
Goals Object Theory New Definitions and Theorems Observations Appendices Bibliography

The Metaphysics of Possibility Semantics

Uri Nodelman and Edward N. Zalta
Philosophy Department, Stanford University

{nodelman,zalta}@stanford.edu

MCMP Colloquium
June 06, 2024

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics



Goals Object Theory New Definitions and Theorems Observations Appendices Bibliography

1 Goals

2 Object Theory

3 New Definitions and Theorems

4 Observations

5 Appendices

6 Bibliography

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics



Goals Object Theory New Definitions and Theorems Observations Appendices Bibliography

What are Possibilities in Possibility Semantics?

Normally, a possibility is a proposition p such that ^p

But Humberstone 1981:
Here we have a motivation for the pursuit of modal logic against a
semantic background in which less determinate entities than
possible worlds, things which I am inclined for want of a better
word to call simply possibilities, are what sentences (or formulae)
are true or false with respect to.

Edgington 1985:
. . . we can understand talk about possibilities, or possible

situations . . . [P]ossibilities di↵er from possible worlds in leaving
many details unspecified.

See also: Humberstone 2011; van Benthem 1981, 2016; Holliday
2014, forthcoming; and Ding & Holliday 2020.
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What Principles Govern Possibilities?
Humberstone 1981, 318; van Benthem 1981, 3–4; 2016, 3–4;
Holliday 2014, 3; forthcoming, 5, 15; and Ding & Holliday
2020, 155): [not necessarily independent]

Ordering: a refinement relation (D) partially orders the
possibilities.
Persistence: every proposition true in a possibility is true in every
refinement of that possibility.
Refinement: if a possibility x doesn’t determine the truth value of
a proposition p, then (a) there is a possibility which is a
refinement of x where p is true, and (b) there is a possibility
which is a refinement of x where p is false.
Cofinality: if, for every possibility x

0 that is a refinement of
possibility x there is a possibility x

00 that refines x
0 and makes p

true, then x makes p true.
Negation: the negation of p is true in a possibility x if and only if
p fails to be true in every refinement of x.
Conjunction: the conjunction p and q is true in x if and only if
both p and q are true in x.

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Our Goals

All of these authors take possibilities to be primitive entities in

the semantics and stipulate that these are semantic principles that
govern these entities.
They then interpret a propositional (modal) language with
various connectives in terms of the semantic domain of
possibilities and the principles that govern them.
Our goals: (1) define possibilities in OT, (2) derive the above
principles as theorems, and thereby prove what others stipulate,
and (3) develop a limitation for the purely semantic conception.
Desideratum: Achieve (1) and (2) without assuming set theory or
modeling possibilities as mathematical objects.
Strategy: Identify possibilities in OT as situations that are
consistent and modally closed.
In OT, situations are not primitive, and we can derive the fact that
they are partially ordered.

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Basic Principles
OT = 2nd-order, S5 QML (without identity) extended by atomic
formula ‘xF’ (‘x encodes F’), ‘E!’, free logic for ı (rigid) and �:

O! =df [�x ^E!x]
A! =df [�x ¬^E!x]
x = y ⌘df

(O!x & O!y & ⇤8F(Fx ⌘ Fy)) _ (A!x & A!y & ⇤8F(xF ⌘ yF))
F = G ⌘df ⇤8x(xF ⌘ xG)

Axiom: Ordinary objects don’t encode properties:
O!x! ¬9FxF

Axiom: If x encodes F, then necessarily x encodes F:
xF ! ⇤xF

Axiom (Theorem): For any condition ' on properties, there is a
(unique) abstract object that encodes just the properties
satisfying ':

9x(A!x & 8F(xF ⌘ ')), provided x isn’t free in '
` 9!x(A!x & 8F(xF ⌘ ')), provided x isn’t free in '

Comprehension for n-ary relations is derived and identity for
n-ary relations is defined.

