Bibliography 000

Seminar on Axiomatic Metaphysics Lecture 9 Frege Numbers (Part 1)

Edward N. Zalta and Uri Nodelman

Philosophy Department, Stanford University {zalta,nodelman}@stanford.edu

Munich Center for Mathematical Philosophy, June 7, 2024

0000000 000000 00		
	0000000	000

3 Natural Cardinals

Frege's Goals and Methods

- The Dedekind/Peano axioms for number theory:
 - 0 is a number.
 - 0 is not a successor of any number, i.e., No number (immediately) precedes zero.
 - No two numbers have the same successor, i.e.,
 If numbers *x*, *y* precede a number *z*, then *x* = *y*. (one-one)
 - Every number has a successor, i.e., Every number precedes some number.
 - Mathematical Induction: If (a) 0 has *F* and (b) *n*'s successor has *F* whenever *n* has *F*, then every number has *F*
- Boolos (1995, 293; 1996, 275), and Heck (2011, 288) include:
 - A successor of a number is a number, i.e., Anything a number precedes is a number.
 - No number has two successors, i.e.,
 - If a number x precedes numbers y, z, then y = z. (functional)
- Frege's Theorem: derive these axioms as theorems in 2OL + Hume's Principle: https://plato.stanford.edu/entries/frege-theorem/

Frege's Strategy for Proving Frege's Theorem

- Frege (1884): Start with equinumerosity: F ≈ G =_{df} ∃R[∀x(Fx → ∃!y(Gy & Rxy)) & ∀y(Gy → ∃!x(Fx & Rxy))]
 Example
- Define (1884) #G ('the number of Gs') as a second-order concept under which all the first-order concepts equinumerous to *G* fall. In (1893): #G = ε[λx ∃F(x = εF & F ≈ G)]
- $\epsilon f = \epsilon g \equiv \forall x (f(x) = g(x)) \vdash \#F = \#G \equiv F \approx G$ $V \vdash$ Hume
- He then defined:
 - $Precedes(x, y) =_{df} \exists F \exists z (Fz \& y = \#F \& x = \#[\lambda w Fw \& w \neq z])$
 - 0 =_{df} #[$\lambda x x \neq x$]
 - $Precedes^*(x, y)$ (The ancestral of *Precedes*)
 - $Precedes^+(x, y)$ (The weak ancestral of *Precedes*)
 - $NaturalNumber(x) =_{df} Precedes^+(0, x)$
- Derive the Dedekind/Peano axioms from Hume's Principle, without essential appeal to Basic Law V (Heck 1993).
 Reconstruction: in second-order logic, replace Frege's *εF* and Basic Law V with #*F* and Hume's Principle.

Issues With This Reconstruction

- Caesar problem: '#F = x' isn't defined for arbitrary *x*.
- Hume's Principle (and other Fregean biconditionals) collapse existence and identity conditions.
- Hume's Principle only gives you one kind of abstract object. What about all the others?
- The St. Andrews school (Wright & Hale 2001, Cook 2003, etc.): add Fregean biconditionals such as Hume's Principle to introduce each different group of abstract objects.
- Problems:
 - The resulting theory of abstract objects is piecemeal, and each type of abstract object has its own Caesar problem.
 - The bad-company objection: some biconditionals lead to contradiction (like Basic Law V), and some don't (Boolos 1990).
 - Embarassment of riches problem (Weir 2003): indefinitely many consistent, but pairwise inconsistent, biconditionals.

The Limits of Abstraction: Fine 2002

- A permutation $\pi(x, y)$ of the domain of individuals is a 1-1 correspondence between the universal concept $[\lambda x \ x = x]$ and itself. A permutation π induces a permutation of concepts: $\pi(F, G) \equiv \forall x, y(\pi(x, y) \rightarrow (Fx \equiv Gy))$. We write πF for the unique *G* such that $\pi(F, G)$. A first-level concept *F* is *invariant* iff *F* is equivalent (coextensive) with πF , for every permutation π .
- Call a second-level concept *P* invariant if *P*(*F*) and *P*(*πF*) are equivalent, for every permutation *π*. The following second-level concepts are invariant: *no F*, some *F*, all *F*, at most one *F*, exactly one *F*, at least one *F*, finitely many *F*, infinitely many *F*, evenly many *F*, etc.
- A second-level relation *R* is *invariant* if *R*(*F*, *G*) and *R*(*πF*, *πG*) are equivalent, for any concepts *F*, *G* and any permutation *π*. A second-level equivalence relation *R* is *non-inflationary* if there are no more equivalence classes of concepts under *R* than there are individuals in the domain.
- The basic idea behind Fine's theory: An abstraction principle of the form $\S F = \S G \equiv \mathbf{R}(F, G)$ is acceptable only when \mathbf{R} is a second-level equivalence relation that is invariant and non-inflationary.
- This yields abstracts (i.e., numbers as objects) corresponding to the invariant concepts such as *exactly one*, *exactly two*, etc., and you get the sets of natural numbers that correspond to concepts applying to the numbers.

