Prerequisites 00000

Language Axioms 0000

0000

Theorems **Computational Implementation** Ο

Bibliography Ο

Seminar on Axiomatic Metaphysics Lecture 2 An Exact Science

Edward N. Zalta

Philosophy Department, Stanford University zalta@stanford.edu, https://mally.stanford.edu/zalta.html

Munich Center for Mathematical Philosophy, May 28, 2024

Edward N. Zalta

Prerequisites	Language	Axioms	Theorems	Computational Implementation	Bibliography
00000	0000	0000	000000000000	0	0

6 Bibliography

Prerequisites

Second-Order Logic With Propositions

• In second-order language, we have n-place relations (F^n, G^n, \ldots) , *n*-place exemplification predication $(F^n x_1 \ldots x_n)$, and Comprehension: $\exists F^n \forall x_1 \ldots \forall x_n (F^n x_1 \ldots x_n \equiv \varphi)$, where φ has no free $F^n \varphi$ or encoding subformulas

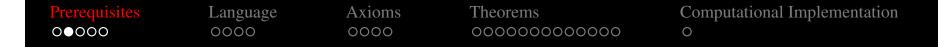
where φ has no free F^n s or encoding subformulas.

- 2nd-order logic allows for 0-place relations: F⁰, G⁰, ...
 (Abbreviations: p, q, r, ...)
- Comprehension: $\exists p(p \equiv \varphi)$, where φ has no free *p*s or encoding subformulas:
 - $\exists p(p \equiv \neg Pa)$
 - $\exists p(p \equiv Pa \& Qb)$
 - $\exists p(p \equiv \forall yMy)$
- A Simple Derivation:

 - $2 \quad \forall x \exists p (p \equiv \neg Fx)$
- Propositional properties exist:
 - $\exists F \forall x (Fx \equiv p)$
 - $\forall p \exists F \forall x (Fx \equiv p)$

Instance of 0-place Comprehension By GEN on (1) By GEN on (2)

Instance of 1-place Comprehension By GEN on an instance



The Simplest Quantified Modal Logic

• Simplest S5 Modal Logic (only necessary truths are axioms):

- Language includes the formulas $\Box \varphi$, where φ is any formula
- Add the definition: $\Diamond \varphi =_{df} \neg \Box \neg \varphi$
- Assert propositional axioms:
 - $K: \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
 - T: $\Box \varphi \rightarrow \varphi$
 - $5: \Diamond \varphi \to \Box \Diamond \varphi$
- No special quantifier axioms needed
- Rule of Necessitation: from φ , infer $\Box \varphi$
- Theorems:
 - $B: \varphi \to \Box \Diamond \varphi$
 - 4: $\Box \varphi \rightarrow \Box \Box \varphi$
 - Derived Rule: If $\vdash \varphi \rightarrow \psi$, then $\vdash \Box \varphi \rightarrow \Box \psi$
 - Derived Rule: If $\vdash \Diamond \varphi \rightarrow \psi$, then $\vdash \varphi \rightarrow \Box \psi$
 - 1st-, 2nd-order Barcan Formula: $\forall \alpha \Box \varphi \rightarrow \Box \forall \alpha \varphi$
 - 1st-, 2nd-order Converse BF: $\Box \forall \alpha \varphi \rightarrow \forall \alpha \Box \varphi$
 - Necessary Existence: $\forall \alpha \Box \exists \beta (\beta = \alpha)$
- Interpretation: fixed domains, no accessibility relation

Actuality Operator

- Where φ is any formula, so is $\mathfrak{A}\varphi$
- Semantics requires a distinguished actual world (w₀):
 Aφ is true w.r.t. w iff φ is true at w₀
- The Logic of Actuality:

Many of the principles govern interaction of \mathcal{A} with the other connectives.

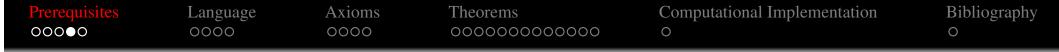
In a modal context, there are subtleties to keep in mind

Two key principles

 $\star \text{Axiom 1: } \mathfrak{A}\varphi \to \varphi$

Axiom 6: $\mathfrak{A}\varphi \to \Box \mathfrak{A}\varphi$

- It follows from \star Axiom 1 that $\varphi \to \mathfrak{A}\varphi$.
- In a modal context, Rule RN would let you infer □(𝔄φ → φ) from ★Axiom 1. But this isn't valid!
- \star Axiom 1 is a contingent logical truth, i.e., not necessary.
- We will mark any theorem derived from *****Axiom 1 with an asterisk, to indicate that RN can't be applied to such theorems!