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Definitions and Basic Theorems About Situations

Zalta 1993: Situations are abstracta that encode only
propositional properties:

Situation(x) ⌘df A!x & 8F(xF ! 9p(F= [�y p]))
Situations are necessarily situations:

` Situation(x)! ⇤Situation(x)
We use s, s0, . . . as rigid, restricted variables.
p is true in s (i.e., s makes p true) i↵ s encodes being such that p:

s |= p ⌘df s[�y p]
Situations are identical whenever they make the same
propositions true:

` s = s
0 ⌘ 8p(s |= p ⌘ s

0 |= p)
s is a part of s

0 i↵ s
0 makes true every proposition s makes true:

s E s
0 ⌘df 8p(s |= p! s

0 |= p)
Parthood (E) is provably reflexive, anti-symmetric, and transitive
on the situations:

` s E s
0

` (s E s
0 & s

0, s)! ¬s
0 E s

` s E s
0 & s

0 E s
00 ! s E s

00

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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(Modal) Logic of Situations

Zalta 1993: A situation is actual i↵ every proposition true in it is
true:

Actual(s) ⌘df 8p(s |= p! p)
A possible situation is one that might be actual:

Possible(s) ⌘df ^Actual(s)
A consistent situation is one in which no proposition and its
negation are both true:

Consistent(s) ⌘df ¬9p(s |= p & s |= ¬p)

` Possible(s)! Consistent(s), but the converse doesn’t hold.
Usual definition of necessary implication and equivalence:

')  ⌘df ⇤('!  )
',  ⌘df ')  &  ) '

Truth in s not subject to modal distinctions:
` s |= p, ⇤s |= p

` ^s |= p, s |= p

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Possible World Theory

Zalta 1993: A possible world is any situation s that might be
such that all and only true propositions are true in s:

PossibleWorld(s) ⌘df ^8p(s |= p ⌘ p)
Given our convention, the subformula s |= p ⌘ p is to be parsed
as (s |= p) ⌘ p.
The basic principles of possible world theory are derivable from
the definition of possible world given above (Zalta 1993,
414–419). These include formal versions of the following
principles:

Every possible world is maximal, consistent, and modally closed.
There is a unique actual world.
Possibly p i↵ there is a possible world in which p is true.
Necessarily p i↵ p is true in every possible world.

` PossibleWorld(s) ⌘ Maximal(s) & Possible(s)

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Identifying Situations Uniquely

Comprehension for situations: for every condition on
propositions, there is a unique situation that makes true all and
only the proposition satisfying ':

` 9!s8p(s |= p ⌘ '), provided s isn’t free in '
Canonical descriptions for situations are well-defined:

` 9y(y = ıs8p(s |= p ⌘ '))
If s is the situation that makes true just the propositions
satisfying ', then s makes true just the propositions satisfying ':

` (s = ıs08p(s0 |= p ⌘ '))! 8p(s |= p ⌘ '),
provided s

0 isn’t free in ' and ' is modally collapsed

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Modally Closed Situations

A situation s is modally closed just in case it makes true every
proposition p necessarily implied by s’s being actual:

ModallyClosed(s) ⌘df 8p((Actual(s)) p)! s |= p)
If s is modally closed then if s makes p true and p necessarily
implies q, then s makes q true:

` ModallyClosed(s)! 8p8q(s |= p & (p) q) ! s |= q)
If s is modally closed and consistent, then s is possible:

` (ModallyClosed(s) & Consistent(s))! Possible(s)
If s is modally closed and p is necessary, then s makes p true:

` (ModallyClosed(s) & ⇤p)! s |= p

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Definition of a Possibility

A possibility is a situation that is consistent and modally closed:
Possibility(s) ⌘df Consistent(s) & ModallyClosed(s)
Cf. Possible(s) ⌘df ^Actual(s), i.e., ^8p(s |= p! p)

Possible worlds are possibilities:
` Possibility(w) (since w is modally closed and consistent)

A possibility is necessarily a possibility:
` ⇤8s(Possibility(s)! ⇤Possibility(s))

In what follows we use s, s0, . . . as rigid restricted variables
ranging over possibilities.
Possibilities are possible:

` Possible(s), i.e., ` Possibility(s)! Possible(s)
(Expand the definition and apply a previous theorem.)
A situation is possible just in case it is part of some possible
world:

` Possible(s) ⌘ 9w(s E w)
Possibilities are therefore parts of some possible world:

` 9w(s E w)
Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Absolute Necessity, Possibilities, and Gaps

s has a gap on p if s makes neither p nor p (i.e., ¬p) true:
GapOn(s, p) ⌘df ¬s |= p & ¬s |= p,

“Absolute necessity”: s⇤ =df ıs8p(s |= p ⌘ ⇤p)
Absolute necessity has a gap on contingent propositions:
` Contingent(p) ⌘ GapOn(s⇤, p)

Absolute necessity is a possibility: ` Possibility(s⇤)
No proper part of absolute necessity is a possibility:
` 8s((s E s⇤ & s,s⇤)! ¬Possibility(s))

Every possibility is a refinement of absolute necessity:
` 8s(s D s⇤)

Possibilities and Gaps:
If a possibility has a gap on p, p is contingent:
` GapOn(s, p)! Contingent(p)

