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Second-Order Logic With Propositions I

@ In second-order language, we have n-place relations (F", G", .. .), n-place
exemplification predication (F"x; ... x,), and Comprehension:
AF"Vx ... Vx,(F"x1 ... x, = @),
where ¢ has no free F"'s or encoding subformulas.
@ 2nd-order logic allows for O-place relations: FY, GV, . ..
(Abbreviations: p, q,71,...)
@ Comprehension: dp(p = ¢), where ¢ has no free ps or encoding
subformulas:
) Elp(p = —IPCZ)
o dp(p = Pa & Ob)
o dp(p = VyMy)
@ A Simple Derivation:

Q@ dp(p = —-Fx) Instance of O-place Comprehension
Q Vxdp(p = —Fx) By GEN on (1)
Q@ VYFVYxdp(p = —Fx) By GEN on (2)
@ Propositional properties exist:
o AFVx(Fx = p) Instance of 1-place Comprehension
o VpdFVx(Fx = p) By GEN on an instance
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The Simplest Quantified Modal Logic I

@ Simplest S5 Modal Logic (only necessary truths are axioms):
e Language includes the formulas O¢, where ¢ 1s any formula
o Add the definition: G =4 —O-¢
e Assert propositional axioms:
o K:oO(p — ¢) — (Op — Oy)
o T:0Op — ¢
@ 5: Cp — OO
e No special quantifier axioms needed
e Rule of Necessitation: from ¢, infer Oy
@ Theorems:
e B:p —» 00y
e 4: Op — OOy
e Derived Rule: If - ¢ — i, then + Op — Oy
e Derived Rule: If - O — ¢, then + ¢ — Oy
e Ist-, 2nd-order Barcan Formula: YaOp — OVap
e Ist-, 2nd-order Converse BF: OVayp — YaOyp
e Necessary Existence: YaOdB(6 = )

@ Interpretation: fixed domains, no accessibility relation
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Actuality Operator I

@ Where ¢ 1s any formula, so 1s dy

Semantics requires a distinguished actual world (wg):

A 1s true w.r.t. w ifT ¢ 1s true at wy
The Logic of Actuality:
Many of the principles govern interaction of  with the other
connectives.
In a modal context, there are subtleties to keep in mind
Two key principles
*Axiom 1: Ay — ¢
Axiom 6: Ay — Ody

@ It follows from xAxiom 1 that ¢ — .

In a modal context, Rule RN would let you infer O(dy — ¢)
from *Axiom 1. But this 1sn’t valid!

@ xAxiom 1 is a contingent logical truth, 1.e., not necessary.
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We will mark any theorem derived from xAxiom 1 with an
asterisk, to indicate that RN can’t be applied to such theorems!
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Classical (Relational) 1-Calculus I

A-expressions [Axy ...x, ¢]: being objects x, ..., x;, such that ¢.
So A-expressions are interpreted relationally.

Examples: [Ax =Rx], [Ax Px & Qx], etc.

In the standard A-calculus, all A-expressions denote and the
background i1s classical logic.

@ (By contrast, in object theory, some A-expressions fail to denote,
e.g., [Ax AF(xF & —Fx)]. And we’ll use a free logic. More later.)

@ Three main principles:
e A- or B-conversion: [Ax|...x, @]x;...x, =@
@ [Ax —Rx]x = -Rx
@ [Ax Px & Ox]x = Px & Ox
e a-conversion: [Axy...x, ¢] = [Ax|...x, ¢]’, for alphabetic
variants
@ [Ax —Fx]| = [Az =F7]
e n-Conversion: [Ax;...x, F"x;...x,] = F", for elementary
A-expressions.
@ [AxyRxy] =R
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Classical Theory of Definite Descriptions 1xyp I

1xp 1s governed by a single axiom (Hintikka 1959):
o y=uxyp = Vx(p =x=y)
The standard logic of definite descriptions is a (negative) free logic:
o Yay — (AB(B=1) — ¢,,), where 7 1s any (individual) term
substitutable for @ 1n ¢.
e JB(B=T7), where 7 1s a constant or a variable (1.e., not a
description).
e If an atomic formula with a description 1s true, then the
description denotes, e.g., GixFx — dy(y =1xFXx).