Classical (Relational) λ **-Calculus**

- λ -expressions $[\lambda x_1 \dots x_n \varphi]$: being objects x_1, \dots, x_n such that φ .
- So λ -expressions are interpreted *relationally*.
- Examples: $[\lambda x \neg Rx]$, $[\lambda x Px \& Qx]$, etc.
- In the standard λ -calculus, all λ -expressions denote and the background is classical logic.
- (By contrast, in object theory, some λ -expressions fail to denote, e.g., [$\lambda x \exists F(xF \& \neg Fx)$]. And we'll use a free logic. More later.)
- Three main principles:
 - λ or β -conversion: $[\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi$
 - $[\lambda x \neg Rx]x \equiv \neg Rx$
 - $[\lambda x Px \& Qx]x \equiv Px \& Qx$
 - α -conversion: $[\lambda x_1 \dots x_n \varphi] = [\lambda x_1 \dots x_n \varphi]'$, for alphabetic variants
 - $[\lambda x \neg Fx] = [\lambda z \neg Fz]$
 - η -Conversion: $[\lambda x_1 \dots x_n F^n x_1 \dots x_n] = F^n$, for *elementary* λ -expressions.
 - $[\lambda xy Rxy] = R$

Classical Theory of Definite Descriptions $\iota x \varphi$

• $\iota x \varphi$ is governed by a single axiom (Hintikka 1959):

•
$$y = \iota x \varphi \equiv \forall x (\varphi \equiv x = y)$$

- The standard logic of definite descriptions is a (negative) free logic:
 - $\forall \alpha \varphi \rightarrow (\exists \beta (\beta = \tau) \rightarrow \varphi_{\alpha}^{\tau})$, where τ is any (individual) term substitutable for α in φ .
 - $\exists \beta (\beta = \tau)$, where τ is a constant or a variable (i.e., not a description).
 - If an atomic formula with a description is true, then the description denotes, e.g., $G\iota xFx \rightarrow \exists y(y = \iota xFx)$.

• One can derive instances of the Russell principle:

 $GixFx \equiv \exists x(Fx \& \forall y(Fy \rightarrow y=x) \& Gx)$

• Our changes: (a) we'll replace $\exists \beta(\beta = \tau)$ with $\tau \downarrow$; (b) our free logic will apply to both descriptions and λ -expressions; (c) we'll interpret $\iota x \varphi$ rigidly, and use an actuality operator in the Hintikka axiom; and (d) we'll derive Russell's analysis, though it becomes a contingent logical theorem.

Prerequisites 00000	Language ●000	Axioms 0000	Theorems 0000000000000	Computation O	nal Implementation	Bibliography O
The	Languag	e of Obj	ect Theory ar	nd its Prin	mitives Noti	ions
٢	Object vari	ables and	constants: x, y,	$z,\ldots a,b,$	<i>C</i> ,	
•	Relation va	riables an	d constants: F^n	$, G^n, H^n, \ldots$	• •	
	$P^n, Q^n,$	R^n,\ldots (for	or $n \ge 0$; p, q, r	, (when	n = 0)	
•]	Distinguish	ed 1-plac	e relation: E!		(being cond	crete)
•	Atomic for	mulas:				
	$F^n x_1 \dots$	$. x_n$		$(x_1,\ldots,$, x_n exemplif	y F^n)
	$x_1 \dots x_n$	$_{n}F^{n}$		$(x_1,$	\ldots, x_n encode	s F^n)
٢	Complex F	ormulas:	$\neg \varphi, \varphi \rightarrow \psi, \forall \alpha \varphi$	$arphi, \Box arphi, \mathscr{A} arphi$	(α any vari	able)
٢	Complex T	erms:				
	Description	ons: $\iota x \varphi$			(1	rigid)
	λ -express	ions: $[\lambda x_1]$	$\ldots x_n \varphi$]			
	(interpre	eted relati	onally, not func	tionally)		
•]	From these	primitive	s, we'll define:	Truth-valu	es, Classes	
	(Extensions	s of Prope	erties), Numbers	, Possible	(Impossible)	
	Worlds, For	rms, Fictio	ons, Leibnizian	Concepts,	and Senses.	

Prerequisites	Language	Axioms	Theorems	Computational Implementation	Bibliography
00000	000	0000	0000000000000	0	0

