> Seminar on Axiomatic Metaphysics Lecture 10 Frege Numbers (Part 2)

Edward N. Zalta and Uri Nodelman

Philosophy Department, Stanford University {zalta,nodelman}@stanford.edu

Munich Center for Mathematical Philosophy, June 10, 2024

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
	00000	000000000	0000	0	000	000

- 3 Frege's Theorem
- 4 2nd-Order Peano Arithmetic

6 Metaphilosophy

Predecessor

- We now add a new axiom that asserts the existence of an ordering relation, namely, being an *x* and *y* such that for some property *F* and discernible object *u*, (a) *u* exemplifies *F*, (b) *y* numbers *F*, and (c) *x* numbers: being an *F*-exemplifier other than *u*.
- Axiom: $[\lambda xy \exists F \exists u(Fu \& Numbers(y, F) \& Numbers(x, F^{-u}))] \downarrow$
- $\mathbb{P} =_{df} [\lambda xy \exists F \exists u(Fu \& Numbers(y, F) \& Numbers(x, F^{-u}))]$
- Note: No mathematical primitives are used to assert this axiom. The notion *Numbers*(*x*, *F*) is defined in terms of the primitives of object theory.
- $\mathbb{P}xy \equiv \exists F \exists u(Fu \& Numbers(y, F) \& Numbers(x, F^{-u}))$
- $Rigid(\mathbb{P})$, i.e., $\Box \forall x \forall y (\mathbb{P}xy \to \Box \mathbb{P}xy)$

Proof. The reasoning that shows $\mathbb{P}xy \to \Box \mathbb{P}xy$ is non-trivial – it requires an appeal to a rigidifying relation and so relies on the derivation of the Gallin axiom from the Kirchner Theorem. See Nodelman & Zalta chapter of Zalta m.s., *PLM*.

StructurePredecessorFrege's Theorem2nd-Order Peano ArithmeticInfinityMetaphilosophyBibliography0000000000000000000000000

Predecessor is 1-1 and Functional

Thm: $1-1(\mathbb{P})$

(Frege, Gg., Thm 89)

Proof. Assume $\mathbb{P}xz$ and $\mathbb{P}yz$. By definition of \mathbb{P} , these assumptions imply, respectively, that there are properties and discernible objects, say R, Q, a, b, such that:

- (ϑ) Qa & Numbers(z, Q) & Numbers(x, Q^{-a})
- (ξ) *Rb* & *Numbers*(*z*, *R*) & *Numbers*(*y*, *R*^{-*b*})

The second conjuncts of (ϑ) and (ξ) jointly yield $Q \approx_D R$. Since we also know Qa and Rb, it follows by a previous lemma that $Q^{-a} \approx_D R^{-b}$. But, separately, the 3rd conjuncts of (ϑ) and (ξ) jointly imply $x = y \equiv Q^{-a} \approx_D R^{-b}$, by the conditional underlying Hume's Principle. Hence x = y.

Thm: $\mathbb{P}xy \& \mathbb{P}xz \to y = z$ (Frege, Gg., Thm 71)

Proof. Assume both $\mathbb{P}xy$ and $\mathbb{P}xz$. By definition of \mathbb{P} , these assumptions imply, respectively, that there are properties and discernible objects, say Q, R, a, b, such that:

- (ϑ) *Qa* & *Numbers*(*y*, *Q*) & *Numbers*(*x*, *Q*^{-*a*})
- (ξ) *Rb* & *Numbers*(*z*, *R*) & *Numbers*(*x*, *R*^{-*b*})

Now the third conjuncts of (ϑ) and (ξ) jointly imply $Q^{-a} \approx_D R^{-b}$. Since we also know Qa and Rb, it follows by a previous lemma that $Q \approx_D R$. But independently, the second conjuncts of (ϑ) and (ξ) jointly imply $y=z \equiv Q \approx_D R$, by the conditional underlying Hume's Principle. Hence y=z.

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
0	00000	0000000000	0000	0	000	000

Lemma: Non-Zero Cardinals Have Predecessors

• Thm: *NaturalCardinal*(*x*) & $x \neq 0 \rightarrow \exists y \mathbb{P} y x$

Proof. Assume *NaturalCardinal*(*x*) and $x \neq 0$. By definition of \mathbb{P} , show:

 $\exists y \exists F \exists u (Fu \& Numbers(x, F) \& Numbers(y, F^{-u}))$

The first assumption implies, by definition $\exists G(x=\#G)$, and so by a previous equivalence it follows that $\exists G(Numbers(x, G))$. Suppose *Numbers*(x, P). This and $x \neq 0$ imply $\exists uPu$. Suppose *Pa*. Then we know $[\lambda z Pz \& z \neq a] \downarrow$. Hence $P^{-a} \downarrow$. So $\exists yNumbers(y, P^{-a})$. Suppose *Numbers* (b, P^{-a}) . Then, assembling what we know:

Pa & *Number*(x, P) & *Numbers*(b, P^{-a})

So $\exists y \exists F \exists u (Fu \& Number(x, F) \& Numbers(y, F^{-u}).$

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
0	00000	0000000000	0000	0	000	000

Natural Cardinals are Discernible

Thm: $NaturalCardinal(x) \rightarrow D!x$

Proof. Assume *NaturalCardinal*(*x*). Since *NaturalCardinal*(0), we show *D*!*x* by disjunctive syllogism from $x=0 \lor x \ne 0$. (a) x=0. We know $\exists xO!x$, say *a*. Then $[\lambda x x = a] \downarrow$, and so does $\#[\lambda x x = a] (= b)$. Exercise: show $\mathbb{P}0b$ and, hence, $[\lambda z \mathbb{P}zb]0$. To show *D*!0, we show: $y \ne 0 \rightarrow \exists F \neg (Fy \equiv F0)$. So assume $y \ne 0$ and for reductio, $\neg \exists F \neg (Fy \equiv F0)$, i.e., $\forall F(Fy \equiv F0)$. Hence $[\lambda z \mathbb{P}zb]y$, and so $\mathbb{P}yb$. But \mathbb{P} is a 1-1 relation and so by the definition of 1-1 and the fact that $\mathbb{P}\downarrow$ we may infer 0=y from $\mathbb{P}0b$ and $\mathbb{P}yb$. Contradiction.

(b) $x \neq 0$. Then since x is a natural cardinal, it follows by the previous theorem that $\exists y \mathbb{P} yx$. Suppose $\mathbb{P} cx$. Then $[\lambda z \mathbb{P} cz]x$. Again, to show D!x, we show: $y \neq x \rightarrow \exists F \neg (Fy \equiv Fx)$. So assume $y \neq x$ and, for reductio, $\neg \exists F \neg (Fy \equiv Fx)$, i.e., $\forall F(Fy \equiv Fx)$. Then $[\lambda z Pcz]y$, and hence $\mathbb{P} cy$. But \mathbb{P} is functional and so from $\mathbb{P} cx$ and $\mathbb{P} cy$ it follows that x = y, which contradicts our assumption that $y \neq x$.

Some Corollaries

- Thm: $\mathbb{P}xy \rightarrow (NaturalCardinal(x) \& NaturalCardinal(y))$
- Thm: $\mathbb{P}xy \to (D!x \& D!y)$
- Thm: (immediate from the definition of \mathbb{P}^*) $\mathbb{P}^*xy \equiv \forall F((\forall z(\mathbb{P}xz \to Fz) \& \forall x' \forall y'(\mathbb{P}x'y' \to (Fx' \to Fy'))) \to Fy)$
- Thm: $\neg \exists x \mathbb{P} x 0$ (Frege, Gg., Thm 108)

Proof. Suppose not, e.g., $\mathbb{P}a0$. Then, for some property Q, and discernible b, $Qb \& Numbers(0, Q) \& Numbers(a, Q^{-b})$, by df \mathbb{P} . From Qb it follows that $\exists uQu$. But Numbers(0, Q)) implies $\neg \exists uQu$. Contradiction.

- Thm: $\neg \exists x \mathbb{P}^* x 0$ (Frege, Gg., Thm 126)
- Thm: $\neg \mathbb{P}^* 00$
- Thm: $\mathbb{P}^+ xy \equiv \mathbb{P}^* xy \lor x =_D y$

(instance of the definition of \mathbb{P}^+)

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
0	00000	●000000000	0000	0	000	000

Derivation of First 3 Dedekind/Peano Axioms

- $\mathbb{N} =_{df} [\lambda x \mathbb{P}^+ 0x]$
- *NaturalNumber*(0)

 $\mathbb{N}x \equiv \mathbb{P}^+ 0x$

(D/P 1)

Proof. D!0, since 0 is a natural cardinal and natural cardinals are discernible. So $0 =_D 0$, by reflexivity of $=_D$ on discernibles. So $\mathbb{P}^*00 \lor 0 =_D 0$ and hence \mathbb{P}^+00 . Since $\mathbb{N}0 \equiv \mathbb{P}^+00$ (above), it follows that $\mathbb{N}0$.

• $\neg \exists n \mathbb{P} n 0$ (D/P 2) (Frege, Gg., Thm 126) (Zero doesn't succeed any natural number.)

Proof. We've previously established $\neg \exists x Precedes(x, 0)$. *A fortiori*, no number precedes 0.

∀n∀m∀k(Pnk & Pmk → m=n) (D/P 3)
 No two numbers have the same successor.
 Proof. Since P is a 1-1 relation generally, it is a 1-1 relation on the numbers.

