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Second-Order Logic With Propositions
In second-order language, we have n-place relations (Fn,Gn, . . .), n-place
exemplification predication (Fnx1 . . . xn), and Comprehension:
9Fn8x1 . . .8xn(Fnx1 . . . xn ⌘ '),

where ' has no free Fns or encoding subformulas.
2nd-order logic allows for 0-place relations: F0,G0, . . .

(Abbreviations: p, q, r, . . .)
Comprehension: 9p(p ⌘ '), where ' has no free ps or encoding
subformulas:

9p(p ⌘ ¬Pa)
9p(p ⌘ Pa & Qb)
9p(p ⌘ 8yMy)

A Simple Derivation:
1 9p(p ⌘ ¬Fx) Instance of 0-place Comprehension
2 8x9p(p ⌘ ¬Fx) By GEN on (1)
3 8F8x9p(p ⌘ ¬Fx) By GEN on (2)

Propositional properties exist:
9F8x(Fx ⌘ p) Instance of 1-place Comprehension
8p9F8x(Fx ⌘ p) By GEN on an instance
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The Simplest Quantified Modal Logic

Simplest S5 Modal Logic (only necessary truths are axioms):
Language includes the formulas ⇤', where ' is any formula
Add the definition: ^' =df ¬⇤¬'
Assert propositional axioms:

K: ⇤('!  )! (⇤'! ⇤ )
T: ⇤'! '
5: ^'! ⇤^'

No special quantifier axioms needed
Rule of Necessitation: from ', infer ⇤'

Theorems:
B: '! ⇤^'
4: ⇤'! ⇤⇤'
Derived Rule: If ` '!  , then ` ⇤'! ⇤ 
Derived Rule: If ` ^'!  , then ` '! ⇤ 
1st-, 2nd-order Barcan Formula: 8↵⇤'! ⇤8↵'
1st-, 2nd-order Converse BF: ⇤8↵'! 8↵⇤'
Necessary Existence: 8↵⇤9�(� = ↵)

Interpretation: fixed domains, no accessibility relation
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Actuality Operator

Where ' is any formula, so is A'
Semantics requires a distinguished actual world (w0):
A' is true w.r.t. w i↵ ' is true at w0
The Logic of Actuality:

Many of the principles govern interaction of A with the other
connectives.
In a modal context, there are subtleties to keep in mind
Two key principles
?Axiom 1: A'! '
Axiom 6: A'! ⇤A'

It follows from ?Axiom 1 that '! A'.
In a modal context, Rule RN would let you infer ⇤(A'! ')
from ?Axiom 1. But this isn’t valid!
?Axiom 1 is a contingent logical truth, i.e., not necessary.
We will mark any theorem derived from ?Axiom 1 with an
asterisk, to indicate that RN can’t be applied to such theorems!
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Classical (Relational) �-Calculus
�-expressions [�x1 . . . xn ']: being objects x1, . . . , xn such that '.
So �-expressions are interpreted relationally.
Examples: [�x ¬Rx], [�x Px & Qx], etc.
In the standard �-calculus, all �-expressions denote and the
background is classical logic.
(By contrast, in object theory, some �-expressions fail to denote,
e.g., [�x 9F(xF & ¬Fx)]. And we’ll use a free logic. More later.)
Three main principles:

�- or �-conversion: [�x1 . . . xn ']x1 . . . xn ⌘ '
[�x ¬Rx]x ⌘ ¬Rx
[�x Px & Qx]x ⌘ Px & Qx

↵-conversion: [�x1 . . . xn '] = [�x1 . . . xn ']0, for alphabetic
variants

[�x ¬Fx] = [�z ¬Fz]
⌘-Conversion: [�x1 . . . xn Fnx1 . . . xn] = Fn, for elementary
�-expressions.

[�xy Rxy] = R
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Classical Theory of Definite Descriptions ıx'

ıx' is governed by a single axiom (Hintikka 1959):
y= ıx' ⌘ 8x(' ⌘ x=y)

The standard logic of definite descriptions is a (negative) free logic:
8↵'! (9�(�=⌧)! '⌧↵), where ⌧ is any (individual) term
substitutable for ↵ in '.
9�(�=⌧), where ⌧ is a constant or a variable (i.e., not a
description).
If an atomic formula with a description is true, then the
description denotes, e.g., GıxFx! 9y(y= ıxFx).