A Semantics: If You Want One

• A Semantics for Second-order Object Theory

Prerequisites

ge Axioms

0000

Theorems 00000000000000 Computational Implementation

Modal Object Theory: A BNF for the Language

- δ primitive individual constants
- ν individual variables
- Σ^n primitive *n*-ary relation constants ($n \ge 0$)
- Ω^n *n*-ary relation variables $(n \ge 0)$
- α variables
- κ individual terms
- Π^n *n*-ary relation terms ($n \ge 0$)
- φ formulas
- au terms

$$\begin{split} \delta &::= a_1, a_2, \dots \\ v &::= x_1, x_2, \dots \\ (n \ge 0) \ \Sigma^n &::= P_1^n, P_2^n, \dots \text{ (with } P_1^1 \text{ distinguished and written as } E!) \\ (n \ge 0) \ \Omega^n &::= F_1^n, F_2^n, \dots \\ \alpha &::= v \mid \Omega^n \ (n \ge 0) \\ \kappa &::= \delta \mid v \mid v \varphi \\ (n \ge 1) \ \Pi^n &::= \Sigma^n \mid \Omega^n \mid [\lambda v_1 \dots v_n \ \varphi] \quad (v_1, \dots, v_n \text{ are pairwise distinct}) \\ \varphi &::= \Sigma^0 \mid \Omega^0 \mid \Pi^n \kappa_1 \dots \kappa_n \ (n \ge 1) \mid \kappa_1 \dots \kappa_n \Pi^n \ (n \ge 1) \mid \\ & [\lambda \varphi] \mid (\neg \varphi) \mid (\varphi \rightarrow \varphi) \mid \forall \alpha \varphi \mid (\Box \varphi) \mid (\pounds \varphi) \\ \Pi^0 &::= \varphi \\ \tau &::= \kappa \mid \Pi^n \ (n \ge 0) \end{split}$$

Definitions: Operators, Terms, Existence, Identity

- &, \lor , \equiv , \exists , and \diamond are all defined in the usual way
- Existence (\downarrow)

$$\begin{aligned} x \downarrow &\equiv_{df} \exists F F x \\ F^n \downarrow &\equiv_{df} \exists x_1 \dots \exists x_n (x_1 \dots x_n F^n) \\ p \downarrow &\equiv_{df} [\lambda x p] \downarrow \end{aligned}$$
 $(n \ge 1)$

•
$$O! =_{df} [\lambda x \diamond E!x]$$
 ('ordinary')

- $A! =_{df} [\lambda x \neg \Diamond E!x]$ ('abstract')
- Identity (=)

$$\begin{aligned} x &= y \equiv_{df} \\ (O!x \& O!y \& \Box \forall F(Fx \equiv Fy)) \lor (A!x \& A!y \& \Box \forall F(xF \equiv yF)) \\ F^1 &= G^1 \equiv_{df} \Box \forall x(xF^1 \equiv xG^1) \\ F^n &= G^n \equiv_{df} \quad (\text{where } n > 1) \\ \forall x_1 \dots \forall x_{n-1}([\lambda y \ F^n y x_1 \dots x_{n-1}] = [\lambda y \ G^n y x_1 \dots x_{n-1}] \& \\ [\lambda y \ F^n x_1 y x_2 \dots x_{n-1}] = [\lambda y \ G^n x_1 y x_2 \dots x_{n-1}] \& \dots \& \\ [\lambda y \ F^n x_1 \dots x_{n-1} y] = [\lambda y \ G^n x_1 \dots x_{n-1} y]) \end{aligned}$$
$$p = q \equiv_{df} [\lambda y \ p] = [\lambda y \ q]$$

Modal Object Theory: Axioms I

- A *closure* of a formula φ is the result of prefacing any string of ∀α, □, or A to φ. We take the closures of all of the following:
- **Propositional Logic**: Classical Axioms
- **Predicate Logic** (free logic for complex terms):
 - $\forall \alpha \varphi \rightarrow (\tau \downarrow \rightarrow \varphi_{\alpha}^{\tau})$, provided τ is substitutable for α in φ
 - τ↓, provided τ is primitive constant, a variable, or λ-expression in which the λ doesn't bind a variable that occurs as a primary term in an encoding formula subterm of the matrix
 - $\forall \alpha(\varphi \to \psi) \to (\forall \alpha \varphi \to \forall \alpha \psi)$
 - $\varphi \rightarrow \forall \alpha \varphi$, provided α doesn't occur free in φ
 - $\Pi^n \kappa_1 \dots \kappa_n \to (\Pi^n \downarrow \& \kappa_1 \downarrow \& \dots \& \kappa_n \downarrow) \quad (n \ge 0)$ $\kappa_1 \dots \kappa_n \Pi^n \to (\Pi^n \downarrow \& \kappa_1 \downarrow \& \dots \& \kappa_n \downarrow) \quad (n \ge 1)$
- Substitution of Identicals (unrestricted):

 $\alpha = \beta \rightarrow (\varphi \rightarrow \varphi')$, whenever β is substitutable for α in φ , and φ' is the result of replacing zero or more free occurrences of α in φ with occurrences of β

Prerequisites	Language	Axioms	Theorems	Computational Implementation	Bibliography
00000	0000	0000	0000000000000	0	0

Modal Object Theory: Axioms II

• Axioms for Actuality:

- $\mathcal{A}\varphi \to \varphi$
- $\mathfrak{A}\neg\varphi\equiv\neg\mathfrak{A}\varphi$
- $\mathcal{A}(\varphi \to \psi) \equiv (\mathcal{A}\varphi \to \mathcal{A}\psi)$
- $\mathscr{A} \forall \alpha \varphi \equiv \forall \alpha \mathscr{A} \varphi$
- $\mathcal{A}\varphi \equiv \mathcal{A}\mathcal{A}\varphi$

• Axioms for Necessity:

- $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- $\Box \varphi \rightarrow \varphi$
- $\Diamond \varphi \to \Box \Diamond \varphi$
- $\Diamond \exists x (E!x \& \neg \measuredangle E!x)$

• Axioms for Necessity and Actuality:

- $\mathcal{A}\varphi \to \Box \mathcal{A}\varphi$
- $\Box \varphi \equiv \mathcal{A} \Box \varphi$

(*****-axiom, only universal closures)

(K axiom) (T axiom) (5 axiom) (new)

Prerequisites	Language	Axioms	Theorems	Computational Implementation	Bibliography
00000	0000	0000	0000000000000	0	0

Modal Object Theory: Axioms III

• Axioms for Definite Descriptions:

• $y = \iota x \varphi \equiv \forall x (\mathcal{A} \varphi \equiv x = y)$

• Axioms for Relations (λ -Calculus for Relations):

- $[\lambda v_1 \dots v_n \varphi] \downarrow \rightarrow [\lambda v_1 \dots v_n \varphi] = [\lambda v_1 \dots v_n \varphi]'$ $(n \ge 0)$ $([\lambda v_1 \dots v_n \varphi]'$ an alphabetic variant)
- $[\lambda x_1 \dots x_n \varphi] \downarrow \rightarrow ([\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi)$ $(n \ge 1)$
- $[\lambda x_1 \dots x_n F^n x_1 \dots x_n] = F^n$ $(n \ge 0)$
- $([\lambda x_1 \dots x_n \varphi] \downarrow \& \Box \forall x_1 \dots \forall x_n (\varphi \equiv \psi)) \rightarrow [\lambda x_1 \dots x_n \psi] \downarrow (n \ge 0)$

• Axioms for Encoding:

• $x_1 \dots x_n F^n \equiv$ $x_1[\lambda y F^n y x_2 \dots x_n] \& x_2[\lambda y F^n x_1 y x_3 \dots x_n] \& \dots \& x_n[\lambda y F^n x_1 \dots x_{n-1} y]$ • $xF \to \Box xF$

•
$$O!x \to \neg \exists F xF$$

• $\exists x(A!x \& \forall F(xF \equiv \varphi))$, provided x doesn't occur free in φ

Prerequisites 00000

Language 0000

0000

Theorems **Computational Implementation**

Bibliography 0

Modal Object Theory: Deductive System

- One rule of inference: Modus Ponens
- Two derivation systems: $\Gamma \vdash \varphi$ and $\Gamma \vdash_{\Box} \varphi$.
- Derive Rule GEN: If $\Gamma \vdash \varphi$, then $\Gamma \vdash \forall \alpha \varphi$, provided α doesn't ۲ occur free in any premise in Γ .
 - Proof by Induction on Length of Proof: Assume $\Gamma \vdash \varphi$ and α doesn't occur free in Γ .
 - Base Case: $\Gamma \vdash \varphi$ is one-element sequent. Then (A) φ is an axiom or (B) φ is a premise in Γ . (A) Then $\forall \alpha \varphi$ is an axiom, since we took the universal closures as axioms. Then $\Gamma \vdash \forall \alpha \varphi$, since an axiom follows from any set of premises. (B) Then α doesn't occur free in φ . By an axiom of predicate logic, i.e., $\varphi \to \forall \alpha \varphi$ (when α isn't free in φ), it follows that $\forall \alpha \varphi$. So the sequence $\varphi, \varphi \to \forall \alpha \varphi, \forall \alpha \varphi$ is a witness to $\Gamma \vdash \forall \alpha \varphi$ (every member of the sequence is either an axiom, a premise, or is a direct consequence of two previous members by MP).
 - Inductive case: (Exercise)
- RN is derived (next slide).