StructurePredecessorFrege's Theorem2nd-Order Peano ArithmeticInfinityMetaphilosophyBibliography00000000000000000000000000000000000000

Lemma: Generalized Induction

Thm: $[Fz \& \forall x \forall y((\underline{G}^+ zx \& \underline{G}^+ zy) \to (\underline{G}xy \to (Fx \to Fy)))] \to \forall x(\underline{G}^+ zx \to Fx)$

Proof. Assume the antecedent:

(ϑ) $Fz \& \forall x \forall y ((\underline{G}^+ zx \& \underline{G}^+ zy) \to (\underline{G}xy \to (Fx \to Fy)))$

To show $\forall x(\underline{G}^+zx \to Fx)$, assume \underline{G}^+zx , to show Fx. We use the lemma:

 $(Fx \& \underline{G}^+xy \& Hereditary(F, \underline{G})) \to Fy$

Instantiate *F* to $[\lambda y Fy \& \underline{G}^+ zy]$, *x* to *z*, and *y* to *x* and simplify. Then we know:

(ξ) [$Fz \& \underline{G}^+ zz \& \underline{G}^+ zx \& Hereditary([\lambda y Fy \& \underline{G}^+ zy], \underline{G})$] $\rightarrow (Fx \& \underline{G}^+ zx)$

So to show *Fx*, we prove the antecedent of (ξ) . *Fz* by assumption. \underline{G}^+zz follows from the main fact about \underline{G}^+ and $z=_D z$ for discernible *z*. \underline{G}^+zx also holds by assumption. So it remains to establish:

Hereditary($[\lambda y Fy \& \underline{G}^+ zy], \underline{G}$)

By definition and simplification, show:

 $\forall x, y[\underline{G}xy \to ((Fx \& \underline{G}^+(z, x)) \to (Fy \& \underline{G}^+(z, y)))].$

Proof. Let *a*, *b* be arbitrary objects. Assume <u>Gab</u>, *Fa*, and <u>G</u>⁺*za*, to show *Fb* & <u>G</u>⁺*zb*. The second conjunct <u>G</u>⁺*zb* follows easily: from the facts that <u>G</u>⁺*za* and <u>Gab</u>, it follows by a previous lemma that <u>G</u>^{*}*zb*, which implies <u>G</u>⁺*zb*, by a previous theorem. So it remains to show *Fb*. Since we now have <u>G</u>⁺*za*, <u>G</u>⁺*zb*, <u>Gab</u>, and *Fa*, it follows from the second conjunct of (ϑ) that *Fb*.

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
0	00000	000000000	0000	0	000	000

Derivation of D/P Axiom 4: Mathematical Induction

- Since P⁺ is a relation, we can instantiate Generalized Induction to P⁺ and 0 to get:
 - $\begin{array}{l} F0 \And \forall x \forall y [\mathbb{P}^+ 0x \And \mathbb{P}^+ 0y \And \mathbb{P}xy \rightarrow (Fx \rightarrow Fy)] \rightarrow \\ \forall x (\mathbb{P}^+ 0x \rightarrow Fx) \end{array} \end{array}$
- Now substitute $\mathbb{N}x$ for \mathbb{P}^+0x , and $\mathbb{N}y$ for \mathbb{P}^+0y , and the result is: $F0 \& \forall x \forall y [\mathbb{N}x \& \mathbb{N}y \& \mathbb{P}xy \to (Fx \to Fy)] \to \forall x (\mathbb{N}x \to Fx)$
- Simplify with restricted variables:
 - $F0 \& \forall n \forall m(\mathbb{P}nm \to (Fn \to Fm)) \to \forall nFn$ (D/P 4)

Lemmas for Final D/P Axiom

• $\mathbb{N}x \rightarrow NaturalCardinal(x)$

Proof. Assume $\mathbb{N}x$. Then \mathbb{P}^+0x . Reason by cases from $x=0 \lor x \neq 0$. If x=0, then *NaturalCardinal*(*x*), by previous thm. If $x \neq 0$, then it follows that \mathbb{P}^*0x , definition of \mathbb{P}^+ and the fact that $x \neq 0 \rightarrow x \neq_D 0$. By a lemma about the weak ancestral, it follows *a fortiori* that $\exists z \mathbb{P}zx$. Let *a* be such an object, so that we know $\mathbb{P}ax$. Then by a previous fact, *NaturalCardinal*(*x*).

•
$$\mathbb{N}x \to D!x$$
 (Exercise)

• $\mathbb{P}nx \to \mathbb{N}x$

```
(Successors are numbers)
```

Proof. Assume $\mathbb{P}nx$. Since $\mathbb{N}n$, by hypothesis, it follows from the definition of \mathbb{N} that \mathbb{P}^+0n . Since \mathbb{P} is a rigid relation on discernibles, a fact about the weak ancestral implies: $(\mathbb{P}^+0n \& \mathbb{P}nx) \to \mathbb{P}^*0x$. So \mathbb{P}^*0x . Hence, by definition of \mathbb{P}^+ , it follows that \mathbb{P}^+0x . So $\mathbb{N}x$.

