Introduction

Truth Values

Extensions

Directions, etc.

Bibliography 0

Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects

Edward N. Zalta

Philosophy Department, Stanford University zalta@stanford.edu, https://mally.stanford.edu/zalta.html

Munich Center for Mathematical Philosophy, May 29, 2024

Edward N. Zalta

Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects

Introduction	Truth Values	Extensions	Directions, etc.	Bibliography
00	00000	000000	00	0

2 Truth Values

3 Extensions

Introduction	Truth Values	Extensions	Directions, etc.	Bibliography
00	00000	000000	00	0

Logic and Logical Objects

- Frege thought that there are logical objects (logical individuals).
- Fregean logical objects:
 - truth-values
 - 2 courses-of-values (extensions)
 - directions, shapes, etc.
 - Inatural numbers
- Frege thought he could reduce everything to courses-of-values:
 - Extensions: courses-of-values of concepts.
 - Truth-values (Gg., §10) are identified with extensions.
 - Directions: $\vec{a} = \dot{\epsilon}(\epsilon \parallel a])$
 - Numbers: $#G = \epsilon [\lambda x \exists F(x = \epsilon F \& F \approx G)]$
- This reduction failed because the main principle governing courses of values, Basic Law V [$\epsilon f = \epsilon g = \forall x(f(x) = g(x))$] engendered a contradiction when added to his second-order predicate logic.

- Wright and Hale 2001, Boolos 1986, Fine 2002
- Fregean biconditionals collapse existence and identity conditions. These, however, should be kept separate.
- The Julius Caesar problem: '#*F* = *x*' isn't defined for arbitrary *x*. And so on, for other abstracts.
- Bad-company (Field 1984, 168, [1993], 286): many Fregean biconditionals are contradictory or false. Embarassment of riches (Weir 2003): indefinitely many consistent, but pairwise inconsistent, biconditionals.
- Fine 2002. (1) Burgess (2003) and Shapiro (2004): significant parts of mathematics aren't captured; (2) no solution to the Caesar problem; (3) no abstractions over equivalence relations on individuals (so, no directions, shapes, etc.); and (4) existence of two ordinary individuals required.
- These aren't general theories of abstract objects: each kind of abstract object is governing by a separate principle.

Introduction	Truth Values	Extensions	Directions, etc.	Bibliography
00	00000	000000	00	0

The Theory of Truth Values

- $TruthValueOf(x, p) \equiv_{df} A!x \& \forall F(xF \equiv \exists q((q \equiv p) \& F = [\lambda y q]))$
- $\forall p \exists !x Truth Value Of(x, p)$
- $x \text{ encodes } p(x\Sigma p) \equiv_{df} x[\lambda y p]$
- T-value $(x) \equiv_{df} \exists p TruthValueOf(x, p)$
- Theorem: There are exactly two truth-values: $\exists x, y[T-value(x) \& T-value(y) \& x \neq y \& \forall z(T-value(z) \rightarrow z = x \lor z = y)]$

- $\exists x(A!x \& \forall F(xF \equiv \exists q(q \& F = [\lambda z q])))$ 'a'
- $\exists x(A!x \& \forall F(xF \equiv \exists q(\neg q \& F = [\lambda z q])))$ 'b'

(1) To show *T-value(a)* and *T-value(b)*, we have to show $\exists pTruthValueOf(a, p)$ and $\exists pTruthValueOf(b, p)$. Choose any truth, e.g., $\forall x(E!x \rightarrow E!x) (`p_0`)$ as a witness for the first, and any falsehood, say $\neg p_0$, for the second. Then show *a* and *b* satisfy the definition (exercise). (E.g., since *a* encodes all the truths, it encodes all the propositions materially equivalent to p_0 .) It remains only to show (2) *a* and *b* are distinct, and (3) that every truth value is identical to either *a* or *b*. (2) Reason by disjunctive syllogism from $p \lor \neg p$ (*p* any proposition). If *p*, then $a\Sigma p \& \neg (b\Sigma p)$, so $a \neq b$ (they encode different properties). If $\neg p$, $b\Sigma p \& \neg (a\Sigma p)$, so $a \neq b$. (3) Assume *T-Value(z)*, to show $z=a \lor z=b$. So for some proposition, say p_1 , *TruthValueOf(z, p_1)*. Hence by definition:

 $A!z \& \forall F(zF \equiv \exists q((q \equiv p_1) \& F = [\lambda y q]))$

Then reason from $p_1 \lor \neg p_1$ to $z = a \lor z = b$. (Exercise) \bowtie

Edward N. Zalta

IntroductionTruth ValuesExtensionsDirections, etc.Bibliography000000000000

The Truth Value of Proposition *p*

- Intuitive background fact: the equivalence classes of materially equivalent propositions vary from world to world.
- The truth value of $p(p^{\circ}) =_{df} ixTruthValueOf(x, p)$