If a possibility has a gap on p, it has a gap on ¬p:
` 8p(GapOn(s, p)! GapOn(s,¬p))

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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A Picture

s⇤ = the smallest possibility (‘absolute necessity’)
s = a possible situation

s
? = the smallest possibility s that contains s

ıs08p(s
0 |= p ⌘ (Actual(s)) p))

s0 = a refinement of s
Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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What We Have to Show

We have to show:
` Ordering Principle
` Persistence Principle
` Refinability Principle
` Cofinality Principle
` Negation Principle
` Conjunction Principle

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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The Ordering Principle

Definition: a situation s
0

contains situation s, written s
0 D s, just

in case s is a part of s
0:

s
0 D s ⌘df s E s

0

When the situations are possibilities, we read s0 D s as: s0 is a
refinement of s.
Since E is reflexive, anti-symmetric, and transitive on the
situations, it follows that refinement of is reflexive,
anti-symmetric, and transitive on the possibilities:

(a) ` s D s
(b) ` (s0 D s& s0, s)! ¬s D s0
(c) ` (s00 D s0 & s0 D s)! s00 D s

These facts validate the principle of Ordering; cf. Humberstone
1981 (318); 2011 (899); van Benthem 1981 (3); 2016 (3);
Holliday 2014 (3); Ding & Holliday 2020 (155); and Holliday
forthcoming (Definition 2.1 and 2.21).

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics



Goals Object Theory New Definitions and Theorems Observations Appendices Bibliography

The Persistence Principle

Humberstone: where ⇡ is a proposition, X and Y are possibilities,
� is the refinement condition corresponding to D, and V(⇡,X) is
the truth-value of ⇡ with respect to X (1981, 318):

If V(⇡,X) is defined and Y � X, then V(⇡,Y) = V(⇡,X)
“Further delimitation of a possible state of a↵airs should not reverse
truth-values, but only reduce indeterminancies” (1981, 318).
In OT, this Persistence Principle can be represented as the
theorem that if a proposition p is true in a possibility s and s0 is a
refinement of s, then p is true in s0:

` (s |= p & s0 D s)! s0 |= p

Cf. van Benthem 1981, 3 (‘Heredity’), 2016, 3; Restall 2000,
Definition 1.2 (Heredity Condition); Holliday 2014, 315;
forthcoming, 15; Berto 2015, 767 (HC); Berto & Restall 2019,
1128 (HC); and Ding & Holliday 2020, 155.
Cf. Barwise 1989a (265):

Persistent(p) ⌘df 8s(s |= p! 8s
0(s E s

0 ! s
0 |= p))

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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The Modal Closure of a Situation: I

The modal closure of s is the situation that makes true all and
only those propositions p such that s’s being actual necessarily
implies p:

s
? =df ıs08p(s

0 |= p ⌘ (Actual(s)) p))
The modal closure of s makes p true i↵ s’s being actual
necessarily implies p:

` 8p(s? |= p ⌘ (Actual(s)) p))
A situation is a part of its modal closure:

` s E s
?

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Interlude: The p-Extension of a Situation

The p extension of a situation s is that situation that makes all the
propositions in s true and also makes q true:

s
+p =df ıs08q(s0 |= q ⌘ (s |=q _ q=p))

The p-extension of s is a part of a possible world w i↵ s is a part
of w and p is true in w

` s
+p E w ⌘ s E w & w |= p

p is true in every world of which s is a part i↵ s’s being actual
necessarily implies p

` 8w(s E w! w |= p) ⌘ (Actual(s)) p)

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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The Modal Closure of a Situation: II

A situation is a part of a possible world i↵ its modal closure is:
` s E w ⌘ s

? E w

A situation is possible i↵ its modal closure is:
` Possible(s) ⌘ Possible(s?)

The modal closure of a situation is modally closed:
` ModallyClosed(s?)