One can derive instances of the Russell principle:
GixFx = Ax(Fx & Vy(Fy — y=x) & Gx)

Our changes: (a) we’ll replace 6(6=1) with 7|; (b) our free logic will
apply to both descriptions and A-expressions; (¢) we’ll interpret wxep rigidly,
and use an actuality operator in the Hintikka axiom; and (d) we’ll derive
Russell’s analysis, though it becomes a contingent logical theorem.




The Language of Object Theory and its Primitives Notions I

@ Object variables and constants: x,vy,z,... a,b,c,...

@ Relation variables and constants: F"*, G",H", .. .;
P, O"R",...(forn>0);p,q,r,...(wWhen n=0)

@ Distinguished 1-place relation: E! (being concrete)
@ Atomic formulas:
F'x1...x, (x1,...,x, exemplify F")
X1 ... X, " (x1,...,x, encodes F")

@ Complex Formulas: =, ¢ — i, Yap, Op, d¢  (a any variable)
@ Complex Terms:
Descriptions: wx¢ (rigid)
A-expressions: [AX] ...Xx, ¢]
(interpreted relationally, not functionally)
@ From these primitives, we’ll define: Truth-values, Classes
(Extensions of Properties), Numbers, Possible (Impossible)
Worlds, Forms, Fictions, Leibnizian Concepts, and Senses.
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A Semantics: If You Want One I

@ A Semantics for Second-order Object Theory
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Modal Object Theory: A BNF for the Language I

) primitive individual constants
% individual variables
> primitive n-ary relation constants (n > 0)
Qn n-ary relation variables (n > 0)
a variables
K individual terms
1" n-ary relation terms (n > 0)
@ formulas
T terms

0 = ay,ap, ...

V 1= X1,X2,...

(n>0) " == P, P,,... (with P{ distinguished and written as E!)
(n>0) Q" .= F’l’,Fg,...
a:=v | Q"(n>0)
K:=0 | v | v
(m>DII" :=2" | Q" | [Avi...vy, ¢] (vi,...,Vv, are pairwise distinct)
e =30 | Q0 | Tk ...k, (n>1) | k1...k,]T" (m 2> 1) |
[Ae] | (=@) | (¢ =) | Yap | (Op) | (de)
Y = o
Tu=« | II" (n>0)
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Definitions: Operators, Terms, Existence, Identity

o &, V, =, d, and < are all defined 1n the usual way
o Existence (|)
xl =4 AF Fx
F" =g dxy .o DGy oo X ) n>1)
pl =4 [Axpll
@ O! =4 [AxOE!x] (‘ordinary’)
@ Al =4 [Ax~OFE!x] (‘abstract’)
o Identity (=)
X=Y =df
Ox& Oly&OVF(Fx = Fy)) V Alx & Aly & OVF(xF = yF))
F'=G! =4f OVx(xF! = xGY)
F'=G" =4 (wheren > 1)
Vxi... Yx,_1(JAy F'yxp ... x =AYy G yxp .o x ] &
Ay F'x1yx2 ... X1 ]=[Ay G'x1yx0 ... x| & ... &
[Ay F'x1 ... Xp1y] = [y G'xy ..o X1 y])
p=q =4 [Aypl=[1yql
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Modal Object Theory: Axioms I I

@ A closure of a formula ¢ 1s the result of prefacing any string of
Va, O, or A to ¢. We take the closures of all of the following:

@ Propositional Logic: Classical Axioms
@ Predicate Logic (free logic for complex terms):

o Yayp — (1| — ¢), provided 7 1s substitutable for a in ¢

e 7|, provided T 1s primitive constant, a variable, or A-expression in
which the A doesn’t bind a variable that occurs as a primary term
in an encoding formula subterm of the matrix

o Ya(y = ¥) » (VYap — Yay)

e ¢ — Yay, provided a doesn’t occur free in ¢

o Il"ky ...k, > (I" &K1l & ... &k,]) (n>0)
Ki...k,JI" > I &l & ... &«,l) (n>1)

@ Substitution of Identicals (unrestricted):

a=B — (¢ — ¢'), whenever B is substitutable for « in ¢, and
¢’ is the result of replacing zero or more free occurrences of @
in ¢ with occurrences of
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Modal Object Theory: Axioms II I

@ Axioms for Actuality:

o dp — ¢ (*-axiom, only universal closures)

o -y = —-dyp

o dp = y) = (do — dy)

o AVayp = Vadyp

o Ay = ddyp
@ Axioms for Necessity:
O(¢ = ¥) — (Op — OY) (K axiom)
Op — ¢ (T axiom)
Cp — OOy (5 axiom)
OAx(Elx & —-dAE!x) (new)

@ Axioms for Necessity and Actuality:

o dp — Odyp
o Oy =dny
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Modal Object Theory: Axioms III I

@ Axioms for Definite Descriptions:
o y=wxp = Vx(dyp =x=Yy)
@ Axioms for Relations (1-Calculus for Relations):

o [Avi...violl = [Avi...vyo]l=[Avi...v, 0] (n > 0)
([Avy ... v, @]’ an alphabetic variant)

o [Ax;...x, 0]l = (Ax1...x, 0]X1 ... %, = ©) (n>1)

o [Axy...x, F"'xy...x,]=F" (n>0)

o ([Ax1...x, 0]l &OVxy... VX, (¢ =) — [Axy... x5, ¢l (n=>0)
@ Axioms for Encoding:
@ Xi...x,F" =
X1 [AVE" yxy .o x,] & X[ AVF" X1 yx3 ... x,] & o0 & X [AVE X L. X021 ]
o xF — OxF

o Olx » —dF xF
o dx(Alx & VF(xF = ¢)), provided x doesn’t occur free in ¢
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Modal Object Theory: Deductive System I

@ One rule of inference: Modus Ponens

@ Two derivation systems: I' - ¢ and I' 5 .
@ Derive Rule GEN: If I' + ¢, then I' - Ya, provided a doesn’t
occur free in any premise in I'.

e Proof by Induction on Length of Proof: Assume I - ¢ and «
doesn’t occur free in I'.

e Base Case: I' F ¢ 1s one-element sequent. Then (A) ¢ 1s an axiom
or (B) ¢ 1s a premise in I'. (A) Then Yay 1s an axiom, since we
took the universal closures as axioms. Then I' F Ya, since an
axiom follows from any set of premises. (B) Then a doesn’t
occur free 1n ¢. By an axiom of predicate logic, 1.e., ¢ — Yap
(when a 1sn’t free in @), it follows that Ya. So the sequence
0,0 = Yap, Yay is a witness to I' + Yap (every member of the
sequence is either an axiom, a premise, or 1s a direct consequence
of two previous members by MP).

e Inductive case: (Exercise)

@ RN is derived (next slide).
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A Derivation of the Rule RN '

@ Rule RN (with premises): If I' 5 ¢, then OI" + Oy, where OI' 1s
obtained from I' by putting a O in front of every formulain I
(Exercise)

@ Rule RN (no premises): If F5 ¢ (i.e., there 1s a proof of ¢ that
doesn’t appeal to any contingent xaxiom), then 5 Og and + 0.