•
$$\star \vdash p^{\circ} \Sigma q \equiv q \equiv p$$
 (\star Lemma)
Proof: (\rightarrow) Assume $p_1^{\circ} \Sigma q_1$, i.e., $p_1^{\circ} [\lambda y q_1]$. Then by definition of p_1° and
description theory, there is a proposition, say r_1 , such that $r_1 \equiv p_1$ &
 $[\lambda y q_1] = [\lambda y r_1]$ (exercise). The right conjunct implies $q_1 = r_1$ (by df =), i.e.,
 $r_1 = q_1$. So, $q_1 \equiv p_1$. (\leftarrow) Exercise.

•
$$\star \vdash p^{\circ} = q^{\circ} \equiv p \equiv q$$
 (\star Theorem)

Proof: (\rightarrow) Assume $p_1^\circ = q_1^\circ$. By $p_1 \equiv p_1$ and the previous \star Lemma, $p_1^\circ \Sigma p_1$. So $q_1^\circ \Sigma p_1$. So, by the \star Lemma, $p_1 \equiv q_1$. (\leftarrow) Assume $p_1 \equiv q_1$. To show that $p_1^\circ = q_1^\circ$, we show:

 $\Box \forall F(p_1^\circ F \equiv q_1^\circ F)$. By GEN and RN, show: $p_1^\circ F \equiv q_1^\circ F$ (a) Assume $p_1^\circ F$. Then by definition of p_1° , there is a proposition, say r_1 , such that $r_1 \equiv p_1 \& F = [\lambda y r_1]$. So there is a proposition r(namely r_1) such that $r \equiv q_1 \& F = [\lambda y r]$. So, by the definition of q_1° , it follows that $q_1^\circ F$. (b) Assume $q_1^\circ F$ and show $p_1^\circ F$, by analogous reasoning. Introduction Directions, etc. Bibliography Extensions 00000 00 00 000000 Ο The Theory of Truth Values (cont'd) • \top ('The True') =_{df} $\iota x(A!x \& \forall F(xF \equiv \exists r(r \& F = [\lambda y r])))$ • \perp ('The False') =_{df} $\iota x(A!x \& \forall F(xF \equiv \exists r(\neg r \& F = [\lambda y r])))$ • $\star \vdash p \equiv (p^\circ = \top)$ (**t**Lemma) • *Proof.* (\rightarrow) Assume p_1 . To show $p_1^\circ = \top$, we have to show $\Box \forall F(p_1^\circ F \equiv \top F)$. So we show $p_1^{\circ}Q \equiv \top Q$, where Q is an arbitrarily chosen property. (\rightarrow) Assume $p_1^{\circ}Q$. By definition of p_1° , it follows that $\exists r(r \equiv p_1 \& Q = [\lambda y r])$. Let r_1 be such a proposition, so that we know $r_1 \equiv p_1 \& Q = [\lambda y r_1]$. But since we know p_1 , it follows that r_1 . So, we have established: $r_1 \& Q = [\lambda y r_1]$. From which it follows that $\exists r(r \& Q = [\lambda y r_1])$. But we know, by definition of \top (appeal to \star -theorem), that $\forall F(\top F \equiv \exists r(r \& F = [\lambda y r]))$. So in particular, $\top Q \equiv \exists r(r \& Q = [\lambda y r])$. But we've established the right side. So $\top Q$.

(←) Assume $\top Q$. Then, by definition of \top (and appeal to \star -theorem), $\exists r(r \& Q = [\lambda y r])$. Let r_1 be such a proposition, so that we know $r_1 \& Q = [\lambda y r_1]$. So we know r_1 and we also know p_1 (by assumption). So $r_1 \equiv p_1$. Hence $r_1 \equiv p_1 \& Q = [\lambda y r_1]$. So, $\exists r(r \equiv p_1 \& Q = [\lambda y r])$, from which it follows $p_1^\circ Q$, by definition of p_1° .

By GEN and RN, we're done. (\leftarrow) Exercise.

Introduction	Truth Values 0000●	Extensions 000000	Directions, etc.	Bibliography O
	The Theor	y of Truth Val	ues (cont'd)	
● ★⊦	- T -value (\top)		(* T	'heorem)

Proof. By a \star -theorem of description theory, \top encodes all and only the truths. Then consider the proposition $\forall x(E!x \rightarrow E!x)$ (' p_0 '). Since p_0 is provably a truth, it follows that \top encodes all and only the propositions materially equivalent to p_0 .Hence *T*-value(\top).