One can derive instances of the Russell principle:
GıxFx ⌘ 9x(Fx & 8y(Fy! y=x) & Gx)

Our changes: (a) we’ll replace 9�(�=⌧) with ⌧#; (b) our free logic will
apply to both descriptions and �-expressions; (c) we’ll interpret ıx' rigidly,
and use an actuality operator in the Hintikka axiom; and (d) we’ll derive
Russell’s analysis, though it becomes a contingent logical theorem.

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 2 An Exact Science zalta@stanford.edu



Prerequisites Language Axioms Theorems Computational Implementation Bibliography

The Language of Object Theory and its Primitives Notions
Object variables and constants: x, y, z, . . . a, b, c, . . .
Relation variables and constants: Fn,Gn,Hn, . . . ;

Pn,Qn,Rn, . . . (for n � 0); p, q, r, . . . (when n=0)
Distinguished 1-place relation: E! (being concrete)
Atomic formulas:

Fnx1 . . . xn (x1, . . . , xn exemplify Fn)
x1 . . . xnFn (x1, . . . , xn encodes Fn)

Complex Formulas: ¬', '!  , 8↵', ⇤', A' (↵ any variable)
Complex Terms:

Descriptions: ıx' (rigid)
�-expressions: [�x1 . . . xn ']

(interpreted relationally, not functionally)
From these primitives, we’ll define: Truth-values, Classes
(Extensions of Properties), Numbers, Possible (Impossible)
Worlds, Forms, Fictions, Leibnizian Concepts, and Senses.
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A Semantics: If You Want One

A Semantics for Second-order Object Theory
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Modal Object Theory: A BNF for the Language

� primitive individual constants
⌫ individual variables
⌃n primitive n-ary relation constants (n � 0)
⌦n n-ary relation variables (n � 0)
↵ variables
 individual terms
⇧n n-ary relation terms (n � 0)
' formulas
⌧ terms

� ::= a1, a2, . . .
⌫ ::= x1, x2, . . .

(n � 0) ⌃n ::= Pn
1,P

n
2, . . . (with P1

1 distinguished and written as E!)
(n � 0) ⌦n ::= Fn

1 ,F
n
2 , . . .

↵ ::= ⌫ | ⌦n (n � 0)
 ::= � | ⌫ | ı⌫'

(n � 1) ⇧n ::= ⌃n | ⌦n | [�⌫1 . . . ⌫n '] (⌫1, . . . , ⌫n are pairwise distinct)
' ::= ⌃0 | ⌦0 | ⇧n1 . . . n (n � 1) | 1 . . . n⇧

n (n � 1) |
[� '] | (¬') | ('! ') | 8↵' | (⇤') | (A')

⇧0 ::= '
⌧ ::=  | ⇧n (n � 0)
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Definitions: Operators, Terms, Existence, Identity

&, _, ⌘, 9, and ^ are all defined in the usual way
Existence (#)

x# ⌘df 9F Fx
Fn# ⌘df 9x1 . . .9xn(x1 . . . xnFn) (n � 1)
p# ⌘df [�x p]#

O! =df [�x ^E!x] (‘ordinary’)
A! =df [�x ¬^E!x] (‘abstract’)
Identity (=)

x=y ⌘df
(O!x & O!y &⇤8F(Fx ⌘ Fy)) _ (A!x & A!y &⇤8F(xF ⌘ yF))

F1=G1 ⌘df ⇤8x(xF1 ⌘ xG1)
Fn=Gn ⌘df (where n > 1)

8x1 . . . 8xn�1([�y Fnyx1 . . . xn�1]= [�y Gnyx1 . . . xn�1] &
[�y Fnx1yx2 . . . xn�1]= [�y Gnx1yx2 . . . xn�1] & . . .&
[�y Fnx1 . . . xn�1y]= [�y Gnx1 . . . xn�1y])

p=q ⌘df [�y p]= [�y q]
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Modal Object Theory: Axioms I

A closure of a formula ' is the result of prefacing any string of
8↵, ⇤, orA to '. We take the closures of all of the following:
Propositional Logic: Classical Axioms
Predicate Logic (free logic for complex terms):

