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Frege’s Goals and Methods

The Dedekind/Peano axioms for number theory:
0 is a number.
0 is not a successor of any number, i.e.,
No number (immediately) precedes zero.
No two numbers have the same successor, i.e.,
If numbers x, y precede a number z, then x = y. (one-one)
Every number has a successor, i.e.,
Every number precedes some number.
Mathematical Induction: If (a) 0 has F and (b) n’s successor has
F whenever n has F, then every number has F

Boolos (1995, 293; 1996, 275), and Heck (2011, 288) include:
A successor of a number is a number, i.e.,
Anything a number precedes is a number.
No number has two successors, i.e.,
If a number x precedes numbers y, z, then y = z. (functional)

Frege’s Theorem: derive these axioms as theorems in 2OL +
Hume’s Principle: https://plato.stanford.edu/entries/frege-theorem/
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Frege’s Strategy for Proving Frege’s Theorem

Frege (1884): Start with equinumerosity: F ⇡ G =df
9R[8x(Fx! 9!y(Gy & Rxy)) & 8y(Gy! 9!x(Fx & Rxy))]

Example
Define (1884) #G (‘the number of Gs’) as a second-order
concept under which all the first-order concepts equinumerous to
G fall. In (1893): #G = ✏[�x 9F(x=✏F & F ⇡ G)]
✏ f =✏g ⌘ 8x(f (x) = g(x)) ` #F=#G ⌘ F ⇡ G V `Hume
He then defined:

Precedes(x, y) =df 9F9z(Fz & y=#F & x=#[�w Fw & w , z])
0 =df #[�x x , x]
Precedes⇤(x, y) (The ancestral of Precedes)
Precedes+(x, y) (The weak ancestral of Precedes)
NaturalNumber(x) =df Precedes+(0, x)

Derive the Dedekind/Peano axioms from Hume’s Principle,
without essential appeal to Basic Law V (Heck 1993).
Reconstruction: in second-order logic, replace Frege’s ✏F and
Basic Law V with #F and Hume’s Principle.
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Issues With This Reconstruction

Caesar problem: ‘#F = x’ isn’t defined for arbitrary x.
Hume’s Principle (and other Fregean biconditionals) collapse
existence and identity conditions.
Hume’s Principle only gives you one kind of abstract object.
What about all the others?
The St. Andrews school (Wright & Hale 2001, Cook 2003, etc.):
add Fregean biconditionals such as Hume’s Principle to
introduce each di↵erent group of abstract objects.
Problems:

The resulting theory of abstract objects is piecemeal, and each
type of abstract object has its own Caesar problem.
The bad-company objection: some biconditionals lead to
contradiction (like Basic Law V), and some don’t (Boolos 1990).
Embarassment of riches problem (Weir 2003): indefinitely many
consistent, but pairwise inconsistent, biconditionals.

Edward N. Zalta and Uri Nodelman Seminar on Axiomatic Metaphysics Lecture 9 Frege Numbers (Part 1) zalta@stanford.edu



The Problem Discernibles and Equinumerosity Natural Cardinals Ancestrals Bibliography

The Limits of Abstraction: Fine 2002

A permutation ⇡(x, y) of the domain of individuals is a 1-1 correspondence
between the universal concept [�x x=x] and itself. A permutation ⇡ induces a
permutation of concepts: ⇡(F,G) ⌘ 8x, y(⇡(x, y)! (Fx ⌘ Gy)). We write ⇡F for
the unique G such that ⇡(F,G). A first-level concept F is invariant i↵ F is
equivalent (coextensive) with ⇡F, for every permutation ⇡.
Call a second-level concept P invariant if P (F) and P (⇡F) are equivalent, for
every permutation ⇡. The following second-level concepts are invariant: no F,
some F, all F, at most one F, exactly one F, at least one F, finitely many F,
infinitely many F, evenly many F, etc.
A second-level relation R is invariant if R(F,G) and R(⇡F, ⇡G) are equivalent,
for any concepts F, G and any permutation ⇡. A second-level equivalence
relation R is non-inflationary if there are no more equivalence classes of
concepts under R than there are individuals in the domain.
The basic idea behind Fine’s theory: An abstraction principle of the form
§F=§G ⌘ R(F,G) is acceptable only when R is a second-level equivalence
relation that is invariant and non-inflationary.
This yields abstracts (i.e., numbers as objects) corresponding to the invariant
concepts such as exactly one, exactly two, etc., and you get the sets of natural
numbers that correspond to concepts applying to the numbers.
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The Limits on Fine’s Method of Abstraction