• \star Lemma: $\star \vdash \neg p \equiv (p^{\circ} = \bot)$ (Exercise) • \star Theorem: $\star \vdash T$ -value(\bot) (Exercise) • \star Lemmas: $\star \vdash p \equiv (\top \Sigma p) \qquad \star \vdash p \equiv \neg(\bot \Sigma p)$ $\star \vdash \neg p \equiv \neg(\top \Sigma p) \qquad \star \vdash \neg p \equiv (\bot \Sigma p)$

Introduction	Truth Values	Extensions	Directions, etc.	Bibliography
00	00000	00000	00	0

Extensions = Natural Classes = Sets Logically Conceived

- $\frac{ExtensionOf(x,G)}{ClassOf(x,G)} \equiv_{df} A!x \& G \downarrow \& \forall F(xF \equiv \forall z(Fz \equiv Gz))$
- $\frac{Class(x)}{LogicalSet(x)} \equiv_{df} \begin{cases} \exists G(ExtensionOf(x,G)) \\ \exists G(ClassOf(x,G)) \end{cases}$
- $\forall G \exists ! x (Extension Of(x, G))$
- Pre-Law V: $(ExtensionOf(x, G) \& ExtensionOf(y, H)) \rightarrow (x = y \equiv \forall z (Gz \equiv Hz))$
- Membership: $y \in x \equiv_{df} \exists G(ExtensionOf(x, G) \& Gy)$
- Law of Extensions/Classes: $ExtensionOf(x, H) \rightarrow \forall y(y \in x \equiv Hy)$
- Fundamental Theorem of Classes/Logical Sets: $\forall F \exists x (Class(x) \& \forall y(y \in x \equiv Fy))$

 Introduction
 Truth Values
 Extensions
 Directions, etc.
 Bibliography

 00
 00000
 00
 0
 0

Reconstructing Frege's Conception

- Since extensions are intuitively abstracted from equivalence classes of materially equivalent properties, and these latter vary from world to world, different natural classes arise at other possible worlds. Moreover, if *F* is contingent, the extension of *F* at one world won't be the same as that of another world.
- The extension of $G(\epsilon G') =_{df} xExtensionOf(x, G)$
- ϵGG (Lemma 1) • $\star \vdash \epsilon FG \equiv \forall x (Gx \equiv Fx)$ ($\star Lemma 2$) • $\star \vdash \epsilon F = \epsilon G \equiv \forall x (Fx \equiv Gx)$ ($\star Basic Law V$) Proof: (\rightarrow) Suppose $\epsilon A = \epsilon B$. By $\star Lemma 2$, $\epsilon AG \equiv \forall y (Gy \equiv Ay)$. Since $\epsilon A = \epsilon B$, then $\epsilon BG \equiv \forall y (Gy \equiv Ay)$. In particular, $\epsilon BB \equiv \forall y (By \equiv Ay)$. Since ϵBB (Lemma 1), it follows that $\forall y (By \equiv Ay)$. (\leftarrow) Suppose $\forall y (Ay \equiv By)$. (a) Assume ϵAQ (to show ϵBQ). Then by $\star Lemma 2$, $\forall y (Qy \equiv Ay)$. So $\forall y (Qy \equiv By)$. But $\star Lemma 2$ also implies: $\epsilon BQ \equiv \forall y (Qy \equiv By)$. So ϵBQ . (b) Assume ϵBQ (to show ϵAQ). Reverse the reasoning. \bowtie

Introduction	Truth Values	Extensions	Directions, etc.	Bibliography
00	00000	00000	00	0

The Paradoxical Properties and Extensions Don't Exist

- The properties and extensions that lead to paradox don't exist:
 - $\neg [\lambda x \exists G(x = \epsilon G \And \neg G x)] \downarrow \qquad \neg \epsilon [\lambda x \exists G(x)] \downarrow \qquad \neg \epsilon [\lambda x x \in x] \downarrow \qquad \neg \epsilon [\lambda x x \in x] \downarrow \qquad \neg \epsilon [\lambda x x \notin x] \downarrow \qquad \neg \epsilon [\lambda x x \notin x]$
 - $\neg [\lambda x \; \exists F(xF \And \neg Fx)] \downarrow$

 $\neg \epsilon [\lambda x \exists G(x = \epsilon G \& \neg G x)] \downarrow$ $\neg \epsilon [\lambda x x \in x] \downarrow$ $\neg \epsilon [\lambda x x \notin x] \downarrow$ $\neg \epsilon [\lambda x \exists F(xF \& \neg F x)] \downarrow$

Extension/Natural Class/Logical Set Theory

•
$$\forall c \forall c' [\forall z (z \in c \equiv z \in c') \rightarrow c = c']$$
 (Extensionality)

Proof: Suppose $\forall z (z \in c \equiv z \in c')$. So there are properties, say *P* and *Q*, such that *ExtensionOf*(*c*, *P*) and *ExtensionOf*(*c'*, *Q*). Then by Law of Extensions, our assumption implies $\forall z (Pz \equiv Qz)$ Then, by the Pre-Law V, c = c'.