• $\mathbb{P}nm \& \mathbb{P}nk \to m = k$

Proof. Predecessor is functional *tout court*, and so functional on the natural numbers.

Lemma

Thm: $\forall x (\mathbb{N}x \to \neg \mathbb{P}^*xx)$

Proof. Assume $\mathbb{N}b$; show $\neg \mathbb{P}^*bb$, use: $(Fx \& \underline{G}^+(x, y) \& Hereditary(F, \underline{G})) \rightarrow Fy$. Instantiate *F* to $[\lambda z \neg \mathbb{P}^*zz]$, *x* to 0, *y* to *b*, and since \mathbb{P} is a rigid relation on discernibles, instantiate \underline{G} to \mathbb{P} . Simplify the result to:

 $(\neg \mathbb{P}^*00 \& \mathbb{P}^+0b \& Hereditary([\lambda z \neg \mathbb{P}^*zz], \mathbb{P})) \rightarrow \neg \mathbb{P}^*bb$

So show:

- $(\vartheta) \neg \mathbb{P}^* 00$
- $(\xi) \mathbb{P}^+0b$
- (ζ) *Hereditary*([$\lambda z \neg \mathbb{P}^* zz$], \mathbb{P})
- (ϑ): from theorem $\neg \exists x \mathbb{P}^* x 0$.
- (ξ): from $\mathbb{N}b$ (assumption) and the definition of \mathbb{N} .
- (ζ): By definition, show:

 $\mathbb{P} \downarrow \& [\lambda z \neg \mathbb{P}^* zz] \downarrow \& \forall x \forall y (\mathbb{P} xy \rightarrow ([\lambda z \neg \mathbb{P}^* zz]x \rightarrow [\lambda z \neg \mathbb{P}^* zz]y))$

 $\mathbb{P}\downarrow$ and $[\lambda z \neg \mathbb{P}^* zz]\downarrow$ are easy. So simplify and show: $\mathbb{P}xy \rightarrow (\neg \mathbb{P}^* xx \rightarrow \neg \mathbb{P}^* yy)$. Assume $\mathbb{P}xy$ and $\neg \mathbb{P}^* xx$. Now since \mathbb{P} is a 1-1 rigid relation on discernibles, we can apply a previous theorem about such relations, to infer:

 $(\mathbb{P}xy \And \neg \mathbb{P}^*xx) \to \neg \mathbb{P}^*yy$

Hence $\neg \mathbb{P}^* yy$.

Lemma

Thm: $(\mathbb{N}x \& \mathbb{P}yx) \to (Numbers(z, [\lambda z \mathbb{P}^+ zy]) \equiv Numbers(z, [\lambda z \mathbb{P}^+ zx]^{-x}))$

Proof. Assume $\mathbb{N}x$ and $\mathbb{P}yx$. Since $G \equiv_D H \to (Numbers(x, G) \equiv Numbers(x, H))$ show, by definition (\equiv_D) , that $[\lambda z \mathbb{P}^+ zy]u \equiv [\lambda z \mathbb{P}^+ zx]^{-x}u$. Since $\mathbb{N}x \to D!x$, we can apply definition of $[\lambda z \mathbb{P}^+ zx]^{-x}$ and simplify by λ -Conversion and Substitution. So show:

 $\mathbb{P}^+ uy \equiv \mathbb{P}^+ ux \& u \neq x$

 (\rightarrow) Assume \mathbb{P}^+uy . From this, assumption $\mathbb{P}yx$, and \mathbb{P} is a rigid relation on discernibles, it follows that \mathbb{P}^*ux . Hence \mathbb{P}^+ux . Suppose u = x, for reductio. Then from \mathbb{P}^*ux , it follows that \mathbb{P}^*xx , which contradicts a previous lemma given that $\mathbb{N}x$.

(←) Assume \mathbb{P}^+ux and $u \neq x$, and for reductio, $\neg \mathbb{P}^+uy$. From $u \neq x$, we know $u \neq_D x$. and from this and \mathbb{P}^+ux it follows that \mathbb{P}^*ux . But since \mathbb{P} is a 1-1 rigid relation on discernibles. we can instantiate a previous lemma to obtain $(\mathbb{P}yx \& \mathbb{P}^*ux) \to \mathbb{P}^+uy$, i.e., $(\mathbb{P}yx \& \neg \mathbb{P}^+uy) \to \neg \mathbb{P}^*ux$). But from $\mathbb{P}yx$ (assumption) and $\neg \mathbb{P}^+uy$ (hypothesis), $\neg \mathbb{P}^*ux$. Contradiction. \bowtie

Main Lemma

Thm: $\forall n \exists y (Numbers(y, [\lambda z \mathbb{P}^+ zn]) \& \mathbb{P}ny)$ Frege: $\forall n \mathbb{P}n \# [\lambda z \mathbb{P}^+ zn]$ *Proof.* Consider:

$$[\lambda x \exists y (Numbers(y, [\lambda z \mathbb{P}^+ zx]) \& \mathbb{P} xy)]$$
(Q)

By λC , our theorem has the form $\forall nQn$. So, by induction, we show that Q0 and $\forall n \forall m(\mathbb{P}nm \rightarrow (Qn \rightarrow Qm))$.

