Structure Predecessor Frege's Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography 00000 0000000000 0000 \circ 000 000 \circ

> Seminar on Axiomatic Metaphysics Lecture 10 Frege Numbers (Part 2)

Edward N. Zalta and Uri Nodelman

Philosophy Department, Stanford University {zalta,nodelman}@stanford.edu

Munich Center for Mathematical Philosophy, June 10, 2024

- Frege's Theorem
- 2nd-Order Peano Arithmetic

Metaphilosophy

Predecessor

- We now add a new axiom that asserts the existence of an ordering relation, namely, being an *x* and *y* such that for some property *F* and discernible object *u*, (a) *u* exemplifies *F*, (b) *y* numbers *F*, and (c) *x* numbers: being an *F*-exemplifier other than *u*.
- Axiom: $[\lambda xy]$ $\exists F \exists u(Fu \& Numbers(y, F) \& Numbers(x, F^{-u}))] \downarrow$
- $\bullet \mathbb{P} =_{df} [\lambda xy \exists F \exists u (Fu \& Numbers(y, F) \& Numbers(x, F^{-u}))]$
- Note: No mathematical primitives are used to assert this axiom. The notion *Numbers*(*x*, *F*) is defined in terms of the primitives of object theory.
- \bullet $\mathbb{P}xy \equiv \exists F \exists u(Fu \& Numbers(y, F) \& Numbers(x, F^{-u}))$
- \bullet *Rigid*(P), i.e., $\Box \forall x \forall y (\mathbb{P}xy \rightarrow \Box \mathbb{P}xy)$

Proof. The reasoning that shows $\mathbb{P}xy \to \mathbb{P}xy$ is non-trivial – it requires an appeal to a rigidifying relation and so relies on the derivation of the Gallin axiom from the Kirchner Theorem. See Nodelman & Zalta chapter of Zalta m.s., *PLM*.

Structure Predecessor Frege's Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography $0 0000$ 000 0000000000 0000 000 \circ

Predecessor is 1-1 and Functional

Thm: $1-I(\mathbb{P})$ (Frege, Gg., Thm 89)

Proof. Assume $\mathbb{P}x$ *z* and $\mathbb{P}y$ *z*. By definition of \mathbb{P} , these assumptions imply, respectively, that there are properties and discernible objects, say *R*, *Q*, *a*, *b*, such that:

- (ϑ) *Qa & Numbers*(*z*, *Q*) & *Numbers*(*x*, Q^{-a})
- (ξ) *Rb* & *Numbers*(*z*, *R*) & *Numbers*(*y*, *R*^{-*b*})

The second conjuncts of (ϑ) and (ξ) jointly yield $Q \approx_D R$. Since we also know Qa and Rb , it follows by a previous lemma that $Q^{-a} \approx_D R^{-b}$. But, separately, the 3rd conjuncts of (ϑ) and (ξ) jointly imply $x=y \equiv Q^{-a} \approx_D R^{-b}$, by the conditional underlying Hume's Principle. Hence $x=y$.

Thm: $\mathbb{P}xy \& \mathbb{P}xz \rightarrow y=z$ (Frege, Gg., Thm 71)

Proof. Assume both P*xy* and P*xz*. By definition of P, these assumptions imply, respectively, that there are properties and discernible objects, say Q, R, a, b , such that:

- (ϑ) *Qa* & *Numbers*(*y*, *Q*) & *Numbers*(*x*, Q^{-a})
- (ξ) *Rb* & *Numbers*(*z*, *R*) & *Numbers*(*x*, *R*^{-*b*})

Now the third conjuncts of (ϑ) and (ξ) jointly imply $Q^{-a} \approx_D R^{-b}$. Since we also know Qa and Rb, it follows by a previous lemma that $Q \approx_D R$. But independently, the second conjuncts of (θ) and (ξ) jointly imply $y = z \equiv Q \approx_D R$, by the conditional underlying Hume's Principle. Hence $y = z$.

Lemma: Non-Zero Cardinals Have Predecessors

• Thm: *NaturalCardinal*(*x*) & $x \neq 0 \rightarrow \exists y \mathbb{P} yx$

Proof. Assume *NaturalCardinal*(*x*) and $x \neq 0$. By definition of P, show:

 $\exists y \exists F \exists u(Fu \& Numbers(x, F) \& Numbers(y, F^{-u})$

The first assumption implies, by definition $\exists G(x=\#G)$, and so by a previous equivalence it follows that $\exists G(Numbers(x, G))$. Suppose *Numbers*(*x*, *P*). This and $x \neq 0$ imply $\exists uPu$. Suppose *Pa*. Then we know $[\lambda z \, P z \, \& z \neq a] \downarrow$. Hence $P^{-a} \downarrow$. So \exists *yNumbers*(*y*, *P*^{-*a*}). Suppose *Numbers*(*b*, *P*^{-*a*}). Then, assembling what we know:

Pa & *Number* (x, P) & *Numbers* (b, P^{-a})

So $\exists y \exists F \exists u (Fu \& Number(x, F) \& Number(y, F^{-u}).$

Natural Cardinals are Discernible

Thm: *NaturalCardinal*(*x*) \rightarrow *D!x*

Proof. Assume *NaturalCardinal*(*x*). Since *NaturalCardinal*(0), we show *D*!*x* by disjunctive syllogism from $x=0 \lor x \neq 0$. (a) $x=0$. We know $\exists x O!x$, say *a*. Then $[\lambda x \, x = a] \downarrow$, and so does $\#\left[\lambda x \, x = a\right] (= b)$. Exercise: show P0*b* and, hence, $[\lambda z \, \mathbb{P}z b]$ 0. To show *D*!0, we show: $y \neq 0 \rightarrow \exists F \neg (Fy \equiv F0)$. So assume $y \neq 0$ and for reductio, $\neg \exists F \neg (Fy \equiv F0)$, i.e., $\forall F(Fy \equiv F0)$. Hence $[\lambda z \mathbb{P}zb]y$, and so $\mathbb{P}yb$. But \mathbb{P} is a 1-1 relation and so by the definition of 1-1 and the fact that $\mathbb{P}\mathsf{L}$ we may infer $0 = y$ from $\mathbb{P}0b$ and P*yb*. Contradiction.

(b) $x \neq 0$. Then since x is a natural cardinal, it follows by the previous theorem that $\exists y \mathbb{P} yx$. Suppose $\mathbb{P} c x$. Then $[\lambda z \mathbb{P} c z]x$. Again, to show $D!x$, we show: $y \neq x \rightarrow \exists F \neg (Fy \equiv Fx)$. So assume $y \neq x$ and, for reductio, $\neg \exists F \neg (Fy \equiv Fx)$, i.e., $\forall F(Fy \equiv Fx)$. Then $[\lambda z \, Pcz]y$, and hence Pcy . But P is functional and so from Pcx and Pcy it follows that $x = y$, which contradicts our assumption that $y \neq x$.

Structure Predecessor Frege's Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography 0000 000 0000 000 0000000000 \circ

Some Corollaries

- \bullet Thm: $\mathbb{P}xy \rightarrow (NaturalCardinal(x) \& NaturalCardinal(y))$
- Thm: $\mathbb{P}xy \to (D!x \& D!y)$ \bullet
- Thm: (immediate from the definition of \mathbb{P}^*) $\mathbb{P}^*xy \equiv \forall F((\forall z(\mathbb{P}xz \rightarrow Fz) \& \forall x' \forall y'(\mathbb{P}x'y' \rightarrow (Fx' \rightarrow Fy'))) \rightarrow Fy)$
- Thm: $\neg \exists x \mathbb{P} x0$ (Frege, Gg., Thm 108)

Proof. Suppose not, e.g., Pa0. Then, for some property Q, and discernible b, *Qb* & *Numbers*(0, *Q*) & *Numbers*(*a*, Q^{-b}), by df P . From *Qb* it follows that $\exists uQu$. But *Numbers*(0, Q)) implies $\neg \exists uQu$. Contradiction.

- Thm: $\neg \exists x \mathbb{P}^* x0$ (Frege, Gg., Thm 126)
- Thm: $\neg \mathbb{P}^*00$
-

• Thm: $\mathbb{P}^+xy \equiv \mathbb{P}^*xy \vee x =_D y$ (instance of the definition of \mathbb{P}^+)

Derivation of First 3 Dedekind/Peano Axioms

- $\bullet \mathbb{N} =_{df} [\lambda x \mathbb{P}^+ 0x]$ $\mathbb{N} x \equiv \mathbb{P}^+ 0x$
- *NaturalNumber*(0) (D/P 1)

Proof. D!0, since 0 is a natural cardinal and natural cardinals are discernible. So $0=$ _{*D*} 0 , by reflexivity of $=$ _{*D*} on discernibles. So $\mathbb{P}^*00 \vee 0=$ _{*D*} 0 and hence \mathbb{P}^+00 . Since $\mathbb{N}0 \equiv \mathbb{P}^+00$ (above), it follows that $\mathbb{N}0$.

 \bullet $\neg \exists n \mathbb{P} n0$ (D/P 2) (Frege, Gg., Thm 126) (Zero doesn't succeed any natural number.)

Proof. We've previously established $\neg \exists x \text{*Precedes*(x, 0)$. *A fortiori*, no number precedes 0.

 \bullet $\forall n \forall m \forall k (\mathbb{P}nk \& \mathbb{P}mk \rightarrow m=n)$ (D/P 3) No two numbers have the same successor. *Proof.* Since $\mathbb P$ is a 1-1 relation generally, it is a 1-1 relation on the numbers.