• $\exists ! c \forall y (y \notin c)$ (Null Extension)

Proof: Consider $[\lambda z E! z \& \neg E! z] (= P)$. Then by Fundamental Theorem, $\exists x(Class(x) \& \forall y(y \in x \equiv Py))$, say *a*. Then $Class(a) \& \forall y(y \in a \equiv Py)$. But $\forall y \neg Py$. So $\forall y(y \notin a)$. For uniqueness, suppose, for reductio, there exists class *c'*, where *c' \neq c*, such that $\forall y(y \notin c')$. Then $\forall y(y \in c' \equiv y \in a)$ and so by Extensionality, c = c'. Contradiction. \bowtie • $\forall c' \forall c'' \exists c \forall y(y \in c \equiv y \in c' \lor y \in c'')$ (Unions) *Proof*: Consider arbitrarily chosen classes *c'* and *c''*. Then there are properties *P* and *Q* such that *ExtensionOf*(*c'*, *P*) and *ExtensionOf*(*c''*, *Q*). Consider $[\lambda z Pz \lor Qz] (= H)$, which exists axiomatically. By Fundamental Theorem, there is a class, say *a*, such that $\forall y(y \in a \equiv Hy)$. But $\forall y(Hy \equiv (Py \lor Qy))$ (by λ -Conversion), and $\forall y((Py \lor Qy) \equiv (y \in c' \lor y \in c''))$ (by Law

of Extensions). So $\forall y (y \in a \equiv (y \in c' \lor y \in c''))$.

Introduction	Truth Values	Extensions 0000●0	Directions, etc.	Bibliography O
Ex	tension Theory	/Natural Class/	Logical Set The	ory

• $\forall c' \exists c \forall y (y \in c \equiv x \notin c')$

(Complements)

Fix c'; then ExtensionOf(c', P) (P arbitrary). The witness for c is given by ∃xExtensionOf(x, [λz ¬Pz]).

• $\forall c' \forall c'' \exists c \forall y (y \in c \equiv y \in c' \& y \in c'')$ (Intersections)

 Fix c' and c"; then ExtensionOf(c', P) and ExtensionOf(c", Q) (P, Q arbitrary). The witness for c is given by ∃xExtensionOf(x, [λz Pz & Qz]).

• $[\lambda y \varphi] \downarrow \rightarrow \exists c \forall y (y \in c \equiv \varphi)$ (Conditional Comprehension)

- Assume $[\lambda y \varphi] \downarrow$. The witness to *c* is given by $\exists x Extension Of(x, [\lambda x \varphi]).$
- $[\lambda y \varphi] \downarrow \rightarrow \forall c' \exists c \forall y (y \in c \equiv y \in c' \& \varphi)$ (Separation)
 - Fix c'. And let *ExtensionOf*(x, [λz φ]). Then there is an intersection of c' and x. Show any such class is a witness to c.

	Extensions/Natu	iral Classes/Lo	ogical Set Theory	
Introduction 00	Truth Values	Extensions 00000●	Directions, etc.	Bibliography O

- $\forall R \forall c' \exists c \forall y (y \in c \equiv \exists z (z \in c' \& Rzy))$ (Collections)
 - Fix *R* and *c'*, and let *ExtensionOf*(*c'*, *P*). Then consider
 [λx Px & Rxy] and its class *c*.

•
$$\exists c \forall y (y \in c \equiv D! y \& y = x)$$
 (Singletons)

• So discernible abstract objects have well-behaved singletons.

•
$$\exists c \forall y (y \in c \equiv D! y \& (y = x \lor y = z))$$
 (Pairs)

- So distinct, discernible abstract objects have well-behaved pair sets.
- $\forall c' \exists c \forall y (y \in c \equiv y \in c' \lor y =_D x)$ (Adjunction)
 - Fix c', x. So let *ExtensionOf*(c', P). Consider $[\lambda z P z \lor z =_D x]$ and its class c.
- No power sets, since you can't prove $[\lambda x x \subseteq z] \downarrow$ for arbitrary *z*, where $x \subseteq z \equiv_{df} \forall y (y \in x \rightarrow y \in z)$. (This is a flat set theory.)

