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Logic and Logical Objects

Frege thought that there are logical objects (logical individuals).
Fregean logical objects:

1 truth-values
2 courses-of-values (extensions)
3 directions, shapes, etc.
4 natural numbers

Frege thought he could reduce everything to courses-of-values:
Extensions: courses-of-values of concepts.
Truth-values (Gg., §10) are identified with extensions.
Directions: ~a =

,
✏ (✏ k a])

Numbers: #G = ✏[�x 9F(x=✏F & F ⇡ G)]

This reduction failed because the main principle governing
courses of values, Basic Law V [✏f =✏g = 8x(f (x) = g(x))]
engendered a contradiction when added to his second-order
predicate logic.
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Problems with Attempts to Reconstruct Frege

Wright and Hale 2001, Boolos 1986, Fine 2002
Fregean biconditionals collapse existence and identity
conditions. These, however, should be kept separate.
The Julius Caesar problem: ‘#F = x’ isn’t defined for arbitrary x.
And so on, for other abstracts.
Bad-company (Field 1984, 168, [1993], 286): many Fregean
biconditionals are contradictory or false. Embarassment of riches
(Weir 2003): indefinitely many consistent, but pairwise
inconsistent, biconditionals.
Fine 2002. (1) Burgess (2003) and Shapiro (2004): significant parts of mathematics

aren’t captured; (2) no solution to the Caesar problem; (3) no abstractions over

equivalence relations on individuals (so, no directions, shapes, etc.); and (4) existence

of two ordinary individuals required.

These aren’t general theories of abstract objects: each kind of
abstract object is governing by a separate principle.
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The Theory of Truth Values

TruthValueOf (x, p) ⌘df A!x &8F(xF ⌘ 9q((q ⌘ p) & F= [�y q]))
8p9!xTruthValueOf (x, p)
x encodes p (‘x⌃p’) ⌘df x[�y p]
T-value(x) ⌘df 9pTruthValueOf (x, p)
Theorem: There are exactly two truth-values:
9x, y[T-value(x) & T-value(y) & x,y & 8z(T-value(z)! z=x _ z=y)]
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Proof Sketch: There Are Exactly Two Truth Values

9x, y[T-value(x) & T-value(y) & x,y & 8z(T-value(z)! z=x _ z=y)]
Proof Sketch. Consider two objects:

9x(A!x & 8F(xF ⌘ 9q(q & F= [�z q]))) ‘a’
9x(A!x & 8F(xF ⌘ 9q(¬q & F= [�z q]))) ‘b’

(1) To show T-value(a) and T-value(b), we have to show
9pTruthValueOf (a, p) and 9pTruthValueOf (b, p). Choose any truth, e.g.,
8x(E!x! E!x) (‘p0’) as a witness for the first, and any falsehood, say ¬p0, for
the second. Then show a and b satisfy the definition (exercise). (E.g., since a
encodes all the truths, it encodes all the propositions materially equivalent to
p0.) It remains only to show (2) a and b are distinct, and (3) that every truth
value is identical to either a or b. (2) Reason by disjunctive syllogism from
p _ ¬p (p any proposition). If p, then a⌃p & ¬(b⌃p), so a,b (they encode
di↵erent properties). If ¬p, b⌃p & ¬(a⌃p), so a,b. (3) Assume T-Value(z), to
show z=a _ z=b. So for some proposition, say p1, TruthValueOf(z, p1).
Hence by definition:

A!z & 8F(zF ⌘ 9q((q ⌘ p1) & F= [�y q]))
Then reason from p1 _ ¬p1 to z=a _ z=b. (Exercise) ./

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects zalta@stanford.edu



Introduction Truth Values Extensions Directions, etc. Bibliography

The Truth Value of Proposition p

Intuitive background fact: the equivalence classes of materially
equivalent propositions vary from world to world.
The truth value of p (‘p�’) =df ıxTruthValueOf (x, p)
?` p�⌃q ⌘ q ⌘ p (?Lemma)
Proof: (!) Assume p�1⌃q1, i.e., p�1[�y q1]. Then by definition of p�1 and
description theory, there is a proposition, say r1, such that r1⌘p1 &
[�y q1]= [�y r1] (exercise). The right conjunct implies q1 = r1 (by df =), i.e.,
r1 = q1. So, q1 ⌘ p1. ( ) Exercise.