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography
0000000	000000	00	0000000	000

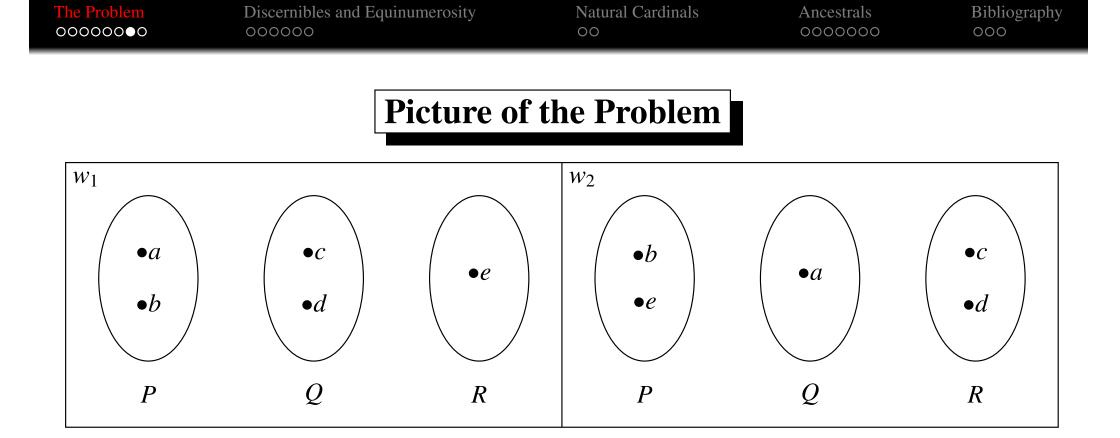
The Limits on Fine's Method of Abstraction

- Exactly which Fregean biconditionals are endorsed by this framework? This isn't made explicit.
- Significant parts of mathematics are not reducible using Fine's method of abstraction (Burgess 2003, Shapiro 2004).
- There is no solution to either the Julius Caesar problem or the epistemological question as to how we have knowledge of mathematics.
- There is no method for abstracting over equivalence relations on individuals: no *directions*, *shapes*, etc.
- The method requires that one assert the existence of at least two individuals in the domain of individuals.

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography
00000000	000000	00	0000000	000

A Problem for Fregean Reconstructions

- Frege's analysis of natural numbers gives rise to a problem in a modal setting: it yields different cardinal numbers in different modal contexts.
- At each possible world, the equivalence classes of equinumerous properties change; the numbers (as abstractions) that reify the equivalence classes at one world will be different from the numbers that reify the equivalence classes at each other possible world.
- The problem is that *G* might be exemplified by two objects in both w_1 and w_2 , but the object that numbers *G* in w_1 is not identical to the object that numbers *G* in w_2 .



- The Fregean object 2 in w_1 includes P and Q since 2 is an abstraction of the equivalence class $\{P, Q\}$.
- The Fregean object 2 in w_2 includes *P* and *R* since 2 is an abstraction of the equivalence class $\{P, R\}$.
- So 2 in $w_1 \neq 2$ in w_2 : they're (abstracted from) different equivalence classes.

A Separate Problem For Object Theory

- We want to define #G as: $\iota x(A!x \& \forall F(xF \equiv F \approx G))$.
- But we have indiscernible abstract objects: $\exists x \exists y (A!x \& A!y \& x \neq y \& \forall F(Fx \equiv Fy))$
- A consequence: $\neg \exists G(A! \approx G)$
- *Proof.* Suppse A!a, A!b, a≠b, and ∀F(Fa ≡ Fb). Suppose, for reductio, that ∃G(A! ≈ G). Let Q be such a property, i.e., A! ≈ Q. Then there is a witness R (one-one and onto) from A! to Q. So Rac for some object c such that Qc. So [λz Rzc]a. But, since a and b are indiscernible, [λz Rzc]b, i.e., Rbc. But this contradicts the one-one character of R, for we have both Rac and Rbc and yet a ≠ b.
- So $\forall G \neg (G \approx A!)$, and hence $\neg (A! \approx A!)$.
- A consequence: ∃F(F ≉ F), and since ≈ is not reflexive, ≈ is not an equivalence relation.
- So we can't define numbers as objects encoding up equivalence classes of equinumerous properties.