Introduction	Truth Values	Extensions 000000	Directions, etc. ●O	Bibliography O

Directions and Shapes

• Assumptions: || is an equivalence relation on *ordinary lines*:

•
$$Lx \rightarrow x||x$$

 $(Lx \& Ly) \rightarrow (x||y \rightarrow y||x)$
 $(Lx \& Ly \& Lz) \rightarrow (x||y \& y||z \rightarrow z||z)$

and where we use u, v as restricted variables ranging over ordinary lines, that *being parallel to u* is materially equivalent to *being parallel to u'* iff u||u':

• $\forall u \forall u' (\forall z ([\lambda v v || u]z \equiv [\lambda v v || u']z) \equiv u || u')$

- Define and prove:
 - $DirectionOf(x, u) \equiv_{df} ExtensionOf(x, [\lambda v v || u])$
 - $\exists !x Direction Of(x, u)$
 - $(DirectionOf(x, u) \& DirectionOf(y, v)) \rightarrow (x = y \equiv u || v)$
 - $Direction(x) \equiv_{df} \exists uDirectionOf(x, u)$
 - $\vec{u} =_{df} ixDirectionOf(x, u)$
- Fregean biconditional: $\star \vdash \vec{u} = \vec{v} \equiv u || v$

Introduction	Truth Values	Extensions	Directions, etc.	Bibliography
00	00000	000000	0•	0

Proof of Fregean Biconditional

- (\rightarrow) Assume $\vec{a} = \vec{b}$. Since we know independently $\forall y([\lambda z z || a]y \equiv [\lambda z z || a]y)$, it follows by definition of \vec{a} (by \star -theorem) that $\vec{a}[\lambda z z || a]$. Substituting \vec{b} for \vec{a} yields $\vec{b}[\lambda z z || a]$. Then by the definition of \vec{b} (and a \star -theorem), we know $\forall y([\lambda z z || a]y \equiv [\lambda z z || b]y)$ and in particular $[\lambda z z || a]b \equiv [\lambda z z || b]b$ which is equivalent, by λ -abstraction, to $b || b \equiv b || a$. Since b || b, b || a. So by symmetry of ||, a || b.
- (\leftarrow) Assume a||b. It suffices to show that for any $P, \vec{a}P \equiv \vec{b}P$. (\rightarrow) Suppose $\vec{a}P$. Then by the definition of \vec{a} (and a \star -theorem), $\forall y(Py \equiv [\lambda z z||a]y)$. Since a||b this is equivalent to $\forall y(Py \equiv [\lambda z z||b]y)$. By the definition of \vec{b} this implies $\vec{b}P$. (\leftarrow) Exercise.

		Bibliography		
Introduction 00	Truth Values	Extensions 000000	Directions, etc.	Bibliography •

- Anderson, D.J., and E. Zalta, 2004, 'Frege, Boolos, and Logical Objects', *Journal of Philosophical Logic*, 33 (1): 1–26.
- Boolos, G., 1986, 'Saving Frege From Contradiction', *Proceedings of the Aristotelian* Society, 87: 137–151; reprinted in Boolos 1998, 171-182.
- Boolos, G., 1998, *Logic, Logic, and Logic*, J. Burgess and R. Jeffrey (eds.), Cambridge, MA: Harvard University Press.
- Burgess, J., 2003, "Review of Kit Fine, *The Limits of Abstraction*," *Notre Dame Journal of Formal Logic*, 44 (4): 227–251.
- Field, H., 1984, 'Critical Notice of C. Wright, *Frege's Conception of Numbers as Objects'*, *Canadian Journal of Philosophy*, 14: 637–62.
- Field, H., 1993, 'The Conceptual Contingency of Mathematical Objects', *Mind*, 102: 285–299.
- Fine, K., 2002, *The Limits of Abstraction*, Oxford: Clarendon.
- Shapiro, S., 2004, "Critical Study: The Nature and Limits of Abstracts," *Philosophical Quarterly*, 54 (214): 166–174.
- Weir, A., 2003, "Neo-Fregeanism: An Embarrassment of Riches," *Notre Dame Journal of Formal Logic*, 44 (1): 13–48.
- Wright, C., and B. Hale, 2001, *The Reason's Proper Study*, Oxford: Clarendon.
- Zalta, E., m.s., *Principia Logico-Metaphysica*, https://mally.stanford.edu/principia.pdf