Exactly which Fregean biconditionals are endorsed by this
framework? This isn’t made explicit.
Significant parts of mathematics are not reducible using Fine’s
method of abstraction (Burgess 2003, Shapiro 2004).
There is no solution to either the Julius Caesar problem or the
epistemological question as to how we have knowledge of
mathematics.
There is no method for abstracting over equivalence relations on
individuals: no directions, shapes, etc.
The method requires that one assert the existence of at least two
individuals in the domain of individuals.
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A Problem for Fregean Reconstructions

Frege’s analysis of natural numbers gives rise to a problem in a
modal setting: it yields di↵erent cardinal numbers in di↵erent
modal contexts.
At each possible world, the equivalence classes of equinumerous
properties change; the numbers (as abstractions) that reify the
equivalence classes at one world will be di↵erent from the
numbers that reify the equivalence classes at each other possible
world.
The problem is that G might be exemplified by two objects in
both w1 and w2, but the object that numbers G in w1 is not
identical to the object that numbers G in w2.
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Picture of the Problem

w1 w2
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•d

The Fregean object 2 in w1 includes P and Q since 2 is an
abstraction of the equivalence class {P,Q}.
The Fregean object 2 in w2 includes P and R since 2 is an
abstraction of the equivalence class {P,R}.
So 2 in w1 , 2 in w2: they’re (abstracted from) di↵erent
equivalence classes.
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A Separate Problem For Object Theory

We want to define #G as: ıx(A!x & 8F(xF ⌘ F ⇡ G)).
But we have indiscernible abstract objects:
9x9y(A!x & A!y & x,y & 8F(Fx ⌘ Fy))

A consequence: ¬9G(A! ⇡ G)
Proof. Suppse A!a, A!b, a,b, and 8F(Fa ⌘ Fb). Suppose, for reductio, that
9G(A! ⇡ G). Let Q be such a property, i.e., A! ⇡ Q. Then there is a witness
R (one-one and onto) from A! to Q. So Rac for some object c such that Qc.
So [�z Rzc]a. But, since a and b are indiscernible, [�z Rzc]b, i.e., Rbc. But
this contradicts the one-one character of R, for we have both Rac and Rbc
and yet a , b.
So 8G¬(G ⇡ A!), and hence ¬(A! ⇡ A!).
A consequence: 9F(F 0 F), and since ⇡ is not reflexive, ⇡ is not
an equivalence relation.
So we can’t define numbers as objects encoding up equivalence
classes of equinumerous properties.
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Discernible Objects are Classical
Recall the definitions of D! and =D (Lecture 2):

D! =df [�x ⇤8y(y,x! 9F¬(Fy ⌘ Fx))]
=D =df [�xy D!x & D!y & x=y]

We also proved a number of theorems about discernibles:
O!x! D!x
D!x! ⇤D!x
(D!x _ D!z)! (8F(Fx ⌘ Fz)! x=z)
=D is reflexive (on discernibles), symmetric, and transitive

(D!x _ D!y)! ⇤(x=y ⌘ x=D y)
Proof. First establish D!x! (x=y ⌘ x=D y). By RM,
⇤D!x! ⇤(x=y ⌘ x=D y). By cases: D!x; so ⇤D!x; so . . .
D!y! [�x x=y]#