Discernible Objects are Classical

- Recall the definitions of D! and $=_D$ (Lecture 2):
 - $D! =_{df} [\lambda x \Box \forall y (y \neq x \rightarrow \exists F \neg (Fy \equiv Fx))]$
 - $=_D =_{df} [\lambda xy D! x \& D! y \& x = y]$
- We also proved a number of theorems about discernibles:
 - $O!x \to D!x$
 - $D!x \to \Box D!x$
 - $(D!x \lor D!z) \to (\forall F(Fx \equiv Fz) \to x = z)$
 - $=_D$ is reflexive (on discernibles), symmetric, and transitive

•
$$(D!x \lor D!y) \to \Box(x=y \equiv x=_D y)$$

Proof. First establish $D!x \rightarrow (x=y \equiv x=_D y)$. By RM,

 $\Box D!x \rightarrow \Box (x = y \equiv x =_D y)$. By cases: D!x; so $\Box D!x$; so ...

- $D!y \rightarrow [\lambda x \, x = y] \downarrow$ *Proof.* Assume D!y. We know $[\lambda x \, x =_D y] \downarrow$. Show $\Box \forall x(x =_D y \equiv x = y)$ and apply axiom.
- $(D!x \& D!y) \rightarrow (x \neq y \equiv [\lambda z z = x] \neq [\lambda z z = y])$

Proof. Assume D!x, D!y, $x \neq y$, and for reductio, $[\lambda z z = x] = [\lambda z z = y]$. Since D!x, then

 $[\lambda z z = x]\downarrow$, so x = x implies $[\lambda z z = x]x$. Hence $[\lambda z z = y]x$, i.e., x = y. Contradiction.

Equinumerosity_D is Classical

- u, v range over discernibles; $\exists ! u\varphi$ asserts unique existence.
- Df. *Correlates 1-1* w.r.t. discernibles and *equinumerosity*_D (\approx_D):
 - $R \mid : F \xleftarrow{1-1}_{D} G \equiv_{df} R \downarrow \& F \downarrow \& G \downarrow \&$ $\forall u(Fu \to \exists ! v(Gv \& Ruv)) \& \forall v(Gv \to \exists ! u(Fu \& Ruv))$

•
$$F \approx_D G \equiv_{df} \exists R(R \mid : F \xleftarrow{1-1}_D G)$$

• \approx_D is reflexive: $F \approx_D F$

 $(=_D \text{ is witness})$

- \approx_D is symmetric: $F \approx_D G \to G \approx_D F$
 - If *R* is witness to $F \approx_D G$, consider $R^{-1} = [\lambda xy Ryx]$.
- \approx_D is transitive: $F \approx_D G \& G \approx_D H \to F \approx_D H$
 - If *R*, *S* are witnesses to $F \approx_D G$ and $G \approx_D H$, define $R' = [\lambda xy \exists z (Gz \& Rxz \& Szy)].$
- $(\neg \exists u F u \& \neg \exists v H v) \to F \approx_D H$
- Let F^{-u} designate $[\lambda z Fz \& z \neq u]$ Let G^{-v} designate $[\lambda z Gz \& z \neq v]$
 - These exist by previous theorem: $[\lambda z D! z \& \varphi] \downarrow$, for any φ

Equinumerosity Facts

• $F \approx_D G \& Fu \& Gv \to F^{-u} \approx_D G^{-v}$

(Lemma)

Proof: Assume $F \approx_D G$ (R = witness), Fu, Gv. Two cases: (1) If Ruv, then the witness to $F^{-u} \approx_D G^{-v}$ is R. (2) If $\neg Ruv$, then if b is the G-correlate of u and a the F-correlate of v, the witness to $F^{-u} \approx_D G^{-v}$ is (r, s restricted to discernibles):

• $[\lambda rs \ (r \neq u \& s \neq v \& Rrs) \lor (r = a \& s = b) \lor (r = u \& s = v)]$

[Note: This relation exists since $[\lambda xy D!x \& D!y \& \varphi] \downarrow$.]

• $F^{-u} \approx_D G^{-v} \& Fu \& Gv \to F \approx_D G$ (Lemma) *Proof*: Assume $F^{-u} \approx_D G^{-v}$ (R = witness), Fu, Gv. Then the witness to $F \approx_D G$ is: $[\lambda rs (F^{-u}r \& Q^{-v}s \& Rrs) \lor (r=u \& s=v)].$

[Note: This relation exists for the same reasons as in the previous theorem.]

