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Possible World Theory

A possible world is a situation that might be such that it make
true all and only the truths:

PossibleWorld(x) ⌘df Situation(x) & ^8p(x |=p ⌘ p)
` PossibleWorld(x)! ⇤PossibleWorld(x)

Let w,w0, . . . be rigid, restricted variables over possible worlds.
8w�w

x ⌘df 8x(PossibleWorld(x)! �)
9w�w

x ⌘df 9x(PossibleWorld(x) & �)
Truth at a world is already defined (worlds are situations):

p is true at w (or w makes p true) i↵ w |= p
A situation s is maximal i↵ for every proposition p, either s
makes p true or s makes the negation of p true:

Maximal(s) ⌘df 8p(s |=p _ s |= ¬p)
Theorem: Possible worlds are maximal.
` 8wMaximal(w), i.e.,
` 8s(PossibleWorld(s)! Maximal(s)), i.e.,
` 8x(PossibleWorld(x)! Maximal(x))

The proof is on an Appendix slide.
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Possible World Theory II

` 8w Consistent(w) (exercise)
p) q ⌘df ⇤(p! q)
ModallyClosed(s) ⌘df 8p

�
(Actual(s)) p)! s |= p

�

` 8wModallyClosed(w)
` ModallyClosed(s)!
8p1 . . .8pn8q[(s |=p1 & . . . & s |= pn & (p1 & . . . & pn))q)! s |= q]

` 9!wActual(w), i.e., 9!x(PossibleWorld(x) & Actual(x))
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Proof: There is a Unique Actual World

By Comprehension: 9x(A!x & 8F(xF ⌘ 9p(p & F= [�y p])))
Let a be such an object: A!a & 8F(aF ⌘ 9p(p & F= [�y p])) (✓)
Strategy:

Show: World(a)
Show: Actual(a)
Show: 8x(World(x) & Actual(x)! x = a)

Show: World(a), i.e., Situation(a) & ^8p(a |= p ⌘ p)
Show: Situation(a):

Show: A!a by (✓)
Show: 8F(aF ! 9p(F= [�y p]))
Proof: By GEN, assume aF. By (✓), 9p(p & F= [�y p]). A
fortiori, 9p(F= [�y p]). By CP, aF ! 9p(F= [�y p]).

Appendix slides have a proof of:
World(a)
Actual(a),
8x(World(x) & Actual(x)! x = a)
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Facts About Actual Situations and the Actual World

w↵ =df ıwActual(w), i.e.,
w↵ =df ıx(PossibleWorld(x) & Actual(x))
` 8s(Actual(s) ⌘ s Ew↵)
?` p ⌘ w↵ |= p
?` (w↵ |= p) ⌘ [�y p]w↵

?` p ⌘ w↵ |= [�y p]w↵

If given any true proposition (i.e., fact), say p, the last theorem
implies something of the form: s |= �(s). This suggests that w↵ is
a constituent of the facts that it makes factual. In situation theory,
statements of the form s |= �(s) constitute the defining
characteristic of ‘nonwellfounded’ situations. So the actual
world w↵ seems to be nonwellfounded in the sense that it makes
factual states of a↵airs p of which it is a constituent.
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Proof of the Strengthened Lewis Principle

Lemma: ` ^Situation(x)! Situation(x)
Derive this from `⇤ Situation(x)! ⇤Situation(x), or see the
direct derivation in an Appendix slide.

Lewis Principle (1986): For every way a world might be, there is
a world which is that way.
Strengthened Lewis Principle: p is possible if and only if there
exists a possible world in which p is true:

` 8p(^p ⌘ 9w(w |= p))
Proof:

Show: (!): ^q! 9w(w |= q), where q is arbitrary.
Stage A: Show: ^q! ^9w(w |= q)
Stage B: Show ^9w(w |= q)! 9w(w |= q).

Show ( ): 9w(w |= q)! ^q, where q is arbitrary.