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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The Refinability Principle

Humberstone (1981, 318) (T and F are truth-values):
For any ⇡ and any X, if V(⇡,X) is undefined, then
9Y(Y � X with V(⇡,Y) = T) and 9Z(Z � X with V(⇡,Z) = F)

Use p for ⇡, s for X, and GapOn(s, p) for V(⇡,X) is undefined.
Refinability: if s has a gap on p, then there is a possibility that
refines s in which p is true and there is a possibility that refines s
in which ¬p is true:

GapOn(s, p)! 9s0(s0 D s& s0 |= p) & 9s0(s0 D s& s0 |= ¬p)
Cf. Holliday 2014, 315; forthcoming, 15; and D&H 2020, 155.
But this can be strengthened to a biconditional:

GapOn(s, p) ⌘ 9s0(s0 D s& s0 |= p) & 9s0(s0 D s& s0 |= ¬p)

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Proof Sketch of Refinability

Proof Sketch: Let r be an arbitrary, but fixed, proposition.
(!) Since GapOn(s, r) implies GapOn(s,¬r), it su�ces to show only:

GapOn(s, r)! 9s0(s0 D s& s0 |= r)
So assume GapOn(s, r) and find a witness to 9s0(s0 D s& s0 |= r).
Consider (s+r)?; abbreviate this as s+r?. We have to show all of the
following: (a) s+r? D s, (b) s+r? |= r, and (c) Possibility(s+r?). And by
definition, the last of the above requires us to show (d)
Consistent(s+r?) and (e) ModallyClosed(s+r?). . . .
( ) Assume: 9s0(s0 D s& s0 |= r) & 9s0(s0 D s& s0 |= ¬r) (#)
For reductio, suppose ¬GapOn(s, r). Then either s |= r or s |= ¬r.
Wlog, suppose s |= r. By Persistence Principle, every refinement of s

makes r true. So there can’t be a refinement that makes ¬r true,
contradicting the right conjunct of (#).

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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The Cofinality Principle

Van Benthem (1981, 4; 2016, 3) adds the principle labeled
Cofinality. In 2016, he formulates this principle as follows,
where Pd is any atomic fact and � is the the partial order on
possibilities:

If for all v � w, there exists a u � v with Pd true at u, then Pd is
already true at w.

This can be derived, without restriction to ‘atomic facts’, as the
theorem: if, for every possibility s0 that refines s, there is a
possibility s00 that refines s0 in which p is true, then p is true in s:

` 8s0�s0 D s! 9s00(s00 D s0 & s00 |= p)
�! s |= p

Cf. Humberstone’s (2011, 900) restatement of the Refinement
Principle.
The proof appeals to Refinability. But Refinability isn’t implied
by Cofinality unless the notion of possibility obeys the Negation
Constraint:

s |= ¬p ⌘ ¬9s0(s0 D s& s0 |= p)
Ours does (next slide); others have to stipulate it.

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Negation, Conjunction and Fundamental Theorems

Humberstone 1981 (319–320) and 2011 (900) adds the Negation
and Conjunction Principles.
Negation Principle: the negation of p is true in s if and only if p

fails to be true in every refinement of s:
` s |=¬p ⌘ 8s0(s0 D s! ¬s0 |= p)

Conjunction Principle: the conjunction p and q is true in s if and
only if both p and q are true in s:

` s |= (p & q) ⌘ (s |= p & s |= q)
Fundamental Theorems:

p is possibly true if and only if there is a possibility in which p is
true:
` ^p ⌘ 9s(s |= p)

p is necessarily true if and only if p is true in every possibility:
⇤p ⌘ 8s(s |= p)

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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The Picture Again

s⇤ = the smallest possibility (‘absolute necessity’)
s = a possible situation

s
? = the smallest possibility s that contains s

ıs08p(s
0 |= p ⌘ (Actual(s)) p))

s0 = a refinement of s
Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Consistency Doesn’t Imply Possibility

Fundamental Theorems guarantee that technically-conceived
possibilities line up with the possibly true propositions:
^p ⌘ 9s(s |= p)
The right-to-left direction doesn’t necessarily hold in
Humberstone, van Benthem, Holliday, Ding & Holliday, and
others (putting aside the fact that they don’t have modal
operators in the semantics).
What is going wrong in the pure semantic study of possibilities:
without a primitive modal operator, the closures of possibilities
are deductive closures and not modal closures.
` Possible(s) ⌘ Consistent(s?)
Maximal(s) & Consistent(s) 0 Possible(s)
` Maximal(s) & Consistent(s?)! PossibleWorld(s)
Absolute necessity makes true (encodes) more than just logical
truths – it encodes all the metaphysically necessary truths.