Lemma: Generalized Induction

Thm: $[Fz \& \forall x \forall y((G^+zx \& G^+zy) \rightarrow (Gxy \rightarrow (Fx \rightarrow Fy)))] \rightarrow \forall x(G^+zx \rightarrow Fx)$

Proof. Assume the antecedent:

(ϑ) $Fz \& \forall x \forall y ((G^+zx \& G^+zy) \rightarrow (Gxy \rightarrow (Fx \rightarrow Fy)))$

To show $\forall x (G^+zx \rightarrow Fx)$, assume G^+zx , to show *Fx*. We use the lemma:

 $(F \times \& G^+ \times \& Hereditary(F, G)) \rightarrow F \vee$

Instantiate *F* to $[\lambda y \, Fy \, \& G^{\dagger}zy]$, *x* to *z*, and *y* to *x* and simplify. Then we know:

(ξ) $[Fz \& G^+zz \& G^+zx \& Hereditary([Ay \ Fy \& G^+zy], G)] \rightarrow (Fx \& G^+zx)$

So to show *Fx*, we prove the antecedent of (ξ) . *Fz* by assumption. G^+zz follows from the main fact about G^+ and $z =_D z$ for discernible *z*. G^+zx also holds by assumption. So it remains to establish:

Hereditary($[\lambda y \, Fy \, \& G^+zy]$, *G*)

By definition and simplification, show:

 $\forall x, y[Gxy \rightarrow ((Fx & G^+(z, x)) \rightarrow (Fy & G^+(z, y)))].$

Proof. Let *a*, *b* be arbitrary objects. Assume *Gab*, *Fa*, and *G*⁺*za*, to show *Fb* & G^+zb . The second conjunct G^+zb follows easily: from the facts that G^+za and *Gab*, it follows by a previous lemma that G^*zb , which implies G^+zb , by a previous theorem. So it remains to show *Fb*. Since we now have G^+za , G^+zb , *Gab*, and *Fa*, it follows from the second conjunct of (ϑ) that *Fb*.

Derivation of D/P Axiom 4: Mathematical Induction

- \bullet Since \mathbb{P}^+ is a relation, we can instantiate Generalized Induction to \mathbb{P}^+ and 0 to get:
	- $F0 \& \forall x \forall y [\mathbb{P}^+0 x \& \mathbb{P}^+0 y \& \mathbb{P} x y \rightarrow (Fx \rightarrow Fy)] \rightarrow$ $\forall x(\mathbb{P}^+0x \to Fx)$
- Now substitute $\mathbb{N}x$ for \mathbb{P}^+0x , and $\mathbb{N}y$ for \mathbb{P}^+0y , and the result is: *F*0 & $\forall x \forall y [\forall x \& \forall y \& \mathbb{P}xy \rightarrow (Fx \rightarrow Fy)] \rightarrow \forall x (\forall x \rightarrow Fx)$
- Simplify with restricted variables:
	- $F0 \& \forall n \forall m (\mathbb{P}nm \rightarrow (Fn \rightarrow Fm)) \rightarrow \forall nFn$ (D/P 4)

Lemmas for Final D/P Axiom

 $\bullet \mathbb{N}x \rightarrow \text{NaturalCardinal}(x)$

Proof. Assume $\mathbb{N}x$. Then \mathbb{P}^+0x . Reason by cases from $x=0 \vee x \neq 0$. If $x=0$, then *NaturalCardinal*(*x*), by previous thm. If $x \neq 0$, then it follows that \mathbb{P}^*0x , definition of \mathbb{P}^+ and the fact that $x \neq 0 \rightarrow x \neq_D 0$. By a lemma about the weak ancestral, it follows *a fortiori* that $\exists z \mathbb{P} zx$. Let *a* be such an object, so that we know P*ax*. Then by a previous fact, *NaturalCardinal*(*x*).

•
$$
\mathbb{N}x \to D!x
$$
 (Exercise)

```
\bigcirc \mathbb{P}nx \to \mathbb{N}x (Successors are numbers)
```
Proof. Assume Pnx. Since Nn, by hypothesis, it follows from the definition of N that \mathbb{P}^+ 0*n*. Since $\mathbb P$ is a rigid relation on discernibles, a fact about the weak ancestral implies: $(\mathbb{P}^+ \mathbb{O} n \& \mathbb{P} n x) \to \mathbb{P}^* \mathbb{O} x$. So $\mathbb{P}^* \mathbb{O} x$. Hence, by definition of \mathbb{P}^* , it follows that \mathbb{P}^+0x . So $\mathbb{N}x$.

 \bullet $Pnm \& Pnk \rightarrow m=k$

Proof. Predecessor is functional *tout court*, and so functional on the natural numbers.