- Property Equivalence_D (\equiv_D) and Equinumerosity_D:
 - $F \equiv_D G \equiv_{df} F \downarrow \& G \downarrow \& \forall u(Fu \equiv Gu)$
 - $F \equiv_D G \to F \approx_D G$
 - $F \approx_D G \& G \equiv_D H \to F \approx_D H$

• Actuality, Rigidity, and Equinumerosity_D: $Rigid([\lambda z \ AFz])$ $F \approx_D G \equiv \forall H([\lambda z \ AHz] \approx_D F \equiv [\lambda z \ AHz] \approx_D G)$

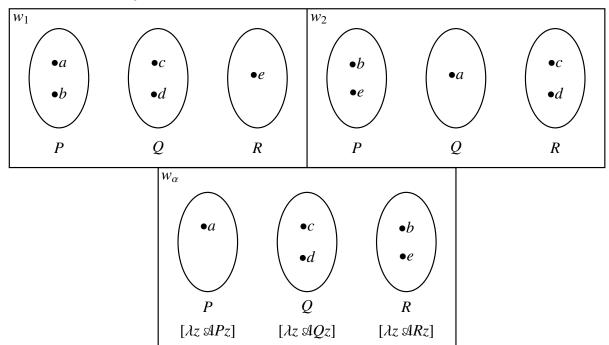
 $Rigid(F) \to F \approx_D [\lambda z \, \mathscr{A}Fz] \qquad (Rigid(F) \& Rigid(G)) \to \Box(F \approx_D G \to \Box F \approx_D G)$

The ProblemDiscernibles and EquinumerosityNatural Cardinals000000000000000

Ancestrals 0000000 Bibliography 000

Numbering a Property

 $Numbers(x, G) \equiv_{df} A!x \& G \downarrow \& \forall F(xF \equiv [\lambda z \ AFz] \approx_D G)$



 w_{α} : Numbers(2, Q), Numbers(2, R) w_1 : Numbers(2, P), Numbers(2, Q) w_2 : Numbers(2, P), Numbers(2, R)

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography
0000000	000000	00	000000	000

Numbering and Equinumerosity_D

- $\forall G \exists ! x Numbers(x, G)$
- $(Numbers(x, G) \& Numbers(x, H)) \rightarrow G \approx_D H$
- $Rigid(G) \rightarrow \Box \forall x(Numbers(x, G) \rightarrow \Box Numbers(x, G))$
- $\Box \forall x(Numbers(x, [\lambda z \ AGz]) \rightarrow \Box Numbers(x, [\lambda z \ AGz]))$
- (*Numbers*(x, G) & *Numbers*(y, H)) \rightarrow ($x = y \equiv G \approx_D H$) (pre-Hume)

•
$$#G =_{df} uxNumbers(x, G)$$

Aside: Hume's Principle is a ★-theorem:

- $\star \vdash [\lambda z \ \mathfrak{A} Fz] \approx_D F$ (you need $\star \operatorname{Axiom} \mathfrak{A} \varphi \to \varphi$)
- $\star \vdash Numbers(\#G, G)$

(by \star -description theory)

• $\star \vdash \#F = \#G \equiv F \approx_D G$

Proof. (*Numbers*(#F, F) & *Numbers*(#G, G)) \rightarrow ($\#F = \#G \equiv F \approx_D G$), by pre-Hume. But by the theorem just proved, *Numbers*(#F, F) and *Numbers*(#G, G).

A Necessary Version of Hume's Principle

• $Rigid(F) \rightarrow (Numbers(\#F, F))$

Proof. If Rigid(F), then by a previous theorem and the T schema,

 $\forall x(Numbers(x, F) \rightarrow \Box Numbers(x, F))$. When this holds, then by the theory of

descriptions: $\exists !xNumbers(x, F) \rightarrow (\forall y(y = uxNumbers(x, F) \rightarrow Numbers(y, F))).$

The antecedent was recently established and so $\forall y(y = \iota xNumbers(x, F) \rightarrow$

Numbers(y, F)). Instantiate to #F and apply the definition.