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Appendix: Proof of Situation Comprehension

` 9s8p(s |= p ⌘ '), provided s isn’t free in '
Proof: We have to show: 9x(Situation(x) & 8p(x |= p ⌘ ')),
provided x isn’t free in '. Pick ' where x isn’t free, and consider
a property variable that isn’t free in ', say G. Let  be
9p(' & G= [�z p]). Then 9x(A!x & 8G(xG ⌘  )), i.e.,

9x(A!x & 8G(xG ⌘ 9p(' & G= [�z p])))
Suppose it is a. Then A!a and 8G(aG ⌘ 9p(' & G= [�z p])) (A)
Clearly, Situation(a). So, by GEN, we only have to show
a |= p ⌘ '. Instantiate a[�z p] into the following alphabetic
variant of (A), where q is a variable that is substitutable for p,
and doesn’t occur free, in ': 8G(aG ⌘ 9q('q

p & G= [�z q])) (A0)
to obtain a[�z p] ⌘ 9q(('q

p)[�z p]
G

& [�z p]= [�z q]). But since G

isn’t free in ', ('q

p)[�z p]
G

is just 'q

p.
(B) a[�z p] ⌘ 9q('q

p & [�z p]= [�z q])
Now prove a |= p ⌘ ', using p = q ⌘df [�z p]= [�z q].
(See Zalta m.s., (484).)

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Proof of Fact About Modally Closed Situations

` ModallyClosed(s)! 8p8q(s |= p & (p) q) ! s |= q)
Proof: Assume ModallyClosed(s). So
(#) 8q

�
(Actual(s)) q)! s |= q

�

We want to show:
�
s |= p & (p) q)

�! s |= q. So assume:
(⇠) s |= p & p) q

If we instantiate (#) to q, it follows that:
(⇣) (Actual(s)) q)! s |= q

So to show s |= q, it remains only to show Actual(s)) q. Use the
Lemma: 8r(⇤s |= r ! ⇤(Actual(s)! r)). Instantiate this to p:

⇤s |= p! ⇤(Actual(s)! p)
But the first conjunct of (⇠) implies its own necessity, and
⇤s |= p. Hence:

⇤(Actual(s)! p)
So by definition of):

(✓) Actual(s)) p

But (✓) and the second conjunct of (⇠) jointly imply
Actual(s)) q. ./

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Proof of: ModallyClosed & Consistent Implies Possible

` (ModallyClosed(s) & Consistent(s))! Possible(s)
Proof: Assume ModallyClosed(s) and Consistent(s). Then we
know, respectively:
(#) 8q

�
(Actual(s)) q)! s |= q

�

(⇠) ¬9p(s |= p & s |= ¬p)
For reductio, assume ¬Possible(s). By definition and a Rule of
Substitution, this entails ¬^Actual(s). So ⇤¬Actual(s) and,
hence, ¬Actual(s). By the definition of Actual(s), this implies
9p(s |=p & ¬p). Suppose p1 is such a proposition, so that we
know both s |= p1 and ¬p1. The former implies ¬s |= ¬p1, by (⇠).
Now, separately, if we instantiate (#) to ¬p1, then we also know:
(⇣) (Actual(s)) ¬p1)! s |= ¬p1

But we’ve established ¬s |= ¬p1, and so by (⇣),
¬(Actual(s)) ¬p1). By definition of ()) and a Rule of
Substitution, it follows that ¬⇤(Actual(s)! ¬p1). This implies
^¬(Actual(s)! ¬p1), which in turn implies ^(Actual(s) & p1).
But this last result implies ^Actual(s). Contradiction. ./

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Proof: Modally Closed s Make Necessary Truths True

` (ModallyClosed(s) & ⇤p)! s |= p

Assume ModallyClosed(s) and ⇤p. The second implies
⇤(Actual(s)! p). So Actual(s)) p, by definition. Then by
definition of ModallyClosed(s), s |= p. ./

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics
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Possible Situations are Parts of Worlds

` Possible(s) ⌘ 9w(s E w)
Proof: (!) Assume Possible(s). Then by definition, ^8p(s |= p! p). By Fund. Thm.,
9w(w |= 8p(s |= p! p)). Suppose w1 is such that w1 |= 8p(s |= p! p). Then by a
theorem of world theory, we can export the quantifier:
8p(w1 |= (s |= p! p)) (#)

But since:
w1 |= (s |= p! p) is necessarily equivalent to w1 |= (s |= p)! (w1 |= p)

it follows that:
8p
�
w1 |= (s |= p)! (w1 |= p)

�
(⇠)

It remains to show that w1 is a witness to 9w(s E w), and so we have to show that
8p(s |= p! w1 |= p). By GEN, assume s |= p. Then ⇤s |= p. So by Fund. Thm.,
8w(w |= (s |= p)). Hence w1 |= (s |= p). Instantiating p into (⇠), it follows that w1 |= p.
( ) Assume 9w(s E w) and suppose w1 is a witness, so that we know s E w1:
8p(s |= p! w1 |= p) (⇣)