A Derivation of the Rule RN

- Rule RN (with premises): If Γ ⊢_□ φ, then □Γ ⊢ □φ, where □Γ is obtained from Γ by putting a □ in front of every formula in Γ. (Exercise)
- Rule RN (no premises): If $\vdash_{\Box} \varphi$ (i.e., there is a proof of φ that doesn't appeal to any contingent \star axiom), then $\vdash_{\Box} \Box \varphi$ and $\vdash \Box \varphi$.
- *Proof.* Suppose we're given a proof of φ that doesn't appeal to any contingent axiom. We show by induction on the length of the proof that there is a (modally strict) proof of □φ. If the proof of φ is one line, φ must be a non-contingent axiom. So its modal closure □φ is a necessary axiom, and hence ⊢_□ φ. If the modally strict proof of φ is more than one line, then φ was derived by MP from previous lines ψ and ψ → φ by MP. Since the proof of φ is modally strict, we know ⊢_□ ψ and ⊢_□ (ψ → φ). Hence, by the IH, ⊢_□ □ψ and ⊢_□ □(ψ → φ). But then, since the K axiom is also a theorem, ⊢_□ □φ.

Propositional and Predicate Logic

- All the usual theorems of propositional logic are preserved.
- Classical quantification theory holds for primitive constants and variables: if τ is a primitive constant or a variable, then $\forall \alpha \varphi \rightarrow \varphi_{\alpha}^{\tau}$.
- Every 0-place term and formula signifies a proposition: pick a variable *ν* that isn't free in Π⁰. Then it is axiomatic that [λν Π⁰]↓. So by definition, Π⁰↓, and since formulas are 0-place relation terms, φ↓, for any φ.
- Logical existence is necessary: $\tau \downarrow \rightarrow \Box \tau \downarrow$
 - Note: This does not imply that $E!x \to \Box E!x$.
- Identity implies existence: $\tau = \sigma \rightarrow (\tau \downarrow \& \sigma \downarrow)$
- $[\lambda \varphi] = \varphi$ (substitute φ into 0-place η -Conversion)
- The Theory of Truth: $[\lambda \varphi] \equiv \varphi$

Theorems Governing Identity

- $\alpha = \alpha$
- Proof by cases:
 - Case 1: x = x
 - Case 2: $F^1 = F^1$
 - Case 3: p = p
 - Case 4: $F^n = F^n$
- $\alpha = \beta \rightarrow \beta = \alpha$

•
$$(\alpha = \beta \& \beta = \gamma) \rightarrow \alpha = \gamma$$

- $\alpha = \beta \rightarrow \Box \alpha = \beta$
- Axioms of Free Logic Derived as Theorems:
 - $\tau \downarrow \equiv \exists \beta (\beta = \tau)$, provided that β doesn't occur free in τ
 - $\forall \alpha \varphi \rightarrow (\exists \beta (\beta = \tau) \rightarrow \varphi_{\alpha}^{\tau})$, provided τ is substitutable for α in φ and β doesn't occur free in τ
 - $\exists \beta(\beta = \tau)$, provided (a) τ is either a primitive constant, a variable (or a λ -expression compliant with axiom)
 - $(\Pi^n \kappa_1 \dots \kappa_n \vee \kappa_1 \dots \kappa_n \Pi^n) \to \exists \beta (\beta = \tau)$

Actuality and Descriptions

- $\star \vdash \varphi \to \mathscr{A}\varphi$ (Assume φ and, for reductio, $\neg \mathscr{A}\varphi$; so by logic of actuality, $\mathscr{A}\neg\varphi$; then \star -axiom $[\mathscr{A}\psi \to \psi]$ implies $\neg\varphi$. \bowtie)
- Rule of Actualization: If $\vdash \varphi$, then $\vdash \mathfrak{A}\varphi$ and If $\vdash_{\Box} \varphi$, then $\vdash_{\Box} \mathfrak{A}\varphi$
- Logical of Actuality: A distributes over conditionals, conjunctions, disjunctions; commutes with universal quantifier $(A \exists \alpha \varphi \equiv \exists \alpha A \varphi)$; etc.
- Classical description theory is not modally strict:
 - \star Hintikka: $\star \vdash y = \iota x \varphi \equiv \varphi \& \forall x (\varphi \rightarrow x = y)$
 - \star Russell: $\star \vdash F \iota x G x \equiv \exists x (G x \& \forall z (G z \rightarrow z = x) \& F x) (exercise)$

•
$$\star \vdash y = \iota x \varphi \to \varphi_x^y$$

• $\vdash_{\Box} y = \iota x \varphi \to \mathcal{A} \varphi_x^y$

Classical Quantified S5 Modal Logic

• Proof of K $\diamond (\Box(\varphi \to \psi) \to (\diamond \varphi \to \diamond \psi))$: (exercise).