• $(Rigid(F) \& Rigid(G)) \rightarrow (\#F = \#G \equiv F \approx_D G)$

Proof. Assume Rigid(F) and Rigid(G). Independently, instantiate pre-Hume to

F, *G*, #*F* and #*G*, to obtain (*Numbers*(#*F*, *F*) & *Numbers*(#*G*, *G*)) \rightarrow

 $(\#F = \#G \equiv F \approx_D G)$. But our previous theorem and our assumptions imply *Numbers*(#F, F) and *Numbers*(#G, G). So $\#F = \#G \equiv F \approx_D G$.

- $\mathcal{A}Numbers(x, G) \equiv Numbers(x, [\lambda z \mathcal{A}Gz])$
- $Numbers(x, [\lambda z \ AGz]) \equiv x = \#G$
- $\forall F(\#GF \equiv [\lambda z \ \mathcal{A}Fz] \approx_D [\lambda z \ \mathcal{A}Gz])$
- See Nodelman & Zalta forthcoming, and Chapter 14 (Nodelman & Zalta) in *Principia Logico-Metaphysica*

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals 0000000	Bibliography 000

Natural Cardinals

- $NaturalCardinal(x) \equiv_{df} \exists G(x=\#G)$
- Numbers(x, G) → NaturalCardinal(x) Proof. Assume Numbers(x, G). Independently, Gallin's axiom (which we derived previously) implies: ∃FRigidifies(F, G). Suppose Rigidifies(P, G). Then, by definition: Rigid(P) & ∀x(Px ≡ Gx). ∀x(Px ≡ Gx) implies P ≡_D G, which in turn implies Numbers(x, P): Rigid(P) implies P ≈_D [λz APz], by a previous theorem. So Numbers(x, [λz APz]) Hence x=#P, by a previous theorem. Trivially, ∃F(x = #F), and so NaturalCardinal(x).
- $\exists G(x = \#G) \equiv \exists G(Numbers(x, G))$
- $NaturalCardinal(x) \rightarrow (xF \equiv x = \#F)$

Proof. Assume *NaturalCardinal(x)*. Then $\exists G(x=\#G)$. Suppose x=#P. Then Numbers(x, $[\lambda z \ APz]$) (= ϑ). We show: $xF \equiv x = \#F$. By a previous theorem: we know: $\#PF \equiv [\lambda z \ AFz] \approx_D [\lambda z \ APz]$. Hence: $xF \equiv [\lambda z \ AFz] \approx_D [\lambda z \ APz]$ (= ξ). By propositional logic, we know: $\vartheta \to ((xF \equiv (\psi \equiv \vartheta)) \equiv (xF \equiv \psi)) (= \zeta)$. Reason as follows: xF \equiv $[\lambda z \ \mathcal{A} F z] \approx_D [\lambda z \ \mathcal{A} P z]$ by (ξ) Numbers(x, $[\lambda z \ AFz]) \equiv Numbers(x, [\lambda z \ APz])$ by previous thm \equiv Numbers(x, $[\lambda z \ AFz])$ via (ϑ) and (ζ) Ξ by previous theorem x = #FΞ

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography
0000000	000000	$\circ \bullet$	0000000	000

- $0 =_{df} #[\lambda x D! x \& x \neq x] =_{df} #[\lambda u u \neq u]$
- *NaturalCardinal*(0)
- $\neg \exists uFu \equiv Numbers(0, F)$

Discernibles and Equinumerosity

Natural Cardinals

The Strong Ancestral of R: I

- *Hereditary*(F, G) =_{df} $\forall x, y(Gxy \rightarrow (Fx \rightarrow Fy))$
- Definition of G^* (*'being a G-ancestor of'*): being an *x* and *y* such that *y* exemplifies every property *F* such that (a) *F* is exemplified by everything *x* bears *G* to and (b) *F* is hereditary w.r.t. *G*.
- $G^* =_{df} [\lambda xy \ \forall F(\forall z(Gxz \to Fz) \& Hereditary(F, G) \to Fy)]$ $G^*xy \equiv \forall F[\forall z(Gxz \to Fz) \& Hereditary(F, G) \to Fy]$
- Properties of the Strong Ancestral.
- $Gxy \to G^*xy$
- *Proof.* Assume *Gab.* Pick an arbitrary property, say *P*, and assume $\forall z(Gaz \rightarrow Pz)$ and *Hereditary*(*P*, *G*). Then *Pb*, by the first two of our three assumptions.
- $[G^*xy \& \forall z(Gxz \to Fz) \& Hereditary(F,G)] \to Fy$

(Frege 1893, Theorem 123)

• *Proof.* Immediate from the definition.