Lemma

Thm: $\forall x (\mathbb{N} x \rightarrow \neg \mathbb{P}^* xx)$

Proof. Assume $\mathbb{N}b$; show $\neg \mathbb{P}^*bb$, use: (*Fx* & *G*⁺(*x*, *y*) & *Hereditary*(*F*, *G*)) \rightarrow *Fy*. Instantiate *F* to $[\lambda z \neg \mathbb{P}^* zz]$, *x* to 0, *y* to *b*, and since \mathbb{P} is a rigid relation on discernibles, instantiate G to $\mathbb P$. Simplify the result to:

 $(\neg \mathbb{P}^* 00 \& \mathbb{P}^* 0b \& Hereditary([\lambda z \neg \mathbb{P}^* zz], \mathbb{P})) \rightarrow \neg \mathbb{P}^* bb$

So show:

- (ϑ) $\neg \mathbb{P}^*00$
- (\mathcal{E}) \mathbb{P}^+ $0b$
- (ζ) *Hereditary*($[\lambda z \neg \mathbb{P}^* zz], \mathbb{P}$)
- (ϑ): from theorem $\neg \exists x \mathbb{P}^* x \mathbb{O}$.
- (ξ): from Nb (assumption) and the definition of N.
- (ζ) : By definition, show:

P, $\&$ $[Az, \neg \mathbb{P}^*zz]$, $\&$ $\forall x \forall y (\mathbb{P}xy \rightarrow ([\lambda z, \neg \mathbb{P}^*zz]x \rightarrow [\lambda z, \neg \mathbb{P}^*zz]y))$

P \downarrow and $[\lambda z \neg \mathbb{P}^* zz] \downarrow$ are easy. So simplify and show: $\mathbb{P}xy \to (\neg \mathbb{P}^* xx \to \neg \mathbb{P}^* yy)$. Assume Pxy and $\neg P^* xx$. Now since P is a 1-1 rigid relation on discernibles, we can apply a previous theorem about such relations, to infer:

 $(Pxy \& \neg P^*xx) \rightarrow \neg P^*yy$

Hence $\neg \mathbb{P}^*$ *yy*. \Join

Lemma

Thm: $(\mathbb{N} \times \mathbb{R} \mathbb{P} \times x) \rightarrow (\text{Numbers}(z, [\lambda z \mathbb{P}^+ z y]) \equiv \text{Numbers}(z, [\lambda z \mathbb{P}^+ z x]^{-x}))$

Proof. Assume $\mathbb{N}x$ and $\mathbb{P}yx$. Since $G \equiv_D H \rightarrow (Numbers(x, G) \equiv Numbers(x, H))$ show, by definition (\equiv_D), that $[\lambda z \mathbb{P}^+ z y]u \equiv [\lambda z \mathbb{P}^+ z x]^{-x}u$. Since $\mathbb{N} x \to D!x$, we can apply definition of $[\lambda z \mathbb{P}^+ z x]^{-x}$ and simplify by λ -Conversion and Substitution. So show:

 $\mathbb{P}^+ uv \equiv \mathbb{P}^+ ux \& u \neq x$

 (\rightarrow) Assume \mathbb{P}^+ *uy*. From this, assumption $\mathbb{P}yx$, and \mathbb{P} is a rigid relation on discernibles, it follows that $\mathbb{P}^* u x$. Hence $\mathbb{P}^* u x$. Suppose $u = x$, for reductio. Then from $\mathbb{P}^* u x$, it follows that $\mathbb{P}^* x x$, which contradicts a previous lemma given that N*x*.

 (\leftarrow) Assume $\mathbb{P}^+ u x$ and $u \neq x$, and for reductio, $\neg \mathbb{P}^+ u y$. From $u \neq x$, we know $u \neq_D x$, and from this and $\mathbb{P}^+ u x$ it follows that $\mathbb{P}^* u x$. But since $\mathbb P$ is a 1-1 rigid relation on discernibles. we can instantiate a previous lemma to obtain $(\mathbb{P}yx \& \mathbb{P}^* ux) \rightarrow \mathbb{P}^+ uy$, i.e., $(\mathbb{P}yx \& \neg \mathbb{P}^* uy) \rightarrow \neg \mathbb{P}^* ux$. But from $\mathbb{P}yx$ (assumption) and $\neg \mathbb{P}^+ \iota y$ (hypothesis), $\neg \mathbb{P}^* \iota x$. Contradiction. \Join

Main Lemma

Thm: $\forall n \exists y(Numbers(y, [\lambda z \mathbb{P}^+zn]) \& \mathbb{P}ny)$ Frege: $\forall n \mathbb{P}n \# [\lambda z \mathbb{P}^+zn]$ *Proof*. Consider:

$$
[\lambda x \exists y (Numbers(y, [\lambda z \mathbb{P}^+ zx]) \& \mathbb{P}xy)] \tag{Q}
$$

