Introduction **Extensions** Extensions Directions, etc. Bibliography 00000 000000 $\overline{O}O$

 \circ

Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects

Edward N. Zalta

Philosophy Department, Stanford University zalta@stanford.edu, https://mally.stanford.edu/zalta.html

Munich Center for Mathematical Philosophy, May 29, 2024

 $\overline{O}O$

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects zalta@stanford.edu

Truth Values

Extensions

Logic and Logical Objects

- Frege thought that there are logical objects (logical individuals).
- Fregean logical objects:
	- truth-values
	- ² courses-of-values (extensions)
	- directions, shapes, etc.
	- natural numbers
- Frege thought he could reduce everything to courses-of-values:
	- Extensions: courses-of-values of concepts.
	- Truth-values (Gg., §10) are identified with extensions. $\frac{1}{2}$
	- Directions: $\vec{a} = \vec{\epsilon} (\epsilon || a])$
	- Numbers: $\#G = \epsilon[\lambda x \exists F(x = \epsilon F \& F \approx G)]$
- This reduction failed because the main principle governing courses of values, Basic Law V $\lceil \epsilon f = \epsilon g = \forall x (f(x) = g(x)) \rceil$ engendered a contradiction when added to his second-order predicate logic.

Introduction **Introduction** Truth Values Extensions Extensions Directions, etc. Bibliography 00000 $\overline{\mathbf{O}}\bullet$ 000000 \circ Problems with Attempts to Reconstruct Frege • Wright and Hale 2001, Boolos 1986, Fine 2002

- Fregean biconditionals collapse existence and identity conditions. These, however, should be kept separate.
- The Julius Caesar problem: '# $F = x$ ' isn't defined for arbitrary *x*. And so on, for other abstracts.
- Bad-company (Field 1984, 168, [1993], 286): many Fregean biconditionals are contradictory or false. Embarassment of riches (Weir 2003): indefinitely many consistent, but pairwise inconsistent, biconditionals.
- Fine 2002. (1) Burgess (2003) and Shapiro (2004): significant parts of mathematics aren't captured; (2) no solution to the Caesar problem; (3) no abstractions over equivalence relations on individuals (so, no directions, shapes, etc.); and (4) existence of two ordinary individuals required.
- These aren't general theories of abstract objects: each kind of abstract object is governing by a separate principle.

The Theory of Truth Values

- *TruthValueOf*(*x*, *p*) $\equiv_{df} A!x \& \forall F(xF \equiv \exists q((q \equiv p) \& F = [\lambda y q]))$
- $\bullet \ \forall p \exists ! x TruthValueOf(x, p)$
- *x* encodes p (' $x \Sigma p$ ') $\equiv_{df} x[\lambda y p]$
- T-value(*x*) $\equiv_{df} \exists pT$ *ruthValueOf*(*x*, *p*)
- Theorem: There are exactly two truth-values: $\exists x, y$ [T-value(x) & T-value(y) & $x \neq y$ & $\forall z$ (T-value(z) \rightarrow z=x \lor z=y)]

the second. Then show *a* and *b* satisfy the definition (exercise). (E.g., since *a* encodes all the truths, it encodes all the propositions materially equivalent to p_0 .) It remains only to show (2) *a* and *b* are distinct, and (3) that every truth value is identical to either *a* or *b*. (2) Reason by disjunctive syllogism from $p \vee \neg p$ (*p* any proposition). If *p*, then $a \Sigma p \& \neg (b \Sigma p)$, so $a \neq b$ (they encode different properties). If $\neg p$, $b \Sigma p \& \neg (a \Sigma p)$, so $a \neq b$. (3) Assume *T-Value*(*z*), to show $z = a \lor z = b$. So for some proposition, say p_1 , *TruthValueOf*(*z*, p_1). Hence by definition:

 $A!z \& \forall F(zF \equiv \exists q((q \equiv p_1) \& F = [\lambda y q]))$

Then reason from $p_1 \vee \neg p_1$ to $z = a \vee z = b$. (Exercise) \bowtie

Introduction **Extensions** Extensions Directions, etc. Bibliography 00000 $\overline{O}O$ $\overline{O}O$ 000000

