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Predecessor

We now add a new axiom that asserts the existence of an ordering
relation, namely, being an x and y such that for some property F
and discernible object u, (a) u exemplifies F, (b) y numbers F,
and (c) x numbers: being an F-exemplifier other than u.
Axiom: [�xy 9F9u(Fu & Numbers(y,F) & Numbers(x,F�u))]#
P =df [�xy 9F9u(Fu & Numbers(y,F) & Numbers(x,F�u))]
Note: No mathematical primitives are used to assert this axiom.
The notion Numbers(x,F) is defined in terms of the primitives of
object theory.
Pxy ⌘ 9F9u(Fu & Numbers(y,F) & Numbers(x,F�u))
Rigid(P), i.e., ⇤8x8y(Pxy! ⇤Pxy)

Proof. The reasoning that shows Pxy! ⇤Pxy is non-trivial – it requires an
appeal to a rigidifying relation and so relies on the derivation of the Gallin axiom
from the Kirchner Theorem. See Nodelman & Zalta chapter of Zalta m.s., PLM.
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Predecessor is 1-1 and Functional
Thm: 1-1(P) (Frege, Gg., Thm 89)

Proof. Assume Pxz and Pyz. By definition of P, these assumptions imply, respectively, that there

are properties and discernible objects, say R,Q, a, b, such that:
(#) Qa & Numbers(z,Q) & Numbers(x,Q�a)

(⇠) Rb & Numbers(z,R) & Numbers(y,R�b)

The second conjuncts of (#) and (⇠) jointly yield Q ⇡D R. Since we also know Qa and Rb, it follows

by a previous lemma that Q�a ⇡D R�b. But, separately, the 3rd conjuncts of (#) and (⇠) jointly imply

x=y ⌘ Q�a ⇡D R�b, by the conditional underlying Hume’s Principle. Hence x=y.

Thm: Pxy & Pxz! y=z (Frege, Gg., Thm 71)
Proof. Assume both Pxy and Pxz. By definition of P, these assumptions imply, respectively, that

there are properties and discernible objects, say Q,R, a, b, such that:
(#) Qa & Numbers(y,Q) & Numbers(x,Q�a)

(⇠) Rb & Numbers(z,R) & Numbers(x,R�b)

Now the third conjuncts of (#) and (⇠) jointly imply Q�a ⇡D R�b. Since we also know Qa and Rb, it

follows by a previous lemma that Q ⇡D R. But independently, the second conjuncts of (#) and (⇠)

jointly imply y=z ⌘ Q⇡D R, by the conditional underlying Hume’s Principle. Hence y=z.

Edward N. Zalta and Uri Nodelman Seminar on Axiomatic Metaphysics Lecture 10 Frege Numbers (Part 2) zalta@stanford.edu



Structure Predecessor Frege’s Theorem 2nd-Order Peano Arithmetic Infinity Metaphilosophy Bibliography

Lemma: Non-Zero Cardinals Have Predecessors

Thm: NaturalCardinal(x) & x,0! 9yPyx
Proof. Assume NaturalCardinal(x) and x,0. By definition of P, show:

9y9F9u(Fu & Numbers(x,F) & Numbers(y,F�u)

The first assumption implies, by definition 9G(x=#G), and so by a previous
equivalence it follows that 9G(Numbers(x,G)). Suppose Numbers(x,P). This and
x,0 imply 9uPu. Suppose Pa. Then we know [�z Pz & z,a]#. Hence P�a#. So
9yNumbers(y,P�a). Suppose Numbers(b,P�a). Then, assembling what we know:

Pa & Number(x,P) & Numbers(b,P�a)

So 9y9F9u(Fu & Number(x,F) & Numbers(y,F�u).
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Natural Cardinals are Discernible

Thm: NaturalCardinal(x)! D!x
Proof. Assume NaturalCardinal(x). Since NaturalCardinal(0), we show D!x by

disjunctive syllogism from x=0 _ x,0. (a) x=0. We know 9xO!x, say a. Then
[�x x=a]#, and so does #[�x x=a] (= b). Exercise: show P0b and, hence, [�z Pzb]0. To
show D!0, we show: y,0! 9F¬(Fy ⌘ F0). So assume y,0 and for reductio,
¬9F¬(Fy ⌘ F0), i.e., 8F(Fy ⌘ F0). Hence [�z Pzb]y, and so Pyb. But P is a 1-1
relation and so by the definition of 1-1 and the fact that P# we may infer 0=y from P0b
and Pyb. Contradiction.