By λ C, our theorem has the form $\forall nQn$. So, by induction, we show that *Q*0 and $\forall n \forall m(\mathbb{P}nm \rightarrow (On \rightarrow Om)).$

Base Case: Show *Q*0, i.e., $\exists y(Numbers(y, [\lambda z \mathbb{P}^+z0]) \& \mathbb{P}0y)$. We know $\forall G \exists y \textit{Numbers}(y, G)$. So let *Numbers*(*a*, [$\lambda z \mathbb{P}^+ z 0$]), and then show $\mathbb{P}0a$, i.e., show:

 $F\exists u$ (*Fu* & *Numbers*(*a*, *F*) & *Numbers*(0, F^{-u}))

We pick our witness for *F* to be $[\lambda z \mathbb{P}^+ z 0]$ and pick our witness for *u* to be 0 (since *D*!0, given it is a natural cardinal and so discernible). So show:

(ϑ) $[\lambda z \mathbb{P}^+ z 0]0$

- (ξ) *Numbers*(a , $[\lambda z \mathbb{P}^+ z 0]$)
- (ζ) *Numbers*(0, $[\lambda z \mathbb{P}^+ z 0]^{-0}$)

(ϑ): Show \mathbb{P}^+ 00. But since *D*!0, $0 = D_0$, and so \mathbb{P}^+ 00, by a fact about \mathbb{P}^+ .

 (ξ) : holds by assumption.

Structure Predecessor Frege's Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography 0000000000 000 000 00000 0000

Proof of Main Lemma (continued)

(ζ): *Numbers*(0, $[\lambda z \mathbb{P}^+ z 0]^{-0}$). By previous thm, it suffices to show: $\neg \exists u ([\lambda z \mathbb{P}^+ z 0]^{-0} u)$

Suppose not, and suppose $[\lambda z \mathbb{P}^+ z 0]^{-0} b$. Then by definition

 $[\lambda z \, [\lambda z \, \mathbb{P}^+ z \, 0]z \, \& \, z \neq 0]b$. Simplify to $[\lambda z \, \mathbb{P}^+ z \, 0]b \, \& \, b \neq 0$ and then to

 $\mathbb{P}^+b_0 \& b \neq 0$. The 2nd conjunct implies $b \neq_D 0$, and so the first conjunct and the main fact about \mathbb{P}^+ imply \mathbb{P}^*b0 , which contradicts $\neg \exists x \mathbb{P}^*x0$.

Inductive Case: Show $Pnm \rightarrow (Qn \rightarrow Qm)$, i.e.,

 $\mathbb{P}nm \to (\exists y(Numbers(y,[\lambda z\ \mathbb{P}^+zn]) \& \mathbb{P}ny) \to \exists y(Numbers(y,[\lambda z\ \mathbb{P}^+zm]) \& \mathbb{P}my))$ So assume (IH):

(A) P*nm*

(B) $\exists y(Numbers(y, [\lambda z \mathbb{P}^+zn]) \& \mathbb{P}ny)$

For (B), let *Numbers*(*b*, $[\lambda z \mathbb{P}^+ zn]$) and $\mathbb{P}nb$. To find a witness for consequent, let *c* be such that *Numbers*(*c*, $[\lambda z \mathbb{P}^+ z m]$) (every property is numbered!). To show P*mc*, we have to show:

(C) $\exists F \exists u(Fu \& Numbers(c, F) \& Numbers(m, F^{-u}))$

Pick $[\lambda z \mathbb{P}^+ z m]$ as witness for *F*, and *m* as witness for *u* (since $\mathbb{N}m \to D!m$).

Proof of Main Lemma (continued)

Show:

- (ϑ) $[\lambda z \mathbb{P}^+ z m] m$
- (ξ) *Numbers*(c , $[\lambda z \mathbb{P}^+ z m]$)
- (ζ) *Numbers*(*m*, $[\lambda z \mathbb{P}^+ z m]^{-m}$)

(ϑ): Show \mathbb{P}^+ *mm*. Since \mathbb{N} *m*, *D!m*, we know $m =_D m$. Hence \mathbb{P}^+ *mm*, by fact about \mathbb{P}^+ .

 (ξ) : holds by assumption.

 (ζ) : By Nm (hypothesis), Pnm (assumption), and a previous lemma, we know:

(D) $Numbers(m, [\lambda z \mathbb{P}^+zn]) \equiv Numbers(m, [\lambda z \mathbb{P}^+zm]^{-m})$

Note that Pnm, by (A), and Pnb, by hypothesis. So $m = b$, by the functionality of predecessor. Since we also know *Numbers*(*b*, $[\lambda z \mathbb{P}^+ zn]$) by hypothesis, it follows that *Numbers*(*m*, $[\lambda z \mathbb{P}^+ zn]$). So by (D), *Numbers*(*m*, $[\lambda z \mathbb{P}^+ zm]^{-m}$). \approx Note: Frege's version of this Lemma:

 \bullet $\forall n \mathbb{P} n \# [\lambda z \mathbb{P}^+ z n]$

is also provable. See Nodelman & Zalta chapter of Zalta m.s., *PLM*.