Proof. Assume D!y. We know [�x x=D y]#. Show
⇤8x(x=D y ⌘ x=y) and apply axiom.
(D!x & D!y)! (x,y ⌘ [�z z=x], [�z z=y])
Proof. Assume D!x, D!y, x,y, and for reductio, [�z z=x]= [�z z=y]. Since D!x, then

[�z z=x]#, so x=x implies [�z z=x]x. Hence [�z z=y]x, i.e., x=y. Contradiction.
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EquinumerosityD is Classical

u, v range over discernibles; 9!u' asserts unique existence.
Df. Correlates 1-1 w.r.t. discernibles and equinumerosityD (⇡D):

R | : F
1-1 �!D G ⌘df R# & F# & G# &

8u(Fu! 9!v(Gv & Ruv)) & 8v(Gv! 9!u(Fu & Ruv))
F ⇡D G ⌘df 9R(R | : F

1-1 �!D G)
⇡D is reflexive: F ⇡D F (=D is witness)
⇡D is symmetric: F ⇡D G! G ⇡D F

If R is witness to F ⇡D G, consider R�1 = [�xy Ryx].
⇡D is transitive: F ⇡D G & G ⇡D H ! F ⇡D H

If R, S are witnesses to F ⇡D G and G ⇡D H, define R0 =
[�xy 9z(Gz & Rxz & Szy)].

(¬9uFu & ¬9vHv)! F ⇡D H
Let F�u designate [�z Fz & z,u]
Let G�v designate [�z Gz & z,v]

These exist by previous theorem: [�z D!z & ']#, for any '
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Equinumerosity Facts

F ⇡D G & Fu & Gv! F�u ⇡D G�v (Lemma)
Proof: Assume F ⇡D G (R = witness), Fu, Gv. Two cases: (1) If Ruv, then the

witness to F�u ⇡D G�v is R. (2) If ¬Ruv, then if b is the G-correlate of u and a the
F-correlate of v, the witness to F�u ⇡D G�v is (r, s restricted to discernibles):

[�rs (r,u & s,v & Rrs) _ (r=a & s=b) _ (r=u & s=v)]
[Note: This relation exists since [�xy D!x & D!y & ']#.]
F�u ⇡D G�v & Fu & Gv! F ⇡D G (Lemma)

Proof: Assume F�u ⇡D G�v (R = witness), Fu, Gv. Then the witness to F ⇡D G
is: [�rs (F�ur & Q�vs & Rrs) _ (r=u & s=v)].
[Note: This relation exists for the same reasons as in the previous theorem.]
Property EquivalenceD (⌘D) and EquinumerosityD:

F ⌘D G ⌘df F# & G# & 8u(Fu ⌘ Gu)
F ⌘D G! F ⇡D G
F ⇡D G & G ⌘D H ! F ⇡D H

Actuality, Rigidity, and EquinumerosityD:
Rigid([�z AFz]) F⇡D G ⌘ 8H([�z AHz]⇡D F ⌘ [�z AHz]⇡D G)
Rigid(F)! F ⇡D [�z AFz] (Rigid(F) & Rigid(G))! ⇤(F ⇡D G! ⇤F ⇡D G)
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Numbering a Property

Numbers(x,G) ⌘df A!x & G# & 8F(xF ⌘ [�z AFz]⇡D G)
w1 w2

P

•a

•b

Q

•c

•d

R

•e

P

•b
•e

Q

•a

R

•c

•d

w↵

P
[�z APz]

•a

Q
[�z AQz]

•c

•d

R
[�z ARz]

•b
•e

w↵: Numbers(2,Q), Numbers(2,R)
w1: Numbers(2,P), Numbers(2,Q)
w2: Numbers(2,P), Numbers(2,R)
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Numbering and EquinumerosityD

8G9!xNumbers(x,G)
(Numbers(x,G) & Numbers(x,H))! G⇡D H
Rigid(G)! ⇤8x(Numbers(x,G)! ⇤Numbers(x,G))
⇤8x(Numbers(x, [�z AGz])! ⇤Numbers(x, [�z AGz]))
(Numbers(x,G) & Numbers(y,H))! (x=y ⌘ G ⇡D H) (pre-Hume)

#G =df ıxNumbers(x,G)
Aside: Hume’s Principle is a ?-theorem:
?` [�z AFz] ⇡D F (you need ?Axiom A'! ')
?` Numbers(#G,G) (by ?-description theory)
?` #F=#G ⌘ F ⇡D G

Proof. (Numbers(#F,F) & Numbers(#G,G))! (#F=#G ⌘ F ⇡D G),
by pre-Hume. But by the theorem just proved, Numbers(#F,F) and
Numbers(#G,G).