Base Case: Show Q0, i.e., $\exists y(Numbers(y, [\lambda z \mathbb{P}^+z0]) \& \mathbb{P}0y)$. We know $\forall G \exists yNumbers(y, G)$. So let $Numbers(a, [\lambda z \mathbb{P}^+z0])$, and then show $\mathbb{P}0a$, i.e., show:

 $\exists F \exists u(Fu \& Numbers(a, F) \& Numbers(0, F^{-u}))$

We pick our witness for *F* to be $[\lambda z \mathbb{P}^+ z 0]$ and pick our witness for *u* to be 0 (since *D*!0, given it is a natural cardinal and so discernible). So show:

(ϑ) [$\lambda z \mathbb{P}^+ z 0$]0

- (ξ) *Numbers*(a, [$\lambda z \mathbb{P}^+ z 0$])
- (ζ) Numbers(0, [$\lambda z \mathbb{P}^+ z 0$]⁻⁰)

(ϑ): Show \mathbb{P}^+00 . But since D!0, $0 =_D 0$, and so \mathbb{P}^+00 , by a fact about \mathbb{P}^+ .

(ξ): holds by assumption.

StructurePredecessorFrege's Theorem2nd-Order Peano ArithmeticInfinityMetaphilosophyBibliography00000000000000000000000000000000000000

Proof of Main Lemma (continued)

(ζ): *Numbers*(0, [$\lambda z \mathbb{P}^+ z 0$]⁻⁰). By previous thm, it suffices to show: $\neg \exists u ([\lambda z \mathbb{P}^+ z 0]^{-0} u)$

Suppose not, and suppose $[\lambda z \mathbb{P}^+ z 0]^{-0}b$. Then by definition

 $[\lambda z \ [\lambda z \ \mathbb{P}^+ z 0] z \ \& z \neq 0] b$. Simplify to $[\lambda z \ \mathbb{P}^+ z 0] b \ \& b \neq 0$ and then to

 $\mathbb{P}^+b0 \& b \neq 0$. The 2nd conjunct implies $b \neq_D 0$, and so the first conjunct and the main fact about \mathbb{P}^+ imply \mathbb{P}^*b0 , which contradicts $\neg \exists x \mathbb{P}^* x 0$.

Inductive Case: Show $\mathbb{P}nm \to (Qn \to Qm)$, i.e.,

 $\mathbb{P}nm \rightarrow (\exists y(Numbers(y, [\lambda z \mathbb{P}^+ zn]) \& \mathbb{P}ny) \rightarrow \exists y(Numbers(y, [\lambda z \mathbb{P}^+ zm]) \& \mathbb{P}ny))$ So assume (IH):

(A) $\mathbb{P}nm$

(B) $\exists y(Numbers(y, [\lambda z \mathbb{P}^+ zn]) \& \mathbb{P}ny)$

For (B), let *Numbers*(b, [$\lambda z \mathbb{P}^+ zn$]) and $\mathbb{P}nb$. To find a witness for consequent, let c be such that *Numbers*(c, [$\lambda z \mathbb{P}^+ zm$]) (every property is numbered!). To show $\mathbb{P}mc$, we have to show:

(C) $\exists F \exists u(Fu \& Numbers(c, F) \& Numbers(m, F^{-u}))$

Pick $[\lambda z \mathbb{P}^+ zm]$ as witness for *F*, and *m* as witness for *u* (since $\mathbb{N}m \to D!m$).

Proof of Main Lemma (continued)

Show:

- (ϑ) $[\lambda z \mathbb{P}^+ zm]m$
- (ξ) Numbers($c, [\lambda z \mathbb{P}^+ zm]$)
- (ζ) Numbers(m, [$\lambda z \mathbb{P}^+ zm$]^{-m})

(ϑ): Show \mathbb{P}^+mm . Since $\mathbb{N}m$, D!m, we know $m =_D m$. Hence \mathbb{P}^+mm , by fact about \mathbb{P}^+ .

(ξ): holds by assumption.