?` p�=q� ⌘ p⌘q (?Theorem)
Proof: (!) Assume p�1=q�1. By p1 ⌘ p1 and the previous ?Lemma, p�1⌃p1. So q�1⌃p1. So, by

the ?Lemma, p1 ⌘ q1. ( ) Assume p1 ⌘ q1. To show that p�1 = q�1, we show:

⇤8F(p�1F ⌘ q�1F). By GEN and RN, show: p�1F ⌘ q�1F (a) Assume p�1F. Then by definition

of p�1, there is a proposition, say r1, such that r1 ⌘ p1 & F= [�y r1]. So there is a proposition r

(namely r1) such that r ⌘ q1 & F= [�y r]. So, by the definition of q�1, it follows that q�1F. (b)

Assume q�1F and show p�1F, by analogous reasoning.
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The Theory of Truth Values (cont’d)

> (‘The True’) =df ıx(A!x & 8F(xF ⌘ 9r(r & F= [�y r])))
? (‘The False’) =df ıx(A!x & 8F(xF ⌘ 9r(¬r & F= [�y r])))
?` p ⌘ (p�=>) (?Lemma)
Proof. (!) Assume p1. To show p�1=>, we have to show ⇤8F(p�1F ⌘ >F).
So we show p�1Q ⌘ >Q, where Q is an arbitrarily chosen property.

(!) Assume p�1Q. By definition of p�1, it follows that
9r(r⌘p1 & Q= [�y r]). Let r1 be such a proposition, so that we know
r1 ⌘ p1 & Q= [�y r1]. But since we know p1, it follows that r1. So, we have
established: r1 & Q= [�y r1]. From which it follows that 9r(r & Q= [�y r]).
But we know, by definition of > (appeal to ?-theorem), that
8F(>F ⌘ 9r(r & F= [�y r])). So in particular, >Q ⌘ 9r(r & Q= [�y r]). But
we’ve established the right side. So >Q.

( ) Assume >Q. Then, by definition of > (and appeal to ?-theorem),
9r(r & Q= [�y r]). Let r1 be such a proposition, so that we know
r1 & Q= [�y r1]. So we know r1 and we also know p1 (by assumption). So
r1 ⌘ p1. Hence r1 ⌘ p1 & Q= [�y r1]. So, 9r(r ⌘ p1 & Q= [�y r]), from
which it follows p�1Q, by definition of p�1.

By GEN and RN, we’re done. ( ) Exercise.
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The Theory of Truth Values (cont’d)

?` T-value(>) (?Theorem)
Proof. By a ?-theorem of description theory, > encodes all and
only the truths. Then consider the proposition 8x(E!x! E!x)
(‘p0’). Since p0 is provably a truth, it follows that > encodes all
and only the propositions materially equivalent to p0.Hence
T-value(>).
?Lemma: ?` ¬p ⌘ (p�= ?) (Exercise)
?Theorem: ?` T-value(?) (Exercise)
?Lemmas: (Exercises)
?` p ⌘ (>⌃p) ?` p ⌘ ¬(?⌃p)
?` ¬p ⌘ ¬(>⌃p) ?` ¬p ⌘ (?⌃p)
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Extensions = Natural Classes = Sets Logically Conceived

ExtensionOf (x,G)
ClassOf (x,G)

)
⌘df A!x & G# & 8F(xF ⌘ 8z(Fz ⌘ Gz))

Class(x)
LogicalSet(x)

)
⌘df

(
9G(ExtensionOf (x,G))
9G(ClassOf (x,G))

8G9!x(ExtensionOf (x,G))
Pre-Law V: (ExtensionOf (x,G) & ExtensionOf (y,H))!