Theorems

• Proof of $T \diamondsuit (\varphi \rightarrow \diamondsuit \varphi)$:

Axioms

0000

Language

0000

- $\Box \neg \psi \rightarrow \neg \psi$ (instance of T); so $\neg \neg \psi \rightarrow \neg \Box \neg \psi$ (by contraposition); so $\psi \rightarrow \Diamond \psi$ (by propositional logic and and definitions)
- Proof of B ($\varphi \to \Box \diamondsuit \varphi$)
 - $\diamond \varphi \rightarrow \Box \diamond \varphi$ (instance of 5 axiom); $\varphi \rightarrow \diamond \varphi$ (instance of T \diamond); $\varphi \rightarrow \Box \diamond \varphi$ (by hypothetical syllogism)
- Proof of 4 $(\Box \varphi \rightarrow \Box \Box \varphi)$:
 - $\diamond \neg \psi \rightarrow \Box \diamond \neg \psi$ (instance of 5 axiom); $\neg \Box \diamond \neg \psi \rightarrow \neg \diamond \neg \psi$ (contraposition); $\diamond \Box \psi \rightarrow \Box \psi$ (by definitions); $\Box (\diamond \Box \psi \rightarrow \Box \psi)$ (by RN); $\Box \diamond \Box \psi \rightarrow \Box \Box \psi$ (by K axiom); $\Box \psi \rightarrow \Box \diamond \Box \psi$ (instance of B); $\Box \psi \rightarrow \Box \Box \psi$ (hypothetical syllogism)
- Proof of $B \diamondsuit (\diamondsuit \Box \varphi \to \varphi)$
 - $\neg \psi \rightarrow \Box \Diamond \neg \psi$ (instance of B); $\neg \Box \Diamond \neg \psi \rightarrow \neg \neg \psi$ (contraposition); $\Diamond \Box \psi \rightarrow \psi$ (by definitions and logic)

Prerequisites

00000

Theorems **Computational Implementation**

Barcan Formulas

- 1st-order Barcan Formula $\forall x \Box \varphi \rightarrow \Box \forall x \varphi$:

 - $(\forall x \Box \varphi \to \Box \varphi)$
 - $\bigcirc \quad \Box(\forall x \Box \varphi \to \Box \varphi) \to (\Diamond \forall x \Box \varphi \to \Diamond \Box \varphi)$
 - $\Diamond \forall x \Box \varphi \to \Diamond \Box \varphi$

 - $\bigcirc \quad \diamondsuit \forall x \Box \varphi \rightarrow \varphi$

 - $\bigcirc \forall x \Box \varphi \to \Box \forall x \varphi$
- 1st-order Converse Barcan Formula: $\Box \forall x \varphi \rightarrow \forall x \Box \varphi$

1
$$\forall x \varphi \rightarrow \varphi$$

2 $\Box(\forall x \varphi \rightarrow \varphi)$
3 $\Box(\forall x \varphi \rightarrow \varphi) \rightarrow (\Box \forall x \varphi \rightarrow \Box \varphi)$
4 $\Box \forall x \varphi \rightarrow \Box \varphi$

- $(I) \forall x (\Box \forall x \varphi \to \Box \varphi)$
- $(\bigcirc \forall x(\Box \forall x \varphi \to \Box \varphi) \to (\Box \forall x \varphi \to \forall x \Box \varphi)$

 $\Box \forall x \varphi \to \forall x \Box \varphi$

quantifier axiom from 1 by RN theorem of S5 from 2,3 by MP Lemma (B◊) from 4,5 by logic from 6 by GEN quantifier theorem from 7,8 by MP from 9 by DR2

> quantifier axiom from 1 by RN Instance of K axiom from 2, 3 by MP from 4 by GEN quantifier theorem

> > from 5,6 by MP

Unproblematic Modal Collapse

- A modal logic should not have, as theorems, $\varphi \to \Box \varphi$, or $\Diamond \varphi \to \varphi$, or $\Diamond \varphi \equiv \Box \varphi$, or $\varphi \equiv \Box \varphi$, for any contingent formula φ .
- This is modal collapse (i.e., modal distinctions fail).
- However, some necessary claims, like identity claims, are modally collapsed.
- We've already seen:
 - $A\varphi \to \Box A\varphi$ (axiom)
 - $xF \to \Box xF$ (axio)
 - $\tau \downarrow \rightarrow \Box \tau \downarrow$ (theorem)
 - $\alpha = \beta \rightarrow \Box \alpha = \beta$
- But we also have:
 - $O!x \to \Box O!x$
 - $A!x \to \Box A!x$
- Finally, some consequences of modal collapse:
 - $\Box(\varphi \to \Box \varphi) \to (\Diamond \varphi \to \Box \varphi)$
 - $\Box(\varphi \to \Box \varphi) \to (\neg \Box \varphi \equiv \Box \neg \varphi)$

(axiom) (axiom) (theorem) (theorem)