(ζ): By $\mathbb{N}m$ (hypothesis), $\mathbb{P}nm$ (assumption), and a previous lemma, we know:

(D) $Numbers(m, [\lambda z \mathbb{P}^+ zn]) \equiv Numbers(m, [\lambda z \mathbb{P}^+ zm]^{-m})$

Note that $\mathbb{P}nm$, by (A), and $\mathbb{P}nb$, by hypothesis. So m = b, by the functionality of predecessor. Since we also know $Numbers(b, [\lambda z \mathbb{P}^+ zn])$ by hypothesis, it follows that $Numbers(m, [\lambda z \mathbb{P}^+ zn])$. So by (D), $Numbers(m, [\lambda z \mathbb{P}^+ zm]^{-m})$. \bowtie Note: Frege's version of this Lemma:

• $\forall n \mathbb{P} n \# [\lambda z \mathbb{P}^+ z n]$

is also provable. See Nodelman & Zalta chapter of Zalta m.s., PLM.

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
0	00000	000000000	0000	0	000	000

Derivation of D/P Axiom 5: Every Number Has a Successor

• $\forall n \exists ! m \mathbb{P} n m$.

(D/P 5)

- *Proof.* By GEN, it suffices to show ∃!*m*Pnm. But since P is a functional relation (by a previous theorem), it suffices to show that ∃mPnm. Moreover, we know that if n immediately precedes anything, that thing is a natural number (by a previous theorem), and so it suffices to show that ∃yPny. But this follows, a fortiori from the main lemma which tells us ∃y(Numbers(y, [λz P⁺zn]) & Pny).
- *Proof Variant* (Frege-Style): By GEN, it suffices to show ∃!mℙnm. But since ℙ is a functional relation (by previous theorem), it suffices to show that ∃mℙnm. Moreover, we know that if n immediately precedes anything, that thing is a natural number (by previous theorem), and so it suffices to show that ∃yℙny. But this follows a fortiori from Frege's version of the main lemma, which tells us that ℙn#[λz ℙ⁺zn].

Arithmetic

- Define notation for Successors
 - $n' =_{df} im \mathbb{P} nm$
 - n' is well defined, by D/P 5.
- Define numerals:
 - 1 = $_{df}$ 0' • $2 =_{df} 1'$
 - 3 = $_{df}$ 2'
- Restrictions: when G is a 2-place relation and F a property:

 $G_{\upharpoonright F} =_{df} [\lambda xy \ Fx \& Gxy]$

- Define $<, \leq, >, \geq$:
 - $< =_{df} \mathbb{P}^*_{\mathbb{N}}$ $\leq =_{df} \mathbb{P}^+_{\mathbb{N}}$
 - > = $_{df} [\lambda xy y < x]$
 - $\geq =_{df} [\lambda xy \ y \leq x]$
- Prove theorems about \langle , \leq , \rangle , \geq . E.g., \langle is asymmetric and transitive, \leq is reflexive, anti-symmetric and transitive, etc.

Basic Recursive Functions are Relations

- Operations: Rigid functional relations on numbers, e.g., successor (*s*) is P and numerical identity (≐) is =_{D↑N}.
- Constant Operations (where $n' = \iota m \mathbb{P} n m$):
 - $C_m^{n'} =_{df} [\lambda x_1 \dots x_n y \mathbb{N} x_1 \& \dots \& \mathbb{N} x_n \& y \doteq m]$ $(n, m \ge 0)$

It now follows that $C_m^{n'}$ is an *n*-ary operation:

- $Op^n(C_m^{n'})$
- Projection Operations: $\pi_k^{i'}$ takes *i* arguments, returns the *k*th $(1 \le k \le i)$. (The arity of the relation is *i'*, which includes the value of the function.), i.e., $\pi_k^{i'} =_{df} [\lambda n_1 \dots n_i m \ m \doteq n_k]$
 - $Op^i(\pi_k^{i'})$ $(1 \le k \le i)$
- Composition Operations:
 - $G \circ H =_{df} [\lambda xy \exists z (Hxz \& Gzy)]$
 - $Op^1(H)$ & $Op^1(G) \rightarrow (Op^1(G \circ H)$ & $\forall x([G \circ H](x) = G(H(x))))$
 - Generalizes to *n*-ary composition: $G \circ (H_1, \ldots, H_m)$, where *G* is any *m'*-ary relation ($m \ge 1$) and H_1, \ldots, H_m are any *n'*-ary relations ($n \ge 0$)

Recursion Theorem

- Our approach has the following parts:
 - Start with given operations H(n) and G(n, m, j).
 - Inductively define (suppressing the index to *H* and *G*):

 $F_0 =_{df} H$ $F_{m'} =_{df} G \circ (\pi_1^2, C_m^2, F_m)$

Lemma: each F_m exists and is an unary operation.