8↵'! (⌧# ! '⌧↵), provided ⌧ is substitutable for ↵ in '
⌧#, provided ⌧ is primitive constant, a variable, or �-expression in
which the � doesn’t bind a variable that occurs as a primary term
in an encoding formula subterm of the matrix
8↵('!  )! (8↵'! 8↵ )
'! 8↵', provided ↵ doesn’t occur free in '
⇧n1 . . . n ! (⇧n# & 1# & . . . & n#) (n � 0)
1 . . . n⇧

n ! (⇧n# & 1# & . . . & n#) (n � 1)
Substitution of Identicals (unrestricted):

↵=�! ('! '0), whenever � is substitutable for ↵ in ', and
'0 is the result of replacing zero or more free occurrences of ↵
in ' with occurrences of �
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Modal Object Theory: Axioms II

Axioms for Actuality:
A'! ' (?-axiom, only universal closures)
A¬' ⌘ ¬A'
A('!  ) ⌘ (A'! A )
A8↵' ⌘ 8↵A'
A' ⌘ AA'

Axioms for Necessity:
⇤('!  )! (⇤'! ⇤ ) (K axiom)
⇤'! ' (T axiom)
^'! ⇤^' (5 axiom)
^9x(E!x & ¬AE!x) (new)

Axioms for Necessity and Actuality:
A'! ⇤A'
⇤' ⌘ A⇤'
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Modal Object Theory: Axioms III

Axioms for Definite Descriptions:
y= ıx' ⌘ 8x(A' ⌘ x=y)

Axioms for Relations (�-Calculus for Relations):
[�⌫1 . . . ⌫n ']# ! [�⌫1 . . . ⌫n ']= [�⌫1 . . . ⌫n ']0 (n � 0)

([�⌫1 . . . ⌫n ']0 an alphabetic variant)
[�x1 . . . xn ']# ! ([�x1 . . . xn ']x1 . . . xn ⌘ ') (n � 1)
[�x1 . . . xn Fnx1 . . . xn]=Fn (n � 0)
([�x1 . . . xn ']# & ⇤8x1 . . .8xn(' ⌘  )) ! [�x1 . . . xn  ]# (n � 0)

Axioms for Encoding:
x1 . . . xnFn ⌘
x1[�yFnyx2 . . . xn] & x2[�yFnx1yx3 . . . xn] & . . . & xn[�yFnx1 . . . xn�1y]
xF ! ⇤xF
O!x! ¬9F xF
9x(A!x & 8F(xF ⌘ ')), provided x doesn’t occur free in '

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 2 An Exact Science zalta@stanford.edu



Prerequisites Language Axioms Theorems Computational Implementation Bibliography

Modal Object Theory: Deductive System

One rule of inference: Modus Ponens
Two derivation systems: � ` ' and � `⇤ '.
Derive Rule GEN: If � ` ', then � ` 8↵', provided ↵ doesn’t
occur free in any premise in �.

Proof by Induction on Length of Proof: Assume � ` ' and ↵
doesn’t occur free in �.
Base Case: � ` ' is one-element sequent. Then (A) ' is an axiom
or (B) ' is a premise in �. (A) Then 8↵' is an axiom, since we
took the universal closures as axioms. Then � ` 8↵', since an
axiom follows from any set of premises. (B) Then ↵ doesn’t
occur free in '. By an axiom of predicate logic, i.e., '! 8↵'
(when ↵ isn’t free in '), it follows that 8↵'. So the sequence
','! 8↵',8↵' is a witness to � ` 8↵' (every member of the
sequence is either an axiom, a premise, or is a direct consequence
of two previous members by MP).
Inductive case: (Exercise)

RN is derived (next slide).
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A Derivation of the Rule RN

Rule RN (with premises): If � `⇤ ', then ⇤� ` ⇤', where ⇤� is
obtained from � by putting a ⇤ in front of every formula in �.
(Exercise)
Rule RN (no premises): If `⇤' (i.e., there is a proof of ' that
doesn’t appeal to any contingent ?axiom), then `⇤ ⇤' and `⇤'.
Proof. Suppose we’re given a proof of ' that doesn’t appeal to any
contingent axiom. We show by induction on the length of the proof
that there is a (modally strict) proof of ⇤'. If the proof of ' is one
line, ' must be a non-contingent axiom. So its modal closure ⇤' is a
necessary axiom, and hence `⇤ '. If the modally strict proof of ' is
more than one line, then ' was derived by MP from previous lines  
and  ! ' by MP. Since the proof of ' is modally strict, we know
`⇤  and `⇤ ( ! '). Hence, by the IH, `⇤ ⇤ and `⇤ ⇤( ! ') .
But then, since the K axiom is also a theorem, `⇤ ⇤'.
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Propositional and Predicate Logic