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography
0000000	000000	00	000000	000

Interlude: Sanity Check

We show how to translate/transform Frege's Theorem 123 in 1893 (p. 138), which is in Frege Notation:

$$F(b)$$

$$F(a)$$

$$a - (a - q)$$

$$F(a)$$

$$F(a)$$

$$F(a)$$

$$F(a)$$

$$F(a)$$

$$F(a)$$

$$F(a)$$

into our representation of Theorem 123, which is in modern notation:

$$[G^*xy \& \forall z(Gxz \rightarrow Fz) \& Hereditary(F, G)] \rightarrow Fy$$

The Transformation

The Strong Ancestral of G: II

• $Fx \& G^*xy \& Hereditary(F, G) \to Fy$

(Gg., Thm. 128)

- *Proof.* Assume *Pa*, $G^*(a, b)$, and that *Hereditary*(*P*, *G*). Then by the previous theorem (123), to show *Pb* we simply need to show $\forall z(Gaz \rightarrow Pz)$. So assume *Gac*, where *c* is arbitrary (to show *Pc*). Since *P* is hereditary w.r.t. *G* and *Pa*, it follows that *Pc*.
- $Gxy \& G^*(y, z) \to G^*(x, z)$ (Gg., Thm. 129)
- *Proof.* Assume *Gab* and *G*^{*}(*b*, *c*). To prove *G*^{*}(*a*, *c*), further assume
 ∀*z*(*Gaz* → *Pz*) and *Hereditary*(*P*, *G*) (to show *Pc*). So *Pb*. But from *Pb*, *G*^{*}(*b*, *c*), and *Hereditary*(*P*, *G*), it follows that *Pc*, by (128).
- $G^*xy \to \exists zGzy$ (Gg., Thm. 124)
- *Proof.* Assume $G^*(a, b)$. If we instantiate a, b into (123) and instantiate F to $[\lambda w \exists z G z w]$. Then, after λ -conversion,

 $[G^*(a, b) \& \forall x(Gax \rightarrow \exists zGzx) \& \forall x, y(Gxy \rightarrow (\exists zGzx \rightarrow \exists zGzy))] \rightarrow \exists zGzb$ We assumed $G^*(a, b)$, and the second and third conjuncts of the antecedent are immediate, reasoning with arbitrary objects: If *Gac*, then, $\exists zGzc$. If *Gcd* and $\exists zGzc$, then $\exists zGzd$. So $\exists zGzb$.

The Weak Ancestral of <u>G</u>: I

- *F* is a rigid (binary) relation on discernibles (' $Rigid_D(F)$ ') iff $Rigid(F) \& \Box \forall x \forall y (Fxy \rightarrow (D!x \& D!y))$
- $Rigid_D(F) \rightarrow \Box Rigid_D(F)$
- <u>*G*</u> ranges over rigid (binary) relations on discernibles!

•
$$\underline{G}^+ =_{df} [\lambda xy \, \underline{G}^* xy \lor x =_D y]$$

 $\underline{G}^+ xy \equiv \underline{G}^* xy \lor x =_D y$

- Facts About the Weak Ancestral of \underline{G}
- $Gxy \to \underline{G}^+xy$
- *Proof.* Assume *Gab.* By the 1st property of \underline{G}^* , \underline{G}^*ab . So $\underline{G}^*ab \lor a=b$. So G^+ab .
- $Fx \& \underline{G}^+ xy \& Hereditary(F, G) \to Fy$ (Gg., Thm. 144)
- *Proof.* Assume Pa, \underline{G}^+ab , and $Hereditary(P, \underline{G})$. So by definition, \underline{G}^*ab or a=b. If \underline{G}^*ab , then Pb, by (128). If a=b, then Pb, from the assumption that Pa.

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography
0000000	000000	00	0000000	000

The Weak Ancestral of R: II

• $\underline{G}^+ xy \& Gyz \to \underline{G}^* xz$

(Gg., Thm. 134)

- *Proof.* Assume \underline{G}^+ab and $\underline{G}bc$. Then from the disjunctive definition of \underline{G}^+ , either (1) \underline{G}^*ab and $\underline{G}bc$ or (2) a=b and $\underline{G}bc$. Show \underline{G}^*ac in both cases:
 - (1) \underline{G}^*ab and $\underline{G}bc$. To show \underline{G}^*ac , pick an arbitrary property, P, and assume that $\forall z(\underline{G}az \rightarrow Pz)$ and $Hereditary(P, \underline{G})$, to show: Pc. From these assumptions and \underline{G}^*ab , it then follows that Pb, by the definition of \underline{G}^* . But from the facts that $Hereditary(P, \underline{G})$, $\underline{G}bc$, and Pb, it follows that Pc.
 - (2) a = b and <u>*Gbc*</u>. Then <u>*Gac*</u>, and so by the 1st property of <u>*G*</u>^{*}, it follows that <u>*G*</u>^{*}*ac*.
- $\underline{G}^* xy \& \underline{G}yz \to \underline{G}^+ xz$
- *Proof.* Assume \underline{G}^*ab and $\underline{G}bc$ (to show \underline{G}^+ac). From \underline{G}^*ab , it follows that \underline{G}^+ab by definition of \underline{G}^+ . So by (134), it follows that \underline{G}^*ac . So \underline{G}^+ac , by the definition of \underline{G}^+ .