(x=y ⌘ 8z(Gz ⌘ Hz))
Membership: y 2 x ⌘df 9G(ExtensionOf (x,G) & Gy)
Law of Extensions/Classes:

ExtensionOf (x,H)! 8y(y 2 x ⌘ Hy)
Fundamental Theorem of Classes/Logical Sets:
8F9x(Class(x) & 8y(y 2 x ⌘ Fy))
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Reconstructing Frege’s Conception

Since extensions are intuitively abstracted from equivalence
classes of materially equivalent properties, and these latter vary
from world to world, di↵erent natural classes arise at other
possible worlds. Moreover, if F is contingent, the extension of F
at one world won’t be the same as that of another world.
The extension of G (‘✏G’) =df ıxExtensionOf (x,G)
✏GG (Lemma 1)
?` ✏FG ⌘ 8x(Gx ⌘ Fx) (?Lemma 2)
?` ✏F = ✏G ⌘ 8x(Fx ⌘ Gx) (?Basic Law V)
Proof: (!) Suppose ✏A = ✏B. By ?Lemma 2, ✏AG ⌘ 8y(Gy ⌘ Ay). Since
✏A = ✏B, then ✏BG ⌘ 8y(Gy ⌘ Ay). In particular, ✏BB ⌘ 8y(By ⌘ Ay). Since ✏BB
(Lemma 1), it follows that 8y(By ⌘ Ay). ( ) Suppose 8y(Ay ⌘ By). (a) Assume
✏AQ (to show ✏BQ). Then by ?Lemma 2, 8y(Qy ⌘ Ay). So 8y(Qy ⌘ By). But
?Lemma 2 also implies: ✏BQ ⌘ 8y(Qy ⌘ By). So ✏BQ. (b) Assume ✏BQ (to show
✏AQ). Reverse the reasoning. ./
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The Paradoxical Properties and Extensions Don’t Exist

The properties and extensions that lead to paradox don’t exist:
¬[�x 9G(x=✏G & ¬Gx)]# ¬✏[�x 9G(x=✏G & ¬Gx)]#
¬[�x x 2 x]# ¬✏[�x x 2 x]#
¬[�x x < x]# ¬✏[�x x < x]#
¬[�x 9F(xF & ¬Fx)]# ¬✏[�x 9F(xF & ¬Fx)]#
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Extension/Natural Class/Logical Set Theory

8c8c0[8z(z2c ⌘ z2c0)! c=c0] (Extensionality)
Proof: Suppose 8z(z 2 c ⌘ z 2 c0). So there are properties, say P and Q, such that

ExtensionOf (c,P) and ExtensionOf (c0,Q). Then by Law of Extensions, our assumption

implies 8z(Pz ⌘ Qz) Then, by the Pre-Law V, c = c0. ./

9!c8y(y<c) (Null Extension)
Proof: Consider [�z E!z & ¬E!z] (= P). Then by Fundamental Theorem,

9x(Class(x) & 8y(y 2 x ⌘ Py)), say a. Then Class(a) & 8y(y 2 a ⌘ Py). But 8y¬Py. So

8y(y < a). For uniqueness, suppose, for reductio, there exists class c0, where c0 , c, such that

8y(y < c0). Then 8y(y 2 c0 ⌘ y 2 a) and so by Extensionality, c = c0. Contradiction. ./

8c08c009c8y(y2c ⌘ y2c0 _ y2c00) (Unions)
Proof: Consider arbitrarily chosen classes c0 and c00. Then there are properties P and Q such

that ExtensionOf (c0,P) and ExtensionOf (c00,Q). Consider [�z Pz _ Qz] (= H), which exists

axiomatically. By Fundamental Theorem, there is a class, say a, such that 8y(y 2 a ⌘ Hy).

But 8y(Hy ⌘ (Py _ Qy)) (by �-Conversion), and 8y((Py _ Qy) ⌘ (y 2 c0 _ y 2 c00)) (by Law

of Extensions). So 8y(y 2 a ⌘ (y 2 c0 _ y 2 c00)).
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Extension Theory/Natural Class/Logical Set Theory

8c09c8y(y2c ⌘ x<c0) (Complements)
Fix c0; then ExtensionOf (c0,P) (P arbitrary). The witness for c is
given by 9xExtensionOf (x, [�z ¬Pz]).