All the usual theorems of propositional logic are preserved.
Classical quantification theory holds for primitive constants and
variables: if ⌧ is a primitive constant or a variable, then
8↵'! '⌧↵.
Every 0-place term and formula signifies a proposition: pick a
variable ⌫ that isn’t free in ⇧0. Then it is axiomatic that [�⌫⇧0]#.
So by definition, ⇧0#, and since formulas are 0-place relation
terms, '#, for any '.
Logical existence is necessary: ⌧# ! ⇤⌧#

Note: This does not imply that E!x! ⇤E!x.

Identity implies existence: ⌧=�! (⌧# & �#)
[� '] = ' (substitute ' into 0-place ⌘-Conversion)
The Theory of Truth: [� '] ⌘ '
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Theorems Governing Identity

↵ = ↵

Proof by cases:
Case 1: x=x
Case 2: F1=F1

Case 3: p=p
Case 4: Fn=Fn

↵ = �! � = ↵

(↵ = � & � = �)! ↵ = �

↵ = �! ⇤↵ = �
Axioms of Free Logic Derived as Theorems:

⌧# ⌘ 9�(�=⌧), provided that � doesn’t occur free in ⌧
8↵'! (9�(�=⌧)! '⌧↵), provided ⌧ is substitutable for ↵ in '
and � doesn’t occur free in ⌧
9�(�=⌧), provided (a) ⌧ is either a primitive constant, a variable
(or a �-expression compliant with axiom)
(⇧n1 . . . n _ 1 . . . n⇧

n)! 9�(� = ⌧)
Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 2 An Exact Science zalta@stanford.edu



Prerequisites Language Axioms Theorems Computational Implementation Bibliography

Actuality and Descriptions

?` '! A' (Assume ' and, for reductio, ¬A'; so by logic of
actuality, A¬'; then ?-axiom [A !  ] implies ¬'. ./)
Rule of Actualization: If ` ', then ` A' and If `⇤ ', then `⇤ A'
Logical of Actuality: A distributes over conditionals,
conjunctions, disjunctions; commutes with universal quantifier
(A9↵' ⌘ 9↵A'); etc.
Classical description theory is not modally strict:

?Hintikka: ?` y= ıx' ⌘ ' & 8x('! x=y)
?Russell: ?` FıxGx ⌘ 9x(Gx & 8z(Gz! z=x) & Fx) (exercise)
?` y= ıx'! 'y

x
`⇤ y= ıx'! A'y

x
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Classical Quantified S5 Modal Logic

Proof of K^ (⇤('!  )! (^'! ^ )): (exercise).
Proof of T^ ('! ^'):

⇤¬ ! ¬ (instance of T); so ¬¬ ! ¬⇤¬ (by
contraposition); so  ! ^ (by propositional logic and and
definitions)

Proof of B ('! ⇤^')
^'! ⇤^' (instance of 5 axiom); '! ^' (instance of T^);
'! ⇤^' (by hypothetical syllogism)

Proof of 4 (⇤'! ⇤⇤'):
^¬ ! ⇤^¬ (instance of 5 axiom); ¬⇤^¬ ! ¬^¬ 
(contraposition); ^⇤ ! ⇤ (by definitions); ⇤(^⇤ ! ⇤ ) (by
RN); ⇤^⇤ ! ⇤⇤ (by K axiom); ⇤ ! ⇤^⇤ (instance of B);
⇤ ! ⇤⇤ (hypothetical syllogism)

Proof of B^ (^⇤'! ')
¬ ! ⇤^¬ (instance of B); ¬⇤^¬ ! ¬¬ (contraposition);
^⇤ !  (by definitions and logic)
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Barcan Formulas
1st-order Barcan Formula 8x⇤'! ⇤8x':

1 8x⇤'! ⇤' quantifier axiom
2 ⇤(8x⇤'! ⇤') from 1 by RN
3 ⇤(8x⇤'! ⇤')! (^8x⇤'! ^⇤') theorem of S5
4 ^8x⇤'! ^⇤' from 2,3 by MP
5 ^⇤'! ' Lemma (B^)
6 ^8x⇤'! ' from 4,5 by logic
7 8x(^8x⇤'! ') from 6 by GEN
8 8x(^8x⇤'! ')! (^8x⇤'! 8x') quantifier theorem
9 ^8x⇤'! 8x' from 7,8 by MP