The Truth Value of Proposition *p*

- Intuitive background fact: the equivalence classes of materially equivalent propositions vary from world to world.
- The truth value of $p('p^o) =_{df} u x TruthValueOf(x, p)$
- $\bullet \star \vdash p^{\circ} \Sigma q \equiv q \equiv p$ ($\star \text{Lemma}$) *Proof*: (\rightarrow) Assume $p_1^{\circ} \Sigma q_1$, i.e., $p_1^{\circ} [\lambda y q_1]$. Then by definition of p_1° and description theory, there is a proposition, say r_1 , such that $r_1 \equiv p_1 \&$ $[\lambda y q_1] = [\lambda y r_1]$ (exercise). The right conjunct implies $q_1 = r_1$ (by df =), i.e., $r_1 = q_1$. So, $q_1 \equiv p_1$. (\leftarrow) Exercise.
- $\star \vdash p^{\circ} = q^{\circ} \equiv p \equiv q$ (\star Theorem)

Proof: (\rightarrow) Assume $p_1^{\circ} = q_1^{\circ}$. By $p_1 \equiv p_1$ and the previous \star Lemma, $p_1^{\circ} \Sigma p_1$. So $q_1^{\circ} \Sigma p_1$. So, by the \star Lemma, $p_1 \equiv q_1$. (\leftarrow) Assume $p_1 \equiv q_1$. To show that $p_1^{\circ} = q_1^{\circ}$, we show:

 $\Box \forall F(p_1^{\circ}F \equiv q_1^{\circ}F)$. By GEN and RN, show: $p_1^{\circ}F \equiv q_1^{\circ}F$ (a) Assume $p_1^{\circ}F$. Then by definition of p_1° , there is a proposition, say r_1 , such that $r_1 \equiv p_1 \& F = [\lambda y r_1]$. So there is a proposition *r* (namely r_1) such that $r \equiv q_1 \& F = [\lambda y r]$. So, by the definition of q_1° , it follows that $q_1^{\circ}F$. (b) Assume $q_1^{\circ}F$ and show $p_1^{\circ}F$, by analogous reasoning.

Introduction **Extensions** Extensions Directions, etc. Bibliography 000 0 $\overline{O}O$ 000000 \circ \circ The Theory of Truth Values (cont'd) \bullet T ('The True') = df $\iota x(A!x \& \forall F(xF \equiv \exists r(r \& F = [\lambda y r]))$ • \perp ('The False') $=$ $\frac{d}{dt}$ $\iota x(A!x \& \forall F(xF \equiv \exists r(\neg r \& F = [\lambda y r]))$ $\bullet \star \vdash p \equiv (p^{\circ} = \top)$ $(\star$ Lemma) *Proof.* (\rightarrow) Assume *p*₁. To show *p*[°]₁</sub> = \top , we have to show $\Box \forall F(p^{\circ}_1 F \equiv \top F)$. So we show $p_1^{\circ}Q \equiv \top Q$, where *Q* is an arbitrarily chosen property. (\rightarrow) Assume $p_1^{\circ}Q$. By definition of p_1° , it follows that $\exists r(r \equiv p_1 \& Q = [\lambda y r])$. Let r_1 be such a proposition, so that we know $r_1 \equiv p_1 \& Q = [\lambda y r_1]$. But since we know p_1 , it follows that r_1 . So, we have established: $r_1 \& Q = [\lambda y r_1]$. From which it follows that $\exists r (r \& Q = [\lambda y r])$. But we know, by definition of \top (appeal to \star -theorem), that $\forall F(\top F \equiv \exists r (r \& F = [\lambda y r]))$. So in particular, $\top Q \equiv \exists r (r \& Q = [\lambda y r])$. But we've established the right side. So $\top Q$.

 (\leftarrow) Assume $\neg Q$. Then, by definition of \neg (and appeal to \star -theorem), $\exists r (r \& Q = [\lambda y r])$. Let r_1 be such a proposition, so that we know $r_1 \& Q = \left[\lambda y r_1\right]$. So we know r_1 and we also know p_1 (by assumption). So $r_1 \equiv p_1$. Hence $r_1 \equiv p_1 \& Q = [\lambda y r_1]$. So, $\exists r (r \equiv p_1 \& Q = [\lambda y r])$, from which it follows $p_1^{\circ}Q$, by definition of p_1° .

By GEN and RN, we're done. (\leftarrow) Exercise.

and only the propositions materially equivalent to p_0 . Hence $T-value(\top)$.