It su�ces to show w1 |= Actual(s), since we can then conclude 9w(w |= Actual(s)),
then ^Actual(s), and then conclude Possible(s), by definition. Since worlds are
modally closed, it su�ces to show w1 |= 8p(s |= p! p). But now it su�ces to show
8p(w1 |= (s |= p! p)). So by GEN, we show: w1 |= (s |= p! p). Now it su�ces to
show (w1 |= (s |= p))! (w1 |= p). So assume w1 |= (s |= p). Then by Fund. Thm.,
^s |= p. Hence, s |= p. So w1 |= p, by (⇣). ./
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Absolute Necessity Has Gaps on Contingencies

` Contingent(p) ⌘ GapOn(s⇤, p)
Proof: (!) Assume Contingent(p). Then ^p and ^¬p.
Independently, by definition:
(#) 8p(s⇤ |= p ⌘ ⇤p)

To show GapOn(s⇤, p), we have to show both ¬s⇤ |= p and
¬s⇤ |= p. Since we know ^¬p, we know ¬⇤p. So if we
instantiate (#) to p, then it follows that ¬s⇤ |= p. Since we also
know ^p, we know ¬⇤¬p. So if we instantiate (#) to ¬p, then it
follows that ¬s⇤ |= ¬p. So by logic, ¬s⇤ |= p.
( ) (Exercise) ./
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Absolute Necessity is a Possibility

` Possibility(s⇤)
s⇤ is a canonically defined situation. So we have to show:

Consistent(s⇤) (A)
ModallyClosed(s⇤) (B)

Now we know:
8p(s⇤ |= p ⌘ ⇤p) (#)

(A) For reductio, suppose ¬Consistent(s⇤), i.e., 9p(s⇤ |= p & s⇤ |= ¬p). Let q1 be such
a proposition, so that we know s⇤ |= q1 and s⇤ |= ¬q1. By (#), these imply,
respectively, ⇤q1 and ⇤¬q1. Contradiction, once the T schema is applied to both
results.

(B) We have to show: (Actual(s⇤)) p)! s⇤ |= p, for arbitrary p. So assume:
Actual(s⇤)) p (⇠)

To show s⇤ |= p, it su�ces, by (#), to show ⇤p. For reductio, suppose ¬⇤p, i.e., ^¬p.
But our assumption (⇠) implies ⇤(Actual(s⇤)! p). So ⇤(¬p! ¬Actual(s⇤)). But
from this and ^¬p, it follows by K^ that ^¬Actual(s⇤). By definition this implies
^¬8q(s⇤ |= q! q). So ^9q¬(s⇤ |= q! q), i.e., ^9q(s⇤ |= q & ¬q). By BF^,
9q^(s⇤ |= q & ¬q). Suppose p1 is such a proposition, so that we know
^(s⇤ |= p1 & ¬p1). Then ^(s⇤ |= p1) and ^¬p1. The latter implies ¬⇤p1. The former
implies s⇤ |= p1. So by (#), ⇤p1. Contradiction. ./
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No Proper Part of Absolute Necessity Is a Possibility

` 8s((s E s⇤ & s,s⇤)! ¬Possibility(s))
Proof: We have to show (s E s⇤ & s,s⇤)! ¬Possibility(s). So
assume s E s⇤ and s,s⇤. The second implies
¬8p(s |= p ⌘ s⇤ |= p), i.e.,
9p
�
(s |= p & ¬s⇤ |= p) _ (s⇤ |= p & ¬s |= p)

�

Suppose q1 is such a proposition, so that we know:
(s |= q1 & ¬s⇤ |= q1) _ (s⇤ |= q1 & ¬s |= q1)

The left disjunct contradicts s E s⇤ (exercise). So we know
s⇤ |= q1 and ¬s |= q1. The first implies ⇤q1, by a modally strict,
immediate consequence of the definition of s⇤. Now, for
reductio, suppose Possibility(s). Then, s is modally closed, by
definition. So by a previous theorem (modally closed situations
make necessary truths true), this last fact and ⇤q1 imply s |= q1.
Contradiction. ./

Uri Nodelman and Edward N. Zalta The Metaphysics of Possibility Semantics



Goals Object Theory New Definitions and Theorems Observations Appendices Bibliography

Every Possibility Refines Absolute Necessity

` 8s(s D s⇤)
By GEN, it su�ces to show s D s⇤. So we have to show
8p(s⇤ |= p! s |= p). So, again, by GEN, we show
s⇤ |= p! s |= p. Assume s⇤ |= p. Then by definition of s⇤, it
follows that ⇤p. But since possibilities are modally closed and
modally closed situations make necessary truths true, it follows
that s |= p. ./
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Proof of: p is Contingent if s has a Gap on p

