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Possible World Theory I

@ A possible world 1s a situation that might be such that it make
true all and only the truths:
o PossibleWorld(x) =4 Situation(x) & OVp(x Ep = p)
@ + PossibleWorld(x) — OPossibleWorld(x)
o Letw,w,...berigid, restricted variables over possible worlds.
o Ywoy =4 Yx(PossibleWorld(x) — ¢)
o dw¢y =4 Ax(PossibleWorld(x) & ¢)
@ Truth at a world 1s already defined (worlds are situations):
e pistrue at w (or w makes p true) iff w E p
@ A situation s 1s maximal iff for every proposition p, either s
makes p true or s makes the negation of p true:
o Maximal(s) =4 Yp(s Ep V s E —p)
@ Theorem: Possible worlds are maximal.
F VYwMaximal(w), 1.e.,
+ Vs(PossibleWorld(s) — Maximal(s)), 1.e.,
+F Vx(PossibleWorld(x) — Maximal(x))

@ The proof is on an Appendix slide.
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Possible World Theory 11 I

@ + VYw Consistent(w) (exercise)
® p=q=40p—q)

@ ModallyClosed(s) =4 Vp((Actual(s) = p) — s = p)

@ + YwModallyClosed(w)

o

F ModallyClosed(s) —
Vp1.. Vo VglsEp1 & ... &sEpn&(pr & ... &pp)=¢q) = 5 F 4]
@ + d'wActual(w), 1.e., A!x(PossibleWorld(x) & Actual(x))
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Proof: There is a Unique Actual World I

e By Comprehension: Ax(Alx & VF(xF = dp(p & F=[Ay p])))

@ Let a be such an object: Ala & VF(aF = dp(p & F=[Ay p])) (0)
@ Strategy:
e Show: World(a)

e Show: Actual(a)
e Show: Vx(World(x) & Actual(x) — x = a)
@ Show: World(a), 1.e., Situation(a) & OVp(a E p = p)
@ Show: Situation(a):
e Show: Ala by (6)
e Show: YF(aF — dp(F = [Ay p)))
Proof: By GEN, assume aF. By (), dp(p & F=[4y p]). A
fortiori, Ap(F =[Ay p]). By CP, aFF — dp(F =[Ay p]).
@ Appendix slides have a proof of:

e World(a)
e Actual(a),
o Yx(World(x) & Actual(x) — x = a)
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Facts About Actual Situations and the Actual World I

@ wy, =g WActual(w), 1.e.,

wy =qr W(PossibleWorld(x) & Actual(x))

F Vs(Actual(s) = s Qw,)

*xbp=we Fp

* - (we F p) = [y plwe

*Fp = wy F [y plw,

If given any true proposition (i.e., fact), say p, the last theorem
implies something of the form: s = ¢(s). This suggests that w,, 1s
a constituent of the facts that it makes factual. In situation theory,
statements of the form s E ¢(s) constitute the defining
characteristic of ‘nonwellfounded’ situations. So the actual

world w, seems to be nonwellfounded in the sense that it makes
factual states of afTairs p of which it 1s a constituent.
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Proof of the Strengthened Lewis Principle I

@ Lemma: + OSituation(x) — Situation(x)

e Derive this from 5 Situation(x) — OSituation(x), or see the
direct derivation in an Appendix slide.

@ Lewis Principle (1986): For every way a world might be, there is
a world which 1s that way.

e Strengthened Lewis Principle: p 1s possible if and only if there
exists a possible world in which p is true:

o FVYp(Op = dw(w [ p))
@ Proof:
e Show: (—): &g — Iw(w E q), where ¢ 1s arbitrary.

Stage A: Show: &g — CAdw(w E q)
Stage B: Show ¢dw(w E g) — dw(w E g).

e Show («): dw(w | q) — <©gq, where ¢ is arbitrary.
@ For the full proof, see the Appendix slides.




The Leibniz/Kripke Principle I

@ Leibniz/Kripke Principle: A proposition p is necessarily true 1iff p
1s true in all possible worlds.