- Then define $F_{H,G} =_{df} [\lambda nmj F_m(n) \doteq j]$
- Lemma: $F_{H,G}$ exists and is a binary operation.
- Recursion Thm: where *H* is a unary op and *G* is a ternary op: $Op^2(F_{H,G}) \& F_{H,G}(n,0) = H(n) \& F_{H,G}(n,m') = G(n,m,F_{H,G}(n,m)))$
- Example: standard recursive definition of Addition (A).
 - $\boldsymbol{A} =_{df} \boldsymbol{F}_{\pi_1^2, \boldsymbol{s} \circ \pi_3^4}$

It follows that:

• A(n, 0) = n A(n, m') = (A(n, m))'Or, in infix notation:

•
$$n + 0 = n$$

 $n + m' = (n + m)'$

Derivation of Second-Order Peano Arithmetic

- The Dedekind-Peano axioms (including mathematical induction) are theorems.
- By the Recursion Theorem, the axioms for recursive addition and multiplication become theorems once addition *A* and multiplication *M* are defined:

•
$$n + 0 =_{df} n$$

 $n + m' =_{df} (n + m)'$

•
$$n \times 0 =_{df} 0$$

 $n \times m' =_{df} n + (n \times m)$

Note: You have to introduce the multiplication in a manner similar to that of addition:

• $M =_{df} F_{C_0^2, A \circ (\pi_1^4, \pi_3^4)}$ From which it follows that:

- M(n, 0) = 0M(n, m') = n + M(n, m)
- Comprehension Principle for Properties is already a theorem.
- So second-order Peano Arithmetic has been derived.

 Structure
 Predecessor
 Frege's Theorem
 2nd-Order Peano Arithmetic
 Infinity
 Metaphilosophy

 0
 00000
 00000000
 0000
 0000
 0000

An Infinite Cardinal Exists

- For κ NatCard: *Finite*(κ) $\equiv_{df} \mathbb{N}\kappa$ *Infinite*(κ) $\equiv_{df} \neg$ *Finite*(κ)
- Lemma 1: $\forall u([\lambda z \mathbb{P}^+ zm]u \to \mathbb{N}u)$
- Lemma 2: $\neg \exists nNumbers(n, \mathbb{N})$

Proof. By induction on *m*.

Proof. For reductio, suppose $\mathbb{N}a$ and $Numbers(a, \mathbb{N})$. Then by the main lemma for D/P 5, $\exists y(Numbers(y, [\lambda z \mathbb{P}^+ za]) \& \mathbb{P}ay)$. Suppose $Numbers(b, [\lambda z \mathbb{P}^+ za]) \& \mathbb{P}ab$. From Pab and $\mathbb{N}a$, we have $\mathbb{N}b$. From Pab, it then follows that a < b. Now a fact we haven't proved is:

 $(Numbers(n, F) \& Numbers(m, G) \& \forall u(Fu \rightarrow Gu)) \rightarrow n \leq m$

Instantiate $[\lambda z \mathbb{P}^+ za]$ for *F*, \mathbb{N} for *G*, *a* for *m*, and *b* for *n*:

 $(Numbers(b, [\lambda z \mathbb{P}^+ za]) \& Numbers(a, \mathbb{N}) \& \forall u([\lambda z \mathbb{P}^+ za]u \to \mathbb{N}u)) \to b \leq a$

We already know the first two conjuncts. The third conjunct follows from the Lemma 1, with *a* instantiated for *m*. Hence $b \le a$. But we previously established a < b. So by a simple fact $(n < m \& m \le k \rightarrow n < k)$ (exercise), a < a, which contradicts $\neg(n < n)$ (exercise).

- *Infinite*(#ℕ). *Proof.* It is provable that *Rigid*(ℕ). Then by a fact about numbering, *Numbers*(#ℕ, ℕ). If, for reductio, ℕ#ℕ, ∃*nNumbers*(*n*, ℕ), contradicting Lemma 2.
- Thus, ∃*xInfinite*(*x*) has been derived from no math primitives! If ⁸₀ =_{df} #ℕ, then the existence of ⁸₀ doesn't require mathematics.

Structure Predecessor Frege's Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography 0 00000 0000 0000 0 000 000

Consistency of the Theory of Natural Numbers

- Use Aczel models in which the Urelements consist of: 1 ordinary object and let the set of special elements **S** contain a copy of the natural numbers 0^{*}, 1^{*}, 2^{*},
- Let \mathbf{R}_2 contain \mathbb{P} , whose extension at w_0 is:
 - $\{\langle 0^*, 0^* \rangle, \langle 2^*, 3^* \rangle, \langle 3^*, 4^* \rangle, \langle 4^*, 5^* \rangle, \ldots\}$
 - $\langle 0^*, 0^* \rangle$ will represent $\mathbb{P} \aleph_0 \aleph_0$.
- Let the domain of abstract objects A contains $0, 1, 2, ..., and \aleph_0$, where each is a set of properties whose extensions are equinumerous_D at w_0 :
 - 0 is the set of properties whose extensions equinumerous_D to the property denoted by $[\lambda x D! x \& x \neq x]$ at w_0
 - n' is the set of properties whose extensions are equinumerous_D to the property denoted by [λm P⁺mn] at w₀

Let *n* range over these objects. Set the proxy function so that $|\aleph_0| = 0^*$, $|i| = 1^*$ (where *i* is any indiscernible), and $|n| = (n + 2)^*$, so that $2^*, 3^*, 4^*, \ldots$ are the proxies of the natural numbers for exemplification purposes.