Derivation of D/P Axiom 5: Every Number Has a Successor

8*n*9!*m*P*nm*. (D/P 5)

- *Proof.* By GEN, it suffices to show $\exists !m \mathbb{P}nm$. But since \mathbb{P} is a functional relation (by a previous theorem), it suffices to show that $\exists m \mathbb{P}nm$. Moreover, we know that if *n* immediately precedes anything, that thing is a natural number (by a previous theorem), and so it suffices to show that $\exists y \mathbb{P} ny$. But this follows, *a fortiori* from the main lemma which tells us $\exists y(Numbers(y, [\lambda z \mathbb{P}^+zn]) \& \mathbb{P}ny)$.
- **•** *Proof Variant* (Frege-Style): By GEN, it suffices to show $\exists !m \mathbb{P}$ *nm*. But since $\mathbb P$ is a functional relation (by previous theorem), it suffices to show that $\exists m \mathbb{P}nm$. Moreover, we know that if *n* immediately precedes anything, that thing is a natural number (by previous theorem), and so it suffices to show that $\exists y \mathbb{P} ny$. But this follows *a fortiori* from Frege's version of the main lemma, which tells us that $\mathbb{P}n\#[\lambda z\ \mathbb{P}^+ zn]$.
- Arithmetic
- Define notation for Successors
	- n' = $_{df}$ μ ^{*m*P*nm*}
	- n' is well defined, by D/P 5.
- Define numerals:
	- 1 $=_{df} 0'$ • 2 $=_{df}$ 1'
	- 3 $=_{df} 2'$.

. .

- \bullet
- Restrictions: when *G* is a 2-place relation and *F* a property:

 $G_{\upharpoonright F} =_{df} [\lambda xy \, Fx \, \& \, Gxy]$

- Define \leq, \leq, \geq, \geq :
	- $< =_{df} \mathbb{P}_{\upharpoonright \mathbb{N}}^*$
	- \leq = *df* $\mathbb{P}_{\uparrow N}^{+}$
	- \bullet > = $_{df}$ [$\lambda xy \, y \leq x$]
	- $\bullet \geq =_{df} [\lambda xy \ y \leq x]$
- Prove theorems about \lt, \leq, \gt, \geq . E.g., \lt is asymmetric and transitive, \leq is reflexive, anti-symmetric and transitive, etc.

Basic Recursive Functions are Relations

- Operations: Rigid functional relations on numbers, e.g., successor (*s*) is $\mathbb P$ and numerical identity ($\dot{=}$) is $=_{D\mathbb N}$.
- Constant Operations (where $n' = \mu m P n m$):
	- $C_m^{n'} =_{df} [\lambda x_1 \dots x_n y \, \mathbb{N} x_1 \, \& \dots \, & \mathbb{N} x_n \, \& \, y = m]$ (*n*, *m* ≥ 0)

It now follows that $C_m^{n'}$ is an *n*-ary operation:

- $Op^n(C_m^{n'})$
- Projection Operations: $\pi_k^{i'}$ takes *i* arguments, returns the *k*th $(1 \leq k \leq i)$. (The arity of the relation is *i*', which includes the value of the function.), i.e., $\pi_k^{i'} =_{df} [\lambda n_1 \dots n_i m \ m = n_k]$
	- $Op^i(\pi_k^{i'})$ $(1 \leq k \leq i)$
- Composition Operations:
	- \bullet $G \circ H =_{df} [\lambda xy \exists z (Hxz \& Gzy)]$
	- $Op^1(H) \& Op^1(G) \rightarrow (Op^1(G \circ H) \& \forall x([G \circ H](x) = G(H(x))))$
	- Generalizes to *n*-ary composition: $G \circ (H_1, \ldots, H_m)$, where *G* is any *m'*-ary relation ($m \ge 1$) and H_1, \ldots, H_m are any n' -ary relations ($n \ge 0$)

Recursion Theorem

- Our approach has the following parts:
	- Start with given operations $H(n)$ and $G(n, m, j)$.
	- Inductively define (suppressing the index to H and G):

 $\bm{F}_0 =_{df} H$ $\bm{F}_{m'} =_{df} G \circ (\pi_1^2, C_m^2, \bm{F}_m)$

Lemma: each *F^m* exists and is an unary operation.