@ -Op =VYww E p)

@ Proof:
I. &=p=dwlw E —p) Instance of Lewis Principle, with —p for p.

2. O—p = dw-(w E p) From 1 and Coherence (w E —p = =w E p).
3. =0=-p =-dw-(wE p) From 2 by basic propositional logic.
4. Op = VYw(w E p) From 3, dfn 0/<¢, and dfn V/4.
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Some Interesting Consequences I

@ There are non-actual possible worlds:
o + dw—Actual(w)
@ This follows from the existence of contingently true (false)
propositions:
o dp(p & O—p)
o +dp(—p & Op)
which in turn follows from our axiom:
o OAx(Ex & —AE!x)

@ Epistemologically: we don’t have to justify our knowledge of

particular possible worlds. Use Equivalence Principle and modal
beliefs.

@ Menzel & Zalta 2014 show that the Strengthened Lewis
Principle can be derived in a subtheory with tiny models: use
monadic object theory with comprehension.
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World-Indexed T-Values '

@ First we examine truth values of propositions and extensions of
properties that are world-indexed. Then we examine
world-indexed relations.

TruthValueAtOf (s,w,p) =4r Vq(s E g = wE(g = p))
F AlsTruthValueAtOf (s, w, p)

owp =qr 1STruthValueAtOf(s,w,p)

Fowp=owg = W (p=q)

The True at w and The False at w:

o T, =4 1SV¥p(s Ep=wkEp)
o Ly, =y4 SVp(sEp=wkE-p

© FWEp = oyp=T,
@ FLp= VW(OWP = Tw)
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World-Indexed Extensions '

ExtensionAtOf(x,w,G) =4 Alx & G| & VF(xF =w E Yy(Fy = Gy))

- d!xExtensionAtOf(x, w, G)

evG =g xExtensionAtOf(x,w, G)

- ExtensionAtOf(e€,G,w, G)

- (ExtensionAtOf(x,w, G) & ExtensionAtOf(y,w,H)) —
(x=y=w E Vz(Gz = H?))

@ Proof: Assume antecedent. (=) Assume x=y. Then by expanding

ExtensionAtOf(x, w, G) and substituting y for x, we know:

VF(yF = w E VYz(Fz = Gz)). This and ExtensionAtOf(y, w, H) implies:

VFIweVYZ(Fz = Gz) = wEVz(Fz = H7)]
SowEVYz2(Gz = Gz) = wEVYz2(Gz = H?). Hence wEVYz(Gz = H?). (<) Assume
wEVYz(Gz = Hz), show: xF = yF. (—) Assume xF. Then wEVYz(Fz = Gz). Since

w is modally closed: wEVz(Fz = Hz). Hence, by initial assumption and

definition of y, yF'. («) Exercise.
o +te,F=¢,G = wEVYz(Fz = G?) (Modal Law V)
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World-Indexed Relations '

@ F[Ax;...x,wE Fx1...x,]] (n>0)
o I =df [Ax1...x, wE F'x1...x,] (n>0)
@ - VFVYw(F}]) (n>0)
@ FFlx1..xp=wkEF'x1...x, (n>0)
@ So we don’t assume the existence of world-indexed relations in
the semantics (Williamson 2013, 237), but prove they exist in
object theory.
@ Rigid(F") =4 F"| & OVYxy... Vx,(F'x;...x, = OF"x1...x,) (n>0)
o + Rigid(G") (n =z 0)
@ Rigidifies(F",G") =4 Rigid(F") & ¥xy.. . Vx,(F'x1...x, =G"x1...x,) (n>0)
@ Every relation has a rigidification (cf. Gallin 1975):

o + VYGAF"(Rigidifies(F",G")) (n>0)
@ Proof: Fix G and consider Gy, . Show: Rigid(Gy, ) and
Vxp ... Vx,(Gy X1 .. X = Gxy .. xy) (Exercises)

@ Be sure to distinguish €F,, from ¢, F, and op,, from o,,p.
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Introduction '

This 1s work coauthored with Uri Nodelman.

Typically the term ‘possibility’ 1s used in philosophy to denote a
proposition that might be true (Op).