For the full proof, see the Appendix slides.
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The Leibniz/Kripke Principle

Leibniz/Kripke Principle: A proposition p is necessarily true i↵ p
is true in all possible worlds.
` ⇤p ⌘ 8w(w |= p)
Proof:

1. ^¬p ⌘ 9w(w |= ¬p) Instance of Lewis Principle, with ¬p for p.
2. ^¬p ⌘ 9w¬(w |= p) From 1 and Coherence (w |= ¬p ⌘ ¬w |= p).
3. ¬^¬p ⌘ ¬9w¬(w |= p) From 2 by basic propositional logic.
4. ⇤p ⌘ 8w(w |= p) From 3, dfn ⇤/^, and dfn 8/9.
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Some Interesting Consequences

There are non-actual possible worlds:
` 9w¬Actual(w)

This follows from the existence of contingently true (false)
propositions:

` 9p(p & ^¬p)
` 9p(¬p & ^p)

which in turn follows from our axiom:
^9x(E!x & ¬AE!x)

Epistemologically: we don’t have to justify our knowledge of
particular possible worlds. Use Equivalence Principle and modal
beliefs.
Menzel & Zalta 2014 show that the Strengthened Lewis
Principle can be derived in a subtheory with tiny models: use
monadic object theory with comprehension.
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World-Indexed T-Values

First we examine truth values of propositions and extensions of
properties that are world-indexed. Then we examine
world-indexed relations.
TruthValueAtOf (s,w, p) ⌘df 8q(s |= q ⌘ w |= (q ⌘ p))
` 9!sTruthValueAtOf (s,w, p)
�wp =df ısTruthValueAtOf (s,w, p)
` �wp=�wq ⌘ w |= (p ⌘ q)
The True at w and The False at w:

>w =df ıs8p(s |= p ⌘ w |=p)
?w =df ıs8p(s |= p ⌘ w |=¬p

` w |=p ⌘ �wp=>w

` ⇤p ⌘ 8w(�wp = >w)
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World-Indexed Extensions

ExtensionAtOf(x,w,G) ⌘df A!x & G# & 8F(xF ⌘ w |= 8y(Fy ⌘ Gy))
` 9!xExtensionAtOf(x,w,G)
✏wG =df ıxExtensionAtOf(x,w,G)
` ExtensionAtOf(✏wG,w,G)
` (ExtensionAtOf(x,w,G) & ExtensionAtOf(y,w,H))!

(x=y ⌘ w |= 8z(Gz ⌘ Hz))
Proof: Assume antecedent. ()) Assume x=y. Then by expanding
ExtensionAtOf(x,w,G) and substituting y for x, we know:
8F(yF ⌘ w |= 8z(Fz ⌘ Gz)). This and ExtensionAtOf(y,w,H) implies:

8F[w |=8z(Fz ⌘ Gz) ⌘ w |=8z(Fz ⌘ Hz)]
So w |=8z(Gz ⌘ Gz) ⌘ w |=8z(Gz ⌘ Hz). Hence w |=8z(Gz ⌘ Hz). (() Assume
w |=8z(Gz ⌘ Hz), show: xF ⌘ yF. (!) Assume xF. Then w |=8z(Fz ⌘ Gz). Since
w is modally closed: w |=8z(Fz ⌘ Hz). Hence, by initial assumption and
definition of y, yF. ( ) Exercise.

` ✏wF=✏wG ⌘ w |=8z(Fz ⌘ Gz) (Modal Law V)
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World-Indexed Relations

` [�x1 . . . xn w |= Fx1 . . . xn]# (n � 0)
Fn

w =df [�x1 . . . xn w |= Fnx1 . . . xn] (n � 0)
` 8F8w(Fn

w#) (n � 0)
` Fn

wx1 . . . xn ⌘ w |= Fnx1 . . . xn (n � 0)
So we don’t assume the existence of world-indexed relations in
the semantics (Williamson 2013, 237), but prove they exist in
object theory.
Rigid(Fn) ⌘df Fn# & ⇤8x1 . . .8xn(Fnx1 . . . xn ! ⇤Fnx1 . . . xn) (n � 0)

` Rigid(Gn
w) (n � 0)

Rigidifies(Fn,Gn) ⌘df Rigid(Fn) & 8x1 . . .8xn(Fnx1 . . . xn ⌘ Gnx1 . . . xn) (n � 0)
Every relation has a rigidification (cf. Gallin 1975):

` 8G9Fn(Rigidifies(Fn,Gn)) (n � 0)
Proof: Fix G and consider Gn

w0
. Show: Rigid(Gn

w0
) and

8x1 . . .8xn(Gn
w0

x1 . . . xn ⌘ Gx1 . . . xn) (Exercises)