@ Proof. Suppose we’re given a proof of ¢ that doesn’t appeal to any
contingent axiom. We show by induction on the length of the proof
that there 1s a (modally strict) proof of Ogp. If the proof of ¢ is one
line, ¢ must be a non-contingent axiom. So its modal closure Oy 1s a
necessary axiom, and hence 4 ¢. If the modally strict proof of ¢ 1s
more than one line, then ¢ was derived by MP from previous lines ¢
and ¢y — ¢ by MP. Since the proof of ¢ is modally strict, we know
Fo ¥ and F5 (W — ¢). Hence, by the IH, +5 Oy and +5 O — o) .
But then, since the K axiom is also a theorem, 5 Oe.
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Propositional and Predicate Logic I

All the usual theorems of propositional logic are preserved.

Classical quantification theory holds for primitive constants and
variables: 1f 7 1s a primitive constant or a variable, then
Yap — ¢f.
Every O-place term and formula signifies a proposition: pick a
variable v that isn’t free in I1". Then it is axiomatic that [y I1°]].
So by definition, 1°], and since formulas are O-place relation
terms, @], for any .
Logical existence 1s necessary: 7| — Ot

e Note: This does not imply that Elx — OFE!x.

Identity implies existence: =0 — (7| & 7))
[ ¢] = ¢ (substitute ¢ into 0-place n-Conversion)
The Theory of Truth: [A¢] = ¢
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Theorems Governing Identity I

@ Proof by cases:
o Case l: x=x
o Case2: Fl=F!
o Case 3: p=p
o Case4: F"=F"
a=p—->p=«
(@=p&f=y)>a=y
a=B-o0ax=p
Axioms of Free Logic Derived as Theorems:
o 7| = dB(B=1), provided that # doesn’t occur free in T
o Yay — (AB(B=1) — ¢.,), provided 7 1s substitutable for « in ¢
and B doesn’t occur free in 7
e JB(B=7), provided (a) 7 1s either a primitive constant, a variable

(or a A-expression compliant with axiom)
o (I"ky ...k, VKy...5,I1I") = AB(B = 1)
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Actuality and Descriptions I

@ % ¢ — dp (Assume ¢ and, for reductio, =sdg; so by logic of
actuality, dd—¢; then x-axiom [y — ] implies —p. <)

@ Rule of Actualization: If + ¢, then F Ay and If 5 ¢, then F5 dp

@ Logical of Actuality: ol distributes over conditionals,
conjunctions, disjunctions; commutes with universal quantifier
(ddap = dady); etc.

@ Classical description theory 1s not modally strict:

o wHintikka: xF y=wxp = ¢ & Vx(¢p — x=Yy)

e *Russell: x+ FixGx = Ax(Gx & Vz(Gz — z=x) & Fx) (exercise)
@ Xk y=Ixp — go)yc

o tg y=1xp — dp,
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Classical Quantified S5 Modal Logic I

@ Proof of KO (O(p — ¥) — (O — Oy)): (exercise).
@ Proof of TG (¢ — Ov):

e O — — (instance of T); so =— — —O— (by
contraposition); so ¢y — <Oy (by propositional logic and and
definitions)

@ Proof of B (¢ — O00¢)

o O — OOy (instance of 5 axiom); ¢ — <O (instance of TO);

¢ — OO (by hypothetical syllogism)
@ Proof of 4 (O¢p — OOy):

o O — OO (instance of 5 axiom); ~OO— W — Oy
(contraposition); GOy — Oy (by definitions); O(COy — OY) (by
RN); oooOy — ooy (by K axiom); Oy — 00Oy (instance of B);
Oy — OOy (hypothetical syllogism)

@ Proof of BO (O0O¢ — ¢)

e —y — OO (instance of B); 00—y — ——f (contraposition);

SOy — ¥ (by definitions and logic)
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Barcan Formulas '

@ Ist-order Barcan Formula VxOp — OVxo:

Q VxOp — O¢ quantifier axiom
Q o(Vxop — Oy)

@ O(VxOp — Op) — (OVYxOp — OOp)

Q <OVxOp — <Oy from 2,3 by MP
Q@ <oy — g

Q OVxop — ¢ from 4,5 by logic
Q VYx(OVxOp — @) from 6 by GEN
Q Vx(OVxOp — @) — (OVxOp — Yxp) quantifier theorem
Q <OVxoOp — Vxp from 7,8 by MP
Q@ VYxop — OVxyp from 9 by DR2