Derivation: Comprehension for Relations

- Show: $\exists F^n \Box \forall x_1 \dots \forall x_n (Fx_1 \dots x_n \equiv \varphi),$ $(n \ge 1)$ provided F^n doesn't occur free in φ and none of x_1, \dots, x_n occur free as primary terms in an encoding formula subterm of φ .
- Proof.
 - 1 $[\lambda x_1 \dots x_n \varphi] \downarrow$ for appropriate φ , by an axiom of free logic2 $[\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi$ Consequence of λ -conversion3 $\forall x_1 \dots \forall x_n ([\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi)$ GEN (×n), 14 $\Box \forall x_1 \dots \forall x_n ([\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi)$ RN, 25 $\exists F^n \Box \forall x_1 \dots \forall x_n (Fx_1 \dots x_n \equiv \varphi)$ EI, 3

• Instances:

- $\exists F \Box \forall x (Fx \equiv \neg Gx)$ $[\lambda x \neg Gx]$
- $\exists F \Box \forall x (Fx \equiv Gx \& Hx)$ [$\lambda x Gx \& Hx$]
- $\exists F \Box \forall x (Fx \equiv p)$ [$\lambda x p$]

Basic Object Theory I

- There are ordinary objects and there are abstract objects:
 - $\Box \exists x O! x$
 - $\exists x A ! x$

• An identity relation on ordinary objects:

- $[\lambda xy O!x \& O!y \& x=y]\downarrow$
- $=_E =_{df} [\lambda xy O! x \& O! y \& x = y]$
- $x =_E y \rightarrow \Box x =_E y$
- $O!x \to x =_E x$ (implies symmetry, transitivity)
- Indiscernibility is necessary: $\forall F(Fx \equiv Fy) \rightarrow \Box \forall F(Fx \equiv Fy)$
- Ordinary objects are logically well-behaved:
 - $O!y \rightarrow [\lambda x \, x = y] \downarrow$
 - $(O!x \lor O!y) \to (\forall F(Fx \equiv Fy) \to x = y)$
 - $(O!x \& O!y) \rightarrow (x \neq y \equiv [\lambda z z = x] \neq [\lambda z z = y])$

Basic Object Theory II

- $\exists ! x (A ! x \& \forall F (xF \equiv \varphi))$, where φ has no free *x*s
- $\iota x(A!x \& \forall F(xF \equiv \varphi)) \downarrow$
- $\star \vdash \iota x(A!x \& \forall F(xF \equiv \varphi))F \equiv \varphi$
- *Proof.* (→) Assume *ιx*(*A*!*x* & ∀*F*(*xF* ≡ φ))*F*. Then *ιx*(*A*!*x* & ∀*F*(*xF* ≡ φ))↓ and we can instantiate this description in its own matrix (★-theorem):

 $A!\iota x(A!x \& \forall F(xF \equiv \varphi)) \& \forall F(\iota x(A!x \& \forall F(xF \equiv \varphi))F \equiv \varphi)$ Detach the second conjunct and instantiate to *F*:

 $\iota x(A!x \& \forall F(xF \equiv \varphi))F \equiv \varphi$

•
$$\iota x(A!x \& \forall F(xF \equiv \varphi))F \equiv \mathfrak{A}\varphi$$

Prerequisites 00000

0000

Theorems **Computational Implementation**

Bibliography

Distinct A-Objects and Relational Properties

• $\forall R \exists x \exists y (A ! x \& A ! y \& x \neq y \& [\lambda z R z x] = [\lambda z R z y])$

Proof: Consider an arbitrary *R*. By **OC**,

 $\exists x (A!x \& \forall F(xF \equiv \exists y (A!y \& F = [\lambda z Rzy] \& \neg yF)))$

Call such an object k, so we know:

 $\forall F(kF \equiv \exists y(A!y \& F = [\lambda z R z y] \& \neg yF))$

Now consider $[\lambda z Rzk]$. Assume $\neg k[\lambda z Rzk]$. Then, by definition of k,

 $\forall y(A!y \& [\lambda z Rzk] = [\lambda z Rzy] \rightarrow y[\lambda z Rzk]).$ Instantiate to k, and it follows that $k[\lambda z Rzk]$, contrary to assumption. So $k[\lambda z Rzk]$. So by the definition of k, there is an object, say *l*, such that

 $A!l \& [\lambda z Rzk] = [\lambda z Rzl] \& \neg l[\lambda z Rzk].$ But since $k[\lambda z Rzk]$ and $\neg l[\lambda z Rzk], k \neq l$. So $\exists x, y(A!x \& A!y \& x \neq y \& [\lambda z Rzx] = [\lambda z Rzy]).$

 \bowtie

Why Cantor's Theorem forces this result.

Edward N. Zalta

• $\exists x \exists y (A ! x \& A ! y \& x \neq y \& \forall F(Fx \equiv Fy))$

Proof: Let R_0 be the relation $[\lambda xy \forall F(Fx \equiv Fy)]$. By the previous theorem, there exist distinct abstract objects a, b such that $[\lambda z R_0 za] = [\lambda z R_0 zb]$. By logic alone, it is easily provable that R_0aa , from which it follows that $[\lambda z R_0 za]a$. But, now, $[\lambda z R_0 zb]a$, from which it follows that R_0ab . Thus, by λ -conversion, $\forall F(Fa \equiv Fb)$.