- Then define $F_{H,G} =_{df} [\lambda n m j F_m(n) \doteq j]$
- Lemma: $F_{H,G}$ exists and is a binary operation.
- Recursion Thm: where *H* is a unary op and *G* is a ternary op: $Op^2(F_{H,G}) \& F_{H,G}(n,0) = H(n) \& F_{H,G}(n,m') = G(n,m,F_{H,G}(n,m)))$
- Example: standard recursive definition of Addition (*A*).

$$
\bullet \ \mathbf{A} =_{df} \mathbf{F}_{\pi_1^2, \mathbf{s} \circ \pi_3^4}
$$

It follows that:

• $A(n, 0) = n$ $A(n, m') = (A(n, m))'$ Or, in infix notation:

$$
\bullet \ \ n + 0 = n
$$

$$
n + m' = (n + m)'
$$

Derivation of Second-Order Peano Arithmetic

- The Dedekind-Peano axioms (including mathematical induction) are theorems.
- By the Recursion Theorem, the axioms for recursive addition and multiplication become theorems once addition *A* and multiplication *M* are defined:

$$
\begin{aligned}\n\bullet \quad n + 0 &=_{df} n \\
n + m' &=_{df} (n + m)'\n\end{aligned}
$$

•
$$
n \times 0 =_{df} 0
$$

 $n \times m' =_{df} n + (n \times m)$

Note: You have to introduce the multiplication in a manner similar to that of addition:

 $\bm{M} =_{df} \bm{F}_{\bm{C}_0^2, \bm{A} \circ (\pi_1^4,\pi_3^4)}$ From which it follows that:

- $M(n, 0) = 0$ $M(n, m') = n + M(n, m)$
- Comprehension Principle for Properties is already a theorem.
- So second-order Peano Arithmetic has been derived.

An Infinite Cardinal Exists

- For *k* NatCard: *Finite*(*k*) $\equiv_{df} \mathbb{N}$ *k* Infinite(*k*) $\equiv_{df} \neg Finite(k)$
- Lemma 1: $\forall u([\lambda z \mathbb{P}^+ z m]u \rightarrow \mathbb{N}u)$ *Proof.* By induction on *m*. \bullet

• Lemma 2: $\neg \exists n \textit{Numbers}(n, \mathbb{N})$

Proof. For reductio, suppose N*a* and *Numbers*(*a*, N). Then by the main lemma for D/P 5, $\exists y(Numbers(y, [\lambda z \mathbb{P}^+z a]) \& \mathbb{P}ay)$. Suppose *Numbers*(*b*, $[\lambda z \mathbb{P}^+z a]$) & $\mathbb{P}ab$. From *Pab* and Na, we have Nb. From *Pab*, it then follows that $a < b$. Now a fact we haven't proved is:

 $(Numbers(n, F) \& Numbers(m, G) \& \forall u(Fu \rightarrow Gu)) \rightarrow n \le m$

Instantiate $[\lambda z \mathbb{P}^+ z a]$ for *F*, N for *G*, *a* for *m*, and *b* for *n*:

 $(Numbers(b, [\lambda z \mathbb{P}^+za]) \&$ *Numbers* $(a, \mathbb{N}) \& \forall u([\lambda z \mathbb{P}^+za]u \rightarrow \mathbb{N}u) \rightarrow b \le a$

We already know the first two conjuncts. The third conjunct follows from the Lemma 1, with

a instantiated for *m*. Hence $b \le a$. But we previously established $a < b$. So by a simple fact

 $(n < m \& m \le k \rightarrow n < k)$ (exercise), $a < a$, which contradicts $\neg (n < n)$ (exercise).

- *Infinite*(#N). *Proof.* It is provable that *Rigid*(N). Then by a fact about numbering, *Numbers*(#N, N). If, for reductio, N#N, $\exists n$ *Numbers*(*n*, N), contradicting Lemma 2.
- Thus, $\exists x \text{ Infinite}(x)$ has been derived from no math primitives! If $\aleph_0 =_{df} \# \mathbb{N}$, then the existence of \aleph_0 doesn't require mathematics.

Structure Predecessor Frege's Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography \bullet 00 00000 0000000000 0000 \bigcirc 000

Consistency of the Theory of Natural Numbers

- Use Aczel models in which the Urelements consist of: 1 ordinary object and let the set of special elements S contain a copy of the natural numbers $0^*, 1^*, 2^*, \ldots$.
- Let \mathbf{R}_2 contain \mathbb{P} , whose extension at w_0 is:
	- $\{\langle 0^*,0^*\rangle,\langle 2^*,3^*\rangle,\langle 3^*,4^*\rangle,\langle 4^*,5^*\rangle,\ldots\}$
	- $\langle 0^*, 0^* \rangle$ will represent $\mathbb{P} \mathbf{x}_0 \mathbf{x}_0$.
- Let the domain of abstract objects A contains $0, 1, 2, \ldots$, and \aleph_0 , where each is a set of properties whose extensions are equinumerous_{*D*} at w_0 :
	- \bullet 0 is the set of properties whose extensions equinumerous_{*D*} to the property denoted by $[\lambda x D!x \& x \neq x]$ at w_0
	- n' is the set of properties whose extensions are equinumerous_{*D*} to the property denoted by $\lceil \lambda m \rceil^+ mn \rceil$ at w_0

Let *n* range over these objects. Set the proxy function so that $|\mathbf{\aleph}_0| = 0^*$, $|i| = 1^*$ (where *i* is any indiscernible), and $|n| = (n + 2)^*$, so that $2^*, 3^*, 4^*, \dots$ are the proxies of the natural numbers for exemplification purposes.