Edward N. Zalta and Uri Nodelman Seminar on Axiomatic Metaphysics Lecture 9 Frege Numbers (Part 1) zalta@stanford.edu



The Problem Discernibles and Equinumerosity Natural Cardinals Ancestrals Bibliography

A Necessary Version of Hume’s Principle

Rigid(F)! (Numbers(#F,F))
Proof. If Rigid(F), then by a previous theorem and the T schema,
8x(Numbers(x,F)! ⇤Numbers(x,F)). When this holds, then by the theory of
descriptions: 9!xNumbers(x,F)! (8y(y= ıxNumbers(x,F)! Numbers(y,F))).
The antecedent was recently established and so 8y(y= ıxNumbers(x,F)!
Numbers(y,F)). Instantiate to #F and apply the definition.
(Rigid(F) & Rigid(G))! (#F=#G ⌘ F ⇡D G)

Proof. Assume Rigid(F) and Rigid(G). Independently, instantiate pre-Hume to
F, G, #F and #G, to obtain (Numbers(#F,F) & Numbers(#G,G))!
(#F=#G ⌘ F ⇡D G). But our previous theorem and our assumptions imply
Numbers(#F,F) and Numbers(#G,G). So #F=#G ⌘ F ⇡D G.
ANumbers(x,G) ⌘ Numbers(x, [�z AGz])
Numbers(x, [�z AGz]) ⌘ x=#G
8F(#GF ⌘ [�z AFz]⇡D [�z AGz])
See Nodelman & Zalta forthcoming, and Chapter 14 (Nodelman
& Zalta) in Principia Logico-Metaphysica
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Natural Cardinals
NaturalCardinal(x) ⌘df 9G(x=#G)
Numbers(x,G)! NaturalCardinal(x) Proof. Assume Numbers(x,G).

Independently, Gallin’s axiom (which we derived previously) implies: 9FRigidifies(F,G).

Suppose Rigidifies(P,G). Then, by definition: Rigid(P) & 8x(Px ⌘ Gx). 8x(Px ⌘ Gx) implies

P ⌘D G, which in turn implies Numbers(x,P): Rigid(P) implies P ⇡D [�z APz], by a previous

theorem. So Numbers(x, [�z APz]) Hence x=#P, by a previous theorem. Trivially,

9F(x = #F), and so NaturalCardinal(x).

9G(x=#G) ⌘ 9G(Numbers(x,G))
NaturalCardinal(x)! (xF ⌘ x=#F)

Proof. Assume NaturalCardinal(x). Then 9G(x=#G). Suppose x=#P. Then

Numbers(x, [�z APz]) (= #). We show: xF ⌘ x=#F. By a previous theorem: we know:

#PF ⌘ [�z AFz] ⇡D [�z APz]. Hence: xF ⌘ [�z AFz] ⇡D [�z APz] (= ⇠). By propositional

logic, we know: #! ((xF ⌘ ( ⌘ #)) ⌘ (xF ⌘  )) (= ⇣). Reason as follows:
xF ⌘ [�z AFz] ⇡D [�z APz] by (⇠)

⌘ Numbers(x, [�z AFz]) ⌘ Numbers(x, [�z APz]) by previous thm
⌘ Numbers(x, [�z AFz]) via (#) and (⇣)
⌘ x=#F by previous theorem
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Zero

0 =df #[�x D!x & x,x] =df #[�u u,u]
NaturalCardinal(0)
¬9uFu ⌘ Numbers(0,F)
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The Strong Ancestral of R: I