@ Ist-order Converse Barcan Formula: OVxe — VxOg

Q Vxp—o
Q o(Vxp — ¢)

from 1 by RN
theorem of S5

Lemma (B<)

quantifier axiom
from 1 by RN

© o(Vxp — @) — (OVxp — Op) Instance of K axiom

Q oVxp — Op
© Vx(@Vxp — Op)

from 2, 3 by MP
from 4 by GEN

Q Vx(@Vxp — Op) — (OVxe — YxOp) quantifier theorem

@ oVxp — VxOp

from 5,6 by MP
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Unproblematic Modal Collapse I

@ A modal logic should not have, as theorems, ¢ — O, or

O — @, or O = Oy, or ¢ = Oy, for any contingent formula ¢.
@ This 1s modal collapse (1.e., modal distinctions fail).
@ However, some necessary claims, like identity claims, are

modally collapsed.
@ We’ve already seen:
o do — Ody (axiom)
o xI' —» OxF (axiom)
o 7| — O (theorem)
o o= — Oa=p (theorem)

@ But we also have:
e Olx - O0!x
e Alx —» DAx
@ Finally, some consequences of modal collapse:
o D(¢ — Op) = (O — Op)
o O(p — Oy) — (—Op = O-)
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Derivation: Comprehension for Relations I

@ Show: AF"'OVx; ... Vx,(Fx1...x, = ¢), n>1)
provided F" doesn’t occur free in ¢ and none of xi,...,x, occur
free as primary terms in an encoding formula subterm of ¢.

@ Proof.

Q [x...x, 0]l for appropriate ¢, by an axiom of free logic
Q (.. x,0lx1..x,=¢ Consequence of A-conversion
Q Vxi... Vx,([Ax1...x, 0lx1 ... %, = @) GEN (xn), 1
Q OVx;... Vx,([Ax1 ... x, ¢lx1 ... %, = @) RN, 2
@ JF'oVxy...Vx,(Fxi...x, = ¢) El 3

@ Instances:

o JFOVx(Fx = -Gx) [Ax = Gx]
o AFOVx(Fx = Gx & Hx) [Ax Gx & Hx]
o AFOVx(Fx = p) [Ax p]
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Basic Object Theory I I

@ There are ordinary objects and there are abstract objects:

o O1xOlx
o dxAlx

@ An identity relation on ordinary objects:

[Axy Olx & Oy & x=y]|

=g =4r [Axy Olx & Oly & x=y]

X=gy — OX=gy

Olx > x=gx (implies symmetry, transitivity)

@ Indiscernibility i1s necessary: VF(Fx = Fy) —» OVF(Fx = Fy)
@ Ordinary objects are logically well-behaved:

o Oly — [Axx=y]|
e (OlxVv Oly) > (VF(Fx = Fy) - x=Yy)
o (Ox& 0Oly) = (x#y = [Azz=x]#[1zz=Y])
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Basic Object Theory II I

dIx(Alx & VF(xF = ¢)), where ¢ has no free xs
xX(Alx & VF(xF = ¢))]
*FxX(Ax & VF(xF = @)F = ¢

Proof. (—) Assume ix(Alx & VF(xF = ¢))F. Then
x(Alx & VF(xF = ¢))] and we can instantiate this description in
1ts own matrix (x-theorem):

Alx(Alx & VF(xF = @) & VF(ix(A'x & VF(xF = ©))F = ¢)
Detach the second conjunct and instantiate to F:
XAx &VF(xF = o)F = ¢

@ IX(Alx & VF(xF = ¢))F = do
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Distinct A-Objects and Relational Properties I