- \blacktriangleright \star Lemma: \star \vdash $\neg p \equiv (p^{\circ} = \bot)$ (Exercise) $\bullet \star$ Theorem: $\star \vdash T\text{-}value(\perp)$ (Exercise)
- \star Lemmas: (Exercises) $\star \vdash p \equiv (\top \Sigma p) \qquad \star \vdash p \equiv \neg(\bot \Sigma p)$

 \star $\vdash \neg p \equiv \neg (\top \Sigma p)$ \star $\vdash \neg p \equiv (\bot \Sigma p)$

Extensions = Natural Classes = Sets Logically Conceived

- *ExtensionOf* (*x*, *G*) *ClassOf* (*x*, *G*)) $\equiv_{df} A!x \& G \downarrow \& \forall F(xF \equiv \forall z(Fz \equiv Gz))$
- *Class*(*x*) *LogicalSet*(*x*) $\left\{\begin{array}{c} \equiv_{df} \left\{ \begin{array}{c} \exists G(ExtensionOf(x, G)) \\ \exists G(ClassOf(x, G)) \end{array} \right\} \end{array} \right\}$ $\exists G(ClassOf(x,G))$
- $\bullet \ \forall G \exists ! x (ExtensionOf(x, G))$
- \bullet Pre-Law V: (*ExtensionOf*(*x*, *G*) & *ExtensionOf*(*y*, *H*)) \rightarrow $(x = y \equiv \forall z (Gz \equiv Hz))$
- Membership: $y \in x \equiv_{df} \exists G(ExtensionOf(x, G) \& Gy)$
- Law of Extensions/Classes: $ExtensionOf(x, H) \rightarrow \forall y (y \in x \equiv Hy)$
- Fundamental Theorem of Classes/Logical Sets: $\forall F \exists x (Class(x) \& \forall y (y \in x \equiv Fy))$

Introduction **Extensions** Directions, etc. Bibliography 00000 000000 $\overline{O}O$ $\overline{O}O$ \circ

Reconstructing Frege's Conception

- Since extensions are intuitively abstracted from equivalence classes of materially equivalent properties, and these latter vary from world to world, different natural classes arise at other possible worlds. Moreover, if *F* is contingent, the extension of *F* at one world won't be the same as that of another world.
- *The extension of G* (' ϵG ') = *df ixExtensionOf*(*x*, *G*)
- \bullet ϵG (Lemma 1)
- $\bullet \star \vdash \epsilon FG \equiv \forall x(Gx \equiv Fx)$ ($\star \text{Lemma 2}$)
- \star \star ϵ *F* = ϵ *G* $\equiv \forall x$ (*Fx* $\equiv Gx$) (\star Basic Law V) *Proof*: (\rightarrow) Suppose $\epsilon A = \epsilon B$. By \star Lemma 2, $\epsilon AG \equiv \forall y (Gy \equiv Ay)$. Since $\epsilon A = \epsilon B$, then $\epsilon BG \equiv \forall y (Gy \equiv Ay)$. In particular, $\epsilon BB \equiv \forall y (By \equiv Ay)$. Since ϵBB (Lemma 1), it follows that $\forall y(By \equiv Ay)$. (\leftarrow) Suppose $\forall y(Ay \equiv By)$. (a) Assume ϵAQ (to show ϵBQ). Then by \star Lemma 2, $\forall y(Qy \equiv Ay)$. So $\forall y(Qy \equiv By)$. But \star Lemma 2 also implies: $\epsilon BQ \equiv \forall y(Qy \equiv By)$. So ϵBQ . (b) Assume ϵBQ (to show ϵAQ). Reverse the reasoning. \approx

The Paradoxical Properties and Extensions Don't Exist

- The properties and extensions that lead to paradox don't exist:
	- $\neg[\lambda x \exists G(x = \epsilon G \& \neg Gx)] \downarrow$ $\neg[\lambda x \ x \in x] \downarrow$ $\neg[\lambda x \ x \in x] \downarrow$ $\neg[\lambda x \ x \in x] \downarrow$
 $\neg[\lambda x \ x \notin x] \downarrow$
 $\neg[\lambda x \ x \notin x] \downarrow$
 $\neg[\lambda x \ x \notin x] \downarrow$ $\neg[\lambda x \ x \notin x] \downarrow$
 $\neg[\lambda x \ \exists F(xF \ \& \ \neg F x)] \downarrow$
 $\neg[\lambda x \ \exists F(xF \ \& \ \neg F x)] \downarrow$
 $\neg[\lambda x \ \exists F(xF \ \& \ \neg F x)]$
- $\neg \epsilon[\lambda x \exists F(xF \& \neg Fx)]$

