a possibility, so that we know both $\mathfrak{s}_1 \succeq \mathfrak{s}$ and $\mathfrak{s}_1 \models p$. Then $\mathfrak{s}_1 \succeq \mathfrak{s}$ and our assumption that $\mathfrak{s} \models \neg p$ imply $\mathfrak{s}_1 \models \neg p$, by the Persistence Principle. But this and $\mathfrak{s}_1 \models p$ contradict the consistency of \mathfrak{s}_1 .

Now suppose $\neg \mathfrak{s} \models \neg p$. From this and our reductio assumption that $\neg \mathfrak{s} \models p$, it follows that $GapOn(\mathfrak{s}, p)$. So, by the Refinability Principle, it follows *a fortiori* that there is a refinement of \mathfrak{s} in which $\neg p$ is true: $\exists \mathfrak{s}'(\mathfrak{s}' \succeq \mathfrak{s} \& \mathfrak{s}' \models \neg p)$. Suppose \mathfrak{s}_2 is such a possibility, so that we know both $\mathfrak{s}_2 \succeq \mathfrak{s}$ and $\mathfrak{s}_2 \models \neg p$. The former and (ϑ) imply $\exists \mathfrak{s}''(\mathfrak{s}'' \succeq \mathfrak{s}_2 \& \mathfrak{s}'' \models p)$. Suppose \mathfrak{s}_3 is such a possibility, so that we know both $\mathfrak{s}_3 \succeq \mathfrak{s}_2$ and $\mathfrak{s}_3 \models p$. But $\mathfrak{s}_3 \succeq \mathfrak{s}_2$ and the assumption that $\mathfrak{s}_2 \models \neg p$ jointly imply $\mathfrak{s}_3 \models \neg p$, by the Persistence Principle. But now we've contradicted the consistencty of \mathfrak{s}_3 .

Proof of Fundamental Theorem

 $\vdash \Diamond p \equiv \exists \mathfrak{s}(\mathfrak{s} \models p)$

 (\rightarrow) Assume $\diamond p$. Then by the fundamental theorem of world theory, we know $\exists w(w \models p)$. Let w_1 be such a possible world, so that we know $w_1 \models p$. But possible worlds are possibilities i.e., *Possibility*(w_1). Hence $\exists \mathfrak{s}(\mathfrak{s} \models p)$.

(\leftarrow) Assume $\exists \mathfrak{s}(\mathfrak{s} \models p)$. Suppose \mathfrak{s}_1 is such a possibility, so that we know $\mathfrak{s}_1 \models p$. Suppose, for reductio, that $\neg \diamondsuit p$. Then $\Box \neg p$. So $s_{\Box} \models \neg p$, by an immediate consequence of the definition of s_{\Box} . But by a previous theorem and the definition of \succeq , we know that s_{\Box} is a part of \mathfrak{s}_1 . So by definition of \trianglelefteq , $\mathfrak{s}_1 \models \neg p$, which contradicts the consistency of \mathfrak{s}_1 .

00000

Object Theory New Definitions and Theorems

Observations 0

Bibliography

- van Benthem, 1981, "Possible Worlds Semantics for Classical Logics", manuscript ZW 8018, Mathematisch Instituut, Filosofisch Instituut, Ryksuniversiteit Groningen. URL = <https://eprints.illc.uva.nl/id/eprint/531/1/PP-2015-20.text.pdf>.
- van Benthem, 2016, "Tales from an Old Manuscript", in J. van Eijck, R. Iemhoff, and J. Joosten (eds.), *Liber Amicorum Alberti*, London: College Publications, 5–14.
- Berto, F., 2015, "A Modality called 'Negation'", *Mind*, 124(495): 761–793.
- Berto, F., and G. Restall, 2019, "Negation on the Australian Plan", Journal of Philosophical Logic, 48: 1119–1144.
- Davies, M.K., 1975, "Singular Terms, Quantification, and Modality", B. Phil. Thesis, Philosophy Department, Oxford University.
- Ding, Y., and W. Holliday, 2020, "Another Problem in Possible World Semantics", in 0 Advances in Modal Logic (Volume 13), N. Olivetti, R. Verbrugge, S. Negri and G. Sandu (eds.), London: College Publications, 149–168.
- Edgington, D., 1985, "The Paradox of Knowability", Mind, 94(376): 557–568.
- Enderton, H., 1972 [2001], A Mathematical Introduction to Logic, San Diego: 0 Academic Press; second edition, 2001.
- Harrison-Trainor, M., 2019, "First-order possibility models and finitary completeness proofs", The Review of Symbolic Logic, 12(4): 637-662.
- Hintikka, J., 1959, "Towards a Theory of Definite Descriptions", Analysis, 19(4): 79-85.

Appendices

Bibliography

- Holliday, W., 2014, "Partiality and Adjointness in Modal Logic", in R. Goré, B. Kooi, and A. Kurucz (eds.), *Advances in Modal Logic* (Volume 10), London: College Publications, 312–332.
- Holliday, W., forthcoming, "Possibility Frames and Forcing for Modal Logic", *Australasian Journal of Logic*; 2018 preprint available online in *UC Berkeley Working Papers*, URL = https://escholarship.org/uc/item/0tm6b30q
- Humberstone, L., 1981, "From Worlds to Possibilities", *Journal of Philosophical Logic*, 10(3): 313–339.
- Humberstone, L., 2011, *The Connectives*, Cambridge, MA: MIT Press.
- Lewis, D., 1973, *Counterfactuals*, Oxford: Blackwell.
- Restall, G., 2000, "Defining Double Negation Elimination", *Logic Journal of the IGPL*, 8(6): 853–860.
- Zalta, E., 1988, "Logical and Analytic Truths That Are Not Necessary", *The Journal of Philosophy*, 85(2): 57–74.
- Zalta, E., m.s., *Principia Logico-Metaphysica*, URL = https://mally.stanford.edu/principia.pdf>

Object Theory

00000

Goals

000