(b) x,0. Then since x is a natural cardinal, it follows by the previous theorem that
9yPyx. Suppose Pcx. Then [�z Pcz]x. Again, to show D!x, we show:
y,x! 9F¬(Fy ⌘ Fx). So assume y,x and, for reductio, ¬9F¬(Fy ⌘ Fx), i.e.,
8F(Fy ⌘ Fx). Then [�z Pcz]y, and hence Pcy. But P is functional and so from Pcx and
Pcy it follows that x=y, which contradicts our assumption that y,x.
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Some Corollaries

Thm: Pxy! (NaturalCardinal(x) & NaturalCardinal(y))
Thm: Pxy! (D!x & D!y)
Thm: (immediate from the definition of P⇤)
P⇤xy ⌘ 8F

�
(8z(Pxz! Fz) & 8x08y0(Px0y0 ! (Fx0 ! Fy0)))! Fy

�

Thm: ¬9xPx0 (Frege, Gg., Thm 108)
Proof. Suppose not, e.g., Pa0. Then, for some property Q, and discernible b,

Qb & Numbers(0,Q) & Numbers(a,Q�b), by df P. From Qb it follows that 9uQu.
But Numbers(0,Q)) implies ¬9uQu. Contradiction.

Thm: ¬9xP⇤x0 (Frege, Gg., Thm 126)
Thm: ¬P⇤00
Thm: P+xy ⌘ P⇤xy _ x=D y (instance of the definition of P+)
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Derivation of First 3 Dedekind/Peano Axioms

N =df [�x P+0x] Nx ⌘ P+0x
NaturalNumber(0) (D/P 1)

Proof. D!0, since 0 is a natural cardinal and natural cardinals are discernible.
So 0=D 0, by reflexivity of =D on discernibles. So P⇤00 _ 0=D 0 and hence P+00.
Since N0 ⌘ P+00 (above), it follows that N0.

¬9nPn0 (D/P 2) (Frege, Gg., Thm 126)
(Zero doesn’t succeed any natural number.)

Proof. We’ve previously established ¬9xPrecedes(x, 0). A fortiori, no number
precedes 0.

8n8m8k(Pnk & Pmk ! m=n) (D/P 3)
No two numbers have the same successor.

Proof. Since P is a 1-1 relation generally, it is a 1-1 relation on the numbers.
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Lemma: Generalized Induction
Thm: [Fz & 8x8y((G+zx & G+zy)! (Gxy! (Fx! Fy)))]! 8x(G+zx! Fx)
Proof. Assume the antecedent:

(#) Fz & 8x8y((G+zx & G+zy)! (Gxy! (Fx! Fy)))
To show 8x(G+zx! Fx), assume G+zx, to show Fx. We use the lemma:

(Fx & G+xy & Hereditary(F,G))! Fy
Instantiate F to [�y Fy & G+zy], x to z, and y to x and simplify. Then we know:

(⇠) [Fz & G+zz & G+zx & Hereditary([�y Fy & G+zy],G)]! (Fx & G+zx)
So to show Fx, we prove the antecedent of (⇠). Fz by assumption. G+zz follows from
the main fact about G+ and z=D z for discernible z. G+zx also holds by assumption. So
it remains to establish:

Hereditary([�y Fy & G+zy],G)
By definition and simplification, show:

8x, y[Gxy! ((Fx & G+(z, x))! (Fy & G+(z, y)))].
Proof. Let a, b be arbitrary objects. Assume Gab, Fa, and G+za, to show
Fb & G+zb. The second conjunct G+zb follows easily: from the facts that G+za
and Gab, it follows by a previous lemma that G⇤zb, which implies G+zb, by a
previous theorem. So it remains to show Fb. Since we now have G+za, G+zb,
Gab, and Fa, it follows from the second conjunct of (#) that Fb.
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Derivation of D/P Axiom 4: Mathematical Induction

Since P+ is a relation, we can instantiate Generalized Induction
to P+ and 0 to get:
F0 & 8x8y[P+0x & P+0y & Pxy! (Fx! Fy)]!
8x(P+0x! Fx)

Now substitute Nx for P+0x, and Ny for P+0y, and the result is:
F0 & 8x8y[Nx & Ny & Pxy! (Fx! Fy)]! 8x(Nx! Fx)
Simplify with restricted variables:

F0 & 8n8m(Pnm! (Fn! Fm))! 8nFn (D/P 4)
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Lemmas for Final D/P Axiom

Nx! NaturalCardinal(x)
Proof. Assume Nx. Then P+0x. Reason by cases from x=0 _ x,0. If x=0,

then NaturalCardinal(x), by previous thm. If x,0, then it follows that P⇤0x,
definition of P+ and the fact that x,0! x,D 0. By a lemma about the weak
ancestral, it follows a fortiori that 9zPzx. Let a be such an object, so that we
know Pax. Then by a previous fact, NaturalCardinal(x).

Nx! D!x (Exercise)
Pnx! Nx (Successors are numbers)

Proof. Assume Pnx. Since Nn, by hypothesis, it follows from the definition of
N that P+0n. Since P is a rigid relation on discernibles, a fact about the weak
ancestral implies: (P+0n & Pnx)! P⇤0x. So P⇤0x. Hence, by definition of P+, it
follows that P+0x. So Nx.

Pnm & Pnk ! m=k
Proof. Predecessor is functional tout court, and so functional on the natural

numbers.
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Lemma
Thm: 8x(Nx! ¬P⇤xx)
Proof. Assume Nb; show ¬P⇤bb, use: (Fx & G+(x, y) & Hereditary(F,G))! Fy.
Instantiate F to [�z ¬P⇤zz], x to 0, y to b, and since P is a rigid relation on discernibles,
instantiate G to P. Simplify the result to:

(¬P⇤00 & P+0b & Hereditary([�z ¬P⇤zz],P))! ¬P⇤bb
So show:

(#) ¬P⇤00
(⇠) P+0b
(⇣) Hereditary([�z ¬P⇤zz],P)

(#): from theorem ¬9xP⇤x0.
(⇠): from Nb (assumption) and the definition of N.
(⇣): By definition, show:

P# & [�z ¬P⇤zz]# & 8x8y(Pxy! ([�z ¬P⇤zz]x! [�z ¬P⇤zz]y))
P# and [�z ¬P⇤zz]# are easy. So simplify and show: Pxy! (¬P⇤xx! ¬P⇤yy). Assume
Pxy and ¬P⇤xx. Now since P is a 1-1 rigid relation on discernibles, we can apply a
previous theorem about such relations, to infer:

(Pxy & ¬P⇤xx)! ¬P⇤yy
Hence ¬P⇤yy. ./
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Lemma

Thm: (Nx & Pyx)! (Numbers(z, [�z P+zy]) ⌘ Numbers(z, [�z P+zx]�x))
Proof. Assume Nx and Pyx. Since
G ⌘D H ! (Numbers(x,G) ⌘ Numbers(x,H)) show, by definition (⌘D), that
[�z P+zy]u ⌘ [�z P+zx]�xu. Since Nx! D!x, we can apply definition of
[�z P+zx]�x and simplify by �-Conversion and Substitution. So show:

P+uy ⌘ P+ux & u,x
(!) Assume P+uy. From this, assumption Pyx, and P is a rigid relation on
discernibles, it follows that P⇤ux. Hence P+ux. Suppose u=x, for reductio.
Then from P⇤ux, it follows that P⇤xx, which contradicts a previous lemma
given that Nx.
( ) Assume P+ux and u,x, and for reductio, ¬P+uy. From u,x, we know
u,D x. and from this and P+ux it follows that P⇤ux. But since P is a 1-1 rigid
relation on discernibles. we can instantiate a previous lemma to obtain
(Pyx & P⇤ux)! P+uy, i.e., (Pyx & ¬P+uy)! ¬P⇤ux). But from Pyx
(assumption) and ¬P+uy (hypothesis), ¬P⇤ux. Contradiction. ./
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Main Lemma
Thm: 8n9y(Numbers(y, [�z P+zn]) & Pny) Frege: 8nPn#[�z P+zn]
Proof. Consider:

[�x 9y(Numbers(y, [�z P+zx]) & Pxy)] (Q)
By �C, our theorem has the form 8nQn. So, by induction, we show that Q0
and 8n8m(Pnm! (Qn! Qm)).

Base Case: Show Q0, i.e., 9y(Numbers(y, [�z P+z0]) & P0y). We know
8G9yNumbers(y,G). So let Numbers(a, [�z P+z0]), and then show P0a, i.e.,
show:

9F9u(Fu & Numbers(a,F) & Numbers(0,F�u))
We pick our witness for F to be [�z P+z0] and pick our witness for u to be 0
(since D!0, given it is a natural cardinal and so discernible). So show:
(#) [�z P+z0]0
(⇠) Numbers(a, [�z P+z0])
(⇣) Numbers(0, [�z P+z0]�0)

(#): Show P+00. But since D!0, 0=D 0, and so P+00, by a fact about P+.

(⇠): holds by assumption.
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Proof of Main Lemma (continued)
(⇣): Numbers(0, [�z P+z0]�0). By previous thm, it su�ces to show:

¬9u([�z P+z0]�0u)
Suppose not, and suppose [�z P+z0]�0b. Then by definition
[�z [�z P+z0]z & z,0]b. Simplify to [�z P+z0]b & b,0 and then to
P+b0 & b,0. The 2nd conjunct implies b,D 0, and so the first conjunct and
the main fact about P+ imply P⇤b0, which contradicts ¬9xP⇤x0.

Inductive Case: Show Pnm! (Qn! Qm), i.e.,
Pnm! �9y(Numbers(y, [�z P+zn]) & Pny)! 9y(Numbers(y, [�z P+zm]) & Pmy)

�

So assume (IH):
(A) Pnm
(B) 9y(Numbers(y, [�z P+zn]) & Pny)

For (B), let Numbers(b, [�z P+zn]) and Pnb. To find a witness for consequent,
let c be such that Numbers(c, [�z P+zm]) (every property is numbered!). To
show Pmc, we have to show:
(C) 9F9u(Fu & Numbers(c,F) & Numbers(m,F�u))

Pick [�z P+zm] as witness for F, and m as witness for u (since Nm! D!m).
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Proof of Main Lemma (continued)

Show:
(#) [�z P+zm]m
(⇠) Numbers(c, [�z P+zm])
(⇣) Numbers(m, [�z P+zm]�m)

(#): Show P+mm. Since Nm, D!m, we know m=D m. Hence P+mm, by fact
about P+.
(⇠): holds by assumption.
(⇣): By Nm (hypothesis), Pnm (assumption), and a previous lemma, we know:
(D) Numbers(m, [�z P+zn]) ⌘ Numbers(m, [�z P+zm]�m)

Note that Pnm, by (A), and Pnb, by hypothesis. So m=b, by the functionality
of predecessor. Since we also know Numbers(b, [�z P+zn]) by hypothesis, it
follows that Numbers(m, [�z P+zn]). So by (D), Numbers(m, [�z P+zm]�m). ./
Note: Frege’s version of this Lemma:

8nPn#[�z P+zn]
is also provable. See Nodelman & Zalta chapter of Zalta m.s., PLM.
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Derivation of D/P Axiom 5: Every Number Has a Successor

8n9!mPnm. (D/P 5)
Proof. By GEN, it su�ces to show 9!mPnm. But since P is a functional
relation (by a previous theorem), it su�ces to show that 9mPnm.
Moreover, we know that if n immediately precedes anything, that thing
is a natural number (by a previous theorem), and so it su�ces to show
that 9yPny. But this follows, a fortiori from the main lemma which tells
us 9y(Numbers(y, [�z P+zn]) & Pny).