The Weak Ancestral of G: III

• $\underline{G}xy \& \underline{G}^+ yz \to \underline{G}^* xz$

(Gg., Thm. 132)

- *Proof.* Assume <u>Gab</u> and <u>G</u>⁺bc (to show: <u>G</u>^{*}ac). By definition of <u>G</u>⁺, either <u>G</u>^{*}bc or b = c. If <u>G</u>^{*}bc, then given <u>Gab</u>, we have <u>G</u>^{*}ac, by (129). If b = c, then <u>Gac</u>, in which case, <u>G</u>^{*}ac, by the 1st property of <u>G</u>^{*}.
- $\underline{G}^* xy \to \exists z(\underline{G}^+ xz \& \underline{G}zy)$ (Gg., Thm. 141)
- *Proof.* Assume <u>G</u>*ab (to show: ∃z(<u>G</u>+az & <u>G</u>zb)). The following is an instance of (123):

<u> $G^*ab \& \forall x(Gax \to Fx) \& Hereditary(F, G) \to Fb$ </u> Instantiate this to: $[\lambda w \exists z(G^+az \& Gzw)]$. Expand definitions and use λ -conversion:

 $\underline{G}^* ab \& \forall x (\underline{G}ax \to \exists z (\underline{G}^+ az \& \underline{G}zx)) \& \forall x \forall y [\underline{G}xy \to (\exists z (\underline{G}^+ az \& \underline{G}zx) \to \exists z (\underline{G}^+ az \& \underline{G}zy))] \to \exists z (\underline{G}^+ az \& \underline{G}zb)$

Establish the antecedent. We have \underline{G}^*ab . For the 2nd conjunct, assume $\underline{G}ac$. By definition of \underline{G}^+ , \underline{G}^+aa . From $\underline{G}^+aa \& \underline{G}ac$, it follows that $\exists z(\underline{G}^+az \& \underline{G}zc)$. For the 3rd conjunct, assume $\underline{G}cd$ and $\exists z(\underline{G}^+az \& \underline{G}zc)$. We have to show \underline{G}^+ac since we have $\underline{G}cd$. So for some object, say $e, \underline{G}^+ae \& \underline{G}ec$. So by (134), it follows that \underline{G}^*ac . But, then \underline{G}^+a, c , by definition of \underline{G}^+ .

One-to-One Rigid Relations on Discernibles

- $1 1(G) \equiv_{df} G \downarrow \& \forall x \forall y \forall z (Gxz \& Gyz \rightarrow x = y)$
- $1 l(\underline{G}) \to ((\underline{G}xy \& \underline{G}^*zy) \to \underline{G}^+zx)$

Proof. Assume $1-l(\underline{G})$, $\underline{G}xy$, and \underline{G}^*zy . The latter implies, by a fact about \underline{G}^+ , that some object, say *a*, is such that \underline{G}^+za and $\underline{G}ay$. Since 1-l(G), x=a. So G^+zx .

•
$$1 - l(\underline{G}) \to ((\underline{G}xy \And \neg \underline{G}^*xx) \to \neg \underline{G}^*yy)$$

Proof. Assume $1-I(\underline{G})$, $\underline{G}xy$ and $\neg \underline{G}^*xx$, and \underline{G}^*yy for reductio. By previous theorem (setting z to y): ($\underline{G}xy \& \underline{G}^*yy$) $\rightarrow \underline{G}^+yx$. So, \underline{G}^+yx . We also know the following instance of a fact about \underline{G}^+ (setting z to x): ($\underline{G}xy \& \underline{G}^+yx$) $\rightarrow \underline{G}^*xx$. Hence \underline{G}^*xx . Contradiction.