Observations I

- Natural numbers and an infinite cardinal are definable and their principles are derivable in extended object theory.
- No mathematical primitives are used, and no mathematical axioms are asserted.
- The fundamental question of the philosophy of arithmetic (Heck 2011, 152): What is the basis of our knowledge of the infinity of the series of natural numbers? Answer: We can derive it as a theorem from principles that govern abstract objects generally.
- Frege's question: *Wie soll uns denn eine Zahl gegeben sein, wenn wir keine Vorstellung oder Anschauung von ihr haben können?* (1884, §62). Answer: By descriptions guaranteed to be well-defined by principles that govern abstract objects generally.
- Everything depends on logico-metaphysical principles that demonstrate how logic and metaphysics are entangled.

Observations: II

- We haven't asserted the existence of any concrete objects, but only that concrete objects might exist.
- There is no Julius Caesar problem. $#F = x$ is defined for any value of *x*.
- We aren't postulating objects piecemeal, though we have had to extend object theory with 1 axiom and prove it is consistent.
- There is no 'bad company' objection, 'embarassment of riches' objection, etc.
- We've united the Fregean philosophy of mathematics (by deriving extensions and natural numbers) and Fregean philosophy of language (by identifying senses).
- We turn next to the analysis of theoretical mathematics.

Bibliography

- Boolos, G., 1996, "On the Proof of Frege's Theorem," in A. Morton and S. Stich (eds.), *Benacerraf and His Critics*, Cambridge, MA: Blackwell, pp. 143–159; reprinted in G. Boolos, *Logic, Logic, and Logic*, R. Jeffrey (ed.), Cambridge, MA: Harvard University Press, 1998, 275–290. [Page reference to the reprint.]
- Boolos, G., 1995, "Frege's Theorem and the Peano Postulates," *Bulletin of Symbolic Logic*, 1: 317–326; reprinted in G. Boolos, *Logic, Logic, and Logic, R. Jeffrey (ed.), Cambridge, MA:* Harvard University Press, 1998, pp. 291–300. [Page reference to the reprint.]
- Burgess, J., 2003, "Review of Kit Fine, *The Limits of Abstraction*," *Notre Dame Journal of Formal Logic*, 44 (4): 227–251.
- Cook, R., 2003, "Iteration One More Time," *Notre Dame Journal of Formal Logic*, 44 (2): 63–92.

Bibliography

- Fine, K., 2002, *The Limits of Abstraction*, Oxford: Clarendon Press.
- Frege, G., 1884, *The Foundations of Arithmetic*, translated by J. L. Austin, Oxford: Blackwell, second revised edition, 1974.
- Frege, G., 1893 [1903], *Grundgesetze der Arithmetik*, Band I [II], Jena: Verlag Hermann Pohle.
- Nodelman, U., and E. Zalta, Chapter 14, in Zalta m.s. *PLM*.
- Hale, B., and C. Wright, 2001, *The Reason's Proper Study*, \bullet Oxford: Clarendon.
- Heck, R., 2011, *Frege's Theorem*, Oxford: Clarendon.
- Heck, R., 1993, "The Development of Arithmetic in Frege's *Grundgesetze Der Arithmetik*," *Journal of Symbolic Logic*, 58 (2): 579–601
- Shapiro, S., 2004, "Critical Study: The Nature and Limits of Abstracts," *Philosophical Quarterly*, 54 (214): 166–174.

Bibliography

- Weir, A., 2003, "Neo-Fregeanism: An Embarrassment of Riches," *Notre Dame Journal of Formal Logic*, 44 (1): 13–48.
- Wright, C., 1983, *Frege's Conception of Numbers as Objects*, Aberdeen: University of Aberdeen Press.
- Zalta, E., 1999, "Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege's *Grundgesetze* in Object Theory," *Journal of Philosophical Logic*, 28(6): 619–660.
- Zalta, E., 2012, "Frege's Logic, Theorem, and Foundations for Arithmetic", *The Stanford Encyclopedia of Philosophy* (Spring 2012 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/spr2012/entries/frege-logic/.
- Zalta, E., m.s., *Principia Logico-Metaphysica*, https://mally.stanford.edu/principia.pdf