Observations I

- Natural numbers and an infinite cardinal are definable and their principles are derivable in extended object theory.
- No mathematical primitives are used, and no mathematical axioms are asserted.
- The fundamental question of the philosophy of arithmetic (Heck 2011, 152): What is the basis of our knowledge of the infinity of the series of natural numbers? Answer: We can derive it as a theorem from principles that govern abstract objects generally.
- Frege's question: *Wie soll uns denn eine Zahl gegeben sein, wenn wir keine Vorstellung oder Anschauung von ihr haben können?* (1884, §62). Answer: By descriptions guaranteed to be well-defined by principles that govern abstract objects generally.
- Everything depends on logico-metaphysical principles that demonstrate how logic and metaphysics are entangled.

Observations: II

- We haven't asserted the existence of any concrete objects, but only that concrete objects might exist.
- There is no Julius Caesar problem. #*F* = *x* is defined for any value of *x*.
- We aren't postulating objects piecemeal, though we have had to extend object theory with 1 axiom and prove it is consistent.
- There is no 'bad company' objection, 'embarassment of riches' objection, etc.
- We've united the Fregean philosophy of mathematics (by deriving extensions and natural numbers) and Fregean philosophy of language (by identifying senses).
- We turn next to the analysis of theoretical mathematics.

Bibliography

- Boolos, G., 1996, "On the Proof of Frege's Theorem," in A. Morton and S. Stich (eds.), *Benacerraf and His Critics*, Cambridge, MA: Blackwell, pp. 143–159; reprinted in G. Boolos, *Logic, Logic, and Logic*, R. Jeffrey (ed.), Cambridge, MA: Harvard University Press, 1998, 275–290. [Page reference to the reprint.]
- Boolos, G., 1995, "Frege's Theorem and the Peano Postulates," *Bulletin of Symbolic Logic*, 1: 317–326; reprinted in G. Boolos, *Logic, Logic, and Logic*, R. Jeffrey (ed.), Cambridge, MA: Harvard University Press, 1998, pp. 291–300. [Page reference to the reprint.]
- Burgess, J., 2003, "Review of Kit Fine, *The Limits of Abstraction*," *Notre Dame Journal of Formal Logic*, 44 (4): 227–251.
- Cook, R., 2003, "Iteration One More Time," *Notre Dame Journal of Formal Logic*, 44 (2): 63–92.

Bibliography

- Fine, K., 2002, *The Limits of Abstraction*, Oxford: Clarendon Press.
- Frege, G., 1884, *The Foundations of Arithmetic*, translated by J. L. Austin, Oxford: Blackwell, second revised edition, 1974.
- Frege, G., 1893 [1903], *Grundgesetze der Arithmetik*, Band I [II], Jena: Verlag Hermann Pohle.
- Nodelman, U., and E. Zalta, Chapter 14, in Zalta m.s. PLM.
- Hale, B., and C. Wright, 2001, *The Reason's Proper Study*, Oxford: Clarendon.
- Heck, R., 2011, Frege's Theorem, Oxford: Clarendon.
- Heck, R., 1993, "The Development of Arithmetic in Frege's *Grundgesetze Der Arithmetik," Journal of Symbolic Logic*, 58 (2): 579–601
- Shapiro, S., 2004, "Critical Study: The Nature and Limits of Abstracts," *Philosophical Quarterly*, 54 (214): 166–174.

Structure	Predecessor	Frege's Theorem	2nd-Order Peano Arithmetic	Infinity	Metaphilosophy	Bibliography
0	00000	0000000000	0000	0	000	000

Bibliography

- Weir, A., 2003, "Neo-Fregeanism: An Embarrassment of Riches," *Notre Dame Journal of Formal Logic*, 44 (1): 13–48.
- Wright, C., 1983, *Frege's Conception of Numbers as Objects*, Aberdeen: University of Aberdeen Press.
- Zalta, E., 1999, "Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege's *Grundgesetze* in Object Theory," *Journal of Philosophical Logic*, 28(6): 619–660.
- Zalta, E., 2012, "Frege's Logic, Theorem, and Foundations for Arithmetic", *The Stanford Encyclopedia of Philosophy* (Spring 2012 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/spr2012/entries/frege-logic/.
- Zalta, E., m.s., *Principia Logico-Metaphysica*, https://mally.stanford.edu/principia.pdf