•
$$1-1(\underline{G}) \rightarrow ((\neg \underline{G}^* xx \& \underline{G}^+ xy) \rightarrow \neg \underline{G}^* yy)$$

Proof. Assume $1-1(\underline{G}), \neg \underline{G}^* xx$, and $\underline{G}^+ xy$. If we instantiate $[\lambda z \neg \underline{G}^* zz]$ into a
previous fact about \underline{G}^+ to get $(\neg \underline{G}^* xx \& \underline{G}^+ xy \& Hereditary([\lambda z \neg \underline{G}^* zz], \underline{G})) \rightarrow$
 $\neg \underline{G}^* yy$. The first two conjuncts are assumptions. Expanding and simplifying the
third, we need to show, by GEN: $\underline{G}x'y' \rightarrow (\neg \underline{G}^* x'x' \rightarrow \neg \underline{G}^* y'y')$. But
instantiating \underline{G}, x' , and y' into the previous theorem implies (since $1-1(\underline{G})$):
 $(Gx'y' \& \neg G^* x'x') \rightarrow \neg G^* y'y'$. But this is equivalent to what we had to show.

Bibliography

- Boolos, G., 1990, "The Stanford of Equality of Numbers," in G. Boolos (ed.), *Meaning and Method: Essays in Honor of Hilary Putnam*, Cambridge: Cambridge University Press; reprinted in G. Boolos, *Logic, Logic, and Logic*, R. Jeffrey (ed.), Cambridge, MA: Harvard University Press, 1998, 202–219.
- Boolos, G., 1996, "On the Proof of Frege's Theorem," in A. Morton and S. Stich (eds.), *Benacerraf and His Critics*, Cambridge, MA: Blackwell, pp. 143–159; reprinted in G. Boolos, *Logic, Logic, and Logic*, R. Jeffrey (ed.), Cambridge, MA: Harvard University Press, 1998, 275–290. [Page reference to the reprint.]
- Boolos, G., 1995, "Frege's Theorem and the Peano Postulates," *Bulletin of Symbolic Logic*, 1: 317–326; reprinted in G. Boolos, *Logic*, *Logic*, *and Logic*, R. Jeffrey (ed.), Cambridge, MA: Harvard University Press, 1998, pp. 291–300. [Page reference to the reprint.]
- Burgess, J., 2003, "Review of Kit Fine, *The Limits of Abstraction*," *Notre Dame Journal of Formal Logic*, 44 (4): 227–251.
- Cook, R., 2003, "Iteration One More Time," *Notre Dame Journal of Formal Logic*, 44 (2): 63–92.

	Dibl	ography		
0000000	000000	00	000000	000
The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals	Bibliography

Bibliography

- Fine, K., 2002, *The Limits of Abstraction*, Oxford: Clarendon Press.
- Frege, G., 1884, *The Foundations of Arithmetic*, translated by J. L. Austin, Oxford: Blackwell, second revised edition, 1974.
- Frege, G., 1893 [1903], *Grundgesetze der Arithmetik*, Band I [II], Jena: Verlag Hermann Pohle.
- Hale, B., and C. Wright, 2001, *The Reason's Proper Study*, Oxford: Clarendon.
- Heck, R., 2011, Frege's Theorem, Oxford: Clarendon.
- Heck, R., 1993, "The Development of Arithmetic in Frege's Grundgesetze Der Arithmetik," Journal of Symbolic Logic, 58 (2): 579–601
- Nodelman, U., and E. Zalta, forthcoming, "Number Theory and Infinity Without Mathematics", *Journal of Philosophical Logic*. Preprint available online
- Shapiro, S., 2004, "Critical Study: The Nature and Limits of Abstracts," *Philosophical Quarterly*, 54 (214): 166–174.

The Problem	Discernibles and Equinumerosity	Natural Cardinals	Ancestrals 0000000	Bibliography 00●
Bibliography				

- Weir, A., 2003, "Neo-Fregeanism: An Embarrassment of Riches," *Notre Dame Journal of Formal Logic*, 44 (1): 13–48.
- Wright, C., 1983, *Frege's Conception of Numbers as Objects*, Aberdeen: University of Aberdeen Press.
- Zalta, E., 1999, "Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege's *Grundgesetze* in Object Theory," *Journal of Philosophical Logic*, 28(6): 619–660.
- Zalta, E., 2018, "Frege's Theorem and Foundations for Arithmetic", *The Stanford Encyclopedia of Philosophy* (Spring 2018 Edition), Edward N.
 Zalta (ed.), URL =

https://plato.stanford.edu/archives/spr2018/entries/frege-theorem/.

• Zalta, E., m.s., *Principia Logico-Metaphysica*, https://mally.stanford.edu/principia.pdf