Be sure to distinguish ✏Fw from ✏wF, and �pw from �wp.
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Introduction

This is work coauthored with Uri Nodelman.
Typically the term ‘possibility’ is used in philosophy to denote a
proposition that might be true (^p).
A di↵erent, technical sense of ‘possibility’ is in Humberstone
1981, 2011; van Benthem 1981, 2016; Edgington 1985; Holliday
2014, forthcoming; and Ding & Holliday 2020.
Possibilities are partial (i.e., not necessarily maximal) entities,
such as proper parts of possible worlds. Edgington 1985 (564):
possibilities, or possible situations . . . di↵er from possible worlds
in leaving many details unspecified.
But all of these philosophical logicians takes them as primitive
entities governed by axioms stipulated in their semantics. We
develop a theory that derives these axioms as theorems.
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The Semantic Axioms Stipulated

Humberstone 1981 (318), 2011 (900); van Benthem 1981 (3–4),
2016 (3–4); Holliday 2014 (3), forthcoming (5, 15); and Ding &
Holliday 2020 (155):

Ordering: a relation D partially orders the possibilities,
Persistence: every proposition true in a possibility is true in every
refinement,
Refinement: if a possibility x has a gap on p, then (a) there is a
refinement of x where p is true, and (b) there is refinement where
p is false.
Cofinality: if, for every x0 that is a refinement of x there is an x00
that refines x0 and makes p true, then x makes p true.

They must also satisfy negation and conjunction:
Negation: a possibility x makes the negation of p true if and only
if every refinement of x fails to make p true.
Conjunction: a possibility x makes the conjunction p & q true i↵ x
makes both p true and makes q true.
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Prerequisites: I

We’ve seen: comprehension for situations, canonical situations,
and:

` (s = ıs08p(s0 |= p ⌘ �))! 8p(s |= p ⌘ �),
provided s0 isn’t free in � and � is modally collapsed.

` Possible(s) ⌘ 9w(s E w)
ModallyClosed(s) ⌘df 8p

�
(Actual(s)) p)! s |= p

�

ModallyClosed(s)! 8p1 . . .8pn8q((s |= p1 & . . . & s |= pn &
((p1 & . . . & pn)) q)) ! s |= q)

` (ModallyClosed(s) & Consistent(s))! Possible(s)
` (ModallyClosed(s) & ⇤p)! s |= p
s+p =df ıs08q(s0 |= q ⌘ (s |=q _ q=p))
` s+p E w ⌘ s E w & w |= p
` 8w(s E w! w |= p) ⌘ (Actual(s)) p)
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Prerequisites: II

s? = the modal closure of s
s? =df ıs08p(s0 |= p ⌘ (Actual(s)) p))
` 8p(s? |= p ⌘ (Actual(s)) p))
` s E s?

s E w ⌘ s? E w
` Possible(s) ⌘ Possible(s?)
` ModallyClosed(s?)
` Possible(s) ⌘ Consistent(s?)
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Definition of a Possibility

A situation s is a possibility if and only if s is both consistent and
modally closed:

Possibility(s) ⌘df Consistent(s) & ModallyClosed(s)
Theorem: possible worlds are possibilities:

` Possibility(w)
Possibility(s) is a rigid restriction condition, since:

Possibility(s) contains a single free variable.
Possibility(s) is strictly non-empty, i.e., `⇤ 9sPossibility(s)
Possibility(s) has strict existential import, i.e.,
`⇤ Possibility()! #
Possibility(s)! ⇤Possibility(s)

We henceforth use the variables s, s0, s00, . . . as rigid, restricted
variables for possibilities.
Theorem: Necessary truths are true in every possibility:

` ⇤p! 8s(s |= p)
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A Picture

s⇤ = the smallest possibility (‘absolute necessity’)
s = a possible situation

s? = the smallest possibility s that contains s
s0 = a refinement of s
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The Ordering Principle

We say a situation s0 contains situation s, written s0 D s, just in
case s is a part of s0:

s0 D s ⌘df s E s0

Then, when s0 and s are possibilities and s0 D s, we say that s0 is a
refinement of s, i.e., we read s0 D s as: s0 is a refinement of s.
Since part of (E) is reflexive, anti-symmetric, and transitive on
the situations, it follows that refinement of is a reflexive,
anti-symmetric, and transitive condition on the possibilities:

(a) ` s D s
(b) ` (s0 D s& s0, s)! ¬s D s0
(c) ` (s00 D s0 & s0 D s)! s00 D s

These jointly validate the principle of Ordering; cf. Humberstone
1981 (318), Ding & Holliday 2020 (155), and Holliday
forthcoming (Definition 2.1 and 2.21).
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The Persistence Principle

Persistence: for every proposition p, (a) if p is true in s and s0 is a
refinement of s, then p is true in s0, and (b) if ¬p is true in s and
s0 is a refinement of s, then ¬p is true in s0, i.e.,

` 8p((s |= p & s0 D s! s0 |= p) & (s |= ¬p & s0 D s! s0 |= ¬p))
Humberstone 1981, 318; 2011, 900.
This can be simplified, though, since ¬p can be substituted into
the universal claim 8p�:

` 8p(s |= p & s0 D s! s0 |= p)
Cf. van Benthem 1981, 3 (‘Heredity’); 2016, 3; Holliday 2014,
315; forthcoming, 15; and Ding & Holliday 2020, 155. But see
also Restall 2000, Definition 1.2 (Heredity Condition); Berto
2015, 767 (HC); Berto & Restall 2019, 1128 (HC).
Cf. Barwise 1989a (265): p is persistent if and only if whenever
p is true in s, p is true in every s0 of which s is a part:

Persistent(p) ⌘df 8s(s |= p! 8s0(s E s0 ! s0 |= p))
It is an immediate consequence that 8p Persistent(p). Thus, our
theory implies Alternative 6.1 at Choice 6 in Barwise 1989a, 265.
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Lemmas for the Refinability Principle

The situation of absolute necessity (written s⇤) is, by definition,
the situation in which all and only necessary truths are true:

s⇤ =df ıs8p(s |= p ⌘ ⇤p)
If p is contingent, absolute necessity has a gap on p:

` Contingent(p)! GapOn(s⇤, p)
Absolute necessity is a possibility:

` Possibility(s⇤)
Situations that are proper parts of absolute necessity are not
possibilities:

` 8s((s E s⇤ & s,s⇤)! ¬Possibility(s))
Every possibility is a refinement of absolute necessity:

` 8s(s D s⇤)
If a possibility has a gap on p, then p is contingent:

` GapOn(s, p)! Contingent(p)
If s has a gap on p, then s has a gap on ¬p:

` 8p(GapOn(s, p)! GapOn(s,¬p))
Possibilities are possible situations:

` Possible(s), i.e., Possibility(s)! Possible(s)
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The Refinability Principle

If s has a gap on p, then there is an s0 that refines s in which p is
true and an s00 that refines s in which ¬p is true:
` GapOn(s, p) ⌘ 9s0(s0 D s& s0 |= p) & 9s0(s0 D s& s0 |= ¬p)

Cf. Humberstone 1981, 318; Holliday 2014, 315; forthcoming,
15; and Ding & Holliday 2020, 155.
Proof Sketch: Let r be an arbitrary, but fixed, proposition.
(!) Since GapOn(s, r) implies GapOn(s,¬r), it su�ces to show only:

GapOn(s, r)! 9s0(s0 D s& s0 |= r)
So assume GapOn(s, r) and find a witness to 9s0(s0 D s& s0 |= r). Consider
(s+r)?; abbreviate this as s+r?. We have to show all of the following: (a) s+r? D s,
(b) s+r? |= r, and (c) Possibility(s+r?). And by definition, the last of the above
requires us to show (d) Consistent(s+r?) and (e) ModallyClosed(s+r?). (Exercises)
( ) Assume: 9s0(s0 D s& s0 |= r) & 9s0(s0 D s& s0 |= ¬r). Call this (#). For
reductio, suppose ¬GapOn(s, r). Then either s |= r or s |= ¬r. Wlog, suppose
s |= r. By Persistence Principle, every refinement of s makes r true. So there can’t
be a refinement that makes ¬r true, contradicting the right conjunct of (#).
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The Cofinality, Negation, and Conjunction Principles

Cofinality: If, for every possibility s0 that refines s, there is a
possibility s00 that refines s0 in which p is true, then p is true in s:

` 8s0�s0 D s! 9s00(s00 D s0 & s00 |= p)
�! s |= p

Cf. van Benthem 1981, 4; 2016, 3; and compare Humberstone’s
(2011, 900) new statement of the Refinement Principle.
Negation: The negation of p is true in s if and only if p fails to be
true in every refinement of s:

` s |=¬p ⌘ 8s0(s0 D s! ¬s0 |= p)
Cf. Humberstone 1981, 320; 2011, 900.
Conjunction: The conjunction p and q is true in s if and only if
both p and q are true in s:

` s |= (p & q) ⌘ (s |= p & s |= q)
Cf. Humberstone 1981, 319; 2011, 900.
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The Fundamental Theorems

A proposition p is possible if and only if there is a possibility in
which p is true:

^p ⌘ 9s(s |= p)
A proposition p is necessary if and only if p is true in all
possibilities:

⇤p ⌘ 8s(s |= p)
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The Picture Again

s⇤ = the smallest possibility (‘absolute necessity’)
s = a possible situation

s? = the smallest possibility s that contains s
s0 = a refinement of s
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Proof: 8x(PossibleWorld(x)! Maximal(x))

By GEN, we show PossibleWorld(x)! Maximal(x). So assume
PossibleWorld(x). We have to show, for an arbitrary q, x |=q _ x |=¬q.
We first appeal to an instance of a modal theorem, namely,
⇤(�!  )! (^�! ^ ), where the instance is obtained by setting �
to 8p((x |= p) ⌘ p) and  to x |= q _ x |= ¬q. Then since q _ ¬q, it
follows that �!  . Since we derived the conditional from no
assumptions or contingent premises, it follows by RN that ⇤(�!  ).
So by the instance of our modal theorem, ^�! ^ . Since we know
^� (by the definition of possible world), we may infer ^ , i.e.,
^(x |= q _ x |= ¬q). Then ^x |= q _ ^x |= ¬q. But ^xF ! ⇤xF, and
so ⇤x |= q _ ⇤x |= ¬q. But by the T schema, x |= q _ x |= ¬q.
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A Lemma

` ^Situation(x)! Situation(x)
Assume ^Situation(a), i.e., ^8F(aF ! 9p(F= [�y p]))
Show: aG! 9p(G= [�y p]), where G is arbitrary.
Assume aG, and so by rigidity, ⇤aG
By the Buridan schema: 8F^(aF ! 9p(F= [�y p]))
So in particular: ^(aG! 9p(G = [�y p])).
By modal logic and ⇤aG: ^9p(G = [�y p]).
By BF, 9p^(G = [�y p]).
By the definition of =, 9p^⇤8x(xG ⌘ x[�y p]).
In S5, ^⇤�! ⇤�, so reducing and applying the definition of =,
it follows that 9p(G = [�y p]).
By conditional proof, aG! 9p(G = [�y p]).
8F(aF ! 9p(F= [�y p])), since G was arbitrary.
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Proof: There is a Unique Actual World: I

To show ^8p(a |= p ⌘ p), let q be an arbitrary proposition, and
first show: a |=q ⌘ q.

(!)
a |=q, i.e., a[�y q] assumption
9p(p & [�y q]= [�y p]) defn of a
r & [�y q]= [�y r] r arbitrary
q=r defn of q=r
q by =E

( )
q assumption
q & [�y q]= [�y q] =I
9p(p & [�y q]= [�y p]) 9I
a[�y q], i.e., a |=q by (✓)

So 8p(a |=p ⌘ p), and a fortiori, ^8p(a |=p ⌘ p)
Thus, PossibleWorld(a).
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Proof: There is a Unique Actual World: II

Show: Actual(a)
But we previously showed: 8p(a |=p ⌘ p). A fortiori,
8p(a |=p! p). So it remains to show uniqueness, i.e.,
Show: 8x(PossibleWorld(x) & Actual(x)! x=a)

Assume, for reductio, that b is an actual world distinct from a.
Then, since a, b are distinct abstract objects, they di↵er by at least
one encoded property.
Without loss of generality, suppose aP and ¬bP.
Since a is a situation, there is a proposition, say q, such that P =
[�y q].
So, by definition, a |=q and ¬b |= q.
Then by maximality, b |= ¬q.
But both a and b are actual, so q (given that a is actual) and ¬q
(given that b is actual). Contradiction.
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Proof of the Strengthened Lewis Principle

Theorem: 8p(^p ⌘ 9w(w |= p))

Show: (!): ^q! 9w(w |= q), where q is arbitrary.