10 8x⇤'! ⇤8x' from 9 by DR2
1st-order Converse Barcan Formula: ⇤8x'! 8x⇤'

1 8x'! ' quantifier axiom
2 ⇤(8x'! ') from 1 by RN
3 ⇤(8x'! ')! (⇤8x'! ⇤') Instance of K axiom
4 ⇤8x'! ⇤' from 2, 3 by MP
5 8x(⇤8x'! ⇤') from 4 by GEN
6 8x(⇤8x'! ⇤')! (⇤8x'! 8x⇤') quantifier theorem

7 ⇤8x'! 8x⇤' from 5,6 by MP

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 2 An Exact Science zalta@stanford.edu



Prerequisites Language Axioms Theorems Computational Implementation Bibliography

Unproblematic Modal Collapse

A modal logic should not have, as theorems, '! ⇤', or
^'! ', or ^' ⌘ ⇤', or ' ⌘ ⇤', for any contingent formula '.
This is modal collapse (i.e., modal distinctions fail).
However, some necessary claims, like identity claims, are
modally collapsed.
We’ve already seen:

A'! ⇤A' (axiom)
xF ! ⇤xF (axiom)
⌧# ! ⇤⌧# (theorem)
↵=�! ⇤↵=� (theorem)

But we also have:
O!x! ⇤O!x
A!x! ⇤A!x

Finally, some consequences of modal collapse:
⇤('! ⇤')! (^'! ⇤')
⇤('! ⇤')! (¬⇤' ⌘ ⇤¬')
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Derivation: Comprehension for Relations

Show: 9Fn⇤8x1 . . .8xn(Fx1 . . . xn ⌘ '), (n � 1)
provided Fn doesn’t occur free in ' and none of x1, . . . , xn occur
free as primary terms in an encoding formula subterm of '.
Proof.

1 [�x1 . . . xn ']# for appropriate ', by an axiom of free logic
2 [�x1 . . . xn ']x1 . . . xn ⌘ ' Consequence of �-conversion
3 8x1 . . .8xn([�x1 . . . xn ']x1 . . . xn ⌘ ') GEN (⇥n), 1
4 ⇤8x1 . . .8xn([�x1 . . . xn ']x1 . . . xn ⌘ ') RN, 2
5 9Fn⇤8x1 . . .8xn(Fx1 . . . xn ⌘ ') EI, 3

Instances:
9F⇤8x(Fx ⌘ ¬Gx) [�x ¬Gx]
9F⇤8x(Fx ⌘ Gx & Hx) [�x Gx & Hx]
9F⇤8x(Fx ⌘ p) [�x p]
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Basic Object Theory I

There are ordinary objects and there are abstract objects:
⇤9xO!x
9xA!x

An identity relation on ordinary objects:
[�xy O!x & O!y & x=y]#
=E =df [�xy O!x & O!y & x=y]
x=E y! ⇤x=E y
O!x! x=E x (implies symmetry, transitivity)

Indiscernibility is necessary: 8F(Fx ⌘ Fy)! ⇤8F(Fx ⌘ Fy)
Ordinary objects are logically well-behaved:

O!y! [�x x=y]#
(O!x _ O!y)! (8F(Fx ⌘ Fy)! x=y)
(O!x & O!y)! (x,y ⌘ [�z z=x], [�z z=y])
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Basic Object Theory II

9!x(A!x & 8F(xF ⌘ ')), where ' has no free xs

ıx(A!x & 8F(xF ⌘ '))#
?` ıx(A!x & 8F(xF ⌘ '))F ⌘ '
Proof. (!) Assume ıx(A!x & 8F(xF ⌘ '))F. Then
ıx(A!x & 8F(xF ⌘ '))# and we can instantiate this description in
its own matrix (?-theorem):

A!ıx(A!x & 8F(xF ⌘ ')) & 8F(ıx(A!x & 8F(xF ⌘ '))F ⌘ ')
Detach the second conjunct and instantiate to F:

ıx(A!x & 8F(xF ⌘ '))F ⌘ '
ıx(A!x & 8F(xF ⌘ '))F ⌘ A'