- Why our models explain this result.
- Kirchner Theorem:
 - $[\lambda x \varphi] \downarrow \equiv \Box \forall x \forall y (\forall F(Fx \equiv Fy) \rightarrow (\varphi \equiv \varphi_x^y)),$ provided y doesn't occur free in φ .
 - The property $[\lambda x \varphi]$ exists if and only if necessarily, φ doesn't distinguish between indiscernible objects x and y.
 - The *n*-place relation $[\lambda x_1 \dots x_n \varphi]$ exists if and only if necessarily, φ doesn't distinguish among objects x_1, \dots, x_n and y_1, \dots, y_n that exemplify the same relations.

Discernible Objects

- $[\lambda x \Box \forall y (y \neq x \rightarrow \exists F \neg (Fy \equiv Fx))] \downarrow$ *Proof*: Let φ be the above matrix; By Kirchner Thm., GEN, and RN, show $\forall F(Fx \equiv Fz) \rightarrow (\varphi \equiv \varphi_x^z).$
- $D! =_{df} [\lambda x \Box \forall y (y \neq x \rightarrow \exists F \neg (Fy \equiv Fx))]$
- $O!x \to D!x$
- D!x is modally collapsed: $\Box(D!x \to \Box D!x)$
- Discernible objects are logically well-behaved:

• $(D!x \lor D!z) \to (\forall F(Fx \equiv Fz) \to x = z)$

Proof. W.1.o.g., assume D!x and $\forall F(Fx \equiv Fz)$. Then $\forall y(y \neq x \rightarrow \exists F \neg (Fy \equiv Fx))$,

i.e., $\forall y (\forall F(Fy \equiv Fx) \rightarrow y = x)$. Then $\forall F(Fz \equiv Fx) \rightarrow z = x$. So z = x, i.e., x = z.

- $[\lambda x D! x \& \varphi] \downarrow$, any φ (use Kirchner Thm)
- Identity Relation for Indiscernibles:
 - $[\lambda xy D!x \& D!y \& x=y]\downarrow$
 - $=_D =_{df} [\lambda xy D! x \& D! y \& x = y]$
 - $D!x \to x =_D x$ (symmetry, transitivity follows)
 - $D!y \to [\lambda x \, x = y] \downarrow$

Consistency Proved in Isabelle/HOL

- Daniel Kirchner (Ph.D. Mathematics, Freie Universität Berlin), extended techniques developed by Christoph Benzmüller (Universität Bamberg), to implement the above system in Isabelle/HOL in his Ph.D. Thesis.
- His implementation constructs a model that in which all the axioms are true and, hence, consistent with one another.
 - Daniel's object theory website: https://aot.ekpyron.org/
 - Daniel's GitHub repository: https://github.com/ekpyron/AOT/
 - Daniel's Ph.D. Thesis:

 $https://refubium.fu-berlin.de/bitstream/handle/fub188/35426/dissertation_kirchner.pdf?sequence=3\&isAllowed=ya$

- Isabelle download page: https://isabelle.in.tum.de/
- The definitions, axioms, and theorems correspond to the current version of *Principia Logico-Metaphysica* https://mally.stanford.edu/principia.pdf

Bibliography

Chellas, B., 1980, *Modal Logic: An Introduction*, Cambridge: Cambridge University Press. Enderton, H., 1972 [2001], *A Mathematical Introduction to Logic*, San Diego: Academic Press; second edition, 2001.

Hintikka, J., 1959, "Towards a Theory of Definite Descriptions," Analysis, 19(4): 79-85.

Hughes, G.E., and Cresswell, M., 1996, *A New Introduction to Modal Logic*, London: Routledge.

Kirchner, D., 2022, *Computer-Verified Foundations of Metaphysics and an Ontology of Natural Numbers in Isabelle/HOL*, Ph.D. Dissertation, Fachbereich Mathematik und Informatik der Freien Universität Berlin. doi = 10.17169/refubium-35141

Mendelson, E., 1997, *Introduction to Mathematical Logic*, London: Chapman and Hall, 4th edition; 2010, 5th edition.

Zalta, E., 1983, *Abstract Objects: An Introduction to Axiomatic Metaphysics*, Dordecht: D. Reidel.

Zalta, E., 1988, "Logical and Analytic Truths That Aren't Necessary," *Journal of Philosophy*, 85(2): 57–74.

Zalta, E., m.s., Principia Logico-Metaphysica, https://mally.stanford.edu/principia.pdf