Proof strategy:
Stage A: Show: ^q! ^9w(w |= q)
Stage B: Show ^9w(w |= q)! 9w(w |= q).

Stage A Strategy:
Show: ⇤(q! 9w(w |= q)):

Assume q
Derive: 9w(w |= q)
Use Conditional Proof: q! 9w(w |= q)
Use RN: ⇤(q! 9w(w |= q))

Conclude: ^q! ^9w(w |= q), by modal theorem
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Proof of the Strengthened Lewis Principle

So assume q. We want to show: 9w(w |= q), i.e.,
9x(PossibleWorld(x) & x |= q)

By Comprehension:
9x(A!x & 8F(xF ⌘ 9p(p & F= [�y p])))

Let a be such an object:
A!a & 8F(aF ⌘ 9p(p & F= [�y p])) (✓)

Show: PossibleWorld(a) & a |= q:
PossibleWorld(a) by previous reasoning
q by assumption
q & [�y q]= [�y q] =I
9p(p & [�y q] = [�y p]) 9I
a[�y q] from (✓)
a |= q by definition

So, by CP, q! 9w(w |= q). Since no contingent premises were
used, it follows by RN: ⇤(q! 9w(w |= q)). And thus, given
modal logic, it follows that ^q! ^9w(w |= q) Stage A ( ).
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Proof of the Strengthened Lewis Principle

Stage B: Show ^9w(w |= q)! 9w(w |= q).
Assume ^9w(w |= q) Show: 9w(w |= q).
Eliminating the restricted variable w:
^9x(PossibleWorld(x) & x |= q).

By BF:
9x^(PossibleWorld(x) & x |= q).

Let a be such an object; i.e.,
^(PossibleWorld(a) & a |= q)

By modal logic: ^PossibleWorld(a) & ^a |= q.
Show each possibility is a non-modal fact!

Show PossibleWorld(a).
Show a |= q.
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Proof of the Strengthened Lewis Principle

Show PossibleWorld(a).
By definition, from ^PossibleWorld(a), we know:
^(A!a & 8F(aF ! 9p(F= [�y p])) & ^8p(a |=p ⌘ p)).

By modal logic:
^A!a & ^8F(aF ! 9p(F= [�y p])) & ^^8p(a |= p ⌘ p) (✓)

We have to show:
1 A!a
2 8F(aF ! 9p(F= [�y p]))
3 ^8p(a |= p ⌘ p)

(1) follows from the 1st conjunct of (✓):
^A!a! ^¬^E!a! ^⇤¬E!a! ⇤¬E!a! ¬^E!a! A!a
(2) follows from the second conjunct of (✓) by our Lemma.
(3) follows from the third conjunct of (✓) by the S4 theorem.
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Proof of the Strengthened Lewis Principle

Show: a |= q.
We already know ^a |= q.
By definition, ^a[�y q]
By the Rigidity of Encoding, ⇤a[�y q].
By the T schema, a[�y q]
By definition, a |= q

Thus, we’ve shown ^9w(w |= q)! 9w(w |= q).
Stage B ( )
So from Stage A and Stage B: ^q! 9w(w |= q).
Proof of (!) direction of theorem is done.
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Proof of the Strengthened Lewis Principle

Theorem: 8p(^p ⌘ 9w(w |= p))
Show: ( ): 9w(w |= q)! ^q, where q is arbitrary.
Assume 9w(w |= q), i.e., 9x(PossibleWorld(x) & x |= q).
Let a be such an object: PossibleWorld(a) & a |= q (✓)
By definition, the left conjunct yields: ^8p(a |=p ⌘ p).
By the Buridan formula: 8p^(a |=p ⌘ p).
So in particular: ^(a |=q ⌘ q).
By definition: ^(a[�y q] ⌘ q)
A fortiori, ^(a[�y q]! q), i.e., ^(¬a[�y q] _ q)
By basic modal logic: ^¬a[�y q] _ ^q
By (✓), a |= q, and by rigidity, ⇤a |= q, i.e., ⇤a[�y q].
By Disjunctive Syllogism, ^q.
Thus, 9w(w |= q)! ^q
The ( ) direction of the theorem is done.
Q.E.D.
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