Extension/Natural Class/Logical Set Theory

•
$$
\forall c \forall c' [\forall z (z \in c \equiv z \in c') \rightarrow c = c']
$$
 (Extensionality)

Proof: Suppose $\forall z (z \in c \equiv z \in c')$. So there are properties, say *P* and *Q*, such that *ExtensionOf*(*c*, *P*) and *ExtensionOf*(*c'*, *Q*). Then by Law of Extensions, our assumption implies $\forall z (Pz \equiv Qz)$ Then, by the Pre-Law V, $c = c'$.

 \bullet $\exists !c \forall y (y \notin c)$ (Null Extension)

Proof: Consider $[\lambda z E! z \& \neg E! z] (= P)$. Then by Fundamental Theorem, $\exists x (Class(x) \& \forall y (y \in x \equiv Py)),$ say *a*. Then *Class(a)* & $\forall y (y \in a \equiv Py).$ But $\forall y \neg Py.$ So $\forall y (y \notin a)$. For uniqueness, suppose, for reductio, there exists class *c'*, where $c' \neq c$, such that $\forall y (y \notin c')$. Then $\forall y (y \in c' \equiv y \in a)$ and so by Extensionality, $c = c'$. Contradiction. \Join $\forall c' \forall c'' \exists c \forall y (y \in c \equiv y \in c' \lor y \in c'')$ (Unions) *Proof*: Consider arbitrarily chosen classes c' and c'' . Then there are properties *P* and *Q* such that *ExtensionOf*(*c'*, *P*) and *ExtensionOf*(*c''*, *Q*). Consider [$\lambda z Pz \vee Qz$] (= *H*), which exists axiomatically. By Fundamental Theorem, there is a class, say a, such that $\forall y (y \in a \equiv Hy)$.

But $\forall y(Hy \equiv (Py \lor Qy))$ (by λ -Conversion), and $\forall y((Py \lor Qy) \equiv (y \in c' \lor y \in c''))$ (by Law

of Extensions). So $\forall y(y \in a \equiv (y \in c' \lor y \in c''))$.

Fix c' ; then *ExtensionOf*(c' , P) (P arbitrary). The witness for c is given by $\exists x \in \mathbb{Z}$ *xtensionOf*(x , $[\lambda z \neg Pz]$).

•
$$
\forall c' \forall c'' \exists c \forall y (y \in c \equiv y \in c' \& y \in c'')
$$
 (Intersections)

Fix *c'* and *c''*; then *ExtensionOf*(*c'*, *P*) and *ExtensionOf*(*c''*, *Q*) (*P*, *Q* arbitrary). The witness for *c* is given by $\exists x \in \mathcal{E}$ *z tensionOf*(*x*, [λz *Pz* & *Qz*]).

 ∂ $[\lambda y \varphi] \downarrow \rightarrow \exists c \forall y (y \in c \equiv \varphi)$ (Conditional Comprehension)

- Assume $[\lambda y \varphi] \downarrow$. The witness to *c* is given by $\exists x \in x \in isinOf(x, [\lambda x \varphi]).$
- $[\lambda y \varphi] \downarrow \rightarrow \forall c' \exists c \forall y (y \in c \equiv y \in c' \& \varphi)$ (Separation)
	- Fix *c'*. And let *ExtensionOf*(*x*, [$\lambda z \varphi$]). Then there is an intersection of c' and x . Show any such class is a witness to c .

- $\forall c' \exists c \forall y (y \in c \equiv y \in c' \lor y =_D x)$ (Adjunction)
	- Fix *c'*, *x*. So let *ExtensionOf*(*c'*, *P*). Consider $[\lambda z Pz \lor z =_D x]$ and its class *c*.
- No power sets, since you can't prove $[\lambda x \times \subseteq z] \downarrow$ for arbitrary *z*, where $x \subseteq z \equiv_{df} \forall y (y \in x \rightarrow y \in z)$. (This is a flat set theory.)