Proof Variant (Frege-Style): By GEN, it su�ces to show 9!mPnm. But
since P is a functional relation (by previous theorem), it su�ces to show
that 9mPnm. Moreover, we know that if n immediately precedes
anything, that thing is a natural number (by previous theorem), and so it
su�ces to show that 9yPny. But this follows a fortiori from Frege’s
version of the main lemma, which tells us that Pn#[�z P+zn].
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Arithmetic
Define notation for Successors

n0 =df ımPnm
n0 is well defined, by D/P 5.
Define numerals:

1 =df 00
2 =df 10
3 =df 20
...

Restrictions: when G is a 2-place relation and F a property:
G�F =df [�xy Fx & Gxy]

Define <, , >, �:
< =df P⇤�N
 =df P+�N
> =df [�xy y < x]
� =df [�xy y  x]

Prove theorems about <, , >, �. E.g., < is asymmetric and
transitive,  is reflexive, anti-symmetric and transitive, etc.
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Basic Recursive Functions are Relations

Operations: Rigid functional relations on numbers, e.g.,
successor (s) is P and numerical identity (=̇) is =D�N.
Constant Operations (where n0 = ımPnm):

Cn0
m =df [�x1 . . . xny Nx1 & . . . & Nxn & y=̇m] (n,m � 0)

It now follows that Cn0
m is an n-ary operation:

Opn(Cn0
m )

Projection Operations: ⇡i0
k takes i arguments, returns the kth

(1  k  i). (The arity of the relation is i0, which includes the
value of the function.), i.e., ⇡i0

k =df [�n1 . . . nim m=̇nk]
Opi(⇡i0

k ) (1  k  i)
Composition Operations:

G � H =df [�xy 9z(Hxz & Gzy)]
Op1(H) & Op1(G)! (Op1(G � H) & 8x([G � H](x) = G(H(x))))
Generalizes to n-ary composition: G � (H1, . . . ,Hm),
where G is any m0-ary relation (m � 1) and H1, . . . ,Hm are any
n0-ary relations (n � 0)
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Recursion Theorem
Our approach has the following parts:

Start with given operations H(n) and G(n,m, j).
Inductively define (suppressing the index to H and G):

F0 =df H
Fm0 =df G � (⇡2

1,C2
m,Fm)

Lemma: each Fm exists and is an unary operation.
Then define FH,G =df [�nmj Fm(n) =̇ j]

Lemma: FH,G exists and is a binary operation.
Recursion Thm: where H is a unary op and G is a ternary op:
Op2(FH,G) & FH,G(n, 0) = H(n) & FH,G(n,m0) = G(n,m,FH,G(n,m)))
Example: standard recursive definition of Addition (A).

A =df F⇡2
1,s�⇡4

3

It follows that:
A(n, 0) = n
A(n,m0) = (A(n,m))0

Or, in infix notation:
n + 0 = n
n + m0 = (n + m)0
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Derivation of Second-Order Peano Arithmetic

The Dedekind-Peano axioms (including mathematical induction)
are theorems.
By the Recursion Theorem, the axioms for recursive addition
and multiplication become theorems once addition A and
multiplication M are defined:

n + 0 =df n
n + m0 =df (n + m)0
n ⇥ 0 =df 0
n ⇥ m0 =df n + (n ⇥ m)

Note: You have to introduce the multiplication in a manner
similar to that of addition:

M =df FC2
0,A�(⇡4

1,⇡
4
3)

From which it follows that:
M (n, 0) = 0
M (n,m0) = n +M (n,m)

Comprehension Principle for Properties is already a theorem.
So second-order Peano Arithmetic has been derived.
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An Infinite Cardinal Exists
For  NatCard: Finite() ⌘df N Infinite() ⌘df ¬Finite()
Lemma 1: 8u([�z P+zm]u! Nu) Proof. By induction on m.