@ YRAxAy(Alx & Aly & x#y & [Az Rzx] =[Az Rzy])
Proof. Consider an arbitrary R. By OC,
dx(Alx & VF(xF = Ay(Aly & F =[Az Rzy] & —yF)))
Call such an object k, so we know:
VF(kF = dy(Aly & F=[AzRzy] & —yF))
Now consider [Az Rzk]. Assume —k[Az Rzk]. Then, by definition
of k,
Vy(Aly & [Az Rzk]=[Az Rzy] — y[Az Rzk]).
Instantiate to k, and 1t follows that k[ Az Rzk], contrary to
assumption. So k[Az Rzk]. So by the definition of k, there 1s an
object, say [, such that
All & [Az Rzk] =[Az Rzl] & —l[Az Rzk].
But since k[Az Rzk] and —l[Az Rzk], k#1. So
dx, y(Alx & Aly & x#y & [Az Rzx] =[Az Rzy]).

>

@ Why Cantor’s Theorem forces this result.
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Indiscernible Abstract Objects I

@ IxIy(Alx & Aly & x+y & VF(Fx = Fy))

Proof: Let Ry be the relation [Axy VF(Fx = Fy)]. By the previous
theorem, there exist distinct abstract objects a, b such that
[z Roza]l =[Az Rozb]. By logic alone, it 1s easily provable that
Ropaa, from which it follows that [Az Rgza]a. But, now,
[z Rozb]a, from which it follows that Ryab. Thus, by
A-conversion, YF(Fa = Fb). >
@ Why our models explain this result.
@ Kirchner Theorem:
o [Ax ]l = OVxVy(VF(Fx = Fy) — (¢ = ¢))),
provided y doesn’t occur free in ¢.
e The property [Ax ¢] exists if and only if necessarily, ¢ doesn’t
distinguish between indiscernible objects x and y.
e The n-place relation [Ax; ... x, ¢] exists if and only if necessarily,
¢ doesn’t distinguish among objects xi,...,x, and yi,...,y, that
exemplify the same relations.
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Discernible Objects I

o [AxOVy(y#x — AF-(Fy = Fx))]|
Proof: Let ¢ be the above matrix; By Kirchner Thm., GEN, and RN, show

VF(Fx = F7) = (¢ = ¢%).
D! =df [Ax OVy(y#x — AF-(Fy = Fx))]
O!'x — D!x
D!x 1s modally collapsed: O(D!x — OD!x)
Discernible objects are logically well-behaved:
e (D'xVvD!z) » VF(Fx=F7) —» x=2)
Proof. W.l.o.g., assume D!x and VF(Fx = Fz). Then Vy(y#x — dF-(Fy = Fx)),
ie., VY\VF(Fy = Fx) = y=x). Then VF(Fz = Fx) = z=x. So z=x, 1.e., x=Z.
o [AxD!x & ¢]|, any ¢ (use Kirchner Thm)
@ Identity Relation for Indiscernibles:
[Axy D!x & D'y & x=y]|
=p =qr [AxyD!\x & D!y & x=Y]
D!x - x=px (symmetry, transitivity follows)
D!y - [Axx=y]|

Edward N. Zalta zalta@stanford.edu




Consistency Proved in Isabelle/ HOL I

@ Daniel Kirchner (Ph.D. Mathematics, Freie Universitit Berlin),
extended techniques developed by Christoph Benzmiiller
(Universitdt Bamberg), to implement the above system in

Isabelle/HOL 1n his Ph.D. Thesis.
@ His implementation constructs a model that in which all the
axioms are true and, hence, consistent with one another.

e Daniel’s object theory website: https://aot.ekpyron.org/
e Daniel’s GitHub repository: https://github.com/ekpyron/AOT/
e Daniel’s Ph.D. Thesis:

https://refubium.fu-berlin.de/bitstream/handle/fub188/35426/dissertation_kirchner.pdf?sequence=3&isAllowed=y

o Isabelle download page: https://isabelle.in.tum.de/

@ The definitions, axioms, and theorems correspond to the current
version of Principia Logico-Metaphysica
https://mally.stanford.edu/principia.pdf
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