` GapOn(s, p)! Contingent(p)
Assume GapOn(s, p), i.e., both ¬s |= p and ¬s |= p. The latter
implies ¬s |= ¬p. Now suppose ¬Contingent(p), for reductio.
Then by ¬(^p &^¬p), i.e., ⇤¬p _ ⇤p. But both disjuncts lead to
contradiction. If ⇤¬p, then s |= ¬p (by a now familiar fact),
which contadicts ¬s |= ¬p; if ⇤p, then again by familiar
reasoning, s |= p, which contradicts ¬s |= p. Contradiction full
stop. ./
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Gap on p implies Gap on ¬p

8p
�
GapOn(s, p)! GapOn(s,¬p)

�

Proof. Assume GapOn(s, p) and for reductio, ¬GapOn(s,¬p).
Then, by definition, either s |= ¬p or s |= ¬p, i.e., either s |= ¬p

or s |= ¬¬p. But the former contradicts GapOn(s, p). The latter,
by a consequence of the fact that s is modally closed, implies
s |= p, which also contradicts GapOn(s, p). Contradiction. ./
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Proof of: s is a Part of its Modal Closure

` s E s
?

Proof. s
? is clearly a situation and so it remains to show

8p(s |= p! s
? |= p). Proof strategy:

(A) Independently show s |= p! (Actual(s)! p) is a modally strict
theorem.

(B) Conclude from (A) that ⇤s |= p! ⇤(Actual(s)! p), by Rule
RM.

(C) Assume s |= p, for conditional proof. To show s
? |= p, we have to

show Actual(s)) p, by definition.
(D) Our assumption in (C) implies ⇤s |= p.
(E) From (D) and (B) it follows that ⇤(Actual(s)! p).
(F) Conclude Actual(s)) p, by definition of).

Since (B) – (F) are straightforward, it remains to show (A). So
assume both s |= p and Actual(s). The latter implies
8q(s |= q! q), by definition. Instantiating this to p yields
s |= p! p. But then p, since s |= p by assumption. ./
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Proof of Theorem

The p-extension of s is a part of w i↵ s is a part of w and w makes
p true.
` s
+p E w ⌘ s E w & w |= p

Proof. Clearly, s
+p and w are both situations. Then:

s
+p E w

⌘ 8q(s+p |= q! w |= q) by definition E
⌘ 8q((s |= q _ q=p)! w |= q) by definition of s

+
p

⌘ 8q((s |= q! w |= q) & (q=p! w |= q)) by logic
⌘ 8q(s |= q! w |= q) & 8q(q=p! w |= q) by logic
⌘ 8q(s |= q! w |= q) & w |= p by logic
⌘ s E w & w |= p by definition E

./
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Proof of Theorem

• p is true in every world of which s is a part i↵ s’s being actual
necessarily implies p:
` 8w(s E w! w |= p) ⌘ (Actual(s)) p)

• Proof:
8w(s E w! w |= p)

⌘ 8w¬(s E w & ¬w |= p) by logic
⌘ ¬9w(s E w & ¬w |= p) by logic
⌘ ¬9w(s E w & w |= ¬p) by coherency of worlds
⌘ ¬9w(s E w & w |= p) by logic
⌘ ¬9w(s+p E w) by previous theorem
⌘ ¬Possible(s+p) by by previous theorem
⌘ ¬^Actual(s+p) by definition
⌘ ¬^8q(s+p |= q! q) by definition
⌘ ¬^8q

�
(s |= q _ q= p)! q

�
by definition s

+p

⌘ ¬^8q
�
(s |= q! q) & (q=p! q)

�
by logic

⌘ ¬^�8q(s |= q! q) & 8q(q=p! q)
�

by logic
⌘ ¬^�8q(s |= q! q) & p

�
by logic

⌘ ¬^�8q(s |= q! q) & ¬p
�

by logic
⌘ ¬^�Actual(s) & ¬p

�
by definition

⌘ ⇤¬(Actual(s) & ¬p) by modal logic
⌘ ⇤(Actual(s)! p) by logic
⌘ Actual(s)) p by definition
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s is part of w i↵ s
? is part of w

` s E w ⌘ s
? E w

Proof. (!) Assume s E w, and for reductio, suppose ¬s
? E w.