8c08c009c8y(y2c ⌘ y2c0 & y2c00) (Intersections)
Fix c0 and c00; then ExtensionOf (c0,P) and ExtensionOf (c00,Q)
(P, Q arbitrary). The witness for c is given by
9xExtensionOf (x, [�z Pz & Qz]).

[�y ']# ! 9c8y(y2c ⌘ ') (Conditional Comprehension)
Assume [�y ']#. The witness to c is given by
9xExtensionOf (x, [�x ']).

[�y ']# ! 8c09c8y(y2c ⌘ y2c0 & ') (Separation)
Fix c0. And let ExtensionOf (x, [�z ']). Then there is an
intersection of c0 and x. Show any such class is a witness to c.

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects zalta@stanford.edu



Introduction Truth Values Extensions Directions, etc. Bibliography

Extensions/Natural Classes/Logical Set Theory

8R8c09c8y(y 2 c ⌘ 9z(z 2 c0 & Rzy)) (Collections)
Fix R and c0, and let ExtensionOf (c0,P). Then consider
[�x Px & Rxy] and its class c.

9c8y(y 2 c ⌘ D!y & y=x) (Singletons)
So discernible abstract objects have well-behaved singletons.

9c8y(y 2 c ⌘ D!y & (y=x _ y=z)) (Pairs)
So distinct, discernible abstract objects have well-behaved pair
sets.

8c09c8y(y 2 c ⌘ y 2 c0 _ y=D x) (Adjunction)
Fix c0, x. So let ExtensionOf (c0,P). Consider [�z Pz _ z=D x] and
its class c.

No power sets, since you can’t prove [�x x ✓ z]# for arbitrary z,
where x ✓ z ⌘df 8y(y 2 x! y 2 z). (This is a flat set theory.)

Edward N. Zalta Seminar on Axiomatic Metaphysics Lecture 3 Logical Objects zalta@stanford.edu



Introduction Truth Values Extensions Directions, etc. Bibliography

Directions and Shapes

Assumptions: k is an equivalence relation on ordinary lines:
Lx! xkx
(Lx & Ly)! (xky! ykx)
(Lx & Ly & Lz)! (xky & ykz! zkz)

and where we use u, v as restricted variables ranging over
ordinary lines, that being parallel to u is materially equivalent to
being parallel to u0 i↵ uku0:

8u8u0(8z([�v vku]z ⌘ [�v vku0]z) ⌘ uku0)
Define and prove:

DirectionOf(x, u) ⌘df ExtensionOf(x, [�v vku])
9!xDirectionOf(x, u)
(DirectionOf(x, u) & DirectionOf(y, v))! (x=y ⌘ ukv)
Direction(x) ⌘df 9uDirectionOf(x, u)
~u =df ıxDirectionOf (x, u)

Fregean biconditional: ?` ~u=~v ⌘ ukv
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Proof of Fregean Biconditional

(!) Assume ~a = ~b. Since we know independently
8y([�z zka]y ⌘ [�z zka]y), it follows by definition of ~a (by
?-theorem) that ~a[�z zka]. Substituting ~b for ~a yields ~b[�z zka].
Then by the definition of ~b (and a ?-theorem), we know
8y([�z zka]y ⌘ [�z zkb]y) and in particular [�z zka]b ⌘ [�z zkb]b
which is equivalent, by �-abstraction, to bkb ⌘ bka. Since bkb,
bka. So by symmetry of k, akb.
( ) Assume akb. It su�ces to show that for any P, ~aP ⌘ ~bP.
(!) Suppose ~aP. Then by the definition of ~a (and a ?-theorem),
8y(Py ⌘ [�z zka]y). Since akb this is equivalent to
8y(Py ⌘ [�z zkb]y). By the definition of ~b this implies ~bP. ( )
Exercise.
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