Hereditary(F,G) =df 8x, y(Gxy! (Fx! Fy))
Definition of G⇤ (‘being a G-ancestor of ’): being an x and y such
that y exemplifies every property F such that (a) F is exemplified
by everything x bears G to and (b) F is hereditary w.r.t. G.
G⇤ =df [�xy 8F

�8z(Gxz! Fz) & Hereditary(F,G)! Fy
�
]

G⇤xy ⌘ 8F[8z(Gxz! Fz) & Hereditary(F,G)! Fy]
Properties of the Strong Ancestral.
Gxy! G⇤xy
Proof. Assume Gab. Pick an arbitrary property, say P, and assume
8z(Gaz! Pz) and Hereditary(P,G). Then Pb, by the first two of our three
assumptions.

[G⇤xy & 8z(Gxz! Fz) & Hereditary(F,G)]! Fy
(Frege 1893, Theorem 123)

Proof. Immediate from the definition.
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Interlude: Sanity Check

We show how to translate/transform Frege’s Theorem 123 in 1893
(p. 138), which is in Frege Notation:

into our representation of Theorem 123, which is in modern notation:

[G⇤xy & 8z(Gxz! Fz) & Hereditary(F,G)]! Fy

The Transformation
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The Strong Ancestral of G: II
Fx & G⇤xy & Hereditary(F,G)! Fy (Gg., Thm. 128)
Proof. Assume Pa, G⇤(a, b), and that Hereditary(P,G). Then by the previous
theorem (123), to show Pb we simply need to show 8z(Gaz! Pz). So assume
Gac, where c is arbitrary (to show Pc). Since P is hereditary w.r.t. G and Pa, it
follows that Pc.

Gxy & G⇤(y, z)! G⇤(x, z) (Gg., Thm. 129)
Proof. Assume Gab and G⇤(b, c). To prove G⇤(a, c), further assume
8z(Gaz! Pz) and Hereditary(P,G) (to show Pc). So Pb. But from Pb, G⇤(b, c),
and Hereditary(P,G), it follows that Pc, by (128).

G⇤xy! 9zGzy (Gg., Thm. 124)
Proof. Assume G⇤(a, b). If we instantiate a, b into (123) and instantiate F to
[�w 9zGzw]. Then, after �-conversion,

[G⇤(a, b) & 8x(Gax! 9zGzx) & 8x, y(Gxy! (9zGzx! 9zGzy))]! 9zGzb
We assumed G⇤(a, b), and the second and third conjuncts of the antecedent are
immediate, reasoning with arbitrary objects: If Gac, then, 9zGzc. If Gcd and
9zGzc, then 9zGzd. So 9zGzb.
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The Weak Ancestral of G: I

F is a rigid (binary) relation on discernibles (‘RigidD(F)’) i↵
Rigid(F) & ⇤8x8y(Fxy! (D!x & D!y))
RigidD(F)! ⇤RigidD(F)
G ranges over rigid (binary) relations on discernibles!
G+ =df [�xy G⇤xy _ x=D y]
G+xy ⌘ G⇤xy _ x=D y
Facts About the Weak Ancestral of G
Gxy! G+xy
Proof. Assume Gab. By the 1st property of G⇤, G⇤ab. So
G⇤ab _ a=b. So G+ab.
Fx & G+xy & Hereditary(F,G)! Fy (Gg., Thm. 144)
Proof. Assume Pa, G+ab, and Hereditary(P,G). So by
definition, G⇤ab or a=b. If G⇤ab, then Pb, by (128). If a=b,
then Pb, from the assumption that Pa.