Lemma 2: ¬9nNumbers(n,N)
Proof. For reductio, suppose Na and Numbers(a,N). Then by the main lemma for D/P 5,
9y(Numbers(y, [�z P+za]) & Pay). Suppose Numbers(b, [�z P+za]) & Pab. From Pab and Na,
we have Nb. From Pab, it then follows that a < b. Now a fact we haven’t proved is:

�
Numbers(n,F) & Numbers(m,G) & 8u(Fu! Gu)

�! n  m
Instantiate [�z P+za] for F, N for G, a for m, and b for n:

�
Numbers(b, [�z P+za]) & Numbers(a,N) & 8u([�z P+za]u! Nu)

�! b  a

We already know the first two conjuncts. The third conjunct follows from the Lemma 1, with

a instantiated for m. Hence b  a. But we previously established a < b. So by a simple fact

(n < m & m  k ! n < k) (exercise), a < a, which contradicts ¬(n < n) (exercise).

Infinite(#N). Proof. It is provable that Rigid(N). Then by a fact about numbering,

Numbers(#N,N). If, for reductio, N#N, 9nNumbers(n,N), contradicting Lemma 2.

Thus, 9xInfinite(x) has been derived from no math primitives! If
@0 =df #N, then the existence of @0 doesn’t require mathematics.
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Consistency of the Theory of Natural Numbers

Use Aczel models in which the Urelements consist of: 1
ordinary object and let the set of special elements S contain a
copy of the natural numbers 0⇤, 1⇤, 2⇤, . . . .
Let R2 contain P, whose extension at w0 is:

{h0⇤, 0⇤i, h2⇤, 3⇤i, h3⇤, 4⇤i, h4⇤, 5⇤i, . . .}
h0⇤, 0⇤i will represent P@0@0.
Let the domain of abstract objects A contains 0, 1, 2, . . ., and @0,
where each is a set of properties whose extensions are
equinumerousD at w0:

0 is the set of properties whose extensions equinumerousD to the
property denoted by [�x D!x & x,x] at w0
n0 is the set of properties whose extensions are equinumerousD to
the property denoted by [�m P+mn] at w0

Let n range over these objects. Set the proxy function so that
|@0| = 0⇤, |i| = 1⇤ (where i is any indiscernible), and
|n| = (n + 2)⇤, so that 2⇤, 3⇤, 4⇤, . . . are the proxies of the natural
numbers for exemplification purposes.
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Observations I

Natural numbers and an infinite cardinal are definable and their
principles are derivable in extended object theory.
No mathematical primitives are used, and no mathematical
axioms are asserted.
The fundamental question of the philosophy of arithmetic (Heck
2011, 152): What is the basis of our knowledge of the infinity of
the series of natural numbers? Answer: We can derive it as a
theorem from principles that govern abstract objects generally.
Frege’s question: Wie soll uns denn eine Zahl gegeben sein,
wenn wir keine Vorstellung oder Anschauung von ihr haben
können? (1884, §62). Answer: By descriptions guaranteed to be
well-defined by principles that govern abstract objects generally.
Everything depends on logico-metaphysical principles that
demonstrate how logic and metaphysics are entangled.
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Observations: II

We haven’t asserted the existence of any concrete objects, but
only that concrete objects might exist.
There is no Julius Caesar problem. #F = x is defined for any
value of x.
We aren’t postulating objects piecemeal, though we have had to
extend object theory with 1 axiom and prove it is consistent.
There is no ‘bad company’ objection, ‘embarassment of riches’
objection, etc.
We’ve united the Fregean philosophy of mathematics (by
deriving extensions and natural numbers) and Fregean
philosophy of language (by identifying senses).
We turn next to the analysis of theoretical mathematics.
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