A different, technical sense of ‘possibility’ 1s in Humberstone
1981, 2011; van Benthem 1981, 2016; Edgington 1985; Holliday
2014, forthcoming; and Ding & Holliday 2020.

Possibilities are partial (i.e., not necessarily maximal) entities,
such as proper parts of possible worlds. Edgington 1985 (564):
possibilities, or possible situations . . .differ from possible worlds
in leaving many details unspecified.

But all of these philosophical logicians takes them as primitive
entities governed by axioms stipulated in their semantics. We
develop a theory that derives these axioms as theorems.
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The Semantic Axioms Stipulated I

@ Humberstone 1981 (318), 2011 (900); van Benthem 1981 (3—4),
2016 (3—4); Holliday 2014 (3), forthcoming (5, 15); and Ding &
Holliday 2020 (155):

e Ordering: arelation > partially orders the possibilities,
e Persistence: every proposition true in a possibility is true in every

refinement,
e Refinement: if a possibility x has a gap on p, then (a) there is a
refinement of x where p 1s true, and (b) there 1s refinement where

p 1s false.
o Cofinality: if, for every x’ that is a refinement of x there is an x”

that refines x” and makes p true, then x makes p true.

@ They must also satisfy negation and conjunction:

e Negation: a possibility x makes the negation of p true if and only
if every refinement of x fails to make p true.
o Conjunction: a possibility x makes the conjunction p & g true iff x

makes both p true and makes ¢ true.
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Prerequisites: 1 I

@ We’ve seen: comprehension for situations, canonical situations,
and:

(s =15'Yp(s' Ep=¢)) > Vp(s Ep=9),
provided s’ isn’t free in ¢ and ¢ is modally collapsed.

@ + Possible(s) = dw(s < w)
® ModallyClosed(s) =4 Vp((Actual(s) = p) — s E p)

@ ModallyClosed(s) — Vp; .. Vp,Ng((sEp1 & ... & sEp, &
(P& ... &p)=q) — skEq)
F (ModallyClosed(s) & Consistent(s)) — Possible(s)

o
@ + (ModallyClosed(s) & Op) — s E p

o s =4 15'Vq(s' Eq=(skEq VvV g=p))
@ FsPAw=sdw&wEDp

o

FVYw(s<w —> w E p) = (Actual(s) = p)
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Prerequisites: III

s* = the modal closure of s

s* =4 15'Yp(s' E p = (Actual(s) = p))
- Vp(s* E p = (Actual(s) = p))

s ds*

sdw=s*dw

- Possible(s) = Possible(s*)

- ModallyClosed(s™)

+ Possible(s) = Consistent(s™)
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Definition of a Possibility I

@ A situation s 1s a possibility if and only 1f s 1s both consistent and
modally closed:

Possibility(s) =4 Consistent(s) & ModallyClosed(s)
@ Theorem: possible worlds are possibilities:

+ Possibility(w)
@ Possibility(s) 1s a rigid restriction condition, since:

e Possibility(s) contains a single free variable.
o Possibility(s) 1s strictly non-empty, 1.e., kg AsPossibility(s)
o Possibility(s) has strict existential import, i.e.,
Fo Possibility(k) — k|
e Possibility(s) — OPossibility(s)

@ We henceforth use the variables s, ', s”, ... as rigid, restricted
variables for possibilities.

@ Theorem: Necessary truths are true 1n every possibility:
FOp — Vs(s E p)
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A Picture '

the smallest possibility (‘absolute necessity’)
a possible situation

the smallest possibility s that contains s

a refinement of s
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The Ordering Principle I

We say a situation s’ contains situation s, written s’ > s, just in
case s is a part of s:

S/[ZSEdeS]S,

Then, when 5" and s are possibilities and s’ > s, we say that s’ is a
refinement of s, i.e., we read ¢’ > s as: ¢ is a refinement of s.
Since part of (<) 1s reflexive, anti-symmetric, and transitive on

the situations, it follows that refinement of 1s a reflexive,
anti-symmetric, and transitive condition on the possibilities:

(A)Fs>s
b (s >s&s#5)—> s> ¢
OFrGE'>d&dD>s)—> ' >
These jointly validate the principle of Ordering; ct. Humberstone

1981 (318), Ding & Holliday 2020 (155), and Holliday
forthcoming (Definition 2.1 and 2.21).
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The Persistence Principle I

@ Persistence: for every proposition p, (a) if p is true in s and ¢’ is a
refinement of s, then p is true in ¢', and (b) if —p is true in s and
s’ is a refinement of s, then —p is true in ¢, i.e.,

FVp((sEp&s s> Ep)&(sE-p&s 25— ¢ E-p))
Humberstone 1981, 318; 2011, 900.
This can be simplified, though, since —p can be substituted into
the universal claim Vp¢:

FYp(sEp&s>s— ¢ Ep)
Cf. van Benthem 1981, 3 (‘Heredity’); 2016, 3; Holliday 2014,
315; forthcoming, 15; and Ding & Holliday 2020, 155. But see
also Restall 2000, Definition 1.2 (Heredity Condition); Berto

2015, 767 (HC); Berto & Restall 2019, 1128 (HC).
o Cf. Barwise 1989a (265): p is persistent if and only if whenever
p is true in s, p is true in every s’ of which s is a part:

Persistent(p) =4 Vs(sEp o Vs'(s<s' — s Ep))
It 1s an immediate consequence that Vp Persistent(p). Thus, our
theory implies Alternative 6.1 at Choice 6 in Barwise 1989a, 265.
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Lemmas for the Refinability Principle I

The situation of absolute necessity (written sy) 1s, by definition,
the situation in which all and only necessary truths are true:
So =qr 1SYp(s E p = Op)
If p 1s contingent, absolute necessity has a gap on p:
+ Contingent(p) — GapOn(sg, p)
Absolute necessity is a possibility:
+ Possibility(sp)
Situations that are proper parts of absolute necessity are not
possibilities:
F Vs((s 9 sg & s# 8g) — —Possibility(s))
Every possibility is a refinement of absolute necessity:
FVs(s > sp)
If a possibility has a gap on p, then p 1s contingent:
F GapOn(s,p) — Contingent(p)
If s has a gap on p, then s has a gap on —p:
- Vp(GapOn(s, p) — GapOn(s, —p))
Possibilities are possible situations:
+ Possible(s), 1.e., Possibility(s) — Possible(s)
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The Refinability Principle I

@ If s has a gap on p, then there is an ¢’ that refines s in which p is
true and an ¢ that refines s in which —p is true:

F GapOn(s,p) =5 (d > s & Ep) &I >s& s E p)
Cf. Humberstone 1981, 318; Holliday 2014, 315; forthcoming,
15; and Ding & Holliday 2020, 155.

Proof Sketch: Let r be an arbitrary, but fixed, proposition.

(—) Since GapOn(s, r) implies GapOn(s, —r), it suffices to show only:
GapOn(s,r) —» ' (s’ > s & ' E r)

So assume GapOn(s, r) and find a witness to 3s'(s' > s & ¢’ = r). Consider

(s*")*; abbreviate this as s""*. We have to show all of the following: (a) s > s,

(b) s*"™* E r, and (c) Possibility(s*"™). And by definition, the last of the above

requires us to show (d) Consistent(s*"™*) and (e) ModallyClosed(s*"™). (Exercises)

(<) Assume: ¢’ (s’ > s & ¢ Er) & I (s' > s & ¢’ E —r). Call this (13). For

reductio, suppose =GapOn(s, r). Then either s = r or s E —r. Wlog, suppose

s = r. By Persistence Principle, every refinement of s makes r true. So there can’t
be a refinement that makes —r true, contradicting the right conjunct of (7).
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The Cofinality, Negation, and Conjunction Principles I

e Cofinality: If, for every possibility ¢’ that refines s, there is a
possibility s” that refines ¢’ in which p is true, then p is true in s:

FVS(s'2s > A" & Ep) o skEDp
Cf. van Benthem 1981, 4; 2016, 3; and compare Humberstone’s
(2011, 900) new statement of the Refinement Principle.