Directions and Shapes

• Assumptions: \parallel is an equivalence relation on *ordinary lines*:

•
$$
Lx \to x||x
$$

\n $(Lx \& Ly) \to (x||y \to y||x)$
\n $(Lx \& Ly \& Lz) \to (x||y \& y||z \to z||z)$

and where we use *u*, *v* as restricted variables ranging over ordinary lines, that *being parallel to u* is materially equivalent to *being parallel to u'* iff *u*||*u'*:

 $\forall u \forall u' (\forall z([\lambda v \ v || u] z \equiv [\lambda v \ v || u'] z) \equiv u || u')$

• Define and prove:

- *DirectionOf*(*x*, *u*) \equiv_{df} *ExtensionOf*(*x*, [λv *v*||*u*])
- \bullet $\exists !xDirectionOf(x, u)$
- \bullet (*DirectionOf*(*x*, *u*) & *DirectionOf*(*y*, *v*)) \rightarrow (*x*=*y* \equiv *u*||*v*)
- *Direction*(*x*) $\equiv_{df} \exists u \text{DirectionOf}(x, u)$
- $\vec{u} =_{df} \iota x \text{DirectionOf}(x, u)$

Fregean biconditional: $\star \vdash \vec{u} = \vec{v} \equiv u || v$

Proof of Fregean Biconditional

- (\rightarrow) Assume $\vec{a} = \vec{b}$. Since we know independently $\forall y([\lambda z z || a]y \equiv [\lambda z z || a]y)$, it follows by definition of \vec{a} (by \star -theorem) that $d[\lambda z z||a]$. Substituting \vec{b} for \vec{a} yields $\vec{b}[\lambda z z||a]$. Then by the definition of \vec{b} (and a \star -theorem), we know $\forall y([\lambda z \, z || a]y \equiv [\lambda z \, z || b]y)$ and in particular $[\lambda z \, z || a]b \equiv [\lambda z \, z || b]b$ which is equivalent, by λ -abstraction, to $b||b \equiv b||a$. Since $b||b$, *b*||*a*. So by symmetry of ||, *a*||*b*.
- (←) Assume *a*||*b*. It suffices to show that for any *P*, $\vec{a}P \equiv \vec{b}P$. (\rightarrow) Suppose $\vec{a}P$. Then by the definition of \vec{a} (and a \star -theorem), $\forall y(Py \equiv \lceil \lambda z \, z \rceil |a|y)$. Since *a*||b this is equivalent to $\forall y (Py \equiv [\lambda z z || b]y)$. By the definition of \vec{b} this implies $\vec{b}P$. (\leftarrow) Exercise.

- Anderson, D.J., and E. Zalta, 2004, 'Frege, Boolos, and Logical Objects', *Journal of Philosophical Logic*, 33 (1): 1–26.
- Boolos, G., 1986, 'Saving Frege From Contradiction', *Proceedings of the Aristotelian Society*, 87: 137–151; reprinted in Boolos 1998, 171-182.
- Boolos, G., 1998, *Logic, Logic, and Logic*, J. Burgess and R. Jeffrey (eds.), Cambridge, MA: Harvard University Press.
- Burgess, J., 2003, "Review of Kit Fine, *The Limits of Abstraction*," *Notre Dame Journal of Formal Logic*, 44 (4): 227–251.
- Field, H., 1984, 'Critical Notice of C. Wright, *Frege's Conception of Numbers as Objects*', *Canadian Journal of Philosophy*, 14: 637–62.
- Field, H., 1993, 'The Conceptual Contingency of Mathematical Objects', *Mind*, 102: 285–299.
- Fine, K., 2002, *The Limits of Abstraction*, Oxford: Clarendon.
- Shapiro, S., 2004, "Critical Study: The Nature and Limits of Abstracts," *Philosophical Quarterly*, 54 (214): 166–174.
- Weir, A., 2003, "Neo-Fregeanism: An Embarrassment of Riches," *Notre Dame Journal of Formal Logic*, 44 (1): 13–48.
- Wright, C., and B. Hale, 2001, *The Reason's Proper Study*, Oxford: Clarendon.
- Zalta, E., m.s., *Principia Logico-Metaphysica*, https://mally.stanford.edu/principia.pdf