Edward N. Zalta and Uri Nodelman Seminar on Axiomatic Metaphysics Lecture 9 Frege Numbers (Part 1) zalta@stanford.edu



The Problem Discernibles and Equinumerosity Natural Cardinals Ancestrals Bibliography

The Weak Ancestral of R: II

G+xy & Gyz! G⇤xz (Gg., Thm. 134)
Proof. Assume G+ab and Gbc. Then from the disjunctive definition of G+, either
(1) G⇤ab and Gbc or (2) a=b and Gbc. Show G⇤ac in both cases:

(1) G⇤ab and Gbc. To show G⇤ac, pick an arbitrary property, P,
and assume that 8z(Gaz! Pz) and Hereditary(P,G), to show:
Pc. From these assumptions and G⇤ab, it then follows that Pb, by
the definition of G⇤. But from the facts that Hereditary(P,G),
Gbc, and Pb, it follows that Pc.
(2) a=b and Gbc. Then Gac, and so by the 1st property of G⇤, it
follows that G⇤ac.

G⇤xy & Gyz! G+xz
Proof. Assume G⇤ab and Gbc (to show G+ac). From G⇤ab, it follows that G+ab
by definition of G+. So by (134), it follows that G⇤ac. So G+ac, by the definition
of G+.
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The Weak Ancestral of G: III
Gxy & G+yz! G⇤xz (Gg., Thm. 132)
Proof. Assume Gab and G+bc (to show: G⇤ac). By definition of G+, either G⇤bc
or b=c. If G⇤bc, then given Gab, we have G⇤ac, by (129). If b=c, then Gac, in
which case, G⇤ac, by the 1st property of G⇤.

G⇤xy! 9z(G+xz & Gzy) (Gg., Thm. 141)
Proof. Assume G⇤ab (to show: 9z(G+az & Gzb)). The following is an instance of
(123):

G⇤ab & 8x(Gax! Fx) & Hereditary(F,G)! Fb
Instantiate this to: [�w 9z(G+az & Gzw)]. Expand definitions and use
�-conversion:

G⇤ab &8x(Gax! 9z(G+az & Gzx)) &8x8y[Gxy! (9z(G+az & Gzx)! 9z(G+az & Gzy))]!

9z(G+az & Gzb)

Establish the antecedent. We have G⇤ab. For the 2nd conjunct, assume Gac. By definition of

G+, G+aa. From G+aa & Gac, it follows that 9z(G+az & Gzc). For the 3rd conjunct, assume

Gcd and 9z(G+az & Gzc). We have to show G+ac since we have Gcd. So for some object,

say e, G+ae & Gec. So by (134), it follows that G⇤ac. But, then G+a, c, by definition of G+.
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One-to-One Rigid Relations on Discernibles

1-1(G) ⌘df G# & 8x8y8z(Gxz & Gyz! x=y)
1-1(G)! ((Gxy & G⇤zy)! G+zx)

Proof. Assume 1-1(G), Gxy, and G⇤zy. The latter implies, by a fact about G+,
that some object, say a, is such that G+za and Gay. Since 1-1(G), x=a. So G+zx.
1-1(G)! ((Gxy & ¬G⇤xx)! ¬G⇤yy)

Proof. Assume 1-1(G), Gxy and ¬G⇤xx, and G⇤yy for reductio. By previous
theorem (setting z to y): (Gxy & G⇤yy)! G+yx. So, G+yx. We also know the
following instance of a fact about G+ (setting z to x): (Gxy & G+yx)! G⇤xx.
Hence G⇤xx. Contradiction.
1-1(G)! ((¬G⇤xx & G+xy)! ¬G⇤yy)

Proof. Assume 1-1(G), ¬G⇤xx, and G+xy. If we instantiate [�z ¬G⇤zz] into a
previous fact about G+ to get (¬G⇤xx & G+xy & Hereditary([�z ¬G⇤zz],G))!
¬G⇤yy. The first two conjuncts are assumptions. Expanding and simplifying the
third, we need to show, by GEN: Gx0y0 ! (¬G⇤x0x0 ! ¬G⇤y0y0). But
instantiating G, x0, and y0 into the previous theorem implies (since 1-1(G)):
(Gx0y0 & ¬G⇤x0x0)! ¬G⇤y0y0. But this is equivalent to what we had to show.
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