@ Negation: The negation of p is true in s if and only if p fails to be
true in every refinement of s:

FskE-p =Vs'(s'>s > ¢ Ep)
Cf. Humberstone 1981, 320; 2011, 900.

@ Conjunction: The conjunction p and g 1s true in s if and only if
both p and ¢ are true in s:

FsE (P& =(GEp&skEqg)
Cf. Humberstone 1981, 319; 2011, 900.
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The Fundamental Theorems '

@ A proposition p 1s possible if and only if there 1s a possibility 1n
which p is true:
o Op=ds(s FE p)
@ A proposition p 1s necessary if and only 1if p 1s true in all
possibilities:
o Op = Vs(s E p)
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The Picture Again I

the smallest possibility (‘absolute necessity’)
a possible situation

the smallest possibility s that contains s

a refinement of s
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Proof: Vx(PossibleWorld(x) — Maximal(x))'

By GEN, we show PossibleWorld(x) — Maximal(x). So assume
PossibleWorld(x). We have to show, for an arbitrary ¢, x Eq V x E—gq.
We first appeal to an instance of a modal theorem, namely,

O(p — ¥) — (O¢ — Oy), where the instance 1s obtained by setting ¢
toVp(xEp)=p)and Yy tox E gV x E —g. Then since g V —g, it
follows that @ — . Since we derived the conditional from no
assumptions or contingent premises, it follows by RN that O(¢ — ).
So by the instance of our modal theorem, ¢¢ — Oy, Since we know
O¢ (by the definition of possible world), we may infer Gy, 1.e.,
OS(xE gV xE ~qg). Then Ox E gV Ox E ~gq. But OxF — OxF, and
so Ox E g V Ox E —g. But by the T schema, x F g V x E —g.
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A Lemma I

F OSituation(x) — Situation(x)

Assume OSituation(a), 1.e., OVF(aF — dp(F=[Ay p]))
Show: aG — dp(G=[Ay p]), where G is arbitrary.
Assume aG, and so by rigidity, OaG

By the Buridan schema: VEO(aF — dp(F=[Ay pl))
So in particular: G(aG — dp(G = [y p])).

By modal logic and 0aG: ¢dp(G = [y p)).

By BF, dpO(G = [y pD).

By the definition of =, ApoOVx(xG = x[Ay p)).

In S5, oO¢ — O¢, so reducing and applying the definition of =,
it follows that dp(G = [Ay p]).

By conditional proof, aG — dAp(G = [y p]).
VF(alFF — dp(F=[Ay p])), since G was arbitrary.




000000000

Proof: There is a Unique Actual World: I I

@ To show OVp(a E p = p), let g be an arbitrary proposition, and
first show: a Eq = g.

° (=)

° akgq,1e,allyq] assumption
o  dp(p &lAyql=I[4y p]) defn of a
o r&ldyql=[ayr] r arbitrary
° q=r defn of g=r
° q by =E
° (<)

° q assumption
o g&[Ayql=[1yq] =1
o  Ip(p & [Ayql=[1ypD) B
o aldygl,1.e.,a kEq by (6)

@ So Vp(a Ep = p), and a fortiori, OVp(a Ep = p)
@ Thus, PossibleWorld(a).
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Proof: There is a Unique Actual World: 11 I

@ Show: Actual(a)

@ But we previously showed: Vp(a Ep = p). A fortiori,
Vp(a Ep — p). So it remains to show uniqueness, 1.€.,

@ Show: Vx(PossibleWorld(x) & Actual(x) — x=a)

e Assume, for reductio, that b 1s an actual world distinct from a.

e Then, since a, b are distinct abstract objects, they differ by at least
one encoded property.

e Without loss of generality, suppose aP and —bP.

e Since a is a situation, there is a proposition, say ¢, such that P =
[y gl

e So, by definition, a g and —b kE q.

e Then by maximality, b E —q.

e But both a and b are actual, so g (given that a 1s actual) and —g
(given that b 1s actual). Contradiction.
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Proof of the Strengthened Lewis Principle I

Theorem: Vp(Op = Aw(w E p))
Show: (—): &g — Aw(w E g), where ¢ 1s arbitrary.