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 2 An Exact Science zalta@stanford.edu



Prerequisites Language Axioms Theorems Computational Implementation Bibliography

Distinct A-Objects and Relational Properties

8R9x9y(A!x & A!y & x,y & [�z Rzx]= [�z Rzy])
Proof: Consider an arbitrary R. By OC,

9x(A!x & 8F(xF ⌘ 9y(A!y & F= [�z Rzy] & ¬yF)))
Call such an object k, so we know:

8F(kF ⌘ 9y(A!y & F= [�zRzy] & ¬yF))
Now consider [�z Rzk]. Assume ¬k[�z Rzk]. Then, by definition
of k,

8y(A!y & [�z Rzk]= [�z Rzy]! y[�z Rzk]).
Instantiate to k, and it follows that k[�z Rzk], contrary to
assumption. So k[�z Rzk]. So by the definition of k, there is an
object, say l, such that

A!l & [�z Rzk]= [�z Rzl] & ¬l[�z Rzk].
But since k[�z Rzk] and ¬l[�z Rzk], k, l. So

9x, y(A!x & A!y & x,y & [�z Rzx]= [�z Rzy]).
./

Why Cantor’s Theorem forces this result.
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Indiscernible Abstract Objects

9x9y(A!x & A!y & x,y & 8F(Fx ⌘ Fy))
Proof: Let R0 be the relation [�xy 8F(Fx ⌘ Fy)]. By the previous
theorem, there exist distinct abstract objects a, b such that
[�z R0za]= [�z R0zb]. By logic alone, it is easily provable that
R0aa, from which it follows that [�z R0za]a. But, now,
[�z R0zb]a, from which it follows that R0ab. Thus, by
�-conversion, 8F(Fa ⌘ Fb). ./
Why our models explain this result.
Kirchner Theorem:

[�x ']# ⌘ ⇤8x8y(8F(Fx ⌘ Fy)! (' ⌘ 'y
x)),

provided y doesn’t occur free in '.
The property [�x '] exists if and only if necessarily, ' doesn’t
distinguish between indiscernible objects x and y.
The n-place relation [�x1 . . . xn '] exists if and only if necessarily,
' doesn’t distinguish among objects x1, . . . , xn and y1, . . . , yn that
exemplify the same relations.
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Discernible Objects

[�x ⇤8y(y,x! 9F¬(Fy ⌘ Fx))]#
Proof: Let ' be the above matrix; By Kirchner Thm., GEN, and RN, show
8F(Fx ⌘ Fz)! (' ⌘ 'z

x).

D! =df [�x ⇤8y(y,x! 9F¬(Fy ⌘ Fx))]
O!x! D!x
D!x is modally collapsed: ⇤(D!x! ⇤D!x)
Discernible objects are logically well-behaved:

(D!x _ D!z)! (8F(Fx ⌘ Fz)! x=z)
Proof. W.l.o.g., assume D!x and 8F(Fx ⌘ Fz). Then 8y(y,x! 9F¬(Fy ⌘ Fx)),

i.e., 8y(8F(Fy ⌘ Fx)! y=x). Then 8F(Fz ⌘ Fx)! z=x. So z=x, i.e., x=z.

[�x D!x & ']#, any ' (use Kirchner Thm)
Identity Relation for Indiscernibles:

[�xy D!x & D!y & x=y]#
=D =df [�xy D!x & D!y & x=y]
D!x! x=D x (symmetry, transitivity follows)
D!y! [�x x=y]#
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Consistency Proved in Isabelle/HOL

Daniel Kirchner (Ph.D. Mathematics, Freie Universität Berlin),
extended techniques developed by Christoph Benzmüller
(Universität Bamberg), to implement the above system in
Isabelle/HOL in his Ph.D. Thesis.
His implementation constructs a model that in which all the
axioms are true and, hence, consistent with one another.

Daniel’s object theory website: https://aot.ekpyron.org/
Daniel’s GitHub repository: https://github.com/ekpyron/AOT/
Daniel’s Ph.D. Thesis:
https://refubium.fu-berlin.de/bitstream/handle/fub188/35426/dissertation_kirchner.pdf?sequence=3&isAllowed=y

Isabelle download page: https://isabelle.in.tum.de/
The definitions, axioms, and theorems correspond to the current
version of Principia Logico-Metaphysica
https://mally.stanford.edu/principia.pdf
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