Then 9p(s? |= p & ¬w |= p). Let p1 be such a proposition, so that
we know both s

? |= p1 and ¬w |= p1. Independently, from the
fact that s

? |= p1 it follows that Actual(s)) p1, by definition.
But the following is an instance of a previous theorem:

(s E w! w |= p1) ⌘ (Actual(s)) p1)
It follows that s E w! w |= p1. Hence, w |= p1. Contradiction.
( ) Assume s

? E w. But we just established s E s
?. Since s

? and
w are situations, it follows by transitivity of E that s E w. ./
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A Situation is Possible i↵ its Modal Closure Is

` Possible(s) ⌘ Possible(s?)
Proof. Possible(s)

⌘ 9w(s E w) by previous theorem
⌘ 9w(s? E w) by previous theorem
⌘ Possible(s?) by previous theorem

./
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The Modal Closure of s is Modally Closed

` ModallyClosed(s?)
Proof. We have to show: 8p

�
(Actual(s?)) p)! s

? |= p
�
. Our strategy:

(Actual(s?)) p)! (Actual(s)) p) (A)
(Actual(s)) p)! s

? |= p (B)
Since (B) is just an instance of a previous theorem. For (A), assume the antecedent:

Actual(s?)) p (#)
Now, for reductio, assume ¬(Actual(s)) p). Then, ¬⇤(Actual(s)! p). Since p=¬p, we have
^(Actual(s) & p). But this contradicts (#):
^(Actual(s) & p)

⌘ ^(8q(s |= q! q) & p) by definition
⌘ ^(8q(s |= q! q) & 8q(q=p! q)) by logic
⌘ ^8q

�
(s |= q! q) & (q=p! q)

�
by logic

⌘ ^8q
�
(s |= q _ q=p)! q

�
by logic

⌘ ^8q(s+p |= q! q) by definition
⌘ ^Actual(s+p) by definition
⌘ Possible(s+p) by definition
⌘ 9w(s+p E w) by previous theorem
⌘ 9w(s E w & w |= p) by previous theorem
⌘ 9w(s? E w & w |= p) by previous theorem
⌘ 9w(s? E w & w |= ¬p) by logic
⌘ 9w(s? E w & ¬w |= p) by coherency of worlds
⌘ 9w¬(s? E w! w |= p) by logic
⌘ ¬8w(s? E w! w |= p) by logic
⌘ ¬(Actual(s?)) p) by previous theorem

This last line contradicts (#). ./
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Proof of Cofinality

` 8s0�s0 D s! 9s00(s00 D s0 & s00 |= p)
�! s |= p

Proof. Assume:
8s0�s0 D s! 9s00(s00 D s0 & s00 |= p)

�
(#)

For reductio, assume ¬s |= p. Now by excluded middle, s |= ¬p or ¬s |= ¬p. But
both lead to contradiction. For suppose s |= ¬p. Since D is reflexive, we
independently know s D s. Then by (#) it follows that 9s00(s00 D s& s00 |= p).
Suppose s1 is such a possibility, so that we know both s1 D s and s1 |= p. Then
s1 D s and our assumption that s |= ¬p imply s1 |= ¬p, by the Persistence
Principle. But this and s1 |= p contradict the consistency of s1.

Now suppose ¬s |= ¬p. From this and our reductio assumption that ¬s |= p, it
follows that GapOn(s, p). So, by the Refinability Principle, it follows a fortiori

that there is a refinement of s in which ¬p is true: 9s0(s0 D s& s0 |= ¬p). Suppose
s2 is such a possibility, so that we know both s2 D s and s2 |= ¬p. The former and
(#) imply 9s00(s00 D s2 & s00 |= p). Suppose s3 is such a possibility, so that we
know both s3 D s2 and s3 |= p. But s3 D s2 and the assumption that s2 |= ¬p jointly
imply s3 |= ¬p, by the Persistence Principle. But now we’ve contradicted the
consistencty of s3. ./
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Proof of Fundamental Theorem

` ^p ⌘ 9s(s |= p)
(!) Assume ^p. Then by the fundamental theorem of world
theory, we know 9w(w |= p). Let w1 be such a possible world, so
that we know w1 |= p. But possible worlds are possibilities i.e.,
Possibility(w1). Hence 9s(s |= p).
( ) Assume 9s(s |= p). Suppose s1 is such a possibility, so that
we know s1 |= p. Suppose, for reductio, that ¬^p. Then ⇤¬p. So
s⇤ |= ¬p, by an immediate consequence of the definition of s⇤.
But by a previous theorem and the definition of D, we know that
s⇤ is a part of s1. So by definition of E, s1 |= ¬p, which
contradicts the consistency of s1. ./
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