Proof strategy:
Stage A: Show: &g — OAw(w  q)
Stage B: Show Gdw(w |E g) — Iw(w E g).
Stage A Strategy:
@ Show: O(g — Iw(w E q)):

Assume ¢

Derive: dAw(w E q)

Use Conditional Proof: ¢ — dw(w E q)
Use RN: O(g — dw(w E q))

@ Conclude: ¢g — odw(w E g), by modal theorem
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Proof of the Strengthened Lewis Principle I

So assume g. We want to show: dw(w E ¢g), 1.e.,
Ax(PossibleWorld(x) & x E q)

By Comprehension:
dx(Alx & VE(xF = dp(p & F=[1y p])))
Let a be such an object:

Ala & VF(aF = dp(p & F=[Ay p])) (0)
Show: PossibleWorld(a) & a E q:
o PossibleWorld(a) by previous reasoning
° ¢ by assumption
o g &|Ayqgl=[ayq] =1
o Jdp(p & [Ay q] = [y pD) ||
e ally(q] from (6)
e afFq by definition

So, by CP, ¢ — dw(w E ¢). Since no contingent premises were
used, it follows by RN: 0O(¢ — dw(w E ¢g)). And thus, given

modal logic, it follows that Gg — ¢dw(w E q)

Stage A (V).
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Proof of the Strengthened Lewis Principle I

@ Stage B: Show odw(w E g) — Iw(w E g).
@ Assume Cdw(w E q) Show: dw(w E ¢q).

@ Eliminating the restricted variable w:
O dx(PossibleWorld(x) & x E q).

e By BF:
dxO(PossibleWorld(x) & x E q).

@ Let a be such an object; 1.e.,
O(PossibleWorld(a) & a = q)

@ By modal logic: OPossibleWorld(a) & $a E q.

@ Show each possibility 1s a non-modal fact!
Show PossibleWorld(a).
Show a E g.
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Proof of the Strengthened Lewis Principle I

@ Show PossibleWorld(a).
@ By definition, from & PossibleWorld(a), we know:
OAla & VYF(aF — dp(F=[Ayp])) & OVp(alEp = p)).
@ By modal logic:
CAla & OVF(aF — dp(F=[Ayp])) & OOVplakEp =p) (0)
@ We have to show:

Q Al
Q@ VF(aF — dp(F=[1ypl))
Q@ OVplakEp=p)

@ (1) follows from the 1st conjunct of (6):
CAla —» O—OFE!la —» OO0-FEla —» O0-FEla - -OFEla —» Ala

@ (2) follows from the second conjunct of (6) by our Lemma.
@ (3) follows from the third conjunct of (6) by the S4 theorem.
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Proof of the Strengthened Lewis Principle I

Show: a E g.

We already know <a E q.

By definition, $alAy ¢

By the Rigidity of Encoding, Oa[ Ay ¢].
By the T schema, a[Ay ¢]

By definition, a  ¢g

Thus, we’ve shown Odw(w E g) — Iw(w E g).
Stage B (V)
So from Stage A and Stage B: &g — dw(w E ¢).

Proof of (—) direction of theorem 1s done.
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Proof of the Strengthened Lewis Principle I

Theorem: Yp(Op = dw(w E p))

Show: («): Aw(w E q) — <g, where ¢ is arbitrary.
Assume dw(w E q), 1.e., Ax(PossibleWorld(x) & x | qg).
Let a be such an object: PossibleWorld(a) & a = ¢ (0)
By definition, the left conjunct yields: GVplakEp = p).
By the Buridan formula: Yp&(alEp = p).

So 1n particular: G(akEqg = g).

By definition: &(aldy g] = g)

A fortiori, O(al[dy g — q), 1.e., O(—al[dy gl VvV q)

By basic modal logic: &—aldy qg] VvV g

By (0), a E g, and by nigidity, Oa E g, 1.e., Oal[ Ay q].
By Disjunctive Syllogism, ©gq.

Thus, Aw(w E q) — <g

The («) direction of the theorem is done.

Q.E.D.
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